Introduction

Spaces of generalised smoothness have been considered by several mathematicians within
different approaches. We refer to Gol’dman (using modulus of continuity, cf. [Gol76]),
Kalyabin and Lizorkin (approximation theory, cf. [KL87]), Merucci, Cobos and Fernandez
(interpolation theory, cf. [Mer84], [CF88]) among others. A survey has been given in
[KL&7]. More historical references can be found in [Leo98a].

Our approach is similar to that in [Leo98a], that is, we use the point of view of Fourier
analysis and, moreover, consider the more general context of quasi-Banach spaces. The in-
terest of Leopold in [Leo98a] was in using spaces of generalised smoothness of Besov type
to handle embedding properties in delicate limiting situations. Our study was strongly
motivated by the articles [ET98] and [ET99]. There, Edmunds and Triebel used spaces
of generalised smoothness of Besov type when studying the behaviour of eigenvalues in
problems which correspond to the vibration of a drum, the whole mass of which is concen-
trated on a fractal subset of the drum. In order to explain the relationship between fractals
and function spaces we need some previous considerations. The fractals considered by Ed-
munds and Triebel in the above papers are (isotropic) perturbed d-sets, called (d, ¥)-sets.

Let I" be a non-empty closed subset of R™, 0 < d < n and ¥ a positive monotone
function on the interval (0,1] with

(0.1) a¥(277) <w(27¥) < ¥ (277), jeN,

for some positive constants ¢; and cz. Then I' is called a (d, ¥)-set if there is a Radon
measure py with supp p = I' and two positive constants ¢; and ¢ such that

(0.2) clrdW(r) < w(B(y,m)) < cy’dd?(r)

for any ball B(v,r) centred at v € I" of radius r € (0,1). If, additionally, ¥ is decreasing
with lim, o % (r) = oo, and (0.2) holds for d = n, then I is called an (n,¥)-set.

Let £2 be a bounded C*° domain in R™ and let —A be the Dirichlet Laplacian in (2.
According to Theorem 2.28 and Corollary 2.30 of [ET99], the operator

(0.3) B=(-A)t ot

is a compact self-adjoint non-negative operator in Wi (£2), where I' C £ is a (d, ¥)-set
with n—2 < d < n and tr!" is closely related to the trace trp of W2 (£2) on I'. Moreover,
the positive eigenvalues ujp of B, ordered so that ury1 < pg, & € N, and repeated
according to their algebraic multiplicity, can be estimated as follows:

(0.4) kT (RO (k1) D/ <y < kT RO (ETH) D/ ke,

for some positive constants ¢; and cs.
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If in the definition of a (d, ¥)-set, restricted to 0 < d < n, we take ¥ ~ 1, then we get
the concept of a d-set. The corresponding fractal drum problem was solved first by Triebel
in his book [Tri97]. The method used there relies on the close connection between d-sets,
in particular L;-spaces on a d-set I', and some Besov spaces B; . The technique includes
estimates for the entropy numbers of compact embeddings between function spaces on I,
which once more relies on the machinery available for the usual Besov spaces, specially
characterisations via atomic and subatomic decompositions.

For a generalisation to (d,¥)-sets, we have to consider the spaces Bf,;’w) where 0 <
p < 00, 0 < g < oo and the smoothness is now expressed by the couple (s,%7%), s € R,
a € R and the above function ¥. For this reason as well as for some intrinsic interest it
is worthwhile to extend to these generalised spaces of Besov type several results known
for the usual Besov spaces. We do this in the first section including a parallel approach
to the spaces of generalised smoothness of Triebel-Lizorkin type in R™. In the second
section we begin by developing measure properties of (d,¥)-sets. In particular, we show
that, up to equivalence, there exists only one Radon measure related to a (d, ¥)-set, and
that any (d, ¥)-set has Hausdorff dimension d and Lebesgue measure zero. We finish the
second section by showing a deep relation between L,-spaces on a (d,¥)-set and some
spaces B](DZ’W) (R™). The third section is devoted to entropy numbers. We estimate entropy
numbers of embeddings between some sequence spaces and then using also the results of
the first section we get estimates for the entropy numbers of compact embeddings between
spaces of Besov type on a (d, ¥)-set. Essentially we obtain an extension of Theorem 2.24
in [ET99] to (d,¥)-sets in the light of [Tri97]. Having in mind Carl’s inequality, these
results can be used to estimate from above the eigenvalues of suitable bounded operators
like (0.3). This is done in the fourth section.

1. Function spaces on R"

1.1. Introduction. Our aim in this section is to develop a detailed study of the spaces
of generalised smoothness B](g‘;’g/) (R™) and Fp(;’w) (R™). They were introduced by D. Ed-
munds and H. Triebel in [ET98], in the context of spectral theory for isotropic fractal
drums, and generalise the usual Besov and Triebel-Lizorkin spaces B, (R") and F, (R"),
respectively. Now a new parameter ¥ is coming in, but s remains the main smoothness
parameter while ¥ stands for a finer tuning.

Spaces of generalised smoothness have been considered by several mathematicians
within different approaches. We refer to Gol’dman (using modulus of continuity), Kalya-
bin (approximation theory), Merucci, Cobos and Fernandez (interpolation theory) among
others. A survey has been given in [KL87]. More historical references can be found in
[Leo98al.

1.2. Definitions and basic properties

1.2.1. Basic notations. As usual, R™ denotes the n-dimensional real euclidean space, N
the collection of all natural numbers, Ng = NU{0} and C stands for the complex numbers.
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If o= (ai,...,a,) € Ny is a multi-index its length is [a] = 3°7_, a;, the derivatives
D* = 9ol /x| 9x%" have the usual meaning and if = (z1,...,2,) € R” then

=zt xl.
Let S(R™) be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R™ equipped with the usual topology. By S'(R™) we denote

its topological dual, the space of all tempered distributions on R™. If ¢ € S(R™) then

(15) B = (F)&) = 2m) " | e p(a)de,  EERT,
Rn

denotes the Fourier transform of ¢. Then F~ !¢ or ¢ stands for the inverse Fourier
transform, given by the right-hand side of (1.5) with ¢ in place of —i. Of course, 2€ denotes
the scalar product on R™. Both F and F~! are extended to &'(R") in the standard way.

The collection of all complex-valued infinitely differentiable functions on R™ with
compact support is denoted by D(R™), and D’(R™) stands for the set of all complex
distributions on R™.

Let 0 < ¢ < oco. Then /¢, is the set of all sequences b = (by)xen, of complex numbers

such that
> 1/q
loleall = (- Ibel7) ™ < oo
k=0

(modified to supycp, |bx| if ¢ = 00). Of course, £, is a quasi-Banach space (a Banach space
if g > 1). Let 0 < p,q < o0, and let f = (fr(x))ren, be a sequence of complex-valued
Lebesgue measurable functions on R™. Then

1£1Ll = (§ (S lh)az) ",

Rr» k=0

11zl = (3 § 1o az)™) "

k=0 Rn

(modified to ess sup,cg. if p = 0o and to sup,ep, if ¢ = 00). Let L, ({,) = L,(R™, ¢,) be
the set of all sequences f such that || f | L,(¢,)|| < oo, and let £4(Ly) = £4(L,(R™)) be the
set of all sequences f such that ||f|¢;(Ly)|| < oo. In the scalar case the corresponding
space is denoted by L,(R™), quasi-normed by

1£1 L@ = ( § 1f @) de)

Rn
(modified to ess sup,cga | f(2)| if p = 00). Ly(4y), €4(Ly) and the scalar case L,(R™) are
quasi-Banach spaces (Banach spaces if p,q > 1).

1/p

All unimportant constants are denoted by ¢, occasionally with additional subscripts
within the same formulas. The equivalence ~ in

ap ~ by or @(x) ~Y(z)
means that there are positive constants ¢; and ¢y such that

crag <bp < coar or crp(x) < P(x) < cop(x)
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for all admitted values of the discrete variable k& or the continuous variable x. Here a,
by, are positive numbers and (), ¥ (z) are positive functions. We adopt the following
convention. A real function ¥ on the interval (0, 1] is said to be monotone if it is either
decreasing or increasing, where decreasing (resp. increasing) means not increasing (resp.
not decreasing). Finally, log is always taken to base 2.

1.2.2. Definitions. Let ¢g be a C'*° function on R™ with

(1.6) supppo C{EER™: || <2}, wo(§)=1 if|¢l < 1.
Let j € N and
(L.7) 0i(6) = po(277€) — po(27711E),  EeR™
Then, since
(1.8) suppp; C {€€R™: 2971 < [¢| <21} jeN,
and
)
(1.9) Zgoj(g) =1 forall £ € R",
(©5)jen, is a smooth dyadic resolutlon of unity. By the Paley—Wiener—Schwartz theorem

€

(p;f)Y, j € Ny, is an entire analytic function on R, for any f € S’'(R™). In particular
(i f)"

(1.10) F=S"(¢;F)” (convergence in &'(R™)).

j=0

makes sense pointwise. Moreover

DEFINITION 1.1. A positive monotone function ¥ on the interval (0, 1] is called admissible
if
T(277) ~w(27%),  jeN.
EXAMPLE 1.2. Let 0 < ¢ < 1 and b € R. Then
¥(z) = logexl’, 0<xz<I1,
is an admissible function.
REMARK 1.3. Let ¥ be an admissible function. We have two cases:
(i) If ¥ is increasing, then there exists § € R} such that
(L11)  w(2%) <@(279) < 20w(2~%) < 2%p(2-2"9), je Ny, ke N.
(ii) If ¥ is decreasing, then there exists §’ € Ry such that
(1.12) w(279) < w(2729) < 2kg(279),  k,j € N,.
In the next proposition we state some basic facts concerning admissible functions.
PROPOSITION 1.4. Let ¥ be an admissible function.

(1) Let x € R. Then ¥X is also an admissible function.
(ii) There are non-negative numbers c1, ¢z, b and ¢, with ¢ € (0,1) and ¢1,c2 > 0,
such that
cillogex| ™ < W (z) < epllogex|®,  x € (0,1].
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(iii) Let a € RT. Then
lim z°¥(x) = 0.

z—0+
(iv) If a € RT, then there exists jo € No such that for any j € No with j > jo,
U(a2 ) ~W(277) and W(27%) ~w(277).
(v) There is a positive constant ¢ such that
U(2z) <c¥(x), z€(0,1/2].
(vi) There are non-negative numbers c1, ca and b, with c1,co > 0, such that
w(277)

AT S e

<c(1+j—k)°

for all j,k € Ng with j > k.

Proof. Part (i) is obvious. For (ii) it is sufficient to prove it for ¥ decreasing (the other
case then follows using (i) and x = —1). Recall that we have (1.12). Let

(1.13) 2

k+1 k
-2 <zr<27? for some k € Njy.

Then, with b = ', according to (1.12) we have on the one hand
U(z) < w22 < 2w (272) < w(272)[log x|’
and on the other hand
w(z) > w(2?) = 27w (27 > 27%w(1) > w(1)log 2|,

both for z satisfying (1.13). Now we check the remaining case. If 271 < o < 1 then for
c =271 cx fulfils (1.13) with k& = 0. We get

W(x) < W(ex) < W(27%)|log cal’

and

Y(A) g2 w(1)
v(1) > ¢(2,1)2 w(277) = o)
Note that for ¢ € (0,1) and x in (1.13) we have |logz| < [log cz|, hence the proof of (ii)
is complete.
To show (iii), note that by the above, there are positive constants c1, ¢o and b such
that
(1.14) cillogz| ™ < ¥(z) < epllogz|’, = €(0,1/2].

2700 (cx) > w(1)27°|log cx|°.

For a > 0, we have
lim z%logz|’ = lim z%logz|~® = 0.
z—0t z—0t

This, together with (1.14), proves (iii).

Having in mind (i) for x = —1 it is enough to show (iv) for ¥ increasing. The proof of
the first equivalence in (iv) is divided in two cases: 0 < a < 1 and @ > 1. For 0 < a < 1,
it is immediate that ¥(a277) < ¥(2779), j € Ny. For j € N, we choose k € N such that
k > log (J*ljﬂ) Then

(1.15) w(277) < Fw(272") < Fw(a277)
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for some positive constant ¢, depending only on ¥. As lim;_, log (]72&) = 0, there
exists jo € N such that log (J_ljﬂ) < 1 for any j > jo. For any such j we can take k =1
in (1.15). Hence, ¥(277) < ¢¥(a277), j > jo, and this was the remaining inequality. If
a > 1, we have ¥(277) < cW(a277), j > loga. For j > [loga] + 1, where [z] denotes the

largest integer not greater than x, and for k& € N such that k& > log (m), we have

(1.16) W(a27) < w(2~U-lesal=1)) < kg (g=2"(—llogal=1)y < chyg(9-7),

where, once more, c¢ is a positive constant which depends only on ¥. Reasoning as above,
for any j arbitrarily large we may choose k = 1. Therefore, ¥(a277) < cW(277), 5 > jo.

The proof of the second equivalence in (iv) can be divided into three cases: 0 < a < 1,
1<a<2anda>2 If 0 <a< 1, then obviously ¥(277) < ¥(27%7), j € Ng. Moreover,
for any integer k with k > log(j/[aj]), we have

(1.17) v(27) < w2 ) < fpe ) < deed), jeN.

Note that there exists jo € N such that log(j/[aj]) < log(a~—!) + 1 for any j > jo. So, for
any such j we may choose k = [loga~!]+1 in (1.17), which gives the remaining inequality
for this first case. If 1 < a < 2 the assertion is a direct consequence of the monotonocity
of ¥ and ¥(279) ~ ¥(27%) from the definition of an admissible function. If a > 2, then
obviously ¥(27%7) < ¥(277), j € N. On the other hand

ollog a]+1

W(279) < cleselrip (92" M) < closaltip(aed) e N,

This completes the proof of (iv).
For (v), if ¥ is decreasing, then obviously (v) is satisfied with ¢ = 1. If ¥ is increasing
then, by Definition 1.1, there exists a positive constant ¢ such that

v V) <w@ ) <ar(27Y), jeN,.
Let j € Ny be such that 2-0+1D < 22 <277, Then 2012 < 2 < 2-U+D and hence
U(2x) < LT/(Q_j) < cy'/(2_2j) < CQW(2_4j) < CQW(2_(j+2)) < CQLT/(:L‘).

To prove (vi) it is again enough to consider ¥ increasing. Since j > k it is then obvious
that

<1

On the other hand, by (1.11), we have
(1.18) w27k <w(27%F),  veN,,

for some constant ¢ > 1. If £ # 0 and v € Ny is chosen so that 2¥k > j, then (1.18)
implies
(1.19) w(27F) < W (279).

Otherwise, if k = 0, instead of (1.18) we can write

T2 M =w1) < (1)

— (27 No.
7@(2_1)0 ( ), reN
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If we now choose v € Ny such that 2¥ > j, we get, for k = 0,

- w(1)
1.20 vRM) =w(1) < ——
(1.20 @) = 00) < g
The value of v = [log(1 + j — k)] + 1 can be used for both cases of k. This together with
(1.18) and (1.20) yields

U (279).

w(2") < o(1+j — k)lscw(279),

w(2-1)
which completes the proof. m

DEFINITION 1.5. (i) Let 0 < p,q < 00, s € R and ¥ an admissible function. Then
BIE,‘;’W) (R™) is the collection of all f € §'(R™) such that

(L2 FIBEY R, = (Zwmw IesF)" 1 Zp@))

(with the usual modification if ¢ = co) is finite.
(ii) Let 0 < p < 00,0 < ¢ < 00, s € R and ¥ an admissible function. Then Fg;’m (R™)
is the collection of all f € S'(R™) such that

1/(1‘

(L22)  fIEGT®Y) —H( e DY) | Ly®Y)

(with the usual modification if ¢ = oo) is finite.

REMARK 1.6. If ¥ ~ 1 then the spaces Béq )(R") and F(S W)(R”) coincide with the
usual Besov and Triebel-Lizorkin spaces, B, (R™) and Fj, (R"), respectively. The theory
of these last spaces has been developed in full extent in [Tri83] and [Tri92]. For more
recent topics we refer to [ET96], [RuS96] and [Tri97]. If ¥(z) = (1 + |logz|)’, b € R, we
obtain the spaces Bg;’(R™) used by Leopold in [Leo98a].

Of course the quasi-norms in (1.21) and (1.22) depend on the function ¢ chosen
according to (1.6). But this is not the case for the spaces BI(,Z’W)(R”) and FIEZ’W) (R™) (in
the sense of equivalent quasi-norms). This can be proved in the usual way, using the
multiplier theorem 1.6.3 of [Tri83] and the properties of the admissible function ¥, and
that is why we omit the subscript ¢ in our notation. Both B](,Z’W) (R™) and Fé;’m (R™) are
quasi-Banach spaces (Banach spaces if p > 1 and ¢ > 1).

1.2.3. Equivalent quasi-norms. Let (¢r)ren, C S(R™). We introduce the maximal func-
tions R

(xS )" (x — 2)|
1.23 * F)olz) = sup ~EES ) B E)L
(123 (¢if)alw) = sup KL
where z € R™ and k € Ny. The result below is the counterpart of Theorem 2.3.2 of [Tri92]
for the spaces BSy”)(R™) and F\o)(R™); it is a simple consequence of Theorem 1.6.2
of [Tri83)].

feS'(RY), a>0,

THEOREM 1.7. Let (pr)ken, be a system of functions as in 1.2.2 with the generating
function ¢q.
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(i) Let 0 < p,q < 00, s € R, ¥ an admissible function and a > n/p. Then

(129 BEYEY = {7 e S®): (32w al LEDI) " < oo}

§=0
(with the usual modification if ¢ = o0) in the sense of equivalent quasi-norms.
(if) Let 0 < p < 00, 0 < g < 00, s € R, ¥ an admissible function and a > n/min(p, q).

Then
(125) EEE) = {7 e SE: (2w iy pae) | L@ <o)
§=0

(with the usual modification if ¢ = o0) in the sense of equivalent quasi-norms.
1.2.4. Lifting property. Let o € R. Then
(1.26) I [ (©°F),

with (&) = (14¢]2)1/2, is a one-to-one map of S(R™) onto itself and of S’(R™) onto itself.
Obviously Il = Is4y. For the B and F' scales, I, acts as a lift:

PROPOSITION 1.8. Let s e R, 0 € R, 0 < ¢ < 00 and ¥ an admissible function.

et 0 <p < o0. en I, maps 1somorphically onto an
Let 0 Then I, BS&Y (R hicall BST (R and
I, f | BpS o) (R™)|| s an equivalent quasi-norm on B( )(R”).
ii) Let 0 < p < co. Then I, maps Fpy isomorphically onto Fpg ") an
Let 0 Then I Fia (Rn) hicall ESs=o M (R and
11, f | Fps o) (R™)|| s an equivalent quasi-norm on F,S;’m (R™).

Proof. Step 1. We first prove (ii). Let f € Fg;’m (R™). We have
(1.27) LI ES D )] = @O (277) (0(6) T F)Y)jen, | Lol
Let ¢ € S(R™) with
dplx)=1 if1/2<|z|] <2 and suppop C{£€R":1/4 < || <4}
Then R 4 R
(0 (€)7F) = ()72 (wsf))Y, JeEN
Applying Theorem 1.6.3 of [Tri83] with n € N such that » > n/2 + n/min(p, ¢) and
M;(€) =277 (6)7 p(277¢)
we get
(1.28)  [|2C @ (27) (o, (1+ €172 F)Y)jen | Lp (o)

< esup 1M (212 | HY (R - 1299 (279) (050 ) Y | Lp (£g)-
€

For a multi-index « € Njj with |a| < n we have

(129)  |[DLE2)) ()]
<oy (g) D[220 4 [22)7/2)| - |(DB ) (4a) 4l

BLa

<24 sup sup [D0()| 30 () ID°[2 20 +[of2)°").
[v|<n yeR™ B<a
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But
(1.30) |D6[(2—2(l+2) + \x|2)"/2]\ < cgﬁ(2—2(l+2) + |$|2)a/2—\6\/2’

and for 2 € supp M;(2'+2.) we have 1/16 < |z| < 1. Recall that for n € N, HJ(R") =
W, (R™) is the usual Sobolev space normed by

L IwE@®Y = (S 1D | La(RY)| )
la|<n
Hence, using in (1.30) the fact that |z| < 1 for the values of § with |8] < o while
|z] > 1/16 for |B] > o, and by (1.29) we get

sup || My (22-) | HJ (R™)|| < oo
leN

Applying this in (1.28), together with the term corresponding to j = 0, which can be
treated in a similar way, gives us

1o fIES (R < Ol f | FS™ (RM).
Observing that I,I_,f = f completes the proof of (ii).

Step 2. The proof of (i) is similar and can be obtained by interchanging the roles of the
L, and ¢, quasi-norms in the proof above and using the scalar version of Theorem 1.6.3
of [Tri83]. m

1.2.5. Embeddings. We finish this subsection with some embedding assertions. This is
the counterpart of Proposition 2.3.2/2 and Theorem 2.7.1 of [Tri83], p. 47 and p. 129. In
the following “—” always stands for topological embedding.

PROPOSITION 1.9. (i) Let 0 < p < 00, 0 < qp < q1 < 00, s € R and ¥ an admissible
function. Then
B(s ) (Rn) FN B(s ) (Rn)

Pgo
and the corresponding assertion for the F-spaces holds with 0 < p < oo.
(ii) Let 0 < p,qo,q1 <00, sER, € >0, ¥ and ¥ admissible functions. Then
B(b-’r& ) (Rn) M B(s o) (Rn>

pgo
and the corresponding assertion for the F-spaces holds with 0 < p < oo.
(iii) Let 0 < ¢ <00, 0<p <00, s €R and ¥ an admissible function. Then
s, ¥ n s n EN'Z n
B&Y) (R") — FOY(RY) < BUY (R,

pmin(p,q) p max(p,q)

(iv) Let 0 < pg < p1 <00, 0< q <00, ¥ an admissible function and sg,s1 € R with

n n
Sg—— =8 — —.
Do P1

Then
B(éo,‘F) (Rn) FN B(sl,u’/) (Rn)

Poq

(v) Let 0 < pg < p1 < 00, 0< qo,q1 <00, ¥ an admissible function and sg,s1 € R

with
n n
So—— =81 — —
Po 1



14 S. Moura

Then
F(S(),Ep)(Rn) N F(Sl’ )(Rn)

Poqo Piq1

(vi) Let 0 < p,qg < 00, s € R and ¥ an admissible function. Then
By e (R") — B]gf;’“p) (R") = By, (R™) if ¥ is decreasing,
B, (R") — Bl(,fl’m (R™) — By “(R™) if ¥ is increasing,
for any € > 0; and the corresponding assertion for the F-spaces holds with 0 < p < co.
(vii) Let 0 < p,q < 00, s € R and ¥ an admissible function. Then

S(R") — BLEP(R™) — S'(R™).

If in addition max(p,q) < oo, then S(R™) is dense in BI(,‘;’W) (R™). The corresponding

assertion is true for the F-spaces with 0 < p < co.

Proof. For (i), (iii), (v) and (vii) simply follow the proof for ¥ = 1 in [Tri83], inserting
the factor ¥(277). For (iv) proceed as before with s; = 0 and then use the lift according
to Proposition 1.8.

For the proof of (ii) for B-spaces (similar for F-spaces): from (i), it is enough to take
qo = 0. Since ¥ anci ¥ are admissible, by Proposition 1.4, there exist positive constants
C1, C2, 51, Eg, b and b such that

c1j P <W(2T) < epj® and Fj P <F(27) < &)Y, jeEN
Let €1 be such that 0 < &1 < &. Then
QSJf/(Q*j) — 9(s+e)j ge1—e)jg—erj @(2*]’)

< .20+ (b4 g—eni, b < o Pols+elig—eriy(977),
C1

Hence

© . . ~ 1/q1
1F1BGD @) = (3 29 @@y (o, )Y | LR )

j=0
(ZQ e1a1ig(ste)ian g (9 N0 (o, f )V|L (R”)qu) Va
j=
> N\ 1/q . ) —~
< (Do) sup 2w (0, )Y | L, (RY)|
j=0 j€Np

< I fIBRE (R

(vi) is a consequence of (ii) and the fact that W (1) < ¥(277), j € Ny, if ¥ is decreasing,
while ¥(277) < ¥(1), j € Ny, if ¥ is increasing. m

1.3. Characterisation by local means. Let B = {y € R™ : |y| < 1} be the unit ball
in R™, and let k be a C'* function in R™ with supp k& C B. Then we introduce the local
means
(1.31) k@) = | k@) f@+iy)dy, zeR", £>0,

Rn
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which makes sense for any f € S'(R™) (appropriately interpreted). Let ko and kY be two
C*° functions in R™ with

(1.32) suppko C B, suppk® C B,
(1.33) Eo(0) £0,  k9(0) # 0.
For N € N, we define
N -~ \"
(1.34) b =A%) = (X 5 ) K0 weR”
i=1 7"
Note that
(1.35) k(z) = |z|*VEO(z), 2 €R™

We introduce some notations. For 0 < p, ¢ < oo, let

1 1
1.36 o,=n|--—1 and o,y =n|——1| .
( ) p <p >+ pq (mln(p, Q) >+

As usual for any a € R we put a; = max(a,0) and [a] stands for the largest integer
smaller than or equal to a.

THEOREM 1.10. Let 0 < p < 00, 0 < ¢ < 00, s € R and ¥ an admissible function. Let
N € Ny with 2N > s. Then there exists h € Ny such that

(137 [k 1) L) | + | (S 2w eyibes o) Lm
j=1

(with the usual modification if ¢ = o0) is an equivalent quasi-norm in F,S;’m (R™).

Proof. The idea of the proof goes back to Theorem 2.4.1 of [Tri92]. Note that we always
have

(1.38) K27, ) (@) = @0)"2(k(277) ) (2), xeR" jEN,

and an analogous equality for k.

Step 1. Let f € Fé;’m(R"). In the first two steps we prove that the quasi-norm in (1.37)
can be estimated from above by c|| f | F,SS’W)(R”) ||. Let (¢r)ren, be the dyadic resolution
of unity introduced in 1.2.2 and let ¢; = 0 if —] € N. We write
(1.39) 299w (27)k(277, f)(x)
M -~
= n ) Y (el @)
l=—0oc0
+ (2m)"229w(277) 3T (k277 ) f) (@), jEN,
I=M+1
where M € N will be chosen later on. We take for granted that the convergence in (1.39)
is not only in &’(R™) but also pointwise a.e. (to be proved later on in Step 3). We estimate
the first sum in (1.39), where there is no problem of convergence, because the sum is finite
(pj+1 =01f I < —j). Let

(1.40) pi(z) =12772*Np;(2),  j € No.
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By Proposition 1.4(vi), there exist constants ¢ > 0 and b > 0 such that
(1.41) T(277) < e(1 4 |1))Pw(2~UFD)
for any j € N and I € Z. Recalling also (1.35), for j € N we have

(142) | S 22 R o) o)

l=—00

M
e 3 ANy (R (2 2)20 (2 UG () ) ()]
l=—o00
But
(1.43) |(K0(2772)20 0w (2705, (2) )Y ()]
< 2m) 72 IR@T))Y ()] - 1T w270 G40 f )Y (2 — y)l dy
Rn
= (2m) "2 | [K0(=¢)] - | U@ (27U HD) G, F)Y (2 — 277¢) ] de.
Rn
Let a > n/min(p, ¢). Obviously
(1.44) (@500F)" (2 = 2779)] < (Ff)al@)(1 +[2'€]).
Using (1.44) in (1.43) leads us to
(145)  |(RO(2772)20 00 (27 UD)5;4(2) )V (@)
< (2m) /220 o (27U (G5 la(@) | IRO(=9)I(1+12M¢|") de
Rn
< CQ(jH)SW( (j+l))(90g+lf)a(x) for I < M,
since k0 € ’D(R") Putting (1.45) in (1.42) gives

(1.46) ’ Z 259 (279) (k(277 )40 ) (@)

l=—o0c0

M
<c Y 2B i) (27 U) (G f)a(e),  EN.

l=—00
We first apply in (1.46) the £,-quasi-norm with respect to j and then the L,-quasi-norm
with respect to z. Because 2N > s we obtain

wan (%] S 2w e @) L@

j=1 l=—c0

S 1/q
<o (X 2mwemiEni@) " )|
m=0
We use Theorem 2.2.4(i) of [Tri92] to estimate the right-hand side of (1.47). Notice that

. 25y (2=, F)Y (z — 2)|
14 2smw 2 m * < 22a . |( .
(1.48) 27") (@ falz) < sup TF 222
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Since a > n/min(p, q), the number r = n/a satisfies 0 < r < min(p, ¢). In order to apply
that theorem we must be sure that (2% (27™)(@m f )Y )oe_, belongs to L,(¢,). But this
is a consequence of Theorem 2.2.4(ii) of [Tri92]. In fact, we have

~

(149) 202 f)" = (127" PPN HE )22 e (2) )Y, me N,
where H is a function in D(R™) such that

(1.50) H@z) =1 if|z] <2

Take

(1.51) My (2) = 2722V H(27™2), 2z €R", m € N,

and choose k > n/2+ n/min(p, ¢). Then

(1.52) Sup Mo (2742) [ HE (R™)|| = [[|42*Y H (42) | Hy (R™)|| < o0,
since [4z[2N H(4z) € D(R™). Because f € Fie'”)(R"), we have

(1.53) @27 (emf) im0 € Lo(ly)-

From (1.49), (1.51)—(1.53) and Theorem 2.2.4(ii) of [Tri92], there exists a positive constant
¢ such that

(1.54) H( i 2S’”qW(2‘m)q|(&mf)v(')\q)Uq |
m=0

Ly(R")

< cllf | F P R

By (1.48) and (1.54), applying Theorem 2.2.4(i) of [Tri92], we get

) (X e my@0) [ Len| < df @),
m=0

Finally, by (1.55) and (1.47), we obtain

1/q

s6) [|(Y] S 29027 ) (k)i 0) O ) L@ < el 1 F ™))

j=1 l=—oc0

Step 2. We estimate the second sum in (1.39) and we have to make sure now that (1.39)
converges a.e. and in some L,(R™) with 1 < r < co. However the latter comes as a
by-product. Let sy € R be such that

(1.57) 80 + 20pg < 8,

and introduce
(1.58) gag(x) = |2*jx|s(’gpj(x), reR™ j€N.

By (1.35) and (1.41) we have

(L59) | > 2wk el (@)
I=M+1

<ec Z 2(5075)1(1+l)b|(;50(273‘2)|27jz|2N7802(j+l)sg;(27(j+l))(p;+lf)v(x)|,
I=M+1
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Let x be a function in D(R™) such that

(1.60) x(z)=1 if1/2<|z|<2 and suppx C {£€R":1/4 <|¢| <4}

Each term in (1.59) can be estimated from above as follows:

(1.61)  |(K0(2792) |27 2PN 202040 (270 ol (2) )Y ()]
)’

< (2m) 72 [ IR0 277 PV 2 ) ()]

Rn»

x |(2U+Dsg (2D FVY (2 — )| dy

(%X('))V(f)’(l +l€l)® de,

< 2(2m) 220Dy (27T (G f)4() S

with a as in Step 1. By Theorem 4.1 of [Far00] the integral in (1.61) can be estimated
from above as follows:

o) | \(@xu))vw\u + il de

220

h(z)

|2

< et @) o+ e )v@) )|

where h € D(R") is such that
(1.63) h(z)=1 if1/4<|z|]<4 and supphC{{€R":1/8 <|¢| <8},

and A > a + n/2. The second factor in (1.62) is obviously constant since h(z)/|z|*° €
D(R™). For the other factor in (1.62) it can be proved that

(1.64) sup 27" [[k(2'2)x(2) | Hy (R™)]| < o0
1eN

(see Remark 1.11). From what has been said and from (1.61), (1.62), there exists a positive
constant ¢ such that
(1.65)  |(KO(277z)|27 2PN 02Ut Dow (27 UHD) ol (2) )Y ()]

< U0 (270 (o0 Fa(@).

Applying (1.65) in (1.59) we obtain
o0

(166) | D2 29w )k )95 f) ()

I=M+1
< Y 204 P2 U) (p Pa(a), €N,
I=M+1

We take in (1.66) first the ¢,-quasi-norm with respect to j and afterwards the L,-quasi-
norm with respect to x. Since s > sy we get
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)1/q

1/q
< c2lv0” S>M/2H(22mw @) i) | L@

(1.67) H@\ Z 2w (277 k(277 )y f )Y (@)

j=1 I=M+1

Lp(R™)

Acting as in Step 1, from (1.67) we obtain

as) (S| S 2w e e @) Le

j=1 I=M+1

< @@ M| P FL P (R™).

Now by (1.39), (1.56) and (1.68), using the quasi-triangular inequality in the space L, ({,),
we get

(1.69) H( gy k2, @) | L) | < el 1 EGP ®DL

In an analogous way one can prove that
(1.70) ko (27", f) | Lp(R™)|l < ellf | Ff ™ (R™)].

With (1.69) and (1.70) we have proved one of the desired inequalities between the quasi-
norm (1.37) and || - | F55™) (R™))..

Step 3. We have to care about the convergence on the right-hand side of (1.39) pointwise
a.e. and in some L,(R™), 1 <r < co. We can rewrite (1.66) as follows:

(1.71) !l;lw (29) (k@ Josf) (2)
L

<ec Yo 20714 )20t U) (G fa(x), G EN,
I=M+1
with L > M. Using so —s < 0 and £, — {1 if 0 < ¢ < 1, or the Holder inequality if
1 < g < o0, we conclude that if M is large enough then the right-hand side of (1.71) can
be estimated from above by

o0

(1.72) s( > 2w 27y )Z(w))l/qa

I=M+1

for given ¢ > 0. Because f € Fé;’w)(R”), Theorem 1.7 and considerations as in Step 2
give us

H( > ey (@) | L@

Therefore, the expression in (1.72) is finite a.e. and this proves the desired pointwise
convergence. Next we prove the S’ convergence and assume 0 < p < 1. Let 0 = s — 0.
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Putting this in (1.71) we obtain

(173) | S T el )|

I=M+1

L
<o S 2014 )2l DIG(2m G (G £ ().
I=M+1
From (1.57) and 0, > o, (recall (1.36)), we have 0 = s — g, > so. Using this last
inequality instead of s > sg, and proceeding as to obtain (1.72) we conclude that there
exists M sufficiently large such that the right-hand side of (1.73) can be estimated from
above by

(1.74) (X 2w e i)

I=M+1

for given € > 0. From the embedding F,qu’m (R™) — Fl(f]’m (R™), a consequence of Propo-
sition 1.9(v), we have

H( > 2T )40)
And then, from (1.73) and (1.74),

L
| >0 27w ) kel () LR

I=M+1
<ol (32 2w i)

I=M+1
for given € > 0. It follows that (1.73) and hence (1.39) converges in L (R™).
If 1 <p < oo, then by (1.71) and (1.72),

1/q

Li(R™)

< Q.

(R™)]},

L
| >0 29w )@ e ()| LR
I=M+1

<o( 3 2 o) | L)

I=M+1
where € > 0 is given. So (1.71) and hence (1.39) converges in L,(R"), therefore in S'(R™).

Step 4. Let f € Fio™) (R™). We now want to prove that I1f1 Fis)(R™)|| can be estimated
from above by the quasi-norm in (1.37). By hypothesis ko( ) # 0 and ko( ) # 0. Then
also ko(0) # 0 and k°(0) # 0. Since ko, k° € S(R™), ko, k0 € S(R") are C*° functions.
So, there exists a neighbourhood of the origin where both ky and k0 are non-zero. Recall
(1.35). Therefore, there exists € > 0 such that

(1.75)  kO(x) # 0 for |z| < 2e, ko(x) # 0 for |z| < 2e and k(z) # 0 for /2 < || < 2.
If useful one can choose ¢ to be of the form e = 27" for some fixed h € Ny. Let ¢ € S(R")
be a function with

supp¢ C {€ € R™ 1 [¢| <21} and  ¢(z) =1 if [2] <2,
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where the natural number M will be chosen later on. By (1.6), (1.8) and (1.75), we have

(L76)  |(esf)" (@) = (56277 ) )" ()]

—n/2 Pj . I —7J. =J. Avm_ 1
<@ | |(hy) e o)) e —wjan jen

A corresponding estimate holds for j = 0, in this case with kg instead of k. We assume this
latter modification for j = 0 throughout this step. For fixed x € R” the Fourier transform
of the y-function in the integral in (1.76) has support contained in {£ € R" : |{] <
2M+i+21 Let 0 < 7 < min(1,p,q). Using an inequality of Plancherel-Pdlya-Nikol’skif
type as in [Tri83, 1.3.2/(5)] we obtain

(LT7) (i)Y (@)]" < e2+m0=r)

<

Rn
If j € N, then ¢;(z) = P(2772) with B(z) = po(z) — po(2z) (see (1.7)), hence

vi \
(1.78) ‘(/;(ggjj.)> ()
to
(1.79) (o5 1)V (@)[" < &M+ tinr

03 g S (k277 )6(279) )Y (& = y)[" dy.

{€eRm:|¢|<2-7+1}

s

(Hﬁif)(w@@riwmﬂwfwm—y>d% j €N,

52_.7.)

s T

< 21+ [27y) 7,

)Y € S(R™). Putting (1.78) in (1.77) leads

Now we estimate from above each integral in (1.79):
(1.80) | |(k(e279)p(277) )Y (x — y)I" dy
{€eRn:|g|<2i+}
< 207 M[|(R(e277 )02 ) )] (=)

where M stands for the Hardy—Littlewood maximal function. We apply this estimate in
(1.79), and choosing 7 € N such that n > n we arrive at

(1.81) (03 1)Y (@)|" < 207 M| (R(e277 g (277 )] ) (=)

Since 0 < r < min(1,p, q), we have 1 < p/r < co and 1 < ¢/r < co. We multiply (1.81)
with 2°77%(277)", apply the £,,,-norm with respect to j and afterwards the L
with respect to x; then by Theorem 2.2.2 of [Tri92] we obtain

p/r-HOTI

(152) ]K}jrmw 2910, F) @)17) " | Ep )|

< QMO 253 g (27 | (R(e2 )27 ) )T Ly (o)

— C2M7L(1—'I”)

(}:T“w (k22629 O) | Ly
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where c is a positive constant independent of M. Because
BE27)0(2797) = k(e2) — he279)(1 - (277)),

and using the quasi-triangular inequality in L,(¢,), the right-hand side of (1.82) can be
estimated from above by

(X 2wz F) OF) " | o)

Jj=0

<ZQquw(z—j)qKE(EQ—j.)(l — ¢(2—j.>)f)V(_)|q)1/q ‘ Lp(Rn) r

Jj=0

(1.83) c2Mn=r)

+ CQMn(l—r)

The first term in (1.83) is precisely what we want. The additional term in (1.83) can be
treated as in Step 2 and estimated from above by

Mn(l—r so—s)Mr/2 s, n\||r
(1.84) 2Mn=r)glso=s)Mr/2) | B 0) (R,
By (1.57), we may choose r such that
1 _
n(—1)+(50 5) <o0.
r 2

Recall that the natural number M is at our disposal. We take M large enough so that
(1.84) can be estimated from above by

—||f|F R
Applying this, (1.84) and (1.83) in (1.82) gives
185)  IfIES D @) < e[ (Role) )Y | Ly(®)]

(S 2w ydee o or) " e

j=1

B

As mentioned at the beginning of Step 4, we can take ¢ = 27", for some fixed h € Nj.
Therefore

IF | g (RM)]| < 0[Hko(2 ") 1 Lp(R™)]

+H<i25”&”<2*j>q|<k<2*j->f )V(->|q)1/q

Jj=1

which completes the proof. m

REMARK 1.11. We prove (1.64). Recall that the function x € D(R™) satisfies (1.60). Let
N={¢eR":1/4<[¢| <4} and x(z) =k(2'z)x(z), [eN.

If m € N is so large that m > 1 + [A], then there exists a constant ¢ > 0 such that

(1.86) bl HY R < e Y 1D Loo (R

la|<m
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For |a] <m and x € (2,

(1.87) (D)@ < Y (Z)KD%)mlxmlﬁKDaﬁx><x>|

BLa
Ue a BLy(o!
<o (ﬂz (5) 0 mea).
since x € D(R™). Let m; € N be so large that m —m; < so. As k € S(R"), there exists
a constant ¢ > 0 such that
(1.88) (DPE)(z)| < c(14 |z|)~™, Ve eR", VB eNy: | <m.
Putting (1.88) in (1.87), we arrive at

I(D“xi) ()] < CQla( max Z (g)) (1 + 24 z|)~™ < ¢22mglim=m) < /92miglso,

So,
D D% x| Loo(R™)|] < c2"°.

laf<m

This in (1.86) gives (1.64).

THEOREM 1.12. Let 0 < p,q < 00, s € R and ¥ an admissible function. Let N € N with
2N > s. Then there exists h € Ny such that

(189) k(2" 1) | L")+ (3 2w k(2 7, £)() | L@)[)

j=1
(with the usual modification if ¢ = 00) is an equivalent quasi-norm in B]S.Z"p) (R™).
Proof. This is the counterpart of Theorem 1.10 for B]E,Sq"‘p) (R™); we modify its proof.

Step 1. We again have the splitting (1.39) and the estimate (1.42). But from (1.42) we
still have

(1.90) | Z 290 (277) k(27 )50 f )Y ()

l=—00
M
Z 2N =L 4 |1)P2m (K0 (=27 ) x (200w (2-GHD) 5., F)V](2)).

Let first 1 < p < co. We apply the Ly-norm to (1.90), use the triangle inequality and
Young’s inequality and obtain

(1.91) HZQ”Q/2J 27 pif )Y ‘L (R™)

<ec Z 9(2N— s)l(1+|l|) ||(2(]+l)élp(2 (]-‘rl)) +lf) | L,(R™)]],

l=—o00

since k° € S(R™) C L1(R™). Applying the £,-quasi-norm in (1.91), because 2N > s, we
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get

(1.92) (ZH Z 2399279 (k(277 )40 ) ‘L (R™)
J=1 =00

)1/q

<o 3 2w @)Y L@ )

m=0
Now let 0 < p < 1. For each term in (1.42) we have
(1.93)  |(K0(277)20 0w (2760 g, )Y (@)
< (@2m) ™2 | (0277 Ya(er277)Y () U w (27050 )Y (@ — y)l dy
R»
where ¢; = 2™+ and o € D(R™) is such that
afz)=11ifjz| <1 and suppa C {z €R":|z| <2}

The Fourier transform of the y-function inside the integral in (1.93) has compact support
contained in {£ € R™ : [¢] < 6-2/TM}, Since now 0 < p < 1, we apply an inequality of
Plancherel-Pélya—Nikol’skil type (cf. [Tri83, 1.3.2/5]), and obtain

(194) [ IR0 )aler1277)Y (9) U w270 G, 4 f )Y (2 — )| dy

Rn
< 2+ Mn(/p=1)

. . . . . ~ 1/p
< [ ] 1@ )a(en279 )Y ()@ e (@ 00)5,0 ) (@ — )P dy
Rn
where the positive constant ¢y is independent of j. Putting (1.94) together with (1.93) in
(1.42) and then applying the L,-quasi-norm, we get

(1.95) H Zzsww 277 )i 0f) }L (R™)
M . 1/p
< MO/ [N Ny o)) 20D (27 D) (35 )Y () | Ly R)P]
l=—00

We have used (k0a(c;-))Y € S(R™). Recall that 1/p > 1. Let p be its conjugate exponent.
Because 2N > s and using Holder’s inequality we estimate the right-hand side of (1.95)
by

M
(1.96) CQM"(l/p_l)( Z Q(QN—S)P:Dll/?(l + |l|)bPP1)

l=—00

M
x 3 2@N =290 (2 U0 (5,1, F)V () | L (RY))|

l=—00

1/(p1p)

M
< M/ N N2 Do (oG (G, ) ()| Ly (™).

l=—0o0
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Putting (1.96) in (1.95) and applying the ¢,-quasi-norm with respect to j we arrive at
o0 M y o 1/q
won (| 3 weEe e af) 0 L))

j=1 Il=—
~ 1/
< c@Mna/r) (3 2ema (3| (G )Y | LR )

m=0

This was already obtained also in case 1 < p < oo, in (1.92). Recall that
Bmf )Y = (127" PNHET™)[(en /)Y, me N,
with H € D(R™) as in (1.50). As a consequence of Theorem 1.5.2 of [Tri83, (13)], for
v > n(1/min(p,1) — 1/2), we have
1(@mf )Y | Lp (R < clll2- PYH(2) [ Hy R - [(omf )Y | Lp(R™)]),

where c is a positive constant independent of m € Ny. Applying this in (1.97) we obtain

(1.98) (ZH Z 292 ) (2 Yoy 0] ) ‘L &) )1/q

=1 l=—
< MWD | BEY (R™)]]-
Step 2. We estimate the second sum in (1.39); we have to make sure that (1.39) converges
a.e. and in some L, -space with 1 < r < co. However the latter comes as a by-product.
Following Step 2 of the proof for F,SS’W) (R™), we also have (1.59), with s¢ such that

(199) So + 40'p < S.

Let 1 < p < 00, and x as in (1.60). Then we apply the L,-norm to (1.59), and use Young’s
inequality to obtain

(1100) | Y 29w ) ()| Lo(®)
I=M+1
k(2" .
(2 70)

<c Y 24y
D 2001 4 )| U (27Tl F)Y | Ly (R
sup

I=M+1
I=M+1
The last inequality is due to
( k(2L ( ))V
5o XU
teN [[\[2F - [*0
which can be proved introducing inside the inverse Fourier transform the function h of
(1.63), applying Theorem 2.2.3 of [Tri92] and using (1.64). Then, applying the ¢,-quasi-
norm to (1.100), because sy — s < 0, we get
) 1/q

(1.101) (ZH Z 2590 (277) (k(279) pjuf )Y ’L (R™)
> /

j=1 I=M+1
~ 1/q
< Lo M/ (N7 g mag (27 (g, )Y | Ly(R™)|7)

m=1

Ly (R™)|[| 20w (27 U+D)el L F)V | Ly(R™)|

Li(R™)

< 00,
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Let 0 < p < 1. Each term in (1.59) can be estimated from above by

(1.102) ‘(%X@”.)QSU“)W( G+ lf) (z)
S(2W)‘"/ZRS (%x@‘j*)) ()20 (270! F)Y (2 — y)| dy.

But the Fourier transform of the y-function inside the integral in (1.102) has compact
support contained in {¢ € R™ : |¢| < 6-2/7!} and since now 0 < p < 1, we use the
Theorem of [Tri83, 1.3.2/(5)]:

(o x( iy lf) (v)

y { S de] 1/P’
R~

where ¢ is independent of [ and j. Putting the estimates (1.102) and (1.103) in (1.59),
and then applying the L,-quasi-norm we get

(1.103) < 2U+n(1/p=1)

(@77 G0 ) (e =)

00 | Y 29w ) ()| L@
I=M+1
<o 3 2oy | (221300) (o e
I=M+1

. o —~ 1/p
x 20 D0w(2 0D (g )Y Ly (R

1/p

We have used ,

Sar D 200+ )20 w0 () )Y | L))
sup < 00,

I=M+1
k(2") v
(—zl. ox()
leN | |
which can be proved introducing inside the inverse Fourier transform the function h of
(1.63), applying Theorem 2.2.3 of [Tri92] and using (1.64). Recall that 1/p > 1. Let p;

be its conjugate exponent. Using Holder’s inequality we estimate the right-hand side of
(1.104) by

oo
(1.105) ¢ Y 20072200y (-0 (ol £V Ly (R™)].
I=M+1

Ly(R™)

Now, by (1.104) and (1.105), applying the {,-quasi-norm and because s — s < 0 we
obtain (1.101) for any value of 0 < p < co. Recall that

(o F)Y = (127 Pox 2™ )[(emf)V]Y)Y, meN,

where x € D(R") is as in (1.60). As a consequence of Theorem 1.5.2 of [Tri83, (13)], with
v > n(1l/min(p,1) — 1/2), we have

(@5 )Y | Lp(R™)]| < ell|2 - *0x(2) | Hy R™)I] - [[(om )Y | Lp(B™)I,
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where ¢ is independent of m € N. Applying this in (1.101) we obtain

)1/11

< 2o IMAY £ B (R™)]).

oo

(106) (29w Y (e end) ()| L@
+

j=1 I=M+1

From (1.39), (1.98) and (1.106), and using the quasi-triangular inequality in the space
ly(Ly), we get

oo

. . . /
@10n) (29w k@ ) | L@)) < el f | BGY @),
j=1

One can also prove that
(1.108) ko (27", ) | Lpy(R™)|| < €| f | Byy™) (R™)]].

With (1.107) and (1.108) We have proved one of the desired inequalities between the
quasi-norm (1.89) and | - | BS™) (R™)]).

Step 8. We prove the convergence on the right-hand side of (1.39) in some space L, (R™),
1 <r<oo. Let 1 <p<oo. We can rewrite (1.100) as

(1.109) H Z 2599277 ) (k(277 )p; 00 f ) ’L (R™)
I=M+1

L
<e Yo 2004 )| U w270l PV Ly(R™)]),
I=M+1
with L > M. Using sg —s < 0 and £, — {1 if 0 < ¢ < 1, or the Holder inequality if
1 < g < o0, we conclude that if M is large enough then the right-hand side of (1.109)
can be estimated from above by

oo

(1.110) (0 2w ()Y | Ly(R")7)

I=M+1

1/q

for given ¢ > 0. Since f € BpS ) (R™), as in Step 2,

(3 2wy ) | L)) < .

m=1
Therefore, by (1.109) and (1.110), we conclude that the right-hand side of (1.39) converges
in L,(R™), hence pointwise a.e. and also in &'(R"™). If 0 < p < 1, we can rewrite (1.59) as

(1.111) \ Z 239 p(279) (k27 )00 f )Y (& )]

I=M+1

L
<c Yo 200D (RO(2 T 2) |27 2PN 020w (27U ) )Y ().
I=M+1

with L > M. Applying the Li;-norm, using Fubini’s theorem and a suitable change of
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variables we get

L
(1.112) H S 2w )R Y)Y ’Ll (R™)
I=M+1
\%
Z 2007 (1 4 1)° <k21( 2 ()> Ly(R")
T 2]
x |20+ 0w (270D (0 F)V | Lo (R™)]|
L
<oy Yy 2Wom 4 P20 tew(2 D) (o )Y | Ly (R
I=M+1
since
Ko (2l v
Sup (z(s)x(-)> Li(R™)|| < oo.
ZENO |2 | 0

Let 0 = s — 0p. Then by Proposition 1.9(iv), we have the embedding B]gifp) (R™) —
Bgfq’w)(R”). Putting s = o + 0, in (1.112), we have

L
(1L113) || D 2w @) i)Y () | LR
I=M+1

L
<c Y 2l0ml1 4 )b 20tDeg (2= GHD) (f L )Y | LR
I=M+1
Since from (1.99), o > s¢, there exists M large enough such that the right-hand side of
(1.113) can be estimated from above by
- olg —l\q 1 T\V n\||q Y
(Y 2w ()Y | L RY))

I=M+1

for any given € > 0. From the embedding mentioned below, and since f € B;Z’w) (R™)
(and using arguments as in Step 2) we have

o

—~ 1/q
(3 27w @), )Y | L ®D)7) 7 < oc.

m=1
Hence the right-hand side of (1.39) converges in L;(R"™).
Step 4. Let f € B(S W)( R™). We now want to prove that ||- | BI(,“;’W) (R™)|| can be estimated
from above by the quasi-norm in (1.89). We follow Step 4 of the proof for FIEZ’W) (R™).
We can rewrite everything from (1.75) up to (1.81), but now it will be sufficient that

0 < r < min(1,p). Since p/r > 1, we apply in (1.81) the L, ,-norm and use the scalar
Hardy—Littlewood maximal inequality as in [Tri83, 1.2.3/(4)]. Then we have

(1114) (i /)Y [ LpR™)|" < ™00 (R(e279)p(277) F)Y | Lp(RM)|",
always with kg instead of k if 5 = 0. Multiplying (1.114) by 2%"¥(277)" and applying
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the £, /,-quasi-norm we get

oo

(1115) (2w, Y L@n)e)
5=0

: o _ N 1/
< QM (S g (99| (e T )p(2 ) F)Y | LR )
j=0
Because
k(e279)p(277) = k(e277) — k(277 )(1 - ¢(277)), jEN,
and by the quasi-triangular inequality in ¢,(L,), (1.115) can be estimated from above by

(1.116) c2Mn@/r=D) ( i 2999/(277)7||(k(e277) )V | LP(R")H‘I) e
=0

/) (30 9 (2720 (1 - 62 ) F)Y | L@)) .
j=0

The first term in (1.116) is precisely what we want. The additional term in (1.116) can
be treated as in Step 2 and estimated from above by

Mn(1/r—1 so—s)M/4 s, n
(1.117) 2Mn/r=Dg(so=a)M/4) | Bl=L)(R™)||.
By (1.99), we may choose r such that

]_ _
n<—1>+80 5 <o.
T 4

Recall that the natural number M is at our disposal. We can take M so large that (1.117)
can be estimated from above by

L1 BS (')
Applying this fact, (1.117) and (1.116) in (1.115) gives
(1L118) (I | BS™ (R < cl[(ko(e) )Y | Lp(R™)]
e Do 2w @) (ke2 ) F)Y | Ly ®)]1)

j=1

1/q

As observed in the proof for Fig™”)(R™), one can take ¢ = 2" for some h € Ny fixed. As
there, from (1.118) we come to

171 B ®) < cllbo(2", 1) | Ly(RY)|
e . . . S~ /
e 29w (@) (kD) L@ ),
j=1

which completes the proof. m

REMARK 1.13. (i) If we replace ko by the new function 2""kg(2"-), then in (1.37) and
(1.89) there will appear simply ||ko(1, f) | L,(R™)|| instead of ||ko(27", f) | L,(R™)]|.

(ii) If s < 0, then N = 0 is admitted in Theorems 1.10 and 1.12. That means that
only one kernel ky = k = k0 is sufficient.
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1.4. Atomic and subatomic decompositions. Recall that Z™ stands for the lattice
of all points in R™ with integer components. Furthermore, @Q,,, denotes a cube in R"
with sides parallel to the axes, centred at 27Ym = (27Ymy ...,27Ym,,), and with side
length 27¥, where m = (my,...,my) € Z™ and v € Ny. If ) is a cube in R™ and r > 0
then (@ is the cube in R™ concentric with () and with side length r times that of Q.

DEFINITION 1.14. (i) Let K € Ny and ¢ > 1. A K times differentiable complex-valued
function a(x) in R™ (continuous if K = 0) is called a 1x-atom if
(1.119) suppa C ¢Qo,, for some m € Z",
(1.120) |D%(z)] <1 for |o| < K.
(ii) Let s € R, 0 < p < 00, ¥ an admissible function, K € Ny, L +1 € Ny and ¢ > 1.

A K times differentiable complex-valued function a(z) in R™ (continuous if K = 0) is
called an (s, p,¥) k. -atom if for some v € Ny,

(1.121) suppa C ¢Q,., for some m € Z",
(1.122) |D%a(z)| < 27vn/PHlelvg (2=~ for |a| < K,
and
(1.123) S Pa(x)de =0 if |3 < L.
Rn

Note that Qo is a cube with side length 1. If the atom a(z) is located at Q,m, i.e.,
suppa C ¢Qum withv €Ny, m e Z", ¢ > 1,

then we write it a,m,(x). The value of ¢ > 1 in (1.119) and (1.121) is unimportant. It
simply makes it clear that at level v some controlled overlapping of the supports of a, ()
must be allowed. The moment conditions (1.123) can be reformulated as
(D7a)(0) =0 if |8] < L,

which shows that a sufficiently strong decay of a(¢) at the origin is required. If L = —1
then (1.123) simply means that there are no moment conditions. The reason for the
normalising factor in (1.120) and (1 122) is that there exists a constant ¢ > 0 such that
for all these atoms we have ||a | BpS ) (R <e, |la| Fé;’w)(R")H < c. Hence, atoms are
normalising building blocks satisfying some moment conditions.

We now introduce the sequence spaces bpq and fpq. If v € Nog, m € Z™ and Q. is
a cube as above let x,,, be the characteristic function of Q.. If 0 < p < co let X(y’;)l =
oy, (with the obvious modification if p = oo) be the L,-normalised characteristic
function of @, that is,

xS | Lp(R™)]| = 1.

DEFINITION 1.15. Let 0 < p,¢ < oo and A = {\,,,, € C: v € Ny, m € Z"}. Then

(1124) by = LA+ A [yl = (i (> \Aym|p>q/p)1/q < oo},

v=0 meZnr

(1.125)  fpq = { AT fpall = H(Z Z |>\Vmem )1/‘1

v=0me

Ly(R")

<)

(with the usual modification if p = co or/and q=00).
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REMARK 1.16. Observe that

(1.126) 1A ] byl = (ZH 3 Amnxﬁﬁi(')’Lp(R")
v=0 meZ"

Q)l/q.
(p)

since the xpm’s have disjoint supports a.e., we see that the b and f quasi-norms are
obtained from each other by interchanging the L, and ¢, quasi-norms (as in the B and
F case).

PROPOSITION 1.17 [Tri97, 13.6, p. 75]. Let 0 < p,q < oco. Then byy and fpq are quasi-
Banach spaces. Furthermore

by min(p.q)  fra = Op.max(p.a)»
and, in particular, by, = fpp.
Recall the notations introduced in (1.36).

THEOREM 1.18. (i) Let 0 < p < 00,0 < ¢ < 00, s € R and ¥ an admissible function. Fix
K €Ny and L+ 1 € Ny with

(1.127) K> (1+[s])+ and L >max(—1,[ops — s]).
Then f € §'(R™) belongs to Fé;’w) (R™) if, and only if, it can be represented as
(1.128) f= Z Z AvmGum(x)  (convergence in S’ (R™)),

V=0 meZn

where aym () are 1x-atoms (v =0) or (s,p,¥)k,r-atoms (v € N) and A € fpq. Further-
more

(1.129) inf A ] fpqll;

where the infimum is taken over all admissible representations (1.128), is an equivalent
quasi-norm in Fé;’m(R”).

(ii) Let 0 < p,qg < 00, s € R and ¥ an admissible function. Fix K € Ng and L+1 € Ny
with
(1.130) K>1+][s])+ and L >max(—1,[op— 9]).

Then f € S'(R™) belongs to B;Z’q/) (R™) if, and only if, it can be represented as in
(1.128) where aym(z) are 1x-atoms (v = 0) or (s,p,¥)k -atoms (v € N) and X € by,.
Furthermore

(1.131) inf [[A ] byql,

where the infimum is taken over all admissible representations (1.128), is an equivalent
quasi-norm in B,(,Z’m (R™).

We refer to the above theorem as the atomic decomposition theorem. For more refer-
ences to this subject we refer to [FrJ85], [FJWOI1], [Tri97] and [Far00], the first three deal-
ing with the usual Besov and Triebel-Lizorkin spaces and the latter with the anisotropic
case. A proof of Theorem 1.18 will be provided later on. Now we mention that the con-
vergence in §’(R"™) of the right-hand side of (1.128) is ensured by the required properties
of the atoms involved and A € by, or A € f,q. In particular, convergence in S'(R") in
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(1.128) is not an additional assumption but a result. Before giving a precise statement of
this, we need the following lemma:

LEMMA 1.19. Fix ¢ > 1 and v € Ny. Then any © € R" belongs to at most N cubes
cQum, m € Z", where N is independent of v and m (it only depends on ¢ and on the
dimension n).

Proof. For x € R™ there surely exists m € Z™ such that © € Q... Assume = € ¢ Qp
for some m’ € Z"™. We have

lz; —27Ym;| <2771 and |y —27Vm| <27V i=1,...,n.

This gives

1
|m; —mj| < C; ,

which means that m’ belongs to the cube centred at m and with side length ¢ + 1. The
number of such m’ € Z" is N = ([¢]+1)". =

1=1,...,n,

PROPOSITION 1.20. (i) Let 0 <p < 00, 0 < g < 00, s € R and ¥ an admissible function.
Fix K € Ny and L+1 € Ny with (1.127). If aym(x) are 1 -atoms (v =0) or (s,p,¥)k, 1~
atoms (v € N) and X € fpq then

(1.132) ST Amavm(@)

v=0meZn
converges in S'(R™).
(ii) Let 0 < p,qg < 00, s € R and ¥ an admissible function. Fix K € Ng and L+1 € Ny
with (1.130). If aym(x) are 1x-atoms (v = 0) or (s,p,¥)k r-atoms (v € N) and A € by,
then (1.132) converges in S'(R™).

Proof. By the above lemma, for fixed v € Ny, we have only a controlled overlapping of
the supports of the atoms a,,. Therefore, the convergence in §’(R™) of (1.132) means

5 )

v=0 meZn
where, as can be seen through the proof, the inner sum causes no problem.
Step 1. We first prove (ii). We may assume L # —1, otherwise we have to modify a little
the following considerations, in particular using s > o, instead of L > [0, — s]. Assume
first 1 <p < oo and let ¢ € S(R™). By Definition 1.14, in particular (1.123), and Taylor

expansion of ¢ up to order L with respect to the off-points 27¥m we obtain for fixed
v € Ny,

(1133) | > Mmam@e@)dy= | > Am2 " ay(y)

Rn mezZn Rn meZn

Bo(9-vim
><<¢(y)— > |D%p(2” m)| )|(y—2_”m)ﬁ)2”(“” dy.

|
IBI<L Al
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For an appropriate £ lying on the line segment joining y and 27¥m we have the following
estimate for the last factor in (1.133):

DPp(27"m Y v
(1130 foly) - 3 PO gmvyolpray
|BI<L '
|1D7(§) v Ltlop(L41) — |1D7¢(§)
< > o o2 mie <a ) -
[v|=L+1 [v|=L+1

In the last inequality, we have used |y—2""m| < \/n 2771, due toy € supp aym C cQum.-
We also remark that £ € cQ,m, and so |y — &| < v/nc27". Then some calculations show
that for any M > 0,

(1.135) (M < (34 22n)M/2 ()M,
Using (1.135) in (1.134) we get
B —v
(1.136) }gp(y) — Z W(y _ Qfl/m)ﬁ o (L+1)
|BI<L

—M M
<y sup ()Y D [Dp(a)]
weRn ly[<L+1

where ¢4 > 0 depends only on M, L, ¢ and n. Because a,, is an (s,p, ¥) k, r-atom, v € N,
we have
(1.137) 27/ a,,, (y)] < 27/P27 IR (27) TR, (y),

where X, is the characteristic function of the cube ¢Q,,. By the properties of admissible
functions (cf. Proposition 1.4(i),(iii)), for any ¢ > 0 there exists ¢. > 0 such that

(1.138) TRV <2, veN,.

Since L satisfies (1.130), we have L+1 > 0, —s > —s. We choose € with 0 < ¢ < L+1+s.
With this choice, putting (1.138) in (1.137) we get

(1.139) 27”<L+1)|aum(y)| < 6527V92Vn/p%um(y)
with = L+14s—¢e > 0. Applying (1.139) and (1.136) in (1.134), with p’ the conjugate
exponent of p, M chosen such that Mp' > n/2 and using Hoélder’s inequality we obtain

(1.140) ‘ | > Aumaum(y)w(y)dy‘

Rn meZn

<a2 ™ sup (@) S D@ | Y Puml2 P Rum () ()M dy
s€Rn ly|<L+1 Rn meZn

<e2 sp @ 3 (0@ § (X M2 (w) ay]

veRn |y|<L+1 Rr  meZn

- 1/p
<2 sup () 3 D@ § 20 3T A2 R (y) dy)
seRn ly|<L+1 Rn mezn

<er (3 Punl?) s (MY 1070

meZr zeRn <L+
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We have used the above lemma, which tells us that each y € R™ belongs to at most N
(only depending on ¢ and n) cubes ¢Qup,, m € Z". Since § > 0 and X\ € b, 4 C by, o0, by
(1.140) the convergence of (1.132) in S'(R™) is now clear.

Now let 0 < p < 1. Since L satisfies (1.130), we have L+ 1 > 0, =n/p —n —s. The
value of € in (1.138) is chosen so that 0 < ¢ < L+ 1+ s —n/p + n. Then the substitute
of (1.139) in this case is

(1.141) 275 a0 (y)] < 277127 Xum (1),
where =L+ 1+s—n/p+n—e>0. Applying (1.141) and (1.136) in (1.134), we get

(1.142) ‘ | > /\umaum(y)w(y)dy‘
Rn mezZn

<e2sup ()M Y ID7e@)] § Y Peml2 Rem () (0) M dy

zE€R” |y|<L+1 Rn meZn
< 022*”"< Z |)\l,m\> sup (z)™ Z | DY ().
meZn weRn lv|<L+1

Since n > 0 and A € by 4 C b1.oo (0 < p < 1), by (1.142) the convergence of (1.132) in
S'(R™) is clear.
Step 2. (i) follows from (ii), 0 > 0p and fp g C bp max(p,q)- ®

In Theorem 1.18 no information is given about the possibility to obtain atomic decom-
positions in which the atoms are constructed with the help of dilations and translations

from one smooth function ¢ having compact support. In order to present the subatomic
decomposition we need to introduce some special building blocks called quarks.

DEFINITION 1.21. Let ¢ € S(R™) be such that, for some d > 1,
(1.143) supp® C dQgp and Z H(x—m)=1 forzeR".
meZn™
Let s € R, 0 < p < oo, ¥ an admissible function, (L +1)/2 € Ny, 3 € N and &°(z) =
2P ®(x). Then
(1.144) (Bqu) o () = 277D (277) 71 (= 2) FFD28P) (272 —m)

is called an (s, p,¥)r-B-quark related to Q,,,. When L = —1, let (Bqu)E, = (Bqu)um
denote an (s, p, ¥)-6-quark.

The quarks are specialised atoms, as we prove in the next lemma.

LEMMA 1.22. Let s € R, 0 < p < oo, ¥ an admissible function, (L+1)/2 € Ny and
B € Ni. Up to normalising constants the (s,p,¥)r-B-quarks are (s,p,¥)k 1-atoms for
any K € Ng. Moreover, the normalising constants by which an (s,p,¥)r-B-quark must
be divided to become an (s,p,¥) Kk, r-atom can be estimated from above by 25181 where ¢
and k are positive constants independent of 5 (but may depend on K and L).

Proof. From (1.144) and (1.143), we get
(1.145) supp (Bqu)l, c {x € R" : 2"z — m € supp P} C dQ,m.
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Now fix K € Ng and let o € N} with || < K. We have
(1.146)  |D*(Bqu)}, (2)] = 27 7 /PHely (27) 71 (D (- 2)FHD/20%) (22 — m)|.
For any A € Ny with |A| < K + L + 1, Leibniz’s rule gives

(D7) (1) = 3 (A) D(a%) (D) ()

yaa N
where
DY (2P) = Lxﬁ_y for v < 3
B= -
while DW(xﬁ) =0if y; > f; for some i € {1,...,n}. Moreover, for v < 3,
n
=l Hﬂ; (B = ) < B < 2
3:1

for all € > 0. Since

max  max |D°®(x)| < oo,
5| <K+L+12€dQoo

using (1.145) we get

(1.147) (D 8°)(z)] < 22 3 @) LT 123177 Xaqao ()
j=1

YSAYLB
< 6126\5\ Z (A) d\ﬁ‘*|7| < 022(E+10gd)‘,6"
y<x<s N
where the positive constant co depends only on €, K, L and ¢. We put (1.147) in (1.146)
to arrive at

(1.148) |DY(Bqu)L (2)| < cg2EtloedIBlg=v(s—n/p)tvialy(g-v)-1

with ¢5 independent of 8 (depending only on n, ¢, K, L and @). By (1.144) and integration
by parts, it is obvious that

(1.149) S 7 (Bqu)l (x)dx =0 if |y| < L.
Rn

By (1.145), (1.148) and (1.149) the proof is complete by taking k > logd and ¢ the
corresponding constant cg in (1.148). m

Below we will use the sequence spaces by, and fp,, with respect to the sequences
(1.150) M={N ecC:veNy, meZ"}
where now 3 € Nf.

THEOREM 1.23. (i) Let 0 < p < 00, 0 < ¢ < 00, ¥ an admissible function and s € R be
such that

(1.151) 5> Opg-



36 S. Moura

There exists k > 0 with the following property: let p > k; then f € S'(R™) belongs to
F,S;’W) (R™) if, and only if, it can be represented as

(1.152) f=> Z > N (Baw)um(z),

BeNp v=0meZn
convergence being in S’'(R™), where (Bqu)ym are (s,p,¥)-B-quarks and
(1.153) sup 2481 A8 | foqll < 0.

BeNy

Furthermore, the infimum of (the left-hand side of) (1.153) over all representations
(1.152) is an equivalent quasi-norm in Fé;’w)(R").
(ii) Let 0 < p,q < oo, ¥ an admissible function and s € R be such that

(1.154) 5> 0y

There exists k > 0 with the following property: let p > k; then f € S'(R™) belongs
to BI(MSZ’W) (R™) if, and only if, it can be represented as in (1.152), convergence being in
S'(R™), where (Bqu)ym are (s,p,¥)-B-quarks and

(1.155) sup 2481| AP [ byl < 0.
BeNy

Furthermore, the infimum of (1.155) over all representations (1.152) is an equivalent
quasi-norm in BS") (R™).

REMARK 1.24. As for the atomic case, convergence of the subatomic sum (1.152) under
the assumptions (1.153) or (1.155) is always true, i.e. it is not a further requirement of the
theorem. Moreover, as we see below, in certain circumstances the convergence is really
nice.

1. We begin by studying the convergence of (1.152) for the situation described in (ii)
of the above theorem, i.e. 0 < p,¢q < oo, ¥ an admissible function, s > o, (8qu),m are
(s,p,¥)-B-quarks, p > k and

sup 24181 A8 | by || < 0.
BeNy

I.1. Let first p = oo. Then 0, = 0 and so s > 0. Having in mind Lemma 1.22 we have

e 3050 S0 N2 () ),

BeNy v=0 meZn

where X, is the characteristic function of the cube d Q,,,. Then, with u > « and using
Lemma 1.19, we get

@l e Y 2079 sup W'(Z > W2 @) (@)

BeNp BENG v=0meZn
oo
< ¢ sup 2"'5'(22*”5@(2*”)*1 sup \)\fm\)
BeNy V=0 mezn

If0 < ¢ <1, weuse ¢, — ¢ and 2775%(27")~! < ¢ for all v € Ny (consequence
of Proposition 1.4(i), (iii) and s > 0). If 1 < ¢ < oo, with ¢’ its conjugate exponent,
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’

we use the Holder inequality and the convergence of the series Y 7 9-vsd g (2-v) 4
(guaranteed by Proposition 1.4(ii) and s > 0, with the usual modification if ¢’ = o). In
both cases of ¢ we arrive at

[f(@)] < C sup 201N [ by .
BeNy

Therefore, for p = 0o, (1.152) converges pointwise uniformly and absolutely and f(z) is
a bounded uniformly continuous function in R™.

1.2. Let 1 < p < co. Then also 0, = 0 and so s > 0. In a similar way to the case
above, for all € > 0 we have

Z)<er Yy Z Y WPl e P27 TR, (),

BeNy v=0meZn
< cy sup 2 N+E)|B|Z Z ‘)\ﬁ —v(s— n/p)g;(ny),l%Vm(x)
BeNy S

<3 sup sup sup 2(""’6)'[3'2_”(5_"/”_5)|)\fm|y7(2_")_1>z,,m(x).
BeNG veNy meZn

We choose € so small that 0 < ¢ < min(p — &, s). We get

|f(2)[P < ¢} sup Z > 2l tlBlpg s teng (97 ) TPIND PR ().
PENG = OmGZ”

< ¢, sup Qu\ﬂ\pz Z 9—v(s— 6)p+unw(2— p|)\5m|pgum(x)_
peNg v=0meZn

Integration gives

1T Lp(R™)[P < s sup 2“‘5“’2 Y 2T (2T) TRNT P

v=0 meZn

If 0 < g <p, we use £/, — {1 and 2-v(s=e)Pg(27¥)=P < ¢ for all v € Ny (consequence
of Proposition 1.4(i),(iii) and s > ). If 0 < p < ¢, ¢/p > 1 with ¢t its conjugate exponent,
we use Holder’s inequality and the convergence of the series > o0 27 (5=9)Ptg(2-v)—pt
(guaranteed by Proposition 1.4(ii) and s > €). In both cases of ¢ we arrive at

IF 1 Lp (R < C sup 247N [y

BENE

Therefore, for 1 < p < oo, (1.152) converges in L,(R"™).
1.3. Let 0 < p < 1. Then s > n/p —n > 0. For all u > x we have

z)| < e Z Z Z [N |2nlBlo—vis—n/pig (o= =iy (),

BeNp v=0 meZn»

<o sup 2SS T 2 ) ),
peNg v=0 meZn
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Integration gives

£ 1LA(R™)| < es sup 24103~ N A7 2 emn/pimg(27v)~L,
BeNp

v=0 meZn

Using arguments similar to the ones in 1.2 we conclude that

£ 1L (R™)] < C sup 2#1PA7 [ by, ]|.
BENy

Therefore, for 0 < p < 1, (1.152) converges in L;(R™).

II. The convergence of (1.152) for the situation described in (i) of the theorem above,
ie. 0 <p<oo,0<qg<oo, ¥ an admissible function, s > g,q, (Bqu)ym are (s,p, ¥)-F-
quarks, p > k and

sup 241 |A7 | fq]| < o0,
BeNy

is covered by I if we have in mind that o,y > 0, and fpq C by max(p,q)-

REMARK 1.25. To show that f € Fia”)(R") (respectively, f € BS™)(R™)) can be de-
composed as (1.152) with (1.153) (respectively, (1.152) with (1.155)), we do not need the
assumptions (1.151) (respectively, (1.154)). These restrictions are needed to prove the
converse assertion.

Next we present the proof of (i) in Theorems 1.18 and 1.23. The proof of (ii) is
somewhat similar but technically simpler. Nevertheless, occasionally we say a word about
the modification corresponding to (ii).

Proof. Step 1 (if-part of atomic decomposition). The proof relies on the equivalent quasi-
norm in Fg;’m (R™) given by (1.37), and the underlying local means according to (1.32)—
(1.34), where N with 2N > s may be chosen arbitrarily large. We follow [Tri97, 13.8]
with appropriate modifications. Let a,n,(z) with v € Ny and m € Z™ be an 1x-atom
(v =0) or an (s,p,¥)k -atom (v € N), where K and L are fixed integers satisfying
(1.127) such that we have (1.128) with A € f,,. For j € N we have

(1.156) 295U (27N kN (277, aym ) () = 275W(277) S aum (T + 279y kN (y) dy

Rn

= 2°0(279) | aum(z+277y)(AVEO) () dy.

Rn
We have to distinguish between j > v and j < v. The exceptional values v = 0 and/or
j = 0 corresponding to 1x-atoms and the first summand in (1.37), respectively, can be
incorporated in the following considerations after necessary modifications. Assume in the
following that v € N and j € N.

Let j > v. We put

(1.157) a’™(y) = 2°CTVPIW(27Y) Gy (270 (y + m)).

Then a”™(x) is a 1 g-atom with respect to the unit cube at the origin. Let K = 2M with
M € Ny for simplicity. The modifications necessary for K odd will be clear. We insert
(1.157) in (1.156), choose N > M, and obtain by partial integration
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(1.158) 275w (2 kn (277, aym) ()
= 27sg (279 2 vsT/Plg (9L S a’™ (2" (x4 277y) — m)(ANEO) (y) dy
R~
= Qf(K*S)(J'*V)QnV/pQ(Q*j)Q;(Q*V)*l

x | (ANTME) () (AMar™) (25 — m + 27T y) dy.
Rn
Since both k° and AMa”™ have supports in a ball centred at the origin of some radius
c1 > 0, Proposition 1.4(vi) shows that
(1.159) 2w (279)|kn (27, aum) (2)] < 22" KU1 4 — )X B (@), G20,
where )Zl(,%(x) is the p-normalised characteristic function of the cube 4¢1 @, m, co > 0 and
b > 0 are constants independent of j and v.
Let now j < v and put again ky(y) = (AVk?)(y). Then the integration in

(1.160) 2050 (279 kn (277 aym) () = 275W(277)2" S En (27y)aym(z +y) dy

Rn
can be restricted to {y € R" : |y| < ¢;277}. Furthermore with L given by (1.127) we
expand ky(27y) up to order L with respect to the off-point 27¥m — x and obtain

|BI<L
We insert (1.161) in (1.160). By (1.123) the terms with |8] < L vanish. Since
(1.162) Javm(z +y)| < 277D TR (@ + y),

where X, () is the characteristic function of ¢Q,,, we obtain
(1.163)  275W (27 |kn (277, apm)(2)|

< gDy (a2 | IR, (aty)O(ly—2 " meral S dy

{y:lyl<e1279}
< cg2(tmig—v(s=n/p)yg9=i g (27) " oli=(LAD) S Yom(z +y)dy
{y:lyl<e1277}
< c’32($+n)j2ﬂ/(8*n/?)Q(j*V)(LJrl)(1 +v—j ) S Xom (x4 1) dy.
{y:lyl<er277}

The last inequality in (1.163) is justified by Proposition 1.4(vi). Recall that j < v. The

integral in (1.163) is at most ¢"27"" and it is zero if z is outside a cube a2’ IQum
(centred at 27”m and with side length ¢;277). Hence,

(1.164) | Xom@+y)dy <27 x(ea2 7 Qum) (),
ly|<c12-9
where x(c42"77 Q,m)(z) is the characteristic function of the indicated cube. For x €

42" 7 Qym we have

(1165) (MXum)(x) > ‘642V_j Qum|_1 S Xum(y) dy > CZ”Q_(V_j)n.

€a2¥=IQum
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Let 0 < w < min(1, p,q). From (1.165) and (1.164) we get
(1.166) S Tom (@ +y) dy < G270 20 =Dm W (M, )V ()
{y:lyl<er2=9}
< 5272 My )YV (1), z e R™.
Replacing xum, in (1.166) by x8) and inserting the estimate (1.166) in (1.163) we obtain
(LI67) 290 (2 ) o (277, ) ()]
< cg—(ﬂ—j)(L+1+s+n—n/w)(1 +v—3j) (Mx(p)w)l/w( ), xeR™

Since L > [opq — 5] the number w can be chosen in such a way that n = L+1+s+n—n/w
> 0. Hence

(1.168)  29W(277)|kn (277, apm) (2)] < 2714w = (MBS (@), G <,
with 7 > 0. Combining (1.159) and (1.168) we obtain, for ¢ <1,

(1169)  [27w(2 )k (277 ZAmam> }
<CZ ZM 72720791 4§ — pybag(Pla(y)

v<j m
+ DY P27 (1 v — )M (M) ()
v>) m
for some g,n > 0. We sum over j, take the 1/g-power and afterwards the L,(R")-quasi-
norm and arrive at

(1.170) H(wa (279) (2 i Z)\yma,,m) ’ )W

< | (3 o is)) " | )

Lp(R™)

# | (e ey ) @)

We have also used the convergence of the series

oo oo
D214 k) and Y 270R(1 4 k)P
= k=0
since 7, 0 > 0. The modification of (1.169) if 1 < ¢ < oo is clear, by the Holder inequality.
Hence (1.170) holds for any 0 < ¢ < oo. The first summand on the right-hand side is
just what we want, since Xl(f;zl can be replaced by X(p) With gum(z) = Aom Xf,%(x) the
second summand on the right-hand side can be written as

(117) (Semaaor™) ™ @] ™

Since 1 < ¢/w < occand 1 < p/ w < 0o we can apply the vector-valued maximal inequality
of Fefferman and Stein (see [Tri92, 2.2.2, p. 89]). Then (1.171) can be estimated from
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above by

w/q 1/w
(1.172) H( (b LN = A

Lp/w (Rn)

This gives the requlred estimate. As already mentioned, the terms with v = 0 and/or
j = 0 are also covered by this technique. Thus we obtain

1 1 g™ (R < elIA] Fogll-

Let us just mention that in the corresponding proof of Step 1 for the B,(,Z’m (R™) spaces
it is sufficient that w satisfies 0 < w < min(1, p), since one only needs the scalar Hardy—
Littlewood maximal theorem which holds also for p = oo (see [Iri83, Remark 1.2.3,
p. 15]). This is the reason for the modification in (1.127) to (1.130).

Step 2 (only-if part of subatomic decomposition). Let f € FIEZ’W) (R™). By (1.10) we have
(1.173) f= Z o,f  (convergence in &'(R™)).

Let @, be the cube in R™ centred at the origin and with side length 272". In particular
we have supp ¢, C @,. We interpret ¢, f as a periodic distribution and expand it in @,
by

(1.174) (uf)E) = > burexp(—i27"kE), £ €Q,
keZr
with
(1.175) by = (2m) 727" | (0, F)() exp(—i2 7 ke) d€ = (2m) /227" (0, )" (27" ).
Qv

Let o € S(R™) with g(x) = 1 if |2| < 2 and suppo C 7 Qoo and let g, (§) = 0(277¢),
v € Ny. Then g, (¢) = 1if £ € supp ¢, and supp g, C Q.. We multiply (1.174) by g, and
extend it from Ql, to R™. Hence

(1.176) (Lp,,f Z burlexp(—i27" k) o, (- Z dyp2 v~ "/p)@(Q”x —k)
keZn keZn

with

(1.177) dy = (2m) 227 G=nIP) (o, FYV(277K).

The entire function ¢ € S(R™) can be extended from R™ to C™. Furthermore, by the
Paley—Wiener—Schwartz theorem (see e.g. [Tri83, 1.2.1, p. 13]), for any A > 0 and appro-
priate ¢y > 0,

(1.178) lo(z +iy)| < exeW (1 +|z))7*,  z,y € R™

Iterative application of Cauchy’s representation theorem in the complex plane yields

é(&lv e 7671)
(€1 —21) - (§n — zn)

(1179)  o(z1,ez) = @m) ey .. &,

[€1—z1|=1 [€n—2n|=1

where zj, € C. By (1.178) we obtain
(1.180) |D%6(z)| < hal(1+ |z))~, = €R™,
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where ¢} is independent of z € R"” and a € Njj. Let @ be as in Definition 1.21 and let as
there &7 (x) = 28 ®(x) where 3 € NZ. With u € Ny fixed, from (1.176),

(LI8L)  (puf)Y (@) = 3 du2 7P S 52 — k)e(2¥ Wz — m).
keZn mezn

We expand §(2” - —k) at the point 2~ “*#)m, where m € Z" and p € Ny are fixed. Then

we obtain

(1.182) 02" e —k) =)
BeNy

Putting (1.182) in (1.181) gives

(P )V (@) =27 Ny S

keZn meZm™ BeNy

VI8l
%(D*%)(Q‘“m —k)(z — 27 FIm)B.

2 ulﬁl

0)(27Hm — k)®P (2T g — m).

We insert this last equality in (1.173) to get
(1.183) f = Z Z Z ou(s— ”/P)@ (V+N))*12*(V+M)(S*W/P)@B(2(V+N)x —m)
ﬁer v= OmEZ”

% Z o (Dﬂ@)(Qﬂ_!“m — k) Q—ulﬂlgp(g—(uﬂt))

keZn
Z Z Z )\y+'u‘ 2H(s_n/p)(ﬁqu)l/+ll«,m(x)?
BeNg v=0 meZn
where (8qu)y4,m(x) are (s, p, W)—B—quarks and
)2+
(1L184) A, =273 4y, m=ky
keZn p

We may replace in (1.183) v+ u by v and obtain (1.152). As in (1.150) we denote by \*
or 99 the collection of all respective coefficients in (1.184). We wish to prove that there
is ¢, > 0 (independent of ) such that for all § € N,

(1.185) 2NN fogll < cll £1 BT (R

(2—(V+.u)) — 2—#|ﬂ|19/5+%m

We prove (1.185) in two steps. On the one hand we prove the existence of a constant
¢ > 0, independent of 3, such that

(1.186) I{duk® 27k | foall < CIIFIESD (R,
and on the other hand that there exists a constant ¢ > 0, independent of 3, such that
(1.187) 197 | foall < el{dur®(27")}o k| foall-
Let us begin the proof of (1.186). For fixed v € Ny we have
S A2 xR (@)|7 < (2m) 792279 (27) S xor(@)( sup (90 f)Y (1))
keZn keZn yeQuk

< (L4 v/n)™(2m) ~"9/227509 (27) (0} f) (),
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since for z,y € Qui, [z —y| < Vn27, 3 czn Xuk(z) = 1, and (¢} f)a is the Peetre
maximal function with a > n/min(p, q). It follows that

ST @G (@)]T < D 27w (27 () ) ().

v=0kecZn v=0
Now, using Theorem 1.7, we get

> 1/q
{2 ok foall < 1| (D202 ) (01 1))
v=0
< dIfIEGT R
with ¢’ > 0 independent of 3, which completes the proof of (1.186).
Let us now prepare to show (1.187). Fix v € Ny and k € Z". Recall that by Proposition
1.4(vi),

| Lo (®")

w2~y < o(1 4 p)Pw(27Y).

By (1.180) there exists a positive constant ¢y, independent of 3 (but may depend on g,
A and ¥), with

DPy)(27Fm — k (v
R D LR
keZn ’
< ST (U 22 m) — B)) N 22
keZn

We set x,, = 2-t#m and let k,, € Z™ be such that z,, € Qu.k,,; then clearly
2%, — km| < /n/2. We decompose Z™ into the sets

Ej={keZ":2 —1<|k—ky| <27t' -1}, jeN,.
If j € Ny is fixed, for k € E/; we have on the one hand
20 <14 |k — k| <1+ |k — 20| + 27T — k| < max(v/n, 2)(1 4 [2%2,, — k|)
and so
(1.189) (14 2% — k)™ < 279,
where ¢; > 0 is independent of v, k and m. On the other hand, if z € Q,4,,m and
Yy € Quk, then
(1.190) ly — x| < |y —27Yk| + 277k — k| + 127 km — 2| + |2m — ]
< VRl + 27727 (1 + |k — k) < 277

where ¢, > 0 is independent of v, k, m but may depend on g and n. Choose now
0 < w < min(l,p,q). For a fixed v € Ny the cubes @, have volume 27" and are
disjoint so that using the embedding ¢,, < ¢; and (1.190) we obtain

(Lo 3 Jdal < (3 |dyk\w)l/w - (X \dyklxyk(y))wdy)l/w
kEE;

k€E; ly—z|<cs2i-v  KEE;

< ¢ (Zj"/\/l( Z |duk|Xuk)w(9U))

keZmn

1/w
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for x € Qu44,m, where M stands for the Hardy-Littlewood maximal function and c3 is a
constant independent of v, m, k. Using (1.191) and (1.189) in (1.188) and assuming that
A > n/w is sufficiently large we have

(1.192) 92, XL (@)]

< C)\ 1+ 122, — k)‘)7/\|de|W(2iu)2(y+#)n/p>(u+u,m(93)

keZn
< 0422 JA Z |y |® (27 2(V+u)n/PX ta m(T)
keE;
e 1/w
<esy 2 J(/\—,%)( (Z |duk|X<P>) x) (27 )Xot ()
Jj=0 keZn

<) (M( Y b)) @) @)

keZmn

where the constants above do not depend on v, m but may depend on u. In (1.192) we
take the g-power, sum over m € Z™ and then over v € Ny to get

SN X (@) < > (R ()
v=0

v=0meZn

where h, =W (27") >, cpn dukl x(p) (with the usual modification if ¢ = o). Taking the
1/g-power and the L,-quasi-norm, and applying the Fefferman—Stein inequality, as in
[Tri92, 2.2.2, p. 89, since 1 < p/w < oo and 1 < g/w < 0o, we arrive at

197 | Fogll < 6 M ()Y | Ly (€)ll = eall M () | Lo (L) I
< elh ()| Lpju ()l = el () [ Lp (€]l = el @ (27" )dui | fiqll,
which finishes the proof of (1.187). And so the only-if part of the subatomic decomposition
for F55*)(R™) is complete.

In what concerns the corresponding proof for B, (S ) (R™), one has to obtain analogous
inequalities to (1.186) and (1.187) (of course with bpq instead of f,,). The counterpart of
(1.186) can be proved using the arguments in [Tri97, 14.15, p. 102]. For the counterpart
of (1.187), one can use (1.126) and in the proof it is sufficient to choose 0 < w < min(1, p)

and use the scalar Hardy-Littlewood maximal inequality which holds also for p = 0o (see
[Ste70, 1.3, p. 5]).

Step 3 (only-if part of atomic decomposition). Let f € FIE;’W)(R”). First consider s > o),
and fix K € Ny and L = —1 satisfying (1.127). By Step 2,

(1.193) f=3> Z > A (Bqu)um (@),

BeNp v=0meZn
where (Bqu),m are (s, p,¥)-G-quarks and
(1.194) S 2NN | fogll < cull FIEST R
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for any p > 0. Let

(1.195) aym () = > jﬁm (Bqu)ym(x), v eNy, mez,
ﬁENS’ vm

with

(1.196) Ay =c > [N, |27

BeNy
(with the additional factor ¥ (1) on the right-hand side if ¥ = 0) with x and ¢ being

positive constants as in Lemma 1.22 (the constants are independent of § but may depend
on K, L and n). Then

(1.197) f= Z Z Apmym ()

v=0meZn
By straightforward calculations, using (1.145) and (1.148), a,., are (s,p,¥)k,—1-atoms
if v € N, and 1x-atoms if v = 0. Finally, we will show that there exists a constant ¢ > 0
such that
IA] foqll < cllf I ES ®RM),
where
A={Aym v €Ny, meZ"}.

This will be done by showing that

A fpqll < ¢ sup 2480IN | £l
BENE

for some p > 0 sufficiently large.
If 0 < ¢ < 1, then with ¢; the conjugate exponent of 1/¢q and ¢ > k, we have

(1.198) Z ST [ Avax @ (@ \q<cqz ST I () |a2rlfle

v=0 meZnr v=0 meZ" BeNy
<e( ¥ 2<n79>\mqq1)1/“{ 3 (ga\qu 3 D )l/q}q
BeNy BeNy v=0meZn
1/ayq
<a{ T 200(3 T danr) "}
BeNp v=0meZn

Taking the 1/¢-power of (1.198) gives

(1.199) (Z Z |Al/mX1/m q)l <c Z 29|ﬂIQ(Z Z |)\1[ij1/€7)1 )1/q.

v=0 meZn BeNy v=0 mgZn

Letting P = min(1, p), from (1.199) we get

(E X temx@ie) | Lo
v=0 meZn
1/q
<o Y el (Z > @) | LR

BeNy v=0 meZn

p
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Hence, for any p > o, we have

(1.200) IA] fpgll < c2 sup 28PN | £l
BeNy

If 1 < g < oo, let ¢’ be its conjugate exponent and € > 0. Then

(1.201) Z > [ Amx ) ()]
v=0meZn
_qu 3 (Z 9—elBlg(stolBl N8 @) (; |)‘1

v=0meZ» BeNy

i (X 270 )" S S p g )
v=0 meZn

BeNp BeNy
<of Y 2y S g
BeNy v=0meZn

Taking the 1/g-power of (1.201), we obtain

(1.202) (Z ST X ( q)l <cp Y 20t ‘ﬁ‘(z > NI ()] ) v

v=0meZnr BeNy v=0meZn

which is analogous to (1.199); the rest follows as in case 0 < ¢ < 1. So we get an inequality
as in (1.200) for g > K + € in this case.

Now let s € R be arbitrary and fix K, L € Ny satisfying (1.127). Choose M € N such
that 2M > L. As remarked in [Tri97, 13.8, p. 80] we can change the lift described in
(1.26) to Ionrf = (14 |€2M) )Y with inverse

id + (—A)M : FitM (R — FEY(R™).
So f € F{&'")(R™) can be represented as
(1203)  f=g+(=A)Mg with |f[ESV R~ [lg] £ R
We apply this argument to g with s +2M in place of s. Iteration yields
(1.204)  f=fi+(=)Mfe with fi € FGTMO®Y), fo € B2 R"),
and
(1.205) | fa | Egg M@ ~ (IS R~ (1 fa | Fig M R,

where j can be chosen arbitrarily large. We choose o > K and iterate as indicated above
until the level j such that s + 2jM — n/p > 0. Hence, by Proposition 1.9, we have the
embeddings

F(s+2]M w) (Rn> PN Bo- (Rn) — CU(Rn),

p.q

and the inequalities

IF11C7 @M < ellfr | Fg MO R < CNIF LG (R,
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where C7(R™) is the Holder—Zygmund space (see e.g. [Tri97, 10.5(iv)]). We decompose

mezn
with
(1.207) Xom = ¢} Z sup |D f1(y)|, meZ",
la| <K ly—m|<y/nd/2
and
(1.208) aom () = Mg ®(a — m) fi (),

provided that Ag,, # 0 (otherwise we set ag,, = 0), where
o 5 «
¢y = sup sup |D°®(x)| sup sup ,
zeRn [§|<K la|<K B<a \B

¢ and d > 1 as in (1.143). It follows by straightforward calculations that agm,(z) are
1x-atoms. Note that s + 2M > 0,4, due to the choice of M and to the fact that L
satisfies (1.127). Hence, as proved above in the first part of Step 3, fo € FP(SHM"I’) (R™)
has an atomic decomposition

o0
f2 - Z Z Aum al/m(x)

v=0meZn

with a,m,(x) being (s + 2M,p, ¥) k420, —1-atoms and
1A foqll < el fa| F 2 (R™)]).

So,

o0
(1.209) (M =" > Ap (=) M aym (2).

v=0meZn

It can be easily seen that (—A)Ma,,,(x) are (s, p,¥)k, r-atoms, where we use 2M > L.
Furthermore, we have

(1.210) 1A] foqll < ellfo| By 2MR™)|| < |1 f | Epg(R™)]|-
To complete this step we still have to prove the inequality

[ Pomxrom) ™ |2y

mezm

<c|f|EZT ®RM)].

We have
S Pomxin@lr =t 3 (3 s (DA xom(@)

meZn meZn  |a|<K ly=mISvnd/2

<cy » o Y sup [DYfi(y)) xom(2)

meZn |a|<K lz—y|<v/nd

=y, Y ( sup  [D*fi(y))?.

la| <K lz—y|<y/nd
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Taking the 1/g-power of the last inequality and then the L,-quasi-norm we get

1/q
21 (3 Do @I?) | L®")

meZmn

<cy Y Il swp [D*fiy)l] Lp(RY)]|

\MSK'la y|<vnd

< | BT R < LT ESY R

We have also made use of formula (13.62) of [Tri97, p. 81]. From (1.204), (1.206) and
(1.209)—(1.211) we get what we wanted.

Step 4 (if-part of subatomic decomposition). Assume that f € S'(R™) satisfies (1.152)
and (1.153). We will show that f € F's™)(R") and

(1.212) I IESD R < ¢ sup 247132 | £
BeNg

for some positive constant ¢/. We decompose the representation (1.152) as

f=> 1"

BeNy
with
(1.213) fa_z > N (Bqu)um ().
v=0 meZnr
Let K € N with K > s and L = —1. By Lemma 1.22 the (s,p,¥)-S-quarks are

(s,p,¥) K, r-atoms multiplied by 25181 where ¢, k > 0 are independent of 3. It follows by
Step 1 that (1.213) converges in S'(R"), % € F\s™)(R") and

(1.214) 1F2 1 B @™ < er 2NN | fgl,

where c1, k > 0 are independent of 3. So, for u > &,

(1.215) £ ES ) (R < e 201 Sup 24N | foq .
eNg

Applying the t-triangle inequality, where ¢ = min(1, p, q), and using (1.215) we get
1/t
| > e < ( Z 177 F ™ @)1
BeNg Nz

< Cl( Z 9(r— u)t\ﬂ\) sup 2u|B|H>\ﬂ|qu”
BeNg

< ey sup /01N | £,
BeNy

and this is just (1.212). We remark that in this step the restriction (1.151) was essential
for the use of atomic decomposition with no moment conditions on the atoms. =

REMARK 1.26. The coefficients A2, depend linearly on f. This follows from (1.184) and
(1.177).
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We now state the subatomic decomposition for an arbitrary smoothness parameter s.

COROLLARY 1.27. (i) Let 0 < p < 00, 0 < g < 00, s € R and ¥ an admissible function.
Fiz o € R and L with (L +1)/2 € Ny such that

(1.216) o >max(opg,s) and L > max(—1, [ope — s)).
Let (Bqu)ym be (o,p,¥)-B-quarks and let (Bqu)L.. be (s,p,¥)p-B-quarks. There exists

k > 0 with the following property: let u > k; then f € S'(R™) belongs to F,SS’W) (R™) if,
and only if , it can be represented as

(1.217) F=>3 Y MaBaw)um(z) + o, (Bqu)l,, (2),

BeNy v=0 meZn
convergence being in S’ (R™), with
(1.218) sup 201N ] foqll + 107 | fqll) < 00
BeNp

Furthermore, the infimum of (1.218) over all representations (1.217) is an equivalent
quasi-norm in F(S PI(RM).

(ii) Let 0 < p,q < 00, s € R and ¥ an admissible function. Fix o € R and L with
(L +1)/2 € Ny such that

(1.219) o > max(op,s) and L >max(—1,[o, —s]).
Let (Bqu)ym be (0,p,¥)-B-quarks and let (Bqu)l,, be (s,p,¥)p-B-quarks. There exists

k > 0 with the following property: let pu > k; then f € S'(R™) belongs to B]E.Z’W) (R™) if,
and only if , it can be represented as in (1.217) and

(1.220) sup 2#171([IA% [ byq | + 1107 [ bpgll) < 00
BeNy
Furthermore, the infimum of (1.220) over all representations (1.217) is an equivalent
quasi-norm in B,(,Z’m (R™).
Proof. We prove (i). Obvious modifications also prove (ii).

Step 1. Let f be represented by (1.217) with (1.218). Let

ZZZA (Bqu)ym(x),

BeNp v=0meZn
and for fixed 8 € N,

oo

=33 ol (Bauw)l,(x).

v=0 meZn
Since from (1.218), supgeng 2LBL NP | fogll < 00 and (Bqu)ym are (o, p, ¥)-B-quarks with
o > Opg, by the if-part of Theorem 1.23(i) we find that f; € F,Sg’w)(R”). Hence f; €
s ) (R™), because o > s. On the other hand, by (1.218), for fixed 8 € N%, 0° € f,q.
Moreover, (Bqu)L are (s,p, W)k r-atoms (for all K € Ny), multiplied by a constant not

greater than 24!, where ¢, k > 0 do not depend on (see Lemma 1.22). Since L satisfies
(1.216), by the if-part of Theorem 1.18(i) we get fg € Fg;’w)(R”) and ||f2ﬁ | FZEZ’W) (R™)| <
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281107 | fpqll, with ¢ > 0 independent of 3. Taking p > s and using the t-triangle
inequality with ¢ = min(1, p, q¢) we get

1/t
| 3 A EsP®)| < ea( 30 29007 fult) < 0 sup 207007 | gl
BeNg BeNg peNg

€Ng

Hence

BeNr v=0 meZn
belongs to FIE;’W)(R”) Therefore, f = f1 + f2 € F,SS’W) (R™), and
IF 1 E™ R < ¢ sup 21N | fogll + 110” | Foall)

BENy
for any p > 0 sufficiently large, and this completes the proof of the if-part of (i).

Step 2. We now prove the only-if part of (i). We use the lift described in Step 3 of the
proof of Theorem 1.18, i.e.

id+ (7A)M . F[E;Jr?MJ/) (Rn) (s ) (Rn)
taking now M = (L + 1)/2. Iteration yields that for f € F,Sg*”) (R™), we have

(1.221) f=h+(a)E2E

with f; € F(S+J(L+l) W)(R") and fo € FI,S+L+1 ) (R™) (j € N). We stop when j is such
that s + j(L + 1) > 0. So, we obtain the decomposition (1.221) with f; € F;g’m (R™).
Due to (1.216), o > 054 and hence, in view of Theorem 1.23(i), f1 can be written as

ZZZA (Bqu)vm ()

BeNp v=0 meZn
with (Bqu),m being (o, p, ¥)-F-quarks and

sup 21PN | fq]| < oo
BeNp

for any p1 > 0 sufficiently large. Since by (1.216), s + L + 1 > 0,4, and also in view of
Theorem 1.23(i), we can write

Fo= 30300 0 (Bauw)um(2)
BeNg v=0 meZn
now with (Gqu),, being (s + L + 1, p, ¥)--quarks and

sup 2291107 | £ < 00
BeNy

for any pe > 0 sufficiently large. Then
()R = Y Z Y (=) IR (Bqu) ().
BeNE v=0meZn
We only need to prove that (—A)E+TY/2(Bqu),,, are (s,p, ¥)r-B-quarks. In fact, we have
(Bqu)ym (z) = 27 CHEFL=/Dvg (277 1B (275 — )
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and hence
(= 2) D2 (Bgu) = 27 7P (27) (- 4) R0 (27 — )

Furthermore,

sup 21N | foqll + 1107 | foqll) < o0
BeNg

for any u > 0 sufficiently large, and the proof is complete. =
In the following corollary we consider distributions with compact support.

COROLLARY 1.28. (i) Let 0 < p < 00, 0 < ¢ < 00, s € R and ¥ an admissible function.
Let o, L and k as in Corollary 1.27(1). Let u > k. Then f € S'(R™) with compact support
belongs to Fé;’w) (R™) if, and only if, it can be represented as

(122) f= 5 5 3 Ml (Bl () + i (— D (B ),

BeNy v=0 meZn

where p € S(R™) is such that

(1.223) o(z)=1 ifx € (suppf)e and suppe C (supp f)ae

for some e > 0, (Bqu)ym are (o,p,¥)-B-quarks, (Bqu)%,. are (s+ L+ 1,p,¥)r-B-quarks
and

(1-224) sup 2#|ﬂ|(||)‘5 | qu” + HQﬁ ‘ quH) <00
BeNz

Again, the infimum of (1.224) over all representations (1.222) is an equivalent quasi-norm
in FISS’W)(R”). If, in addition, s > oy, then (1.222) and (1.224) can be replaced by

(1.225) f=> Z > M e(@) (Bau)ym(x),

BeNy v=0 meZn
where now (Bqu),m are (s,p,¥)-B-quarks, and

(1.226) sup Qu\ﬁ\H)\ﬁ | fpqll < o0,
BeNp
respectively.
(ii) Let 0 < p,g < o0, s € R and ¥ an admissible function. Let o, L and K be
as in Corollary 1.27(i1). Let pn > k. Then f € S'(R™) with compact support belongs to
Bz(,f,"p) (R™) if, and only if , it can be represented as in (1.222) with

(1.227) sup 21N by || + (07 [ bpg ) < o0
BeNy

Again, the infimum of (1.227) over all representations (1.222) is an equivalent quasi-norm
in B,(,Z’q/) (R™). If, in addition, s > o, then (1.222) and (1.227) can be replaced by (1.225)
and

(1.228) sup 2P| A7 | byq|| < o0,
BENy

respectively.

Proof. We prove (i). Obvious modifications also prove (ii).
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Step 1. We start by proving the if-part. Let f be given by (1.222) with (1.224). For fixed
8 € Ng, let

v=0 meZn
(1.230) f5 —Z Y (=) o(Bqu);,) ().
v=0 meZn

Some calculations, similar to the ones in the proof of Lemma 1.22; yield that up to nor-
malising constants, ¢(B3qu),n, and (—A)E+HD/2[p(Bqu):,,] are (o,p, ¥)k,_1-atoms and
(s,p,¥) K, -atoms, respectively, for any K € Ny. Moreover, in both cases the constant by
which they have to be divided to become, respectively, a (o,p,¥)k,—1 or an (s,p,¥)x, -
atom can be estimated from above by ¢2%/8l, where ¢,k > 0 are independent of 3. By
Theorem 1.18(i), as 0 > 0,4, we conclude that

;e RV ®Y) and (7| FTY R < a2 N gl
But ¢ > s, hence

fLeFRMI®RY) and £ FS ) R < 2PN fgll.
For any p > k and ¢t = min(1, p, ¢), the {-triangle inequality yields

1/t
(1.231) H S ’F;;*@(R") SAGIEAPUVM
BeNp BeNg
< ey sup 271N | £ .
BeNg

Also by Theorem 1.18(i),
[ e FyV®™) and | f5 | EG" R < 28PN foqll,
and, in the same way, for all p > k&,

(1.232) H Z f{"FW R™)

< ey sup 2/PINT £y .
BeNy

By (1.222) and (1.229)7(1.232) we obtain
FEESTRY) and ||| FST (R < e sup 2°81(IN | foqll + 1107 | foqll)

BENE

for pu > k.

Step 2. We now prove the only-if assertion of (i). Let f € FpS w)( R™). We assume L # —1,
otherwise we can skip this first part of Step 2. Put I = L+ 1+ (o — s] — L)1 and let
o € S(R"), k=1,...,1, be such that

(1.233)  ¢p(w) =1if x € (Supp f)ie/2ry) and supp ¢x C (SUPD f)(k+1)e/(21)-

In particular ¢g41(x) = 1 for = in a neighbourhood of supp ¢r. We consider once more
the lift id + (—A)(Z+1/2. On the one hand we have

(1234)  f=g+ (=)D g with | f|Fe " (R™)] ~ [lgy | E5 9 R,
and on the other hand f = ¢ f. Hence
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(1.235) [ =191+ 1 (—A)EHD/2g

=101+ (A E 291+ D FH(DY1)(DPg1).

lal+|B|=L+1
IBI<L

We denote the last summand in (1.235) by f;. We remark that f1 € FISSH’W) (R™) and
supp f1 C supp ¢1. We can apply the same argument to f; in place of f, with s+ 1 in
place of s and using ¢- instead of ¢;. Iteration yields

(1.236) f=F+ (AR, with

(1.237) F; e FTSSJ”LH’W) (R™) and suppF; C suppdr+1, @ =1,2.

If s+ L+ 1 < o, we have to apply the above kind of iteration to Fy. Now [0 — s] — L
iterations will be enough and we get

(1.238) f=H + (A2, with

(1.239) Hy € ES¢P(R™), Hp e FtEAY(R™), supp H; C (supp f)e, i = 1,2.

By Theorem 1.23(i) for H; € F,gf;’w) (R™) we have

(1.240) =y Z > Nn(Bau)um(@),

BeNp v=0 meZn
with (8qu),m, being (o, p, 1)-B-quarks and

(1.241) sup 21PN fg|| < o0
BeNy

for any p; > 0 large. In the same way, by Theorem 1.23(i) and Remark 1.25, for Hs €

FISS+L+1’M (R™) we have

(1.242) Hy= 3" > 0ln(Bqu), (@),

BeNE v=0meZn

with (Bqu)¥,, being (s + L + 1, p,¢)-B-quarks and

(1.243) sup 21291107 | £ < 00
BeNg
for any po > 0 large. Thanks to (1.239), H; = ¢ H;, i = 1,2. With this remark (1.222) is

a consequence of (1.238), (1.240) and (1.242). Moreover, (1.224) comes from (1.241) and
(1.243).

Step 3. The special case in (i) for s > 0,4 is an easy consequence of Theorem 1.23(i). m
2. Function spaces on fractals
1. (d,¥)-sets

2.1.1. Introduction. The notion of a (d,¥)-set was introduced by D. Edmunds and
H. Triebel in [ET98, ET99] and it generalises the concept of a d-set.
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A closed non-empty subset I' of R™ is called a d-set, for 0 < d < n, if there exist a
Borel measure g in R™ with supp p = I" and two positive constants c¢; and ¢y such that

(2.1) crr! < p(B(v,r)) < eor?

for any closed ball B(vy,r) in R"™, centred at v € I" and of radius r € (0,1). The notion
of a d-set occurs both in the theory of function spaces and in fractal geometry. We refer
to [JW84], [Mat95] and [Tri97], among others. Some self-similar fractals are outstanding
examples of d-sets. For instance, the ordinary (middle third) Cantor set in R is a d-set
for d =log2/log 3 (this example extends to generalised Cantor sets in R™), and the von
Koch curve in R? is a d-set for d = log 4/ log 3.

It is well known that the measure p in (2.1) is even a Radon measure and that any
two such measures p; and pg related to a d-set I' are equivalent (see e.g. Proposition 1 in
[JW84] on p. 30), in the sense that there are two positive constants ¢; and ¢z such that

(2.2) c1an(A) < p2(A) < o (4)

for any Borel set A C R™. One can get a canonical measure related to a d-set I" by means
of the restriction to I' of the usual d-dimensional Hausdorff measure. This paves the way
to proving that a d-set I with 0 < d < n has Hausdorff dimension d, dimyg(I") = d, and
Lebesgue measure zero, |I'| = 0. We refer to proofs in [JW84, Chapter II, §1.2, pp. 30-33]
and [Tri97, Theorem 3.4, p. 5]. It is mentioned in [ET99, Remark 2.6, p. 86] that if I" is
a (d,¥)-set with 0 < d < n, then also

(2.3) dimp(I') =d and |I']=0.

As mentioned above, with the exception of the case d = n, this is the counterpart for
(d, ¥)-sets of known results for d-sets. Our aim in this subsection is to give a proof of (2.3).
In particular, we prove that any two measures related to a (d,¥)-set are equivalent and
we find a canonical measure that, in this case, can be obtained by means of a generalised
Hausdorff measure.

2.1.2. Definition and properties of a (d,¥)-set
DEFINITION 2.1. Let I" be a non-empty closed subset of R™.

(i) Let 0 < d < n and let ¥ be an admissible function. Then I is called a (d, ¥)-set
if there exist a Radon measure p on R”, with supp u = I', and two positive constants c;
and co such that
(2.4) W (r) < p(B(y, 7)) < cor®W(r)

for any ball B(~,r) in R™ centred at v € I and of radius r € (0,1).
(ii) Let ¥ be a decreasing admissible function with lim,_q+ ¥(r) = oco. Then I' is

called an (n,¥)-set if there is a Radon measure p with the above properties and d = n
in (2.4).

EXAMPLE 2.2. Obviously any d-set with 0 < d < n is a (d,¥)-set for ¥ = 1. For any
couple (d,¥) with 0 < d < n and ¥ an admissible function (as in Definition 2.1(ii) if
d = n), there exists a (d,¥)-set. We refer to Proposition 2.8 of [ET99]. In the case of
d-sets, in which case ¥(r) = 1, for any d with 0 < d < n there is even a self-similar
d-set as an attractor of a suitable family of contractions, or iterated function schemes;
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see [Tri97, §4], [Mat95, 4.13] and [Fal90, 9.1], among others. The examples of (d, ¥)-sets
given in [ET99] (pseudo self-similar sets) are created in a similar way, but the dilation
factors of the contractions involved may vary from step to step.

REMARK 2.3. In this remark we state some easy consequences of Definition 2.1.

(i) If I'is a (d,¥)-set with 0 < d < n, then the right-hand inequality of (2.4) is even
true for any v € R", but now with » € (0,1/2) and another constant cy. This follows
from the observation: given y € R™ and r € (0,1/2), either B(y,r) N I" = () which gives
w(B(y,r)) =0, or there exists v € B(y,r) NI which gives B(y,r) C B(v,2r), and hence
w(B(y,r)) < c2(2r)4W(2r) < c3 7?W(r). We have used (2.4) and Proposition 1.4(v).

(ii) An immediate consequence of Proposition 1.4(v) is

w(B(y,2r)) < eu(B(y,r)), vl re(0,1/2),
for some positive constant c.
(iii) The relation (2.4) also implies that, for some positive constant ¢, we have

w(B(z,r)) <er”, xeR" r>1

This follows because B(z,r) can be covered by ¢;r™ balls of radius 1/2.
(iv) In Definition 2.1 it is sufficient to assume that p is a Borel measure. Then we can
easily prove that p turns out to be a Radon measure.

PROPOSITION 2.4. Let I' be a (d,¥)-set in R™ with 0 < d < n. Let u; and pe be two
Radon measures related to I' according to (2.4). Then py and po are equivalent in the
sense described in (2.2).

Proof. Take an open set O with p1(O) > 0 and let ¢ be such that 0 < ¢t < p1(O). Since
w1 is a Radon measure, there exists a compact set K with K C O and p;(K) > t. We
can cover K NI by finitely many open balls B(vy;,7;) C O, i € I, with centres v; € KNI
and arbitrarily small radius r; € (0,1/4). By a standard argument (see Lemma 7.3 of
[Rud87, p. 137]), we can choose a subcollection {B(~;, ;) }ierr of {B(7vi, i) Yier, I' C 1,
such that the balls B(~;,r;) with ¢ € I’ are disjoint and

U BGisri) € | B, 4ra).

icl iel’
We get
t<m(K) < M1(UB(%,W)) < Nl( U B(vi, 4ri) ) ZMl (i, 41i))
i iel’ iel’
<er Y (Ar)W(Ar) <c Yy rw(r) <esd  pa(B(yi,ri))
iel’ iel’ iel’
= C3M2( U B(’Yi,ri)) < C3M2(U B(%‘ﬂ"i)) < c3p2(0).
iel’ i€l

We have used the properties of u;, i = 1,2, and Proposition 1.4(v). Letting ¢ tend to
w1 (0O) we conclude that p1(O) < ¢35 pu2(0). For an arbitrary Borel set E,

wi(E) = inf{p;(0) : O open, E C O}, i=1,2.
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But, for any open set O with £ C O, we have ui(E) < u1(0) < c3u2(0). Taking the
infimum over all such O we get p1(E) < csus(F). Since we get an inequality in the other
direction in the same way, the proof is finished. m

We can get a canonical measure related to a (d,¥)-set by means of a generalised
Hausdorfl measure. Next we recall some facts concerning measure theory. We follow
[Mat95, §4.1,4.2] and [Tri97, §2].

Let F be a family of subsets of R™ and ¢ a non-negative function on F with the
properties:

(I) For every 6 > 0 there are E; € F such that R" = U;’;l E; and diam(F;) < 4.
(II) For every § > 0 there exists an E € F such that {(E) < § and diam(E) < 4.

For 0 < 6 < oo and A C R™ we define

(2.5) bs(A) = inf{i((E CAC U E;, diam(E;) < 6, E; € ]-'}
j=1
Of course, 15(A) is monotone,
(2.6) Ps(A) <. (A) when 0<e <4 < oo,
and hence ¢ = ¢(F, (), given by
(27) V(A4) = lim v5(4) = supuis(4),  ACR”,
- 6>0

makes sense. The measure v is the result of Carathéodory’s construction from ¢ on F.
This kind of construction is also described extensively in [Fed69, 2.10]. Theorem 4.2 of
[Mat95, p. 55] and Theorem 2.3 of [Tri97, p. 3] state the following characterisation of the
measure 1.

THEOREM 2.5. (i) ¢ is a Borel measure on R™.
(ii) If the members of F are Borel sets, then ¢ is a Borel reqular measure on R™.
(iii) If the members of F are Borel sets, and A is a ¥-measurable set with ¥(A) < oo,
then 14 is a Radon measure on R™.

One way of constructing such a measure is by means of a non-negative function
h: R — Ry with h(0) = lim,_o+ h(t) = 0, and F the family of all closed sets in R"
(see e.g. [Fal90, 2.5, p. 33] and [Gar72, p. 58]). Note that, by (2.5)—(2.7), what matters
is the behaviour of h in a neighbourhood of 0. Then the function ¢ defined by

((E) = h(diam(E)), E CR",

satisfies (I) and (II) above. We denote the corresponding measure ¢ by Ay,. For h(t) = t°,

0 < s < oo, we get the usual s-dimensional Hausdorff measure, usually denoted by H?.
It is known (see, for instance, [Tri97, 3.4, p. 5]) that a canonical measure related to a

dset I';0 <d<mn,is H‘ ', the restriction to I" of the d-dimensional Hausdorff measure.

We prove that for a (d,¥)-set we get, in an analogous way, a related measure by means

of Ay, where

(2.8) h(t) =t (t), 0<t<1,

and h(0) = lim; g+ h(t) = 0 (recall Proposition 1.4(iii)).
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In the special case of h(t) = t%, 0 < s < 0o, but with F, the family of all closed sets in
R™, replaced by B, the family of all closed balls in R™, we get the so-called s-dimensional
spherical measure §°. The following relation is well known (cf. [Tri97, 2.5, p. 4]):

H(E) < S°(E) <2°H°(E), ECR".
Such type of relation is also true between the corresponding measures A, and Sy, con-

structed by means of the same function h in (2.8), but with F or B, respectively.

LEMMA 2.6. Let h be given by (2.8). There exists a positive constant ¢, only depending
on d and ¥, such that

(2.9) Ah(E) < Sh(E) < CAh(E), E CR™

Proof. The first inequality in (2.9) is obvious thanks to B C F. If we have a §-covering,
0 <& < 1/2, of E by closed sets {E;}32,, E C U;Z, Ej, then E C |J;Z, Bj, where B;
are closed balls of diameter 2 diam E; (see e.g. [Fed69, §2.10.41, p. 200]). Hence,

Z h(diam B;) 2(2 diam F;)*¥(2 diam E;) < 2¢C Z(diam E;)W(diam E;).
Jj=1 j=1
We have used Proposition 1.4(v). The last inequality implies Sy, (E) < 2¢CA;,(E), and so
the proof is complete. m

The following result relates the measures constructed from two different functions h
and g. We refer to [Gar72, Lemma 1.2].

LEMMA 2.7. For any bounded set E, we have
. h(t)
Ap(E) < <hmsup —)A E).
( ) 0t g(t) g( )
We are now ready to state and prove the following proposition:

PROPOSITION 2.8. Let I be a (d,¥)-set on R™ with 0 < d < n. Then the restriction to I"
of the measure Ay, with h given by (2.8), satisfies (2.4), that is, Ap|p is a measure related
to the (d,¥)-set I.

Proof. Let pu denote a measure related to the (d, ¥)-set I" according to Definition 2.1. Let
y€I',0 <r <1and define I'(y,7) = B(y,r) N I". Let {B;}52, be a countable family of
closed balls with radius r; < 1/2 which covers I'(vy,r). We have

W (r) < p(L(v,7)) < (U ) Z,u ) < CQZT (r;).

Jj=1
However, by Lemma 2.6, for any € > 0 the last sum is, for a sultable choice of {B;,}, less
than esle + Ap(L'(y,7))], where the constant ¢3 depends only on d and ¥. This gives

Ap(I(y,7)) > Z—lrdﬂ/(r), vel 0<r<l,
3

which proves one of the desired inequalities. Now take 0 < t < Ap(I'(v,r)) and 0 < e <
min(1—r,1/16). We can cover I'(y,r) by finitely many open balls S; C B(y,r+¢), j € I,
with centres in I'(y, ) and radius r; < e. We can choose a disjoint subcollection {B;} ;<
of {Sj}jer, I' C I, such that (J;c; S; C Ujep Bj, where B} is the ball concentric with
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B; whose radius is four times the radius r; of B; (see Lemma 7.3 in [Rud87, p. 137]).
Since I'(v,7) C U;jer S5 C U, Bj we get
(2.10) t< ) (8r) M (8r))
Jjer’
if € > 0 is small enough. On the other hand, by the properties of u, we have
211) o Y ru(r) <Y u(By) = u( U Bj) < u(B(y,r+¢)) < calr+e)(r+e).
jer jer jer
By Proposition 1.4(v), we have ¥(8r;) < ¢¥(r;) provided that r; < ¢ < 1/16. This
together with (2.10) and (2.11) gives t < c3 (r + &)W (r + ¢) if ¢ > 0 is small enough.

Letting ¢ tend to zero we obtain

(2.12) t <egrd lim U(r+e) < egr®@(r).

e—0*t

Letting ¢ tend to Ay, (I'(v,7)) we get Ap(I(v,7)) < car?W¥(r), which completes the proof, if
we show the last inequality in (2.12). Note that the monotonicity of ¥ yields the existence
of lim,_,g+ ¥(r + ¢). If the admissible function ¥ is decreasing then lim,_ o+ ¥ (r +¢) <
W(r). Otherwise, if ¥ is increasing, then lim. g+ ¥(r + &) < ¢5¥(r), for some positive
constant cs, independent of r. In fact:

o If 0 < r < 1/2, there is j € N such that 272/ < r < 277; then
lim @(r+e) < W(277) < cW(27%) < cW(r).
E—

e If 1/2 < r <1, then

lim B0+ ) < (1) < D)

o v < gy Y- -

From Propositions 2.8 and 2.4 it makes sense, up to equivalence, to speak about the
measure associated with a (d,¥)-set I', having always in mind Ay p.

COROLLARY 2.9. Let I' be a (d,¥)-set in R™ with 0 < d <mn. Then
dimg(I'N B(v,r)) =d
forany v e ' and r > 0.
Proof. Let first 0 < r < 1. By Proposition 2.8 we know that 0 < A, ("N B(v,r)) < oo.

For s > d, using Lemma 2.7 (¥~ is also an admissible function, by Proposition 1.4(i)),

we have
S

H(I'N B(y,7)) < <litni§1+1p %)Ah(lj N B(v,7)),

and by Proposition 1.4(iii), we get H*(I' N B(vy,7)) = 0. In an analogous way, for s < d
we have

d
0< Ap(I' N B(y,r)) < (Hmsup tf#)?‘(s(ljﬂ B(v,71)),

t—0+
and hence H*(I" N B(v,r)) = oco. Therefore, by the definition of Hausdorff dimension,

dimg(I'N B(y,r)) =inf{s > 0: H*(I' N B(y,r)) =0} =d
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Now consider the case r > 1. We can cover B(v,r) by c¢r™ balls of radius 1/4, say
{B(z;,1/4)}$7 . Tt can happen that I'NB(z;,1/4) = (), or there exists v; € B(x;,1/4)NT,
which implies

I'nB(z;,1/4) c ' B(vy4,1/2),
and then

cer’™
I'nB(y,1/2) c I'NB(y,r) | JT'nB(v:,1/2).
i=1
By the properties of the Hausdorfl dimension (cf. [Mat95, p. 59]), and the first part of
the proof, we obtain

d < dimg(I'NB(y,7r)) < sup dimpg(I'NB(y;,1/2)) =

1=1,...,cr™
Therefore dimy ("N B(y,7)) = d for any v € I" and r > 0, and the proof is complete. m

Proposition 2.8 and Corollary 2.9 with the additional assumption on the boundedness
of I" enable us to prove (2.3).

COROLLARY 2.10. If I' is a compact (d,¥)-set in R™ with 0 < d < n, then
dimg(I") =d and |I'|=0.
Proof. Obviously we can write
r=\J B(z,vn)nr
zel™

Only for finitely many z € Z™ do we have B(z,v/n) N I" # (. If that is the case, there
exists v € B(z,/n) N I', which implies I' N B(z,v/n) C I' N B(y,2+/n). Hence, we can

even write

7];2\/_

H'CZ

with v; € I" and some N € N. By Corollary 2.9, it follows that
dimpg(I') = sup dimg(B(v;,2vn)) =d.
j=1,..,N

For the second part of the proof, we need to recall the equality H™ = cL", where ¢ is
some positive constant and L™ denotes the Lebesgue measure in R™ (see [Fed69, 2.10.35,
p. 197)). If d < n, since dimy(I") = d, we have H™(I') = 0, and so L"(I") = |I'| = 0.
If d = n we will also prove that H"(I") = 0, but in this case this is not an immediate
consequence of dimyg(I") = n. It is important that I" is compact. In fact, since I is
bounded, we have I' C B(O, R) for some R > 1. Then with h as in (2.8), by Proposition
2.8 and Remark 2.3(iii), we have

(2.13) Ap(I) < Ap(B(O, R)) < ¢cR™ < 0.
By Lemma 2.7, we get

(2.14) HY(T) < <htn_1)(b)1ip m g( ))Ah(F).
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But, by Definition 2.1(ii), lim; .o+ ¥(f) = +oco. This, together with (2.13) and (2.14),
gives H"(I") = 0 = |I'|. Hence, also in the case d =n we get |[I'| =0. m

2.2. Spaces on (d,¥)-sets

2.2.1. L,(I') as spaces of distributions. In this subsubsection we always assume that
I' is a compact (d,¥)-set in R™. As pointed out in the previous subsection, the Radon
measure p related to the (d, ¥)-set I' is unique up to equivalence and we can always think
of y1 as being the measure Ayp described in 2.1.2. If 0 < p < oo, then L, (I") is the usual
complex quasi-Banach space (Banach space if p > 1) with respect to the related Radon
measure 4, quasi-normed by

(215) 112D = (1P )

r
(with the usual modification if p = c0).

Any fI' € L,(I') with 1 < p < oo can be interpreted as a (uniquely determined)
tempered distribution f € S'(R™) given by

(2.16) @) = FFMeir( wdy), ¢ e SE®M,

where ¢ is the pointwise trace of ¢ on I'. The interpretation (2.16) paves the way for
the identification of some spaces L, (I") with suitable subspaces of some spaces B,(,Z’w) (R™)
which will be introduced now.

DEFINITION 2.11. Let I" be a non-empty closed subset of R”™ with |I"| = 0. Suppose that
0<p,qg<o0,s€Rand ¥ is an admissible function. Then
(217)  BSTT(RY) = {f € BT (R") : f(p) =0 if ¢ € S(R™) and ¢ = 0}.

This definition generalises Definition 17.2 of [Tri97] and coincides essentially with
Definition 2.14 of [ET99]. If f € BS™)" (R™), then
(2.18) supp f C I
However, the assertion (2.18) is necessary for f € BI(,Z’W)’F(R") but not sufficient (for
an example see [Tri97, p. 126]). We also refer to [Bri00], where moreover certain type of

sets I' are described for which the above condition turns out to be both sufficient and

necessary.
Since |I'] = 0 the spaces BI(J‘Z’W)’F(R”) are trivial if BI(,Z’W)(R”) is a subset of L!°¢(R™).

In other words, in any case, with the exception of the zero distribution, B;Z’W)’F(R”)
consists of singular distributions. Recall that for € > 0, by Proposition 1.9, we have

s+e, ¥ n s n
B;q"’f )(R )(—)qu(R )
and on the other hand (see e.g. [RuS96, 2.2.4]),
B3, (RY) — L")
provided that s > o, (recall the notation in (1.36)). Hence, BI(,Z’W)’F(R”) is trivial if

0 < p,q < oo, ¥ is an admissible function and s > 0.

Analogously to (2.17) one can introduce the corresponding spaces FZSZ’W)’F(R”).
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Having in mind the identification specified in (2.16), we have the following:

PROPOSITION 2.12. Let I' be a compact (d,¥)-set in R™ with 0 <d <n. Let 1 <p < o0
and denote by p' its conjugate exponent. Then

(2.19) Ly(I') € B =/ w700 gm).

Proof. This proof is adapted from the proof of Theorem 18.2 in [Tri97]. Let fI' €
L,(I') with 1 < p < oo and let f € S’'(R") be given by (2.16). We show that f €

BRI Ry and
(n— -1/7 n
L | B/ R | < e || 7| Ly (D))

for some ¢ > 0 which is independent of fI'. Let k be a suitable kernel according to
Theorem 1.12. Using Holder’s inequality we get

@20z = | k(e ) ulan)

(o) e )

Since suppk C {£ € R™ : |[¢] < 1}, the second integral on the right-hand side of (2.20)
can be restricted over I' N B(x,277). Since I is a (d, ¥)-set, it follows that

w0 B(z,279)) < 2794w (277),  jeN.

&= } M(dv)>1/p, jEN.

From (2.21) using Fubini’s theorem and a suitable change of variables, we get

()

sw‘n(s P

Moreover sup,cgn |k(x)| < co. Then
(2:21) k(27 f)(2)]
< g ({1 )P
r

| 1k, @) do < = Dw @ | ()P

R~ R~ I’
< =g (27l §|ff< )I? i) § 277" k()] dy
Rn
= /r(n=d)/v" g (9= /v’ S dv).
r

Taking the 1/p-power, we obtain
B2, 1)) | Ly(R™)|| < 2/ =D w27V || (T Ly(T)],  j €N
Hence

sup 2/~ W@ (2 1)) | LR < ell 57| Ly(D,
J€No

because the term corresponding to j = 0 can be treated in a similar way. Moreover it
is obvious that (2.16) implies f(yp) = 0 for any ¢ in S(R™) with ¢|p = 0. Therefore

fe B (n=a)/p' ¥, F(R”), and the proof is complete. m
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REMARK 2.13. The proposition above is included in Theorem 2.16 of [ET99], which gen-
eralises Theorem 18.2 of [Tri97] from d-sets to (d,¥)-sets. Concerning Theorem 2.16 in
[ET99] it is moreover stated that the inclusion (2.19) can be replaced by equality if p > 1
and either (i) d < n or (i) d = n and 3} 72, @(279)"1/?" < co. For a detailed proof of
this fact see also [Bri00]. Concerning the special case of the last proposition

Li(1) € BT @) = BYL (R,

we refer for further comments to [Tri97, 18.3].

2.2.2. Traces. First we recall what is meant by traces. Let I' be a compact set in R”
and let © be a Radon measure on R™ with supp u = I". Of course, L,(I") are the related
L,-spaces. Let trr ¢ = ¢ be the pointwise trace of ¢ € S(R™) on I'. Suppose that for

some space B(s’ )(R") with max(p, ¢) < oo, there exists a constant ¢ > 0 such that for
all ¢ € S(R™),

(2.22) lter o] Ly(D)]| < elle| By (R™)].

Due to max(p, q) < oo, S(R™) is dense in B(S ) (R™), hence the definition of try on the
whole space BI(,q ) (R™) is a matter of completion. The statement

Ly(I) = trp B (R™)

should be understood in the sense that any fI' € L,(I") is the trace on I' of some
g € BS (R and || 7| L,(I')|| is equivalent to

inf{lg | BV (R - tr g = ).
PROPOSITION 2.14. Let I' be a compact (d,¥)-set in R™ with 0 < d < mn. Then
(2.23) trp BYr= O/ (RY) < L,(I)
for 0 <p< oo and 0 < ¢ <min(l,p).

Proof. We modify Step 1 of the proof of Theorem 18.6 in [Tri97, p. 139]. Let ¢ € S(R™).
1/p
Obviously ¢ € BY"~ /¥ ! J(R™), and by Theorem 1.18(ii) we can write

oo
Y= Z Z Avm@um  In S/(Rn)v
v=0meZn

where the sequence A={\,,, : vENg, m € Z"} €b,,, and a,, are ((n — d)/p, p, ¥*/P)k L-
atoms for some K € Ny, L + 1 € Ny. In particular,

n— 1/p
(2.24) X bpgl < cllp | B2 IR,
where ¢ is a positive constant independent of ¢. Moreover, for v € N and m € Z",
(2.25) |awm (z)] < QVd/pw( “)" l/pXVm( )s

where Y, is the characteristic function of the cube ¢ Q),.,, which contains the support of
aym- Let 0 < p < 1. It follows that
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(226)  Jltrr | Ly(D)II” = W @) < 3§ 3 A )] )

v=01 mecZnr

< Zz”dgp 27) ‘ Y AemXom v’ p(dy).

I mezZn
With x,., the characteristic function of Q),,, and ¢; a positive constant independent of
v, m (recall Lemma 1.19), we have

> p
@27) el LD < e Y279 ) 7 | 32 omlom()| (@)
v=0 I meZnr

gclzzvdwru)*ls D ol xom () uldy)

I meZn
S C1 Z Z 21/de 1|>\um|p (F N Ql/m)
v=0meZn
ad i a/p\r/aq
SCQZ Z |>\um|péc3<2( Z |/\Vm‘p) )
v=0 meZn v=0 mgZn

n— 1/p n
= c3l|A | bypgll” < callp | BE— /BT (RP)|P.

We have made use of (2.24) and £, — {1, due to 0 < ¢ < p for 0 < p < 1. The
result follows from (2.27) by completion. If 1 < p < oo, then the first inequality in (2.26)
must be replaced by the usual triangle inequality and afterwards we need to use £, — ¢
(instead of £,/, < f1), which comes from 0 < ¢ <1. =

REMARK 2.15. (i) According to Theorem 2.19 of [ET99] the assertion (2.23) is sharp for
1< p<ooandq=1, if either (i) d < n or (ii) d = n and Z;io ¥(277)"Y/P < oo. This
means that under these circumstances we even have equality in (2.23). In case d < n,
(2.23) is sharp also for 0 < p < oo and 0 < ¢ < min(1,p) (cf. [Bri00]). In any case the
inclusion in Proposition 2.14 will be enough for our purpose.

(ii) We can complement (2.23) for p = oo, because

(2.28) BUYD (R = BY, 1 (R")
consists of continuous functions and the trace is taken pointwise. Moreover, by Proposi-
tion 1.9(i),
B, 4(R™) — B3, 1 (R")
for any 0 < ¢ < 1. Concerning the first statement, see Section 20.1 of [Tri97] and the

references given there.
(iii) By the embedding assertion in Proposition 1.9(ii), we have

(2.29) B (R < BT (R

p,min(1,p)

for any s € R, 0 < p,q < o0, ¥, ¥ admissible functions and ¢ > 0. From (2.29) with
s=(n—d)/p, (2.28) and (2.23) it makes sense to speak about traces on I" for all spaces

B,(,Z’W) (R™) with 0 < p,q < oo and o > (n — d)/p, as subspaces of L,(I).
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So we are now able to generalise Definition 2.21 of [ET99] of the Besov spaces on a
compact (d,¥)-set for an arbitrary p € (0, co].

DEFINITION 2.16. Let I' be a compact (d,¥)-set in R™. Let 0 < p,q < o0, s > 0 and
a € R. Then

(2.30) BV = trp B{H= /w7 (g

equipped with the quasi-norm

s,we : s+(n— jwl/pta n
(2.31) £ 1B ()| = inf [|g | BS = D/P¥ D (R

s+ (n— 1/pta .
where the infimum is taken over all g € B,(,qu( /p.¥ )(R") with trpg = f.

LEMMA 2.17. Let I' be a compact (d,¥)-set in R™ and r > 1. For fized v € Ny let M, be
the number of cubes Qum such that r Qupy NI # 0. Then:

(i) M, ~2v?y(27v)~! v € Ny,
(i) T(27Y) ~ ¥ ((2M,)~Y), v > 1.

Proof. Step 1. Let u denote a Radon measure related to the (d, ¥)-set I'. For fixed v € Ny
let

A . {m EL" :rQum NI # (Z)}
For each m € Z™" we choose Yym € 7 Qum N I'. We have
rQum C B(’Yumv""\/ﬁ27u)a m € Zn,F.,V7

and so {B(Yum,rv/n27%) : m € Z™"} covers I'. By the properties of the admissible
function ¥, namely Proposition 1.4(iv), there exists vy € N such that for any natural
number v > vy,

wO <p( U BOwmrva2 ™) < 3 w(Blmr V2 ™))

meZn T meZn I

—v\d —v —vd —v

<er Y (rVa2T)W(ryn2TY) < M, 27 W (2.
meZmnTw

Maybe with another constant, we obtain M, > c2v4W(27*)~! v € Nj.

Step 2. For fixed v € N, let N, denote the largest possible number of disjoint balls centred
at I" of radius r277~2. Let By,..., By, be a collection of such balls. Let B;- denote the
ball concentric with B; with radius r27*~1, j =1,..., N,. Note that {B;}évzl covers I
each v € I' must be within r27~2 of one of the B;, j € {1,..., N, }, otherwise the ball
B(~,r27772) can be added to form a larger collection of disjoint balls. Moreover, each B;-
has diameter 727" and therefore it intersects at most (4[r]+1)" cubes of side length r2~".
Hence, M, < (4[r] +1)™ N,. Using also again the properties of the admissible function ¥
we find vy € N such that for any natural v > vy,

N, N, N,
()= u(By) = er Yy (r2" )2 %) 2 e Y 27 W (27Y)
j=1 j=1 j=1

=N, 277 (277) > esM, 27w (27Y).
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Maybe with another constant, we obtain M, < ¢/2¥%W¥(27%)~! v € Ny. So the proof of
(i) is finished.

Step 3. Since ¥ is an admissible function, by Proposition 1.4(i),(ii), there are positive
constants ¢y, co and b such that

(2.32) av <2 <e’, veEN.

We remark that given € > 0, there exists a positive constant c. such that v < ¢.2° for
all v € Ny. Hence, taking 0 < € < d and using (2.32) as well as the assertion (i) proved
in Steps 1 and 2, we get

(2.33) 27 < (2M,) < 272 v e N,

for some positive constants ¢}, ¢4, a1, az. Then Proposition 1.4(iv) and (2.33) yield the
desired inequalities. m

PROPOSITION 2.18. Let I' be a compact (d,¥)-set in R™. Let 0 < ps < p1 < 00, 0 < ¢
< o0, s >0, a €R. Then we have the embedding

ERa 5,0*
Bl(llq )(F) MBZEDQ )(F)'

Proof. Let fr € B;ﬁ’fa)(f’). Then there exists f € Béf;("_d)/pl’wl/m“)(R") such that

trp f = fr. By Corollary 1.27 and Definition 1.21 we can write

(2.34) F=Y33 A2l dmig () /e gh (27 — m)
BeNp v=0meZn
+ nggfl’(sfd/pl)@(Q*V)*l/m7a((7A)(L+1)/2¢B)(QV:C —m)
for o > max(op,,s), (L +1)/2 € Ny with L > max(—1, [o}, — s]) and

(235) sup 2471138 byl + 1107 | Byl < 0

BeNp
for any g > 0 large. The part relevant for the trace has (m,v) such that cQ,., NI # 0.
Let Zv1" = {m € Z" : cQ,m NI # 0}. Having in mind Lemma 2.17(i), for fixed
v € Np, with M,, the number of elements of Z™ ", we have M, ~ 2v4¥(27)~1. With
1/p1 + 1/r = 1/pa, we have

e (3 )" <50 (T wr)”
meZmn v meZmnTv meZm I
SC(Qudw(qu)fl)l/r( Z |>\'fm|p1>1/p1.
mezZm v

We can rewrite (2.34) as follows:

f — Z Z Z 2—Vd/ry7(2—u>l/r)\,gmz—y(o—d/pz)yv/(2—u>—1/p2—a¢6(21/x _ m)
BeNp v=0meZn
+ 271/d/rw(2fl/)l/rQ5m2fl/(sfd/p2)W(27V)*1/P2*U«((_A)(L+1)/2¢B)(21/x _ m)
From (2.36) we get
||27Vd/rw(27y)1/r)‘fm | bpagll < C”)‘B | bpyall
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and, in a similar way

|27vd/mg (27 )T eB | bpsgll < cll@” [bpyqll-

This together with (2.35) shows that fr € IB%I(,Z’(JW)(F). Moreover,

e 1B (D)< e I BEY (D). -

p2q P19

3. Entropy numbers

The aim of this section is to generalise Theorem 2.24 of [ET99]. On the one hand we
include the case with 0 < p < 1 and on the other hand, besides L,, we also consider
a B-space as target space. The idea is the one developed by Triebel in [Tri97]: we use
the knowledge about the entropy numbers of embeddings between general weighted se-
quence spaces, together with the techniques of subatomic decompositions developed in
the first section, to estimate the entropy numbers of embeddings between Besov spaces
of generalised smoothness on fractals. We need to recall basic results concerning entropy
numbers, which is done in the next subsection.

3.1. Definition and elementary properties. In this subsection we recall basic facts
concerning entropy numbers. We follow closely [ET96]. Other related references are [CS90]
and [EE87]. If A, B are quasi-Banach spaces then L(A, B) denotes the family of all
bounded linear maps from A into B and Uy = {a € A : ||a| 4| < 1}.

DEFINITION 3.1. Let A, B be quasi-Banach spaces and let T' € L(A, B). Then for all
k € N, the kth entropy number ey (T) of T is defined by

2k—1

ex(T) = inf {5 >0:T(Ua) C U (bj + eUp) for some b; € B, j € {1,.. .,2’“‘1}},

j=1
The following proposition gives some elementary properties of entropy numbers. We
refer to Lemma 1 of [ET96, 1.3.1, pp. 7-8], where a simple proof may be found.

PROPOSITION 3.2. Let A, B, C be quasi-Banach spaces, let S,T € L(A, B) and suppose
that R € L(B,C).

(1) |T]| > e1(T) > ex(T) > ... > 0; e (T) = ||T|| if B is a Banach space.
(ii) For all k,1l € N,
ex+i—1(Ro S) < er(R)e(S).

(iii) If B is a p-Banach space, where 0 < p < 1, then for all k,l € N,
e 1 (S+T) <ep(S) +¢/(T).

REMARK 3.3. Since the e (T") decrease as k increases, and are non-negative, limy_, o, € (7")
exists and plainly equals

inf{e > 0: T(Uy) can be covered by finitely many B-balls of radius ¢}.
Hence, T € L(A, B) is compact if, and only if, limy_,. ex(T) = 0.
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An important application of entropy numbers is to spectral theory. If T € L(B) is
a compact operator on the quasi-Banach space B, then the spectrum of T', apart from
the point 0, consists solely at most of a countable infinite number of eigenvalues of finite
algebraic multiplicity. We refer to [ET96, pp. 3-7]. Let (ui(T))reny be the sequence of
all non-zero eigenvalues of T', repeated according to algebraic multiplicity and ordered so
that

[ (T)] = |p2(T)| = ... — 0.

If T has only m (< oo) distinct eigenvalues and M is the sum of their algebraic mul-

tiplicities we put p,(T) = 0 for all n > M. A connection between ux(T) and ey (T) is
provided by the following:

THEOREM 3.4 [CT80]. Let B be a quasi-Banach space, T € L(B) a compact operator and
(111(T))pen as above. Then

k 1/k
( I1 |,Lk(T)\) < inf 27/ (T),  keN.
el neN

An immediate consequence is Carl’s inequality:

COROLLARY 3.5. For all k € N, |ux(T)| < v2ei(T).

3.2. Entropy numbers of embeddings between weighted sequence spaces. In
this subsection we follow closely [Leo00a], [Leo98b] and [Tri97, §8,9]. We begin by intro-
ducing sequence spaces with which we will be concerned.

DEFINITION 3.6. Let 0 < p,q < oo, {3;}72, a general weight sequence and {M;}52, a

sequence of natural numbers. Then Eq(ﬂjéﬁ/l 7) is the collection of all complex sequences
x=(z;;:7 €Ny, I =1,...,M;) such that the quasi-norm

o M /p\1/
| €485 €571 = (Zﬁﬂzm’l'p)q p)l q
7=0 =1

is finite (with obvious modifications if p = co and/or ¢ = 00). In case §; = 1, j € Ny, we
write Eq(ézl)\/['j).

Following some suggestions from Professor Leopold, Theorem 1 of [Leo00a] and its
proof can be modified in order to obtain the next proposition. The cited result in [Leo00a]
was not sufficient for our case and for completeness we present the next proposition and
its proof which turns out to be sufficient for our purposes. However, we mention that
a generalisation of both Theorem 1 of [Leo00a] and the proposition below can now be
found in the recent paper of Leopold [Leo0OOb].

PROPOSITION 3.7. Let 0 < p1 < ps <00, 0 < q1,q2 < 00, {M;}32, a sequence of natural
numbers satisfying
(3.1) M; ~ 204 =1(277) j € Ny,

and B; = 290W*(277), j € Ny, a weight sequence where d,6 € RT, b € R and ¥ is an
admissible function. Then

(3.2) eanty [id : g, (B €217) — €4, (63)] ~ gt My /PP e N,
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Proof. Step 1. According to Theorem 1 in [Leo98b] and since p; < pa, the embedding
(3.3) id : £g, (B 001) — €g, (£)1)
exists and is bounded if, and only if, (ﬁ;l)jeNO € Ly« where 1/¢* = (1/g2 — 1/q1)+. By
Proposition 1.4(i),(ii), there are positive constants c1, ¢ and b’ such that

cj U <whRTI) <, jeN
This together with § > 0 gives us (ﬂ;l)jeNo € Ly~ for any ¢* € (0,00]. Therefore, the

embedding (3.3) exists and is bounded. Moreover, a direct application of Lemma 1 of
[Leo98b] provides the desired estimate from below for its entropy numbers.

Step 2. We decompose the embedding in (3.3) as

o0
(3.4) id = "id;,
§=0

where
(35) idj T = (5jk xk,l)kENo,l:l,...J\/fk = (0, ey 0, LTjlye- .’Ej’Mj,O, ey 0)
We have
N
(3.6) |(ia=Y1d; )| fau(630)]| < Rovlr 4, (85 £309)]
with
o L 1/q"
(3.7) Ry = ( 3 5 )
j=N+1
(with the usual modification if ¢* = o), ¢* being such that 1/¢* = (1/q2 — 1/q1)+. Let

0 = min(1, pa, g2); then £, (f%j) is a p-Banach space. Using (3.4), (3.6) and Proposition

3.2(1),(ii), we get

L N
(3.8) ef(id) <R+ ef (id)) + > ef (idy)
J=0 Jj=L+1
where
N
(3.9) k= kj—(N+1).
§=0

The splitting of k into the k; is not fixed at the moment and L is a natural number
between 0 and N which will also be chosen later.

Step 8. For each j € Ny, we consider the commutative diagram

My _1ds M;
oy (Bitpy") = g, (4p")

where

M; M, ~ ~ . ~
Tjx = (z5.),2, and  Ej((yi),2y) = 0,...,0,¥51,---,¥jm;,0,...,0) with 7, =y
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We have
T : €y (Biln7) — 6501 = 671, 1By = 4yl — Lo, (67| = 1,
and id; = Ej o id?) oT}. By Proposition 3.2(i),(ii) we get
(3.10) er(idy) < B tep, [idY) : 2 — (005].
Step 4. For j=0,...,L, let k; be natural numbers such that
kj —1< 2Mj2(L_j)d/2 < kj.

Then k; > 2M;, j = 0,..., L. Moreover, using (3.1), j < L, Proposition 1.4(vi) and
d > 0, we obtain
L L L
Dk <Y 2M2E DR L (L4 1) < ey (2Mp) Y 27 FIR(1 4 L— )+ (L+1)
Jj=0 Jj=0 Jj=0
<c2(2Mp)+ (L+1).
By (3.10) and Proposition 7.3 in [Tri97], we get

ex, (id;) < Cﬂj—lg*kj/@Mj) (2M_)7(1/p171/p2)

—(1/p1—1/p2)
M, .
<CB£1(2M ) (1/p1=1/p2) ﬂ;(_NL) 2- 2t M/z.

Summation gives

ei(ld]) < c? 629(2ML)*(l/Plfl/pz)QRng’

J

i( )Q(Mj> (1/p1—1/p2)e - 22
Bj

J=

M-

<
Il
=)

with

<o Z Q(L=D)e(e+d(1/m=1/p2)) (1 4 [, _ jyeleates(1/p=1/p))g=e2 "2 _
j=0

as d > 0. Therefore
L

Z e,ﬂj (id;) < cﬁZQ(ZML)_(l/pl_l/p2)9
j=0
for every natural L with ¢ being a positive constant independent of L.

Step 5. The aim is to estimate the remaining sum in (3.8) by an expression which depends
on L and other parameters, but is independent of N in such a way that
N
Z eij (id;) < CQZQ(QML)*(l/Plfl/Z&)Q
j=L+1
and
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with ¢ a positive constant also independent of N. First of all, we remark the existence of
positive constants ¢;, i = 1,2, 3, and ¢4 > 0 such that
28w (2777 < My, < 2w (27F) 7L ke N,
and

Gti-b s e

Let j =L +1,...,N and k; be natural numbers such that

§03(1+j_k)647 j7k6N07 ]Zk

k‘j—l <CML(1+j—L)_K§kj
with C' = C(M,¥) = ¢1/(cacs) and k > max(cq,2). Then

ki <1+CMp(1+j—L)" <14 M;j270"Dd1 45 [)a=" <14+ M; <2M;.

Moreover
N N
> kj<CML Y (1+4j-L) "+ (N-1L)
j=L+1 j=L+1

<SCMLY (1+k) 2+ (N—-L)<2M,+ (N - L)
k=1

where ¢ is a positive constant independent of L and N. Because k; < 2M; for j =
L+1,...,N, and by Proposition 7.3 in [Tri97], we get

IM 1/p1—1/p2
ex, (id;) < ¢B;! </€j1 log (1 + k—])>
J

< c’(QML)_(l/pl_l/m)ﬁjfl(l +j — L)s(/p1=1/p2)
x((cs + K)log(14j — L) + (j — L)d)~(V/p=1/p2),

Summation gives

N
> el (idy) < °(2Mp) eIt Ry
j=L+1

with
N3\
RN.Lo= Z <_L> (14— L)*/P1=1/p2) (¢4 4+ k) log(1 4 — L)+ (j — L)d)/Pr=1/p2)
i—L+1 Bi
j
We have

N
Ry <cs Z 200(L=1) (1 4 j — [)ecstre@/pi=1/p2) ((¢y 4 k) log(1 + j — L)) /Pr—1/p2
j=L+1

N
+ cg Z 200(L=1) (1 4 j — [)ecstrel/pi=1/p2) ((j — [)d)(1/Pr1=1/p2)e
j=L+1
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< coleq + ,i)(l/prl/pz)g 227691@(1 + k.).QC!SJF"GQ(l/Pl*l/PZ) log(1 + k)l/prl/z&
k=0

oo
T e 22—5@k(1 + k)ecstre(t/pi=1/p2) () (M/P1=1/p2)e <
k=0
since dp > 0.
Step 6. By the previous two steps we get
N

k=Y kj—(N+1)<c2M,,
§=0

which put in (3.8) gives
eean, (i) < ef(id) < RS + OB #(2My) -/ t/ee,
We now choose N in such a way that
Ry ~ 551(2ML)*(1/“*1/1’2).
We can always do so because
0 < B (2My)~W/m=lr) < Ry

and (Ry)nen is a decreasing sequence with limy_,o Ry = 0. Therefore

(3.11) econr, (id) < ¢ BTN @Mp)~W/m=1/p) [ eN.

Step 7. By (3.1) and Proposition 1.4(vi), for [, j € Ny with j > I, we have
M'—l — w(Qij) - c

(312) ]\2] S 012 ld m S C22 ld(l + l) 3,

with ¢1,co > 0 and ¢3 > 0 constants independent of j and [. The right-hand side of (3.12)
tends to zero as [ goes to infinity. With ¢ the positive constant in (3.11), we can assure
the existence of [y € N such that the right-hand side of (3.12) is less than or equal to ¢*
for any [ > ly. Hence

(313) CMjflo S Mj, ] 2 Zo.
Reasoning as above, we remark that
M'f - ’
il 5 27041 4 10)7 > ¢y and Bizto > 27001+ 1) > ¢
Mj ﬁj

where ¢z and ¢4 are positive constants independent of j > ly. Using these last inequalities,
(3.11) and (3.13), we obtain
eanr, (id) < econr,_,, (id) < 871, M]fjllo/pl—l/pz) < g7 M]f<1/p1—1/p2)7 i >l
Maybe with another positive constant ¢”, we get the inequality
eanr, (id) < C”ﬁleZ(l/pl_l/pz)
for any L € Ny, and the proof is now complete. m

Proposition 3.7 is not completely sufficient for our later purposes. We need some kind
of ¢,-version of it.
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DEFINITION 3.8. Let 0 < p,q,u < oo, p > 0, {;}72, a general weight sequence and
{M;}32 a sequence of natural numbers. Then £, [2#™(,(0; €5')2] is the collection of all

L4(5; Eﬁ/jj)2—valued sequences x = (", z5"), m € Ny, such that the quasi-norm
. = , , L/
2| a2 €0 (85 €55)?]] = (Z 2 (||2 [ €q(B5 €y )| + [125 | £4(5; KSJJ)H)“)
m=0

is finite (with obvious modifications if u = c0).

PROPOSITION 3.9. Let 0 < p1 < p2 < o0, 0 < q1,q2,u1,u2 < 00, > 0, {M;}52,
a sequence of natural numbers satisfying (3.1) and B; = 27°Wb(279), j € Ny, a weight
sequence where d,d € RT, b € R and ¥ is an admissible function. Then the identity map

(3.14) id = €, [297 g, (85 6y )] — Lua[len (6777
is compact and for the related entropy numbers we have
(3.15) e, (id) ~ Bt /PP L e N,

Proof. Step 1. To prove that (3.14) is compact we use the decomposition

o0

(3.16) id = idp, idm = idm1+idp2
m=0

where
idp,x = (y:’f,yg)keNo, with yf = 5ji6kmx§ and z = (x]f,mg)keNo.
We have
(317)  lidm @[ s [le (67 )1 = (@, 25) [ g, (4577)?
= [l | €gs (o2 )l + N5 | £y (£330
< el gy (B; G + N5 | g, (85 E5)]1)
< 7M€y, [207 g, (B £p0 )]l
Now by (3.16), (3.17) and u > 0, it follows that id is compact.
Step 2. In this step we prove the estimate from above for the entropy numbers of the

identity map (3.14). In the commutative diagram

; id 5
é‘h (6] E%J ) é% (€Z]\7/2[J )

Enz,il TTnL,i

m M, id M;
Cuy [ g, (€py” )?] = Ly [€g, (L2 )]
the operator E,, ; is defined by
Bz = (Y5, y5)ken, With oy = 8i0kmz,

the operator T, ; by
T =af" for & = (2, 25) keN,»

for: = 1,2, and id denotes the identity map between the indicated spaces. We have

(3.18) id=Ty;0idoE,,;, meN,.
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Plainly
[Em,ill = 2" and || Ty,

and consequently by the multiplication property of entropy numbers, Proposition 3.2(ii)
and (i), and Proposition 3.7, we get

B My WP < ey, (1d) < | R aleansy, (1) | B |
< 2#Megpr, (id),  m, L € Ny.
In particular,
(3.19) eonr, (id) > ¢By ' My /PP L e N,

Step 3. Let, for brevity, a = 6/d + 1/p1 — 1/p2, which is greater than zero since § > 0
and p; < ps. Let L € Ny and

1 —1
N = |:10g(6LML/p1 )

+ 1.
1
Recall (3.16) and (3.17). It follows that
N
(3.20) H id — Z id,, H <2 N < clﬁglMLf(l/Plfl/m).

Let o = min(1, p2, g2, u2). Then £, [¢y, (f%j)z] is a p-Banach space. By (3.16), Proposition
3.2(iii),(i) and (3.20) we obtain

N
(3.21) ¢2(id) < [id - 1de Zek (i)

< C/.Qﬁz.QML*(l/plfl/Pz)Q_i_ Z eim (idm),

m=0

where k = 27]:]1:0 km,. For m € Ny and ¢ = 1,2 we have the commutative diagram

idom,i

0y 12670, (B Upy?)2] = Ly [y (57 )?]

Tm,il TEM,JL

M; id M;
&h (ﬁjgpl' ) ng (gm' )
where the operators idy, s, Ep, i, Tm,; were defined in the previous steps. Hence id,, ; =
Epio ido Ty, i- Then ey (id,, ;) < 27#™ €k(ld) and therefore

(3.22) e (idm) < e (idm1) + ex(idpm2) < 277 e (id).
Now we choose

(3.23) p =4M; . m=0,...,N,

where

(324) Im = 11’1f{J eN:2M 27™ < QMJ}

and € > 0 is such that ae < p. In particular, we have

2M(]m_1 <2ML27mE§2MJm and J,, <L, m=0,...,N.
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We remark that (3.1) and the properties of ¥, namely Proposition 1.4(vi), give us

M, dgp(g—(k-ﬁ-l))
= C

My w(27F)

where ¢3 is a positive constant independent of k. Then we have

§027 kENa

(3.25) Z Ky =2 Z —Im 2MJ 1 <ec Z 2M )27 < ¢2M,
m=0
and
N N
(3.26) > km =AMLY 27T > 2(2M)).
m=0 m=0

By (3.22), (3.23) and Proposition 3.7, we get
(327)  ep, (idpm) < 279 ey, (id) < c27#mp M PP =0, N

1

Hence
N
(3.28) Z eim (idm) < CQBZQME(l/Pl—l/ZD)QRN’Q’
m=0
where
N (1/p1—1/p2)e
() )
3.29 R = 2 “"W(—
( ) N,o Z ﬂJm MJm

m=0

By definition of the sequence (f;);en, and Proposition 1.4(vi), we have

3, M, \ w(2-L) b+6/d (M, §/d
. L2 < S < —J)"
(3.30) mmC<MM> 7o) <dlq70) L=

where the constants ¢,¢’ > 0 and n > 0 are independent of L and m. We are now
concerned with the estimation from above of L — J,,. On the one hand, we have

M
(3.31) ML <2 m=0,...,N,
Im

and on the other hand, (3.1) and Proposition 1.4(vi) give us
My, > L=Tm ya¥ (27 Im) S (k= Jm)d

My — 2Ly =7 14+ L—Jp)’
where ¢,¢’ > 0 and o > 0 are independent of L and m. There exists a suitable constant

¢* > 0, only depending on ¢ and d, such that (1 + %) < ¢*2%/2 for all y > 0. Putting
this in (3.32) gives

(3.32) m=0,...,N,

M
(3.33) M—L > oL=Im)d/2 ) g N,
JWL

for some positive constant ¢ < 1, which is again independent of L and m. From (3.31)
and (3.33) we can conclude that

(3.34) L—Jn<cm-+c, m=0,...,N,
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with constants ¢1,ce > 0 independent of L and m. Back to (3.29), using (3.30), (3.31)
and (3.34) and since ea — pu < 0, we get

N
Ry, <c Z 2(6“_”)’”9(1 +em+c) < oo.

m=0

Having this in mind, by (3.21), (3.28) and (3.25), we can write
eeant, (id) < &7 My VP VP e N,

for some positive constants ¢ and ¢’. Acting as in Step 7 of the proof of Proposition 3.7
we complete the proof. m

COROLLARY 3.10. Let p1, p2, q1, G2, u1, uz, i, {M;}32, {31520, d, 6, b and ¥ be as
in Proposition 3.9. Moreover, assume that the sequence {M; }?’;0 is increasing. Then for
the entropy numbers of the identity map (3.14) we have

(3.35) er(id) ~ (kW (k1)) ~0/dH1/m=1/p)g (=1 =b+1/pi=1/p2  } e N,
Proof. Let k € N with k& > max(vy,2My), where 1 is a natural number as in Lemma

2.17(ii). Since {Mj}go'io is increasing, there exists L € Ny such that 2Mp < k < 2Mp ;4.
Thanks to (3.1) and Proposition 1.4(vi) we have

M,
(3.36) c< =R < keN,,
M,

for some positive constants ¢, ¢ independent of k. Moreover, ¥(27%) ~ Ww(2-¥+1),
v € Ny, and by Lemma 2.17(ii),

(3.37) T(27Y) ~W((2M,)7Y), v >
Using the monotonicity of entropy numbers, Proposition 3.9 and (3.36), we have on the
one hand
en(id) < ean, (id) < Clﬁleg(l/mfl/Pz) < 02M£(6/d+1/171fl/pz)g/(Q,L),b,(;/d
< CSML*_S/dJrl/Pl*1/P2)y7(k/,—1>—b—6/d
< 04(k!p(k—1))—(5/d+1/p1—1/p2)y7(k—1)—b+1/p1—1/p2
and on the other hand
ex(id) > eans ,, (id) > € 5, My /" 7172 > My (/T (- (kD) o
> ¢ M (6/d+1/p1— 1/172)![7(]{ ) b—§/d
> (kW (k™ )) (5/d+1/p1—l/pz)w(k—l)—bﬂ/m—l/pz.

We have proved (3.35) for all k£ € N except finitely many, but the final statement for all
k € N comes easily, possibly with other positive constants ¢4 and ¢j. m

REMARK 3.11. For the embeddings in Proposition 3.9 and Corollary 3.10 we considered
only weights on one of the spaces, but this is sufficient. In particular, we can replace in
(3.14) the weight 2#™ 1 > 0, on the source space by the weights 2#1™ and 2#2™ with
1 > pe, on the source and on the target space, respectively. This can be easily seen from
the proof, just following the role of u.
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3.3. Entropy numbers of embeddings between spaces on fractals. We are now
prepared to the subject announced at the beginning of the section, that is, to generalise
Theorem 2.24 of [ET99]. This provides a generalisation of Theorem 20.6 of [Tri97] from
d-sets to (d,¥)-sets.

PROPOSITION 3.12. Let I" be a compact (d,¥)-set in R™ with 0 < d < n. Let IBI(;Z’W)(F) be
the spaces introduced in Definition 2.16, notationally complemented by IB%;,?I’I)(F) =L,(I)

for any 0 < p,q < o0o0. Let 0 < p1,p2,q1,q2 < 00, ai,az € R and s1, s9 eRg be such that
1 1
5+=S1—82—d(———) > 0.
Pt P2/

1. 51,01 59,092
id: By (1) — BLsY (1)

Then the embedding

18 compact and there exists a positive constant ¢ such that the related entropy numbers
satisfy

erlid : BELY(D) — BE2Y™)(1)) < o(kw (k1)) " (1ms2)/dyg(g=tyee—a - ke N,

P1q1 P2q2

Proof. Step 1. Let p1 < po. With

—d —d
(338) o1 =81+ n , 09 = Sg + i y 5:5+,
b1 b2
we have
d d
(3.39) PRI R e L
b1 b1 D2 b2

Let f € BSLY)(I). By Definition 2.16, in particular (2.30) and (2.31), there exists a
(non-linear) bounded extension operator ext f = g such that

oy, wl/P1ta n s1,0®
(3.40) trrg=f and |g|B{y" "R < 2| f IBELTT(D)]).

pP1q1 p1q1

We expand ¢ according to the subatomic representation theorem (Corollary 1.27 or The-
orem 1.23) in terms of (N, py, W/Pr+e1)_g.quarks and (o, py, W1/Pr+e1) - 3-quarks, with

N; € Rand L+ 1 € Ny fixed satisfying
1 1
(3.41) N; > max <0p2 +d+ n(p—1 - p—2> ) 01), L > max(—1, [op, — 01),[0p, — 02]).

We have
(o)
(342)  g= > > > A2y (gm)m/mte) gl 27y — m)
BENE v=0 meZn
+ Q€m27”(01*n/171)W(27V)*(1/P1+0«1)((_A)(L+1)/2¢ﬁ)(21/x —m)

and

o 1/p1+aq n
(3.43) Sup 221N by || + [l [bpaan ) < Cllg | BE3Y YRl
0

for all py > 0 large, \? = {\2, : v € No, m € Z"} and ¢° = {03, : v € Ny, m € Z"}.
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Assume ¢ > 1 is fixed and let
MNT=IA8 v e Ny, meZ, cQumNI #0},
PT={08 v eNy, meZ cQumnI #0}.

For fixed v € Ny let M,, be the number of cubes Q,,, such that cQ,,, N I" # (). According
to Lemma 2.17(i),

(3.44)

(3.45) M, ~ 2" (27")"1 v eN,.
We introduce the linear operator S,

o, wl/P1tay n v —v
(3.46) S:BlowY J(R™) = Coo[2M1P 04, (2700 (27002 )2]
defined by
(3.47) Sg=(n,71), n:{nﬂ’F : 8 e Ny, TZ{Tﬂ’F : B €Ny}
with

F=27vog(2=v)=bX\8 v e Ny, m €Z", cQum NI #0},
(3.48)
=272 V)18 v e Ny, m€Z", cQumNT # 0}

and b = a1 + 1/p1 — as — 1/py. Recall that the expansion (3.42) is not unique, but this
does not matter. By (3.43) it follows that S is a bounded operator. Then we take the
embedding

(3.49) i oo [220171 0, (2027 0)%) = e [217) 0, (031

with g1 > po; and afterwards the linear operator

(3.50) T : €0 [2921910,, (£M)?]) — Blo2?'/727%) (Rry

defined by

(3.51) Z Z ZxﬁmQ—V(Nz "/pZ)!P( )—(1/P2+a2)@ﬁ(2Vx —m)
BeNp v= 0 m

+§[3 —v(o2— n/pz)@( )*(1/p2+a2)((_A)(L+1)/2@B)(2Vx —m)

where Ny = Ny — 6 +n(1/p2 — 1/p1), x = {X?T : e N3}, € = {¢#7 . 3 € NI} and the
sum over m in (3.51) is taken according to (3.44). Note that (3.41) implies

Ny > max(0p,,02) and L > max(—1,[op, — 02]).

It follows from Corollary 1.27(ii) that T is a bounded linear map. Finally we consider the
trace

o 1/p2ta n s
(3.52) trp : B2V TO(RY) — BL2(),
which is also a continuous map. We claim
(3.53) id(B L) — BE2Y")N(I) = trpoT oid oS o ext .

We follow the constructions. Let f € Béﬁ;ﬁ””’(r). Then we have (3.40) and (3.42).
Checking the coefficients of ®°(2Vz — m) and ((—A)F+D/2¢5)(2¥2 — m) in (3.51), we
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have
X€m2_V(N2_n/p2)W(2_V)_(1/p2+a2) _ )\gm2—l/6!p(2—l/)—b2—l/(N2—n/p2)!p(2—l/)—(1/p2+a2)
— Ang*V(Nl*n/Pl)@(Q*V)*(l/PlJral)

and similarly

£5m271/(027n/P2)g)(271/)7(1/p2+a2) — ngqu((n7n/p1)w(27u)7(1/p1+a1),

where we have used (3.39). Hence taking finally tr we obtain f by (3.40), where we
started from. This proves (3.53). The unit ball in B ](,‘jlqlg' al)(F) is mapped by S o ext into
a bounded set in

Coo[211P1 ey, (270w (277)P0d )2,
By (3.49) this set is mapped into a pre-compact set in £, [2/21°1¢,, (¢)1+)?] which can be
covered by 2F~1 balls of radius ceg(id) with

(3.54) er(id) < c(k@ (k1)) = O/dH1/P1=1/p2)yg (= 1) =b+1/Pr1=1/p2

This follows from Corollary 3.10 and Remark 3.11 upon using p; < p2. The two bounded
linear maps T and trr do not change this covering assertion, up to constants. Hence, we
arrive at a covering of the unit ball in IB%I(fllq’lw 1)(I’) by 2¢=1 balls of radius ceg(id) in

IB;ZZ’ZWZ)(F). We insert 6 = 64 and b to obtain
(3.55) exlid : BGLY(I) — BE2P)(1)]

< (k@ (k1)) ~ims)/dg(plyee-a - p e N,
Step 2. Let pa < p1. By Proposition 2.18 we have IBI(,E’EIW)(F) — BéZZ;WQ)(F). The rest
follows using the multiplication property of the entropy numbers and Step 1. In fact,

exlid : BELTN(D) — BE2Y)(I)] < cepfid : BELY ™) () — BG27)(1)]

< (k@ (k)" A () B e N, -

THEOREM 3.13. Let I' be a compact (d,¥)-set in R™ with 0 < d < n. Let 0 < p1,p2,q1,q2
< o0, ag,as € R and s1, 82 € ]R(')" be such that

1 1
5+81$2d<——> > 0.
b1 b2 +

id : BELY(0) — BE2Y™)(T)

P1q1 P2q2

Then the embedding

s compact and the related entropy numbers satisfy

(3.56) eplid : BELT () B2 ) ()] ~ (k@ (K1)~ dg(p=t)m2ma - keN.

P1 P2q2
Proof. Step 1. By Proposition 3.12 it remains to prove that there exists a positive con-
stant ¢ such that for all k£ € N,

(857)  exlid: By (1) — B (1)) = e(kw (k1) =72/ (pmt)m e,

p1q1
Assume that there is no such ¢ > 0. Then we find a sequence (k;) ;e of natural numbers
tending to infinity such that

(3.58) ex,lid : BELY (D) — B2 (I)]k; 1752/ dg (k1) (sr1-s2)/drar—az _, g

P1q1 P2q2
as j — oo.
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In this step we show that we may assume s5 = 0, ap = 0 and 1 < p; < oo in (3.58). If
s2 > 0, using the multiplication property of entropy numbers, described in Proposition
3.2, and by Proposition 3.12, we get

ear, id : BT (1) — Ly, (1))

P1q1

< g, fid - BELTT(D) =BG (D)]ey, [id : BEZY ™) (1) — Ly, (I)]

< ok (k)70 fid s BT (D) — BT (D))

P1q1 P29z

and so

(3.59) K5k )/ Harey [id : BGLY(I) — Ly, (I)]

p1g1

< chy 1R (s ms) At maa e, i B (1) — B2 (1))

p14q1

This justifies that we may assume in (3.58) that 1831(,3231’5/&2)(1“) = L,,(I"), which corre-
sponds to so = 0 and as = 0.

If 0 < p; <1, let p3 be such that 1 < p3 < oco. Since then p; < p3, by Proposition
2.18, we have the embedding

]B(Slalpal)(l—’) < B(SMW‘”)(F).

p3q1 pP1q1

By the multiplication property of entropy numbers, we have

ex,lid : BELY(I) — Ly, ()] < e, fid : BELE™)(I) — Ly, (1),

P3q1 Piq1

Hence, (3.58), already with ss = ag = 0, would imply
B () e fid s BT (D) = Ly, ()] 0 as j — oo
This shows that we may also assume that 1 < p; < oo in (3.58).

Step 2. In this step we prove that there exists a constant ¢ > 0 such that

(3.60) erid : BEY)NT) — Ly, ()] > ck™/ 4w (k=) =s/d=2 kN,

pP1q

for

1 1
0<qg<oo, O0<pi<oo, 1<py<o0, a€ckR, s>d<———>.
+

Since I is a compact (d,¥)-set, for fixed j € N we find M; ~ 279 (279)~1 disjoint balls
Bj . of radius 277, centred at 27" € ', r=1,..., M;. Let ¢ and ¢ be two non-negative
C*° functions in R™, non-vanishing at the origin with supports in the unit ball. Note that

(3.61) | (2 (y— 27" (v — 277)) pld)
r

< (max p(y)p(y))u(I' N Bj,) < 279w (277),  jeN.

On the other hand, there exists a neighbourhood of the origin where @@ is positive, say

p@)(e) > L>0 if o] <3,
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for some 0 < § < 1. Then we have

(362) | (2 (y— 27" (v — 277)) pld)
r

> | e@=2)e@ (v —27")) pldv)

I'néB;.,
> Lu(I'NéB;,) > 2774w (277), jeN.
Let ¢, j € N, r=1,..., M}, be such that

(3.63) ¢; 20 (279) | (2 (v = 27T B2 (v = 277)) () = 1.

From the observations (3.61) and (3.62) above, there are two positive constants 0 < ¢; <
¢y < 00 such that

(3.64) c1<¢jr<cy foralljeN, r=1,..., M.
In the commutative diagram

. A s,
by =By (D)

P1
2j(d/132+<9fl/?1)¢(2j)1/1121/131flidﬂl lidr
M
lpy <=5 Lp(I)

let the operators A and B be given by

M;
(3.65)  Alap:r=1,...,M;) = Zar2_(s_d/p1)jlp(2_j)_(1/P1+a)(p(2j(x S
r=1
and
(3.66) Bf =
(2770 =D (270) Ve Dy | F()GE2 (= 2P puldy) s =1, My ).

r

Furthermore, idp is the embedding indicated and id? : éﬁj — é%j the identity operator.

(e at1/
We may interpret (3.65) as an atomic decomposition in Bz(,‘ii}(” d/p1¥ pl)(R”). Notice

that there are no moment conditions required for the atoms, because

n—d 1
s+ ——>0p =|—-1
b1 D1 T

as s > d(1/py — 1/p2)+ and 1 < ps < co. Hence we obtain
(3.67)  [|A(ar)rD BT (D))

pr1q

M;
< || Do a2 tmip(2d) Mt o2 (g — ) | BT (R
r=1

M; ’
< ll(ar), 2y [0,

where c is a positive constant independent of j. Denote by b; .- the coefficients in brackets
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in (3.66) and let p), be the conjugate exponent of ps, i.e. 1/py + 1/py = 1. Applying
Hoélder’s inequality, using the fact that for fixed j the balls B;, are disjoint and (3.64),
we get

. ] . - P2
b1 < 220 Dy (O F()IR(2 (7 — 2)) () )
I'NBj, .
< @Dy (2 (D A By | () )
I'NB; .
<d | 1fOIm pldy),
FnBj,T
and then
M; o 1/p2 & 1/p2
(3.68)  IBFIEDI = (D lbiol?) T <e(3§ 1 )
r=1 r=1 I'nBj,,

<[ Ly (D],

where again the constant in (3.68) is independent of j. In other words, both A and B are
bounded linear operators whose norms can be estimated independently of j. By (3.63)
we have

(3.69) Boidp oA = 277(d/p2ts=d/p)g(9=i\1/p2=1/p1—aiqi
By (3.69) and the remark on the norms of A and B we get
(3.70) 9 Id/pats=d/pi)y (90 V/p2=1/Pi=ag, (147 < cep(idp), k€N,

where the constant ¢ is independent of j. By Proposition 7.2 of [Tri97, p. 36] with k =
2M;, and using the fact that M; ~ 299%(279)~1 we deduce from (3.70) that
(idp) > clg—jd(l/pz+s/d—1/p1)@(2—1‘)1/p2—1/p1—a(gMj)l/pz—l/pl

> ep(2M;) /W (279) 0 > g (20My) N (2M) ) T

€2M;

We have proved (3.60) for k = 2M;. Reasoning as in the proof of Corollary 3.10 it turns
out that (3.60) holds for any k € N.

Step 3. It remains to prove (3.60) for 0 < ps < 1. Let 0 < po < 1 and 1 < p; < 0.
Suppose that (3.60) does not hold. Then as in Step 1, we find a sequence k; — oo such
that

3.71 e [id : BEI)NDY — L (DK 0 (k714 50 as j — oo.
( ; p2

p1q J J

For all f € L, (I),

(3.72) I 1 LoD < N | Ly (DICN1f | Lo (D),
where

1 1-6 0
(3.73) 0<f<1l and -= +

P m P
Then, by the interpolation property of entropy numbers (see e.g. [ET96, 1.3.2]) and
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Proposition 3.12, we have
(3.74) e, [id : BSY (D) — Ly(I)]
< ce [id : BTN (D) — Ly, (D] e, fid: BEI () — Ly, (D)
—s/d —1\— — — . a
< (kN (k) 0y [id  BY () — Ly, (1)
Obviously we can rewrite (3.74) as
s/d —1\s a . a
kY (k1) ey, [id : BEY (1) — Ly(I)]
s/d — . . e
< (W (k) e fid s B (D) = Ly, (1))
Then by (3.71) we would get

eaiylid : BET (D) — Ly(D)kY W (k;1)*/ 44 -0 as j — co.

But (3.73) enables us to choose p > 1 (take 0 < § < (1 —1/p1)/(1/p2 — 1/p1) which is
less than one), and this contradicts what was proved in Step 2. m

4. Applications

4.1. Fractal drums. Our aim is this section is to show an application of the assertions
in the previous sections to the fractal drum problem. We follow [ET99].

Throughout this section, 2 denotes a bounded C*° domain in R™. As usual, D({?) is
the collection of all compactly supported complex-valued C'* functions in 2. By D/(£2)
we denote the dual space of all distributions on (2. We assume that I" is a compact
(d,¥)-set in R™, according to Definition 1.1, with I" C (2, and p the related Radon
measure.

DEFINITION 4.1. Let {2 be a bounded C'*° domain in R". Let 0 < p,qg < 0o, s € R and ¥
an admissible function according to Definition 1.1. Then BI(MSZ’W)(.Q) is the restriction of
B,(,Z’m (R™) to 2, which means
BG")(02) = {f € D'(£2) : there exists a g € B{")(R™) with g2 = f},
IF 1B ()] = inf g | BS" (R,

where the infimum is taken over all g € BIE,‘;’W) (R™) whose restriction to {2, denoted by
9|82, coincides in D'(£2) with f.

By Definition 4.1 the embedding assertions for B,(,Z’W)—spaces on R"™ summarised in
Proposition 1.9 can be carried over to the spaces B;‘;’W)(Q). By the boundedness of (2,
using the monotonicity of the L,-spaces on bounded domains and the characterisation
by local means presented in the first section we even have

BS(02) — B (2)  if 0 < po < p1 < o0.
Let
(4.1) (")) = o) u(dv), ¢, € D).

r
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This defines a mapping from D(§2) into D’((2). Formalising the interpretation (2.16) as
idp: fle f

we have

(4.2) trl = idpotrp.

Combining Proposition 2.14 and (2.19) we can extend tr! to

(4.3) ! B/ () — B0 v ()

with 1 < p < oo and 0 < ¢ < 1. Independently of p, the loss of smoothness is always
(n —d,¥~1). The operator tr!" can be generalised to

(4.4) trj =idpobotry  where be L.(I)
with

1 1 1

1<p,r<oo, 0<¢g<l, -—-=-+-<1

t p T

By Proposition 2.14, (2.19) and Hélder’s inequality we have
P —(n— r -1/t
(45) trf B0/ (@) — BT (),
Obviously, —A = — Z;L=1 02/ 8:0? stands for the Laplacian. If
(4.6) 1<p,g<oo, s>1/p,
then the Dirichlet Laplacian —A generates an isomorphic map
s, s—

(4.7) ~A:BEY(2) — BE2(9),

where B;,Z:g)(ﬁ) ={g € BI(MSZ’W)(Q) : trang = 0}. Let (—A)~! be the inverse of the
Dirichlet Laplacian —A; it will be clear from the context between which spaces (—A)~!
acts. Let

(4.8) B=(-A)"lotr!

where any space continuously embedded in the source space in (4.3) can be admitted and
where we assume that (—A)~! can be applied to the target space in (4.3). In addition
after application of tr!” and (—A)~! we wish to return to the space we started from. This

is ensured if d > n — 2, because then
—d —d -d 1
n/ >n and 2—”/ > —.
p p p p
20— (n—d)/p’ ,w=1/7
B](%OO( )/p )(_Q)

2 —

In particular, if d > n — 2, then B is a continuous operator in for
1<p<oo

It can be easily proved that the operator B in (4.8) is compact in B,(;fjw)(ﬂ) for
0 < ¢ < o0, ¥ an admissible function, 1 < p < ocand (n—d)/p<s<2-—(n—d)/p,
with p’ the conjugate exponent of p. Moreover, B is a spectral invariant, i.e. its eigenvalues

and root spaces do not depend on the underlying space in which B is considered.

THEOREM 4.2 [ET99, Theorem 2.28 & Corollary 2.30]. Let £2 be a bounded C* domain
in R™ and I a compact (d,¥)-set such that I' C 2 andn —2 <d <n (with0 <d <1
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when n = 1). Then B = (—A)~ ' otr!" is a non-negative, compact, self-adjoint operator
in W3 (£2) with null-space

N(B) = {f € W (£) : trp f = 0}.
The positive eigenvalues py of B, repeated according to multiplicity and ordered by mag-

nitude, satisfy
e ~ kTN (RO (E)) 2/ ke N,

Furthermore, B is generated by the quadratic form

V(err) () (rr 9)(7) 1(dy) = (Bf.g)vip(y  where f,g € W3(£2),

Proof. Step 1. By [Tri97, 27.11] and the references given there we know that
(=2)1/2: W3 () = L2(92)

is an isomorphic map. We then consider in WQI(Q) the norm

(4.9) 1F TW3 ()] = (=) F| La(2)l] ~ | f | W3 (2)].

ng((?) turns out to be a Hilbert space with respect to the corresponding scalar product.
As d >n — 2, we have

n—d)/2,w'/?
Wi (2) = B} ,(2) — B{T ™Y ().
Then by (2.19), we get
n— , 1/2 °
(4.10)  ltrr £ Lo(D)|| < el f| BT~ (@)) < CIF I WH ()] < I f | W)
for any f € Wi(2). Let

(4.11) a(f.9) = \(trr () (rr () uldy),  f.9 € WH(82).
r

This defines a non-negative bounded quadratic form in WQI(Q) Hence, there exists a
uniquely determined non-negative self-adjoint bounded operator B in W3 (£2) such that

Furthermore,
(412) (VBFIW3 DI = (Bfs Py = alfs ) = ltrr £ Lo(D)[?, f € W3 (92).
This shows that

N(B)={f € Wj(2): Bf =0} = {f € W3 (@) : trp f = 0}.
Step 2. We prove that B is the operator (—A)~! o trl’. Let g € D(£2) and f € Wi ().
We have

(" £,9) = {(trr H)(3)9(v) nldr) = a(£.9) = (BL. iz 0
r

= ((=2)2BF,(=4)"*9)1,(2) = (= A)Bf,9)1.(2) = {(~A)Bf. 9),
where we denote by (-,-) the dual pairing D'(£2) < D(£2). Hence, (~A)Bf = trl f,
fewi(n).
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Step 3. We estimate from above the eigenvalues py of B. As mentioned before, the

eigenvalues py including their algebraic multiplicity are independent of the admissible
2—(n—d)/2,0~1/2)
,00

space in which B can be considered. We choose Bé
decompose B as

(£2) as basic space and

B=(-A)"l'oidroidotry
with
. p(2—(n—d)/2,w~1/?) (2—n+d, ¥~ 1)
tI'[’ . BZ,oo (Q) - ]BZ,oo (F)v
id: BP0 - (D),

idp : Ly(I') — BS 0 07207 ) ),
_ —(n—d)/2,w~1/? 2—(n—d)/2,w~1/?
(=4)7h: B TR (@) - BT

By Definition 2.16, trp is a bounded operator. By Theorem 3.13 the embedding id is
compact and its entropy numbers satisfy

ep(id) ~ (kW (k1) =G ntd/dg (=1 | eN.

Moreover, both idr and (—A)~! are also bounded operators, by (2.19) and (4.7), re-
spectively. Therefore, using the properties of entropy numbers and Carl’s inequality (cf.
Proposition 3.2 and Corollary 3.5), we get

pe = ] < V2er(B) < cer(id) < ¢ (k@(k~1))~ Gt d/dg (=1 ke N.

Step 4. It remains to prove the estimate from below for the eigenvalues uy of B. For this,
the Hilbert space setting and the use of approximation numbers are essential. Since I
is a (d,¥)-set, for each j € Ny there exist at most N; disjoint balls B;;, I =1,..., N},
centred at x;; € I' and of radius 277 with N; ~ 279%(277)~1. We may assume that these
balls are subsets of {2 (possibly upon replacing j € Ny by j > jo for some jo € N). Let ¢
be a non-negative C*° function with

suppp C {€ e R":|£] <1/4} and ¢(z) >0 for |z| <§
for some 0 < 6 < 1/4. Let
0ii(x) =2 (x —xj;)), jeENy, I=1,...,Nj.

Then supp ¢;; C B;,;. Hence, for fixed j € Ny, the functions ¢;,;, { = 1,...,N;, have
disjoint supports. By the localisation property in [ET96, 2.3.2, pp. 35-36], we have

N, N; 7y
(4.13) | S cieia | W@ ~ (Plesal?) "2, jen.
=1 =1

Due to (4.10) we get
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VB(S o) w3100 = | S| ]

=1 =1
= (% eplPe@ (- ;) (@) > inf o) S lendPu(r 58,0) "
=1 =1

e

N; N,
. ) J 1/2 . . J
> i) (Y le?) 2 @2 E g 2| 3 e | WE ()|
=1 1=1
We assume that the dimension of the span of the functions

N
95 = E :Cj,lﬁpj,l
=1

is N;. It T € L(W3(£2)) has rank less than N;, there exists g; such that ||g; | W3 (2)] =1
and T'(g;) = 0. Then

VB =T| > (VB = T)g; | W3 (Q)|| > 277D/ 2g(279)1/2,

Hence, for the approximation numbers of v/ B we get

an,(VB) = inf{|VB — P| : P € L(W}(£2)),rank P < N;}

> C2fj(27n+d)/2g7(27j)1/2 > C/Nj—(2—n+d)/(2d)g;(27j)(n72)/(2d).
Let k € N with £ > Ny. There exists L € Ny such that N < k < Np;1. Then since
N; ~ 299 (279)~1 we obtain
ak(\/g) > Ck_(2_n+d)/(2d)Lp(k_l)(n_Q)/(2d).

Because v/ B is a compact self-adjoint non-negative operator in the Hilbert space W21((2),

its eigenvalues coincide with its approximation numbers (cf. [Tri97, 24.5, p. 192]). Maybe
with another positive constant ¢ we arrive at

Lk > Ckf(27n+d)/dw(kfl)(n72)/d’ LeEN. m

Using the same kind of arguments as in the proof of Theorem 4.2 and replacing (4.3)
by (4.5) one can show in a similar way the following theorem.

THEOREM 4.3 [[ET99, Theorem 2.33] (Sintered drum)]. Let £2 be a bounded C*> domain
in R" and I a compact (d,¥)-set such that ' C 2 andn —2 <d <n (with0<d<1
when n =1). Let b(7y) be a non-negative function on I' such that
n—2

a0

1
be L.(I') forsomer>1with0<—-<1-—
r

and for some ¢ > 0,
b(v) >c ifyelp

where I is a (d,¥)-set with [y C I'. Then B = (—A)~Yotrl is a non-negative, compact,
self-adjoint operator in Wy (£2) with eigenvalues puy, satisfying

e ~ kTN (RO ()24 ke N,

Furthermore, B is generated by the quadratic form

Vo) (trr () trr g() pldy) = (Bf, 9)yiry () where f,g € W3(2).
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