
Introduction

Spaces of generalised smoothness have been considered by several mathematicians within

different approaches. We refer to Gol’dman (using modulus of continuity, cf. [Gol76]),

Kalyabin and Lizorkin (approximation theory, cf. [KL87]), Merucci, Cobos and Fernandez

(interpolation theory, cf. [Mer84], [CF88]) among others. A survey has been given in

[KL87]. More historical references can be found in [Leo98a].

Our approach is similar to that in [Leo98a], that is, we use the point of view of Fourier

analysis and, moreover, consider the more general context of quasi-Banach spaces. The in-

terest of Leopold in [Leo98a] was in using spaces of generalised smoothness of Besov type

to handle embedding properties in delicate limiting situations. Our study was strongly

motivated by the articles [ET98] and [ET99]. There, Edmunds and Triebel used spaces

of generalised smoothness of Besov type when studying the behaviour of eigenvalues in

problems which correspond to the vibration of a drum, the whole mass of which is concen-

trated on a fractal subset of the drum. In order to explain the relationship between fractals

and function spaces we need some previous considerations. The fractals considered by Ed-

munds and Triebel in the above papers are (isotropic) perturbed d-sets, called (d, Ψ)-sets.

Let Γ be a non-empty closed subset of Rn, 0 < d < n and Ψ a positive monotone

function on the interval (0, 1] with

c1Ψ(2
−j) ≤ Ψ(2−2j) ≤ c2Ψ(2−j), j ∈ N0,(0.1)

for some positive constants c1 and c2. Then Γ is called a (d, Ψ)-set if there is a Radon

measure µ with suppµ = Γ and two positive constants c1 and c2 such that

c1r
dΨ(r) ≤ µ(B(γ, r)) ≤ c2rdΨ(r)(0.2)

for any ball B(γ, r) centred at γ ∈ Γ of radius r ∈ (0, 1). If, additionally, Ψ is decreasing
with limr→0 Ψ(r) =∞, and (0.2) holds for d = n, then Γ is called an (n, Ψ)-set.
Let Ω be a bounded C∞ domain in Rn and let −∆ be the Dirichlet Laplacian in Ω.

According to Theorem 2.28 and Corollary 2.30 of [ET99], the operator

B = (−∆)−1 ◦ trΓ(0.3)

is a compact self-adjoint non-negative operator in W̊ 12 (Ω), where Γ ⊂ Ω is a (d, Ψ)-set

with n− 2 < d ≤ n and trΓ is closely related to the trace trΓ of W̊ 12 (Ω) on Γ . Moreover,
the positive eigenvalues µk of B, ordered so that µk+1 ≤ µk, k ∈ N, and repeated

according to their algebraic multiplicity, can be estimated as follows:

c1k
−1(kΨ(k−1))(n−2)/d ≤ µk ≤ c2k−1(kΨ(k−1))(n−2)/d, k ∈ N,(0.4)

for some positive constants c1 and c2.
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If in the definition of a (d, Ψ)-set, restricted to 0 < d < n, we take Ψ ∼ 1, then we get
the concept of a d-set. The corresponding fractal drum problem was solved first by Triebel

in his book [Tri97]. The method used there relies on the close connection between d-sets,

in particular Lp-spaces on a d-set Γ , and some Besov spaces B
s
pq. The technique includes

estimates for the entropy numbers of compact embeddings between function spaces on Γ ,

which once more relies on the machinery available for the usual Besov spaces, specially

characterisations via atomic and subatomic decompositions.

For a generalisation to (d, Ψ)-sets, we have to consider the spaces B
(s,Ψa)
pq where 0 <

p ≤ ∞, 0 < q ≤ ∞ and the smoothness is now expressed by the couple (s, Ψa), s ∈ R,

a ∈ R and the above function Ψ . For this reason as well as for some intrinsic interest it

is worthwhile to extend to these generalised spaces of Besov type several results known

for the usual Besov spaces. We do this in the first section including a parallel approach

to the spaces of generalised smoothness of Triebel–Lizorkin type in R
n. In the second

section we begin by developing measure properties of (d, Ψ)-sets. In particular, we show

that, up to equivalence, there exists only one Radon measure related to a (d, Ψ)-set, and

that any (d, Ψ)-set has Hausdorff dimension d and Lebesgue measure zero. We finish the

second section by showing a deep relation between Lp-spaces on a (d, Ψ)-set and some

spaces B
(s,Ψa)
pq (Rn). The third section is devoted to entropy numbers. We estimate entropy

numbers of embeddings between some sequence spaces and then using also the results of

the first section we get estimates for the entropy numbers of compact embeddings between

spaces of Besov type on a (d, Ψ)-set. Essentially we obtain an extension of Theorem 2.24

in [ET99] to (d, Ψ)-sets in the light of [Tri97]. Having in mind Carl’s inequality, these

results can be used to estimate from above the eigenvalues of suitable bounded operators

like (0.3). This is done in the fourth section.

1. Function spaces on R
n

1.1. Introduction. Our aim in this section is to develop a detailed study of the spaces

of generalised smoothness B
(s,Ψ)
pq (Rn) and F

(s,Ψ)
pq (Rn). They were introduced by D. Ed-

munds and H. Triebel in [ET98], in the context of spectral theory for isotropic fractal

drums, and generalise the usual Besov and Triebel–Lizorkin spaces Bspq(R
n) and F spq(R

n),

respectively. Now a new parameter Ψ is coming in, but s remains the main smoothness

parameter while Ψ stands for a finer tuning.

Spaces of generalised smoothness have been considered by several mathematicians

within different approaches. We refer to Gol’dman (using modulus of continuity), Kalya-

bin (approximation theory), Merucci, Cobos and Fernandez (interpolation theory) among

others. A survey has been given in [KL87]. More historical references can be found in

[Leo98a].

1.2. Definitions and basic properties

1.2.1. Basic notations. As usual, Rn denotes the n-dimensional real euclidean space, N

the collection of all natural numbers, N0 = N∪{0} and C stands for the complex numbers.
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If α = (α1, . . . , αn) ∈ Nn0 is a multi-index its length is |α| =
∑n
j=1 αj , the derivatives

Dα = ∂|α|/∂xα11 . . . ∂xαnn have the usual meaning and if x = (x1, . . . , xn) ∈ Rn then

xα = xα11 . . . xαnn .

Let S(Rn) be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R

n equipped with the usual topology. By S ′(Rn) we denote
its topological dual, the space of all tempered distributions on Rn. If ϕ ∈ S(Rn) then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2
\

Rn

e−ixξϕ(x) dx, ξ ∈ R
n,(1.5)

denotes the Fourier transform of ϕ. Then F−1ϕ or ϕ̌ stands for the inverse Fourier
transform, given by the right-hand side of (1.5) with i in place of −i. Of course, xξ denotes
the scalar product on Rn. Both F and F−1 are extended to S ′(Rn) in the standard way.
The collection of all complex-valued infinitely differentiable functions on R

n with

compact support is denoted by D(Rn), and D′(Rn) stands for the set of all complex
distributions on Rn.

Let 0 < q ≤ ∞. Then ℓq is the set of all sequences b = (bk)k∈N0
of complex numbers

such that

‖b | ℓq‖ =
( ∞∑

k=0

|bk|q
)1/q

<∞

(modified to supk∈N0
|bk| if q =∞). Of course, ℓq is a quasi-Banach space (a Banach space

if q ≥ 1). Let 0 < p, q ≤ ∞, and let f = (fk(x))k∈N0
be a sequence of complex-valued

Lebesgue measurable functions on Rn. Then

‖f |Lp(ℓq)‖ =
( \

Rn

( ∞∑

k=0

|fk(x)|q
)p/q

dx
)1/p

,

‖f | ℓq(Lp)‖ =
( ∞∑

k=0

( \
Rn

|fk(x)|p dx
)q/p)1/q

(modified to ess supx∈Rn if p =∞ and to supk∈N0
if q =∞). Let Lp(ℓq) = Lp(Rn, ℓq) be

the set of all sequences f such that ‖f |Lp(ℓq)‖ <∞, and let ℓq(Lp) = ℓq(Lp(Rn)) be the
set of all sequences f such that ‖f | ℓq(Lp)‖ < ∞. In the scalar case the corresponding
space is denoted by Lp(R

n), quasi-normed by

‖f |Lp(Rn)‖ =
( \

Rn

|f(x)|p dx
)1/p

(modified to ess supx∈Rn |f(x)| if p =∞). Lp(ℓq), ℓq(Lp) and the scalar case Lp(Rn) are
quasi-Banach spaces (Banach spaces if p, q ≥ 1).
All unimportant constants are denoted by c, occasionally with additional subscripts

within the same formulas. The equivalence ∼ in
ak ∼ bk or ϕ(x) ∼ ψ(x)

means that there are positive constants c1 and c2 such that

c1ak ≤ bk ≤ c2ak or c1ϕ(x) ≤ ψ(x) ≤ c2ϕ(x)
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for all admitted values of the discrete variable k or the continuous variable x. Here ak,

bk are positive numbers and ϕ(x), ψ(x) are positive functions. We adopt the following

convention. A real function Ψ on the interval (0, 1] is said to be monotone if it is either

decreasing or increasing, where decreasing (resp. increasing) means not increasing (resp.

not decreasing). Finally, log is always taken to base 2.

1.2.2. Definitions. Let ϕ0 be a C
∞ function on R

n with

suppϕ0 ⊂ {ξ ∈ R
n : |ξ| ≤ 2}, ϕ0(ξ) = 1 if |ξ| ≤ 1.(1.6)

Let j ∈ N and

ϕj(ξ) = ϕ0(2
−jξ)− ϕ0(2−j+1ξ), ξ ∈ R

n.(1.7)

Then, since

suppϕj ⊂ {ξ ∈ R
n : 2j−1 ≤ |ξ| ≤ 2j+1}, j ∈ N,(1.8)

and
∞∑

j=0

ϕj(ξ) = 1 for all ξ ∈ R
n,(1.9)

(ϕj)j∈N0
is a smooth dyadic resolution of unity. By the Paley–Wiener–Schwartz theorem

(ϕj f̂ )
∨, j ∈ N0, is an entire analytic function on Rn, for any f ∈ S ′(Rn). In particular

(ϕj f̂ )
∨ makes sense pointwise. Moreover

f =
∞∑

j=0

(ϕj f̂ )
∨ (convergence in S ′(Rn)).(1.10)

Definition 1.1. A positive monotone function Ψ on the interval (0, 1] is called admissible

if

Ψ(2−j) ∼ Ψ(2−2j), j ∈ N0.

Example 1.2. Let 0 < c < 1 and b ∈ R. Then

Ψ(x) = |log cx|b, 0 < x ≤ 1,
is an admissible function.

Remark 1.3. Let Ψ be an admissible function. We have two cases:

(i) If Ψ is increasing, then there exists θ ∈ R
+
0 such that

Ψ(2−2j) ≤ Ψ(2−j) ≤ 2θΨ(2−2j) ≤ 2θkΨ(2−2kj), j ∈ N0, k ∈ N.(1.11)

(ii) If Ψ is decreasing, then there exists θ′ ∈ R
+
0 such that

Ψ(2−j) ≤ Ψ(2−2kj) ≤ 2θ′kΨ(2−j), k, j ∈ N0.(1.12)

In the next proposition we state some basic facts concerning admissible functions.

Proposition 1.4. Let Ψ be an admissible function.

(i) Let χ ∈ R. Then Ψχ is also an admissible function.

(ii) There are non-negative numbers c1, c2, b and c, with c ∈ (0, 1) and c1, c2 > 0,
such that

c1|log cx|−b ≤ Ψ(x) ≤ c2|log cx|b, x ∈ (0, 1].
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(iii) Let a ∈ R+. Then

lim
x→0+

xaΨ(x) = 0.

(iv) If a ∈ R+, then there exists j0 ∈ N0 such that for any j ∈ N0 with j ≥ j0,
Ψ(a2−j) ∼ Ψ(2−j) and Ψ(2−aj) ∼ Ψ(2−j).

(v) There is a positive constant c such that

Ψ(2x) ≤ cΨ(x), x ∈ (0, 1/2].
(vi) There are non-negative numbers c1, c2 and b, with c1, c2 > 0, such that

c1(1 + j − k)−b ≤
Ψ(2−j)

Ψ(2−k)
≤ c2(1 + j − k)b

for all j, k ∈ N0 with j ≥ k.
Proof. Part (i) is obvious. For (ii) it is sufficient to prove it for Ψ decreasing (the other

case then follows using (i) and χ = −1). Recall that we have (1.12). Let
2−2

k+1 ≤ x ≤ 2−2k for some k ∈ N0.(1.13)

Then, with b = θ′, according to (1.12) we have on the one hand

Ψ(x) ≤ Ψ(2−2k+1) ≤ 2bkΨ(2−2) ≤ Ψ(2−2)|log x|b

and on the other hand

Ψ(x) ≥ Ψ(2−2k) ≥ 2−bkΨ(2−22k) ≥ 2−bkΨ(1) ≥ Ψ(1)|log x|−b,
both for x satisfying (1.13). Now we check the remaining case. If 2−1 ≤ x ≤ 1 then for
c = 2−1, cx fulfils (1.13) with k = 0. We get

Ψ(x) ≤ Ψ(cx) ≤ Ψ(2−2)|log cx|b

and

Ψ(x) ≥ Ψ(1) ≥ Ψ(1)

Ψ(2−1)
2−bΨ(2−2) ≥ Ψ(1)

Ψ(2−1)
2−bΨ(cx) ≥ Ψ(1)2−b|log cx|−b.

Note that for c ∈ (0, 1) and x in (1.13) we have |log x| ≤ |log cx|, hence the proof of (ii)
is complete.

To show (iii), note that by the above, there are positive constants c1, c2 and b such

that

c1|log x|−b ≤ Ψ(x) ≤ c2|log x|b, x ∈ (0, 1/2].(1.14)

For a > 0, we have

lim
x→0+

xa|log x|b = lim
x→0+

xa|log x|−b = 0.

This, together with (1.14), proves (iii).

Having in mind (i) for χ = −1 it is enough to show (iv) for Ψ increasing. The proof of
the first equivalence in (iv) is divided in two cases: 0 < a < 1 and a ≥ 1. For 0 < a < 1,

it is immediate that Ψ(a 2−j) ≤ Ψ(2−j), j ∈ N0. For j ∈ N, we choose k ∈ N such that

k ≥ log
(
j−log a
j

)
. Then

Ψ(2−j) ≤ ckΨ(2−2kj) ≤ ckΨ(a2−j)(1.15)
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for some positive constant c, depending only on Ψ . As limj→∞ log
(
j−log a
j

)
= 0, there

exists j0 ∈ N such that log
(
j−log a
j

)
< 1 for any j ≥ j0. For any such j we can take k = 1

in (1.15). Hence, Ψ(2−j) ≤ cΨ(a2−j), j ≥ j0, and this was the remaining inequality. If

a ≥ 1, we have Ψ(2−j) ≤ cΨ(a2−j), j ≥ log a. For j > [log a] + 1, where [x] denotes the
largest integer not greater than x, and for k ∈ N such that k ≥ log

(
j

j−[log a]−1
)
, we have

Ψ(a2−j) ≤ Ψ(2−(j−[log a]−1)) ≤ ckΨ(2−2k(j−[log a]−1)) ≤ ckΨ(2−j),(1.16)

where, once more, c is a positive constant which depends only on Ψ . Reasoning as above,

for any j arbitrarily large we may choose k = 1. Therefore, Ψ(a2−j) ≤ cΨ(2−j), j ≥ j0.
The proof of the second equivalence in (iv) can be divided into three cases: 0 < a < 1,

1 ≤ a ≤ 2 and a > 2. If 0 < a < 1, then obviously Ψ(2−j) ≤ Ψ(2−a j), j ∈ N0. Moreover,

for any integer k with k ≥ log(j/[aj]), we have

Ψ(2−aj) ≤ Ψ(2−[aj]) ≤ ckΨ(2−2k[aj]) ≤ ckΨ(2−j), j ∈ N.(1.17)

Note that there exists j0 ∈ N such that log(j/[aj]) < log(a−1) + 1 for any j ≥ j0. So, for
any such j we may choose k = [log a−1]+1 in (1.17), which gives the remaining inequality
for this first case. If 1 ≤ a ≤ 2 the assertion is a direct consequence of the monotonocity
of Ψ and Ψ(2−j) ∼ Ψ(2−2j) from the definition of an admissible function. If a > 2, then
obviously Ψ(2−a j) ≤ Ψ(2−j), j ∈ N. On the other hand

Ψ(2−j) ≤ c[log a]+1Ψ(2−2[log a]+1j) ≤ c[log a]+1Ψ(2−a j), j ∈ N0.

This completes the proof of (iv).

For (v), if Ψ is decreasing, then obviously (v) is satisfied with c = 1. If Ψ is increasing

then, by Definition 1.1, there exists a positive constant c such that

Ψ(2−2j) ≤ Ψ(2−j) ≤ cΨ(2−2j), j ∈ N0.

Let j ∈ N0 be such that 2
−(j+1) ≤ 2x ≤ 2−j . Then 2−(j+2) ≤ x ≤ 2−(j+1), and hence

Ψ(2x) ≤ Ψ(2−j) ≤ cΨ(2−2j) ≤ c2Ψ(2−4j) ≤ c2Ψ(2−(j+2)) ≤ c2Ψ(x).

To prove (vi) it is again enough to consider Ψ increasing. Since j ≥ k it is then obvious
that

Ψ(2−j)

Ψ(2−k)
≤ 1.

On the other hand, by (1.11), we have

Ψ(2−k) ≤ cνΨ(2−2νk), ν ∈ N0,(1.18)

for some constant c ≥ 1. If k 6= 0 and ν ∈ N0 is chosen so that 2
νk ≥ j, then (1.18)

implies

Ψ(2−k) ≤ cνΨ(2−j).(1.19)

Otherwise, if k = 0, instead of (1.18) we can write

Ψ(2−k) = Ψ(1) ≤ Ψ(1)

Ψ(2−1)
cνΨ(2−2

ν ·1), ν ∈ N0.
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If we now choose ν ∈ N0 such that 2
ν ≥ j, we get, for k = 0,

Ψ(2−k) = Ψ(1) ≤ Ψ(1)

Ψ(2−1)
cνΨ(2−j).(1.20)

The value of ν = [log(1 + j − k)] + 1 can be used for both cases of k. This together with
(1.18) and (1.20) yields

Ψ(2−k) ≤ Ψ(1)

Ψ(2−1)
c(1 + j − k)log cΨ(2−j),

which completes the proof.

Definition 1.5. (i) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Then

B
(s,Ψ)
pq (Rn) is the collection of all f ∈ S ′(Rn) such that

‖f |B(s,Ψ)pq (R
n)‖ϕ =

( ∞∑

j=0

2sjqΨ(2−j)q‖(ϕj f̂ )∨ |Lp(Rn)‖q
)1/q

(1.21)

(with the usual modification if q =∞) is finite.
(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function. Then F

(s,Ψ)
pq (Rn)

is the collection of all f ∈ S ′(Rn) such that

‖f |F (s,Ψ)pq (R
n)‖ϕ =

∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ϕj f̂ )∨|q
)1/q ∣∣∣Lp(Rn)

∥∥∥(1.22)

(with the usual modification if q =∞) is finite.
Remark 1.6. If Ψ ∼ 1 then the spaces B(s,Ψ)pq (Rn) and F

(s,Ψ)
pq (Rn) coincide with the

usual Besov and Triebel–Lizorkin spaces, Bspq(R
n) and F spq(R

n), respectively. The theory

of these last spaces has been developed in full extent in [Tri83] and [Tri92]. For more

recent topics we refer to [ET96], [RuS96] and [Tri97]. If Ψ(x) = (1 + |log x|)b, b ∈ R, we

obtain the spaces Bs,bpq (R
n) used by Leopold in [Leo98a].

Of course the quasi-norms in (1.21) and (1.22) depend on the function ϕ0 chosen

according to (1.6). But this is not the case for the spaces B
(s,Ψ)
pq (Rn) and F

(s,Ψ)
pq (Rn) (in

the sense of equivalent quasi-norms). This can be proved in the usual way, using the

multiplier theorem 1.6.3 of [Tri83] and the properties of the admissible function Ψ , and

that is why we omit the subscript ϕ in our notation. Both B
(s,Ψ)
pq (Rn) and F

(s,Ψ)
pq (Rn) are

quasi-Banach spaces (Banach spaces if p ≥ 1 and q ≥ 1).
1.2.3. Equivalent quasi-norms. Let (ϕk)k∈N0

⊂ S(Rn). We introduce the maximal func-
tions

(ϕ∗kf)a(x) = sup
z∈Rn

|(ϕkf̂ )∨(x− z)|
1 + |2kz|a , f ∈ S ′(Rn), a > 0,(1.23)

where x ∈ R
n and k ∈ N0. The result below is the counterpart of Theorem 2.3.2 of [Tri92]

for the spaces B
(s,Ψ)
pq (Rn) and F

(s,Ψ)
pq (Rn); it is a simple consequence of Theorem 1.6.2

of [Tri83].

Theorem 1.7. Let (ϕk)k∈N0
be a system of functions as in 1.2.2 with the generating

function ϕ0.
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(i) Let 0 < p, q ≤ ∞, s ∈ R, Ψ an admissible function and a > n/p. Then

B(s,Ψ)pq (R
n) =

{
f ∈ S ′(Rn) :

( ∞∑

j=0

2sjqΨ(2−j)q‖(ϕ∗jf)a |Lp(Rn)‖q
)1/q

<∞
}

(1.24)

(with the usual modification if q =∞) in the sense of equivalent quasi-norms.
(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, Ψ an admissible function and a > n/min(p, q).

Then

(1.25) F (s,Ψ)pq (R
n) =

{
f ∈ S ′(Rn) :

∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ϕ∗jf)a(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥<∞
}

(with the usual modification if q =∞) in the sense of equivalent quasi-norms.
1.2.4. Lifting property. Let σ ∈ R. Then

Iσ : f 7→ (〈ξ〉σf̂ )∨,(1.26)

with 〈ξ〉 = (1+ |ξ|2)1/2, is a one-to-one map of S(Rn) onto itself and of S ′(Rn) onto itself.
Obviously IσIη = Iσ+η. For the B and F scales, Iσ acts as a lift:

Proposition 1.8. Let s ∈ R, σ ∈ R, 0 < q ≤ ∞ and Ψ an admissible function.
(i) Let 0 < p ≤ ∞. Then Iσ maps B(s,Ψ)pq (Rn) isomorphically onto B

(s−σ,Ψ)
pq (Rn) and

‖Iσ f |B(s−σ,Ψ)pq (Rn)‖ is an equivalent quasi-norm on B(s,Ψ)pq (Rn).

(ii) Let 0 < p <∞. Then Iσ maps F (s,Ψ)pq (Rn) isomorphically onto F
(s−σ,Ψ)
pq (Rn) and

‖Iσf |F (s−σ,Ψ)pq (Rn)‖ is an equivalent quasi-norm on F (s,Ψ)pq (Rn).

Proof. Step 1. We first prove (ii). Let f ∈ F (s,Ψ)pq (Rn). We have

‖Iσf |F (s−σ,Ψ)pq (Rn)‖ = ‖(2(s−σ)jΨ(2−j)(ϕj〈ξ〉σf̂ )∨)j∈N0
|Lp(ℓq)‖.(1.27)

Let φ ∈ S(Rn) with
φ(x) = 1 if 1/2 ≤ |x| ≤ 2 and suppφ ⊂ {ξ ∈ R

n : 1/4 ≤ |ξ| ≤ 4}.
Then

(ϕj〈ξ〉σf̂ )∨ = (〈ξ〉σφ(2−jξ)(ϕj f̂ ))∨, j ∈ N.

Applying Theorem 1.6.3 of [Tri83] with η ∈ N such that η > n/2 + n/min(p, q) and

Mj(ξ) = 2
−σj 〈ξ〉σ φ(2−jξ)

we get

(1.28) ‖(2(s−σ)jΨ(2−j)(ϕj(1 + |ξ|2)σ/2f̂ )∨)j∈N |Lp(ℓq)‖
≤ c sup

l∈N

‖Ml(2l+2·) |Hη2 (Rn)‖ · ‖2sjΨ(2−j)(ϕj f̂ )∨ |Lp(ℓq)‖.

For a multi-index α ∈ N
n
0 with |α| ≤ η we have

(1.29) |Dα[Ml(2l+2·)](x)|

≤ 22σ
∑

β≤α

(
α

β

)
|Dβ [(2−2(l+2) + |x|2)σ/2]| · |(Dα−βφ)(4x)|4|α−β|

≤ 22(σ+η) sup
|γ|≤η

sup
y∈Rn

|Dαφ(y)|
∑

β≤α

(
α

β

)
|Dβ[(2−2(l+2) + |x|2)σ/2]|.
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But

|Dβ[(2−2(l+2) + |x|2)σ/2]| ≤ cσ,β(2−2(l+2) + |x|2)σ/2−|β|/2,(1.30)

and for x ∈ suppMl(2l+2·) we have 1/16 ≤ |x| ≤ 1. Recall that for η ∈ N, Hη2 (R
n) =

W η2 (R
n) is the usual Sobolev space normed by

‖f |W η2 (Rn)‖ =
( ∑

|α|≤η
‖Dαf |L2(Rn)‖2

)1/2
.

Hence, using in (1.30) the fact that |x| ≤ 1 for the values of β with |β| ≤ σ while

|x| ≥ 1/16 for |β| > σ, and by (1.29) we get

sup
l∈N

‖Ml(2l+2·) |Hη2 (Rn)‖ <∞.

Applying this in (1.28), together with the term corresponding to j = 0, which can be

treated in a similar way, gives us

‖Iσf |F (s−σ,Ψ)pq (Rn)‖ ≤ C‖f |F (s,Ψ)pq (R
n)‖.

Observing that IσI−σf = f completes the proof of (ii).

Step 2. The proof of (i) is similar and can be obtained by interchanging the roles of the

Lp and ℓq quasi-norms in the proof above and using the scalar version of Theorem 1.6.3

of [Tri83].

1.2.5. Embeddings. We finish this subsection with some embedding assertions. This is

the counterpart of Proposition 2.3.2/2 and Theorem 2.7.1 of [Tri83], p. 47 and p. 129. In

the following “→֒” always stands for topological embedding.
Proposition 1.9. (i) Let 0 < p ≤ ∞, 0 < q0 ≤ q1 ≤ ∞, s ∈ R and Ψ an admissible

function. Then

B(s,Ψ)pq0 (R
n) →֒ B(s,Ψ)pq1 (R

n),

and the corresponding assertion for the F -spaces holds with 0 < p <∞.
(ii) Let 0 < p, q0, q1 ≤ ∞, s ∈ R, ε > 0, Ψ and Ψ̃ admissible functions. Then

B(s+ε,Ψ)pq0 (Rn) →֒ B(s,Ψ̃)pq1 (R
n),

and the corresponding assertion for the F -spaces holds with 0 < p <∞.
(iii) Let 0 < q ≤ ∞, 0 < p <∞, s ∈ R and Ψ an admissible function. Then

B
(s,Ψ)
pmin(p,q)(R

n) →֒ F (s,Ψ)pq (R
n) →֒ B

(s,Ψ)
pmax(p,q)(R

n).

(iv) Let 0 < p0 ≤ p1 ≤ ∞, 0 < q ≤ ∞, Ψ an admissible function and s0, s1 ∈ R with

s0 −
n

p0
= s1 −

n

p1
.

Then

B(s0,Ψ)p0q (R
n) →֒ B(s1,Ψ)p1q (R

n).

(v) Let 0 < p0 < p1 < ∞, 0 < q0, q1 ≤ ∞, Ψ an admissible function and s0, s1 ∈ R

with

s0 −
n

p0
= s1 −

n

p1
.
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Then

F (s0,Ψ)p0q0 (R
n) →֒ F (s1,Ψ)p1q1 (R

n).

(vi) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Then

Bs+εpq (R
n) →֒ B(s,Ψ)pq (R

n) →֒ Bspq(R
n) if Ψ is decreasing,

Bspq(R
n) →֒ B(s,Ψ)pq (R

n) →֒ Bs−εpq (R
n) if Ψ is increasing,

for any ε > 0; and the corresponding assertion for the F -spaces holds with 0 < p <∞.
(vii) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Then

S(Rn) →֒ B(s,Ψ)pq (R
n) →֒ S ′(Rn).

If in addition max(p, q) < ∞, then S(Rn) is dense in B(s,Ψ)pq (Rn). The corresponding

assertion is true for the F -spaces with 0 < p <∞.
Proof. For (i), (iii), (v) and (vii) simply follow the proof for Ψ ≡ 1 in [Tri83], inserting
the factor Ψ(2−j). For (iv) proceed as before with s1 = 0 and then use the lift according
to Proposition 1.8.

For the proof of (ii) for B-spaces (similar for F -spaces): from (i), it is enough to take

q0 =∞. Since Ψ and Ψ̃ are admissible, by Proposition 1.4, there exist positive constants
c1, c2, c̃1, c̃2, b and b̃ such that

c1j
−b ≤ Ψ(2−j) ≤ c2jb and c̃1j

−b̃ ≤ Ψ̃(2−j) ≤ c̃2j b̃, j ∈ N.

Let ε1 be such that 0 < ε1 < ε. Then

2sjΨ̃(2−j) = 2(s+ε)j 2(ε1−ε)j2−ε1j Ψ̃(2−j)

≤ cε2(s+ε)jj−(b+b̃)2−ε1j c̃2j b̃ ≤ cε
c̃2
c1
2(s+ε)j2−ε1jΨ(2−j).

Hence

‖f |B(s,Ψ̃)pq1 (R
n)‖ =

( ∞∑

j=0

2sjq1 Ψ̃(2−j)q1‖(ϕj f̂ )∨ |Lp(Rn)‖q1
)1/q1

≤ c′ε
( ∞∑

j=0

2−ε1q1j2(s+ε)jq1Ψ(2−j)q1‖(ϕj f̂ )∨ |Lp(Rn)‖q1
)1/q1

≤ c′ε
( ∞∑

j=0

2−ε1q1j
)1/q1

sup
j∈N0

2(s+ε)jΨ(2−j)‖(ϕj f̂ )∨ |Lp(Rn)‖

≤ c′′ε‖f |B(s+ε,Ψ)p∞ (Rn)‖.
(vi) is a consequence of (ii) and the fact that Ψ(1) ≤ Ψ(2−j), j ∈ N0, if Ψ is decreasing,

while Ψ(2−j) ≤ Ψ(1), j ∈ N0, if Ψ is increasing.

1.3. Characterisation by local means. Let B = {y ∈ Rn : |y| ≤ 1} be the unit ball
in Rn, and let k be a C∞ function in Rn with supp k ⊂ B. Then we introduce the local
means

k(t, f)(x) =
\

Rn

k(y)f(x+ ty) dy, x ∈ R
n, t > 0,(1.31)
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which makes sense for any f ∈ S ′(Rn) (appropriately interpreted). Let k0 and k0 be two
C∞ functions in R

n with

supp k0 ⊂ B, supp k0 ⊂ B,(1.32)

k̂0(0) 6= 0, k̂0(0) 6= 0.(1.33)

For N ∈ N, we define

k(y) = ∆Nk0(y) =

( n∑

j=1

∂2

∂x2j

)N
k0(y), y ∈ R

n.(1.34)

Note that

ǩ(x) = |x|2N ǩ0(x), x ∈ R
n.(1.35)

We introduce some notations. For 0 < p, q ≤ ∞, let

σp = n

(
1

p
− 1
)

+

and σpq = n

(
1

min(p, q)
− 1
)

+

.(1.36)

As usual for any a ∈ R we put a+ = max(a, 0) and [a] stands for the largest integer

smaller than or equal to a.

Theorem 1.10. Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function. Let

N ∈ N0 with 2N > s. Then there exists h ∈ N0 such that

‖k0(2−h, f) |Lp(Rn)‖+
∥∥∥
( ∞∑

j=1

2jsqΨ(2−j)q|k(2−j , f)(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥(1.37)

(with the usual modification if q =∞) is an equivalent quasi-norm in F (s,Ψ)pq (Rn).

Proof. The idea of the proof goes back to Theorem 2.4.1 of [Tri92]. Note that we always

have

k(2−j , f)(x) = (2π)n/2(ǩ(2−j ·)f̂ )∨(x), x ∈ R
n, j ∈ N,(1.38)

and an analogous equality for k0.

Step 1. Let f ∈ F (s,Ψ)pq (Rn). In the first two steps we prove that the quasi-norm in (1.37)

can be estimated from above by c‖f |F (s,Ψ)pq (Rn)‖. Let (ϕk)k∈N0
be the dyadic resolution

of unity introduced in 1.2.2 and let ϕl = 0 if −l ∈ N. We write

(1.39) 2sjΨ(2−j)k(2−j , f)(x)

= (2π)n/22sjΨ(2−j)
M∑

l=−∞
(ǩ(2−j ·)ϕj+lf̂ )∨(x)

+ (2π)n/22sjΨ(2−j)
∞∑

l=M+1

(ǩ(2−j ·)ϕj+lf̂ )∨(x), j ∈ N,

where M ∈ N will be chosen later on. We take for granted that the convergence in (1.39)

is not only in S ′(Rn) but also pointwise a.e. (to be proved later on in Step 3). We estimate
the first sum in (1.39), where there is no problem of convergence, because the sum is finite

(ϕj+l = 0 if l < −j). Let
ϕ̃j(x) = |2−jx|2Nϕj(x), j ∈ N0.(1.40)
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By Proposition 1.4(vi), there exist constants c > 0 and b ≥ 0 such that
Ψ(2−j) ≤ c(1 + |l|)b Ψ(2−(j+l))(1.41)

for any j ∈ N and l ∈ Z. Recalling also (1.35), for j ∈ N we have

(1.42)
∣∣∣
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)

∣∣∣

≤ c
M∑

l=−∞
2(2N−s)l(1 + |l|)b|(ǩ0(2−jz)2(j+l)sΨ(2−(j+l))ϕ̃j+l(z)f̂)∨(x)|.

But

(1.43) |(ǩ0(2−jz)2(j+l)sΨ(2−(j+l))ϕ̃j+l(z)f̂ )∨(x)|
≤ (2π)−n/2

\
Rn

|(ǩ0(2−j ·))∨(y)| · |(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x− y)| dy

= (2π)−n/2
\

Rn

|k0(−ξ)| · |(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x− 2−jξ)| dξ.

Let a > n/min(p, q). Obviously

|(ϕ̃j+lf̂ )∨(x− 2−jξ)| ≤ (ϕ̃∗j+lf)a(x)(1 + |2lξ|a).(1.44)

Using (1.44) in (1.43) leads us to

(1.45) |(ǩ0(2−jz)2(j+l)sΨ(2−(j+l))ϕ̃j+l(z)f̂ )∨(x)|
≤ (2π)−n/22(j+l)sΨ(2−(j+l))(ϕ̃∗j+lf)a(x)

\
Rn

|k0(−ξ)|(1 + |2Mξ|a) dξ

≤ c2(j+l)sΨ(2−(j+l))(ϕ̃∗j+lf)a(x) for l ≤M,

since k0 ∈ D(Rn). Putting (1.45) in (1.42) gives

(1.46)
∣∣∣
M∑

l=−∞
2sj Ψ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)

∣∣∣

≤ c
M∑

l=−∞
2(2N−s)l(1 + |l|)b2(j+l)sΨ(2−(j+l))(ϕ̃∗j+lf)a(x), j ∈ N.

We first apply in (1.46) the ℓq-quasi-norm with respect to j and then the Lp-quasi-norm

with respect to x. Because 2N > s we obtain

(1.47)
∥∥∥
( ∞∑

j=1

∣∣∣
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)

∣∣∣
q)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ c
∥∥∥
( ∞∑

m=0

2smqΨ(2−m)q(ϕ̃∗mf)
q
a(x)

)1/q ∣∣∣Lp(Rn)
∥∥∥.

We use Theorem 2.2.4(i) of [Tri92] to estimate the right-hand side of (1.47). Notice that

2smΨ(2−m)(ϕ̃∗mf)a(x) ≤ 22a sup
z∈Rn

|(2smΨ(2−m)ϕ̃mf̂ )∨(x− z)|
1 + |2m+2z|a .(1.48)
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Since a > n/min(p, q), the number r = n/a satisfies 0 < r < min(p, q). In order to apply

that theorem we must be sure that (2smΨ(2−m)(ϕ̃mf̂ )∨)∞m=0 belongs to Lp(ℓq). But this
is a consequence of Theorem 2.2.4(ii) of [Tri92]. In fact, we have

2smΨ(2−m)(ϕ̃mf̂ )
∨ = (|2−mz|2NH(2−mz)2smΨ(2−m)ϕm(z)f̂)∨, m ∈ N0,(1.49)

where H is a function in D(Rn) such that
H(x) = 1 if |x| ≤ 2.(1.50)

Take

Mm(z) = |2−mz|2NH(2−mz), z ∈ R
n, m ∈ N0,(1.51)

and choose κ > n/2 + n/min(p, q). Then

sup
m∈N0

‖Mm(2m+2·) |Hκ2 (Rn)‖ =
∥∥|4z|2NH(4z)

∣∣Hκ2 (Rn)
∥∥ <∞,(1.52)

since |4z|2NH(4z) ∈ D(Rn). Because f ∈ F (s,Ψ)pq (Rn), we have

(2smΨ(2−m)(ϕmf̂ )
∨)∞m=0 ∈ Lp(ℓq).(1.53)

From (1.49), (1.51)–(1.53) and Theorem 2.2.4(ii) of [Tri92], there exists a positive constant

c such that
∥∥∥
( ∞∑

m=0

2smqΨ(2−m)q|(ϕ̃mf̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥ ≤ c‖f |F (s,Ψ)pq (R
n)‖.(1.54)

By (1.48) and (1.54), applying Theorem 2.2.4(i) of [Tri92], we get

∥∥∥
( ∞∑

m=0

2smqΨ(2−m)q(ϕ̃∗mf)
q
a(·)
)1/q ∣∣∣Lp(Rn)

∥∥∥ ≤ c‖f |F (s,Ψ)pq (R
n)‖.(1.55)

Finally, by (1.55) and (1.47), we obtain

(1.56)
∥∥∥
( ∞∑

j=1

∣∣∣
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)

∣∣∣
q)1/q ∣∣∣Lp(Rn)

∥∥∥ ≤ c‖f |F (s,Ψ)pq (R
n)‖.

Step 2. We estimate the second sum in (1.39) and we have to make sure now that (1.39)

converges a.e. and in some Lr(R
n) with 1 ≤ r ≤ ∞. However the latter comes as a

by-product. Let s0 ∈ R be such that

s0 + 2σpq < s,(1.57)

and introduce

ϕ′j(x) = |2−jx|s0ϕj(x), x ∈ R
n, j ∈ N.(1.58)

By (1.35) and (1.41) we have

(1.59)
∣∣∣
∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣

≤ c
∞∑

l=M+1

2(s0−s)l(1 + l)b|(ǩ0(2−jz)|2−jz|2N−s02(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨(x)|.
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Let χ be a function in D(Rn) such that

χ(x) = 1 if 1/2 ≤ |x| ≤ 2 and suppχ ⊂ {ξ ∈ R
n : 1/4 ≤ |ξ| ≤ 4}.(1.60)

Each term in (1.59) can be estimated from above as follows:

(1.61) |(ǩ0(2−jz)|2−jz|2N−s02(j+l)sΨ(2−(j+l))ϕ′j+l(z)f̂ )∨(x)|

≤ (2π)−n/2
\

Rn

|(ǩ0(2−j ·)|2−j · |2N−s0χ(2−j−l·))∨(y)|

× |(2(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨(x− y)| dy

≤ 2(2π)−n/22(j+l)sΨ(2−(j+l))(ϕ′∗j+lf)a(x)
\

Rn

∣∣∣∣
(
ǩ(2l·)
|2l · |s0 χ(·)

)∨
(ξ)

∣∣∣∣(1 + |ξ|)a dξ,

with a as in Step 1. By Theorem 4.1 of [Far00] the integral in (1.61) can be estimated

from above as follows:

(1.62)
\

Rn

∣∣∣∣
(
ǩ(2lz)

|2lz|s0 χ(z)
)∨
(ξ)

∣∣∣∣(1 + |ξ|)a dξ

≤ c2−ls0‖ǩ(2lz)χ(z) |Hλ2 (Rn)‖
∥∥∥∥(1 + |ξ|)a

(
h(z)

|z|s0
)∨
(ξ)

∣∣∣∣L1(R
n)

∥∥∥∥,

where h ∈ D(Rn) is such that

h(x) = 1 if 1/4 ≤ |x| ≤ 4 and supph ⊂ {ξ ∈ R
n : 1/8 ≤ |ξ| ≤ 8},(1.63)

and λ > a + n/2. The second factor in (1.62) is obviously constant since h(z)/|z|s0 ∈
D(Rn). For the other factor in (1.62) it can be proved that

sup
l∈N

2−ls0‖ǩ(2lz)χ(z) |Hλ2 (Rn)‖ <∞(1.64)

(see Remark 1.11). From what has been said and from (1.61), (1.62), there exists a positive

constant c such that

(1.65) |(ǩ0(2−jz)|2−jz|2N−s02(j+l)sΨ(2−(j+l))ϕ′j+l(z)f̂)∨(x)|
≤ c2(j+l)sΨ(2−(j+l))(ϕ′∗j+lf)a(x).

Applying (1.65) in (1.59) we obtain

(1.66)
∣∣∣
∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣

≤ c
∞∑

l=M+1

2(s0−s)l(1 + l)b2(j+l)sΨ(2−(j+l))(ϕ′∗j+lf)a(x), j ∈ N.

We take in (1.66) first the ℓq-quasi-norm with respect to j and afterwards the Lp-quasi-

norm with respect to x. Since s > s0 we get
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(1.67)
∥∥∥
( ∞∑

j=1

∣∣∣
∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣
q)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ c2(s0−s)M/2
∥∥∥
( ∞∑

m=1

2smqΨ(2−m)q(ϕ′∗mf)
q
a(x)

)1/q ∣∣∣Lp(Rn)
∥∥∥.

Acting as in Step 1, from (1.67) we obtain

(1.68)
∥∥∥
( ∞∑

j=1

∣∣∣
∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣
q)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ c2(s0−s)M/2‖f |F (s,Ψ)pq (R
n)‖.

Now by (1.39), (1.56) and (1.68), using the quasi-triangular inequality in the space Lp(ℓq),

we get

∥∥∥
( ∞∑

j=1

2sjqΨ(2−j)q |k(2−j , f)(x)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥ ≤ c‖f |F (s,Ψ)pq (R
n)‖.(1.69)

In an analogous way one can prove that

‖k0(2−h, f) |Lp(Rn)‖ ≤ c‖f |F (s,Ψ)pq (R
n)‖.(1.70)

With (1.69) and (1.70) we have proved one of the desired inequalities between the quasi-

norm (1.37) and ‖ · |F (s,Ψ)pq (Rn)‖.
Step 3. We have to care about the convergence on the right-hand side of (1.39) pointwise

a.e. and in some Lr(R
n), 1 ≤ r ≤ ∞. We can rewrite (1.66) as follows:

(1.71)
∣∣∣

L∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣

≤ c
L∑

l=M+1

2(s0−s)l(1 + l)b2(j+l)sΨ(2−(j+l))(ϕ′∗j+lf)a(x), j ∈ N,

with L > M . Using s0 − s < 0 and ℓq →֒ ℓ1 if 0 < q ≤ 1, or the Hölder inequality if
1 < q ≤ ∞, we conclude that if M is large enough then the right-hand side of (1.71) can
be estimated from above by

ε
( ∞∑

l=M+1

2lsqΨ(2−l)q(ϕ′∗l f)
q
a(x)

)1/q
,(1.72)

for given ε > 0. Because f ∈ F (s,Ψ)pq (Rn), Theorem 1.7 and considerations as in Step 2

give us
∥∥∥
( ∞∑

m=1

2smqΨ(2−m)q (ϕ′∗mf)a(x)
)1/q ∣∣∣Lp(Rn)

∥∥∥ <∞.

Therefore, the expression in (1.72) is finite a.e. and this proves the desired pointwise

convergence. Next we prove the S ′ convergence and assume 0 < p < 1. Let σ = s − σp.
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Putting this in (1.71) we obtain

(1.73)
∣∣∣

L∑

l=M+1

2σjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣

≤ c
L∑

l=M+1

2(s0−σ)l(1 + l)b2(j+l)σΨ(2−(j+l))(ϕ′∗j+lf)a(x).

From (1.57) and σpq ≥ σp (recall (1.36)), we have σ = s − σp > s0. Using this last

inequality instead of s > s0, and proceeding as to obtain (1.72) we conclude that there

exists M sufficiently large such that the right-hand side of (1.73) can be estimated from

above by

ε
( ∞∑

l=M+1

2lσqΨ(2−l)q(ϕ′∗l f)
q
a(x)

)1/q
,(1.74)

for given ε > 0. From the embedding F
(s,Ψ)
p,q (Rn) →֒ F

(σ,Ψ)
1,q (R

n), a consequence of Propo-

sition 1.9(v), we have
∥∥∥
( ∞∑

m=1

2mσqΨ(2−m)q(ϕ′∗mf)
q
a(·)
)1/q ∣∣∣L1(Rn)

∥∥∥ <∞.

And then, from (1.73) and (1.74),

∥∥∥
L∑

l=M+1

2σjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·) |L1(Rn)
∥∥∥

≤ ε
∥∥∥
( ∞∑

l=M+1

2lσqΨ(2−l)q(ϕ′∗l f)
q
a(·)
)1/q ∣∣∣L1(Rn)

∥∥∥,

for given ε > 0. It follows that (1.73) and hence (1.39) converges in L1(R
n).

If 1 ≤ p <∞, then by (1.71) and (1.72),
∥∥∥

L∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣Lp(Rn)

∥∥∥

≤ ε
∥∥∥
( ∞∑

l=M+1

2lsqΨ(2−l)q(ϕ′∗l f)
q
a(·)
)1/q ∣∣∣Lp(Rn)

∥∥∥,

where ε > 0 is given. So (1.71) and hence (1.39) converges in Lp(R
n), therefore in S ′(Rn).

Step 4. Let f ∈ F (s,Ψ)pq (Rn). We now want to prove that ‖f |F (s,Ψ)pq (Rn)‖ can be estimated
from above by the quasi-norm in (1.37). By hypothesis k̂0(0) 6= 0 and k̂0(0) 6= 0. Then
also ǩ0(0) 6= 0 and ǩ0(0) 6= 0. Since k0, k0 ∈ S(Rn), ǩ0, ǩ0 ∈ S(Rn) are C∞ functions.
So, there exists a neighbourhood of the origin where both ǩ0 and ǩ0 are non-zero. Recall

(1.35). Therefore, there exists ε > 0 such that

ǩ0(x) 6= 0 for |x| ≤ 2ε, ǩ0(x) 6= 0 for |x| ≤ 2ε and ǩ(x) 6= 0 for ε/2 ≤ |x| ≤ 2ε.(1.75)

If useful one can choose ε to be of the form ε = 2−h for some fixed h ∈ N0. Let φ ∈ S(Rn)
be a function with

suppφ ⊂ {ξ ∈ R
n : |ξ| ≤ 2M+1} and φ(x) = 1 if |x| ≤ 2M ,
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where the natural number M will be chosen later on. By (1.6), (1.8) and (1.75), we have

|(ϕj f̂ )∨(x)| = |(ϕjφ(2−j ·)f̂ )∨(x)|(1.76)

≤ (2π)−n/2
\

Rn

∣∣∣∣
(

ϕj

ǩ(ε2−j ·)

)∨
(y)(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨(x− y)

∣∣∣∣ dy, j ∈ N.

A corresponding estimate holds for j = 0, in this case with k0 instead of k. We assume this

latter modification for j = 0 throughout this step. For fixed x ∈ Rn the Fourier transform

of the y-function in the integral in (1.76) has support contained in {ξ ∈ Rn : |ξ| ≤
2M+j+2}. Let 0 < r < min(1, p, q). Using an inequality of Plancherel–Pólya–Nikol’skĭı

type as in [Tri83, 1.3.2/(5)] we obtain

|(ϕj f̂ )∨(x)|r ≤ c2(M+j)n(1−r)(1.77)

×
\

Rn

∣∣∣∣
(

ϕj

ǩ(ε2−j ·)

)∨
(y)(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨(x− y)

∣∣∣∣
r

dy, j ∈ N0.

If j ∈ N, then ϕj(x) = ϕ(2
−jx) with ϕ(x) = ϕ0(x)− ϕ0(2x) (see (1.7)), hence

∣∣∣∣
(

ϕj

ǩ(ε2−j ·)

)∨
(y)

∣∣∣∣
r

= 2jnr
∣∣∣∣
(

ϕ

ǩ(ε·)

)∨
(2jy)

∣∣∣∣
r

≤ cη2jnr(1 + |2jy|)−η,(1.78)

where η ∈ N is at our disposal, since (ϕ/ǩ(ε·))∨ ∈ S(Rn). Putting (1.78) in (1.77) leads
to

|(ϕj f̂ )∨(x)|r ≤ c′η2(M+j)n(1−r)+jnr(1.79)

×
∞∑

l=0

2−ηl
\

{ξ∈Rn:|ξ|≤2−j+l}

|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨(x− y)|r dy.

Now we estimate from above each integral in (1.79):

(1.80)
\

{ξ∈Rn:|ξ|≤2−j+l}

|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨(x− y)|r dy

≤ 2(−j+l)nM[|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨|r](x)
whereM stands for the Hardy–Littlewood maximal function. We apply this estimate in
(1.79), and choosing η ∈ N such that η > n we arrive at

|(ϕj f̂ )∨(x)|r ≤ c2Mn(1−r)M[|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨|r](x).(1.81)

Since 0 < r < min(1, p, q), we have 1 < p/r < ∞ and 1 < q/r ≤ ∞. We multiply (1.81)
with 2sjrΨ(2−j)r, apply the ℓq/r-norm with respect to j and afterwards the Lp/r-norm
with respect to x; then by Theorem 2.2.2 of [Tri92] we obtain

(1.82)
∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ϕj f̂ )∨(x)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

≤ c2Mn(1−r)‖2sjrΨ(2−j)r|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨|r |Lp/r(ℓq/r)‖

= c2Mn(1−r)
∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ǩ(ε2−j ·)φ(2−j ·)f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

,



22 S. Moura

where c is a positive constant independent of M . Because

ǩ(ε2−j ·)φ(2−j ·) = ǩ(ε2−j ·)− ǩ(ε2−j ·)(1− φ(2−j ·)),
and using the quasi-triangular inequality in Lp(ℓq), the right-hand side of (1.82) can be

estimated from above by

(1.83) c2Mn(1−r)
∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ǩ(ε2−j ·)f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

+ c2Mn(1−r)
∥∥∥
( ∞∑

j=0

2sjqΨ(2−j)q|(ǩ(ε2−j ·)(1− φ(2−j ·))f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
r

.

The first term in (1.83) is precisely what we want. The additional term in (1.83) can be

treated as in Step 2 and estimated from above by

c2Mn(1−r)2(s0−s)Mr/2‖f |F (s,Ψ)pq (R
n)‖r.(1.84)

By (1.57), we may choose r such that

n

(
1

r
− 1
)
+

(
s0 − s
2

)
< 0.

Recall that the natural number M is at our disposal. We take M large enough so that

(1.84) can be estimated from above by

1

2
‖f |F (s,Ψ)pq (R

n)‖r.

Applying this, (1.84) and (1.83) in (1.82) gives

‖f |F (s,Ψ)pq (R
n)‖ ≤ c

[
‖(ǩ0(ε·)f̂ )∨ |Lp(Rn)‖(1.85)

+
∥∥∥
( ∞∑

j=1

2sjqΨ(2−j)q|(ǩ(ε2−j ·)f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
]
.

As mentioned at the beginning of Step 4, we can take ε = 2−h, for some fixed h ∈ N0.

Therefore

‖f |F (s,Ψ)pq (R
n)‖ ≤ c

[
‖k0(2−h, f) |Lp(Rn)‖

+
∥∥∥
( ∞∑

j=1

2sjqΨ(2−j)q|(ǩ(2−j ·)f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
]
,

which completes the proof.

Remark 1.11. We prove (1.64). Recall that the function χ ∈ D(Rn) satisfies (1.60). Let
Ω = {ξ ∈ R

n : 1/4 ≤ |ξ| ≤ 4} and χl(x) = ǩ(2
lx)χ(x), l ∈ N.

If m ∈ N is so large that m > 1 + [λ], then there exists a constant c > 0 such that

‖χl |Hλ2 (Rn)‖ ≤ c
∑

|α|≤m
‖Dαχl |L∞(Rn)‖.(1.86)
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For |α| ≤ m and x ∈ Ω,

|(Dαχl)(x)| ≤
∑

β≤α

(
α

β

)
|(Dβ ǩ)(2lx)|2l|β||(Dα−βχ)(x)|(1.87)

≤ c2l|α|
(∑

β≤α

(
α

β

)
|(Dβ ǩ)(2lx)|

)
,

since χ ∈ D(Rn). Let m1 ∈ N be so large that m−m1 ≤ s0. As ǩ ∈ S(Rn), there exists
a constant c > 0 such that

|(Dβ ǩ)(x)| ≤ c(1 + |x|)−m1 , ∀x ∈ R
n, ∀β ∈ N

n
0 : |β| ≤ m.(1.88)

Putting (1.88) in (1.87), we arrive at

|(Dαχl)(x)| ≤ c2l|α|
(
max
|α|≤m

∑

β≤α

(
α

β

))
(1 + 2l|x|)−m1 ≤ c′22m12l(m−m1) ≤ c′22m12ls0 .

So, ∑

|α|≤m
‖Dαχl |L∞(Rn)‖ ≤ c2ls0 .

This in (1.86) gives (1.64).

Theorem 1.12. Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Let N ∈ N with

2N > s. Then there exists h ∈ N0 such that

‖k0(2−h, f) |Lp(Rn)‖+
( ∞∑

j=1

2jsqΨ(2−j)q‖k(2−j , f)(·) |Lp(Rn)‖q
)1/q

(1.89)

(with the usual modification if q =∞) is an equivalent quasi-norm in B(s,Ψ)pq (Rn).

Proof. This is the counterpart of Theorem 1.10 for B
(s,Ψ)
pq (Rn); we modify its proof.

Step 1. We again have the splitting (1.39) and the estimate (1.42). But from (1.42) we

still have

(1.90)
∣∣∣
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)

∣∣∣

≤ c
M∑

l=−∞
2(2N−s)l(1 + |l|)b2jn|[k0(−2j .) ∗ (2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨](x)|.

Let first 1 ≤ p ≤ ∞. We apply the Lp-norm to (1.90), use the triangle inequality and
Young’s inequality and obtain

(1.91)
∥∥∥
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)

∣∣∣Lp(Rn)
∥∥∥

≤ c
M∑

l=−∞
2(2N−s)l(1 + |l|)b‖(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨ |Lp(Rn)‖,

since k0 ∈ S(Rn) ⊂ L1(R
n). Applying the ℓq-quasi-norm in (1.91), because 2N > s, we
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get

(1.92)
( ∞∑

j=1

∥∥∥
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)

∣∣∣Lp(Rn)
∥∥∥
q)1/q

≤ c
( ∞∑

m=0

2smqΨ(2−m)q‖(ϕ̃mf̂ )∨ |Lp(Rn)‖q
)1/q

.

Now let 0 < p < 1. For each term in (1.42) we have

(1.93) |(ǩ0(2−j ·)2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x)|
≤ (2π)−n/2

\
Rn

|(ǩ0(2−j ·)α(c12−j ·))∨(y)(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x− y)| dy

where c1 = 2
(M+1) and α ∈ D(Rn) is such that

α(x) = 1 if |x| ≤ 1 and suppα ⊂ {x ∈ R
n : |x| ≤ 2}.

The Fourier transform of the y-function inside the integral in (1.93) has compact support

contained in {ξ ∈ Rn : |ξ| ≤ 6 · 2j+M}. Since now 0 < p < 1, we apply an inequality of

Plancherel–Pólya–Nikol’skĭı type (cf. [Tri83, 1.3.2/5]), and obtain

(1.94)
\

Rn

|(ǩ0(2−j ·)α(c12−j ·))∨(y)(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x− y)| dy

≤ c22(j+M)n(1/p−1)

×
[ \

Rn

|(ǩ0(2−j ·)α(c12−j ·))∨(y)(2(j+l)sΨ(2−(j+l))ϕ̃j+lf̂ )∨(x− y)|p dy
]1/p

where the positive constant c2 is independent of j. Putting (1.94) together with (1.93) in

(1.42) and then applying the Lp-quasi-norm, we get

(1.95)
∥∥∥
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ ))∨(·)

∣∣∣Lp(Rn)
∥∥∥

≤ c2Mn(1/p−1)
[ M∑

l=−∞
2(2N−s)pl(1 + |l|)bp‖2(j+l)sΨ(2−(j+l))(ϕ̃j+lf̂ )∨(·) |Lp(Rn)‖p

]1/p
.

We have used (ǩ0α(c1·))∨ ∈ S(Rn). Recall that 1/p > 1. Let p1 be its conjugate exponent.
Because 2N > s and using Hölder’s inequality we estimate the right-hand side of (1.95)

by

(1.96) c2Mn(1/p−1)
( M∑

l=−∞
2(2N−s)pp1l/2(1 + |l|)bpp1

)1/(p1p)

×
M∑

l=−∞
2(2N−s)l/2‖2(j+l)sΨ(2−(j+l))(ϕ̃j+lf̂ )∨(·) |Lp(Rn)‖

≤ c′2Mn(1/p−1)
M∑

l=−∞
2(2N−s)l/2‖2(j+l)sΨ(2−(j+l))(ϕ̃j+lf̂ )∨(·) |Lp(Rn)‖.
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Putting (1.96) in (1.95) and applying the ℓq-quasi-norm with respect to j we arrive at

(1.97)
( ∞∑

j=1

∥∥∥
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)

∣∣∣Lp(Rn)
∥∥∥
q)1/q

≤ c2Mn(1/p−1)
( ∞∑

m=0

2smqΨ(2−m)q‖(ϕ̃mf̂ )∨ |Lp(Rn)‖q
)1/q

.

This was already obtained also in case 1 ≤ p ≤ ∞, in (1.92). Recall that
(ϕ̃mf̂ )

∨ = (|2−m · |2NH(2−m·)[(ϕmf̂ )∨]∧)∨, m ∈ N0,

with H ∈ D(Rn) as in (1.50). As a consequence of Theorem 1.5.2 of [Tri83, (13)], for
ν > n(1/min(p, 1)− 1/2), we have

‖(ϕ̃mf̂ )∨ |Lp(Rn)‖ ≤ c‖|2 · |2NH(2·) |Hν2 (Rn)‖ · ‖(ϕmf̂ )∨ |Lp(Rn)‖,
where c is a positive constant independent of m ∈ N0. Applying this in (1.97) we obtain

(1.98)
( ∞∑

j=1

∥∥∥
M∑

l=−∞
2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)

∣∣∣Lp(Rn)
∥∥∥
q)1/q

≤ c2Mn(1/p−1)‖f |B(s,Ψ)pq (R
n)‖.

Step 2. We estimate the second sum in (1.39); we have to make sure that (1.39) converges

a.e. and in some Lr-space with 1 ≤ r ≤ ∞. However the latter comes as a by-product.
Following Step 2 of the proof for F

(s,Ψ)
pq (Rn), we also have (1.59), with s0 such that

s0 + 4σp < s.(1.99)

Let 1 ≤ p ≤ ∞, and χ as in (1.60). Then we apply the Lp-norm to (1.59), and use Young’s
inequality to obtain

(1.100)
∥∥∥

∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·) |Lp(Rn)
∥∥∥

≤ c
∞∑

l=M+1

2(s0−s)l(1+l)b
∥∥∥∥
(
ǩ(2l·)
|2l · |s0 χ(·)

)∨ ∣∣∣∣L1(R
n)

∥∥∥∥‖(2(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨ |Lp(Rn)‖

≤ c′
∞∑

l=M+1

2(s0−s)l(1 + l)b‖(2(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨ |Lp(Rn)‖.

The last inequality is due to

sup
l∈N

∥∥∥∥
(
ǩ(2l·)
|2l · |s0 χ(·)

)∨ ∣∣∣∣L1(R
n)

∥∥∥∥ <∞,

which can be proved introducing inside the inverse Fourier transform the function h of

(1.63), applying Theorem 2.2.3 of [Tri92] and using (1.64). Then, applying the ℓq-quasi-

norm to (1.100), because s0 − s < 0, we get

(1.101)
( ∞∑

j=1

∥∥∥
∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j)ϕj+lf̂ )
∨(·)

∣∣∣Lp(Rn)
∥∥∥
q)1/q

≤ c2(s0−s)M/2
( ∞∑

m=1

2smqΨ(2−m)q‖(ϕ′mf̂ )∨ |Lp(Rn)‖q
)1/q

.
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Let 0 < p < 1. Each term in (1.59) can be estimated from above by

(1.102)

∣∣∣∣
(
ǩ(2−j ·)
|2−j · |s0 χ(2

−j−l.)2s(j+l)Ψ(2−(j+l))ϕ′j+lf̂

)∨
(x)

∣∣∣∣

≤ (2π)−n/2
\

Rn

∣∣∣∣
(
ǩ(2−j ·)
|2−j · |s0 χ(2

−j−l·)
)∨
(y)(2s(j+l)Ψ(2−(j+l))ϕ′j+lf̂ )

∨(x− y)
∣∣∣∣ dy.

But the Fourier transform of the y-function inside the integral in (1.102) has compact

support contained in {ξ ∈ R
n : |ξ| ≤ 6 · 2j+l}, and since now 0 < p < 1, we use the

Theorem of [Tri83, 1.3.2/(5)]:

(1.103)

∣∣∣∣
(
ǩ(2−j ·)
|2−j · |s0 χ(2

−j−l·)2s(j+l)Ψ(2−(j+l))ϕ′j+lf̂
)∨
(x)

∣∣∣∣ ≤ c2(j+l)n(1/p−1)

×
[ \

Rn

∣∣∣∣
(
ǩ(2−j ·)
|2−j · |s0 χ(2

−j−l·)
)∨
(y)(2s(j+l)Ψ(2−(j+l))ϕ′j+lf̂ )

∨(x− y)
∣∣∣∣
p

dy

]1/p
,

where c is independent of l and j. Putting the estimates (1.102) and (1.103) in (1.59),

and then applying the Lp-quasi-norm we get

(1.104)
∥∥∥

∞∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣Lp(Rn)

∥∥∥

≤ c1
[ ∞∑

l=M+1

2(s0−s)pl(1 + l)bp
\

Rn

∣∣∣∣
(
ǩ(2l·)
|2l · |s0 χ(·)

)∨
(ξ)

∣∣∣∣
p

dξ

× ‖2(j+l)sΨ(2−(j+l))(ϕ′j+lf̂ )∨ |Lp(Rn)‖p
]1/p

≤ c2
( ∞∑

l=M+1

2(s0−s)pl(1 + l)bp‖2(j+l)sΨ(2−(j+l))(ϕ′j+lf̂ )∨ |Lp(Rn)‖p
)1/p

.

We have used

sup
l∈N

∥∥∥∥
(
ǩ(2l·)
|2l · |s0 χ(·)

)∨ ∣∣∣∣Lp(R
n)

∥∥∥∥
p

<∞,

which can be proved introducing inside the inverse Fourier transform the function h of

(1.63), applying Theorem 2.2.3 of [Tri92] and using (1.64). Recall that 1/p > 1. Let p1
be its conjugate exponent. Using Hölder’s inequality we estimate the right-hand side of

(1.104) by

c

∞∑

l=M+1

2(s0−s)l/2‖2(j+l)sΨ(2−(j+l))(ϕ′j+lf̂ )∨ |Lp(Rn)‖.(1.105)

Now, by (1.104) and (1.105), applying the ℓq-quasi-norm and because s0 − s < 0 we
obtain (1.101) for any value of 0 < p ≤ ∞. Recall that

(ϕ′mf̂ )
∨ = (|2−m · |s0χ(2−m·)[(ϕmf̂ )∨]∧)∨, m ∈ N,

where χ ∈ D(Rn) is as in (1.60). As a consequence of Theorem 1.5.2 of [Tri83, (13)], with
ν > n(1/min(p, 1)− 1/2), we have

‖(ϕ′mf̂ )∨ |Lp(Rn)‖ ≤ c‖|2 · |s0χ(2·) |Hν2 (Rn)‖ · ‖(ϕmf̂ )∨ |Lp(Rn)‖,
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where c is independent of m ∈ N. Applying this in (1.101) we obtain

(1.106)
( ∞∑

j=1

2sjqΨ(2−j)q
∥∥∥

∞∑

l=M+1

(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣Lp(Rn)

∥∥∥
q)1/q

≤ c2(s0−s)M/4‖f |B(s,Ψ)pq (R
n)‖.

From (1.39), (1.98) and (1.106), and using the quasi-triangular inequality in the space

ℓq(Lp), we get

( ∞∑

j=1

2sjqΨ(2−j)q‖k(2−j , f) |Lp(Rn)‖q
)1/q
≤ c‖f |B(s,Ψ)pq (R

n)‖.(1.107)

One can also prove that

‖k0(2−h, f) |Lp(Rn)‖ ≤ c′‖f |B(s,Ψ)pq (R
n)‖.(1.108)

With (1.107) and (1.108) we have proved one of the desired inequalities between the

quasi-norm (1.89) and ‖ · |B(s,Ψ)pq (Rn)‖.
Step 3. We prove the convergence on the right-hand side of (1.39) in some space Lr(R

n),

1 < r ≤ ∞. Let 1 ≤ p ≤ ∞. We can rewrite (1.100) as

(1.109)
∥∥∥

L∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣Lp(Rn)

∥∥∥

≤ c
L∑

l=M+1

2(s0−s)l(1 + l)b‖(2(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨ |Lp(Rn)‖,

with L > M . Using s0 − s < 0 and ℓq →֒ ℓ1 if 0 < q ≤ 1, or the Hölder inequality if
1 < q ≤ ∞, we conclude that if M is large enough then the right-hand side of (1.109)
can be estimated from above by

ε
( ∞∑

l=M+1

2slqΨ(2−l)q‖(ϕ′lf̂ )∨ |Lp(Rn)‖q
)1/q

,(1.110)

for given ε > 0. Since f ∈ B(s,Ψ)pq (Rn), as in Step 2,

( ∞∑

m=1

2smqΨ(2−m)q‖(ϕ′mf̂ )∨ |Lp(Rn)‖q
)1/q

<∞.

Therefore, by (1.109) and (1.110), we conclude that the right-hand side of (1.39) converges

in Lp(R
n), hence pointwise a.e. and also in S ′(Rn). If 0 < p < 1, we can rewrite (1.59) as

(1.111)
∣∣∣

L∑

l=M+1

2sjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(x)
∣∣∣

≤ c
L∑

l=M+1

2(s0−s)l(1 + l)b|(ǩ0(2−jz)|2−jz|2N−s02(j+l)sΨ(2−(j+l))ϕ′j+lf̂ )∨(x)|.

with L > M . Applying the L1-norm, using Fubini’s theorem and a suitable change of
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variables we get

(1.112)
∥∥∥

L∑

l=M+1

2sj Ψ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣L1(Rn)

∥∥∥

≤ c1
L∑

l=M+1

2(s0−s)l(1 + l)b
∥∥∥∥
(
ǩ0(2l·)
|2l · |s0 χ(·)

)∨ ∣∣∣∣L1(R
n)

∥∥∥∥

× ‖2(j+l)sΨ(2−(j+l))(ϕ′j+lf̂ )∨ |L1(Rn)‖

≤ c2
L∑

l=M+1

2(s0−s)l(1 + l)b‖2(j+l)sΨ(2−(j+l))(ϕ′j+lf̂ )∨ |L1(Rn)‖,

since

sup
l∈N0

∥∥∥∥
(
ǩ0(2l·)
|2l · |s0 χ(·)

)∨ ∣∣∣∣L1(R
n)

∥∥∥∥ <∞.

Let σ = s − σp. Then by Proposition 1.9(iv), we have the embedding B(s,Ψ)p,q (Rn) →֒
B
(σ,Ψ)
1,q (R

n). Putting s = σ + σp in (1.112), we have

(1.113)
∥∥∥

L∑

l=M+1

2σjΨ(2−j)(ǩ(2−j ·)ϕj+lf̂ )∨(·)
∣∣∣L1(Rn)

∥∥∥

≤ c
L∑

l=M+1

2(s0−σ)l(1 + l)b‖2(j+l)σΨ(2−(j+l))(ϕ′j+lf̂ )∨ |L1(Rn)‖.

Since from (1.99), σ > s0, there exists M large enough such that the right-hand side of

(1.113) can be estimated from above by

ε
( ∞∑

l=M+1

2σlqΨ(2−l)q‖(ϕ′lf̂ )∨ | L1(Rn)‖q
)1/q

for any given ε > 0. From the embedding mentioned below, and since f ∈ B(s,Ψ)pq (Rn)

(and using arguments as in Step 2) we have

( ∞∑

m=1

2σmqΨ(2−m)q‖(ϕ′mf̂ )∨ |L1(Rn)‖q
)1/q

<∞.

Hence the right-hand side of (1.39) converges in L1(R
n).

Step 4. Let f ∈ B(s,Ψ)pq (Rn). We now want to prove that ‖· |B(s,Ψ)pq (Rn)‖ can be estimated
from above by the quasi-norm in (1.89). We follow Step 4 of the proof for F

(s,Ψ)
pq (Rn).

We can rewrite everything from (1.75) up to (1.81), but now it will be sufficient that

0 < r < min(1, p). Since p/r ≥ 1, we apply in (1.81) the Lp/r-norm and use the scalar
Hardy–Littlewood maximal inequality as in [Tri83, 1.2.3/(4)]. Then we have

‖(ϕj f̂ )∨ |Lp(Rn)‖r ≤ c2Mn(1−r)‖(ǩ(ε2−j ·)φ(2−j)f̂ )∨ |Lp(Rn)‖r,(1.114)

always with k0 instead of k if j = 0. Multiplying (1.114) by 2
sjrΨ(2−j)r and applying
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the ℓq/r-quasi-norm we get

(1.115)
( ∞∑

j=0

2sjqΨ(2−j)q‖(ϕj f̂ )∨ |Lp(Rn)‖q
)1/q

≤ c2Mn(1/r−1)
( ∞∑

j=0

2sjqΨ(2−j)q‖(ǩ(ε2−j ·)φ(2−j)f̂ )∨ |Lp(Rn)‖q
)1/q

.

Because

ǩ(ε2−j ·)φ(2−j ·) = ǩ(ε2−j ·)− ǩ(ε2−j ·)(1− φ(2−j ·)), j ∈ N,

and by the quasi-triangular inequality in ℓq(Lp), (1.115) can be estimated from above by

(1.116) c2Mn(1/r−1)
( ∞∑

j=0

2sjqΨ(2−j)q‖(ǩ(ε2−j ·)f̂ )∨ |Lp(Rn)‖q
)1/q

+ c2Mn(1/r−1)
( ∞∑

j=0

2sjqΨ(2−j)q‖(ǩ(ε2−j ·)(1− φ(2−j ·))f̂ )∨ |Lp(Rn)‖q
)1/q

.

The first term in (1.116) is precisely what we want. The additional term in (1.116) can

be treated as in Step 2 and estimated from above by

c2Mn(1/r−1)2(s0−s)M/4‖f |B(s,Ψ)pq (R
n)‖.(1.117)

By (1.99), we may choose r such that

n

(
1

r
− 1
)
+
s0 − s
4

< 0.

Recall that the natural numberM is at our disposal. We can takeM so large that (1.117)

can be estimated from above by

1
2‖f |B

(s,Ψ)
pq (Rn)‖.

Applying this fact, (1.117) and (1.116) in (1.115) gives

‖f |B(s,Ψ)pq (R
n)‖ ≤ c‖(ǩ0(ε·)f̂ )∨ |Lp(Rn)‖(1.118)

+ c
( ∞∑

j=1

2sjqΨ(2−j)q‖(ǩ(ε2−j ·)f̂ )∨ |Lp(Rn)‖q
)1/q

.

As observed in the proof for F
(s,Ψ)
pq (Rn), one can take ε = 2−h, for some h ∈ N0 fixed. As

there, from (1.118) we come to

‖f |B(s,Ψ)pq (R
n)‖ ≤ c‖k0(2−h, f) |Lp(Rn)‖

+ c
( ∞∑

j=1

2sjqΨ(2−j)q‖(ǩ(2−j ·)f̂ )∨|Lp(Rn)‖q
)1/q

,

which completes the proof.

Remark 1.13. (i) If we replace k0 by the new function 2
hnk0(2

h·), then in (1.37) and
(1.89) there will appear simply ‖k0(1, f) |Lp(Rn)‖ instead of ‖k0(2−h, f) |Lp(Rn)‖.
(ii) If s < 0, then N = 0 is admitted in Theorems 1.10 and 1.12. That means that

only one kernel k0 = k = k
0 is sufficient.
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1.4. Atomic and subatomic decompositions. Recall that Zn stands for the lattice

of all points in R
n with integer components. Furthermore, Qνm denotes a cube in R

n

with sides parallel to the axes, centred at 2−νm = (2−νm1 . . . , 2−νmn), and with side
length 2−ν , where m = (m1, . . . ,mn) ∈ Zn and ν ∈ N0. If Q is a cube in Rn and r > 0

then rQ is the cube in Rn concentric with Q and with side length r times that of Q.

Definition 1.14. (i) Let K ∈ N0 and c > 1. A K times differentiable complex-valued

function a(x) in Rn (continuous if K = 0) is called a 1K-atom if

supp a ⊂ cQ0m for some m ∈ Z
n,(1.119)

|Dαa(x)| ≤ 1 for |α| ≤ K.(1.120)

(ii) Let s ∈ R, 0 < p ≤ ∞, Ψ an admissible function, K ∈ N0, L+ 1 ∈ N0 and c > 1.

A K times differentiable complex-valued function a(x) in Rn (continuous if K = 0) is

called an (s, p, Ψ)K,L-atom if for some ν ∈ N0,

supp a ⊂ cQνm for some m ∈ Z
n,(1.121)

|Dαa(x)| ≤ 2−ν(s−n/p)+|α|νΨ(2−ν)−1 for |α| ≤ K,(1.122)

and \
Rn

xβa(x) dx = 0 if |β| ≤ L.(1.123)

Note that Q0m is a cube with side length 1. If the atom a(x) is located at Qνm, i.e.,

supp a ⊂ cQνm with ν ∈ N0, m ∈ Z
n, c > 1,

then we write it aνm(x). The value of c > 1 in (1.119) and (1.121) is unimportant. It

simply makes it clear that at level ν some controlled overlapping of the supports of aνm(x)

must be allowed. The moment conditions (1.123) can be reformulated as

(Dβ â)(0) = 0 if |β| ≤ L,
which shows that a sufficiently strong decay of â(ξ) at the origin is required. If L = −1
then (1.123) simply means that there are no moment conditions. The reason for the

normalising factor in (1.120) and (1.122) is that there exists a constant c > 0 such that

for all these atoms we have ‖a |B(s,Ψ)pq (Rn)‖ ≤ c, ‖a |F (s,Ψ)pq (Rn)‖ ≤ c. Hence, atoms are
normalising building blocks satisfying some moment conditions.

We now introduce the sequence spaces bpq and fpq. If ν ∈ N0, m ∈ Zn and Qνm is

a cube as above let χνm be the characteristic function of Qνm. If 0 < p ≤ ∞ let χ(p)νm =
2νn/pχνm (with the obvious modification if p = ∞) be the Lp-normalised characteristic
function of Qνm, that is,

‖χ(p)νm |Lp(Rn)‖ = 1.
Definition 1.15. Let 0 < p, q ≤ ∞ and λ = {λνm ∈ C : ν ∈ N0, m ∈ Z

n}. Then

bpq =
{
λ : ‖λ | bpq‖ =

( ∞∑

ν=0

( ∑

m∈Zn

|λνm|p
)q/p)1/q

<∞
}
,(1.124)

fpq =
{
λ : ‖λ | fpq‖ =

∥∥∥
( ∞∑

ν=0

∑

m∈Zn

|λνmχ(p)νm(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥ <∞
}

(1.125)

(with the usual modification if p =∞ or/and q =∞).
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Remark 1.16. Observe that

‖λ | bpq‖ =
( ∞∑

ν=0

∥∥∥
∑

m∈Zn

λνm χ
(p)
νm(·)

∣∣∣Lp(Rn)
∥∥∥
q)1/q

;(1.126)

since the χ
(p)
νm’s have disjoint supports a.e., we see that the b and f quasi-norms are

obtained from each other by interchanging the Lp and ℓq quasi-norms (as in the B and

F case).

Proposition 1.17 [Tri97, 13.6, p. 75]. Let 0 < p, q ≤ ∞. Then bpq and fpq are quasi-
Banach spaces. Furthermore

bp,min(p,q) →֒ fpq →֒ bp,max(p,q),

and , in particular , bpp = fpp.

Recall the notations introduced in (1.36).

Theorem 1.18. (i) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function. Fix

K ∈ N0 and L+ 1 ∈ N0 with

K ≥ (1 + [s])+ and L ≥ max(−1, [σpq − s]).(1.127)

Then f ∈ S ′(Rn) belongs to F (s,Ψ)pq (Rn) if , and only if , it can be represented as

f =

∞∑

ν=0

∑

m∈Zn

λνmaνm(x) (convergence in S ′(Rn)),(1.128)

where aνm(x) are 1K-atoms (ν = 0) or (s, p, Ψ)K,L-atoms (ν ∈ N) and λ ∈ fpq. Further-
more

inf ‖λ | fpq‖,(1.129)

where the infimum is taken over all admissible representations (1.128), is an equivalent

quasi-norm in F
(s,Ψ)
pq (Rn).

(ii) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Fix K ∈ N0 and L+1 ∈ N0

with

K ≥ (1 + [s])+ and L ≥ max(−1, [σp − s]).(1.130)

Then f ∈ S ′(Rn) belongs to B(s,Ψ)pq (Rn) if , and only if , it can be represented as in

(1.128) where aνm(x) are 1K-atoms (ν = 0) or (s, p, Ψ)K,L-atoms (ν ∈ N) and λ ∈ bpq.
Furthermore

inf ‖λ | bpq‖,(1.131)

where the infimum is taken over all admissible representations (1.128), is an equivalent

quasi-norm in B
(s,Ψ)
pq (Rn).

We refer to the above theorem as the atomic decomposition theorem. For more refer-

ences to this subject we refer to [FrJ85], [FJW91], [Tri97] and [Far00], the first three deal-

ing with the usual Besov and Triebel–Lizorkin spaces and the latter with the anisotropic

case. A proof of Theorem 1.18 will be provided later on. Now we mention that the con-

vergence in S ′(Rn) of the right-hand side of (1.128) is ensured by the required properties
of the atoms involved and λ ∈ bpq or λ ∈ fpq. In particular, convergence in S ′(Rn) in
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(1.128) is not an additional assumption but a result. Before giving a precise statement of

this, we need the following lemma:

Lemma 1.19. Fix c ≥ 1 and ν ∈ N0. Then any x ∈ Rn belongs to at most N cubes

cQνm, m ∈ Zn, where N is independent of ν and m (it only depends on c and on the

dimension n).

Proof. For x ∈ Rn there surely exists m ∈ Zn such that x ∈ Qνm. Assume x ∈ cQνm′
for some m′ ∈ Zn. We have

|xi − 2−νmi| ≤ 2−ν−1 and |xi − 2−νm′i| ≤ c2−ν−1, i = 1, . . . , n.

This gives

|mi −m′i| ≤
c+ 1

2
, i = 1, . . . , n,

which means that m′ belongs to the cube centred at m and with side length c + 1. The
number of such m′ ∈ Zn is N = ([c] + 1)n.

Proposition 1.20. (i) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function.

Fix K ∈ N0 and L+1 ∈ N0 with (1.127). If aνm(x) are 1K-atoms (ν = 0) or (s, p, Ψ)K,L-

atoms (ν ∈ N) and λ ∈ fpq then
∞∑

ν=0

∑

m∈Zn

λνmaνm(x)(1.132)

converges in S ′(Rn).
(ii) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Fix K ∈ N0 and L+1 ∈ N0

with (1.130). If aνm(x) are 1K-atoms (ν = 0) or (s, p, Ψ)K,L-atoms (ν ∈ N) and λ ∈ bpq
then (1.132) converges in S ′(Rn).

Proof. By the above lemma, for fixed ν ∈ N0, we have only a controlled overlapping of

the supports of the atoms aνm. Therefore, the convergence in S ′(Rn) of (1.132) means

lim
µ→∞

µ∑

ν=0

( ∑

m∈Zn

λνmaνm

)

where, as can be seen through the proof, the inner sum causes no problem.

Step 1. We first prove (ii). We may assume L 6= −1, otherwise we have to modify a little
the following considerations, in particular using s > σp instead of L ≥ [σp − s]. Assume
first 1 ≤ p ≤ ∞ and let ϕ ∈ S(Rn). By Definition 1.14, in particular (1.123), and Taylor
expansion of ϕ up to order L with respect to the off-points 2−νm we obtain for fixed
ν ∈ N0,

(1.133)
\

Rn

∑

m∈Zn

λνmaνm(y)ϕ(y) dy =
\

Rn

∑

m∈Zn

λνm2
−ν(L+1)aνm(y)

×
(
ϕ(y)−

∑

|β|≤L

|Dβϕ(2−νm)|
β!

(y − 2−νm)β
)
2ν(L+1) dy.
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For an appropriate ξ lying on the line segment joining y and 2−νm we have the following
estimate for the last factor in (1.133):

(1.134)

∣∣∣∣ϕ(y)−
∑

|β|≤L

|Dβϕ(2−νm)|
β!

(y − 2−νm)β
∣∣∣∣2
ν(L+1)

≤
∑

|γ|=L+1

|Dγϕ(ξ)|
γ!

|y − 2−νm|L+12ν(L+1) ≤ c′1
∑

|γ|=L+1

|Dγϕ(ξ)|
γ!

.

In the last inequality, we have used |y−2−νm| ≤ √n c2−ν−1, due to y ∈ supp aνm ⊂ cQνm.
We also remark that ξ ∈ cQνm, and so |y − ξ| ≤

√
n c2−ν . Then some calculations show

that for any M > 0,

〈y〉M ≤ (3 + 2c2n)M/2〈ξ〉M .(1.135)

Using (1.135) in (1.134) we get

(1.136)

∣∣∣∣ϕ(y)−
∑

|β|≤L

|Dβϕ(2−νm)|
β!

(y − 2−νm)β
∣∣∣∣2
ν(L+1)

≤ c′2〈y〉−M sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|

where c′2 > 0 depends only onM , L, c and n. Because aνm is an (s, p, Ψ)K,L-atom, ν ∈ N,

we have

2−ν(L+1)|aνm(y)| ≤ 2νn/p2−ν(L+1+s)Ψ(2−ν)−1χ̃νm(y),(1.137)

where χ̃νm is the characteristic function of the cube cQνm. By the properties of admissible

functions (cf. Proposition 1.4(i),(iii)), for any ε > 0 there exists cε > 0 such that

Ψ(2−ν)−1 ≤ cε2εν , ν ∈ N0.(1.138)

Since L satisfies (1.130), we have L+1 > σp−s ≥ −s. We choose ε with 0 < ε < L+1+s.

With this choice, putting (1.138) in (1.137) we get

2−ν(L+1)|aνm(y)| ≤ cε2−νθ2νn/pχ̃νm(y)(1.139)

with θ = L+1+s−ε > 0. Applying (1.139) and (1.136) in (1.134), with p′ the conjugate
exponent of p, M chosen such that Mp′ > n/2 and using Hölder’s inequality we obtain

(1.140)
∣∣∣
\

Rn

∑

m∈Zn

λνmaνm(y)ϕ(y) dy
∣∣∣

≤ c12−νθ sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|

\
Rn

∑

m∈Zn

|λνm|2νn/pχ̃νm(y)〈y〉−M dy

≤ c22−νθ sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|

[ \
Rn

( ∑

m∈Zn

|λνm|2νn/pχ̃νm(y)
)p
dy
]1/p

≤ c22−νθ sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|

( \
Rn

2(p−1)N
∑

m∈Zn

|λνm|p2νnχ̃νm(y) dy
)1/p

≤ c32−νθ
( ∑

m∈Zn

|λνm|p
)1/p

sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|.
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We have used the above lemma, which tells us that each y ∈ Rn belongs to at most N

(only depending on c and n) cubes cQνm, m ∈ Z
n. Since θ > 0 and λ ∈ bp,q ⊂ bp,∞, by

(1.140) the convergence of (1.132) in S ′(Rn) is now clear.
Now let 0 < p < 1. Since L satisfies (1.130), we have L+ 1 > σp = n/p− n− s. The

value of ε in (1.138) is chosen so that 0 < ε < L+ 1 + s− n/p+ n. Then the substitute
of (1.139) in this case is

2−ν(L+1)|aνm(y)| ≤ cε2−νη2νnχ̃νm(y),(1.141)

where η = L+ 1 + s− n/p+ n− ε > 0. Applying (1.141) and (1.136) in (1.134), we get

(1.142)
∣∣∣
\

Rn

∑

m∈Zn

λνmaνm(y)ϕ(y) dy
∣∣∣

≤ c12−νη sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|

\
Rn

∑

m∈Zn

|λνm|2νnχ̃νm(y) 〈y〉−M dy

≤ c22−νη
( ∑

m∈Zn

|λνm|
)
sup
x∈Rn

〈x〉M
∑

|γ|≤L+1
|Dγϕ(x)|.

Since η > 0 and λ ∈ bp,q ⊂ b1,∞ (0 < p < 1), by (1.142) the convergence of (1.132) in

S ′(Rn) is clear.
Step 2. (i) follows from (ii), σpq ≥ σp and fp,q ⊂ bp,max(p,q).
In Theorem 1.18 no information is given about the possibility to obtain atomic decom-

positions in which the atoms are constructed with the help of dilations and translations

from one smooth function Φ having compact support. In order to present the subatomic

decomposition we need to introduce some special building blocks called quarks.

Definition 1.21. Let Φ ∈ S(Rn) be such that, for some d > 1,
suppΦ ⊂ dQ00 and

∑

m∈Zn

Φ(x−m) = 1 for x ∈ R
n.(1.143)

Let s ∈ R, 0 < p ≤ ∞, Ψ an admissible function, (L+ 1)/2 ∈ N0, β ∈ N
n
0 and Φ

β(x) =

xβΦ(x). Then

(βqu)Lνm(x) = 2
−ν(s−n/p)Ψ(2−ν)−1((−∆)(L+1)/2Φβ)(2νx−m)(1.144)

is called an (s, p, Ψ)L-β-quark related to Qνm. When L = −1, let (βqu)Lνm = (βqu)νm
denote an (s, p, Ψ)-β-quark.

The quarks are specialised atoms, as we prove in the next lemma.

Lemma 1.22. Let s ∈ R, 0 < p ≤ ∞, Ψ an admissible function, (L+ 1)/2 ∈ N0 and

β ∈ Nn0 . Up to normalising constants the (s, p, Ψ)L-β-quarks are (s, p, Ψ)K,L-atoms for

any K ∈ N0. Moreover , the normalising constants by which an (s, p, Ψ)L-β-quark must

be divided to become an (s, p, Ψ)K,L-atom can be estimated from above by c2
κ|β|, where c

and κ are positive constants independent of β (but may depend on K and L).

Proof. From (1.144) and (1.143), we get

supp (βqu)Lνm ⊂ {x ∈ R
n : 2νx−m ∈ suppΦ} ⊂ dQνm.(1.145)
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Now fix K ∈ N0 and let α ∈ Nn0 with |α| ≤ K. We have

|Dα(βqu)Lνm(x)| = 2−ν(s−n/p)+ν|α|Ψ(2−ν)−1|(Dα(−∆)(L+1)/2Φβ)(2νx−m)|.(1.146)

For any λ ∈ N
n
0 with |λ| ≤ K + L+ 1, Leibniz’s rule gives

(DλΦβ)(x) =
∑

γ≤λ

(
λ

γ

)
Dγ(xβ)(Dλ−γΦ)(x)

where

Dγ(xβ) =
β!

(β − γ)!x
β−γ for γ ≤ β,

while Dγ(xβ) = 0 if γi > βi for some i ∈ {1, . . . , n}. Moreover, for γ ≤ β,

β!

(β − γ)! =
n∏

j=1

βj !

(βj − γj)!
=
n∏

j=1

βj(βj − 1) . . . (βj − γj + 1) ≤ |β||γ| ≤ cε2ε|β|

for all ε > 0. Since

max
|δ|≤K+L+1

max
x∈dQ00

|DδΦ(x)| <∞,

using (1.145) we get

|(DλΦβ)(x)| ≤ c12ε|β|
∑

γ≤λ,γ≤β

(
λ

γ

) n∏

j=1

|xj |βj−γjχdQ00(x)(1.147)

≤ c12ε|β|
∑

γ≤λ,γ≤β

(
λ

γ

)
d|β|−|γ| ≤ c22(ε+log d)|β|,

where the positive constant c2 depends only on ε, K, L and Φ. We put (1.147) in (1.146)

to arrive at

|Dα(βqu)Lνm(x)| ≤ c32(ε+log d)|β|2−ν(s−n/p)+ν|α|Ψ(2−ν)−1(1.148)

with c3 independent of β (depending only on n, ε,K, L and Φ). By (1.144) and integration

by parts, it is obvious that\
Rn

xγ(βqu)Lνm(x) dx = 0 if |γ| ≤ L.(1.149)

By (1.145), (1.148) and (1.149) the proof is complete by taking κ > log d and c the

corresponding constant c3 in (1.148).

Below we will use the sequence spaces bpq and fpq with respect to the sequences

λβ = {λβνm ∈ C : ν ∈ N0, m ∈ Z
n}(1.150)

where now β ∈ Nn0 .

Theorem 1.23. (i) Let 0 < p < ∞, 0 < q ≤ ∞, Ψ an admissible function and s ∈ R be

such that

s > σpq.(1.151)
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There exists κ > 0 with the following property: let µ > κ; then f ∈ S ′(Rn) belongs to
F
(s,Ψ)
pq (Rn) if , and only if , it can be represented as

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x),(1.152)

convergence being in S ′(Rn), where (βqu)νm are (s, p, Ψ)-β-quarks and
sup
β∈Nn0

2µ|β|‖λβ | fpq‖ <∞.(1.153)

Furthermore, the infimum of (the left-hand side of ) (1.153) over all representations

(1.152) is an equivalent quasi-norm in F
(s,Ψ)
pq (Rn).

(ii) Let 0 < p, q ≤ ∞, Ψ an admissible function and s ∈ R be such that

s > σp.(1.154)

There exists κ > 0 with the following property: let µ > κ; then f ∈ S ′(Rn) belongs
to B

(s,Ψ)
pq (Rn) if , and only if , it can be represented as in (1.152), convergence being in

S ′(Rn), where (βqu)νm are (s, p, Ψ)-β-quarks and
sup
β∈Nn0

2µ|β|‖λβ | bpq‖ <∞.(1.155)

Furthermore, the infimum of (1.155) over all representations (1.152) is an equivalent

quasi-norm in B
(s,Ψ)
pq (Rn).

Remark 1.24. As for the atomic case, convergence of the subatomic sum (1.152) under

the assumptions (1.153) or (1.155) is always true, i.e. it is not a further requirement of the

theorem. Moreover, as we see below, in certain circumstances the convergence is really

nice.

I. We begin by studying the convergence of (1.152) for the situation described in (ii)

of the above theorem, i.e. 0 < p, q ≤ ∞, Ψ an admissible function, s > σp, (βqu)νm are

(s, p, Ψ)-β-quarks, µ > κ and

sup
β∈Nn0

2µ|β|‖λβ | bpq‖ <∞.

I.1. Let first p =∞. Then σp = 0 and so s > 0. Having in mind Lemma 1.22 we have

|f(x)| ≤ c1
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

|λβνm|2κ|β| 2−νsΨ(2−ν)−1 χ̃νm(x),

where χ̃νm is the characteristic function of the cube dQνm. Then, with µ > κ and using

Lemma 1.19, we get

|f(x)| ≤ c1
( ∑

β∈Nn0

2(κ−µ)|β|
)
sup
β∈Nn0

2µ|β|
( ∞∑

ν=0

∑

m∈Zn

|λβνm|2−νsΨ(2−ν)−1χ̃νm(x)
)

≤ c2 sup
β∈Nn0

2µ|β|
( ∞∑

ν=0

2−νsΨ(2−ν)−1 sup
m∈Zn

|λβνm|
)
.

If 0 < q < 1, we use ℓq →֒ ℓ1 and 2
−νsΨ(2−ν)−1 ≤ c for all ν ∈ N0 (consequence

of Proposition 1.4(i), (iii) and s > 0). If 1 ≤ q ≤ ∞, with q′ its conjugate exponent,
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we use the Hölder inequality and the convergence of the series
∑∞
ν=0 2

−νsq′Ψ(2−ν)−q
′

(guaranteed by Proposition 1.4(ii) and s > 0, with the usual modification if q′ =∞). In
both cases of q we arrive at

|f(x)| ≤ C sup
β∈Nn0

2µ|β|‖λβ | b∞q‖.

Therefore, for p = ∞, (1.152) converges pointwise uniformly and absolutely and f(x) is
a bounded uniformly continuous function in Rn.

I.2. Let 1 ≤ p < ∞. Then also σp = 0 and so s > 0. In a similar way to the case
above, for all ε > 0 we have

|f(x)| ≤ c1
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

|λβνm|2κ|β|2−ν(s−n/p)Ψ(2−ν)−1χ̃νm(x),

≤ c2 sup
β∈Nn0

2(κ+ε)|β|
∞∑

ν=0

∑

m∈Zn

|λβνm|2−ν(s−n/p)Ψ(2−ν)−1χ̃νm(x)

≤ c3 sup
β∈Nn0

sup
ν∈N0

sup
m∈Zn

2(κ+ε)|β|2−ν(s−n/p−ε)|λβνm|Ψ(2−ν)−1χ̃νm(x).

We choose ε so small that 0 < ε < min(µ− κ, s). We get

|f(x)|p ≤ c′1 sup
β∈Nn0

∞∑

ν=0

∑

m∈Zn

2(κ+ε)|β|p2−ν(s−ε)p+νnΨ(2−ν)−p|λβνm|pχ̃νm(x).

≤ c′2 sup
β∈Nn0

2µ|β|p
∞∑

ν=0

∑

m∈Zn

2−ν(s−ε)p+νnΨ(2−ν)−p|λβνm|pχ̃νm(x).

Integration gives

‖f |Lp(Rn)‖p ≤ c′3 sup
β∈Nn0

2µ|β|p
∞∑

ν=0

∑

m∈Zn

2−ν(s−ε)pΨ(2−ν)−p|λβνm|p.

If 0 < q ≤ p, we use ℓq/p →֒ ℓ1 and 2
−ν(s−ε)pΨ(2−ν)−p ≤ c for all ν ∈ N0 (consequence

of Proposition 1.4(i),(iii) and s > ε). If 0 < p < q, q/p > 1 with t its conjugate exponent,

we use Hölder’s inequality and the convergence of the series
∑∞
ν=0 2

−ν(s−ε)ptΨ(2−ν)−pt

(guaranteed by Proposition 1.4(ii) and s > ε). In both cases of q we arrive at

‖f |Lp(Rn)‖ ≤ C sup
β∈Nn0

2µ|β|‖λβ | bpq‖.

Therefore, for 1 ≤ p <∞, (1.152) converges in Lp(Rn).
I.3. Let 0 < p < 1. Then s > n/p− n > 0. For all µ > κ we have

|f(x)| ≤ c1
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

|λβνm|2κ|β|2−ν(s−n/p)Ψ(2−ν)−1χ̃νm(x),

≤ c2 sup
β∈Nn0

2µ|β|
∞∑

ν=0

∑

m∈Zn

|λβνm|2−ν(s−n/p)Ψ(2−ν)−1χ̃νm(x).
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Integration gives

‖f |L1(Rn)‖ ≤ c3 sup
β∈Nn0

2µ|β|
∞∑

ν=0

∑

m∈Zn

|λβνm|2−ν(s−n/p+n)Ψ(2−ν)−1.

Using arguments similar to the ones in I.2 we conclude that

‖f |L1(Rn)‖ ≤ C sup
β∈Nn0

2µ|β|‖λβ | bpq‖.

Therefore, for 0 < p < 1, (1.152) converges in L1(R
n).

II. The convergence of (1.152) for the situation described in (i) of the theorem above,

i.e. 0 < p < ∞, 0 < q ≤ ∞, Ψ an admissible function, s > σpq, (βqu)νm are (s, p, Ψ)-β-

quarks, µ > κ and

sup
β∈Nn0

2µ|β|‖λβ | fpq‖ <∞,

is covered by I if we have in mind that σpq ≥ σp and fpq ⊂ bp,max(p,q).

Remark 1.25. To show that f ∈ F (s,Ψ)pq (Rn) (respectively, f ∈ B(s,Ψ)pq (Rn)) can be de-

composed as (1.152) with (1.153) (respectively, (1.152) with (1.155)), we do not need the

assumptions (1.151) (respectively, (1.154)). These restrictions are needed to prove the

converse assertion.

Next we present the proof of (i) in Theorems 1.18 and 1.23. The proof of (ii) is

somewhat similar but technically simpler. Nevertheless, occasionally we say a word about

the modification corresponding to (ii).

Proof. Step 1 (if-part of atomic decomposition). The proof relies on the equivalent quasi-

norm in F
(s,Ψ)
pq (Rn) given by (1.37), and the underlying local means according to (1.32)–

(1.34), where N with 2N > s may be chosen arbitrarily large. We follow [Tri97, 13.8]

with appropriate modifications. Let aνm(x) with ν ∈ N0 and m ∈ Zn be an 1K-atom

(ν = 0) or an (s, p, Ψ)K,L-atom (ν ∈ N), where K and L are fixed integers satisfying

(1.127) such that we have (1.128) with λ ∈ fpq. For j ∈ N we have

2jsΨ(2−j)kN (2
−j , aνm)(x) = 2

jsΨ(2−j)
\

Rn

aνm(x+ 2
−jy)kN (y) dy(1.156)

= 2jsΨ(2−j)
\

Rn

aνm(x+ 2
−jy)(∆Nk0)(y) dy.

We have to distinguish between j ≥ ν and j < ν. The exceptional values ν = 0 and/or

j = 0 corresponding to 1K-atoms and the first summand in (1.37), respectively, can be

incorporated in the following considerations after necessary modifications. Assume in the

following that ν ∈ N and j ∈ N.

Let j ≥ ν. We put
aνm(y) = 2ν(s−n/p)Ψ(2−ν) aνm(2

−ν(y +m)).(1.157)

Then aνm(x) is a 1K-atom with respect to the unit cube at the origin. Let K = 2M with

M ∈ N0 for simplicity. The modifications necessary for K odd will be clear. We insert

(1.157) in (1.156), choose N > M , and obtain by partial integration
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(1.158) 2jsΨ(2−j)kN (2
−j , aνm)(x)

= 2jsΨ(2−j)2−ν(s−n/p)Ψ(2−ν)−1
\

Rn

aνm(2ν(x+ 2−jy)−m)(∆Nk0)(y) dy

= 2−(K−s)(j−ν)2nν/pΨ(2−j)Ψ(2−ν)−1

×
\

Rn

(∆N−Mk0)(y)(∆Maνm)(2νx−m+ 2ν−jy) dy.

Since both k0 and ∆Maνm have supports in a ball centred at the origin of some radius

c1 > 0, Proposition 1.4(vi) shows that

2jsΨ(2−j)|kN (2−j , aνm)(x)| ≤ c22−(K−s)(j−ν)(1 + j − ν)bχ̃(p)νm(x), j ≥ ν,(1.159)

where χ̃
(p)
νm(x) is the p-normalised characteristic function of the cube 4c1Qνm, c2 > 0 and

b ≥ 0 are constants independent of j and ν.
Let now j < ν and put again kN (y) = (∆

Nk0)(y). Then the integration in

2jsΨ(2−j) kN (2
−j , aνm)(x) = 2

jsΨ(2−j)2jn
\

Rn

kN (2
jy)aνm(x+ y) dy(1.160)

can be restricted to {y ∈ R
n : |y| ≤ c12

−j}. Furthermore with L given by (1.127) we
expand kN (2

jy) up to order L with respect to the off-point 2−νm− x and obtain
kN (2

jy) =
∑

|β|≤L
cβ(x)(y − 2−νm+ x)β + 2j(L+1)O(|y − 2−νm+ x|L+1).(1.161)

We insert (1.161) in (1.160). By (1.123) the terms with |β| ≤ L vanish. Since
|aνm(x+ y)| ≤ 2−ν(s−n/p)Ψ(2−ν)−1χ̃νm(x+ y),(1.162)

where χ̃νm(x) is the characteristic function of cQνm, we obtain

(1.163) 2jsΨ(2−j)|kN (2−j , aνm)(x)|
≤ 2(s+n)j2−ν(s−n/p)Ψ(2−j)Ψ(2−ν)−1

\
{y:|y|≤c12−j}

2j(L+1)χ̃νm(x+y)O(|y−2−νm+x|L+1) dy

≤ c32(s+n)j2−ν(s−n/p)Ψ(2−j)Ψ(2−ν)−12(j−ν)(L+1)
\

{y:|y|≤c12−j}

χ̃νm(x+ y) dy

≤ c′32(s+n)j2−ν(s−n/p)2(j−ν)(L+1)(1 + ν − j)b
\

{y:|y|≤c12−j}

χ̃νm(x+ y) dy.

The last inequality in (1.163) is justified by Proposition 1.4(vi). Recall that j < ν. The

integral in (1.163) is at most cn2−νn and it is zero if x is outside a cube c42ν−jQνm
(centred at 2−νm and with side length c42−j). Hence,\

|y|≤c12−j
χ̃νm(x+ y) dy ≤ cn2−νnχ(c42ν−jQνm)(x),(1.164)

where χ(c42
ν−j Qνm)(x) is the characteristic function of the indicated cube. For x ∈

c42
ν−jQνm we have

(Mχνm)(x) ≥ |c42ν−j Qνm|−1
\

c42ν−jQνm

χνm(y) dy ≥ c−n4 2−(ν−j)n.(1.165)
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Let 0 < w < min(1, p, q). From (1.165) and (1.164) we get\
{y:|y|≤c12−j}

χ̃νm(x+ y) dy ≤ cn12−νncn/w4 2(ν−j)n/w(Mχνm)
1/w(x)(1.166)

≤ c52−νn2(ν−j)n/w(Mχνm)
1/w(x), x ∈ R

n.

Replacing χνm in (1.166) by χ
(p)
νm and inserting the estimate (1.166) in (1.163) we obtain

(1.167) 2sjΨ(2−j)|kN (2−j , aνm)(x)|
≤ c2−(ν−j)(L+1+s+n−n/w)(1 + ν − j)b(Mχ(p)wνm )

1/w(x), x ∈ R
n.

Since L ≥ [σpq−s] the number w can be chosen in such a way that η = L+1+s+n−n/w
> 0. Hence

(1.168) 2sjΨ(2−j)|kN (2−j , aνm)(x)| ≤ c2−(ν−j)η(1 + ν − j)b(Mχ(p)wνm )
1/w(x), j < ν,

with η > 0. Combining (1.159) and (1.168) we obtain, for q ≤ 1,

(1.169)
∣∣∣2sjΨ(2−j)kN

(
2−j ,

∑

ν,m

λνmaνm

)
(x)
∣∣∣
q

≤ c
∑

ν≤j

∑

m

|λνm|q2−̺(j−ν)q(1 + j − ν)bqχ̃(p)qνm (x)

+ c′
∑

ν>j

∑

m

|λνm|q2−η(ν−j)q(1 + ν − j)bq(Mχ(p)wνm )
1/w(x)

for some ̺, η > 0. We sum over j, take the 1/q-power and afterwards the Lp(R
n)-quasi-

norm and arrive at

(1.170)
∥∥∥
( ∞∑

j=1

2jsqΨ(2−j)q
∣∣∣kN

(
2−j ,

∑

ν,m

λνm aνm

)
(x)
∣∣∣
q)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ c
∥∥∥
(∑

ν,m

|λνm|qχ̃(p)qνm (·)
)1/q ∣∣∣Lp(Rn)

∥∥∥

+ c
∥∥∥
(∑

ν,m

|λνm|q(Mχ(p)wνm )
q/w(·)

)1/q ∣∣∣Lp(Rn)
∥∥∥.

We have also used the convergence of the series
∞∑

k=0

2−ηkq(1 + k)bq and
∞∑

k=0

2−̺kq(1 + k)bq,

since η, ̺ > 0. The modification of (1.169) if 1 < q ≤ ∞ is clear, by the Hölder inequality.
Hence (1.170) holds for any 0 < q ≤ ∞. The first summand on the right-hand side is
just what we want, since χ̃

(p)
νm can be replaced by χ

(p)
νm. With gνm(x) = λνm χ

(p)
νm(x) the

second summand on the right-hand side can be written as

c
∥∥∥
(∑

νm

(Mgwνm)(·)q/w
)w/q ∣∣∣Lp/w(Rn)

∥∥∥
1/w

.(1.171)

Since 1 < q/w ≤ ∞ and 1 < p/w <∞ we can apply the vector-valued maximal inequality
of Fefferman and Stein (see [Tri92, 2.2.2, p. 89]). Then (1.171) can be estimated from
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above by

c
∥∥∥
(∑

ν,m

(gwνm(·))q/w
)w/q ∣∣∣Lp/w(Rn)

∥∥∥
1/w

= c‖λ | fpq‖.(1.172)

This gives the required estimate. As already mentioned, the terms with ν = 0 and/or

j = 0 are also covered by this technique. Thus we obtain

‖f |F (s,Ψ)pq (R
n)‖ ≤ c‖λ | fpq‖.

Let us just mention that in the corresponding proof of Step 1 for the B
(s,Ψ)
pq (Rn) spaces

it is sufficient that w satisfies 0 < w < min(1, p), since one only needs the scalar Hardy–

Littlewood maximal theorem which holds also for p = ∞ (see [Tri83, Remark 1.2.3,
p. 15]). This is the reason for the modification in (1.127) to (1.130).

Step 2 (only-if part of subatomic decomposition). Let f ∈ F (s,Ψ)pq (Rn). By (1.10) we have

f̂ =
∞∑

ν=0

ϕν f̂ (convergence in S ′(Rn)).(1.173)

Let Qν be the cube in Rn centred at the origin and with side length 2π2ν . In particular

we have suppϕν ⊂ Qν . We interpret ϕν f̂ as a periodic distribution and expand it in Qν
by

(ϕν f̂ )(ξ) =
∑

k∈Zn

bνk exp(−i2−νkξ), ξ ∈ Qν ,(1.174)

with

(1.175) bνk = (2π)
−n2−νn

\
Qν

(ϕν f̂ )(ξ) exp(−i2−νkξ) dξ = (2π)−n/22−νn(ϕν f̂ )∨(2−νk).

Let ̺ ∈ S(Rn) with ̺(x) = 1 if |x| ≤ 2 and supp ̺ ⊂ πQ00 and let ̺ν(ξ) = ̺(2−νξ),
ν ∈ N0. Then ̺ν(ξ) = 1 if ξ ∈ suppϕν and supp ̺ν ⊂ Qν . We multiply (1.174) by ̺ν and
extend it from Qν to Rn. Hence

(ϕν f̂ )
∨(x) =

∑

k∈Zn

bνk[exp(−i2−νk·)̺ν(·)]∨(x) =
∑

k∈Zn

dνk2
−ν(s−n/p) ˇ̺(2νx− k)(1.176)

with

dνk = (2π)
−n/22ν(s−n/p)(ϕν f̂ )

∨(2−νk).(1.177)

The entire function ˇ̺ ∈ S(Rn) can be extended from Rn to Cn. Furthermore, by the

Paley–Wiener–Schwartz theorem (see e.g. [Tri83, 1.2.1, p. 13]), for any λ > 0 and appro-

priate cλ > 0,

| ˇ̺(x+ iy)| ≤ cλec|y|(1 + |x|)−λ, x, y ∈ R
n.(1.178)

Iterative application of Cauchy’s representation theorem in the complex plane yields

ˇ̺(z1, . . . , zn) = (2πi)
−n

\
|ξ1−z1|=1

. . .
\

|ξn−zn|=1

ˇ̺(ξ1, . . . , ξn)

(ξ1 − z1) . . . (ξn − zn)
dξ1 . . . ξn,(1.179)

where zk ∈ C. By (1.178) we obtain

|Dα ˇ̺(x)| ≤ c′λα!(1 + |x|)−λ, x ∈ R
n,(1.180)
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where c′λ is independent of x ∈ Rn and α ∈ Nn0 . Let Φ be as in Definition 1.21 and let as

there Φβ(x) = xβ Φ(x) where β ∈ N
n
0 . With µ ∈ N0 fixed, from (1.176),

(ϕν f̂ )
∨(x) =

∑

k∈Zn

dνk2
−ν(s−n/p)

∑

m∈Zn

ˇ̺(2νx− k)Φ(2(ν+µ)x−m).(1.181)

We expand ˇ̺(2ν · −k) at the point 2−(ν+µ)m, where m ∈ Z
n and µ ∈ N0 are fixed. Then

we obtain

ˇ̺(2νx− k) =
∑

β∈Nn0

2ν|β|

β!
(Dβ ˇ̺)(2−µm− k)(x− 2−(ν+µ)m)β.(1.182)

Putting (1.182) in (1.181) gives

(ϕν f̂ )
∨(x) = 2−ν(s−n/p)

∑

k∈Zn

dνk
∑

m∈Zn

∑

β∈Nn0

2−µ|β|

β!
(Dβ ˇ̺)(2−µm− k)Φβ(2(ν+µ)x−m).

We insert this last equality in (1.173) to get

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

2µ(s−n/p)Ψ(2−(ν+µ))−12−(ν+µ)(s−n/p)Φβ(2(ν+µ)x−m)(1.183)

×
∑

k∈Zn

dνk
(Dβ ˇ̺)(2−µm− k)

β!
2−µ|β|Ψ(2−(ν+µ))

=
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβν+µ,m2
µ(s−n/p)(βqu)ν+µ,m(x),

where (βqu)ν+µ,m(x) are (s, p, Ψ)-β-quarks and

λβν+µ,m = 2
−µ|β|

∑

k∈Zn

dνk
(Dβ ˇ̺)(2−µm− k)

β!
Ψ(2−(ν+µ)) = 2−µ|β|ϑβν+µ,m.(1.184)

We may replace in (1.183) ν + µ by ν and obtain (1.152). As in (1.150) we denote by λβ

or ϑβ the collection of all respective coefficients in (1.184). We wish to prove that there

is cµ > 0 (independent of β) such that for all β ∈ N
n
0 ,

2µ|β|‖λβ | fpq‖ ≤ cµ‖f |F (s,Ψ)pq (R
n)‖.(1.185)

We prove (1.185) in two steps. On the one hand we prove the existence of a constant

c′ > 0, independent of β, such that

‖{dνkΨ(2−ν)}ν,k | fpq‖ ≤ c′‖f |F (s,Ψ)pq (R
n)‖,(1.186)

and on the other hand that there exists a constant c > 0, independent of β, such that

‖ϑβ | fpq‖ ≤ c‖{dνkΨ(2−ν)}ν,k | fpq‖.(1.187)

Let us begin the proof of (1.186). For fixed ν ∈ N0 we have
∑

k∈Zn

|dνkΨ(2−ν)χ(p)νk (x)|q ≤ (2π)−nq/22νsqΨ(2−ν)q
∑

k∈Zn

χνk(x)( sup
y∈Qνk

|(ϕν f̂ )∨(y)|)q

≤ (1 +√n)aq(2π)−nq/22νsqΨ(2−ν)q(ϕ∗νf)qa(x),
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since for x, y ∈ Qνk, |x − y| ≤
√
n 2−ν ,

∑
k∈Zn

χνk(x) = 1, and (ϕ
∗
νf)a is the Peetre

maximal function with a > n/min(p, q). It follows that
∞∑

ν=0

∑

k∈Zn

|dνkΨ(2−ν)χ(p)νk (x)|q ≤ c
′q
1

∞∑

ν=0

2νsqΨ(2−ν)q(ϕ∗νf)
q
a(x).

Now, using Theorem 1.7, we get

‖{dνkΨ(2−ν)}ν,k | fpq‖ ≤ c′1
∥∥∥
( ∞∑

ν=0

2νsqΨ(2−ν)q(ϕ∗νf)
q
a(x)

)1/q ∣∣∣Lp(Rn)
∥∥∥

≤ c′‖f |F (s,Ψ)pq (R
n)‖

with c′ > 0 independent of β, which completes the proof of (1.186).

Let us now prepare to show (1.187). Fix ν ∈ N0 and k ∈ Zn. Recall that by Proposition

1.4(vi),

Ψ(2−(ν+µ)) ≤ c(1 + µ)bΨ(2−ν).
By (1.180) there exists a positive constant c′′λ, independent of β (but may depend on µ,
λ and Ψ), with

|ϑβν+µ,m| ≤
∑

k∈Zn

|(Dβ ˇ̺)(2−µm− k)|
β!

|dνk|Ψ(2−(ν+µ))(1.188)

≤ c′′λ
∑

k∈Zn

(1 + |2ν(2−(ν+µ)m)− k)|)−λ|dνk|Ψ(2−ν).

We set xm = 2
−(ν+µ)m and let km ∈ Zn be such that xm ∈ Qν,km ; then clearly

|2νxm − km| ≤
√
n/2. We decompose Z

n into the sets

Ej = {k ∈ Z
n : 2j − 1 ≤ |k − km| ≤ 2j+1 − 1}, j ∈ N0.

If j ∈ N0 is fixed, for k ∈ Ej we have on the one hand
2j ≤ 1 + |k − km| ≤ 1 + |k − 2νxm|+ |2νxm − km| ≤ max(

√
n, 2)(1 + |2νxm − k|)

and so

(1 + |2νxm − k|)−λ ≤ c12−jλ,(1.189)

where c1 > 0 is independent of ν, k and m. On the other hand, if x ∈ Qν+µ,m and

y ∈ Qνk, then
|y − x| ≤ |y − 2−νk|+ 2−ν |k − km|+ |2−νkm − xm|+ |xm − x|(1.190)

≤ √n(1 + 2−µ−1)2−ν(1 + |k − km|) ≤ c22−ν+j

where c2 > 0 is independent of ν, k, m but may depend on µ and n. Choose now

0 < w < min(1, p, q). For a fixed ν ∈ N0 the cubes Qνk have volume 2
−νn and are

disjoint so that using the embedding ℓw →֒ ℓ1 and (1.190) we obtain

∑

k∈Ej
|dνk| ≤

( ∑

k∈Ej
|dνk|w

)1/w
=
(
2νn

\
|y−x|≤c22j−ν

( ∑

k∈Ej
|dνk|χνk(y)

)w
dy
)1/w

(1.191)

≤ c3
(
2jnM

( ∑

k∈Zn

|dνk|χνk
)w
(x)
)1/w
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for x ∈ Qν+µ,m, whereM stands for the Hardy–Littlewood maximal function and c3 is a
constant independent of ν, m, k. Using (1.191) and (1.189) in (1.188) and assuming that

λ > n/w is sufficiently large we have

(1.192) |ϑβν+µ,mχ(p)ν+µ,m(x)|
≤ c′′λ

∑

k∈Zn

(1 + |2νxm − k)|)−λ|dνk|Ψ(2−ν)2(ν+µ)n/pχν+µ,m(x)

≤ c4
∞∑

j=0

2−jλ
∑

k∈Ej
|dνk|Ψ(2−ν)2(ν+µ)n/pχν+µ,m(x)

≤ c5
∞∑

j=0

2−j(λ−
n
w )
(
M
( ∑

k∈Zn

|dνk|χ(p)νk
)w
(x)
)1/w

Ψ(2−ν)χν+µ,m(x)

≤ c6Ψ(2−ν)
(
M
( ∑

k∈Zn

|dνk|χ(p)νk
)w
(x)
)1/w

χν+µ,m(x)

where the constants above do not depend on ν, m but may depend on µ. In (1.192) we

take the q-power, sum over m ∈ Zn and then over ν ∈ N0 to get
∞∑

ν=0

∑

m∈Zn

|ϑβν+µ,mχ(p)ν+µ,m(x)|q ≤ cq6
∞∑

ν=0

(hwν (x))
q/w

where hν = Ψ(2
−ν)

∑
k∈Zn
|dνk|χ(p)νk (with the usual modification if q =∞). Taking the

1/q-power and the Lp-quasi-norm, and applying the Fefferman–Stein inequality, as in

[Tri92, 2.2.2, p. 89], since 1 < p/w <∞ and 1 < q/w ≤ ∞, we arrive at
‖ϑβ | fpq‖ ≤ c6 ‖M(hwν (·))1/w |Lp(ℓq)‖ = c6‖M(hwν (·)) |Lp/w(ℓq/w)‖1/w

≤ c‖hwν (·) |Lp/w(ℓq/w)‖1/w = c‖hν(·) |Lp(ℓq)‖ = c‖Ψ(2−ν)dνk | fpq‖,
which finishes the proof of (1.187). And so the only-if part of the subatomic decomposition

for F
(s,Ψ)
pq (Rn) is complete.

In what concerns the corresponding proof for B
(s,Ψ)
pq (Rn), one has to obtain analogous

inequalities to (1.186) and (1.187) (of course with bpq instead of fpq). The counterpart of

(1.186) can be proved using the arguments in [Tri97, 14.15, p. 102]. For the counterpart

of (1.187), one can use (1.126) and in the proof it is sufficient to choose 0 < w < min(1, p)

and use the scalar Hardy–Littlewood maximal inequality which holds also for p =∞ (see
[Ste70, 1.3, p. 5]).

Step 3 (only-if part of atomic decomposition). Let f ∈ F (s,Ψ)pq (Rn). First consider s > σpq
and fix K ∈ N0 and L = −1 satisfying (1.127). By Step 2,

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x),(1.193)

where (βqu)νm are (s, p, Ψ)-β-quarks and

sup
β∈Nn0

2µ|β|‖λβ | fpq‖ ≤ cµ‖f |F (s,Ψ)pq (R
n)‖(1.194)
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for any µ > 0. Let

aνm(x) =
∑

β∈Nn0

λβνm
Λνm
(βqu)νm(x), ν ∈ N0, m ∈ Z

n,(1.195)

with

Λνm = c
∑

β∈Nn0

|λβνm|2κ|β|(1.196)

(with the additional factor Ψ(1) on the right-hand side if ν = 0) with κ and c being

positive constants as in Lemma 1.22 (the constants are independent of β but may depend

on K, L and n). Then

f =

∞∑

ν=0

∑

m∈Zn

Λνmaνm(x).(1.197)

By straightforward calculations, using (1.145) and (1.148), aνm are (s, p, Ψ)K,−1-atoms
if ν ∈ N, and 1K-atoms if ν = 0. Finally, we will show that there exists a constant c > 0

such that

‖Λ | fpq‖ ≤ c‖f |F (s,Ψ)pq (R
n)‖,

where

Λ = {Λνm : ν ∈ N0, m ∈ Z
n}.

This will be done by showing that

‖Λ | fpq‖ ≤ c′ sup
β∈Nn0

2µ|β|‖λβ | fpq‖

for some µ > 0 sufficiently large.

If 0 < q < 1, then with q1 the conjugate exponent of 1/q and ̺ > κ, we have

(1.198)

∞∑

ν=0

∑

m∈Zn

|Λνmχ(p)νm(x)|q ≤ cq
∞∑

ν=0

∑

m∈Zn

∑

β∈Nn0

|λβνmχ(p)νm(x)|q2κ|β|q

≤ cq
( ∑

β∈Nn0

2(κ−̺)|β|qq1
)1/q1{ ∑

β∈Nn0

(
2̺|β|q

∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q
)1/q}q

≤ cq1
{ ∑

β∈Nn0

2̺|β|q
( ∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q
)1/q}q

.

Taking the 1/q-power of (1.198) gives

(1.199)
( ∞∑

ν=0

∑

m∈Zn

|Λνmχ(p)νm(x)|q
)1/q
≤ c1

∑

β∈Nn0

2̺|β|q
( ∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q
)1/q

.

Letting p = min(1, p), from (1.199) we get

∥∥∥
( ∞∑

ν=0

∑

m∈Zn

|Λνmχ(p)νm(x)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
p

≤ c1
∑

β∈Nn0

2̺|β|q
∥∥∥
( ∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥
p

.
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Hence, for any µ > ̺, we have

‖Λ | fpq‖ ≤ c2 sup
β∈Nn0

2µ|β|‖λβ | fpq‖.(1.200)

If 1 ≤ q ≤ ∞, let q′ be its conjugate exponent and ε > 0. Then

(1.201)

∞∑

ν=0

∑

m∈Zn

|Λνmχ(p)νm(x)|q

= cq
∞∑

ν=0

∑

m∈Zn

( ∑

β∈Nn0

2−ε|β|2(κ+ε)|β||λβνmχ(p)νm(x)|
)q

≤ cq
∞∑

ν=0

∑

m∈Zn

( ∑

β∈Nn0

2−ε|β|q
′

)q/q′ ∑

β∈Nn0

2(κ+ε)|β|q|λβνmχ(p)νm(x)|q

≤ cq2
∑

β∈Nn0

2(κ+ε)|β|q
∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q.

Taking the 1/q-power of (1.201), we obtain

( ∞∑

ν=0

∑

m∈Zn

|Λνmχ(p)νm(x)|q
)1/q
≤ c2

∑

β∈Nn0

2(κ+ε)|β|
( ∞∑

ν=0

∑

m∈Zn

|λβνmχ(p)νm(x)|q
)1/q

,(1.202)

which is analogous to (1.199); the rest follows as in case 0 < q < 1. So we get an inequality

as in (1.200) for µ > κ+ ε in this case.

Now let s ∈ R be arbitrary and fix K,L ∈ N0 satisfying (1.127). Choose M ∈ N such

that 2M > L. As remarked in [Tri97, 13.8, p. 80] we can change the lift described in

(1.26) to I2Mf = ((1 + |ξ|2M )f̂ )∨ with inverse
id + (−∆)M : F (s+2M,Ψ)pq (Rn)→ F (s,Ψ)pq (R

n).

So f ∈ F (s,Ψ)pq (Rn) can be represented as

f = g + (−∆)Mg with ‖f |F (s,Ψ)pq (R
n)‖ ∼ ‖g |F (s+2M,Ψ)pq (Rn)‖.(1.203)

We apply this argument to g with s+ 2M in place of s. Iteration yields

f = f1 + (−∆)Mf2 with f1 ∈ F (s+2jM,Ψ)pq (Rn), f2 ∈ F (s+2M,Ψ)pq (Rn),(1.204)

and

‖f1 |F (s+2jM,Ψ)pq (Rn)‖ ∼ ‖f |F (s,Ψ)pq (R
n)‖ ∼ ‖f2 |F (s+2M,Ψ)pq (Rn)‖,(1.205)

where j can be chosen arbitrarily large. We choose σ > K and iterate as indicated above

until the level j such that s + 2jM − n/p > σ. Hence, by Proposition 1.9, we have the

embeddings

F (s+2jM,Ψ)p,q (Rn) →֒ Bσ∞,∞(R
n) = Cσ(Rn),

and the inequalities

‖f1 | Cσ(Rn)‖ ≤ c‖f1 |F (s+2jM,Ψ)pq (Rn)‖ ≤ c′‖f |F (s,Ψ)pq (R
n)‖,
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where Cσ(Rn) is the Hölder–Zygmund space (see e.g. [Tri97, 10.5(iv)]). We decompose

f1(x) =
∑

m∈Zn

λ0ma0m(x)(1.206)

with

λ0m = c
′
1

∑

|α|≤K
sup

|y−m|≤√nd/2
|Dαf1(y)|, m ∈ Z

n,(1.207)

and

a0m(x) = λ
−1
0mΦ(x−m)f1(x),(1.208)

provided that λ0m 6= 0 (otherwise we set a0m = 0), where

c′1 = sup
x∈Rn

sup
|δ|≤K

|DδΦ(x)| sup
|α|≤K

sup
β≤α

(
α

β

)
,

Φ and d > 1 as in (1.143). It follows by straightforward calculations that a0m(x) are

1K-atoms. Note that s + 2M > σpq, due to the choice of M and to the fact that L

satisfies (1.127). Hence, as proved above in the first part of Step 3, f2 ∈ F (s+2M,Ψ)pq (Rn)

has an atomic decomposition

f2 =
∞∑

ν=0

∑

m∈Zn

Λνm aνm(x)

with aνm(x) being (s+ 2M,p, Ψ)K+2M,−1-atoms and

‖Λ | fpq‖ ≤ c ‖f2 |F s+2Mpq (Rn)‖.
So,

(−∆)Mf2 =
∞∑

ν=0

∑

m∈Zn

Λνm (−∆)Maνm(x).(1.209)

It can be easily seen that (−∆)Maνm(x) are (s, p, Ψ)K,L-atoms, where we use 2M > L.

Furthermore, we have

‖Λ | fpq‖ ≤ c‖f2 |F s+2Mpq (Rn)‖ ≤ c′‖f |F spq(Rn)‖.(1.210)

To complete this step we still have to prove the inequality
∥∥∥
( ∑

m∈Zn

|λ0mχ(p)0m(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥ ≤ c‖f |F (s,Ψ)pq (R
n)‖.

We have
∑

m∈Zn

|λ0mχ(p)0m(x)|q = c′q1
∑

m∈Zn

( ∑

|α|≤K
sup

|y−m|≤√nd/2
|Dαf1(y)|

)q
χ0m(x)

≤ c′2
∑

m∈Zn

∑

|α|≤K
( sup
|x−y|≤√nd

|Dαf1(y)|)qχ0m(x)

= c′2
∑

|α|≤K
( sup
|x−y|≤√nd

|Dαf1(y)|)q.
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Taking the 1/q-power of the last inequality and then the Lp-quasi-norm we get

(1.211)
∥∥∥
( ∑

m∈Zn

|λ0mχ(p)0m(x)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥

≤ c′3
∑

|α|≤K
‖ sup
|x−y|≤√nd

|Dαf1(y)| |Lp(Rn)‖

≤ c′4‖f1 |F (s+2jM,Ψ)pq (Rn)‖ ≤ c′5‖f |F (s,Ψ)pq (R
n)‖.

We have also made use of formula (13.62) of [Tri97, p. 81]. From (1.204), (1.206) and

(1.209)–(1.211) we get what we wanted.

Step 4 (if-part of subatomic decomposition). Assume that f ∈ S ′(Rn) satisfies (1.152)
and (1.153). We will show that f ∈ F (s,Ψ)pq (Rn) and

‖f |F (s,Ψ)pq (R
n)‖ ≤ c′ sup

β∈Nn0

2µ|β|‖λβ | fpq‖(1.212)

for some positive constant c′. We decompose the representation (1.152) as

f =
∑

β∈Nn0

fβ

with

fβ =

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x).(1.213)

Let K ∈ N with K > s and L = −1. By Lemma 1.22 the (s, p, Ψ)-β-quarks are
(s, p, Ψ)K,L-atoms multiplied by c2

κ|β|, where c, κ > 0 are independent of β. It follows by

Step 1 that (1.213) converges in S ′(Rn), fβ ∈ F (s,Ψ)pq (Rn) and

‖fβ |F (s,Ψ)pq (R
n)‖ ≤ c12κ|β|‖λβ | fpq‖,(1.214)

where c1, κ > 0 are independent of β. So, for µ > κ,

‖fβ |F (s,Ψ)pq (R
n)‖ ≤ c12(κ−µ)|β| sup

β∈Nn0

2µ|β|‖λβ | fpq‖.(1.215)

Applying the t-triangle inequality, where t = min(1, p, q), and using (1.215) we get
∥∥∥
∑

β∈Nn0

fβ
∣∣∣F (s,Ψ)pq (R

n)
∥∥∥ ≤

( ∑

β∈Nn0

‖fβ |F (s,Ψ)pq (R
n)‖t

)1/t

≤ c1
( ∑

β∈Nn0

2(κ−µ)t|β|
)1/t
sup
β∈Nn0

2µ|β|‖λβ | fpq‖

≤ c2 sup
β∈Nn0

2µ|β|‖λβ | fpq‖,

and this is just (1.212). We remark that in this step the restriction (1.151) was essential

for the use of atomic decomposition with no moment conditions on the atoms.

Remark 1.26. The coefficients λβνm depend linearly on f . This follows from (1.184) and

(1.177).
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We now state the subatomic decomposition for an arbitrary smoothness parameter s.

Corollary 1.27. (i) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function.

Fix σ ∈ R and L with (L+ 1)/2 ∈ N0 such that

σ > max(σpq, s) and L ≥ max(−1, [σpq − s]).(1.216)

Let (βqu)νm be (σ, p, Ψ)-β-quarks and let (βqu)
L
νm be (s, p, Ψ)L-β-quarks. There exists

κ > 0 with the following property: let µ > κ; then f ∈ S ′(Rn) belongs to F (s,Ψ)pq (Rn) if ,

and only if , it can be represented as

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x) + ̺
β
νm(βqu)

L
νm(x),(1.217)

convergence being in S ′(Rn), with
sup
β∈Nn0

2µ|β|(‖λβ | fpq‖+ ‖̺β | fpq‖) <∞.(1.218)

Furthermore, the infimum of (1.218) over all representations (1.217) is an equivalent

quasi-norm in F
(s,Ψ)
pq (Rn).

(ii) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Fix σ ∈ R and L with

(L+ 1)/2 ∈ N0 such that

σ > max(σp, s) and L ≥ max(−1, [σp − s]).(1.219)

Let (βqu)νm be (σ, p, Ψ)-β-quarks and let (βqu)
L
νm be (s, p, Ψ)L-β-quarks. There exists

κ > 0 with the following property: let µ > κ; then f ∈ S ′(Rn) belongs to B(s,Ψ)pq (Rn) if ,

and only if , it can be represented as in (1.217) and

sup
β∈Nn0

2µ|β|(‖λβ | bpq‖+ ‖̺β | bpq‖) <∞.(1.220)

Furthermore, the infimum of (1.220) over all representations (1.217) is an equivalent

quasi-norm in B
(s,Ψ)
pq (Rn).

Proof. We prove (i). Obvious modifications also prove (ii).

Step 1. Let f be represented by (1.217) with (1.218). Let

f1 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x),

and for fixed β ∈ Nn0 ,

fβ2 =
∞∑

ν=0

∑

m∈Zn

̺βνm(βqu)
L
νm(x).

Since from (1.218), supβ∈Nn0
2µ|β| ‖λβ | fpq‖ <∞ and (βqu)νm are (σ, p, Ψ)-β-quarks with

σ > σpq, by the if-part of Theorem 1.23(i) we find that f1 ∈ F (σ,Ψ)pq (Rn). Hence f1 ∈
F
(s,Ψ)
pq (Rn), because σ > s. On the other hand, by (1.218), for fixed β ∈ Nn0 , ̺

β ∈ fpq.
Moreover, (βqu)Lνm are (s, p, Ψ)K,L-atoms (for all K ∈ N0), multiplied by a constant not

greater than c2κ|β|, where c, κ > 0 do not depend on β (see Lemma 1.22). Since L satisfies
(1.216), by the if-part of Theorem 1.18(i) we get fβ2 ∈ F

(s,Ψ)
pq (Rn) and ‖fβ2 |F

(s,Ψ)
pq (Rn)‖ ≤
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c2κ|β|‖̺β | fpq‖, with c > 0 independent of β. Taking µ > κ and using the t-triangle

inequality with t = min(1, p, q) we get
∥∥∥
∑

β∈Nn0

fβ2

∣∣∣F (s,Ψ)pq (R
n)
∥∥∥ ≤ c1

( ∑

β∈Nn0

2κ|β|t‖̺β | fpq‖t
)1/t
≤ c2 sup

β∈Nn0

2µ|β|‖̺β | fpq‖.

Hence

f2 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

̺βνm(βqu)
L
νm(x)

belongs to F
(s,Ψ)
pq (Rn). Therefore, f = f1 + f2 ∈ F (s,Ψ)pq (Rn), and

‖f |F (s,Ψ)pq (R
n)‖ ≤ c sup

β∈Nn0

2µ|β|(‖λβ | fpq‖+ ‖̺β | fpq‖)

for any µ > 0 sufficiently large, and this completes the proof of the if-part of (i).

Step 2. We now prove the only-if part of (i). We use the lift described in Step 3 of the

proof of Theorem 1.18, i.e.

id+ (−∆)M : F (s+2M,Ψ)pq (Rn)→ F (s,Ψ)pq (R
n),

taking now M = (L+ 1)/2. Iteration yields that for f ∈ F (s,Ψ)pq (Rn), we have

f = f1 + (−∆)(L+1)/2f2(1.221)

with f1 ∈ F (s+j(L+1),Ψ)pq (Rn) and f2 ∈ F (s+L+1,Ψ)pq (Rn) (j ∈ N). We stop when j is such

that s + j(L + 1) > σ. So, we obtain the decomposition (1.221) with f1 ∈ F (σ,Ψ)pq (Rn).

Due to (1.216), σ > σpq and hence, in view of Theorem 1.23(i), f1 can be written as

f1 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm (βqu)νm(x)

with (βqu)νm being (σ, p, Ψ)-β-quarks and

sup
β∈Nn0

2µ1|β|‖λβ | fpq‖ <∞

for any µ1 > 0 sufficiently large. Since by (1.216), s + L + 1 > σpq, and also in view of

Theorem 1.23(i), we can write

f2 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

̺βνm (βqu)νm(x)

now with (βqu)νm being (s+ L+ 1, p, Ψ)-β-quarks and

sup
β∈Nn0

2µ2|β|‖̺β | fpq‖ <∞

for any µ2 > 0 sufficiently large. Then

(−∆)(L+1)/2f2 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

̺βνm(−∆)(L+1)/2(βqu)νm(x).

We only need to prove that (−∆)(L+1)/2(βqu)νm are (s, p, Ψ)L-β-quarks. In fact, we have
(βqu)νm(x) = 2

−(s+L+1−n/p)νΨ(2−ν)−1Φβ(2νx−m)
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and hence

(−∆)(L+1)/2(βqu)νm = 2−(s−n/p)νΨ(2−ν)−1((−∆)(L+1)/2Φβ)(2νx−m).
Furthermore,

sup
β∈Nn0

2µ|β|(‖λβ | fpq‖+ ‖̺β | fpq‖) <∞

for any µ > 0 sufficiently large, and the proof is complete.

In the following corollary we consider distributions with compact support.

Corollary 1.28. (i) Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R and Ψ an admissible function.

Let σ, L and κ as in Corollary 1.27(i). Let µ > κ. Then f ∈ S ′(Rn) with compact support
belongs to F

(s,Ψ)
pq (Rn) if , and only if , it can be represented as

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm ϕ(x)(βqu)νm(x) + ̺
β
νm(−∆)(L+1)/2[ϕ(βqu)∗νm](x),(1.222)

where ϕ ∈ S(Rn) is such that
ϕ(x) = 1 if x ∈ (supp f)ε and suppϕ ⊂ (supp f)2ε(1.223)

for some ε > 0, (βqu)νm are (σ, p, Ψ)-β-quarks , (βqu)
∗
νm are (s+ L+ 1, p, Ψ)L-β-quarks

and

sup
β∈Nn0

2µ|β|(‖λβ | fpq‖+ ‖̺β | fpq‖) <∞.(1.224)

Again, the infimum of (1.224) over all representations (1.222) is an equivalent quasi-norm

in F
(s,Ψ)
pq (Rn). If , in addition, s > σpq, then (1.222) and (1.224) can be replaced by

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm ϕ(x)(βqu)νm(x),(1.225)

where now (βqu)νm are (s, p, Ψ)-β-quarks , and

sup
β∈Nn0

2µ|β|‖λβ | fpq‖ <∞,(1.226)

respectively.

(ii) Let 0 < p, q ≤ ∞, s ∈ R and Ψ an admissible function. Let σ, L and κ be

as in Corollary 1.27(ii). Let µ > κ. Then f ∈ S ′(Rn) with compact support belongs to
B
(s,Ψ)
pq (Rn) if , and only if , it can be represented as in (1.222) with

sup
β∈Nn0

2µ|β|(‖λβ | bpq‖+ ‖̺β | bpq‖) <∞.(1.227)

Again, the infimum of (1.227) over all representations (1.222) is an equivalent quasi-norm

in B
(s,Ψ)
pq (Rn). If , in addition, s > σp, then (1.222) and (1.227) can be replaced by (1.225)

and

sup
β∈Nn0

2µ|β| ‖λβ | bpq‖ <∞,(1.228)

respectively.

Proof. We prove (i). Obvious modifications also prove (ii).
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Step 1. We start by proving the if-part. Let f be given by (1.222) with (1.224). For fixed

β ∈ N
n
0 , let

fβ1 =
∞∑

ν=0

∑

m∈Zn

λβνmϕ(x)(βqu)νm(x),(1.229)

fβ2 =

∞∑

ν=0

∑

m∈Zn

̺βνm(−∆)(L+1)/2[ϕ(βqu)∗νm](x).(1.230)

Some calculations, similar to the ones in the proof of Lemma 1.22, yield that up to nor-

malising constants, ϕ(βqu)νm and (−∆)(L+1)/2[ϕ(βqu)∗νm] are (σ, p, Ψ)K,−1-atoms and
(s, p, Ψ)K,L-atoms, respectively, for any K ∈ N0. Moreover, in both cases the constant by

which they have to be divided to become, respectively, a (σ, p, Ψ)K,−1 or an (s, p, Ψ)K,L-
atom can be estimated from above by c2κ|β|, where c, κ > 0 are independent of β. By
Theorem 1.18(i), as σ > σpq, we conclude that

fβ1 ∈ F (σ,Ψ)pq (Rn) and ‖fβ1 |F (σ,Ψ)pq (Rn)‖ ≤ c12κ|β| ‖λβ | fpq‖.
But σ > s, hence

fβ1 ∈ F (s,Ψ)pq (R
n) and ‖fβ1 |F (s,Ψ)pq (R

n)‖ ≤ c22κ|β| ‖λβ | fpq‖.
For any µ > κ and t = min(1, p, q), the t-triangle inequality yields

∥∥∥
∑

β∈Nn0

fβ1

∣∣∣F (s,Ψ)pq (R
n)
∥∥∥ ≤ c1

( ∑

β∈Nn0

2κ|β|t‖λβ | fpq‖t
)1/t

(1.231)

≤ c2 sup
β∈Nn0

2µ|β|‖λβ | fpq‖.

Also by Theorem 1.18(i),

fβ2 ∈ F (s,Ψ)pq (R
n) and ‖fβ2 |F (s,Ψ)pq (R

n)‖ ≤ c32κ|β|‖λβ | fpq‖,
and, in the same way, for all µ > κ,∥∥∥

∑

β∈Nn0

fβ1

∣∣∣F (s,Ψ)pq (R
n)
∥∥∥ ≤ c4 sup

β∈Nn0

2µ|β|‖λβ | fpq‖.(1.232)

By (1.222) and (1.229)–(1.232) we obtain

f ∈ F (s,Ψ)pq (R
n) and ‖f |F (s,Ψ)pq (R

n)‖ ≤ c sup
β∈Nn0

2µ|β|(‖λβ | fpq‖+ ‖̺β | fpq‖)

for µ > κ.

Step 2. We now prove the only-if assertion of (i). Let f ∈ F (s,Ψ)pq (Rn). We assume L 6= −1,
otherwise we can skip this first part of Step 2. Put I = L + 1 + ([σ − s] − L)+ and let
φk ∈ S(Rn), k = 1, . . . , I, be such that

φk(x) = 1 if x ∈ (supp f)kε/(2I) and suppφk ⊂ (supp f)(k+1)ε/(2I).(1.233)

In particular φk+1(x) = 1 for x in a neighbourhood of suppφk. We consider once more

the lift id+ (−∆)(L+1)/2. On the one hand we have
f = g1 + (−∆)(L+1)/2g1 with ‖f |F (s,Ψ)pq (R

n)‖ ∼ ‖g1 |F (s+L+1,Ψ)pq (Rn)‖,(1.234)

and on the other hand f = φ1 f . Hence
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f = φ1 g1 + φ1(−∆)(L+1)/2g1(1.235)

= φ1g1 + (−∆)(L+1)/2(φ1 g1) +
∑

|α|+|β|=L+1
|β|≤L

cα,β1 (D
αφ1)(D

βg1).

We denote the last summand in (1.235) by f1. We remark that f1 ∈ F (s+1,Ψ)pq (Rn) and

supp f1 ⊂ suppφ1. We can apply the same argument to f1 in place of f , with s + 1 in
place of s and using φ2 instead of φ1. Iteration yields

f = F1 + (−∆)(L+1)/2F2 with(1.236)

Fi ∈ F (s+L+1,Ψ)pq (Rn) and suppFi ⊂ suppφL+1, i = 1, 2.(1.237)

If s + L + 1 < σ, we have to apply the above kind of iteration to F1. Now [σ − s] − L
iterations will be enough and we get

f = H1 + (−∆)(L+1)/2H2 with(1.238)

H1 ∈ F (σ,Ψ)pq (Rn), H2 ∈ F (s+L+1,Ψ)pq (Rn), suppHi ⊂ (supp f)ε, i = 1, 2.(1.239)

By Theorem 1.23(i) for H1 ∈ F (σ,Ψ)pq (Rn) we have

H1 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm(βqu)νm(x),(1.240)

with (βqu)νm being (σ, p, ψ)-β-quarks and

sup
β∈Nn0

2µ1|β|‖λβ | fpq‖ <∞(1.241)

for any µ1 > 0 large. In the same way, by Theorem 1.23(i) and Remark 1.25, for H2 ∈
F
(s+L+1,Ψ)
pq (Rn) we have

H2 =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

̺βνm(βqu)
∗
νm(x),(1.242)

with (βqu)∗νm being (s+ L+ 1, p, ψ)-β-quarks and

sup
β∈Nn0

2µ2|β|‖̺β | fpq‖ <∞(1.243)

for any µ2 > 0 large. Thanks to (1.239), Hi = ϕHi, i = 1, 2. With this remark (1.222) is

a consequence of (1.238), (1.240) and (1.242). Moreover, (1.224) comes from (1.241) and

(1.243).

Step 3. The special case in (i) for s > σpq is an easy consequence of Theorem 1.23(i).

2. Function spaces on fractals

2.1. (d, Ψ)-sets

2.1.1. Introduction. The notion of a (d, Ψ)-set was introduced by D. Edmunds and

H. Triebel in [ET98, ET99] and it generalises the concept of a d-set.
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A closed non-empty subset Γ of Rn is called a d-set, for 0 < d ≤ n, if there exist a

Borel measure µ in R
n with suppµ = Γ and two positive constants c1 and c2 such that

c1r
d ≤ µ(B(γ, r)) ≤ c2rd(2.1)

for any closed ball B(γ, r) in R
n, centred at γ ∈ Γ and of radius r ∈ (0, 1). The notion

of a d-set occurs both in the theory of function spaces and in fractal geometry. We refer

to [JW84], [Mat95] and [Tri97], among others. Some self-similar fractals are outstanding

examples of d-sets. For instance, the ordinary (middle third) Cantor set in R1 is a d-set

for d = log 2/ log 3 (this example extends to generalised Cantor sets in Rn), and the von

Koch curve in R2 is a d-set for d = log 4/ log 3.

It is well known that the measure µ in (2.1) is even a Radon measure and that any

two such measures µ1 and µ2 related to a d-set Γ are equivalent (see e.g. Proposition 1 in

[JW84] on p. 30), in the sense that there are two positive constants c1 and c2 such that

c1µ1(A) ≤ µ2(A) ≤ c2µ1(A)(2.2)

for any Borel set A ⊂ Rn. One can get a canonical measure related to a d-set Γ by means

of the restriction to Γ of the usual d-dimensional Hausdorff measure. This paves the way

to proving that a d-set Γ with 0 < d < n has Hausdorff dimension d, dimH(Γ ) = d, and

Lebesgue measure zero, |Γ | = 0. We refer to proofs in [JW84, Chapter II, §1.2, pp. 30–33]
and [Tri97, Theorem 3.4, p. 5]. It is mentioned in [ET99, Remark 2.6, p. 86] that if Γ is

a (d, Ψ)-set with 0 < d ≤ n, then also
dimH(Γ ) = d and |Γ | = 0.(2.3)

As mentioned above, with the exception of the case d = n, this is the counterpart for

(d, Ψ)-sets of known results for d-sets. Our aim in this subsection is to give a proof of (2.3).

In particular, we prove that any two measures related to a (d, Ψ)-set are equivalent and

we find a canonical measure that, in this case, can be obtained by means of a generalised

Hausdorff measure.

2.1.2. Definition and properties of a (d, Ψ)-set

Definition 2.1. Let Γ be a non-empty closed subset of Rn.

(i) Let 0 < d < n and let Ψ be an admissible function. Then Γ is called a (d, Ψ)-set

if there exist a Radon measure µ on R
n, with suppµ = Γ , and two positive constants c1

and c2 such that

c1r
dΨ(r) ≤ µ(B(γ, r)) ≤ c2rdΨ(r)(2.4)

for any ball B(γ, r) in Rn centred at γ ∈ Γ and of radius r ∈ (0, 1).
(ii) Let Ψ be a decreasing admissible function with limr→0+ Ψ(r) = ∞. Then Γ is

called an (n, Ψ)-set if there is a Radon measure µ with the above properties and d = n

in (2.4).

Example 2.2. Obviously any d-set with 0 < d < n is a (d, Ψ)-set for Ψ = 1. For any

couple (d, Ψ) with 0 < d ≤ n and Ψ an admissible function (as in Definition 2.1(ii) if

d = n), there exists a (d, Ψ)-set. We refer to Proposition 2.8 of [ET99]. In the case of

d-sets, in which case Ψ(r) = 1, for any d with 0 < d < n there is even a self-similar

d-set as an attractor of a suitable family of contractions, or iterated function schemes;
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see [Tri97, §4], [Mat95, 4.13] and [Fal90, 9.1], among others. The examples of (d, Ψ)-sets
given in [ET99] (pseudo self-similar sets) are created in a similar way, but the dilation

factors of the contractions involved may vary from step to step.

Remark 2.3. In this remark we state some easy consequences of Definition 2.1.

(i) If Γ is a (d, Ψ)-set with 0 < d ≤ n, then the right-hand inequality of (2.4) is even
true for any γ ∈ R

n, but now with r ∈ (0, 1/2) and another constant c2. This follows
from the observation: given y ∈ R

n and r ∈ (0, 1/2), either B(y, r) ∩ Γ = ∅ which gives
µ(B(y, r)) = 0, or there exists γ ∈ B(y, r)∩ Γ which gives B(y, r) ⊂ B(γ, 2r), and hence
µ(B(y, r)) ≤ c2(2r)dΨ(2r) ≤ c3 rdΨ(r). We have used (2.4) and Proposition 1.4(v).
(ii) An immediate consequence of Proposition 1.4(v) is

µ(B(γ, 2r)) ≤ cµ(B(γ, r)), γ ∈ Γ, r ∈ (0, 1/2),
for some positive constant c.

(iii) The relation (2.4) also implies that, for some positive constant c, we have

µ(B(x, r)) ≤ crn, x ∈ R
n, r ≥ 1.

This follows because B(x, r) can be covered by c1r
n balls of radius 1/2.

(iv) In Definition 2.1 it is sufficient to assume that µ is a Borel measure. Then we can

easily prove that µ turns out to be a Radon measure.

Proposition 2.4. Let Γ be a (d, Ψ)-set in Rn with 0 < d ≤ n. Let µ1 and µ2 be two

Radon measures related to Γ according to (2.4). Then µ1 and µ2 are equivalent in the

sense described in (2.2).

Proof. Take an open set O with µ1(O) > 0 and let t be such that 0 < t < µ1(O). Since

µ1 is a Radon measure, there exists a compact set K with K ⊂ O and µ1(K) > t. We

can cover K ∩Γ by finitely many open balls B(γi, ri) ⊂ O, i ∈ I, with centres γi ∈ K ∩Γ
and arbitrarily small radius ri ∈ (0, 1/4). By a standard argument (see Lemma 7.3 of
[Rud87, p. 137]), we can choose a subcollection {B(γi, ri)}i∈I′ of {B(γi, ri)}i∈I , I ′ ⊂ I,

such that the balls B(γi, ri) with i ∈ I ′ are disjoint and
⋃

i∈I
B(γi, ri) ⊂

⋃

i∈I′
B(γi, 4ri).

We get

t < µ1(K) ≤ µ1
(⋃

i∈I
B(γi, ri)

)
≤ µ1

( ⋃

i∈I′
B(γi, 4ri)

)
≤
∑

i∈I′
µ1(B(γi, 4 ri))

≤ c1
∑

i∈I′
(4 ri)

dΨ(4ri) ≤ c2
∑

i∈I′
rdi Ψ(ri) ≤ c3

∑

i∈I′
µ2(B(γi, ri))

= c3µ2

( ⋃

i∈I′
B(γi, ri)

)
≤ c3µ2

(⋃

i∈I
B(γi, ri)

)
≤ c3µ2(O).

We have used the properties of µi, i = 1, 2, and Proposition 1.4(v). Letting t tend to

µ1(O) we conclude that µ1(O) ≤ c3 µ2(O). For an arbitrary Borel set E,
µi(E) = inf{µi(O) : O open, E ⊂ O}, i = 1, 2.
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But, for any open set O with E ⊂ O, we have µ1(E) ≤ µ1(O) ≤ c3µ2(O). Taking the

infimum over all such O we get µ1(E) ≤ c3µ2(E). Since we get an inequality in the other
direction in the same way, the proof is finished.

We can get a canonical measure related to a (d, Ψ)-set by means of a generalised

Hausdorff measure. Next we recall some facts concerning measure theory. We follow

[Mat95, §4.1,4.2] and [Tri97, §2].
Let F be a family of subsets of R

n and ζ a non-negative function on F with the
properties:

(I) For every δ > 0 there are Ej ∈ F such that Rn =
⋃∞
j=1Ej and diam(Ej) ≤ δ.

(II) For every δ > 0 there exists an E ∈ F such that ζ(E) ≤ δ and diam(E) ≤ δ.
For 0 < δ <∞ and A ⊂ R

n we define

ψδ(A) = inf
{ ∞∑

j=1

ζ(Ej) : A ⊂
∞⋃

j=1

Ej , diam(Ej) ≤ δ, Ej ∈ F
}
.(2.5)

Of course, ψδ(A) is monotone,

ψδ(A) ≤ ψε(A) when 0 < ε < δ <∞,(2.6)

and hence ψ = ψ(F , ζ), given by
ψ(A) = lim

δ→0
ψδ(A) = sup

δ>0
ψδ(A), A ⊂ R

n,(2.7)

makes sense. The measure ψ is the result of Carathéodory’s construction from ζ on F .
This kind of construction is also described extensively in [Fed69, 2.10]. Theorem 4.2 of

[Mat95, p. 55] and Theorem 2.3 of [Tri97, p. 3] state the following characterisation of the

measure ψ.

Theorem 2.5. (i) ψ is a Borel measure on Rn.

(ii) If the members of F are Borel sets , then ψ is a Borel regular measure on R
n.

(iii) If the members of F are Borel sets , and A is a ψ-measurable set with ψ(A) <∞,
then ψ|A is a Radon measure on R

n.

One way of constructing such a measure is by means of a non-negative function

h : R+0 → R
+
0 with h(0) = limt→0+ h(t) = 0, and F the family of all closed sets in Rn

(see e.g. [Fal90, 2.5, p. 33] and [Gar72, p. 58]). Note that, by (2.5)–(2.7), what matters

is the behaviour of h in a neighbourhood of 0. Then the function ζ defined by

ζ(E) = h(diam(E)), E ⊂ R
n,

satisfies (I) and (II) above. We denote the corresponding measure ψ by Λh. For h(t) = t
s,

0 ≤ s <∞, we get the usual s-dimensional Hausdorff measure, usually denoted by Hs.
It is known (see, for instance, [Tri97, 3.4, p. 5]) that a canonical measure related to a

d-set Γ , 0 < d ≤ n, is Hd|Γ , the restriction to Γ of the d-dimensional Hausdorff measure.
We prove that for a (d, Ψ)-set we get, in an analogous way, a related measure by means

of Λh, where

h(t) = tdΨ(t), 0 < t ≤ 1,(2.8)

and h(0) = limt→0+ h(t) = 0 (recall Proposition 1.4(iii)).
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In the special case of h(t) = ts, 0 ≤ s <∞, but with F , the family of all closed sets in
R
n, replaced by B, the family of all closed balls in R

n, we get the so-called s-dimensional

spherical measure Ss. The following relation is well known (cf. [Tri97, 2.5, p. 4]):
Hs(E) ≤ Ss(E) ≤ 2sHs(E), E ⊂ R

n.

Such type of relation is also true between the corresponding measures Λh and Sh, con-
structed by means of the same function h in (2.8), but with F or B, respectively.
Lemma 2.6. Let h be given by (2.8). There exists a positive constant c, only depending

on d and Ψ , such that

Λh(E) ≤ Sh(E) ≤ cΛh(E), E ⊂ R
n.(2.9)

Proof. The first inequality in (2.9) is obvious thanks to B ⊂ F . If we have a δ-covering,
0 < δ < 1/2, of E by closed sets {Ej}∞j=1, E ⊂

⋃∞
j=1Ej , then E ⊂

⋃∞
j=1Bj , where Bj

are closed balls of diameter 2 diamEj (see e.g. [Fed69, §2.10.41, p. 200]). Hence,
∞∑

j=1

h(diamBj) =
∞∑

j=1

(2 diamEj)
dΨ(2 diamEj) ≤ 2dC

∞∑

j=1

(diamEj)
dΨ(diamEj).

We have used Proposition 1.4(v). The last inequality implies Sh(E) ≤ 2dCΛh(E), and so
the proof is complete.

The following result relates the measures constructed from two different functions h

and g. We refer to [Gar72, Lemma 1.2].

Lemma 2.7. For any bounded set E, we have

Λh(E) ≤
(
lim sup
t→0+

h(t)

g(t)

)
Λg(E).

We are now ready to state and prove the following proposition:

Proposition 2.8. Let Γ be a (d, Ψ)-set on R
n with 0 < d ≤ n. Then the restriction to Γ

of the measure Λh, with h given by (2.8), satisfies (2.4), that is , Λh|Γ is a measure related
to the (d, Ψ)-set Γ .

Proof. Let µ denote a measure related to the (d, Ψ)-set Γ according to Definition 2.1. Let

γ ∈ Γ , 0 < r < 1 and define Γ (γ, r) = B(γ, r)∩ Γ . Let {Bj}∞j=1 be a countable family of
closed balls with radius rj < 1/2 which covers Γ (γ, r). We have

c1r
dΨ(r) ≤ µ(Γ (γ, r)) ≤ µ

( ∞⋃

j=1

Bj

)
≤
∞∑

j=1

µ(Bj) ≤ c2
∞∑

j=1

rdjΨ(rj).

However, by Lemma 2.6, for any ε > 0 the last sum is, for a suitable choice of {Bj}, less
than c3[ε+ Λh(Γ (γ, r))], where the constant c3 depends only on d and Ψ . This gives

Λh(Γ (γ, r)) ≥
c1
c3
rdΨ(r), γ ∈ Γ, 0 < r < 1,

which proves one of the desired inequalities. Now take 0 < t < Λh(Γ (γ, r)) and 0 < ε <

min(1−r, 1/16). We can cover Γ (γ, r) by finitely many open balls Sj ⊂ B(γ, r+ε), j ∈ I,
with centres in Γ (γ, r) and radius rj ≤ ε. We can choose a disjoint subcollection {Bj}j∈I′
of {Sj}j∈I , I ′ ⊂ I, such that

⋃
j∈I Sj ⊂

⋃
j∈I′ B

′
j , where B

′
j is the ball concentric with
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Bj whose radius is four times the radius rj of Bj (see Lemma 7.3 in [Rud87, p. 137]).

Since Γ (γ, r) ⊂ ⋃j∈I Sj ⊂
⋃
j∈I′ B

′
j we get

t <
∑

j∈I′
(8rj)

dΨ(8rj)(2.10)

if ε > 0 is small enough. On the other hand, by the properties of µ, we have

c1
∑

j∈I′
rdjΨ(rj) ≤

∑

j∈I′
µ(Bj) = µ

( ⋃

j∈I′
Bj

)
≤ µ(B(γ, r+ε)) ≤ c2(r+ε)dΨ(r+ε).(2.11)

By Proposition 1.4(v), we have Ψ(8rj) ≤ c3Ψ(rj) provided that rj ≤ ε ≤ 1/16. This
together with (2.10) and (2.11) gives t ≤ c3 (r + ε)

dΨ(r + ε) if ε > 0 is small enough.

Letting ε tend to zero we obtain

t ≤ c3rd lim
ε→0+

Ψ(r + ε) ≤ c4rdΨ(r).(2.12)

Letting t tend to Λh(Γ (γ, r)) we get Λh(Γ (γ, r)) ≤ c4rdΨ(r), which completes the proof, if
we show the last inequality in (2.12). Note that the monotonicity of Ψ yields the existence

of limε→0+ Ψ(r + ε). If the admissible function Ψ is decreasing then limε→0+ Ψ(r + ε) ≤
Ψ(r). Otherwise, if Ψ is increasing, then limε→0+ Ψ(r + ε) ≤ c5Ψ(r), for some positive

constant c5, independent of r. In fact:

• If 0 < r < 1/2, there is j ∈ N such that 2−2j ≤ r ≤ 2−j ; then
lim
ε→0+

Ψ(r + ε) ≤ Ψ(2−j) ≤ cΨ(2−2j) ≤ c Ψ(r).

• If 1/2 < r < 1, then

lim
ε→0+

Ψ(r + ε) ≤ Ψ(1) ≤ Ψ(1)

Ψ(2−1)
Ψ(r).

From Propositions 2.8 and 2.4 it makes sense, up to equivalence, to speak about the

measure associated with a (d, Ψ)-set Γ , having always in mind Λh|Γ .

Corollary 2.9. Let Γ be a (d, Ψ)-set in Rn with 0 < d ≤ n. Then
dimH(Γ ∩B(γ, r)) = d

for any γ ∈ Γ and r > 0.
Proof. Let first 0 < r < 1. By Proposition 2.8 we know that 0 < Λh(Γ ∩ B(γ, r)) < ∞.
For s > d, using Lemma 2.7 (Ψ−1 is also an admissible function, by Proposition 1.4(i)),
we have

Hs(Γ ∩B(γ, r)) ≤
(
lim sup
t→0+

ts

tdΨ(t)

)
Λh(Γ ∩B(γ, r)),

and by Proposition 1.4(iii), we get Hs(Γ ∩ B(γ, r)) = 0. In an analogous way, for s < d

we have

0 < Λh(Γ ∩B(γ, r)) ≤
(
lim sup
t→0+

tdΨ(t)

ts

)
Hs(Γ ∩B(γ, r)),

and hence Hs(Γ ∩B(γ, r)) =∞. Therefore, by the definition of Hausdorff dimension,
dimH(Γ ∩B(γ, r)) = inf{s ≥ 0 : Hs(Γ ∩B(γ, r)) = 0} = d.
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Now consider the case r ≥ 1. We can cover B(γ, r) by crn balls of radius 1/4, say
{B(xi, 1/4)}cr

n

i=1. It can happen that Γ∩B(xi, 1/4) = ∅, or there exists γi ∈ B(xi, 1/4)∩Γ ,
which implies

Γ ∩B(xi, 1/4) ⊂ Γ ∩B(γi, 1/2),
and then

Γ ∩B(γ, 1/2) ⊂ Γ ∩B(γ, r) ⊂
crn⋃

i=1

Γ ∩B(γi, 1/2).

By the properties of the Hausdorff dimension (cf. [Mat95, p. 59]), and the first part of

the proof, we obtain

d ≤ dimH(Γ ∩B(γ, r)) ≤ sup
i=1,...,crn

dimH(Γ ∩B(γi, 1/2)) = d.

Therefore dimH(Γ ∩B(γ, r)) = d for any γ ∈ Γ and r > 0, and the proof is complete.
Proposition 2.8 and Corollary 2.9 with the additional assumption on the boundedness

of Γ enable us to prove (2.3).

Corollary 2.10. If Γ is a compact (d, Ψ)-set in R
n with 0 < d ≤ n, then

dimH(Γ ) = d and |Γ | = 0.
Proof. Obviously we can write

Γ =
⋃

z∈Zn

B(z,
√
n ) ∩ Γ.

Only for finitely many z ∈ Zn do we have B(z,
√
n) ∩ Γ 6= ∅. If that is the case, there

exists γ ∈ B(z,√n) ∩ Γ , which implies Γ ∩ B(z,√n) ⊂ Γ ∩ B(γ, 2√n). Hence, we can
even write

Γ =
N⋃

j=1

B(γj , 2
√
n) ∩ Γ

with γj ∈ Γ and some N ∈ N. By Corollary 2.9, it follows that

dimH(Γ ) = sup
j=1,...,N

dimH(B(γj , 2
√
n)) = d.

For the second part of the proof, we need to recall the equality Hn = cLn, where c is
some positive constant and Ln denotes the Lebesgue measure in R

n (see [Fed69, 2.10.35,

p. 197]). If d < n, since dimH(Γ ) = d, we have Hn(Γ ) = 0, and so Ln(Γ ) = |Γ | = 0.
If d = n we will also prove that Hn(Γ ) = 0, but in this case this is not an immediate
consequence of dimH(Γ ) = n. It is important that Γ is compact. In fact, since Γ is

bounded, we have Γ ⊂ B(O,R) for some R > 1. Then with h as in (2.8), by Proposition

2.8 and Remark 2.3(iii), we have

Λh(Γ ) ≤ Λh(B(O,R)) ≤ cRn <∞.(2.13)

By Lemma 2.7, we get

Hn(Γ ) ≤
(
lim sup
t→0+

tn

tnΨ(t)

)
Λh(Γ ).(2.14)
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But, by Definition 2.1(ii), limt→0+ Ψ(t) = +∞. This, together with (2.13) and (2.14),
gives Hn(Γ ) = 0 = |Γ |. Hence, also in the case d = n we get |Γ | = 0.

2.2. Spaces on (d, Ψ)-sets

2.2.1. Lp(Γ ) as spaces of distributions. In this subsubsection we always assume that

Γ is a compact (d, Ψ)-set in R
n. As pointed out in the previous subsection, the Radon

measure µ related to the (d, Ψ)-set Γ is unique up to equivalence and we can always think

of µ as being the measure Λh|Γ described in 2.1.2. If 0 < p ≤ ∞, then Lp(Γ ) is the usual
complex quasi-Banach space (Banach space if p ≥ 1) with respect to the related Radon
measure µ, quasi-normed by

‖f |Lp(Γ )‖ =
(\
Γ

|f(γ)|p µ(dγ)
)1/p

(2.15)

(with the usual modification if p =∞).
Any fΓ ∈ Lp(Γ ) with 1 ≤ p ≤ ∞ can be interpreted as a (uniquely determined)

tempered distribution f ∈ S ′(Rn) given by
f(ϕ) =

\
Γ

fΓ (γ)ϕ|Γ (γ)µ(dγ), ϕ ∈ S(Rn),(2.16)

where ϕ|Γ is the pointwise trace of ϕ on Γ . The interpretation (2.16) paves the way for

the identification of some spaces Lp(Γ ) with suitable subspaces of some spaces B
(s,Ψ)
pq (Rn)

which will be introduced now.

Definition 2.11. Let Γ be a non-empty closed subset of Rn with |Γ | = 0. Suppose that
0 < p, q ≤ ∞, s ∈ R and Ψ is an admissible function. Then

B(s,Ψ),Γpq (Rn) = {f ∈ B(s,Ψ)pq (R
n) : f(ϕ) = 0 if ϕ ∈ S(Rn) and ϕ|Γ = 0}.(2.17)

This definition generalises Definition 17.2 of [Tri97] and coincides essentially with

Definition 2.14 of [ET99]. If f ∈ B(s,Ψ),Γpq (Rn), then

supp f ⊂ Γ.(2.18)

However, the assertion (2.18) is necessary for f ∈ B(s,Ψ),Γpq (Rn) but not sufficient (for

an example see [Tri97, p. 126]). We also refer to [Bri00], where moreover certain type of

sets Γ are described for which the above condition turns out to be both sufficient and

necessary.

Since |Γ | = 0 the spaces B(s,Ψ),Γpq (Rn) are trivial if B
(s,Ψ)
pq (Rn) is a subset of Lloc1 (R

n).

In other words, in any case, with the exception of the zero distribution, B
(s,Ψ),Γ
pq (Rn)

consists of singular distributions. Recall that for ε > 0, by Proposition 1.9, we have

B(s+ε,Ψ)pq (Rn) →֒ Bspq(R
n)

and on the other hand (see e.g. [RuS96, 2.2.4]),

Bspq(R
n) →֒ Lloc1 (R

n)

provided that s > σp (recall the notation in (1.36)). Hence, B
(s,Ψ),Γ
pq (Rn) is trivial if

0 < p, q ≤ ∞, Ψ is an admissible function and s > σp.

Analogously to (2.17) one can introduce the corresponding spaces F
(s,Ψ),Γ
pq (Rn).
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Having in mind the identification specified in (2.16), we have the following:

Proposition 2.12. Let Γ be a compact (d, Ψ)-set in Rn with 0 < d ≤ n. Let 1 ≤ p ≤ ∞
and denote by p′ its conjugate exponent. Then

Lp(Γ ) ⊂ B(−(n−d)/p
′,Ψ−1/p

′

),Γ
p,∞ (Rn).(2.19)

Proof. This proof is adapted from the proof of Theorem 18.2 in [Tri97]. Let fΓ ∈
Lp(Γ ) with 1 ≤ p ≤ ∞ and let f ∈ S ′(Rn) be given by (2.16). We show that f ∈
B
(−(n−d)/p′,Ψ−1/p′ ),Γ
p,∞ (Rn) and

‖f |B(−(n−d)/p′,Ψ−1/p
′

),Γ
p,∞ (Rn)‖ ≤ c ‖fΓ |Lp(Γ )‖

for some c > 0 which is independent of fΓ . Let k be a suitable kernel according to

Theorem 1.12. Using Hölder’s inequality we get

|k(2−j , f)(x)|=2jn
∣∣∣∣
\
Γ

fΓ (γ)k

(
γ − x
2−j

)
µ(dγ)

∣∣∣∣(2.20)

≤2jn
(\
Γ

|fΓ (γ)|p
∣∣∣∣k
(
γ−x
2−j

)∣∣∣∣µ(dγ)
)1/p(\

Γ

∣∣∣∣k
(
γ − x
2−j

)∣∣∣∣µ(dγ)
)1/p′

.

Since supp k ⊂ {ξ ∈ R
n : |ξ| ≤ 1}, the second integral on the right-hand side of (2.20)

can be restricted over Γ ∩B(x, 2−j). Since Γ is a (d, Ψ)-set, it follows that
µ(Γ ∩B(x, 2−j)) ≤ c2−jdΨ(2−j), j ∈ N.

Moreover supx∈Rn |k(x)| <∞. Then
(2.21) |k(2−j , f)(x)|

≤ c2j(n−d/p′)Ψ(2−j)1/p′
(\
Γ

|fΓ (γ)|p
∣∣∣∣k
(
γ − x
2−j

)∣∣∣∣µ(dγ)
)1/p

, j ∈ N.

From (2.21) using Fubini’s theorem and a suitable change of variables, we get\
Rn

|k(2−j , f)(x)|p dx ≤ c2jp(n−d/p′)Ψ(2−j)p/p′
\

Rn

\
Γ

|fΓ (γ)|p
∣∣∣∣k
(
γ − x
2−j

)∣∣∣∣µ(dγ) dx

≤ c2jp(n−d/p′)Ψ(2−j)p/p′
\
Γ

|fΓ (γ)|p µ(dγ)
\

Rn

2−jn|k(y)| dy

= c′2jp(n−d)/p
′

Ψ(2−j)p/p
′

\
Γ

|fΓ (γ)|p µ(dγ).

Taking the 1/p-power, we obtain

‖k(2−j , f)(·) |Lp(Rn)‖ ≤ c2j(n−d)/p
′

Ψ(2−j)1/p
′‖fΓ |Lp(Γ )‖, j ∈ N.

Hence

sup
j∈N0

2j−(n−d)/p
′

Ψ(2−j)−1/p
′‖k(2−j , f)(·) |Lp(Rn)‖ ≤ c‖fΓ |Lp(Γ )‖,

because the term corresponding to j = 0 can be treated in a similar way. Moreover it

is obvious that (2.16) implies f(ϕ) = 0 for any ϕ in S(Rn) with ϕ|Γ = 0. Therefore
f ∈ B(−(n−d)/p

′,Ψ−1/p
′

),Γ
p,∞ (Rn), and the proof is complete.
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Remark 2.13. The proposition above is included in Theorem 2.16 of [ET99], which gen-

eralises Theorem 18.2 of [Tri97] from d-sets to (d, Ψ)-sets. Concerning Theorem 2.16 in

[ET99] it is moreover stated that the inclusion (2.19) can be replaced by equality if p > 1

and either (i) d < n or (ii) d = n and
∑∞
j=0 Ψ(2

−j)−1/p
′

< ∞. For a detailed proof of
this fact see also [Bri00]. Concerning the special case of the last proposition

L1(Γ ) ⊂ B(0,Ψ
0),Γ

1,∞ (Rn) = B0,Γ1,∞(R
n),

we refer for further comments to [Tri97, 18.3].

2.2.2. Traces. First we recall what is meant by traces. Let Γ be a compact set in R
n

and let µ be a Radon measure on Rn with suppµ = Γ . Of course, Lp(Γ ) are the related

Lp-spaces. Let trΓ ϕ = ϕ|Γ be the pointwise trace of ϕ ∈ S(Rn) on Γ . Suppose that for
some space B

(s,Ψ)
pq (Rn) with max(p, q) < ∞, there exists a constant c > 0 such that for

all ϕ ∈ S(Rn),
‖trΓ ϕ |Lp(Γ )‖ ≤ c‖ϕ |B(s,Ψ)pq (R

n)‖.(2.22)

Due to max(p, q) <∞, S(Rn) is dense in B(s,Ψ)pq (Rn), hence the definition of trΓ on the

whole space B
(s,Ψ)
pq (Rn) is a matter of completion. The statement

Lp(Γ ) = trΓ B
(s,Ψ)
pq (R

n)

should be understood in the sense that any fΓ ∈ Lp(Γ ) is the trace on Γ of some

g ∈ B(s,Ψ)pq (Rn) and ‖fΓ |Lp(Γ )‖ is equivalent to

inf{‖g |B(s,Ψ)pq (R
n)‖ : trΓ g = fΓ }.

Proposition 2.14. Let Γ be a compact (d, Ψ)-set in Rn with 0 < d ≤ n. Then

trΓ B
((n−d)/p,Ψ1/p)
pq (Rn) →֒ Lp(Γ )(2.23)

for 0 < p <∞ and 0 < q ≤ min(1, p).

Proof. We modify Step 1 of the proof of Theorem 18.6 in [Tri97, p. 139]. Let ϕ ∈ S(Rn).
Obviously ϕ ∈ B((n−d)/p,Ψ

1/p)
pq (Rn), and by Theorem 1.18(ii) we can write

ϕ =
∞∑

ν=0

∑

m∈Zn

λνmaνm in S ′(Rn),

where the sequence λ={λνm : ν∈N0, m ∈ Zn}∈bpq , and aνm are ((n− d)/p, p, Ψ1/p)K,L-
atoms for some K ∈ N0, L+ 1 ∈ N0. In particular,

‖λ | bpq‖ ≤ c‖ϕ |B((n−d)/p,Ψ
1/p)

pq (Rn)‖,(2.24)

where c is a positive constant independent of ϕ. Moreover, for ν ∈ N and m ∈ Zn,

|aνm(x)| ≤ 2νd/pΨ(2−ν)−1/pχ̃νm(x),(2.25)

where χ̃νm is the characteristic function of the cube cQνm which contains the support of

aνm. Let 0 < p ≤ 1. It follows that
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‖trΓ ϕ |Lp(Γ )‖p =
\
Γ

|ϕ(γ)|p µ(dγ) ≤
∞∑

ν=0

\
Γ

∣∣∣
∑

m∈Zn

λνm aνm(γ)
∣∣∣
p

µ(dγ)(2.26)

≤
∞∑

ν=0

2νdΨ(2−ν)−1
\
Γ

∣∣∣
∑

m∈Zn

λνmχ̃νm(γ)
∣∣∣
p

µ(dγ).

With χνm the characteristic function of Qνm and c1 a positive constant independent of

ν, m (recall Lemma 1.19), we have

‖trΓ ϕ |Lp(Γ )‖p ≤ c1
∞∑

ν=0

2νdΨ(2−ν)−1
\
Γ

∣∣∣
∑

m∈Zn

|λνm|χνm(γ)
∣∣∣
p

µ(dγ)(2.27)

≤ c1
∞∑

ν=0

2νdΨ(2−ν)−1
\
Γ

∑

m∈Zn

|λνm|pχνm(γ)µ(dγ)

≤ c1
∞∑

ν=0

∑

m∈Zn

2νdΨ(2−ν)−1|λνm|pµ(Γ ∩Qνm)

≤ c2
∞∑

ν=0

∑

m∈Zn

|λνm|p ≤ c3
( ∞∑

ν=0

( ∑

m∈Zn

|λνm|p
)q/p)p/q

= c3‖λ | bpq‖p ≤ c4‖ϕ |B((n−d)/p,Ψ
1/p)

pq (Rn)‖p.
We have made use of (2.24) and ℓq/p →֒ ℓ1, due to 0 < q ≤ p for 0 < p ≤ 1. The
result follows from (2.27) by completion. If 1 < p <∞, then the first inequality in (2.26)
must be replaced by the usual triangle inequality and afterwards we need to use ℓq →֒ ℓ1
(instead of ℓq/p →֒ ℓ1), which comes from 0 < q ≤ 1.
Remark 2.15. (i) According to Theorem 2.19 of [ET99] the assertion (2.23) is sharp for

1 < p < ∞ and q = 1, if either (i) d < n or (ii) d = n and
∑∞
j=0 Ψ(2

−j)−1/p < ∞. This
means that under these circumstances we even have equality in (2.23). In case d < n,

(2.23) is sharp also for 0 < p < ∞ and 0 < q < min(1, p) (cf. [Bri00]). In any case the

inclusion in Proposition 2.14 will be enough for our purpose.

(ii) We can complement (2.23) for p =∞, because

B
(0,Ψ0)
∞,1 (R

n) = B0∞,1(R
n)(2.28)

consists of continuous functions and the trace is taken pointwise. Moreover, by Proposi-

tion 1.9(i),

B0∞,q(R
n) →֒ B0∞,1(R

n)

for any 0 < q ≤ 1. Concerning the first statement, see Section 20.1 of [Tri97] and the
references given there.

(iii) By the embedding assertion in Proposition 1.9(ii), we have

B(s+ε,Ψ̃)p,q (Rn) →֒ B
(s,Ψ1/p)
p,min(1,p)(R

n)(2.29)

for any s ∈ R, 0 < p, q ≤ ∞, Ψ , Ψ̃ admissible functions and ε > 0. From (2.29) with
s = (n− d)/p, (2.28) and (2.23) it makes sense to speak about traces on Γ for all spaces
B
(σ,Ψ)
pq (Rn) with 0 < p, q ≤ ∞ and σ > (n− d)/p, as subspaces of Lp(Γ ).
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So we are now able to generalise Definition 2.21 of [ET99] of the Besov spaces on a

compact (d, Ψ)-set for an arbitrary p ∈ (0,∞].

Definition 2.16. Let Γ be a compact (d, Ψ)-set in Rn. Let 0 < p, q ≤ ∞, s > 0 and
a ∈ R. Then

B
(s,Ψa)
pq (Γ ) = trΓ B

(s+(n−d)/p,Ψ1/p+a)
pq (Rn)(2.30)

equipped with the quasi-norm

‖f |B (s,Ψa)pq (Γ )‖ = inf ‖g |B(s+(n−d)/p,Ψ1/p+a)pq (Rn)‖(2.31)

where the infimum is taken over all g ∈ B(s+(n−d)/p,Ψ
1/p+a)

pq (Rn) with trΓ g = f .

Lemma 2.17. Let Γ be a compact (d, Ψ)-set in Rn and r ≥ 1. For fixed ν ∈ N0 let Mν be

the number of cubes Qνm such that r Qνm ∩ Γ 6= ∅. Then:
(i) Mν ∼ 2νdΨ(2−ν)−1, ν ∈ N0,

(ii) Ψ(2−ν) ∼ Ψ((2Mν)−1), ν ≥ ν0.

Proof. Step 1. Let µ denote a Radon measure related to the (d, Ψ)-set Γ . For fixed ν ∈ N0

let

Z
n,Γ,ν = {m ∈ Z

n : rQνm ∩ Γ 6= ∅}.
For each m ∈ Z

n,Γ,ν we choose γνm ∈ r Qνm ∩ Γ . We have
rQνm ⊂ B(γνm, r

√
n 2−ν), m ∈ Z

n,Γ,ν ,

and so {B(γνm, r
√
n 2−ν) : m ∈ Zn,Γ,ν} covers Γ . By the properties of the admissible

function Ψ , namely Proposition 1.4(iv), there exists ν0 ∈ N such that for any natural

number ν ≥ ν0,

µ(Γ ) ≤ µ
( ⋃

m∈Zn,Γ,ν

B(γνm, r
√
n 2−ν)

)
≤

∑

m∈Zn,Γ,ν

µ(B(γν,m, r
√
n 2−ν))

≤ c1
∑

m∈Zn,Γ,ν

(r
√
n 2−ν)dΨ(r

√
n 2−ν) ≤ c2Mν2−νdΨ(2−ν).

Maybe with another constant, we obtain Mν ≥ c2νdΨ(2−ν)−1, ν ∈ N0.

Step 2. For fixed ν ∈ N, let Nν denote the largest possible number of disjoint balls centred

at Γ of radius r2−ν−2. Let B1, . . . , BNν be a collection of such balls. Let B
′
j denote the

ball concentric with Bj with radius r2
−ν−1, j = 1, . . . , Nν . Note that {B′j}Nνj=1 covers Γ :

each γ ∈ Γ must be within r2−ν−2 of one of the Bj , j ∈ {1, . . . , Nν}, otherwise the ball
B(γ, r2−ν−2) can be added to form a larger collection of disjoint balls. Moreover, each B′j
has diameter r2−ν and therefore it intersects at most (4[r]+1)n cubes of side length r2−ν .
Hence, Mν ≤ (4[r] + 1)nNν . Using also again the properties of the admissible function Ψ
we find ν0 ∈ N such that for any natural ν ≥ ν0,

µ(Γ ) ≥
Nν∑

j=1

µ(Bj) ≥ c1
Nν∑

j=1

(r2−ν−2)dΨ(r2−ν−2) ≥ c2
Nν∑

j=1

2−νdΨ(2−ν)

= c2Nν2
−νdΨ(2−ν) ≥ c3Mν2−νdΨ(2−ν).
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Maybe with another constant, we obtain Mν ≤ c′2νdΨ(2−ν)−1, ν ∈ N0. So the proof of

(i) is finished.

Step 3. Since Ψ is an admissible function, by Proposition 1.4(i),(ii), there are positive

constants c1, c2 and b such that

c1ν
−b ≤ Ψ(2−ν)−1 ≤ c2νb, ν ∈ N.(2.32)

We remark that given ε > 0, there exists a positive constant cε such that ν
b ≤ cε2εν for

all ν ∈ N0. Hence, taking 0 < ε < d and using (2.32) as well as the assertion (i) proved

in Steps 1 and 2, we get

c′12
−a1ν ≤ (2Mν)−1 ≤ c′22−a2ν , ν ∈ N0,(2.33)

for some positive constants c′1, c
′
2, a1, a2. Then Proposition 1.4(iv) and (2.33) yield the

desired inequalities.

Proposition 2.18. Let Γ be a compact (d, Ψ)-set in Rn. Let 0 < p2 < p1 ≤ ∞, 0 < q

≤ ∞, s > 0, a ∈ R. Then we have the embedding

B
(s,Ψa)
p1q (Γ ) →֒ B

(s,Ψa)
p2q (Γ ).

Proof. Let fΓ ∈ B
(s,Ψa)
p1q (Γ ). Then there exists f ∈ B(s+(n−d)/p1,Ψ

1/p1+a)
p1q (Rn) such that

trΓ f = fΓ . By Corollary 1.27 and Definition 1.21 we can write

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm2
−ν(σ−d/p1)Ψ(2−ν)−1/p1−aΦβ(2νx−m)(2.34)

+ ̺βνm2
−ν(s−d/p1)Ψ(2−ν)−1/p1−a((−∆)(L+1)/2Φβ)(2νx−m)

for σ > max(σp2 , s), (L+ 1)/2 ∈ N0 with L ≥ max(−1, [σp2 − s]) and
sup
β∈Nn0

2µ|β|(‖λβ | bp1q‖+ ‖̺β | bp1q‖) <∞(2.35)

for any µ > 0 large. The part relevant for the trace has (m, ν) such that cQνm ∩ Γ 6= ∅.
Let Z

n,Γ,ν = {m ∈ Z
n : cQνm ∩ Γ 6= ∅}. Having in mind Lemma 2.17(i), for fixed

ν ∈ N0, with Mν the number of elements of Zn,Γ,ν , we have Mν ∼ 2νdΨ(2−ν)−1. With
1/p1 + 1/r = 1/p2, we have

( ∑

m∈Zn,Γ,ν

|λβνm|p2
)1/p2

≤
( ∑

m∈Zn,Γ,ν

1
)1/r( ∑

m∈Zn,Γ,ν

|λβνm|p1
)1/p1

(2.36)

≤ c(2νdΨ(2−ν)−1)1/r
( ∑

m∈Zn,Γ,ν

|λβνm|p1
)1/p1

.

We can rewrite (2.34) as follows:

f =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

2−νd/rΨ(2−ν)1/rλβνm2
−ν(σ−d/p2)Ψ(2−ν)−1/p2−aΦβ(2νx−m)

+ 2−νd/rΨ(2−ν)1/r̺βνm2
−ν(s−d/p2)Ψ(2−ν)−1/p2−a((−∆)(L+1)/2Φβ)(2νx−m).

From (2.36) we get

‖2−νd/rΨ(2−ν)1/rλβνm | bp2q‖ ≤ c‖λβ | bp1q‖
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and, in a similar way

‖2−νd/rΨ(2−ν)1/r̺βνm | bp2q‖ ≤ c‖̺β | bp1q‖.
This together with (2.35) shows that fΓ ∈ B

(s,Ψa)
p2q (Γ ). Moreover,

‖fΓ |B (s,Ψ
a)

p2q (Γ )‖ ≤ ‖fΓ |B (s,Ψ
a)

p1q (Γ )‖.

3. Entropy numbers

The aim of this section is to generalise Theorem 2.24 of [ET99]. On the one hand we

include the case with 0 < p < 1 and on the other hand, besides Lp, we also consider

a B -space as target space. The idea is the one developed by Triebel in [Tri97]: we use

the knowledge about the entropy numbers of embeddings between general weighted se-

quence spaces, together with the techniques of subatomic decompositions developed in

the first section, to estimate the entropy numbers of embeddings between Besov spaces

of generalised smoothness on fractals. We need to recall basic results concerning entropy

numbers, which is done in the next subsection.

3.1. Definition and elementary properties. In this subsection we recall basic facts

concerning entropy numbers. We follow closely [ET96]. Other related references are [CS90]

and [EE87]. If A, B are quasi-Banach spaces then L(A,B) denotes the family of all

bounded linear maps from A into B and UA = {a ∈ A : ‖a |A‖ ≤ 1}.
Definition 3.1. Let A, B be quasi-Banach spaces and let T ∈ L(A,B). Then for all

k ∈ N, the kth entropy number ek(T ) of T is defined by

ek(T ) = inf
{
ε > 0 : T (UA) ⊂

2k−1⋃

j=1

(bj + εUB) for some bj ∈ B, j ∈ {1, . . . , 2k−1}
}
.

The following proposition gives some elementary properties of entropy numbers. We

refer to Lemma 1 of [ET96, 1.3.1, pp. 7–8], where a simple proof may be found.

Proposition 3.2. Let A, B, C be quasi-Banach spaces , let S, T ∈ L(A,B) and suppose
that R ∈ L(B,C).
(i) ‖T‖ ≥ e1(T ) ≥ e2(T ) ≥ . . . ≥ 0; e1(T ) = ‖T‖ if B is a Banach space.
(ii) For all k, l ∈ N,

ek+l−1(R ◦ S) ≤ ek(R) el(S).
(iii) If B is a p-Banach space, where 0 < p ≤ 1, then for all k, l ∈ N,

epk+l−1(S + T ) ≤ e
p
k(S) + e

p
l (T ).

Remark 3.3. Since the ek(T ) decrease as k increases, and are non-negative, limk→∞ ek(T )

exists and plainly equals

inf{ε > 0 : T (UA) can be covered by finitely many B-balls of radius ε}.
Hence, T ∈ L(A,B) is compact if, and only if, limk→∞ ek(T ) = 0.
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An important application of entropy numbers is to spectral theory. If T ∈ L(B) is
a compact operator on the quasi-Banach space B, then the spectrum of T , apart from

the point 0, consists solely at most of a countable infinite number of eigenvalues of finite

algebraic multiplicity. We refer to [ET96, pp. 3–7]. Let (µk(T ))k∈N be the sequence of

all non-zero eigenvalues of T , repeated according to algebraic multiplicity and ordered so

that

|µ1(T )| ≥ |µ2(T )| ≥ . . .→ 0.
If T has only m (< ∞) distinct eigenvalues and M is the sum of their algebraic mul-
tiplicities we put µn(T ) = 0 for all n > M . A connection between µk(T ) and ek(T ) is

provided by the following:

Theorem 3.4 [CT80]. Let B be a quasi-Banach space, T ∈ L(B) a compact operator and
(µk(T ))k∈N as above. Then

( k∏

m=1

|µk(T )|
)1/k
≤ inf
n∈N

2n/(2k)en(T ), k ∈ N.

An immediate consequence is Carl’s inequality:

Corollary 3.5. For all k ∈ N, |µk(T )| ≤
√
2 ek(T ).

3.2. Entropy numbers of embeddings between weighted sequence spaces. In

this subsection we follow closely [Leo00a], [Leo98b] and [Tri97, §8,9]. We begin by intro-
ducing sequence spaces with which we will be concerned.

Definition 3.6. Let 0 < p, q ≤ ∞, {βj}∞j=0 a general weight sequence and {Mj}∞j=0 a
sequence of natural numbers. Then ℓq(βjℓ

Mj
p ) is the collection of all complex sequences

x = (xj,l : j ∈ N0, l = 1, . . . ,Mj) such that the quasi-norm

‖x | ℓq(βj ℓMjp )‖ =
( ∞∑

j=0

βqj

( Mj∑

l=1

|xj,l|p
)q/p)1/q

is finite (with obvious modifications if p =∞ and/or q =∞). In case βj = 1, j ∈ N0, we

write ℓq(ℓ
Mj
p ).

Following some suggestions from Professor Leopold, Theorem 1 of [Leo00a] and its

proof can be modified in order to obtain the next proposition. The cited result in [Leo00a]

was not sufficient for our case and for completeness we present the next proposition and

its proof which turns out to be sufficient for our purposes. However, we mention that

a generalisation of both Theorem 1 of [Leo00a] and the proposition below can now be

found in the recent paper of Leopold [Leo00b].

Proposition 3.7. Let 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2 ≤ ∞, {Mj}∞j=0 a sequence of natural
numbers satisfying

Mj ∼ 2jdΨ−1(2−j), j ∈ N0,(3.1)

and βj = 2
jδΨ b(2−j), j ∈ N0, a weight sequence where d, δ ∈ R+, b ∈ R and Ψ is an

admissible function. Then

e2ML [id : ℓq1(βj ℓ
Mj
p1 )→ ℓq2(ℓ

Mj
p2 )] ∼ β

−1
L M

−(1/p1−1/p2)
L , L ∈ N0.(3.2)
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Proof. Step 1. According to Theorem 1 in [Leo98b] and since p1 ≤ p2, the embedding
id : ℓq1(βj ℓ

Mj
p1 )→ ℓq2(ℓ

Mj
p2 )(3.3)

exists and is bounded if, and only if, (β−1j )j∈N0
∈ ℓq∗ where 1/q∗ = (1/q2 − 1/q1)+. By

Proposition 1.4(i),(ii), there are positive constants c1, c2 and b
′ such that

c1j
−b′ ≤ Ψ b(2−j) ≤ c2jb

′

, j ∈ N.

This together with δ > 0 gives us (β−1j )j∈N0
∈ ℓq∗ for any q∗ ∈ (0,∞]. Therefore, the

embedding (3.3) exists and is bounded. Moreover, a direct application of Lemma 1 of

[Leo98b] provides the desired estimate from below for its entropy numbers.

Step 2. We decompose the embedding in (3.3) as

id =

∞∑

j=0

idj ,(3.4)

where

idj x = (δjk xk,l)k∈N0, l=1,...Mk = (0, . . . , 0, xj,1, . . . , xj,Mj , 0, . . . , 0).(3.5)

We have
∥∥∥
(
id−

N∑

j=0

idj

)
x
∣∣∣ ℓq2(ℓMjp2 )

∥∥∥ ≤ RN‖x | ℓq1(βj ℓMjp1 )‖(3.6)

with

RN =
( ∞∑

j=N+1

β−q
∗

j

)1/q∗
(3.7)

(with the usual modification if q∗ = ∞), q∗ being such that 1/q∗ = (1/q2 − 1/q1)+. Let
̺ = min(1, p2, q2); then ℓq2(ℓ

Mj
p2 ) is a ̺-Banach space. Using (3.4), (3.6) and Proposition

3.2(i),(ii), we get

e̺k(id) ≤ R
̺
N +

L∑

j=0

e̺kj (idj) +

N∑

j=L+1

e̺kj (idj)(3.8)

where

k =
N∑

j=0

kj − (N + 1).(3.9)

The splitting of k into the kj is not fixed at the moment and L is a natural number

between 0 and N which will also be chosen later.

Step 3. For each j ∈ N0, we consider the commutative diagram

ℓq1(βjℓ
Mj
p1 ) ℓq2(ℓ

Mj
p2 )

ℓ
Mj
p1 ℓ

Mj
p2

Tj

��

idj //

id(j) //

Ej

OO

where

Tjx = (xj,l)
Mj
l=1 and Ej((yl)

Mj
l=1) = (0, . . . , 0, ŷj,1, . . . , ŷj,Mj , 0, . . . , 0) with ŷj,l = yl.
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We have

‖Tj : ℓq1(βjℓMjp1 )→ ℓMjp1 ‖ = β
−1
j , ‖Ej : ℓMjp2 → ℓq2(ℓ

Mj
p2 )‖ = 1,

and idj = Ej ◦ id(j) ◦Tj . By Proposition 3.2(i),(ii) we get
ek(idj) ≤ β−1j ekj [id

(j) : ℓMjp2 → ℓMjp2 ].(3.10)

Step 4. For j = 0, . . . , L, let kj be natural numbers such that

kj − 1 < 2Mj2(L−j)d/2 ≤ kj .
Then kj ≥ 2Mj , j = 0, . . . , L. Moreover, using (3.1), j ≤ L, Proposition 1.4(vi) and

d > 0, we obtain

L∑

j=0

kj ≤
L∑

j=0

2Mj2
(L−j)d/2 + (L+ 1) ≤ c1(2ML)

L∑

j=0

2−(L−j)d/2(1 + L− j)c + (L+ 1)

≤ c2(2ML) + (L+ 1).
By (3.10) and Proposition 7.3 in [Tri97], we get

ekj (idj) ≤ cβ−1j 2−kj/(2Mj)(2Mj)−(1/p1−1/p2)

≤ cβ−1L (2ML)−(1/p1−1/p2)
βL
βj

(
Mj
ML

)−(1/p1−1/p2)
2−2

(L−j)d/2

.

Summation gives

L∑

j=0

e̺kj (idj) ≤ c
̺ β−̺L (2ML)

−(1/p1−1/p2)̺RL,̺,

with

RL,̺ =

L∑

j=0

(
βL
βj

)̺(
Mj
ML

)−(1/p1−1/p2)̺
2−̺2

(L−j)d/2

≤ c1
L∑

j=0

2(L−j)̺(δ+d(1/p1−1/p2))(1 + L− j)̺(c2+c3(1/p1−1/p2))2−̺2(L−j)d/2 <∞

as d > 0. Therefore
L∑

j=0

e̺kj (idj) ≤ cβ
−̺
L (2ML)

−(1/p1−1/p2)̺

for every natural L with c being a positive constant independent of L.

Step 5. The aim is to estimate the remaining sum in (3.8) by an expression which depends

on L and other parameters, but is independent of N in such a way that

N∑

j=L+1

e̺kj (idj) ≤ cβ
−̺
L (2ML)

−(1/p1−1/p2)̺

and
N∑

j=L+1

kj ≤ c(2ML) +N − L,



70 S. Moura

with c a positive constant also independent of N . First of all, we remark the existence of

positive constants ci, i = 1, 2, 3, and c4 ≥ 0 such that

c12
kdΨ(2−k)−1 ≤Mk ≤ c22kdΨ(2−k)−1, k ∈ N0,

and

c′3(1 + j − k)−c4 ≤
Ψ(2−j)

Ψ(2−k)
≤ c3(1 + j − k)c4 , j, k ∈ N0, j ≥ k.

Let j = L+ 1, . . . , N and kj be natural numbers such that

kj − 1 < CML(1 + j − L)−κ ≤ kj
with C = C(M,Ψ) = c1/(c2c3) and κ ≥ max(c4, 2). Then

kj < 1 + CML(1 + j − L)−κ ≤ 1 +Mj2−(j−L)d(1 + j − L)c4−κ ≤ 1 +Mj ≤ 2Mj .

Moreover

N∑

j=L+1

kj ≤ CML
N∑

j=L+1

(1 + j − L)−κ + (N − L)

≤ CML
∞∑

k=1

(1 + k)−2 + (N − L) ≤ c2ML + (N − L)

where c is a positive constant independent of L and N . Because kj ≤ 2Mj for j =
L+ 1, . . . , N , and by Proposition 7.3 in [Tri97], we get

ekj (idj) ≤ cβ−1j
(
k−1j log

(
1 +
2Mj
kj

))1/p1−1/p2

≤ c′(2ML)−(1/p1−1/p2)β−1j (1 + j − L)κ(1/p1−1/p2)

×((c4 + κ) log(1 + j − L) + (j − L)d)−(1/p1−1/p2).

Summation gives

N∑

j=L+1

e̺kj (idj) ≤ c
′̺(2ML)

−̺(1/p1−1/p2)β−̺L RN,L,̺,

with

RN,L,̺=

N∑

j=L+1

(
βL
βj

)̺
(1+j−L)κ(1/p1−1/p2)((c4+κ) log(1+j−L)+(j−L)d)(1/p1−1/p2).

We have

RN,L,̺ ≤ c6
N∑

j=L+1

2δ̺(L−j)(1 + j − L)̺c5+κ̺(1/p1−1/p2)((c4 + κ) log(1 + j − L))1/p1−1/p2

+ c6

N∑

j=L+1

2δ̺(L−j)(1 + j − L)̺c5+κ̺(1/p1−1/p2)((j − L)d)(1/p1−1/p2)̺
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≤ c6(c4 + κ)(1/p1−1/p2)̺
∞∑

k=0

2−δ̺k(1 + k)̺c5+κ̺(1/p1−1/p2) log(1 + k)1/p1−1/p2

+ c6

∞∑

k=0

2−δ̺k(1 + k)̺c5+κ̺(1/p1−1/p2)(kd)(1/p1−1/p2)̺ <∞

since δ̺ > 0.

Step 6. By the previous two steps we get

k =

N∑

j=0

kj − (N + 1) ≤ c2ML,

which put in (3.8) gives

e̺c2ML(id) ≤ e
̺
k(id) ≤ R

̺
N + Cβ

−̺
L (2ML)

−(1/p1−1/p2)̺.

We now choose N in such a way that

RN ∼ β−1L (2ML)−(1/p1−1/p2).
We can always do so because

0 < β−1L (2ML)
−(1/p1−1/p2) ≤ RL

and (RN )N∈N is a decreasing sequence with limN→∞RN = 0. Therefore

ec2ML(id) ≤ c′β−1L (2ML)−(1/p1−1/p2), L ∈ N.(3.11)

Step 7. By (3.1) and Proposition 1.4(vi), for l, j ∈ N0 with j ≥ l, we have
Mj−l
Mj
≤ c12−ld

Ψ(2−j)

Ψ(2−(j−l))
≤ c22−ld(1 + l)c3 ,(3.12)

with c1, c2 > 0 and c3 ≥ 0 constants independent of j and l. The right-hand side of (3.12)
tends to zero as l goes to infinity. With c the positive constant in (3.11), we can assure

the existence of l0 ∈ N such that the right-hand side of (3.12) is less than or equal to c−1

for any l ≥ l0. Hence
cMj−l0 ≤Mj , j ≥ l0.(3.13)

Reasoning as above, we remark that

Mj−l0
Mj

≥ c12−l0d(1 + l0)−c2 ≥ c3 and
βj−l0
βj
≥ c′12−l0δ(1 + l0)−c

′

2 ≥ c′3

where c3 and c
′
3 are positive constants independent of j ≥ l0. Using these last inequalities,

(3.11) and (3.13), we obtain

e2Mj (id) ≤ ec2Mj−l0 (id) ≤ c
′β−1j−l0M

−(1/p1−1/p2)
j−l0 ≤ c′′β−1j M

−(1/p1−1/p2)
j , j ≥ l0.

Maybe with another positive constant c′′, we get the inequality

e2ML(id) ≤ c′′β−1L M
−(1/p1−1/p2)
L

for any L ∈ N0, and the proof is now complete.

Proposition 3.7 is not completely sufficient for our later purposes. We need some kind

of ℓu-version of it.
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Definition 3.8. Let 0 < p, q, u ≤ ∞, µ ≥ 0, {βj}∞j=0 a general weight sequence and
{Mj}∞j=0 a sequence of natural numbers. Then ℓu[2µmℓq(βj ℓ

Mj
p )2] is the collection of all

ℓq(βj ℓ
Mj
p )2-valued sequences x = (xm1 , x

m
2 ), m ∈ N0, such that the quasi-norm

‖x | ℓu[2µmℓq(βj ℓMjp )2]‖ =
( ∞∑

m=0

2µmu(‖xm1 | ℓq(βj ℓMjp )‖+ ‖xm2 | ℓq(βj ℓMjp )‖)u
)1/u

is finite (with obvious modifications if u =∞).
Proposition 3.9. Let 0 < p1 ≤ p2 ≤ ∞, 0 < q1, q2, u1, u2 ≤ ∞, µ > 0, {Mj}∞j=0
a sequence of natural numbers satisfying (3.1) and βj = 2

jδΨ b(2−j), j ∈ N0, a weight

sequence where d, δ ∈ R+, b ∈ R and Ψ is an admissible function. Then the identity map

id : ℓu1 [2
µmℓq1(βj ℓ

Mj
p1 )
2]→ ℓu2 [ℓq2(ℓ

Mj
p2 )
2](3.14)

is compact and for the related entropy numbers we have

e2ML(id) ∼ β−1L M
−(1/p1−1/p2)
L , L ∈ N0.(3.15)

Proof. Step 1. To prove that (3.14) is compact we use the decomposition

id =

∞∑

m=0

idm, idm = idm,1+ idm,2(3.16)

where

idm,i x = (y
k
1 , y
k
2 )k∈N0

, with ykj = δjiδkmx
k
j and x = (xk1 , x

k
2)k∈N0

.

We have

‖idm x | ℓu2 [ℓq2(ℓMjp2 )2]‖ = ‖(xm1 , xm2 ) | ℓq2(ℓMjp2 )2‖(3.17)

= ‖xm1 | ℓq2(ℓMjp2 )‖+ ‖xm2 | ℓq2(ℓMjp2 )‖
≤ c(‖xm1 | ℓq1(βj ℓMjp1 )‖+ ‖xm2 | ℓq1(βj ℓMjp1 )‖)
≤ c2−µm‖x | ℓu1 [2µmℓq1(βj ℓMjp1 )2]‖.

Now by (3.16), (3.17) and µ > 0, it follows that id is compact.

Step 2. In this step we prove the estimate from above for the entropy numbers of the

identity map (3.14). In the commutative diagram

ℓq1(βj ℓ
Mj
p1 ) ℓq2(ℓ

Mj
p2 )

ℓu1 [2
µmℓq1(ℓ

Mj
p1 )
2] ℓu2 [ℓq2(ℓ

Mj
p2 )
2]

Em,i

��

ĩd //

id //

Tm,i

OO

the operator Em,i is defined by

Em,iz = (y
k
1 , y
k
2 )k∈N0

with ykl = δliδkmz,

the operator Tm,i by

Tm,i x = x
m
i for x = (xk1 , x

k
2)k∈N0

,

for i = 1, 2, and ĩd denotes the identity map between the indicated spaces. We have

ĩd = Tm,i ◦ id ◦Em,i, m ∈ N0.(3.18)
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Plainly

‖Em,i‖ = 2µm and ‖Tm,i‖ = 1,
and consequently by the multiplication property of entropy numbers, Proposition 3.2(ii)

and (i), and Proposition 3.7, we get

cβ−1L M
−(1/p1−1/p2)
L ≤ e2ML(ĩd) ≤ ‖Rm,1‖e2ML(id) ‖Em,1‖

≤ 2µme2ML(id), m, L ∈ N0.

In particular,

e2ML(id) ≥ cβ−1L M
−(1/p1−1/p2)
L , L ∈ N0.(3.19)

Step 3. Let, for brevity, a = δ/d + 1/p1 − 1/p2, which is greater than zero since δ > 0
and p1 ≤ p2. Let L ∈ N0 and

N =

[
log(βLM

1/p1−1/p2
L )

µ

]
+ 1.

Recall (3.16) and (3.17). It follows that

∥∥∥ id−
N∑

m=0

idm

∥∥∥ ≤ c2−µN ≤ c′β−1L M
−(1/p1−1/p2)
L .(3.20)

Let ̺ = min(1, p2, q2, u2). Then ℓu2 [ℓq2(ℓ
Mj
p2 )
2] is a ̺-Banach space. By (3.16), Proposition

3.2(iii),(i) and (3.20) we obtain

e̺k(id) ≤
∥∥∥ id−

N∑

m=0

idm

∥∥∥
̺

+

N∑

m=0

e̺km(idm)(3.21)

≤ c′̺β−̺L M
−(1/p1−1/p2)̺
L +

N∑

m=0

e̺km(idm),

where k =
∑N
m=0 km. For m ∈ N0 and i = 1, 2 we have the commutative diagram

ℓu1 [2
µmℓq1(βj ℓ

Mj
p1 )

2] ℓu2 [ℓq2(ℓ
Mj
p2 )
2]

ℓq1(βjℓ
Mj
p1 ) ℓq2(ℓ

Mj
p2 )

Tm,i

��

idm,i //

ĩd //

Em,i

OO

where the operators idm,i, Em,i, Tm,i were defined in the previous steps. Hence idm,i =

Em,i ◦ ĩd ◦ Tm,i. Then ek(idm,i) ≤ 2−µm ek(ĩd) and therefore
e2k(idm) ≤ ek(idm,1) + ek(idm,2) ≤ 2−µm+1ek(ĩd).(3.22)

Now we choose

km = 4MJm , m = 0, . . . , N,(3.23)

where

Jm = inf{J ∈ N : 2ML2
−mε ≤ 2MJ}(3.24)

and ε > 0 is such that aε < µ. In particular, we have

2MJm−1 < 2ML2
−mε ≤ 2MJm and Jm ≤ L, m = 0, . . . , N.
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We remark that (3.1) and the properties of Ψ , namely Proposition 1.4(vi), give us

Mk
Mk−1

≤ c12d
Ψ(2−(k+1))

Ψ(2−k)
≤ c2, k ∈ N,

where c2 is a positive constant independent of k. Then we have

N∑

m=0

km = 2

N∑

m=0

MJm
MJm−1

2MJm−1 ≤ c
N∑

m=0

(2ML)2
−mε ≤ c′2ML(3.25)

and
N∑

m=0

km ≥ 4ML
N∑

m=0

2−εm ≥ 2(2ML).(3.26)

By (3.22), (3.23) and Proposition 3.7, we get

ekm(idm) ≤ 2−µm+1e2MJm (ĩd) ≤ c2−µmβ
−1
Jm
M
−(1/p1−1/p2)
Jm

, m = 0, . . . , N.(3.27)

Hence
N∑

m=0

e̺km(idm) ≤ c
̺β−̺L M

−(1/p1−1/p2)̺
L RN,̺,(3.28)

where

RN,̺ =

N∑

m=0

2−µm̺
(
βL
βJm

)̺(
ML
MJm

)(1/p1−1/p2)̺
.(3.29)

By definition of the sequence (βj)j∈N0
and Proposition 1.4(vi), we have

βL
βJm
≤ c
(
ML
MJm

)δ/d(
Ψ(2−L)

Ψ(2−Jm)

)b+δ/d
≤ c′

(
ML
MJm

)δ/d
(1 + L− Jm)η,(3.30)

where the constants c, c′ > 0 and η ≥ 0 are independent of L and m. We are now
concerned with the estimation from above of L− Jm. On the one hand, we have

ML
MJm

≤ 2εm, m = 0, . . . , N,(3.31)

and on the other hand, (3.1) and Proposition 1.4(vi) give us

ML
MJm

≥ c2(L−Jm)dΨ(2
−Jm)

Ψ(2−L)
≥ c′ 2

(L−Jm)d

(1 + L− Jm)σ
, m = 0, . . . , N,(3.32)

where c, c′ > 0 and σ ≥ 0 are independent of L and m. There exists a suitable constant
c∗ > 0, only depending on σ and d, such that (1 + y)σ ≤ c∗2dy/2 for all y ≥ 0. Putting
this in (3.32) gives

ML
MJm

≥ c2(L−Jm)d/2, m = 0, . . . , N,(3.33)

for some positive constant c < 1, which is again independent of L and m. From (3.31)

and (3.33) we can conclude that

L− Jm ≤ c1m+ c2, m = 0, . . . , N,(3.34)
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with constants c1, c2 > 0 independent of L and m. Back to (3.29), using (3.30), (3.31)

and (3.34) and since εa− µ < 0, we get

RN,̺ ≤ c
N∑

m=0

2(εa−µ)m̺(1 + c1m+ c2)
η <∞.

Having this in mind, by (3.21), (3.28) and (3.25), we can write

ec2ML(id) ≤ c′β−1L M
−(1/p1−1/p2)
L , L ∈ N0,

for some positive constants c and c′. Acting as in Step 7 of the proof of Proposition 3.7
we complete the proof.

Corollary 3.10. Let p1, p2, q1, q2, u1, u2, µ, {Mj}∞j=0, {βj}∞j=0, d, δ, b and Ψ be as
in Proposition 3.9. Moreover , assume that the sequence {Mj}∞j=0 is increasing. Then for
the entropy numbers of the identity map (3.14) we have

ek(id) ∼ (kΨ(k−1))−(δ/d+1/p1−1/p2)Ψ(k−1)−b+1/p1−1/p2 , k ∈ N.(3.35)

Proof. Let k ∈ N with k ≥ max(ν0, 2M0), where ν0 is a natural number as in Lemma
2.17(ii). Since {Mj}∞j=0 is increasing, there exists L ∈ N0 such that 2ML ≤ k ≤ 2ML+1.
Thanks to (3.1) and Proposition 1.4(vi) we have

c ≤ Mk+1
Mk

≤ c′, k ∈ N0,(3.36)

for some positive constants c, c′ independent of k. Moreover, Ψ(2−ν) ∼ Ψ(2−(ν+1)),
ν ∈ N0, and by Lemma 2.17(ii),

Ψ(2−ν) ∼ Ψ((2Mν)−1), ν ≥ ν0.(3.37)

Using the monotonicity of entropy numbers, Proposition 3.9 and (3.36), we have on the

one hand

ek(id) ≤ e2ML(id) ≤ c1β−1L M
−(1/p1−1/p2)
L ≤ c2M−(δ/d+1/p1−1/p2)L Ψ(2−L)−b−δ/d

≤ c3M−(δ/d+1/p1−1/p2)L+1 Ψ(k−1)−b−δ/d

≤ c4(kΨ(k−1))−(δ/d+1/p1−1/p2)Ψ(k−1)−b+1/p1−1/p2

and on the other hand

ek(id) ≥ e2ML+1(id) ≥ c′1β−1L+1M
−(1/p1−1/p2)
L+1 ≥ c′2M−(δ/d+1/p1−1/p2)L+1 Ψ(2−(L+1))−b−δ/d

≥ c′3M−(δ/d+1/p1−1/p2)L Ψ(k−1)−b−δ/d

≥ c′4(kΨ(k−1))−(δ/d+1/p1−1/p2)Ψ(k−1)−b+1/p1−1/p2 .
We have proved (3.35) for all k ∈ N except finitely many, but the final statement for all

k ∈ N comes easily, possibly with other positive constants c4 and c
′
4.

Remark 3.11. For the embeddings in Proposition 3.9 and Corollary 3.10 we considered

only weights on one of the spaces, but this is sufficient. In particular, we can replace in

(3.14) the weight 2µm, µ > 0, on the source space by the weights 2µ1m and 2µ2m, with

µ1 > µ2, on the source and on the target space, respectively. This can be easily seen from

the proof, just following the role of µ.
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3.3. Entropy numbers of embeddings between spaces on fractals. We are now

prepared to the subject announced at the beginning of the section, that is, to generalise

Theorem 2.24 of [ET99]. This provides a generalisation of Theorem 20.6 of [Tri97] from

d-sets to (d, Ψ)-sets.

Proposition 3.12. Let Γ be a compact (d, Ψ)-set in Rn with 0 < d ≤ n. Let B (s,Ψ
a)

pq (Γ ) be

the spaces introduced in Definition 2.16, notationally complemented by B
(0,1)
pq (Γ ) = Lp(Γ )

for any 0 < p, q ≤ ∞. Let 0 < p1, p2, q1, q2 ≤ ∞, a1, a2 ∈ R and s1, s2 ∈ R
+
0 be such that

δ+ = s1 − s2 − d
(
1

p1
− 1
p2

)

+

> 0.

Then the embedding

id : B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )

is compact and there exists a positive constant c such that the related entropy numbers

satisfy

ek[id : B
(s1,Ψ

a1 )
p1q1 (Γ )→ B

(s2,Ψ
a2 )

p2q2 (Γ )] ≤ c(kΨ(k−1))−(s1−s2)/dΨ(k−1)a2−a1 , k ∈ N.

Proof. Step 1. Let p1 ≤ p2. With

σ1 = s1 +
n− d
p1

, σ2 = s2 +
n− d
p2

, δ = δ+,(3.38)

we have

σ1 −
n

p1
= s1 −

d

p1
= δ + s2 −

d

p2
= δ + σ2 −

n

p2
.(3.39)

Let f ∈ B
(s1,Ψ

a)
p1q1 (Γ ). By Definition 2.16, in particular (2.30) and (2.31), there exists a

(non-linear) bounded extension operator ext f = g such that

trΓ g = f and ‖g |B(σ1,Ψ1/p1+a1 )p1q1 (Rn)‖ ≤ 2‖f |B (s1,Ψa1 )p1q1 (Γ )‖.(3.40)

We expand g according to the subatomic representation theorem (Corollary 1.27 or The-

orem 1.23) in terms of (N1, p1, Ψ
1/p1+a1)-β-quarks and (σ1, p1, Ψ

1/p1+a1)L-β-quarks, with

N1 ∈ R and L+ 1 ∈ N0 fixed satisfying

N1 > max

(
σp2 + δ + n

(
1

p1
− 1
p2

)
, σ1

)
, L ≥ max(−1, [σp1 − σ1], [σp2 − σ2]).(3.41)

We have

g =
∑

β∈Nn0

∞∑

ν=0

∑

m∈Zn

λβνm2
−ν(N1−n/p1)Ψ(2−ν)−(1/p1+a1)Φβ(2νx−m)(3.42)

+ ̺βνm2
−ν(σ1−n/p1)Ψ(2−ν)−(1/p1+a1)((−∆)(L+1)/2Φβ)(2νx−m)

and

sup
β∈Nn0

2µ1|β|(‖λβ | bp1q1‖+ ‖̺β | bp1q1‖) ≤ C‖g |B(σ1,Ψ
1/p1+a1 )

p1q1 (Rn)‖(3.43)

for all µ1 > 0 large, λ
β = {λβνm : ν ∈ N0, m ∈ Z

n} and ̺β = {̺βνm : ν ∈ N0, m ∈ Z
n}.
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Assume c > 1 is fixed and let

λβ,Γ={λβνm : ν ∈ N0, m ∈ Zn, cQνm ∩ Γ 6= ∅},
̺β,Γ={̺βνm : ν ∈ N0, m ∈ Z

n, cQνm ∩ Γ 6= ∅}.
(3.44)

For fixed ν ∈ N0 let Mν be the number of cubes Qνm such that cQνm∩Γ 6= ∅. According
to Lemma 2.17(i),

Mν ∼ 2νdΨ(2−ν)−1, ν ∈ N0.(3.45)

We introduce the linear operator S,

S : B(σ1,Ψ
1/p1+a1 )

p1q1 (Rn)→ ℓ∞[2
µ1|β| ℓq1(2

νδΨ(2−ν)bℓMνp1 )
2](3.46)

defined by

Sg = (η, τ), η = {ηβ,Γ : β ∈ N
n
0}, τ = {τβ,Γ : β ∈ N

n
0}(3.47)

with

ηβ,Γ = {2−νδΨ(2−ν)−bλβνm : ν ∈ N0, m ∈ Zn, cQνm ∩ Γ 6= ∅},

τβ,Γ = {2−νδΨ(2−ν)−bτβνm : ν ∈ N0, m ∈ Z
n, cQνm ∩ Γ 6= ∅}

(3.48)

and b = a1 + 1/p1 − a2 − 1/p2. Recall that the expansion (3.42) is not unique, but this
does not matter. By (3.43) it follows that S is a bounded operator. Then we take the

embedding

id : ℓ∞[2
µ1|β| ℓq1(2

νδΨ(2−ν)b ℓMνp1 )
2]→ ℓ∞[2

µ2|β| ℓq2(ℓ
Mν
p2 )

2](3.49)

with µ1 > µ2; and afterwards the linear operator

T : ℓ∞[2
µ2|β|ℓq2(ℓ

Mν
p2 )

2]→ B(σ2,Ψ
1/p2+a2 )

p2q2 (Rn)(3.50)

defined by

T (χ, ξ) =
∑

β∈Nn0

∞∑

ν=0

∑

m

χβνm2
−ν(N2−n/p2)Ψ(2−ν)−(1/p2+a2)Φβ(2νx−m)(3.51)

+ ξβνm2
−ν(σ2−n/p2)Ψ(2−ν)−(1/p2+a2)((−∆)(L+1)/2Φβ)(2νx−m)

where N2 = N1 − δ + n(1/p2 − 1/p1), χ = {χβ,Γ : β ∈ Nn0}, ξ = {ξβ,Γ : β ∈ Nn0} and the
sum over m in (3.51) is taken according to (3.44). Note that (3.41) implies

N2 > max(σp2 , σ2) and L ≥ max(−1, [σp2 − σ2]).
It follows from Corollary 1.27(ii) that T is a bounded linear map. Finally we consider the

trace

trΓ : B
(σ2,Ψ

1/p2+a2 )
p2q2 (Rn)→ B

(s2,Ψ
a2 )

p2q2 (Γ ),(3.52)

which is also a continuous map. We claim

id(B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )) = trΓ ◦T ◦ id ◦S ◦ ext .(3.53)

We follow the constructions. Let f ∈ B
(s1,Ψ

a1 )
p1q1 (Γ ). Then we have (3.40) and (3.42).

Checking the coefficients of Φβ(2νx − m) and ((−∆)(L+1)/2Φβ)(2νx −m) in (3.51), we
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have

χβνm2
−ν(N2−n/p2)Ψ(2−ν)−(1/p2+a2) = λβνm2

−νδΨ(2−ν)−b2−ν(N2−n/p2)Ψ(2−ν)−(1/p2+a2)

= λβνm2
−ν(N1−n/p1)Ψ(2−ν)−(1/p1+a1)

and similarly

ξβνm2
−ν(σ2−n/p2)Ψ(2−ν)−(1/p2+a2) = ̺βνm2

−ν(σ1−n/p1)Ψ(2−ν)−(1/p1+a1),

where we have used (3.39). Hence taking finally trΓ we obtain f by (3.40), where we

started from. This proves (3.53). The unit ball in B
(s1,Ψ

a1 )
p1q1 (Γ ) is mapped by S ◦ ext into

a bounded set in
ℓ∞[2

µ1|β|ℓq1(2
νδΨ(2−ν)bℓMνp1 )

2].

By (3.49) this set is mapped into a pre-compact set in ℓ∞[2µ2|β|ℓq2(ℓ
Mν
p2 )

2] which can be

covered by 2k−1 balls of radius cek(id) with

ek(id) ≤ c(kΨ(k−1))−(δ/d+1/p1−1/p2)Ψ(k−1)−b+1/p1−1/p2 .(3.54)

This follows from Corollary 3.10 and Remark 3.11 upon using p1 ≤ p2. The two bounded
linear maps T and trΓ do not change this covering assertion, up to constants. Hence, we

arrive at a covering of the unit ball in B
(s1,Ψ

a1 )
p1q1 (Γ ) by 2k−1 balls of radius c ek(id) in

B
(s2,Ψ

a2 )
p2q2 (Γ ). We insert δ = δ+ and b to obtain

(3.55) ek[id : B
(s1,Ψ

a1 )
p1q1 (Γ )→ B

(s2,Ψ
a2 )

p2q2 (Γ )]

≤ c′(kΨ(k−1))−(s1−s2)/dΨ(k−1)a2−a1 , k ∈ N.

Step 2. Let p2 < p1. By Proposition 2.18 we have B
(s2,Ψ

a2 )
p1q2 (Γ ) →֒ B

(s2,Ψ
a2 )

p2q2 (Γ ). The rest

follows using the multiplication property of the entropy numbers and Step 1. In fact,

ek[id : B
(s1,Ψ

a1 )
p1q1 (Γ )→ B

(s2,Ψ
a2 )

p2q2 (Γ )] ≤ cek[id : B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p1q2 (Γ )]

≤ c′(kΨ(k−1))−(s1−s2)/dΨ(k−1)a2−a1 , k ∈ N.

Theorem 3.13. Let Γ be a compact (d, Ψ)-set in Rn with 0 < d ≤ n. Let 0 < p1, p2, q1, q2
≤ ∞, a1, a2 ∈ R and s1, s2 ∈ R

+
0 be such that

δ+ = s1 − s2 − d
(
1

p1
− 1
p2

)

+

> 0.

Then the embedding

id : B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )

is compact and the related entropy numbers satisfy

(3.56) ek[id : B
(s1,Ψ

a1 )
p1q1 (Γ )→B

(s2,Ψ
a2 )

p2q2 (Γ )] ∼ (kΨ(k−1))−(s1−s2)/dΨ(k−1)a2−a1 , k∈N.

Proof. Step 1. By Proposition 3.12 it remains to prove that there exists a positive con-

stant c such that for all k ∈ N,

ek[id : B
(s1,Ψ

a1 )
p1q1 (Γ )→ B

(s2,Ψ
a2 )

p2q2 (Γ )] ≥ c(kΨ(k−1))−(s1−s2)/dΨ(k−1)a2−a1 .(3.57)

Assume that there is no such c > 0. Then we find a sequence (kj)j∈N of natural numbers

tending to infinity such that

(3.58) ekj [id : B
(s1,Ψ

a)
p1q1 (Γ )→ B

(s2,Ψ
b)

p2q2 (Γ )]kj
(s1−s2)/dΨ(k−1j )

(s1−s2)/d+a1−a2 → 0
as j →∞.
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In this step we show that we may assume s2 = 0, a2 = 0 and 1 < p1 ≤ ∞ in (3.58). If
s2 > 0, using the multiplication property of entropy numbers, described in Proposition

3.2, and by Proposition 3.12, we get

e2kj [id : B
(s1,Ψ

a)
p1q1 (Γ )→ Lp2(Γ )]

≤ ekj [id : B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )]ekj [id : B

(s2,Ψ
a2 )

p2q2 (Γ )→ Lp2(Γ )]

≤ ck−s2/dj Ψ(k−1j )
−s2/d−a2ekj [id : B

(s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )]

and so

(3.59) k
s1/d
j Ψ(k−1j )

s1/d+a1e2kj [id : B
(s1,Ψ

a1 )
p1q1 (Γ )→ Lp2(Γ )]

≤ ckj(s1−s2)/dΨ(k−1j )(s1−s2)/d+a1−a2ekj [id : B (s1,Ψ
a1 )

p1q1 (Γ )→ B
(s2,Ψ

a2 )
p2q2 (Γ )].

This justifies that we may assume in (3.58) that B
(s2,Ψ

a2 )
p2q2 (Γ ) = Lp2(Γ ), which corre-

sponds to s2 = 0 and a2 = 0.

If 0 < p1 ≤ 1, let p3 be such that 1 < p3 ≤ ∞. Since then p1 < p3, by Proposition

2.18, we have the embedding

B
(s1,Ψ

a1 )
p3q1 (Γ ) →֒ B

(s1,Ψ
a1 )

p1q1 (Γ ).

By the multiplication property of entropy numbers, we have

ekj [id : B
(s1,Ψ

a1 )
p3q1 (Γ )→ Lp2(Γ )] ≤ c′ekj [id : B (s1,Ψ

a1 )
p1q1 (Γ )→ Lp2(Γ )].

Hence, (3.58), already with s2 = a2 = 0, would imply

k
s1/d
j Ψ(k−1j )

s1/d+a1ekj [id : B
(s1,Ψ

a1 )
p3q1 (Γ )→ Lp2(Γ )]→ 0 as j →∞.

This shows that we may also assume that 1 < p1 ≤ ∞ in (3.58).
Step 2. In this step we prove that there exists a constant c > 0 such that

ek[id : B
(s,Ψa)
p1q (Γ )→ Lp2(Γ )] ≥ ck−s/dΨ(k−1)−s/d−a, k ∈ N,(3.60)

for

0 < q ≤ ∞, 0 < p1 ≤ ∞, 1 ≤ p2 ≤ ∞, a ∈ R, s > d

(
1

p1
− 1
p2

)

+

.

Since Γ is a compact (d, Ψ)-set, for fixed j ∈ N we find Mj ∼ 2jdΨ(2−j)−1 disjoint balls
Bj,r of radius 2

−j , centred at xj,r ∈ Γ , r = 1, . . . ,Mj . Let ϕ and ϕ̃ be two non-negative
C∞ functions in Rn, non-vanishing at the origin with supports in the unit ball. Note that

(3.61)
\
Γ

ϕ(2j(γ − xj,r))ϕ̃(2j(γ − xj,r))µ(dγ)

≤ (max
|y|≤1

ϕ(y)ϕ̃(y))µ(Γ ∩Bj,r) ≤ c2−jdΨ(2−j), j ∈ N.

On the other hand, there exists a neighbourhood of the origin where ϕϕ̃ is positive, say

ϕ(x)ϕ̃(x) ≥ L > 0 if |x| ≤ δ,
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for some 0 < δ < 1. Then we have

(3.62)
\
Γ

ϕ(2j(γ − xj,r))ϕ̃(2j(γ − xj,r))µ(dγ)

≥
\

Γ∩δBj,r

ϕ(2j(γ − xj,r))ϕ̃(2j(γ − xj,r))µ(dγ)

≥ Lµ(Γ ∩ δBj,r) ≥ c2−jdΨ(2−j), j ∈ N.

Let cj,r, j ∈ N, r = 1, . . . ,Mj , be such that

cj,r2
jdΨ(2−j)−1

\
Γ

ϕ(2j(γ − xj,r))ϕ̃(2j(γ − xj,r))µ(dγ) = 1.(3.63)

From the observations (3.61) and (3.62) above, there are two positive constants 0 < c1 ≤
c2 <∞ such that

c1 ≤ cj,r ≤ c2 for all j ∈ N, r = 1, . . . ,Mj .(3.64)

In the commutative diagram

ℓ
Mj
p1 B

(s,Ψa)
p1q (Γ )

ℓ
Mj
p2

Lp2(Γ )

2−j(d/p2+s−d/p1)Ψ(2−j)1/p2−1/p1−a idj

��

A //

idΓ

��

B
oo

let the operators A and B be given by

A(ar : r = 1, . . . ,Mj) =

Mj∑

r=1

ar2
−(s−d/p1)jΨ(2−j)−(1/p1+a)ϕ(2j(x− xj,r))|Γ(3.65)

and

(3.66) Bf =(
2−jd(1/p2−1)Ψ(2−j)(1/p2−1)cj,r

\
Γ

f(γ)ϕ̃(2j(γ − xj,r))µ(dγ) : r = 1, . . . ,Mj
)
.

Furthermore, idΓ is the embedding indicated and id
j : ℓ

Mj
p1 → ℓ

Mj
p2 the identity operator.

We may interpret (3.65) as an atomic decomposition in B
(s+(n−d)/p1,Ψa+1/p1 )
p1,q (Rn). Notice

that there are no moment conditions required for the atoms, because

s+
n− d
p1

> σp1 =

(
1

p1
− 1
)

+

as s > d(1/p1 − 1/p2)+ and 1 < p2 ≤ ∞. Hence we obtain
(3.67) ‖A(ar)Mjr=1 |B (s,Ψ

a)
p1q (Γ )‖

≤
∥∥∥
Mj∑

r=1

ar2
−(s−d/p1)jΨ(2−j)−(1/p1+a)ϕ(2j(x− xj,r))

∣∣∣B(s+(n−d)/p1,Ψ
a+1/p1 )

p1,q (Rn)
∥∥∥

≤ c‖(ar)Mjr=1 | ℓMjp1 ‖,
where c is a positive constant independent of j. Denote by bj,r the coefficients in brackets
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in (3.66) and let p′2 be the conjugate exponent of p2, i.e. 1/p2 + 1/p
′
2 = 1. Applying

Hölder’s inequality, using the fact that for fixed j the balls Bj,r are disjoint and (3.64),

we get

|bj,r|p2 ≤ cp2j,r2jd(p2−1)Ψ(2−j)p2−1
( \
Γ∩Bj,r

|f(γ)|ϕ̃(2j(γ − xj,r))µ(dγ)
)p2

≤ c2jd(p2−1)Ψ(2−j)p2−1µ(Γ ∩Bj,r)p2/p
′

2

\
Γ∩Bj,r

|f(γ)|p2 µ(dγ)

≤ c′
\

Γ∩Bj,r

|f(γ)|p2 µ(dγ),

and then

‖Bf | ℓMjp2 ‖ =
( Mj∑

r=1

|bj,r|p2
)1/p2

≤ c
( Mj∑

r=1

\
Γ∩Bj,r

|f(γ)|p2 µ(dγ)
)1/p2

(3.68)

≤ c′‖f |Lp2(Γ )‖,

where again the constant in (3.68) is independent of j. In other words, both A and B are

bounded linear operators whose norms can be estimated independently of j. By (3.63)

we have

B ◦ idΓ ◦A = 2−j(d/p2+s−d/p1)Ψ(2−j)1/p2−1/p1−a idj .(3.69)

By (3.69) and the remark on the norms of A and B we get

2−j(d/p2+s−d/p1)Ψ(2−j)1/p2−1/p1−aek(id
j) ≤ cek(idΓ ), k ∈ N,(3.70)

where the constant c is independent of j. By Proposition 7.2 of [Tri97, p. 36] with k =

2Mj , and using the fact that Mj ∼ 2jdΨ(2−j)−1, we deduce from (3.70) that

e2Mj (idΓ ) ≥ c12−jd(1/p2+s/d−1/p1)Ψ(2−j)1/p2−1/p1−a(2Mj)1/p2−1/p1
≥ c2(2Mj)−s/dΨ(2−j)−s/d−a ≥ c3(2Mj)−s/dΨ((2Mj)−1)−s/d−a.

We have proved (3.60) for k = 2Mj . Reasoning as in the proof of Corollary 3.10 it turns

out that (3.60) holds for any k ∈ N.

Step 3. It remains to prove (3.60) for 0 < p2 < 1. Let 0 < p2 < 1 and 1 ≤ p1 ≤ ∞.
Suppose that (3.60) does not hold. Then as in Step 1, we find a sequence kj → ∞ such
that

ekj [id : B
(s,Ψa)
p1q (Γ )→ Lp2(Γ )]k

s/d
j Ψ(k−1j )

s/d+a → 0 as j →∞.(3.71)

For all f ∈ Lp1(Γ ),

‖f |Lp(Γ )‖ ≤ ‖f |Lp1(Γ )‖1−θ‖f |Lp2(Γ )‖θ,(3.72)

where

0 < θ < 1 and
1

p
=
1− θ
p1
+

θ

p2
.(3.73)

Then, by the interpolation property of entropy numbers (see e.g. [ET96, 1.3.2]) and
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Proposition 3.12, we have

(3.74) e2kj [id : B
(s,Ψa)
p1q (Γ )→ Lp(Γ )]

≤ cekj [id : B (s,Ψ
a)

p1q (Γ )→ Lp1(Γ )]
1−θekj [id : B

(s,Ψa)
p1q (Γ )→ Lp2(Γ )]

θ

≤ c′(k−s/dj Ψ(k−1j )
−s/d−a)1−θekj [id : B

(s,Ψa)
p1q (Γ )→ Lp2(Γ )]

θ.

Obviously we can rewrite (3.74) as

k
s/d
j Ψ(k−1j )

s/d+ae2kj [id : B
(s,Ψa)
p1q (Γ )→ Lp(Γ )]

≤ c′(ks/dj Ψ(k−1j )
s/d+aekj [id : B

(s,Ψa)
p1q (Γ )→ Lp2(Γ )])

θ.

Then by (3.71) we would get

e2kj [id : B
(s,Ψa)
p1q (Γ )→ Lp(Γ )]k

s/d
j Ψ(k−1j )

s/d+a → 0 as j →∞.
But (3.73) enables us to choose p > 1 (take 0 < θ < (1 − 1/p1)/(1/p2 − 1/p1) which is
less than one), and this contradicts what was proved in Step 2.

4. Applications

4.1. Fractal drums. Our aim is this section is to show an application of the assertions

in the previous sections to the fractal drum problem. We follow [ET99].

Throughout this section, Ω denotes a bounded C∞ domain in Rn. As usual, D(Ω) is
the collection of all compactly supported complex-valued C∞ functions in Ω. By D′(Ω)
we denote the dual space of all distributions on Ω. We assume that Γ is a compact

(d, Ψ)-set in Rn, according to Definition 1.1, with Γ ⊂ Ω, and µ the related Radon

measure.

Definition 4.1. Let Ω be a bounded C∞ domain in R
n. Let 0 < p, q ≤ ∞, s ∈ R and Ψ

an admissible function according to Definition 1.1. Then B
(s,Ψ)
pq (Ω) is the restriction of

B
(s,Ψ)
pq (Rn) to Ω, which means

B(s,Ψ)pq (Ω) = {f ∈ D′(Ω) : there exists a g ∈ B(s,Ψ)pq (R
n) with g|Ω = f},

‖f |B(s,Ψ)pq (Ω)‖ = inf ‖g |B(s,Ψ)pq (R
n)‖,

where the infimum is taken over all g ∈ B(s,Ψ)pq (Rn) whose restriction to Ω, denoted by

g|Ω, coincides in D′(Ω) with f .
By Definition 4.1 the embedding assertions for B

(s,Ψ)
pq -spaces on Rn summarised in

Proposition 1.9 can be carried over to the spaces B
(s,Ψ)
pq (Ω). By the boundedness of Ω,

using the monotonicity of the Lp-spaces on bounded domains and the characterisation

by local means presented in the first section we even have

B(s,Ψ)p1q (Ω) →֒ B(s,Ψ)p0q (Ω) if 0 < p0 ≤ p1 ≤ ∞.
Let

(trΓ ϕ)(ψ) =
\
Γ

ϕ(γ)ψ(γ)µ(dγ), ϕ, ψ ∈ D(Ω).(4.1)
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This defines a mapping from D(Ω) into D′(Ω). Formalising the interpretation (2.16) as
idΓ : f

Γ 7→ f

we have

trΓ = idΓ ◦ trΓ .(4.2)

Combining Proposition 2.14 and (2.19) we can extend trΓ to

trΓ : B((n−d)/p,Ψ
1/p)

p,q (Ω)→ B(−(n−d)/p
′,Ψ−1/p

′

)
p,∞ (Ω),(4.3)

with 1 ≤ p ≤ ∞ and 0 < q ≤ 1. Independently of p, the loss of smoothness is always
(n− d, Ψ−1). The operator trΓ can be generalised to

trΓb = idΓ ◦ b ◦ trΓ where b ∈ Lr(Γ )(4.4)

with

1 ≤ p, r ≤ ∞, 0 < q ≤ 1, 1

t
=
1

p
+
1

r
≤ 1.

By Proposition 2.14, (2.19) and Hölder’s inequality we have

trΓb : B
((n−d)/p,Ψ1/p)
p,q (Ω)→ B

(−(n−d)/t′,Ψ−1/t′ )
t,∞ (Ω).(4.5)

Obviously, −∆ = −∑nj=1 ∂2/∂x2j stands for the Laplacian. If
1 ≤ p, q ≤ ∞, s > 1/p,(4.6)

then the Dirichlet Laplacian −∆ generates an isomorphic map
−∆ : B(s,Ψ)pq,0 (Ω)→ B(s−2,Ψ)pq (Ω),(4.7)

where B
(s,Ψ)
pq,0 (Ω) = {g ∈ B

(s,Ψ)
pq (Ω) : tr∂Ω g = 0}. Let (−∆)−1 be the inverse of the

Dirichlet Laplacian −∆; it will be clear from the context between which spaces (−∆)−1
acts. Let

B = (−∆)−1 ◦ trΓ ,(4.8)

where any space continuously embedded in the source space in (4.3) can be admitted and

where we assume that (−∆)−1 can be applied to the target space in (4.3). In addition
after application of trΓ and (−∆)−1 we wish to return to the space we started from. This
is ensured if d > n− 2, because then

2− n− d
p′

>
n− d
p

and 2− n− d
p′

>
1

p
.

In particular, if d > n− 2, then B is a continuous operator in B(2−(n−d)/p
′,Ψ−1/p

′

)
p,∞ (Ω) for

1 ≤ p ≤ ∞.
It can be easily proved that the operator B in (4.8) is compact in B

(s,Ψ̃)
pq (Ω) for

0 < q ≤ ∞, Ψ̃ an admissible function, 1 ≤ p ≤ ∞ and (n− d)/p < s < 2 − (n− d)/p′,
with p′ the conjugate exponent of p. Moreover, B is a spectral invariant, i.e. its eigenvalues
and root spaces do not depend on the underlying space in which B is considered.

Theorem 4.2 [ET99, Theorem 2.28 & Corollary 2.30]. Let Ω be a bounded C∞ domain
in R

n and Γ a compact (d, Ψ)-set such that Γ ⊂ Ω and n − 2 < d ≤ n (with 0 < d ≤ 1
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when n = 1). Then B = (−∆)−1 ◦ trΓ is a non-negative, compact , self-adjoint operator
in W̊ 12 (Ω) with null-space

N(B) = {f ∈ W̊ 12 (Ω) : trΓ f = 0}.
The positive eigenvalues µk of B, repeated according to multiplicity and ordered by mag-

nitude, satisfy

µk ∼ k−1(kΨ(k−1))(n−2)/d, k ∈ N.

Furthermore, B is generated by the quadratic form\
Γ

(trΓ )(γ) (trΓ g)(γ) µ(dγ) = (Bf, g)W̊ 12 (Ω)
where f, g ∈ W̊ 12 (Ω).

Proof. Step 1. By [Tri97, 27.11] and the references given there we know that

(−∆)1/2 : W̊ 12 (Ω)→ L2(Ω)

is an isomorphic map. We then consider in W̊ 12 (Ω) the norm

‖f | W̊ 12 (Ω)‖ := ‖(−∆)1/2f |L2(Ω)‖ ∼ ‖f |W 12 (Ω)‖.(4.9)

W̊ 12 (Ω) turns out to be a Hilbert space with respect to the corresponding scalar product.

As d > n− 2, we have

W 12 (Ω) = B
1
2,2(Ω) →֒ B

((n−d)/2,Ψ1/2)
2,1 (Ω).

Then by (2.19), we get

‖trΓ f |L2(Γ )‖ ≤ c‖f |B((n−d)/2,Ψ
1/2)

2,1 (Ω)‖ ≤ c′‖f |W 12 (Ω)‖ ≤ c′′‖f | W̊ 12 (Ω)‖(4.10)

for any f ∈ W̊ 12 (Ω). Let

a(f, g) =
\
Γ

(trΓ f)(γ) (trΓ g)(γ)µ(dγ), f, g ∈ W̊ 12 (Ω).(4.11)

This defines a non-negative bounded quadratic form in W̊ 12 (Ω). Hence, there exists a

uniquely determined non-negative self-adjoint bounded operator B in W̊ 12 (Ω) such that

a(f, g) = (Bf, g)W̊ 12 (Ω)
, f, g ∈ W̊ 12 (Ω).

Furthermore,

‖
√
Bf | W̊ 12 (Ω)‖2 = (Bf, f)W̊ 12 (Ω) = a(f, f) = ‖trΓ f |L2(Γ )‖

2, f ∈ W̊ 12 (Ω).(4.12)

This shows that

N(B) = {f ∈ W̊ 12 (Ω) : Bf = 0} = {f ∈ W̊ 12 (Ω) : trΓ f = 0}.
Step 2. We prove that B is the operator (−∆)−1 ◦ trΓ . Let g ∈ D(Ω) and f ∈ W̊ 12 (Ω).
We have

〈trΓ f, g〉 =
\
Γ

(trΓ f)(γ)g(γ)µ(dγ) = a(f, g) = (Bf, g)W̊ 12 (Ω)

= ((−∆)1/2Bf, (−∆)1/2g)L2(Ω) = ((−∆)Bf, g)L2(Ω) = 〈(−∆)Bf, g〉,
where we denote by 〈·, ·〉 the dual pairing D′(Ω) ↔ D(Ω). Hence, (−∆)Bf = trΓ f ,
f ∈ W̊ 12 (Ω).
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Step 3. We estimate from above the eigenvalues µk of B. As mentioned before, the

eigenvalues µk including their algebraic multiplicity are independent of the admissible

space in which B can be considered. We choose B
(2−(n−d)/2,Ψ−1/2)
2,∞ (Ω) as basic space and

decompose B as

B = (−∆)−1 ◦ idΓ ◦ id ◦ trΓ

with

trΓ : B
(2−(n−d)/2,Ψ−1/2)
2,∞ (Ω)→ B

(2−n+d,Ψ−1)
2,∞ (Γ ),

id : B
(2−n+d,Ψ−1)
2,∞ (Γ )→ L2(Γ ),

idΓ : L2(Γ )→ B
(−(n−d)/2,Ψ−1/2)
2,∞ (Ω),

(−∆)−1 : B(−(n−d)/2,Ψ
−1/2)

2,∞ (Ω)→ B
(2−(n−d)/2,Ψ−1/2)
2,∞ (Ω).

By Definition 2.16, trΓ is a bounded operator. By Theorem 3.13 the embedding id is

compact and its entropy numbers satisfy

ek(id) ∼ (kΨ(k−1))−(2−n+d)/dΨ(k−1), k ∈ N.

Moreover, both idΓ and (−∆)−1 are also bounded operators, by (2.19) and (4.7), re-
spectively. Therefore, using the properties of entropy numbers and Carl’s inequality (cf.

Proposition 3.2 and Corollary 3.5), we get

µk = |µk| ≤
√
2 ek(B) ≤ cek(id) ≤ c′(kΨ(k−1))−(2−n+d)/dΨ(k−1), k ∈ N.

Step 4. It remains to prove the estimate from below for the eigenvalues µk of B. For this,

the Hilbert space setting and the use of approximation numbers are essential. Since Γ

is a (d, Ψ)-set, for each j ∈ N0 there exist at most Nj disjoint balls Bj,l, l = 1, . . . , Nj ,

centred at xj,l ∈ Γ and of radius 2−j with Nj ∼ 2jdΨ(2−j)−1. We may assume that these
balls are subsets of Ω (possibly upon replacing j ∈ N0 by j ≥ j0 for some j0 ∈ N). Let ϕ

be a non-negative C∞ function with

suppϕ ⊂ {ξ ∈ R
n : |ξ| ≤ 1/4} and ϕ(x) > 0 for |x| ≤ δ

for some 0 < δ < 1/4. Let

ϕj,l(x) = ϕ(2
j(x− xj,l)), j ∈ N0, l = 1, . . . , Nj .

Then suppϕj,l ⊂ Bj,l. Hence, for fixed j ∈ N0, the functions ϕj,l, l = 1, . . . , Nj , have

disjoint supports. By the localisation property in [ET96, 2.3.2, pp. 35–36], we have

∥∥∥
Nj∑

l=1

cj,lϕj,l

∣∣∣W 12 (Ω)
∥∥∥ ∼

( Nj∑

l=1

|cj,l|2
)1/2
2j(1−n/2), j ∈ N.(4.13)

Due to (4.10) we get
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∥∥∥
√
B
( Nj∑

l=1

cj,lϕj,l

) ∣∣∣W 12 (Ω)
∥∥∥ =

∥∥∥
Nj∑

l=1

cj,lϕj,l

∣∣∣L2(Γ )
∥∥∥

=
( Nj∑

l=1

|cj,l|2ϕ(2j(γ − xj,l))2 µ(dγ)
)1/2
≥ inf
|x|≥δ

ϕ(x)
( Nj∑

l=1

|cj,l|2µ(Γ ∩ δBj,l)
)1/2

≥ c2−jd/2Ψ(2−j)1/2
( Nj∑

l=1

|cj,l|2
)1/2
≥ c′2−j(2−n+d)/2Ψ(2−j)1/2

∥∥∥
Nj∑

l=1

cj,lϕj,l

∣∣∣W 12 (Ω)
∥∥∥.

We assume that the dimension of the span of the functions

gj =

Nj∑

l=1

cj,lϕj,l

is Nj . If T ∈ L(W̊ 12 (Ω)) has rank less than Nj , there exists gj such that ‖gj | W̊ 12 (Ω)‖ = 1
and T (gj) = 0. Then

‖
√
B − T‖ ≥ ‖(

√
B − T )gj | W̊ 12 (Ω)‖ ≥ c′2−j(2−n+d)/2Ψ(2−j)1/2.

Hence, for the approximation numbers of
√
B we get

aNj (
√
B) = inf{‖

√
B − P‖ : P ∈ L(W̊ 12 (Ω)), rankP < Nj}

≥ c2−j(2−n+d)/2Ψ(2−j)1/2 ≥ c′N−(2−n+d)/(2d)j Ψ(2−j)(n−2)/(2d).

Let k ∈ N with k ≥ N0. There exists L ∈ N0 such that NL ≤ k ≤ NL+1. Then since

Nj ∼ 2jdΨ(2−j)−1 we obtain
ak(
√
B) ≥ ck−(2−n+d)/(2d)Ψ(k−1)(n−2)/(2d).

Because
√
B is a compact self-adjoint non-negative operator in the Hilbert space W̊ 12 (Ω),

its eigenvalues coincide with its approximation numbers (cf. [Tri97, 24.5, p. 192]). Maybe

with another positive constant c we arrive at

µk ≥ ck−(2−n+d)/dΨ(k−1)(n−2)/d, k ∈ N.

Using the same kind of arguments as in the proof of Theorem 4.2 and replacing (4.3)

by (4.5) one can show in a similar way the following theorem.

Theorem 4.3 [[ET99, Theorem 2.33] (Sintered drum)]. Let Ω be a bounded C∞ domain
in Rn and Γ a compact (d, Ψ)-set such that Γ ⊂ Ω and n − 2 < d ≤ n (with 0 < d ≤ 1
when n = 1). Let b(γ) be a non-negative function on Γ such that

b ∈ Lr(Γ ) for some r > 1 with 0 ≤
1

r
< 1− n− 2

d
,

and for some c > 0,
b(γ) ≥ c if γ ∈ Γ0

where Γ0 is a (d, Ψ)-set with Γ0 ⊂ Γ . Then B = (−∆)−1◦trΓb is a non-negative, compact ,
self-adjoint operator in W̊ 12 (Ω) with eigenvalues µk satisfying

µk ∼ k−1(kΨ(k−1))(n−2)/d, k ∈ N.

Furthermore, B is generated by the quadratic form\
Γ

b(γ)(trΓ f)(γ) trΓ g(γ)µ(dγ) = (Bf, g)W̊ 12 (Ω)
where f, g ∈ W̊ 12 (Ω).
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[Tri92] —, Theory of Function Spaces II , Birkhäuser, Basel, 1992.
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