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Introduction

The present paper deals with the circle of problems considered by several mathemati-
cians, beginning with F. Klein in 1876 and ending with L. Summerer in 2004. Even
before Klein’s fundamental paper [15], A. Clebsch and P. Gordan [6] in 1867 and A. Cleb-
sch [5] in 1872 made important contributions to one of the problems in question without
formulating it explicitly.

Let K be a field of characteristic 7 > 0, T' € GLy(K) and f € K|z, y] be a form such
that

f(T(z,y)) =rf(zr,y), wherer e K*.

Segre [22] calls T' a weak automorph of f (“automorfismo in senso lato”), as opposed to
a strict automorph (“automorfismo in senso stritto”), for which r» = 1, and considers for
K = Q the quotient group Aut(f, K) (notation mine, some authors denote similarly the
group of strict automorphs) of the group of all weak automorphs of f defined over K
divided by the group of trivial weak automorphs, given by T'(z,y) = (oz, oy) for p € K*
(this definition extends immediately to forms defined over any field L containing K; then
r e L*).

Segre determines the forms f € Q[z,y] such that Aut(f,Q) contains a given non-
trivial group G of one of the possible eight types: cyclic of order 2,3,4,6 and dihedral
of order 4,6,8,12. For every group G Segre takes a convenient conjugate in the group
PGL2(Q), which simplifies calculation. Earlier for C instead of Q a similar result was
obtained by Klein [16, Chapter 2|: here all cyclic and dihedral groups are possible and,
in addition, three polyhedral groups. Dickson [9], [10] obtained analogous results for K
being a finite field. For a modern treatment of the case K = C, see Huffman [14].

The characterization of forms in question given by Klein and Segre is the following
(K = C or Q, K is an algebraic closure of K).

For a given finite subgroup G of PGL2(K) of order |G| = v all forms f € K|x,y] for
which G C Aut(f, K) and only those are expressible as

h
f(x’y) = HXi('ray)Ciw(p('ray)7Q(xay))a

where p,q € K[z,y], x; € K|r,y] are forms determined by G; p,q are of degree v, x;
are of degree v/m;, ¢; are integers satisfying 0 < ¢; < m; and if x;,x; are conjugate
over K, then ¢; = ¢;; ¢ is a binary form over K. Klein’s proof is not rigorous and in
Segre’s proof given in Subsection 19 of [22] several details are missing. In particular,

[5]
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no connection is indicated between p, ¢ and x;. On the other hand, in Subsections 20
and 24, 29 of [22] Segre explicitly determines p, ¢ and x; for every G up to conjuga-
tion.

Having proved in §1 of the present paper several lemmas about PGLo(K) we deter-
mine in §2 the forms p, ¢ and x; for every cyclic subgroup of PGLy(K) with a given
generator (Theorem 1). Then we prove an analogue of the above result of Klein, Dick-
son and Segre for an arbitrary field K (Theorems 2 and 3). Consideration of fields K
that are not perfect is the only novel feature of this proof. As an application we prove
in §3 an upper bound for the order of Aut(f, K) (Theorems 4 and 5). The bound
is sharp for every 7w and for m = 0 it is better for deg f > 12 than Olver’s bound
[19], [1]-

In Subsections 22-23 of [22] Segre gives a method to decide whether a given cubic
or quadratic binary form f over Q has a strict non-trivial automorph defined over Q,
the only trivial automorph being here the identity. The method involves invariants and
covariants of f. In §4 we consider an analogous question for weak automorphs defined over
K and give an answer in terms of the Galois group Gal(f, K) of the polynomial f(x,1)
over K (Theorem 6). For cubic forms and K = Q a necessary and sufficient condition
(if f is irreducible, the discriminant of f has to be a square in Q) has been given in a
recent unpublished manuscript of A. Choudhry [4]. For forms of odd degree with non-
zero discriminant (in what follows called non-singular), existence of a weak non-trivial
automorph is equivalent to existence of a strict non-trivial automorph (see [22, p. 40] and
[20, Theorem 3.5]), but it is not obvious that Choudhry’s condition and Segre’s condition
([22, p. 48]) are equivalent. For non-singular cubic forms with f(1,0) # 0 the structure
of Gal(f, K) determines the isomorphism class of Aut(f, K), for quartic forms it does not
in general. On the other hand, for K algebraically closed and f a non-singular quartic,
the isomorphism class of Aut(f, K) is determined by invariants of f (§5, Theorem 7). For
K = C this is well known ([1, Example 3.6], cf. also [24, Proposition 3.2]), but at least
for char K = 2,3 it seems new.

For forms f of degree 5 a characterization of the isomorphism class of Aut(f,C) by
invariants and covariants of f can be deduced from the work of Clebsch and Gordan [6]
and of Clebsch [5] on the so called typical representations of binary forms. For f non-
singular of degree 6 a characterization of the isomorphism class of Aut(f, C) by covariants
of f was obtained by Maiasano [17] and one by invariants of f by Bolza [2]. Recently
a practical way of finding Aut(f,C) by means of covariants of f has been proposed by
Berchenko and Olver [1]. However, it is not clear from it whether for non-singular forms f
of degree greater than 6 the condition |[Aut(f, K)| > 1 can be characterized by invariants
of f. We shall show (Theorem 8) that the set of forms f € C[z,y] with |Aut(f,C)| > 1
is Zariski closed only for n < 5.

I conclude this introduction by expressing my thanks to A. Choudhry for sending
me his unpublished manuscript [4] as well as a copy of 2], to A. Pokrzywa for factoring
several multivariate polynomials that appeared in an earlier version of the paper and to
A. Stadek who suggested many corrections and a simplification.
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1. Lemmas on PGLy(K)

DEFINITION 1. Let K be a field of characteristic 7. If Ty(z,y) = (ax + By, vz + dy) €
GL2(K), the image of T in PGL2(K) will be denoted by T' = (: ?)K*, or if PGLy(K)
is represented as the group of fractional linear transformations, by T*. The order of T
in PGLy(K) will be denoted by o(T'), the unit element by E. Moreover, ¢, is a primitive
root of unity of order v in K, if it exists.

LEMMA 1. PGL2(K) contains an element of order v > 1 if and only if either v = 7, or
v#0mod 7 and (, + ¢, ' € K. If this condition is satisfied, then PGLy(K) contains a
dihedral group of order 2v except for K = Fy, v = 2.

Proof. Let (3 ?)K* be an element of order v > 1 in PGLy(K). By the Jordan normal
form theorem (see [26, §88]) there exist a,b,c,d in K such that ad — be # 0 and

a B\ [(a b -t Al B a b

v 6) \ec d 0 o c d)’
where A\; Ay # 0 and either p = 0, or A\ = As = X\ and g = 1. In the former case A\;/\s
is a primitive root of unity ¢ of order v, hence v #Z 0 mod 7 and

)\2(1+C):)\1+)\2:TI‘<)\1 M)ZTI‘(i ﬂ>=a+5€K,

0 X 5
A
Agg:AlAQ:' 01 /C = j ? =ad— By e K.

Hence ¢ + (71 = (A2(1+¢))?/A3¢ — 2 € K. In the latter case
Mop (ot
0 X/ 0 AV ’
hence v = 7.

If the asserted condition is satisfied, then PGL2(K) contains a dihedral group of order
2v generated by

-1
<1+C+C 1)[(* and (0 1>K* if v # 0 mod ,

1 1 1 0
1 1 . -1 0 " —
(0 1)K and (0 1)K ifv=m+#2
1 1 . 1 a . e
<0 1)K and (0 1)K ifv=n=2 a€ K\TFs.

REMARK. For K = QQ Lemma 1 has been proved by Segre in Subsection 9 of [22].

LEMMA 2. PGLo(K) contains a subgroup isomorphic to 24 if and only if either m # 2
and level K < 2, or m = 2 and Fy C K. If and only if the former condition is satisfied,
PGL2(K) contains a subgroup isomorphic to S4.

PGL2(K) contains a subgroup isomorphic to Us if and only if either m # 2, level K < 2
and Vs € K, orm=2 and F, C K.



8 A. Schinzel

REMARK. The level of a field K is the minimal number k such that 23 + -+ + 22 = —1
for some z; € K.

Proof. If m = 3 the condition on the level is trivially satisfied, so assume 7 # 3 and let

M be a matrix over K such that M K* is of order 3 in PGLy(K). Then M is equivalent
AL O
0 Ao

1 _
M % is equivalent over K to

1+¢ 0 (1 =2\ [0 —1\ (1 —¢\
0 1+¢*t) 1 —<¢ 11 1 = ‘
But (see the proof of Lemma 1) A\2(1+ ¢) € K and (1 + ¢?)/¢ € K, hence, on division,

A2/(1+¢ 1) € K and M% is defined over K. It follows that
1+¢!

2

over K to a matrix ( ), where A\ /)2 is a primitive root of unity ¢ of order 3 and

M is equivalent to < (1) _11 > over K.

Hence a subgroup of PGLy(K) isomorphic to 2(4 is conjugate to a subgroup G con-
taining ((1) _11 )K* =T. Thus there exists S € G such that

S2=F and TST =ST'S.

Taking S = (3‘ ?)K* we obtain by calculation § = —a, (2a+v — 3)% + 3%+~ = 0 and
if 7 = 2, then 32 — By +~2 = 0. Thus level K < 2 and if 7 = 2, then 3/v is a primitive
root of unity of order 3, hence Fy C K.

In the opposite direction, if 7 = 2 and ( is a primitive root of unity of order 3, then

the group
0 C * 0 -1 *
() )=)

is isomorphic to 204. If 7w # 2, then the assumption that level K < 2 implies existence of
T1,xo in K such that x% + x% 4+ 1 =0. Then the group generated by

1 -1 % X xro + 1 %
S_(]. 1)K’ T_(IL'Q]. —T )K
is isomorphic to &4. Indeed, S* = E, T? = E and (ST)? = E, which gives the required
property (see [7, Table 1]). If 7 = 2, then PGLy(K) does not contain a subgroup
isomorphic to &4 since, by Lemma 1, it contains no element of order 4.
Assume now that PGLy(K) contains a subgroup isomorphic to 2s. Since 205 contains
A, and €5, it follows from the already proved part of the lemma and from Lemma 1 that
either 7 # 2 and level K < 2, or 7 = 2 and F; C K; moreover, either ( + (™! € K,
where ( is a primitive root of unity of order 5, or 7 = 5. If 7 = 2 and Fy C K, then
PGL2(K) contains an isomorphic image of PGLy(F4) = s; if m # 2, then the condition
¢+ (¢! € K implies o = (v/5—1)/2 € K, which also holds for 7 = 5. Conversely, if
V5 € K and level K < 2, we have 22 + 23+ 1 =0 for some 2,75 in K, hence the group
(R, S), where

—1+220 z1+220—0-1 * 0 -1 *
R < 2 1—z90 ) 5 (1 1 ) ’
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is isomorphic to 25, provided

—1+w0 z1+220—0—1 2 9
= — -2 2 240
9 1= 290 30" — 231+ 20+ 2 #0,

and this follows from 7 # 2 if 1 = 0, while it can be achieved by changing the sign of z;
if 71 # 0. Indeed, we have R?> = E, S® = E and (RS)® = E, which implies (R, S) = 25
(see [7, Table 5]).

REMARK. Lemma 2 in an equivalent formulation is given without proof by Serre [23].
Segre only proves ([22, Subsection 12]) that if K is real, then PGL2(K) does not contain
a copy of 4.

LEMMA 3. Let G be a non-trivial subgroup of PGLo(K). If for all elements S of G~ {E}
the equation S*¢ = ¢ has exactly one solution in K U{cx}, then m > 0 and G is a w-group.
Every such finite group is generated by elements

(CCL 2)1<A0i ;)(Z Z)K (1<i<yg)

where ad — bc# 0, the )\;1 are linearly independent over B, and either a,b,c,d, \; € K,
orm=2,a=0,b=1, ce€ K, K(d) is a quadratic inseparable extension of K and
Xi +d € K. Every infinite m-group contained in PGLy(K) contains the above finite
groups for all g.

Proof. Let 51 = (: g)K* € G~ {F}, hence ad — By # 0. By the Jordan normal form

theorem there exists a non-singular matrix (‘Z Z) over K such that

CD-CnGneD.

where Av # 0 and either 4 = 0, or A = v and p = 1. In the former case the equation
S7¢ = ¢ has two solutions in K U {co}, namely —b/a and —d/c. Since the case \ = v,
1 =0 is excluded by the assumption S; # E, we obtain p = 1 and

(1) 40? = (a+0)? = 4(ad — By).
The second equality of (1) holds for all elements S of G. Let

-1
_[a b e ¢ a b N
()G e m
Since SiS € G and
Aod e ¢\ [ Ae+in A+
0 A n 9) An A

(Ae + M0 +in)? = 4X% (e —n¢) (i =0,1,2),

we obtain from (1)

hence
n=0, e=9, (#0,

hence S is of infinite order in PGLy(K') unless 7 > 0, in which case S™ = F and G is a
m-group. This proves the first part of the lemma.
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In order to prove the second part let us again consider S;. The condition ST = E # 51
implies in the above notation
Aﬂ::Vﬂ7 ﬁt#(h
hence A\ = v =: A\; and p = 1. It follows that we have again equation (1) and for every S

in G,

(1) GO e

If A\ € K, then a,b, c,d can be chosen in K and hence ¢,( € K and

(20 () )

For S running through G, (/e runs through a linear space L over . and letting )\fl, e
ey )\g_l be a basis of this space we obtain the assertion of the lemma.

If \; ¢ K, then the polynomial 22 — (a + )z + (ad — (37) is irreducible inseparable

over K, hence m = 2, v # 0 and we can choose a =0, b=1, c =+, d = A\; — . Then the
condition S € PGLy(K) gives ¢ + d( € K, d*¢ € K, hence ( € K and

-1
a b e/¢ 1 a b
= K*.
s=(0a) (% ) 0)
Taking again a basis )\1_1, ceey A;l of L we obtain \; +d € K, which completes the proof

for finite groups G. If G is infinite, so is L and for every g it contains )\1_1, ey A;l linearly
independent.

LEMMA 4. Let G be a non-trivial finite subgroup of PGLy(K) and let
09) = |J {¢eRKu{c}:57¢=¢}.
Seg~{E}

If G is not a w-group, then the number h of orbits of O(G) under the action of G is either
two or three.

Proof. Let the orbits in question be Oq,...,0;,. For each £ € O; the number |{S € G :
S*¢ = ¢} is the same, say v;. Clearly |G| = v;u;, where p; = |O;| and

h

SCEITEES SEED SIEEED SIS VEE!

i=1 ¢eKu{oco} SEGN{E} SeGN{E} ¢eKu{oo}
S*¢=¢ S*E=¢

But for each S € G\ {E} the equation S*¢ = ¢ has in K U{oo} either one or two solutions

and, by Lemma 3, the latter possibility occurs at least once. It follows that

h
2G| 2> (i — 1) > 1G] - 1.
=1

Since

i=1

h h
h
i — 1w = h|G| - i € |5 191 hlG] = h|,
(4~ s = hl] ;_1:“6{2@ 61 -1
we obtain 2 < h < 3.
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REMARK. For K = C and K = F,, |G| # 0 mod 7, Lemma 4 and the above proof are
well known (see [27, Vol. II, §68 and §87].

LEMMA 5. In the notation of the proof of Lemma 4, if T€ G, £€0; and T*§ =&, then
o(T) 1G1/105]-
Proof. The group (T) of order o(T') is a subgroup of the stabilizer of £ in G of order
G1/1051-
LEMMA 6. Under the assumptions of Lemma 4, let K; = K(O; ~\ {oo}). Then [K; : K|
< 2 for all j < h. We have the following possibilities:
(2)  forall j <h either [K;: K]s =1 or [K;: K|s =2, c0o & O;,

Gal(K;/K) = (o), and 0;(0;) = Oj;
(3)  for a suitable numbering of O;,

[Kl :K]s = 2,Gal(K1/K) = <O’1>, 0 € 01, 0'1(01) = 02

and either h =2, or h = 3,[K3: K]s = 1,

or h = 3, [Kg : K]S = 2, Gal(Kg/K) = <O’3>, (0.9] € 03,0'3(03) = 03.
Proof. If £ € O(G) \ {o0}, then §*¢ = £ for an S € G, hence [K(&) : K] < 2 and if
£ €0y, then [K; : K] <2. If [K; : K] =2, then oo ¢ O; since S*(0c0) € K U {oo} for all
S € §G. If (2) does not hold, then for some j we have [K; : K]; =2, Gal(K,;/K) = {o;)
and 0;(0;) # O;. Therefore, there exists & € O; such that ¢;(§) ¢ O;. But S§&o = &o
for some Sy € G\ {E}; then also S§o;(&0) = 0;(&0), hence 0;(&) € Oy, for some k # j
and renumbering the O; we may assume that j = 1, k = 2, 01(01) = Os. If h = 3
the situation cannot repeat itself with j = 3 since there exists no suitable k, thus either
[K5:K]s =1, 0r [K3: K|s =2, Gal(K3/K) = (03) and 03(03) = Os. This gives (3).
LEMMA 7. For every finite subgroup G of PGLa(K) of order not divisible by 7 the
sequence |O1],...,|Oy| in the notation of the proof of Lemma 4 is a permutation of
one of the sequences: (1,1) (G = &), (|G|/2,1G]/2,2) (G = D,), (4,4,6) (G = Ay),
(6,8,12) (G = &), (12,20,30) (G ~ As).
Proof. 1f |G| £ 0 mod 7, then by Lemma 3 for every S € G~ {FE} the number of solutions
of S*¢ = £ is 2, hence following the proof of Lemma 4 we obtain

h h
2lg|-2= Z(Vi = Dpi = hlG| — Z G|/ vi
i=1 i=1

for h = 2 or 3. This equation is well known (see [27, Vol. II, §68]) and gives for de-
creasing v; either h = 2, v; = vy = |G|, or h = 3, (v1,v9,v3) = (|G|/2,2,2), or h = 3,
(|Gl;v1,va,v3) = (12;3,3,2), (24;4,3,2), (60;5,3,2). Since y; = |G|/v; we obtain the
lemma.

LEMMA 8. Let G = PSLy(F,). In the notation of Lemma 4 we have
(4) O(G) = Fgz U {00}

and, up to a permutation, O1 = Fq U {00}, Oy = Fp2 N\ TFy.

Proof. The formulae

(5) Seg~{E}, €¢e€F,u{x}, S*¢t=¢
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imply £ € F,2 U{oo}. On the other hand, if { € Fgor { € F2, €2 +al+b=0, a,b € Fy,
or £ = {o0}, then (5) holds for

C(14+¢ =& . as™! —be! . 1 1Y ..
S_( 1 1-¢ Fg or et asl4as! Fy or 0 1)

respectively, where a and e are chosen in I, so that a? +aa+b = €% ¢ # 0 since
2?2 + ax + b is irreducible over F,. This proves (4).

Moreover, if € =0, S = ( ° | )F; or § € Fj, S = (] 1 )F; we have

Seg, S'oo=¢
Finally, if £, € Fp2 \F, and &', ' are conjugates of £, 7 with respect to F, we have
(m—n")/(&—¢) € F,. There exist ¢,¢ in F, such that

n=mn ;s S22
5_5,(+£)( +§)=e"#0

Then taking

Sn—n)+mE—n'¢") o('&—ng)+& (" —n)

S = g€ -¢) e(€-¢) F:
gt det
we find S € G such that $*¢ = 7, which completes the proof.
LEMMA 9. The statement of Lemma 8 is also true for G = PGLy(F,).
Proof. If H1 = PGL2(F,), Ha = PSLy(F,) we have, in the notation of Lemma 4,
O(Hz) C O(Hy);
but, clearly, O(H1) C F,2 U {oo}, hence by Lemma 8,
O(H1) =Fp U {oo}.

Since Hy C H; the orbits of F,2 U {oo} under the action of H; are unions of orbits
under the action of Hy; Lemma 8 shows that they are either F, U {oo} and Fp2 \Fy, or
F,2 U {co}. As the image of F, U {oo} under the action of H; is again F, U {oo}, the
former case holds.

DEFINITION 2. If K, L are fields, K C L and G is a subgroup of PGLy(K), then GL*/L*
is the subgroup of PGLs(L) defined as

{ML*: M € GLy(K), MK* € G}.

LEMMA 10. For m > 0 every finite subgroup of PGLo(K) is isomorphic to a subgroup of
PSLy(Fy), where s is a power of .

Proof. Let G = {(:: ?j )K* 1< < k} The isomorphism class of G is determined by
finitely many equalities F;(c,...,dx) = 0 and inequalities G(cv, ..., d;) # 0, where F;
and G; are polynomials over F;. By the theorem on elimination of existential quantifiers
in algebraically closed fields, if this system of equalities and inequalities is solvable in K,
it is also solvable in the algebraic closure of IFr, hence also in a field F,;, where ¢ is a power
of 7. Thus G is isomorphic to a subgroup of PGLy(F,). Since for s = ¢%, PGLy(F,)F: /F*
is contained in PSLy(Fy), it follows that s satisfies the assertion of the lemma.
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LEMMA 11. For m > 0 and a finite subgroup G of PGL2(K) of order divisible ezxactly
by 79 (g > 0) let o be the number of w-Sylow subgroups in G. We have the following
possibilities:

o =1,

0':7Tg+1, ggPGLQ(Fﬂ—y) or PSL2 (Fﬂ—g);

7.‘.5':2, U:2Q+1(Q21)5 gg@?g#»l;

=3 oc=10, G==As.

Proof. In view of Lemma 10 this follows from an analogous property of subgroups of
PSLy(Fs) (see [12, Chapter XII, Sections 249-253], with m replaced by g and f by p).

LEMMA 12. Let H1 = PGLy(F,) and Hy = PSLy(F,), where ¢ = m9. Every subgroup of
PGLy(K) isomorphic to H; is conjugate to H;K*/K*.

Proof. The existence of a subgroup of PGLy(K) isomorphic to H;, but not conjugate to
H;K*/K* is a statement involving finitely many existential and universal quantifiers and
equalities and inequalities concerning polynomials with coefficients in F,. By the theorem
on elimination of existential quantifiers in algebraically closed fields, if this statement is
true, it is also true in Fq. Therefore, there exists a subgroup G of PGLo (Fq) isomorphic to
‘H;, but not conjugate to HiF;/FZ. For A running through GL3(F,) such that AFZ €g,
A/+/det A runs through finitely many matrices, which all lie in SLy(F;) for some s which
is a power of ¢. If

M
6 2 F.MF ,
© Go {\/m qeg}

then Gy is isomorphic to G, hence to H;. By the known property of PSLo(F;) (see [12,
Chapter XII, italicized statements on pp. 274 and 278 and the normalization of Gg on
p. 273]), Go is conjugate in PGLy(F;) to H;F%/F%. Hence there exists Ag € GLa(F,) such
that
Go = AgH; Ay

By (6) this gives

Go = A0H1A51F;/FZ,
thus G is conjugate in PGLy(F,) to H,;F; /F;, a contradiction.

LEmMMA 13. If F, C K, then every subgroup G of PGLy(K) isomorphic to H; (notation
of Lemma 12) is conjugate to H;K*/K*.

Proof. By Lemma 12 there exists A € GLa(K) such that for ¢ = 1 or 2,

(7) GK*/K* = AH;A"'K*/K*.

It follows that for all M € SLy(F,)F;? there exists t € K* such that
(8) tAMA™! € GLy(K).

Now, if

_(a b _(a B
() = (50)
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then

ado — acf + bdy —bed  —abo + a2 — b3y + abd
AMA™ = 1 7 7 .
ad —be \ cdo — 2B+ d?y — edd  —bea + acB — bdy + ads
Applying (8) with

M:((l) (1)>((1) 1)’(01 (1))’<11 é)

we obtain
ad ac be
9 t K 9 t K 9 K;
(1) ad—bce ) (2) ad—bce ) (3) ad—bce )
ab a?
(109) ¢t eK (102) ¢t € K;
1 — ) 2 — ;
ad — be ad — be
c? cd
(114) tadbeEK’ (115) tadfbceK'

Since ad—bc # 0 we have a # 0 or ¢ # 0. If @ # 0, then (9;) and (102) imply d/a € K, (92)
and (102) imply c/a € K, and (10;) and (102) imply b/a € K, hence a 1A € GLy(K).
If ¢ # 0 the same conclusion follows from (92), (93), (112) and (114). By (7),

GR* /K = a~ AH; A a K" K,

hence _
G=a'AH;A" aK*/K*,

which gives the assertion.

2. Determination of all binary forms with a given group of weak
automorphs

DEeFINITION 3. If
(12) (Oé,ﬁ7’7,(5> €K47 045_5775(), <aaﬁ7775> # <Oé,0,0,0é>

and
(13) 22— (a+8)z+(ad—py) = (2= M)z —Xa2), A, do €K, M\ # Ao,
we put
xi=yr+i—a)y (i=1,2) ify#0,
x1=(a—08)z+ Py, x2=vy otherwise.
DEFINITION 4. If (12) holds and
(14) 22— (a+0)z+(ad—By)=(2—N?, NEK,
we put
xi=v2+A-a)y, xe=y ify#0,
X1=0y, x2== otherwise.
THEOREM 1. Let (o, 3,7,9) satisfy (12) and T = (3 ?)K* be of order v in PGLa(K).
A form f € K[z, y] ~ {0} satisfies the conditions
(15) f e Klz,y]
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and

(16) T € Aut(f, K)

if and only if either (13) holds and

(17) F=xTxEY (X7 + X5, Axd + Aaxi),

where x1, X2 are given in Definition 3, ¥ is a binary form over K, while c; are integers
satisfying 0 < ¢; < v and ¢1 = ¢a if X1, x2 are conjugate over K, or (14) holds and

(18) F=xT 0 AN = xax Y,

where x1, X2 are given in Definition 4, i is a binary form over K, while ¢y is a non-
negative integer satisfying c; < m = v unless either m = 0, in which case Y € K*, c;
arbitrary, or m =2 =v, A € K, in which case ¢; = 0.

COROLLARY 1. If a form f € K|z,y] of degree n £ 0 mod m has a weak automorph of

order v in PGLo(K), then either v|n and (, +(, ' € K, or f is the product of two forms
with such automorphs, one of which, say g, is linear or quadratic.

COROLLARY 2. If a form f € K[x,y] of degree n # 1 mod 7, n > 2, has a weak auto-
morph of order v in PGLy(K) and f is the product of a linear factor and another factor
defined and irreducible over K, then v|in—1 and ¢, € K.

COROLLARY 3. If a quartic form f € Klz,y] has in PGLy(K) a weak automorph of
order 3, then either /=3 € K or f is a square in K|z, y).

COROLLARY 4. IfT) € GLy(K) and T = ToK* is of finite order in PGLy(K), then there
exists c(Ty) € K such that if T € Aut(f, K), then

F(Tp)* ™) = e(To) = f
and if , moreover, f(£,1) = 0 implies T*¢ # &, then o(T) | deg f and

F(To) = e(To) 8 /o).
Here f(00,1) =0 means f(1,0) = 0.
COROLLARY 5. Under the assumption of Theorem 1 about T, a form f € K|x,y] ~ {0}
satisfies (16) if and only if either (13) and (17) hold, where x1, X2 are given in Defini-
tion 3, v is a binary form over K, while ¢; are integers satisfying 0 < ¢; < v, or (14)

and (18) hold, where x1, x2 are gwen in Definition 4, while c¢1 is a non-negative integer
satisfying ¢c1 < m = v unless m = 0, in which case ¢ € K*, ¢1 arbitrary.

The proof of Theorem 1 is based on three lemmas.

LEMMA 14. The linear forms x1,x2 given in Definition 3 are linearly independent and
satisfy xi(ax+ By, yxr+0y) = N\ixi (i = 1,2), provided for v = 0 we have \; = a, Ay = 0.
Moreover, either x; € K[z,y] (i = 1,2), or x1, X2 are conjugate over K.

If(z ?)K* is of order v > 2 in PGLy(K), then x; € K|z,y] if and only if K contains

a primitive Toot of unity of order v.

Proof. The first two assertions are proved by calculation and inspection. To prove the
third assertion notice that y; € K[z,y| if and only if \; € K. If (: ?)K* is of order
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v > 2 in PGLy(K) we know from the proof of Lemma 1 that A/ is a primitive root of
unity of order v and that
)\2(1 +)\1/)\2) =a+dE€ K,

hence \; € K (i = 1,2) is equivalent to existence in K of a primitive root of unity of
order v.

LEMMA 15. The linear forms x1,x2 given in Definition 4 are linearly independent and
satisfy

xi(az + By, vz +0y) = Ax1,  Xe(az + By, vz +0y) = Axz + X1
Moreover x1 € K[z,y] unless m =2 and A ¢ K.

Proof. By calculation and inspection.

LEMMA 16. If G € K[z] ~ K, A € K* and

(19) Glxz+2xYH=rGx), reKWN,
then m # 0 and
(20) G(x) = HA\" ‘2™ — ), where H € K(\)[z].

REMARK. For K being a finite field and A € K the lemma is due to Dickson.
Proof. By comparing the leading coefficients on both sides of (19) we obtain » = 1. Now
(19) implies that
G(IXN')=G(0) forallleZ,
hence 7 # 0. We shall prove (20) by induction on the degree of G, say n. If n = 0, then

(20) holds with H = G. Assume that (20) is true for all G satisfying (19) of degree less
than n and that deg G = n. From (19) we obtain

1:[(93 Y ‘ G(z) — G(0).
=0

But )
[[@-h=x"("a" —a)
1=0
and
AN e+ XD —(z+ X H) =212 — 2.
Taking

_ Gx) - G(0)
@)= S o
we deduce from (19) that G1(z + A~!) = G1(z), hence by the inductive assumption
Gi(r) = HH(\"'2™ —2), H; € K(\)[z],
and (20) holds with H = zHy(x) + G(0).

Proof of Theorem 1. Necessity. First assume (13). Since by Lemma 14, x1, x2 are linearly
independent over K we can write

n
(21) flzy) = axi 'xh, where a; € K(\1, \),
1=0
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and we set
It follows from (16) and Lemma 14 that
(22) flax + By, yo +0y) =Y aidp  AoxT x4
icl
:)\;’Zai()\g/)\ VX —TZaZXn X
iel i€l

Since T is in PGLy(K) of order v, A\y/); is a primitive root of unity of order v in K.

If I = {j}, then we have (17) with ¢) = a;. If |I| > 1, then the condition (22) implies
that there exist integers c1, co such that 0 < ¢; < v and i = ¢z, n — i = ¢; mod v for all
i € I. Since
g—Xep _,  Aip—¢q
YRED VLR R VR v

(23)  p=xT7+X5, ¢ =MXy+Xaxs s equivalent to X} =
if A1, A2 are in K we obtain (17) with
(24) V(p,q) = Zaio\l _ )\2)(c1+c2fn)/l’(q _ )\2p)(n7ifcl)/u(>\1p _ q)(ifcz)/u.

el
If \; € K, then x1, x2 are conjugate over K by Lemma 14, and denoting conjugation by
prime, from (14) and (21) we obtain

0=f'(x,y) Za’x’g’ P4 Zazx TN =) (a) — an—i) XX,
i=0
hence a; = a,,_; for all i < n. It follows that 4 and n — 1 belong simultaneously to I, thus
¢1 = ¢o. Now, the form ¢(p, ¢) given by (24) satisfies
W (p,q) = (p,q) = Y ai(he — A) PV (g — Ayp) T (Ngp — g) TV
iel
_ Z a;(A — Ag) =MV (g — Ngp) (i) /v (N p — q) eV
iel
_ Zanfi()ﬂ _ Al)(ch—n)/u(q o )\lp)(n—i—cl)/l/()\2p _ q)(i—cl)/u
il
=S i = A0 (g = ) e (A — g)nimen /v =
iel
and since the extension K (A1, \y)/K is separable, we get ¢ € K[z,y] and from (21) and
(23) we again obtain (17).
Assume now that (14) holds. Since, by Lemma 15, x1, x2 are linearly independent

flzy) =9(x1,x2), g€ KN,y
By (16) and Lemma 15,
(Ax1, Ax2 + x1) = g(xa(ax + By, yo + dy), xo(ax + By, vx + dy))
= flax + By, vz + 0y) = rf(x,y) = rg(X1, Xx2),
hence G(z) = g(1, z) satisfies

over K, we have

Gz + 21 =rG(x)
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and, by Lemma 16, we have either G € K, or m # 0 and
Gx)=H\ " '2™ —z), Hec K\)x].
In the former case we have (18) with
¥(p,q) =1, c=n if 7 =0,
Y(p,q) =p"™, nwLnJ ifr>0 )€K,
T

Y(p,g) =p™* =0 ifr=2 \¢K.

In the latter case we have for n =c¢; mod 7, 0 < ¢; <,

9(x1,x2) = x’fG<&> = X?H(Aﬂ—l(Q) _ &)7
X1 X1 X1
thus (18) holds with
¥(p,q) = p" /" H(q/p).

If A € K, then clearly ¥ € K|p, q].
It remains to consider the case 7 =2, A & K. Let

(25) Y(p,q) = p"1(p,q), where ¥1(0,1) # 0
(m = (n—c; —degg)/2), so that
(26) (1(xT, A3 — x2x1), x1) = 1.

By (18) we have X%m“l | £, (x3)?m*er| 2 | and since x? is irreducible over K, also
(x3)m+lei/21) f. By (18), (25) and (26) this gives
2m+2[c1 /2] =2m + ¢y,
hence ¢; = 0, ¥(x3, \x3 — x2X1) = f € K[z, y] and since
(27) Xi =72+ By’ € K[z, yl, MG — xixe = yay + oy’ € K[z, y]
and x2, \x3 — x1X2 are algebraically independent over K, it follows that v € K|[p, q].

Sufficiency. If (13) holds and T is of order v in PGLy(K), then we have Ay = A4, hence
Xi(aw + By, v + 6y)” = A x; and, by (17),

Flo + By, yx +0y) = AP A2 A ©E
thus (16) holds. Also, if A\, A2 € K, then (15) holds. If A;, Ay are conjugate over K,
then (15) holds again by the condition ¢; = ¢a, since x1x2, X7 + x5 and A1 xY + Aax% are
invariant under conjugation.

If (14) holds and 7 = 0, then, by (18), f(az + By, yx + dy) = A°* f, thus (16) holds.
Also (15) holds, since in this case A € K. If © > 0, then by (18) and Lemma 15,

flox + By, vz + dy)
= AXTYATXT, ATTHATXG 4 xT) = (Axz +xa) AT I = At

thus (16) holds. Also if A € K, then (15) holds. If A & K, then 7 = 2, ¢; = 0 and (15)
follows from (27).



Weak automorphs of binary forms 19

Proof of Corollary 1. If T = (f’; ?)K* € Aut(f, K) of order v > 1 in PGL3(K) satisfies
(13), then, by Lemma 1, ( + (~! € K, where ( = \2/)\; is a primitive root of unity of
order v in K. If n = 0 mod v the first term of the alternative holds. By Theorem 1 we
have n = ¢; + ¢ mod v, thus n #Z 0 mod v implies ¢; := max{cy,co} > 0. If x; € K|z, y]
we take g = x;, and if x1, x2 are conjugate over K, we take g = x1x2.

If T satisfies (14), then either # = 0 and f = x7', in which case we take g = x1, or
m > 0, in which case we have n = ¢; mod 7. By assumption, n #Z 0 mod 7, thus ¢; > 0,
m # 2 and we take g = x1.

Proof of Corollary 2. Let Ty(z,y) = (ax + By, vz +0y), T = (: ?)K* € Aut(f, K) be of
order v > 1in PGLy(K), and L be a linear factor of f in K[z] such that f/L is irreducible
over K. Since L(Ty) | f(To) | f and f/L is of degree n —1 > 1 we have L(Ty)/L € K*,
hence (cf. Lemmas 14 and 15)

(28) L=ay;, a€ K", wherei=1or2incase (13), i =1 in case (14).

In case (13) it follows that A;, A2 € K, thus a primitive root of unity {, = Aa/\1
is in K. Now (17) implies that either ¢; = 1 and ¢3_; = 0, in which case v|n — 1, or
¢; = c3_; =0 and

Xi | (XY + X5, AxT + Aaxs)-
This gives
X [0 Asmix i) = x5 255 V(1 Aa),
hence (1, A3_;) = 0,
V= As—ip — @)1, 1 € K[p, 4],
and
FIxi = Nami = X7 ™ 1 (X + X3, Mxd + Aaxs)
is reducible for n > 2, contrary to assumption.

In case (14) it follows from (28) that A € K and, by (18), we have 7 > 0. If ¢; = 1

we have n = 1 mod 7, contrary to assumption, while if ¢; = 0,
X1 [ OF ATINE = xexd ).
This gives
X190, A771xE) = (ATTIXE)EY(0, 1),
hence ¢(0,1) =0, ¢ = py1, 1 € K|[p, q] and
Fixa =xT 0 ATINE = xexT )
is reducible for n > 2, contrary to assumption.
Proof of Corollary 8. If m = 3 the conclusion holds trivially. If 7 # 3 then by Theorem 1,
F=xPx3 00 + 23, A + Aexd),
where X1, x2 are given in Definition 3, ¢1, co are non-negative integers and v is a binary
form over K. If /-3 ¢ K, then y; ¢ K[z,y], by Lemma 14; hence, by Theorem 1,

c1 = co and the above equation for f gives 4 = 2¢; mod 3. It follows that ¢ = ¢ = 2,
¢ € K* and f is a square in K[z, y].
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Proof of Corollary 4. For Ty = (ax + By, vz + dy) we take
A2 = A9 if (13) holds,
{ Ao(T) if (14) holds.
If ToK* € Aut(f, K) we have, by Theorem 1, for the case (13),
FT) D = X520 A2 Moy e 0(T) f o y)eretes voT) f = c(Ty)dee
and for the case (14),
F(To)?™ = xero(D) o(Ty)desvro(T) f — (T, )er+deg o) p — o7y ydee s g,

If, moreover, f(£,1) = 0 implies T*¢ # &, then ¢; = ¢ = 0 if (13) holds, and ¢; = 0 if
(14) holds, hence

deg f =degtp-o(T) and f(Tp) = c(To)*8Y f = c(Tp) ™/ /7 .

Proof of Corollary 5. It suffices to apply Theorem 1 with K replaced by K and T replaced
BN T7x
by (33

c(Tp) =

DEFINITION 5. Let G be a finite subgroup of PGLy(K) which is not a 7-group, and let,
in the notation of Lemma 6,

Kj:K i .
xio= I G@-m) JI » xi=xo a<ji<h).
n€0;~{oo} ne0;N{oo}
Further, if (2) holds, set

g|/d gl/d
p:X|1 I/ cgx1 q:X‘z |/ g Xz,

and if (3) holds and K; = K (¥), set
p= X\lgl/degX1 + X\le/deng’ q= ﬁxllg\/degm + Ul(ﬁ)x\fl/degxfz'

COROLLARY 6. Either x; € K[xz,y] for all j < h, or x1, X2 are conjugate over K and for
h =3, xs € K[z,y]. Moreover G C Aut(y;, K) for all j < h.

Proof. This is an immediate consequence of Lemma 6.

COROLLARY 7. We have p,q € K[z,y] and (p,q) = 1.

Proof. First, p and ¢ are forms over K. If (3) holds, or (2) holds and [K; : K]; =
[K2 : K]; = 1, this is clear, since degx; = |O,| divides |G| for all j < h. If (2) holds
and [K; : K|, = 2, then for each S € G~ {E} and £ € O; with S*¢ = £ we have
o(S) = 0 mod 2, hence 2|0;,|||G| by Lemma 5.

Now, if (2) holds we have x; € K[z,y] (1 < j < h), hence p,q € Kz, y|. If (3) holds,
then x2 = 01(x1), hence o1(p) = p, 01(¢) = ¢, thus p,q € K[z,y]. Since (x1,x2) =1 we
have (p,q) = 1.

THEOREM 2. Let G be a finite subgroup of PGLo(K) which is not a w-group. A form
f € K[z,y] ~ {0} satisfies

(29) f € K[z, y]

and

(30) G C Aut(f, K)
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if and only if

h
(31) f=1Ix7¢@a
j=1
where x; and p, q are given in Definition 5, ¢ is a binary form over K and c; are integers
satisfying 0 < ¢; < |G|/deg x; and ¢y = ¢ if x1, X2 are conjugate over K.
COROLLARY 8. Under the assumption of Theorem 2 about G, a form f € K|z, y| satisfies
(30) if and only if (31) holds, where x; are given in Definition 5,

p= X\Ql/degX17 g=x \g|/degx2

Y is a binary form over K and c; are integers satisfying 0 < ¢; < |G|/deg x;.
The proof of Theorem 2 is based on five lemmas.

LEMMA 17. Let f € K[z,y] ~ {0} be a form and, for &£ € K, e¢(€) be the multiplicity of
& as a zero of f(x,1), and ef(0c0) be the multiplicity of 0 as a zero of f(1,y). We have

(32) S € Aut(f, K)
if and only if for all ¢ € K U {oco},
(33) er(S7E) = ey ().

Proof. By making a preliminary linear transformation we may assume that

f=T—&w) and s=(2 D)

i=1
where

(34) ad — [y #0.
Necessity. If (32) holds and for some §; we have v§; + § = 0, then with an r € K*,
(@& + B)" = fla& + B,7& +0) = rf(&,1) =0,
hence a&; + 8 = 0 and ad — By = 0, contrary to (34). Thus v&;+0 #0 (i =1,...,n) and

n

H<ax+ﬁy—a§z Dy + 6y )) MH(%—&@)

i—1 ’751 + 5 (71)nf(757 7) i=1
_ (By—ad)” _ (By—ad)”
= ( ) f(x,y)_mf(ax—i-ﬁy,'yx—i—&y)
ﬂ’y — a5 n Az

H az + By — &y + 0y)),
=1

7

hence (33) holds.

Sufficiency. If (33) holds, there is a permutation o of {1,...,n} such that

afrf—ﬁ_g ‘
i +s
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Then by (34) we have v&; + d # 0 for all i < n and it follows that

n

flax + By, vz + oy) = [ [(az + By — &gy (va + 5y))

=1
=11 (ax—l—ﬁy— a?—l—ﬁ (7x+6y))

B a5 ﬂ’y & (By — ad)"

= ( 1_[1 r—&y) = Wf(fc,y),

hence (32) holds.
LEMMA 18. Ifef(n) =0 for alln € O(G) and G C Aut(f, K), then

deg f = 0 mod |G|.
Proof. Let us divide all £ € K U {oo} with ef(£) > 0 into classes by assigning &; and &
to the same class C' if £ = S*& for some S € G. Since ef(n) = 0 for all n € O(G), we
have £ # S*¢ for all £ with ef(£) > 0, hence by Lemma 17, the number of elements in

each class is |G|. On the other hand, by Lemma 17, for each C' in the set I" of all classes,
there is ¢(C') € N such that ef(£) = e(C) for all £ € C. We obtain

degf= 3 ex© = e(C)IG]=0mod |g].
€K U{oo} cer

LEMMA 19. If f € K[z,y] ~ {0}, G C Aut(f, K) and (x;, f) # 1 then x; | f.
Proof. Assume that e¢(n) > 0 for some n € O;. By Lemma 17 we have e¢(S*n) > 0 for
all S € G, hence xjo | f. Therefore,
(35) x; | fUEE
If [K; : K]; =1 the assertion is proved. If [K; : K]; = 2, then O; C K; \ K. Therefore,
for all n € O;, (x — ny)? is irreducible over K and (35) implies

(I - 77)2 ‘ fa

which gives x; | f, as asserted.

REMARK. For K = C the lemma is well known (see [27, Vol. II, §70]) and for 7w # 2 the
proof given there needs no modification.

LEMMA 20. The field L = {¢ € K(t) : ¢(S*) = ¢ forall S € G} is generated by
p(t,1)/q(t,1), where p,q are given in Definition 5.

Proof. By Definition 5, G C Aut(x;o, K), hence, by Corollary 3, for every Sy € GLo(K)
with S = Sy K* € G we have
XjO(SO)O(S) - C(So)dengOon-
If §*¢ = ¢ for some ¢ € O;, we have, by Lemma 5,
o(S)161/10;] = 1G1/deg x;o,
and so
(36) X;(S0)191/de8 Xa — o (S)l91/degxso — c(SO)‘g|/O(S)ng‘/deng.
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If S5€ # € for all £ = O; the same conclusion holds by the second part of Corollary 4.
Therefore,

(37) p(So) = C(So)lg\/O(S)p’ q(So) = C(SO)\Ql/o(S)q
e (S5t.1)  plt,) 1)
p Sta p t, p n
= ,  thus € L.

Since (x1,x2) = 1 we have p(¢,1)/q(t,1) ¢ K and, by Liiroth’s theorem, L = K(r), where
r € K(t) ~ K. Without loss of generality we may assume that r = p;/q;, where p; and
q1 are coprime polynomials of the same degree d. Let

pe=pi(z/y)yt, a2 = a(z/y)y".
Since r(S*t) = r(t) for all S € G we have, for all Sy € GLy(K) with SoK* € G,
p2(So0) = c1(So)p2,  q2(S0) = c1(S0)ge,
where ¢1(Sp) € K*. It follows that
(38) Ap2(So) + pg2(S0) = 1(So) (Ap2 + pg2)
for all \, z in K. Now, choose Ao and jg in K such that
Aop2(n, 1) 4+ poga(n,1) #0  for all n € O(G) \ {0},
Aop2(1,0) + pog2(1,0) # 0 if oo € O(G).
This is possible, since (p2(7,1), ¢2(n,1)) # (0,0) and p(1,0) # 0. By Lemma 18 we have
d =0 mod |G].
On the other hand, since p(t,1)/q(t,1) € K(r) we have
|G| = degp(t,1)/q(t,1) = 0 mod d.
Tt follows that d = degp(t,1)/q(t,1) and K(p(t,1)/q(t,1)) = K(r) = L.

(39)

LEMMA 21. If fi is a binary form over K of degree divisible by |G| and for every Sy €
GLy(K) with S = SoK* € G we have

F1(So) = c(Sp)deB /o) £
then f1 = 1(p, q), where p,q are given in Definition 5 and vy is a binary form over K.
Proof. By (37) for every Sy in question
q(Sp)de8 /191 = () des f1/19]gdee f1/19]

hence
ji(S*tvl) _ j&(t71)
q(S*t, 1)dee f1/19] — q(t, 1)dee f1/1G]”

and since this holds for every S € G,

j&(tal)
ot e r7er < L

At 1) _u<p<t,1>>
qlt, DFERTE ~ "\ g(t,1) )

By Lemma 20 we have
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Let u = v/w, where v, w are coprime polynomials over K. Putting v(z,y) = v(x/y)yi?
and w(x,y) = w(z/y)yd ™, we obtain
A1) v(p(t 1), gt 1)g(t, 1)4E”

q(t, 1)3ee /190 w(p(t, 1), q(t,1))q(t, 1)des”
Since (p(t, 1), q(t,1)) = 1 by Corollary 7, we have

(w(p(tv 1); Q(ta 1))7 U(p(ta 1)7 Q(t, 1))) =1
and
(U(p(ta 1)’ q(ta 1))w(p(ta 1)7 Q(t’ 1)); Q(ta 1)) =1,
hence w € K* and deg f1/|G| > degv, and
At 1) =w o(p(t, 1), q(t,1))g 8 /1/191-deew,

Substituting ¢ = z/y and cancelling the denominators we obtain

fr=wto(p, q)gtes /19 des,

Proof of Theorem 2. Necessity. By Lemma 19 we may write

(40) =TI o where fo Klv.ol (fo,ng)—l

J=1
If x1 & K|[z,y], then by Corollary 6, x1, x2 are conjugate and x7* | f implies x5' | f, hence
¢1 < ¢o. Similarly ¢o < ¢, hence ¢; = ¢o as asserted and fy € K|z, y]. Now,
ef,(n) =0 forallne O(G)
and by Lemma 18,
deg fo = 0 mod |G|.
Moreover, by Corollary 4, for every Sy € GLo(K) with § = SoK* € G we have
fo(So) = c(Sp)de8 /o) £,
By Lemma 21 with f; = fy,
fO = 1/)(17’ Q)v
where ¢ is a binary form over K, thus (31) follows from (40).
Now, by (36) for each j < k and every Sy € GLy(K) with SoK* € G,
leg\/deg X (SO) _ C(SO)\QVO(S)X\ngdeng’

|G|/ deg x;

hence, applying Lemma 21 with f; = y; if x; € Klz,y], or with f; =

(x1x2)™9!/de8Xi if v, yo are conjugate, we obtain

X\jgl/deng- =1;(p,q) or (Xlxg)lg\/degxg' = 11(p,q),

respectively, where 1); are binary forms over K. This gives the required upper bound
for c;.
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Sufficiency. Assuming (31) we obtain (29) by Corollary 6 and the condition ¢; = ¢
if x1, x2 are conjugate over K. On the other hand, for every Sy € GLy(K) such that
S = SoK* € G we have, by (31),

D (p(So), 4(So)) = ¢(S0)'7 e (p, q),
thus G C Aut(¢(p, q), K) and (30) follows from (31) by Corollary 6.

Proof of Corollary 8. Tt suffices to apply Theorem 2 with K replaced by K and G replaced
by GK* / K*.

ExaMPLE. We give without proof formulae for xi, x2, x3 for dihedral subgroups of
PGLy(K). For the dihedral subgroup of order 4 generated by

(a _b >K*, (}l _e )K*, where a,...,f € K, (a®>+be)(d® 4 ef) # 0,
‘ ‘ 2ad+bf +ce =0
(the last condition ensures commutativity) we have
x1 = cx? — 2axy — by?, xo = fa® — 2dxy — ey?,
x3 = (cd — af)x?® — 2(ad + bf)zy — (bd — ae)y?.
For the dihedral group of order 2v > 4 generated by

a b N 1+¢+¢t -1 .
<a<<+<—1>+b —a>K and ( 1 1)K’

where ( is a primitive root of unity of order v # 0 mod =, a,b € K, (a{+b)(a{ "t +0b) # 0,
the polynomials x; (1 <4 < 3) are given by the formulae

s =2" — (C+ ¢ Dy + 2,

—A
X(3-e)/2 = Cjii_g Nz —Cy) + ¢z —CMy)Y)
|
# (VA - ) (- @) (=)
if
A= (—a®—b0)" #B=(—a("2=b("")",
and

x1= (==’ + = —- (),
Xz = (x =y’ + (z = (M),
otherwise. We shall use the fact, easy to check directly, that for a = 1, b = 0 the two
generators of the group are weak automorphs of y;, hence Aut(y;, K) contains the group
for i = 2 or 3.
For the dihedral group generated by

-1 b A1
K~ K*
( 0 1 ) and ( 0 ) > ,
where 7 > 0, A € K*, b € K, the polynomials y; (1 < ¢ < 2) are given by the formulae
X1=Y, Xo=—2\"'a" 4+ 2zy" '+ (AT — b)y”.
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DEFINITION 6. Let G be a m-subgroup of PGLy(K) generated by elements S; K*, where
—1

(41) S(Z Z) (i‘) ;><Z 2) (1<i<g),

ad — bc#£0, )\]1, cee )\;1 are linearly independent over IF; and either a,b, c,d, A; are in K,

ora=0,b=1, ce K, K(d) is a quadratic inseparable extension of K and d + \; € K.
Then we put

X1 =cxr+dy, x2=ar+by,
g -1
p=xi, a=xe I1 (X1+X2(Zaj/\;1) )
(at,...,aq) EFE~{0} Jj=1

COROLLARY 9. We have p € Klz,y], ¢ € K|z,y], (p,q) = 1 and p,q are algebraically
independent.

Proof. The assertion is clear unless 7 = 2, \; ¢ K. In the exceptional case ¢ € K,
A2 € K, hence p € K[z,y]. Also for each j < g,

-2 -1
A2+ M EK,

hence for all (ai,...,a,) € F§ ~ {0},

9 5y 9
(D aAt) + D aN € K,
j=1 j=1

which gives x1+x2(3_9_; aj)\;l)’l € K[z,y] and ¢ € K|z, y]. Moreover, (p,q) = 1, since

(x1,Xx2) = 1, and since p, g are forms, it follows that they are algebraically independent.

THEOREM 3. Let G, x1,D,q be as in Definition 6. A form f € K[z, y]~ {0} satisfies (29)
and (30) if and only if

(42) f=x1"¢(p.q),

where 1 is a binary form over K, c; is an integer, 0 < ¢; < |G| and if x1 € K[x,y] then

c1 1S even.

COROLLARY 10. Under the assumption of Theorem 3 about G, x1,p,q a form f € K|z,
satisfies (30) if and only if (42) holds, where 1 is a binary form over K and cy, co are
integers with 0 < ¢; < |G|.

COROLLARY 11. If a binary form f has at least two coprime linear factors over K and
G is a w-group contained in Aut(f, K), then |G| < deg f.

The proof of Theorem 3 is based on the following lemma.

LEMMA 22. Ifm > 0, G € K[z], \; € K(\)* (1 <4 < g), Afl,...,)\g’l are linearly
independent over F, and

(43) Gz + M1 =rGx), mnecK'(1<i<yg),
then
(44) G(x) = H(P(z)), H e K(\)[zl,
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where

P(x) = H (:E+zg:aj)\j—1).

(a1,...,aq)EFS

REMARK. For K being a finite field of characteristic 7 and A; € K the lemma is due to
Dickson.

Proof. On comparing the leading coeflicients on both sides of (43) we obtain r; = 1
(1 <4 < g). We shall prove (44) by induction on the degree of G, say n. If n = 0 then
(44) holds with H = G. Assume that (44) is true for all G satisfying (43) of degree less
than n, and that deg G = n. From (43) we obtain, for all (a1, ...,a4) € FZ,

G( - Zg:ajxj—l) = G(0),

hence by the linear independence of )\1_1, ey )\;I over F,
P(z)|G(z) — G(0).

Taking i) G(z) — G(0)
Y P

we deduce from (43) that Gi(z + \;') = Gi(z) (1 < i < g), hence by the inductive
assumption

Gi(z) = Hy(P(z)), Hy € K(\)[z],
and (44) holds with H(x) = zH;y(z) + G(0).

Proof of Theorem 3. Necessity. Since ad — bec # 0 and X1, x2 are linearly independent
over K, we have

f@y) =90 x2), g€ K(M)z,y)
By (41),
(45) x1(8i) = Aixa,  x2(Si) = Aixa + x1,
hence, by (30), for some r; € K,

gAix1, Aixz + x1) = g(x1(5i), x2(8i)) = (i) = rif = rig(xa, x2),
thus G(z) = g(1, x) satisfies
Gz + X\ 1) =riG(z).

By Lemma 22 we have

G(z) = H(P(z)), He K(\)al.

n X2 n X2
g(x1,x2) = X1 (;) = X1H<—>

Hence

X1
and for n = ¢; mod 7?9 with 0 < ¢; < 79, (42) holds with

g
Xy :p(”““/”gH(g 11 Zaj/\j—l).

P e, ag)ersqo} i=1
If \; € K we have ¢ € K|[p, q].
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It remains to consider the case 7 = 2, K(\1) a quadratic inseparable extension of K.
In this case x; ¢ Klz,y] and x? is irreducible over K. Let 9(p,q) = p™i1, where

Y1 € K[p,q] and ¢, (0,1) # 0. Since, by Corollary 9, (p,q) = 1 we have (¢1(p,q), x1) =1
and it follows from (42) that

29 29 1
X3 m—+cy |f7 X3 m—+c1+ Tf

Further

29t m 42 2
DTy

and since X7 is irreducible,
XA f 29m 2e /2] = 29m ot e,
¢1 =0 mod 2, and x7* € K[z,y]. It now follows from (42) that
¥(p,q) € Kz, y.

By Corollary 9, p,q € K|z, y] and p, ¢ are algebraically independent. Hence ¢ € K|p, q|.

Sufficiency. Since x; or X7 in the exceptional case and p,q are defined over K, (29) is
clear. On the other hand, by (45),

p(Si) = AT p,

q(Si) = (Nix2 + x1) H ()\iX1 + (Aix2 + Xl)(i%)\;l)_l)

(a1,...,aq)EF%E~{0} Jj=1

99—
= (Aixz + x1)A] !

X 11 (zg:aj)\j—l)fl 11 (x1 zg:ajAj—l +x2+x1A;1)

(a1,...,ag)EF2~{0} J=1 (a1,...,aq)EF% {0} J=1
9 5 1\ 7! 5 1
I (Sen)” T (Xt
(a1,...,aq)EFa~{0} J=1 (at,...,aq)EFS Jj=1
=g,

hence

F(Si) = x1(S)0(p(Si), q(Si)) = AST™ BNy (p, q) = AT des Y
and (30) holds.

Proof of Corollary 10. It suffices to apply Theorem 3 with K replaced by K and G
replaced by GK*/K*.

Proof of Corollary 11. Since Aut(f, K) C Aut(f, K) we may assume that K = K. By
Lemma 3 every m-group contained in PGLo(K) must contain a w-group considered in
Theorem 3. Since f has at least two coprime linear factors, the case ¢ € K in (42) is
excluded. Hence

|G| < degv(p,q) < n.
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3. Upper bounds for |Aut(f, K)|

We shall prove

THEOREM 4. If a form f € K|x,y] ~ {0} of degree n has at least three coprime linear
factors over K, then Aut(f, K) is finite. Moreover, if

(46) f=cfolax + By, vz + 6y)*,  where ce K*, a,3,v,0€ K, ad — v #0,
fo=a%y —ay?, Fy C K, k € N, then Aut(f, K) = PGL2(F,); otherwise either

(47) 7=2, n=20+1, Aut(f,K)=Doyi1,
or

(48) =3, n=10, Aut(f, K) = Us,

or

(49) [Aut(f, K)| = Im,

where | Z0mod 7, G+ ¢ ' € K, I <n, m<n.
REMARK. It is not clear whether there exist f and K satisfying (48).

COROLLARY 12. Assume that f € Klx,y] and all factors of f(x,1) irreducible over K
are separable. Then Aut(f, K) is finite if and only if either K is finite, or f has at least
three coprime linear factors over K.

DEFINITION 7. For m =0 or m > n we put
U(K)={veN:v<nand (, +(, ' €K},
Vo(K)={vreN:v<nand(, € K},
a1(n, K) =supU,(K), az(n,K)=sup{v € U,(K) : v =nmod 2},
b(n, K) = sup V,,(K),

M = {6,10,15,21,22} U {25, ...} ~ {29, 32, 44},

where the dots represent consecutive integers greater than 25.

COROLLARY 13. We have as(n, K) < a1(n, K) < n for every n and az(n, K) = a;(n, K)
=n forn <4, a1(n,K) > 6 forn > 6, az(n,K) > 6 for even n > 6, 2 < b(n,K) <
ay(n, K) forn > 2.

DEFINITION 8. Let A(n, K) and B(n, K) for n >3 be the maximum of |Aut(f, K)|over
all forms f of degree n in K[,y or K[z, y] respectively with at least three coprime linear
factors over K and which are not perfect powers in K|z, ].

THEOREM 5. We have
An,K)=B(n,K)=7% —79 ifn=n9+1,F C K,

and
A(n,K) <n(n—1) otherwise.
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Moreover, if m =0 or m > n then

12 if level K <2, n =4,

max{ai(n, K),2as(n, K),24} if level K < 2 and either
n==6,814 orn=12,v5¢ K or

An,K) = n=2m,m>9 and V5 ¢ K if m € M,
max{a(n, K),2as(n, K),60} if level K < 2,v/5 ¢ K
and n/2 € M,

max{ai(n, K),2a2(n, K)} otherwise;

12 ifn=4, V-3 €K,

max{b(n — 1, K), 2az(n, K), 24} if level K <2 and either
n==6,814 orn =12, V5 ¢ K or

B(n,K) = n=2m,m>9 and V5 & K if m € M,

max{b(n — 1, K),2az(n, K),60} if level K <2,v/5¢€ K
and n/2 € M,

max{b(n — 1, K),2az(n, K)} otherwise.

COROLLARY 14. We have A(n,C) = 2n unless n = 4, 6, 8, 12, 20, when A(n,C) =
12,24, 24,60, 60, respectively.

REMARK 1. P. Olver [19] and then I. Berchenko and P. Olver [1] gave a bound for
|Aut(f, C)| assumed finite, which asserts that

A(n,C) < 6n — 12

and apart from an exceptional case
A(n,C) < 4n -8.

The bound given in Corollary 14 is better for all n > 4, n # 6,8,12. This bound for
n > 30 has been anticipated by Summerer in an unpublished paper [25], dealing only
with non-singular forms.

REMARK 2. Let Ag(n,m) = max A(n, K), where K runs through all fields of character-
istic 7. By an analysis of subgroups of PSLy(F,) listed in [12, Chapter 12] one can guess
explicit values for Ag(n, ) also for 0 < m < n. Namely, if n > 20 and 79 < n < 79+,
then conjecturally Ag(79 + 1,7) = 739 — w9, otherwise Ag(n, ) = 729 — 79 unless g = 1,
(72 —7)/2 <n,n % mod 7 or n = 7>
w3 — 7 or w8 — 72, respectively. For n < 20 there are apparently three exceptions to this

rule: Ag(8,5) =24, Ap(12,7) = Ap(20,7) = 60.

—mor g=3,n=n*—7% when Ag(n,r) = 2n or

For the proof of Theorem 4 we need the following
DEFINITION 9. For £ € K U {00}, we set
Aut(f, K,§) = {S € Aut(f, K) : 7€ = £},
{SeAut(f,K,§): S*" =FE} ifn>0,

Aut,(f, K,€) =
ut(f £) {{E} otherwise.
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LEMMA 23. Let f € K|z, y|~{0} be a form of degree n, let Z = {¢ € KU{oc} : ef(£) > 0}
and suppose |Z| > 3. For every £ € Z the set Aut,(f, K,§) is a finite normal subgroup
of Aut(f, K, &) and the quotient group is cyclic of order | < n with | # 0 mod 7 such that
G € K(§), where K(00) =K.

Proof. Assume first £ = co. Then S*¢ = £ is equivalent to S = ('g f)K*, where o € K*,
6 € K. Let

H= {aEK* : there exists § € K such that (g f)K* EAut(f,K)}.

Then H is a subgroup of the multiplicative group K* and if a € ’H and S = (3 f)K* €
Aut(f, K), then the order of o in K* is finite. Indeed, otherwise, taking &1, &2 in Z~ {o0},
& # &5, we should obtain, by Lemma 17,
S*¢; e Z forallieNandj=1,2,

hence for some 7 < il =i’ +ij,

S*g; =8¢ (j=1,2);

ali;+ Bl —1)/(a— 1) = S &; = &5

(a—1)+5=0 (j=1,2), & =&, a contradiction.
The above calculation also shows that if & € H ~ {1} and S = (g‘ f)K* € Aut(f, K),
then the order of @ in K* is equal to the order v of S in PGL3(K') and is not divisible
by 7. Since |Z| > 3, in Theorem 1 applied to f, K and S the case ¢ € K is excluded
and we have v < n with equality possible only if

f=a((a=1z+PBy)" +by", a,binK.

It now follows from es(co) > 0 that f(1,0) = 0, hence a = 0, f = by", |Z] =1, a
contradiction. Hence v < n. Since there are only finitely many o € K* with o =1 for

some v < n, H is finite and cyclic by the well known lemma (see [3, Algebraic Supplement,
§83]). Its order ! equal to the order of a generator satisfies

(50) [Hl=l<n, 1#£0modmw, ¢ €K.

Let
o= {(} 3w enmrao)}

Then G is a normal subgroup of Aut(f, K, c0), which in turn is a subgroup of Aut(f, K).
If 7 = 0, then G = {E}, for otherwise taking & € Z \ {oc} and 8 € K* such that
S = ((1) f)K* € G we should obtain, by Lemma 17, &; + i3 = S*'¢; € Z, a contradiction,
since &, +i0 (i =0,...,n) are distinct. If 7 > 0 then

g - Autﬂ'(f7 K7 OO)
is a m-group and, by Corollary 11,
|G| = w9 < n.

The quotient group Aut(f, K,00)/G is isomorphic to H, hence the assertion follows
from (50).
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Assume now £ # oo and put f1 = f(§x + y,x). We have f1(1,0) = f(&,1) = 0, hence
ef, (00) > 0 and, by the already proved case of the lemma, Aut,(f1, K (), 00) is a finite
normal subgroup of Aut(f;, K(£),00) and the quotient group is cyclic of order | < n with
I # 0 mod 7 such that ¢; € K ().

Now
-1

Aut(f,K,g)cG é)Aut(fl,K(g),oo)(f é) :

-1

mere e (§ g ) amtnr@s(§ )

and the assertion of the lemma follows from simple facts from group theory.

LEMMA 24. For £ € Z (notation of Lemma 23), let m be the length of the orbit of &
under the action of Aut(f, K). If |Aut(f, K,£)| = 0 mod m, then m = 1 mod 7, also
either ¢ € K or

(51) =2, Aut(f, K,§) = Aut,(f, K,§).

Proof. By Lemma 17, Aut(f, K), hence also Aut,(f, K,§), acts on Z. Let O(§) be the
orbit of £ under the action of Aut(f, K). Since for n€ Z and S € Aut(f, K,¢) ~ {E},
S*n = n implies n = &, Aut.(f, K,&) acts on O(§) \ {£} and all orbits are of length
[Aut.(f, K,€)|. Hence m = |O(§)| = 1 mod m. By Lemma 3, Aut.(f, K,¢) has an

element =
a b Al a b N
S°_<c d) <o A)(c d)K’
where ad — be # 0, A # 0 and either a,b,¢,d, A € K, or 1 = 2, ¢ € K*, and K(d) is
a quadratic inseparable extension of K. The condition Si¢ = & gives £ = —d/c. In
the former case it follows that £ € K, in the latter case K () is a quadratic inseparable

extension of K and for S = (3 ?)K* € Aut(f, K, &) the equation S*¢§ = & gives o = 0,
S™ = e, hence (51) holds.

Proof of Theorem 4. Suppose |Aut(f, K)| is divisible exactly by 79 = ¢, and for £ € Z,
let m (&) be the length of the orbit of £ under the action of Aut(f, K). For all £ € Z we
have

(52) [Aut(f, K)| = |Aut(f, K, §)[m(S)
and, by Lemma 17,
(53) m(¢) < 12| < n.

If |Aut(f, K,&)| £ 0 mod « for at least one £ € Z then, by Lemma 23, Aut(f, K,£) is
cyclic of order | < n with [ # 0 mod 7. By Lemma 1 we have (; + Cl_l € K. Moreover,
by (52),

|Aut(f, K)| = Im(¢),

which together with (53) gives (49).
If |Aut(f, K,&)| = 0 mod 7 for all £ € Z, then, by Lemma 24, m(§) # 0 mod m, hence
by (52),
[Aut(f, K,£)| = 0 mod ¢
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and Aut.(f, K,¢) is a m-Sylow subgroup of Aut(f, K). Since all 7-Sylow subgroups are
conjugate and the only conjugates of Aut,(f, K,{) in Aut(f, K) are, by Lemma 17, the
groups Aut.(f, K,n), where ef(n) = e;(£), it follows that for all £ € Z, m(§) = |Z|, ef(§)
has the same value, say k, and the number ¢ of 7-Sylow subgroups is |Z| > 3. It follows,
by Lemma 11, that either

(54) T=2 |Z|=20+1, Aut(f,K)= Do,
or

(55) T=3, |Z|=10, Aut(f, K) = s,

or

(56) Z| =q+1, Aut(f,K)=H,,

where H; = PGLy(F,) and Hy = PSLy(F,).

For k = 1 the case (54) gives (47), while (55) gives (48). For k > 1, (54) and (55)
give (49) with [ =20+ 1, m = 2 or | = 10, m = 6, respectively. The case (56) for g = 2
gives (47) with o = 1. For ¢ > 2, (56) gives

|Aut(f, K,€)|=q¢" —q or (¢"—q)/(m+1,2).

In the notation of Lemma 23, I = ¢ — 1 or (¢ — 1)/(w 4+ 1,2), hence ¢ > 1 and, by
Lemma 24, £ € K. The condition (; € K (&) of Lemma 23 now gives F, C K.

By Lemma 13, Aut(f, K) is conjugate in PGLo(K) to H,;K*/K*, hence there exist
«, 3,7,9 in K such that ad — By # 0 and

4,
(57) Aut(f,K):(: ?) H(: ?)K*/K*.
Since ef(€) = k for all € € Z, we have

(58) f=1fF, where fi€Klz,y] degfi=|Z]
Put

fa = fi(0x = By, —yx + ay), ao = (ad — Fy)™"
It follows from (58) that

(59) f = aofalox + By, vz + 0y)*, degfo=q+1,
and

—1
(60) Aut(f, K) = (?; ?) Aut(fz, K) (: ?) .
Hence, by (57),
(61) Aut(fg,K) :HlK*/K*

By Corollary 8, applied with G = Aut(fs, K)K*/K*, by Definition 5 and Lemmas 8 and
9 we obtain

f2 = X' X2 Y(p, 9),
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where

Hi Hil/(¢®—
xi=y[[@-e), xa= [ @-g) p=x"V g oo
IS £€F 2 \F,

and v is a form over K. The condition deg fo = ¢+ 1 implies ¢; = 1, ¢ =0, € K, fo =
(x%y — zy?)1), hence (46) follows from (59). Since Aut(z?y —xy?, K) D PGLy(Fy)K*/K*
we have ¢ = 1 in (61) and Aut(f, K) = PGLy(F,) by (60). This has been deduced from
the assumption that |Aut(f, K,&)| = 0 mod 7 for all £, while in the opposite case one
of the formulae (47)—(49) holds. Since fo does not satisfy (47)—(49), we have, indeed,
Aut(f, K) =2 Aut(fe, K) = PGLy(F,).

Proof of Corollary 12. By Theorem 4 the condition given in the corollary is sufficient.
In order to prove that it is necessary assume that K is infinite and f has at most two
coprime linear factors over K. We distinguish three cases: the zeros of f(x,1) are in K;
the zeros of f(x,1) are conjugate quadratic irrationalities over K and 7 # 2; and the
zeros of f(x,1) are conjugate quadratic irrationalities over K and 7 = 2.

In the first case f is equivalent over K to a form f; = ax™y", where a € K, m,n are
non-negative integers and f has infinitely many pairwise inequivalent weak automorphs
(00)K*, a e K*.

In the second case f is equivalent over K to a form fo = a(2?—cy?)™, where a,c € K*,
m € N and f; has infinitely many pairwise inequivalent weak automorphs (: ?)K *,

where (o, y) runs through infinitely many solutions in K of the equation a? — cy? = 1,
and from each pair («,v), (—a, —y) we use only one solution.

n

In the third case f is equivalent over K to a form f3 = a(2? + bxy + cy?)"
a,b,c € K* and m € N. Now we distinguish two subcases.

If ¢/b? is algebraic over Fy then (¢/b?)?*~! = 1 for a certain k € N, hence ¢ = d?,
where d = b(c/b*)F € K*. Tt follows that fs has infinitely many pairwise inequivalent

weak automorphs (dlo‘ bd‘;z‘f )K*, where « runs over K*. On the other hand, f3 has a

weak automorph (g b"‘bic )K*
If ¢/b? is transcendental over F, then this automorph is of infinite order in PGLy(K).
Indeed, otherwise we should have (see proof of Lemma 1) for a certain A € K and a root

of unity ¢, A(1+ ¢) = b2, A2C = ¢2, hence ¢ + (~! = b*/c?, a contradiction.

, where

Proof of Corollary 13. We have (, € K for v <2, and ¢, +(, ' € K for v < 4 or v = 6.
For the proof of Theorem 5 we need six lemmas.

LEMMA 25. Assume n > 3 and either 1 =0 or m > n. If f of degree n has at least three
coprime linear factors over K and Aut(f, K) is cyclic, then
al(naK) foe‘[?[xay]a

|Aut(f, K| S{ .
max{az(n, K),b(n —1,K)} if f € K[z,y].

There ezist forms fi € K[x,y], f2,f3s € Klx,y] of degree n, each with at least three
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coprime linear factors over K and not a perfect power in [?[x, y], such that
|Aut(f1, K)| > ai(n, K),
|Aut(f2, K)| > az(n, K),
|Aut(fs, K)| > b(n — 1, K).
Proof. If G = Aut(f, K) is cyclic, then by Theorem 1 and Corollary 5,
(62) f=xi'x5¢(p. q),
where
degx; =1, degp=degq=|G|,

and 1 is a form over K or over K if f € K|[r,y] or f € K[z,y], respectively. By the
assumption on linear factors of f, we have degt > 1, hence

(63) n=deg f =c1+c2+|G|degt) > |G].
On the other hand, by Lemma 1,

(64) gl = Cig| +(jg| € K,

hence by Definition 7,

(65) G] < ar(n, K).

To estimate |G| for f € K|z, y] a division into cases is necessary.
If ¢; + co = 0 mod 2, then
n = |G| deg vy mod 2.
For n odd this implies n = |G| mod 2, hence
(66) |G| < az(n, K).
For n even either degy = 1 mod 2, and then again (66) holds, or degy = 0 mod 2, in
which case by (63) and (64),
|G| < ai(n/2,K).
But
(67) n=0mod 2 implies a;(n/2,K) < as(n,K),
since if a;(n/2, K) =1 mod 2, we have
2a1(n/2, K) <n and 04, (n/2,K) € K.
If ¢; + c2 = 1 mod 2, then ¢; # ¢z, hence x; € K[z,y] by Theorem 1, and (jg| € K
by Lemma 14. Now (63) implies |G| < n — 1, hence by Definition 7,
Gl <b(n -1, K),
which together with (65) and (66) proves the first part of the lemma.

To prove the second part we put

A=x 0w g, fo=Oaxe) ™ 224 g) fa =TT (4 g),

where x1, x2 and p,q are given in Definition 5 for G cyclic of order a;(n, K), az(n, K),

b(n — 1, K), respectively. Now p + ¢ is prime to x1X2, is not a perfect power in K|z, y]
and has |G| coprime linear factors over K. Hence the f; are not perfect powers and since
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for n > 3, by Corollary 13, a;(n, K) > 3, az(n,K) > 3, b(n — 1, K) > 2, each f; has at
least three coprime linear factors over K.

LEMMA 26. Assume n > 3 and either 1 =0 or m > n. If f of degree n has at least three
coprime linear factors over K and Aut(f, K) is dihedral, then

[Aut(f, K)| < 2as(n, K).
There exists a form fo € Klx,y] of degree n, with at least three coprime linear factors
over K and not a perfect power in K|x,y), such that

|Aut(fo, K)| > 2a2(n, K).
Proof. If G = Aut(f, K) is dihedral, then by Lemma 7, Theorem 2 and Corollary 8,
(68) f=X1"X2x5* ¢ (P, ),
where

degx1 = degx2 = [G|/2, degp = degq = |J|

and v is a binary form over K or K if f € K[z,y] or f € K[z, y], respectively. On the
other hand, by Lemma 1,

(69) Mg|/2 € K.
It follows from (68) that
(70) n=c1G|/2+ c2|G|/2 + 2¢3 + |G| deg .

For n odd it follows that |G|/2 =1 mod 2 and ¢; + ¢ = 1 mod 2, hence
IGl/2 <n, |G]/2=mn mod 2,

thus by Definition 7 and (69),
(71) |G| < 2as(n, K).

For n even, if ¢; + ¢ = 1 mod 2, the same inequality holds; if ¢; + co = 0 mod 2, then,
by (70) and the assumption on linear factors of f, either ¢; + ¢2 > 2 or ¢ € K, hence

G1/2 <n/2, G]/2 < 2a1(n/2, K),

and by (67) we again obtain (71).
In order to prove the second part of the lemma we put

n—a K
fO:XQX:(J,L 2 ))/2,

where X2, X3 are given in the Example (p. 25) for G dihedral of order 2as(n, K) with
a =1,b=0. Since deg x2 = az(n, K) and deg x3 = 2 we have deg fo = n, and since
X2, X3 € K[z, y] we have fy € K[z,y].

Now, 2 is prime to Y3, is not a perfect power in K[z, y] and has as(n, K) > 3 coprime
linear factors over K. Hence f; is not a perfect power in K [z,y] and has at least three
coprime linear factors over K.

LEMMA 27. Let n > 3 and either 1 =0 or m > n and let f € K|z, be a form of degree
n and not a perfect power. If Aut(f, K) contains a subgroup isomorphic to G;, where
G1 = A4, G2 = G4, G3 = Us, then

|Gil |Gl |Gi

72 =c ——
(72) n Cli+2+02 3 + c3 5

+ c4|gi|;
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where c; are non-negative integers and

(73) either (c1,ca,¢3) =1 or cg # 0.
Moreover,
(74) level K <2 and if i=3, then V5 € K.

If (72)—(74) are satisfied with ¢, = 0, then there exists a form f € K[x,y] of degree n,
with at least three coprime linear factors over K and not a perfect power in K[z, y|, such
that Aut(f, K) contains G;. Moreover, for i > 1 such a form f exists in Kz, y].

Proof. If Aut(f, K) contains a subgroup isomorphic to G;, then PGLy(K) contains such
a subgroup, hence (74) holds by Lemma 2. Further, by Corollary 8, we have

k
(75) f=1Ixiv w9,
=1

where y; and p, g are given in Definition 5 and v is a binary form over K. By Lemma 7
we have h = 3,

_ 19l
(76) dogr = 19

while, by Definition 5,

Gi
deg x2 = u, degx3 =

15|
3 2

)

degp = degq = |Gil.
Now (72) follows from (75) with ¢4 = deg, and (73) follows from (75) and the condition

that f is not a perfect power in K[z, y].
In the opposite direction, if (72)—(74) hold with ¢4 = 0, we take

3
-
i=1

By Definition 5, y; are coprime and separable, hence the number of coprime linear factors
of f over K is at least
sgnc;  Sgncg  SENC3 |Gl
gil(i+2 3 2 )>

Also f is not a perfect power in K[z,y], since (c1,ca,c3) = 1 by (73). For i > 1, y;
are of distinct degrees, hence no two of them are conjugate over K and, by Corollary 6,
they are in K[z,y]. Thus f € K[z, yl.
LEMMA 28. Assume m = 0 or m > 3. A quartic form f € K[z,y] with at least three
coprime linear factors over K, which is not a perfect power in I?[x,y} and for which
Aut(f, K) contains a subgroup isomorphic to 4, exists if and only if /—3 € K.
Proof. If Aut(f, K) contains a subgroup isomorphic to 24, then it has an element of
order 3. By Corollary 3 it follows that either v/—3 € K, or f is square in K|[z,y], the
possibility excluded by the condition on f.

For the opposite direction, we take f = 2* — 2y3. This form has two non-trivial weak

- > 4.
T i4+2

automorphs defined over K,

(0 e (8 )

They satisfy the equations S? = E, T% = E, TST = ST~1S, hence (S, T) = 2.
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LEMMA 29. If level K < 2, V5 € K and either 7 = 0 or ™ > 5, then there exists a
form f € K[x,y] of degree 60, with at least three coprime linear factors over K and not
a perfect power in K[z, y], such that Aut(f, K) contains a subgroup isomorphic to Us.

Proof. By Lemma 2, PGLy(K) contains a subgroup isomorphic to 5. Let x1, x2, x3 be
the polynomials defined in Definition 5 for this group G, such that x; € K|[z,y] and

degxi1 =12, degxs =20, degyxs=30
(see the proof of Lemma 27). We assert that for a certain ¢ = +1,

fe=x1+exs
has the required properties.
If r. is the number of distinct zeros of f.(z, 1), then by the abc-theorem for polynomials

(see [18])

re > 60 — deg x1(x,1) — deg x2(x,1) > 28,
thus f. has at least 29 coprime linear factors over K. If f. is a perfect power in K[z, y],
then

fe=92 g€ Klz,y).

Moreover, Aut(g., K) = Aut(f., K), hence Aut(g., K) contains G and, by Corollary 8,

3
g = [[x%v., v.€K.

i=1
Since (fc, x1x2) = 1 and deg f. = 2deg x3 we conclude that
del = d€2 = 07 deS =1
and
fe= "/ngg
If this holds for ¢ = 1 and € = —1, then
2x3 = fi+ fo1 = (@F +¢7 )3,
which contradicts (x1,x3) = 1.
LEMMA 30. The equation
(77) m = 3¢y + 4co + 6¢3
is solvable in coprime mon-negative integers for every m > 9, and the equation
(78) m = 6¢1 + 10ce + 15c¢3
is solvable in such integers if and only if m € M ~ {30}.
Proof. Solvability of (77) for m < 12 can be checked case by case. By a classical theorem
due to Curran Sharp [8] every integer greater than ab—a —b is a linear combination of a, b
with non-negative coefficients. For m > 12 we have m—6 > 6 and hence m—6 = 3¢y +4cs,
where ¢y, co are non-negative integers. It suffices to take c3 = 1.
Solvability of (78) for odd m < 31 and for even m < 76 can be checked case by

case. For odd m > 31, (m — 15)/2 > 8 is an integer and, by Curran Sharp’s theorem,
(m —15)/2 = 3¢y + 5cq, where ¢, co are non-negative integers. It suffices to take c3 = 1.
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For even m > 76, (m — 30)/2 > 23 is an integer, hence by Curran Sharp’s theorem
(m —30)/2 = 3d; + 5d3, where dy,ds are non-negative integers. Moreover, since 23 >
3-4+5-2, we have either d; > 5 or dy > 3. If at least one d; is odd we take ¢; = dq,
co = da, c3 = 2, otherwise we take c3 = 2 and either ¢; = d1 —5, ¢co = doy+3 or ¢ = d1+5,
Cy = d2 - 3.

Proof of Theorem 5. The assumption that f is not a perfect power in K|[x,y] implies in
the case (46) that k =1, n = ¢+ 1. This gives A(79 +1,K) = B(79 + 1, K) = 739 — 79
if Fro C K. On the other hand, (47)—(49) imply

[Aut(f, K)| < n(n —1),
hence A(n, K) < n(n — 1) if either n # 79 + 1 or Fs ¢ K. This bound is attained for

every m > 0 and n = 7¥. Indeed, for ¢ = 79,

Aut(z? — 2y? 1 F,) D {(g f)K*:aeF;7 ﬂEFq}.

Assume now that 7 = 0 or 7 > n. By Theorem 4,

|[Aut(f, K)| # 0 mod =

and, by Lemma 7, G = Aut(f, K) is either cyclic, dihedral or polyhedral. The first two
cases are considered in Lemmas 25 and 26. If G is a polyhedral group, then (72) holds
by Lemma 27, and since all terms on the right-hand side are even, n is even.

For n odd it follows that Aut(f, K) is either cyclic or dihedral, and by Lemmas 25, 26,

A(n, K) < max{ai(n, K),2az2(n, K)},

B(n,K) < max{b(n — 1, K),2as(n, K)}.
The inequalities in the opposite direction follow from the second part of Lemmas 25 and
26. This gives the theorem for n odd.

For n even a further study of polyhedral groups is necessary. For n = 4 the equation
(72) gives i = 1, |Gi| = 12, ¢3 = ¢4 = 0. Since 12 > 8 = max{a1(4, K), 2a2(4, K)} we
obtain from Lemmas 25-27,

12 if level K < 2,

A4, K) =
max{a; (4, K),2a2(4,K)} otherwise,
and from Lemmas 25, 26 and 28,
12 if Vy—3¢K,
B(4,K) =
max{b(3, K),2a2(4, K)} otherwise.

For even n > 4 we have 2as(n, K) > 12, hence the equation (72) is of interest only for
i>1, and if n < |G|, then (¢1,co,c3) =1 by (72), (73).

For n = 6,8,14 and i > 1, (72) gives ¢ = 2 and {c1, ¢2,c3) = (1,0,0) or (0,1,0) or
(1,1,0), respectively. It follows by Lemmas 25-27 that for n = 6, 8, 14,

max{ai(n, K),2az2(n, K),24} if level K < 2,
max{ai(n, K),2az(n, K)} otherwise;

A(n,K) = {
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max{b(n — 1, K),2as(n, K),24} if level K < 2,
B(n’K):{ (b0 — 1. ). 2as(n. K), 21

max{b(n — 1, K),2as(n, K)} otherwise.

For n = 10, 16 the equation (72) has no solution with ¢ > 1 and (¢, ¢g,c3) = 1, hence,
by Lemmas 25-27,

A(n, K) = max{a; (n, K), 2as(n, K)},
B(n,K) = max{b(n — 1, K), 2as(n, K)}.

For n = 12,4 > 1 and (e1,c,c3) = 1, (72) gives i = 2, (¢1,cq,c3) = (0,0,1) or i = 3,
(c1,c2,c3) = (1,0,0). Hence, by Lemmas 25-27,

max{a; (n, K), 2az(n, K), 24} if level K < 2, V5 ¢ K,

A(12,K) = { 60 if level K <2, V5 € K,
max{a;(n, K),2as(n, K)} otherwise;
max{b(n — 1, K),2as(n, K),24} iflevel K <2,V/5 ¢ K,

B(12,K) = { 60 if level K <2, V5 € K,

max{b(n — 1, K),2a3(n, K)} otherwise.

By Lemma 30 for n = 2m, m > 9, (72) always has a solution with i = 2, ¢4 = 0,
(c1,c2,c3) = 1, and has a solution with ¢ = 3, ¢4 = 0, (c1,¢2,c3) = 1 if and only
if m € M ~ {30}. Since M contains all integers greater than 29 except 32 and 44, by
Lemmas 25-27, the formulae for A(n, K) and B(n, K) hold for all even n, except possibly
for n = 2m, m = 30,32,44. For m = 30 the formulae follow from Lemmas 25, 26 and
29, for m = 32 or 44 the only solution of (72) does not satisfy (73), hence the formulae
follow from Lemmas 25—27.

Proof of Corollary 14. For K = C we have a1(n, K) = n = as(n, K).

4. Criteria for a form to have a non-trivial automorph
over a given arbitrary field

THEOREM 6. Let f € K[x,y| be a form of degree n > 2 without multiple factors over K.
If Aut(f, K) is non-trivial and f(x,1) of degree m is irreducible over K, then the Galois
group of f(x,1) over K is either imprimitive or cyclic of prime order m. For n < 4 the
converse holds unless n =4 and m = 3.

COROLLARY 15. Assume that K contains no primitive cubic root of unity and f € K[z, y]
is a form of degree 2,3 or 4 without multiple factors over K. The group Aut(f, K) is non-
trivial if and only if the Galois group of f(x,1) over K is either transitive imprimitive
or abelian with the lengths of orbits not (3,1).

COROLLARY 16. Let f € K|z,y] be a cubic form with f(1,0) # 0 and without multiple
factors over K and G be the Galois group of f(x,1) over K. Then Aut(f, K) = D3 if
g = Q:l, Aut(f, K) = €2 ng = 0:2, Aut(f, K) = €3 ng = 0:3, and Aut(fJ() = @1 Zf
g =93,
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REMARK. For quartic forms f the structure of the Galois group G(f) of f(z,1) over Q
does not determine in general the structure of Aut(f,Q), for instance for f; = z* + 23y +
2292 +xyd + oy, fo = 2t + 423y — 62%y? — day® +y?, G(f) = €4, while Aut(f;, Q) = ¢,
(proof by means of Lemma 17), and Aut(f2, Q) contains €, generated by (_11 1)@*

The proof of Theorem 6 is based on the following

LEMMA 31. Given a pair (g, h) of coprime binary forms over K each of degree at most
2 and not both in K[z™, y"|, there exists a non-trivial common weak automorph T of g
and h. Moreover, if

we can take
T_ ( o ﬁ ) K*7 where ( a ﬁ > _ —agbs + asby —aibs + asby .
Y d Y 4 a0b1 — CleO aobg - a2b0
Proof. 1If g, h are both of degree 2 and T is as above we have

a B
y 5 __R(gvh>7é07

where R(g, h) is the resultant of g and h (see [21, p. 219]). Also (o, 3,7,0) = (a, 0,0, «)
implies m = 2, a; = b; = 0, g € K[z™,y"], h € K[z",y"], contrary to assumption.

Moreover
g(ax + By, yr + dy) = R(g, h)g(z,y),

h(ox + By, yx + dy) = R(g, h)h(z,y),

thus 7' is a common weak automorph of g and h. The case where one of the forms g, h
is linear is reduced to the former by replacing this form by its square.

Proof of Theorem 6. Necessity. By the assumption f is not divisible by y2, hence f(x,1)
is of degree m > n — 1 > 2. If m = 2 the assertion is trivial, thus assume m > 3. Let
Z ={¢ € KU{oo} : ef(£) > 0}. By Lemma 17, if T € Aut(f, K), we have T*(Z) = Z
and since T*oco0 € K U {0}, f has no zeros in K and T%(Z \ {0}) = Z \ {oo}. If
T is non-trivial, the orbits of Z \ {co} under the action of T*, say O1,...,0;, are of
lengths greater than 1, since the equation T*¢ = £ gives [K(€) : K] < 2 < m. They
are blocks of imprimitivity of the Galois group G in question, provided [ > 1. Indeed,
if € Gand £ € O;, 7(§) € Oy, then 7(T*¢) = T*7(§) € O;. Il =1, but m is
composite, m = mims, m; > 1, we replace T' by 7™ and [ by m;. It remains to
consider the case [ = 1, m a prime. Then T* € G. Indeed, since f(z,1) is irreducible,
G is transitive, thus if f(£,1) = 0 there exists 79 € G such that 79(¢) = T*¢. Tt follows
that 7o(T*¢) = T*19(¢) = T*HL(€), hence 79 = T*. Also for every 7 € G we have
7(€) = T*¢ for some j, thus 7(T*¢) = T*7(§) = T*Hi¢ = T*(T*) for each i, so
T =T*I, hence G is cyclic, generated by T*.

Sufficiency for n < 4. In view of Lemma 31 and the condition (n,m) # (4,3) it suffices

to consider f(z,1) of degree n and monic. Let n = 3 and f(z,1) = 23 + a2® + bx + c.
Since G is cyclic there exist d, e, g in K such that f(&,1) = 0 implies f(dé?4ef+g,1) =0



42 A. Schinzel

where (d, e, g) # (0,0, g),(0,1,0). The system of three linear equations for «, 3,7, 9,
(e —ad)y+dé =0,
—a+ (g —bd)y +ed =0,
—B —cdy+ gd =0,

has a non-zero solution (a, 3,7,6) € K*. This solution satisfies for all zeros & of f(x,1)
the equation

(d6* +e§ +g)(76 +6) = al + 3
Note that v¢ + 0 = 0 would give o = =y = § = 0 since £ ¢ K, a contradiction. Hence

v+ 6 #0 and 5
2 _al+
d€ +e§+g——7§+5.

It follows that for some r € K,
f(%, 1) (yx 4 6)% = rf(z,1)
and
flax + By, yx + 0y) =rf(z,y).

Observe that ad — 3y = 0 or {a, 3,7,d) = (a,0,0,a) would give d&é? + ef +g € K or
d€? + e€ + g = &, contrary to [K(£) : K] = 3.

Now, let n = 4. Since m = 4, G is imprimitive. It follows that f is reducible over a
separable quadratic extension of K, say K (7). Thus we have

2 2
f= b(zaizzﬂ'yi) (Za;x%iyi)’
i=0 i=0

where a;,a}; € K(n) and a;,a; are conjugate over K, while b € K. Applying Lemma 31
with b; = a} we find that the factors of f have a common non-trivial automorph with the
matrix
! !/ !/
—apa, + az2a —a1a5 + a20a1
M- 2 0 2
apal —ajal  apah — azay
hence also with the matrix M/(n—n'). However, the last matrix is invariant with respect
to conjugation, so its elements are in K.

Proof of Corollary 15. This follows at once from Theorem 6 and Corollary 2.

REMARK. The assumption ( ¢ K, where ¢ is a primitive cubic root of unity, cannot
be omitted in Corollary 15, as the following example shows: K = Q(¢), T = (g (1))K*,
f=ax(2®+29°).

Proof of Corollary 16. By Corollary 1, Aut(f, K) can contain a cyclic group €, for
v = 2 or 3 only. The lengths of the orbits of an arbitrary set under the action of D5
are even, hence, by Lemma 17, Aut(f, K) cannot contain a copy of ®5. On the other
hand, |Aut(f, K)| < 6 by Theorem 5. This limits the possible types of Aut(f, K) to

D3,C3,C and €;. If G = &, then f is equivalent over K to azy(z + y) and Aut(f, K)
0 -1

11 )K* of orders 2 and 3, respectively, thus

contains the automorphs ((1) (IJ)K* and (
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Aut(f, K) &2 D3. If G & &,, then, by Corollary 2, Aut(f, K) does not contain €3 and,
by Lemma 31, Aut(f, K) contains a €5, thus Aut(f, K) = &. If G & €, then, by
Theorem 6, Aut(f, K) is non-trivial, while, by Corollary 1, it does not contain €5, hence
Aut(f, K) = €5. Finally, if G = D3, then Aut(f, K) = ¢; by Theorem 6.

5. The case of an algebraically closed field

In this section K is an algebraically closed field of characteristic 7, IT is the corresponding
prime field and f is a non-singular binary form over K of degree n.
If n = 3, then Aut(f, K) = D3 by Corollary 16. We shall now consider n = 4.

DEFINITION 10. For a form f(z,y) = Z?:o a;x* "y’ put
A(f) = a3 — 3ajas + 12apa4,

B(f) = 27a3a4 + 27apa3 + 2a3 — T2apazas — Jayazas.

REMARK. A(f), B(f) are invariants of f and satisfy

27D(f) = 4A(f)* - B(f)?,
where D(f) is the discriminant of f (see [27, Bd I, §70]).

THEOREM 7. For a non-singular quartic binary form f over K we have
Sy if A(f)=B(f) =0,

A if A(f) =0, B(f) #0,

D4 if A(f) #0, B(f) =0,
D2 if A(f)B(f) #0.

The proof is based on three lemmas.

Aut(f, K) =

LEMMA 32. For a non-singular quartic binary form f over K, Aut(f, K) contains €3 if
and only if A(f) = 0.

Proof. Necessity. If m # 3 and the cyclic group in question is generated by (
have, by Theorem 1,

: ?)K* we
f=xilaxi +bx3_;) = axi +bxixi_,

where i € {1,2}, x1, x2 are given in Definition 3 and a,b are in K. Denoting by R; the

resultant of 1, x2 and by f; the form az* + bxy® we obtain, by the above Remark,

A(f) = RIA(f) = 0.
If # = 3 we have, again by Theorem 1,
F=xalaxi +b(Ax3 — x2x7)) = axi — bxixz + bA*x1x3,

where A, x1, x2 are as in Definition 4 and a,b are in K. Denoting by R, the resultant of
X1, X2 and by f5 the form az* — bz3y + bA2xy® we obtain, by the Remark,

A(f) = R3A(f2) = 0.
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Sufficiency. The form f is clearly equivalent, by a linear transformation over K, to a
form
f3 = zy(a® + azy — 7).

The condition A(f) = 0 gives a® + 3 = A(f3) = 0. If m # 3 we choose a primitive cubic
root of unity o and conclude that a = +(p? — ). Then the transformation Ty (z,y) =
(0x % oy, y) of order 3 in PGLy(K) satisfies f3(T:) = f3, hence Aut(f, K) conjugate to
Aut(fs, K) contains €3.

If 7 = 3 the condition A(f3) = 0 gives @ = 0. Then the transformation Th(z,y) =
(x+vy,y) of order 3 in PGLy(K) satisfies f5(T) = f3, hence again Aut(f, K) contains €3.

LEMMA 33. For a non-singular quartic binary form f over K, Aut(f, K) contains €4 if
and only if B(f) = 0.

Proof. Necessity. If 1 = 2, then by Lemma 1 no element of PGLs(K) is of order 4, hence
the assumption implies 7 # 2. If (j ?)K* is an element of order 4 in Aut(f, K), then
by Theorem 1,

f = axi+bxa,
where 1, x2 are given in Definition 3. Denoting by Rj3 the resultant of x1, x2 and by f4
the form ax* 4+ by* we have, by the Remark,

B(f) = RiB(f1) = 0.
Sufficiency. Since D(f) # 0 the assumption B(f) = 0 implies 7 # 2 by the Remark.
Then (see [11, §13]) f is equivalent, by a linear transformation over K, to a form
fs = a* + ma?y® + y4, m € K.
The condition B(f) = 0 gives
2m3 — 72m = B(fs) = 0,

hence m = 0, £6. But the forms z* & 622y? + y* are equivalent to fs = x* + y*, since

ot 4622y +yt = 3(z +y)" + 3(z —p)",

ot —6a%y? +yt = 3(x+ ()t + 52— Cy)*,
where ( is a primitive quartic root of unity. On the other hand, the transformation

T3 = (Cx,y) of order 4 in PGLy(K) satisfies f(75) = T5, hence Aut(f, K) conjugate to
Aut(fs, K) contains €4.

LEMMA 34. For a non-singular quartic binary form f over K, Aut(f, K) contains D,
but no Do x €.

Proof. If w # 2 then by the already quoted result f is equivalent by a linear transforma-
tion over K to a form

fs = z* + ma?y® + o, m € K.
The transformations Ty(z,y) = (y,z) and Ts(x,y) = (—x,y) satisfy T = E = T2,
TuTs = T5Ty, f5(Th) = f5 = f5(T5), hence Aut(f, K) conjugate to Aut(fs, K) con-
tains ®5. On the other hand, it contains no ®5 x €5, since this group is not on the list
given in the proof of Lemma 7.
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If 7 = 2 then f is equivalent, by a linear transformation over K, to a form

fo=aylz+&y)(x+1y), €€ K~{0,1}.
The transformations Ts(z,y) = (x + &y, &x + y), Tr(z,y) = (x + y,x + Ey) satisfy
Tg = e = T7, TeTy = ToTs, f7(T6) = (€ + 1)* fz = f2(T%), hence Aut(f, K) conjugate to
Aut(f7, K) contains ©3. On the other hand, it contains no s x €5 by Corollary 11.

Proof of Theorem 7. If A(f) = B(f) = 0, then since D(f) # 0 we have m = 3 by the

Remark. The form f is equivalent, by a linear transformation over K, to a form
f3 = zy(a® + azy — y?)
and the condition A(f) = 0 implies @ = 0. Hence Aut(f, K) = Aut(fs, K) = PGLy(F3)
~ G4 by Theorem 4.
If A(f), B(f) are not both 0, then (46) is not satisfied, hence by Theorem 4 and
Lemma 34,
(79) |[Aut(f, K)| divides 8 or 12.

If A(f) = 0and B(f) # 0, then by Lemmas 32-34, Aut(f, K) contains €5 and D4, but
no ¢, and no D, x €5. Hence its 2-Sylow subgroup is ©5. On the other hand, Aut(f, K)
contains no €g by Theorem 1. Hence, Aut(f, K) = 24 by (79).

If A(f) # 0 and B(f) = 0, then by Lemmas 32-34, Aut(f, K) contains €4 and Ds,
but no €3 and no Dy x €. Therefore, by (79), |Aut(f, K)| = 8 and Aut(f, K) = Dy,.

If A(f)B(f) # 0, then by Lemmas 32-34, Aut(f, K) contains Ds, but no €3, no ¢,
and no Dy x €,. Therefore, by (79), |Aut(f, K)| = 4 and Aut(f, K) = D,.

Now, we proceed to the case n > 5.

DEFINITION 11. §,(K) is the set of all binary forms f of degree n defined over K such
that Aut(f, K) is non-trivial.

THEOREM 8. §,(C) is Zariski closed for n <5 only.
LEMMA 35. F5(C) is Zariski closed.

Proof. f € §5(C) if and only if R = 0, where R is the Hermite invariant of f of degree 18.
Indeed, if f € §5(C), then, by Theorem 1, f is equivalent over C to one of the forms

(80) 7Y (0<i<2),  ay(@®+%), 2°+4°,
or
(81) z(Az* + Bx?y? + Cy*).

In each case we check in the tables of Fad di Bruno [13, Anhang, Tabelle III, Die irre-
duciebeln Invarianten IV5] that R = 0. To prove the converse, let « be the covariant
of f of degree 1 and order 5. If @ = 0, then according to Clebsch [5, §93], f is either
equivalent over C to one of the forms (80), or has a factor of multiplicity at least three,
in which case it has a non-trivial automorph by Lemma 31. If « # 0, but R = 0, then
again according to Clebsch [5, §94], f is equivalent over C to a form (81). It now suffices
to apply Theorem 1 in the opposite direction.
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LEMMA 36. For k> 2 andn >k + 3 we have

n—k

fola,y) =" _H(x —iy) & §n(C).

Proof. Assuming fy(ax + By, vx + dy) = fo(z,y) we obtain

(az + By)* | folz,y),

hence k£ > 2 implies 8 = 0 and we have
n—k n—k
o I ((a = i)z — idy) = [ (= —iw),
i=1 i=1
thus the sequence ((a — 7)/i0)1<i<n—k is a permutation of (1/i)1<i<n—x. Clearly,
a/é,v/d € Q and comparing the maxima and minima in both sequences we obtain

a vy « ¥ 1
for a/5 S A e
oraf0>0, F-5=b S TH T -k
a 1 a vy
f e_X_ _X
oraf0<0, S-S iTH -k 3

In the former case it follows that «/0 = 1, v/§ = 0, thus the automorph is trivial; in the
latter case

« 0 1
R A
thus comparing the second greatest terms in both sequences we get
_ ]_ + L — 1
n—k—1 n—k 2

which gives n — k = 2, contrary to assumption.

LEMMA 37. For an integer n > 5 and a real number t € (0,1) we have fi(x,y) € §n(C),

where
n/2

H(x—zy)(x—%y) if n=0mod 2,

i=1

(n—1)/2 it
H (xzy)(mmy) if n=1mod 2.
i=1

ft('ray) =

Proof. For t € (0,1) let

[n/2]

=1
n/2

2(2— 1)t
H(I—. (Z. ) y) if n» =0 mod 2,
. i+t — 2t
hi(z,y) = =
’ (n—1)/2 it
- if n=1mod 2
x H <x i+itty) if n mod 2,
(2tx — 2ty, (t+ )z —2ty)  if n =0 mod 2,
T(l‘,y =
(tz, (t+ 1)z —ty) if n =1 mod 2.
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For n = 0 mod 2 we have

g(T(l‘,y)) = g(2tat + 1)ht(may)a ht(T(xa y)) - ht(Qt’t+ 1)g($,y),
hence

ft(T(xay» = ft(ztvt + 1)ft(x’y)

and 7' is a non-trivial weak automorph of f;.
Similarly, for n = 1 mod 2,

9(T(z,y)) = g(t,t+ Dhe(z,y),  he(T(z,y)) = hu(t,t + 1)g(z,y),
hence
[i(T(z,y)) = fi(t,t + 1) fi(w,y)
and T is again a non-trivial weak automorph of f;.

Proof of Theorem 8. For n < 4, §,,(C) consists of all binary forms over C by Lemma 31;
the case n = 5 is covered by Lemma 35. Suppose that, for n > 6, §,,(C) is given by the
alternative of systems of equations Fj;(ag,...,a,) =0 (j € J;). Using Lemma 37 and
denoting the coefficients of fi(x,y) by ag(t),...,a,(t) we obtain for at least one iy and ¢
arbitrarily close to 0,

Fioj(ao(t)""7an(t)) =0 (.] € Jio)~
Taking the limit as ¢ tends to 0 we obtain
Fioj(ao,...7an>=0 (jEJi[)),

where > a;z"""y" = fo(z,y). Thus by our assumption fy € §,(C), contrary to Lem-
ma 36.
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