
To Jerzy Browkinon his 70th birthday

Introdu
tionThe present paper deals with the 
ir
le of problems 
onsidered by several mathemati-
ians, beginning with F. Klein in 1876 and ending with L. Summerer in 2004. Evenbefore Klein's fundamental paper [15℄, A. Clebs
h and P. Gordan [6℄ in 1867 and A. Cleb-s
h [5℄ in 1872 made important 
ontributions to one of the problems in question withoutformulating it expli
itly.Let K be a �eld of 
hara
teristi
 π ≥ 0, T ∈ GL2(K) and f ∈ K[x, y] be a form su
hthat
f(T (x, y)) = rf(x, y), where r ∈ K∗.Segre [22℄ 
alls T a weak automorph of f (�automor�smo in senso lato�), as opposed toa stri
t automorph (�automor�smo in senso stritto�), for whi
h r = 1, and 
onsiders for

K = Q the quotient group Aut(f,K) (notation mine, some authors denote similarly thegroup of stri
t automorphs) of the group of all weak automorphs of f de�ned over Kdivided by the group of trivial weak automorphs, given by T (x, y) = (̺x, ̺y) for ̺ ∈ K∗(this de�nition extends immediately to forms de�ned over any �eld L 
ontaining K; then
r ∈ L∗).Segre determines the forms f ∈ Q[x, y] su
h that Aut(f,Q) 
ontains a given non-trivial group G of one of the possible eight types: 
y
li
 of order 2, 3, 4, 6 and dihedralof order 4, 6, 8, 12. For every group G Segre takes a 
onvenient 
onjugate in the group
PGL2(Q), whi
h simpli�es 
al
ulation. Earlier for C instead of Q a similar result wasobtained by Klein [16, Chapter 2℄: here all 
y
li
 and dihedral groups are possible and,in addition, three polyhedral groups. Di
kson [9℄, [10℄ obtained analogous results for Kbeing a �nite �eld. For a modern treatment of the 
ase K = C, see Hu�man [14℄.The 
hara
terization of forms in question given by Klein and Segre is the following(K = C or Q, K is an algebrai
 
losure of K).For a given �nite subgroup G of PGL2(K) of order |G| = ν all forms f ∈ K[x, y] forwhi
h G ⊂ Aut(f,K) and only those are expressible as

f(x, y) =

h
∏

i=1

χi(x, y)
ciψ(p(x, y), q(x, y)),where p, q ∈ K[x, y], χi ∈ K[x, y] are forms determined by G; p, q are of degree ν, χiare of degree ν/mi, ci are integers satisfying 0 ≤ ci < mi and if χi, χj are 
onjugateover K, then ci = cj ; ψ is a binary form over K. Klein's proof is not rigorous and inSegre's proof given in Subse
tion 19 of [22℄ several details are missing. In parti
ular,[5℄
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hinzelno 
onne
tion is indi
ated between p, q and χi. On the other hand, in Subse
tions 20and 24, 29 of [22℄ Segre expli
itly determines p, q and χi for every G up to 
onjuga-tion.Having proved in �1 of the present paper several lemmas about PGL2(K) we deter-mine in �2 the forms p, q and χi for every 
y
li
 subgroup of PGL2(K) with a givengenerator (Theorem 1). Then we prove an analogue of the above result of Klein, Di
k-son and Segre for an arbitrary �eld K (Theorems 2 and 3). Consideration of �elds Kthat are not perfe
t is the only novel feature of this proof. As an appli
ation we provein �3 an upper bound for the order of Aut(f,K) (Theorems 4 and 5). The boundis sharp for every π and for π = 0 it is better for deg f > 12 than Olver's bound[19℄, [1℄.In Subse
tions 22�23 of [22℄ Segre gives a method to de
ide whether a given 
ubi
or quadrati
 binary form f over Q has a stri
t non-trivial automorph de�ned over Q,the only trivial automorph being here the identity. The method involves invariants and
ovariants of f . In �4 we 
onsider an analogous question for weak automorphs de�ned over
K and give an answer in terms of the Galois group Gal(f,K) of the polynomial f(x, 1)over K (Theorem 6). For 
ubi
 forms and K = Q a ne
essary and su�
ient 
ondition(if f is irredu
ible, the dis
riminant of f has to be a square in Q) has been given in are
ent unpublished manus
ript of A. Choudhry [4℄. For forms of odd degree with non-zero dis
riminant (in what follows 
alled non-singular), existen
e of a weak non-trivialautomorph is equivalent to existen
e of a stri
t non-trivial automorph (see [22, p. 40℄ and[20, Theorem 3.5℄), but it is not obvious that Choudhry's 
ondition and Segre's 
ondition([22, p. 48℄) are equivalent. For non-singular 
ubi
 forms with f(1, 0) 6= 0 the stru
tureof Gal(f,K) determines the isomorphism 
lass of Aut(f,K), for quarti
 forms it does notin general. On the other hand, for K algebrai
ally 
losed and f a non-singular quarti
,the isomorphism 
lass of Aut(f,K) is determined by invariants of f (�5, Theorem 7). For
K = C this is well known ([1, Example 3.6℄, 
f. also [24, Proposition 3.2℄), but at leastfor charK = 2, 3 it seems new.For forms f of degree 5 a 
hara
terization of the isomorphism 
lass of Aut(f,C) byinvariants and 
ovariants of f 
an be dedu
ed from the work of Clebs
h and Gordan [6℄and of Clebs
h [5℄ on the so 
alled typi
al representations of binary forms. For f non-singular of degree 6 a 
hara
terization of the isomorphism 
lass of Aut(f,C) by 
ovariantsof f was obtained by Maiasano [17℄ and one by invariants of f by Bolza [2℄. Re
entlya pra
ti
al way of �nding Aut(f,C) by means of 
ovariants of f has been proposed byBer
henko and Olver [1℄. However, it is not 
lear from it whether for non-singular forms fof degree greater than 6 the 
ondition |Aut(f,K)| > 1 
an be 
hara
terized by invariantsof f . We shall show (Theorem 8) that the set of forms f ∈ C[x, y] with |Aut(f,C)| > 1is Zariski 
losed only for n ≤ 5.I 
on
lude this introdu
tion by expressing my thanks to A. Choudhry for sendingme his unpublished manus
ript [4℄ as well as a 
opy of [2℄, to A. Pokrzywa for fa
toringseveral multivariate polynomials that appeared in an earlier version of the paper and toA. Sªadek who suggested many 
orre
tions and a simpli�
ation.



Weak automorphs of binary forms 71. Lemmas on PGL2(K)Definition 1. Let K be a �eld of 
hara
teristi
 π. If T0(x, y) = (αx + βy, γx + δy) ∈
GL2(K), the image of T0 in PGL2(K) will be denoted by T =

( α β

γ δ

)

K∗, or if PGL2(K)is represented as the group of fra
tional linear transformations, by T ∗. The order of Tin PGL2(K) will be denoted by o(T ), the unit element by E. Moreover, ζν is a primitiveroot of unity of order ν in K, if it exists.Lemma 1. PGL2(K) 
ontains an element of order ν > 1 if and only if either ν = π, or
ν 6≡ 0 mod π and ζν + ζ−1

ν ∈ K. If this 
ondition is satis�ed , then PGL2(K) 
ontains adihedral group of order 2ν ex
ept for K = F2, ν = 2.Proof. Let ( α β

γ δ

)

K∗ be an element of order ν > 1 in PGL2(K). By the Jordan normalform theorem (see [26, �88℄) there exist a, b, c, d in K su
h that ad− bc 6= 0 and
(

α β

γ δ

)

=

(

a b

c d

)−1(
λ1 µ

0 λ2

)(

a b

c d

)

,where λ1λ2 6= 0 and either µ = 0, or λ1 = λ2 = λ and µ = 1. In the former 
ase λ1/λ2is a primitive root of unity ζ of order ν, hen
e ν 6≡ 0 mod π and
λ2(1 + ζ) = λ1 + λ2 = Tr

(

λ1 µ

0 λ2

)

= Tr

(

α β

γ δ

)

= α+ δ ∈ K,

λ2
2ζ = λ1λ2 =

∣

∣

∣

∣

λ1 µ

0 λ2

∣

∣

∣

∣

=

∣

∣

∣

∣

α β

γ δ

∣

∣

∣

∣

= αδ − βγ ∈ K.Hen
e ζ + ζ−1 = (λ2(1 + ζ))2/λ2
2ζ − 2 ∈ K. In the latter 
ase

(

λ1 µ

0 λ2

)ν

=

(

λν νλν−1

0 λν

)

,hen
e ν = π.If the asserted 
ondition is satis�ed, then PGL2(K) 
ontains a dihedral group of order
2ν generated by

(

1 + ζ + ζ−1 −1

1 1

)

K∗ and (

0 1

1 0

)

K∗ if ν 6≡ 0 mod π,

(

1 1

0 1

)

K∗ and (

−1 0

0 1

)

K∗ if ν = π 6= 2,

(

1 1

0 1

)

K∗ and (

1 a

0 1

)

K∗ if ν = π = 2, a ∈ K r F2.Remark. For K = Q Lemma 1 has been proved by Segre in Subse
tion 9 of [22℄.Lemma 2. PGL2(K) 
ontains a subgroup isomorphi
 to A4 if and only if either π 6= 2and levelK ≤ 2, or π = 2 and F4 ⊂ K. If and only if the former 
ondition is satis�ed ,
PGL2(K) 
ontains a subgroup isomorphi
 to S4.

PGL2(K) 
ontains a subgroup isomorphi
 to A5 if and only if either π 6= 2, levelK ≤ 2and √
5 ∈ K, or π = 2 and F4 ⊂ K.
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hinzelRemark. The level of a �eld K is the minimal number k su
h that x2
1 + · · · + x2

k = −1for some xi ∈ K.Proof. If π = 3 the 
ondition on the level is trivially satis�ed, so assume π 6= 3 and let
M be a matrix over K su
h that MK∗ is of order 3 in PGL2(K). Then M is equivalentover K to a matrix ( λ1 0

0 λ2

), where λ1/λ2 is a primitive root of unity ζ of order 3 and
M 1+ζ−1

λ2
is equivalent over K to
(

1 + ζ 0

0 1 + ζ−1

)

=

(

1 −ζ2

1 −ζ

)(

0 −1

1 1

)(

1 −ζ2

1 −ζ

)−1

.But (see the proof of Lemma 1) λ2(1 + ζ) ∈ K and (1 + ζ2)/ζ ∈ K, hen
e, on division,
λ2/(1 + ζ−1) ∈ K and M 1+ζ−1

λ2
is de�ned over K. It follows that

M
1 + ζ−1

λ2
is equivalent to ( 0 −1

1 1

) over K.Hen
e a subgroup of PGL2(K) isomorphi
 to A4 is 
onjugate to a subgroup G 
on-taining ( 0 −1

1 1

)

K∗ = T . Thus there exists S ∈ G su
h that
S2 = E and TST = ST−1S.Taking S =

( α β

γ δ

)

K∗ we obtain by 
al
ulation δ = −α, (2α+ γ − β)2 + β2 + γ2 = 0 andif π = 2, then β2 − βγ + γ2 = 0. Thus levelK ≤ 2 and if π = 2, then β/γ is a primitiveroot of unity of order 3, hen
e F4 ⊂ K.In the opposite dire
tion, if π = 2 and ζ is a primitive root of unity of order 3, thenthe group
〈(

0 ζ

1 0

)

K∗,

(

0 −1

1 1

)

K∗

〉

is isomorphi
 to A4. If π 6= 2, then the assumption that levelK ≤ 2 implies existen
e of
x1, x2 in K su
h that x2

1 + x2
2 + 1 = 0. Then the group generated by

S =

(

1 −1

1 1

)

K∗, T =

(

x1 x2 + 1

x2 − 1 −x1

)

K∗is isomorphi
 to S4. Indeed, S4 = E, T 2 = E and (ST )3 = E, whi
h gives the requiredproperty (see [7, Table 1℄). If π = 2, then PGL2(K) does not 
ontain a subgroupisomorphi
 to S4 sin
e, by Lemma 1, it 
ontains no element of order 4.Assume now that PGL2(K) 
ontains a subgroup isomorphi
 to A5. Sin
e A5 
ontains
A4 and C5, it follows from the already proved part of the lemma and from Lemma 1 thateither π 6= 2 and levelK ≤ 2, or π = 2 and F4 ⊂ K; moreover, either ζ + ζ−1 ∈ K,where ζ is a primitive root of unity of order 5, or π = 5. If π = 2 and F4 ⊂ K, then
PGL2(K) 
ontains an isomorphi
 image of PGL2(F4) ∼= A5; if π 6= 2, then the 
ondition
ζ + ζ−1 ∈ K implies ̺ = (

√
5 − 1)/2 ∈ K, whi
h also holds for π = 5. Conversely, if√

5 ∈ K and levelK ≤ 2, we have x2
1 + x2

2 + 1 = 0 for some x1, x2 in K, hen
e the group
〈R,S〉, where

R =

(

−1 + x2̺ x1 + x2̺− ̺− 1

2 1 − x2̺

)

K∗, S =

(

0 −1

1 1

)

K∗,



Weak automorphs of binary forms 9is isomorphi
 to A5, provided
∣

∣

∣

∣

−1 + x2̺ x1 + x2̺− ̺− 1

2 1 − x2̺

∣

∣

∣

∣

= −x2
2̺

2 − 2x1 + 2̺+ 2 6= 0,and this follows from π 6= 2 if x1 = 0, while it 
an be a
hieved by 
hanging the sign of x1if x1 6= 0. Indeed, we have R2 = E, S3 = E and (RS)5 = E, whi
h implies 〈R,S〉 ∼= A5(see [7, Table 5℄).Remark. Lemma 2 in an equivalent formulation is given without proof by Serre [23℄.Segre only proves ([22, Subse
tion 12℄) that if K is real, then PGL2(K) does not 
ontaina 
opy of A4.Lemma 3. Let G be a non-trivial subgroup of PGL2(K). If for all elements S of Gr{E}the equation S∗ξ = ξ has exa
tly one solution in K∪{∞}, then π > 0 and G is a π-group.Every su
h �nite group is generated by elements
(

a b

c d

)−1(
λi 1

0 λi

)(

a b

c d

)

K∗ (1 ≤ i ≤ g)where ad − bc 6= 0, the λ−1
i are linearly independent over Fπ and either a, b, c, d, λi ∈ K,or π = 2, a = 0, b = 1, c ∈ K, K(d) is a quadrati
 inseparable extension of K and

λi + d ∈ K. Every in�nite π-group 
ontained in PGL2(K) 
ontains the above �nitegroups for all g.Proof. Let S1 =
( α β

γ δ

)

K∗ ∈ G r {E}, hen
e αδ − βγ 6= 0. By the Jordan normal formtheorem there exists a non-singular matrix ( a b

c d

) over K su
h that
(

α β

γ δ

)

=

(

a b

c d

)−1(
λ µ

0 ν

)(

a b

c d

)

,where λν 6= 0 and either µ = 0, or λ = ν and µ = 1. In the former 
ase the equation
S∗

1ξ = ξ has two solutions in K ∪ {∞}, namely −b/a and −d/c. Sin
e the 
ase λ = ν,
µ = 0 is ex
luded by the assumption S1 6= E, we obtain µ = 1 and

4λ2 = (α+ δ)2 = 4(αδ − βγ).(1)The se
ond equality of (1) holds for all elements S of G. Let
S =

(

a b

c d

)−1(
ε ζ

η ϑ

)(

a b

c d

)

K∗ ∈ G r {E}.Sin
e Si1S ∈ G and
(

λ i

0 λ

)(

ε ζ

η ϑ

)

=

(

λε+ iη λζ + iϑ

λη λϑ

)

we obtain from (1)
(λε+ λϑ+ iη)2 = 4λ2(εϑ− ηζ) (i = 0, 1, 2),hen
e

η = 0, ε = ϑ, ζ 6= 0,hen
e S is of in�nite order in PGL2(K) unless π > 0, in whi
h 
ase Sπ = E and G is a
π-group. This proves the �rst part of the lemma.
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hinzelIn order to prove the se
ond part let us again 
onsider S1. The 
ondition Sπ1 = E 6= S1implies in the above notation
λπ = νπ, µ 6= 0,hen
e λ = ν =: λ1 and µ = 1. It follows that we have again equation (1) and for every Sin G,

S =

(

a b

c d

)−1(
ε ζ

0 ε

)(

a b

c d

)

K∗.If λ1 ∈ K, then a, b, c, d 
an be 
hosen in K and hen
e ε, ζ ∈ K and
S =

(

a b

c d

)−1(
1 ζ/ε

0 1

)(

a b

c d

)

K∗.For S running through G, ζ/ε runs through a linear spa
e L over Fπ and letting λ−1
1 , . . .

. . . , λ−1
g be a basis of this spa
e we obtain the assertion of the lemma.If λ1 6∈ K, then the polynomial z2 − (α + δ)z + (αδ − βγ) is irredu
ible inseparableover K, hen
e π = 2, γ 6= 0 and we 
an 
hoose a = 0, b = 1, c = γ, d = λ1 −α. Then the
ondition S ∈ PGL2(K) gives ε+ dζ ∈ K, d2ζ ∈ K, hen
e ζ ∈ K and

S =

(

a b

c d

)−1(
ε/ζ 1

0 ε/ζ

)(

a b

c d

)

K∗.Taking again a basis λ−1
1 , . . . , λ−1

g of L we obtain λi + d ∈ K, whi
h 
ompletes the prooffor �nite groups G. If G is in�nite, so is L and for every g it 
ontains λ−1
1 , . . . , λ−1

g linearlyindependent.Lemma 4. Let G be a non-trivial �nite subgroup of PGL2(K) and let
O(G) =

⋃

S∈Gr{E}

{

ξ ∈ K ∪ {∞} : S∗ξ = ξ
}

.If G is not a π-group, then the number h of orbits of O(G) under the a
tion of G is eithertwo or three.Proof. Let the orbits in question be O1, . . . , Oh. For ea
h ξ ∈ Oi the number |{S ∈ G :

S∗ξ = ξ}| is the same, say νi. Clearly |G| = νiµi, where µi = |Oi| and
h
∑

i=1

(νi − 1)µi =
∑

ξ∈K∪{∞}

∑

S∈Gr{E}
S∗ξ=ξ

1 =
∑

S∈Gr{E}

∑

ξ∈K∪{∞}
S∗ξ=ξ

1.

But for ea
h S ∈ Gr{E} the equation S∗ξ = ξ has in K∪{∞} either one or two solutionsand, by Lemma 3, the latter possibility o

urs at least on
e. It follows that
2|G| − 2 ≥

h
∑

i=1

(νi − 1)µi > |G| − 1.Sin
e
h
∑

i=1

(νi − 1)µi = h|G| −
h
∑

i=1

µi ∈
[

h

2
|G|, h|G| − h

]

,we obtain 2 ≤ h ≤ 3.



Weak automorphs of binary forms 11Remark. For K = C and K = Fπ, |G| 6≡ 0 mod π, Lemma 4 and the above proof arewell known (see [27, Vol. II, �68 and �87℄.Lemma 5. In the notation of the proof of Lemma 4, if T ∈ G, ξ∈Oj and T ∗ξ = ξ, then
o(T ) | |G|/|Oj |.Proof. The group 〈T 〉 of order o(T ) is a subgroup of the stabilizer of ξ in G of order
|G|/|Oj |.Lemma 6. Under the assumptions of Lemma 4, let Kj = K(Oj r {∞}). Then [Kj : K]

≤ 2 for all j ≤ h. We have the following possibilities :(2) for all j ≤ h either [Kj : K]s = 1 or [Kj : K]s = 2, ∞ 6∈ Oj ,
Gal(Kj/K) = 〈σj〉, and σj(Oj) = Oj ;(3) for a suitable numbering of Oj ,
[K1 : K]s = 2,Gal(K1/K) = 〈σ1〉, ∞ 6∈ O1, σ1(O1) = O2and either h = 2, or h = 3, [K3 : K]s = 1,or h = 3, [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉,∞ 6∈ O3, σ3(O3) = O3.Proof. If ξ ∈ O(G) r {∞}, then S∗ξ = ξ for an S ∈ G, hen
e [K(ξ) : K] ≤ 2 and if

ξ ∈ Oj , then [Kj : K] ≤ 2. If [Kj : K] = 2, then ∞ 6∈ Oj sin
e S∗(∞) ∈ K ∪ {∞} for all
S ∈ G. If (2) does not hold, then for some j we have [Kj : K]s = 2, Gal(Kj/K) = 〈σj〉and σj(Oj) 6= Oj . Therefore, there exists ξ0 ∈ Oj su
h that σj(ξ0) 6∈ Oj . But S∗

0ξ0 = ξ0for some S0 ∈ G r {E}; then also S∗
0σj(ξ0) = σj(ξ0), hen
e σj(ξ0) ∈ Ok for some k 6= jand renumbering the Oi we may assume that j = 1, k = 2, σ1(O1) = O2. If h = 3the situation 
annot repeat itself with j = 3 sin
e there exists no suitable k, thus either

[K3 : K]s = 1, or [K3 : K]s = 2, Gal(K3/K) = 〈σ3〉 and σ3(O3) = O3. This gives (3).Lemma 7. For every �nite subgroup G of PGL2(K) of order not divisible by π thesequen
e |O1|, . . . , |Oh| in the notation of the proof of Lemma 4 is a permutation ofone of the sequen
es : 〈1, 1〉 (G ∼= Cν), 〈|G|/2, |G|/2, 2〉 (G ∼= Dν), 〈4, 4, 6〉 (G ∼= A4),
〈6, 8, 12〉 (G ∼= S4), 〈12, 20, 30〉 (G ≃ A5).Proof. If |G| 6≡ 0 mod π, then by Lemma 3 for every S ∈ Gr{E} the number of solutionsof S∗ξ = ξ is 2, hen
e following the proof of Lemma 4 we obtain

2|G| − 2 =

h
∑

i=1

(νi − 1)µi = h|G| −
h
∑

i=1

|G|/νifor h = 2 or 3. This equation is well known (see [27, Vol. II, �68℄) and gives for de-
reasing νi either h = 2, ν1 = ν2 = |G|, or h = 3, 〈ν1, ν2, ν3〉 = 〈|G|/2, 2, 2〉, or h = 3,
〈|G|; ν1, ν2, ν3〉 = 〈12; 3, 3, 2〉, 〈24; 4, 3, 2〉, 〈60; 5, 3, 2〉. Sin
e µi = |G|/νi we obtain thelemma.Lemma 8. Let G = PSL2(Fq). In the notation of Lemma 4 we have

O(G) = Fq2 ∪ {∞}(4)and , up to a permutation, O1 = Fq ∪ {∞}, O2 = Fq2 r Fq.Proof. The formulae
S ∈ G r {E}, ξ ∈ Fq ∪ {∞}, S∗ξ = ξ(5)



12 A. S
hinzelimply ξ ∈ Fq2 ∪ {∞}. On the other hand, if ξ ∈ Fq or ξ ∈ Fq2 , ξ2 + aξ + b = 0, a, b ∈ Fq,or ξ = {∞}, then (5) holds for
S =

(

1 + ξ −ξ2
1 1 − ξ

)

F∗
q or (

αε−1 −bε−1

ε−1 αε−1 + aε−1

)

F∗
q or (

1 1

0 1

)

F∗
q ,respe
tively, where α and ε are 
hosen in Fq so that α2 + aα + b = ε2; ε 6= 0 sin
e

x2 + ax+ b is irredu
ible over Fq. This proves (4).Moreover, if ξ = 0, S =
( 0 1

−1 0

)

F∗
q or ξ ∈ F∗

q , S =
( ξ 0

1 ξ−1

)

F∗
q we have

S ∈ G, S∗∞ = ξ.Finally, if ξ, η ∈ Fq2 r Fq and ξ′, η′ are 
onjugates of ξ, η with respe
t to Fq we have
(η − η′)/(ξ − ξ′) ∈ Fq. There exist δ, ε in Fq su
h that

η − η′

ξ − ξ′
(δ + ξ)(δ + ξ′) = ε2 6= 0.Then taking

S =







δ(η − η′) + (ηξ − η′ξ′)

ε(ξ − ξ′)

δ(η′ξ − ηξ′) + ξξ′(η′ − η)

ε(ξ − ξ′)

ε−1 δε−1






F∗
qwe �nd S ∈ G su
h that S∗ξ = η, whi
h 
ompletes the proof.Lemma 9. The statement of Lemma 8 is also true for G = PGL2(Fq).Proof. If H1 = PGL2(Fq), H2 = PSL2(Fq) we have, in the notation of Lemma 4,

O(H2) ⊂ O(H1);but, 
learly, O(H1) ⊂ Fq2 ∪ {∞}, hen
e by Lemma 8,
O(H1) = Fq2 ∪ {∞}.Sin
e H2 ⊂ H1 the orbits of Fq2 ∪ {∞} under the a
tion of H1 are unions of orbitsunder the a
tion of H2; Lemma 8 shows that they are either Fq ∪ {∞} and Fq2 r Fq, or

Fq2 ∪ {∞}. As the image of Fq ∪ {∞} under the a
tion of H1 is again Fq ∪ {∞}, theformer 
ase holds.Definition 2. If K,L are �elds, K ⊂ L and G is a subgroup of PGL2(K), then GL∗/L∗is the subgroup of PGL2(L) de�ned as
{ML∗ : M ∈ GL2(K), MK∗ ∈ G}.Lemma 10. For π > 0 every �nite subgroup of PGL2(K) is isomorphi
 to a subgroup of

PSL2(Fs), where s is a power of π.Proof. Let G =
{( αi βi

γi δi

)

K∗ : 1 ≤ i ≤ k
}. The isomorphism 
lass of G is determined by�nitely many equalities Fi(α1, . . . , δk) = 0 and inequalities Gj(α1, . . . , δk) 6= 0, where Fiand Gj are polynomials over Fπ. By the theorem on elimination of existential quanti�ersin algebrai
ally 
losed �elds, if this system of equalities and inequalities is solvable in K,it is also solvable in the algebrai
 
losure of Fπ, hen
e also in a �eld Fq, where q is a powerof π. Thus G is isomorphi
 to a subgroup of PGL2(Fq). Sin
e for s = q2, PGL2(Fq)F

∗
s/F

∗
sis 
ontained in PSL2(Fs), it follows that s satis�es the assertion of the lemma.



Weak automorphs of binary forms 13Lemma 11. For π > 0 and a �nite subgroup G of PGL2(K) of order divisible exa
tlyby πg (g > 0) let σ be the number of π-Sylow subgroups in G. We have the followingpossibilities :
σ = 1;

σ = πg + 1, G ∼= PGL2(Fπg ) or PSL2 (Fπg ) ;

πg = 2, σ = 2̺+ 1 (̺ ≥ 1), G ∼= D2̺+1;

πg = 3, σ = 10, G ∼= A5.Proof. In view of Lemma 10 this follows from an analogous property of subgroups of
PSL2(Fs) (see [12, Chapter XII, Se
tions 249�253℄, with m repla
ed by g and f by ̺).Lemma 12. Let H1 = PGL2(Fq) and H2 = PSL2(Fq), where q = πg. Every subgroup of
PGL2(K) isomorphi
 to Hi is 
onjugate to HiK

∗/K∗.Proof. The existen
e of a subgroup of PGL2(K) isomorphi
 to Hi, but not 
onjugate to
HiK

∗/K∗ is a statement involving �nitely many existential and universal quanti�ers andequalities and inequalities 
on
erning polynomials with 
oe�
ients in Fq. By the theoremon elimination of existential quanti�ers in algebrai
ally 
losed �elds, if this statement istrue, it is also true in Fq. Therefore, there exists a subgroup G of PGL2(Fq) isomorphi
 to
Hi, but not 
onjugate to HiF

∗
q/F

∗
q . For A running through GL2(Fq) su
h that AF∗

q ∈ G,
A/

√
detA runs through �nitely many matri
es, whi
h all lie in SL2(Fs) for some s whi
his a power of q. If

G0 =

{

M√
detM

F∗
s : MF∗

q ∈ G
}

,(6)then G0 is isomorphi
 to G, hen
e to Hi. By the known property of PSL2(Fs) (see [12,Chapter XII, itali
ized statements on pp. 274 and 278 and the normalization of GΩ onp. 273℄), G0 is 
onjugate in PGL2(Fs) to HiF
∗
s/F

∗
s . Hen
e there exists A0 ∈ GL2(Fs) su
hthat

G0 = A0HiA
−1
0 .By (6) this gives

G0 = A0HiA
−1
0 F∗

q/F
∗
q ,thus G is 
onjugate in PGL2(Fq) to HiF

∗
q/F

∗
q , a 
ontradi
tion.Lemma 13. If Fq ⊂ K, then every subgroup G of PGL2(K) isomorphi
 to Hi (notationof Lemma 12) is 
onjugate to HiK

∗/K∗.Proof. By Lemma 12 there exists A ∈ GL2(K) su
h that for i = 1 or 2,
GK∗/K∗ = AHiA

−1K∗/K∗.(7)It follows that for all M ∈ SL2(Fq)F
∗2
q there exists t ∈ K∗ su
h that

tAMA−1 ∈ GL2(K).(8)Now, if
A =

(

a b

c d

)

, M =

(

α β

γ δ

)

,
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hinzelthen
AMA−1 =

1

ad− bc

(

adα− acβ + bdγ − bcδ −abα+ a2β − b2γ + abδ

cdα− c2β + d2γ − cdδ −bcα+ acβ − bdγ + adδ

)

.Applying (8) with
M =

(

1 0

0 1

)

,

(

1 1

0 1

)

,

(

0 1

−1 0

)

,

(

1 1

−1 0

)

,we obtain(91) t
ad

ad− bc
∈ K, (92) t

ac

ad− bc
∈ K, (93) t

bc

ad− bc
∈ K;(101) t

ab

ad− bc
∈ K, (102) t

a2

ad− bc
∈ K;(111) t

c2

ad− bc
∈ K, (112) t

cd

ad− bc
∈ K.Sin
e ad−bc 6= 0 we have a 6= 0 or c 6= 0. If a 6= 0, then (91) and (102) imply d/a ∈ K, (92)and (102) imply c/a ∈ K, and (101) and (102) imply b/a ∈ K, hen
e a−1A ∈ GL2(K).If c 6= 0 the same 
on
lusion follows from (92), (93), (112) and (111). By (7),

GK∗/K∗ = a−1AHiA
−1aK∗/K∗,hen
e

G = a−1AHiA
−1aK∗/K∗,whi
h gives the assertion.

2. Determination of all binary forms with a given group of weakautomorphsDefinition 3. If
〈α, β, γ, δ〉 ∈ K4, αδ − βγ 6= 0, 〈α, β, γ, δ〉 6= 〈α, 0, 0, α〉(12)and

z2 − (α+ δ)z + (αδ − βγ) = (z − λ1)(z − λ2), λ1, λ2 ∈ K, λ1 6= λ2,(13)we put
χi = γx+ (λi − α)y (i = 1, 2) if γ 6= 0,

χ1 = (α− δ)x+ βy, χ2 = y otherwise.Definition 4. If (12) holds and
z2 − (α+ δ)z + (αδ − βγ) = (z − λ)2, λ ∈ K,(14)we put
χ1 = γx+ (λ− α)y, χ2 = y if γ 6= 0,

χ1 = βy, χ2 = x otherwise.Theorem 1. Let 〈α, β, γ, δ〉 satisfy (12) and T =
( α β

γ δ

)

K∗ be of order ν in PGL2(K).A form f ∈ K[x, y] r {0} satis�es the 
onditions
f ∈ K[x, y](15)



Weak automorphs of binary forms 15and
T ∈ Aut(f,K)(16)if and only if either (13) holds and

f = χc11 χ
c2
2 ψ(χν1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2),(17)where χ1, χ2 are given in De�nition 3, ψ is a binary form over K, while ci are integerssatisfying 0 ≤ ci < ν and c1 = c2 if χ1, χ2 are 
onjugate over K, or (14) holds and

f = χc11 ψ(χπ1 , λ
π−1χπ2 − χ2χ

π−1
1 ),(18)where χ1, χ2 are given in De�nition 4, ψ is a binary form over K, while c1 is a non-negative integer satisfying c1 < π = ν unless either π = 0, in whi
h 
ase ψ ∈ K∗, c1arbitrary , or π = 2 = ν, λ 6∈ K, in whi
h 
ase c1 = 0.Corollary 1. If a form f ∈ K[x, y] of degree n 6≡ 0 mod π has a weak automorph oforder ν in PGL2(K), then either ν |n and ζν +ζ−1

ν ∈ K, or f is the produ
t of two formswith su
h automorphs , one of whi
h, say g, is linear or quadrati
.Corollary 2. If a form f ∈ K[x, y] of degree n 6≡ 1 mod π, n > 2, has a weak auto-morph of order ν in PGL2(K) and f is the produ
t of a linear fa
tor and another fa
torde�ned and irredu
ible over K, then ν |n− 1 and ζν ∈ K.Corollary 3. If a quarti
 form f ∈ K[x, y] has in PGL2(K) a weak automorph oforder 3, then either √
−3 ∈ K or f is a square in K[x, y].Corollary 4. If T0 ∈ GL2(K) and T = T0K

∗ is of �nite order in PGL2(K), then thereexists c(T0) ∈ K su
h that if T ∈ Aut(f,K), then
f(T0)

o(T ) = c(T0)
deg ffand if , moreover , f(ξ, 1) = 0 implies T ∗ξ 6= ξ, then o(T ) | deg f and

f(T0) = c(T0)
deg f/o(T )f.Here f(∞, 1) = 0 means f(1, 0) = 0.Corollary 5. Under the assumption of Theorem 1 about T , a form f ∈K[x, y] r {0}satis�es (16) if and only if either (13) and (17) hold , where χ1, χ2 are given in De�ni-tion 3, ψ is a binary form over K, while ci are integers satisfying 0 ≤ ci < ν, or (14)and (18) hold , where χ1, χ2 are given in De�nition 4, while c1 is a non-negative integersatisfying c1 < π = ν unless π = 0, in whi
h 
ase ψ ∈ K∗, c1 arbitrary.The proof of Theorem 1 is based on three lemmas.Lemma 14. The linear forms χ1, χ2 given in De�nition 3 are linearly independent andsatisfy χi(αx+βy, γx+δy) = λiχi (i = 1, 2), provided for γ = 0 we have λ1 = α, λ2 = δ.Moreover , either χi ∈ K[x, y] (i = 1, 2), or χ1, χ2 are 
onjugate over K.If ( α β

γ δ

)

K∗ is of order ν > 2 in PGL2(K), then χi ∈ K[x, y] if and only if K 
ontainsa primitive root of unity of order ν.Proof. The �rst two assertions are proved by 
al
ulation and inspe
tion. To prove thethird assertion noti
e that χi ∈ K[x, y] if and only if λi ∈ K. If ( α β

γ δ

)

K∗ is of order
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ν > 2 in PGL2(K) we know from the proof of Lemma 1 that λ1/λ2 is a primitive root ofunity of order ν and that

λ2(1 + λ1/λ2) = α+ δ ∈ K,hen
e λi ∈ K (i = 1, 2) is equivalent to existen
e in K of a primitive root of unity oforder ν.Lemma 15. The linear forms χ1, χ2 given in De�nition 4 are linearly independent andsatisfy
χ1(αx+ βy, γx+ δy) = λχ1, χ2(αx+ βy, γx+ δy) = λχ2 + χ1.Moreover χ1 ∈ K[x, y] unless π = 2 and λ 6∈ K.Proof. By 
al
ulation and inspe
tion.Lemma 16. If G ∈ K[x] rK, λ ∈ K∗ and

G(x+ λ−1) = rG(x), r ∈ K(λ)∗,(19)then π 6= 0 and
G(x) = H(λπ−1xπ − x), where H ∈ K(λ)[x].(20)Remark. For K being a �nite �eld and λ ∈ K the lemma is due to Di
kson.Proof. By 
omparing the leading 
oe�
ients on both sides of (19) we obtain r = 1. Now(19) implies that

G
(

lλ−1
)

= G(0) for all l ∈ Z,hen
e π 6= 0. We shall prove (20) by indu
tion on the degree of G, say n. If n = 0, then(20) holds with H = G. Assume that (20) is true for all G satisfying (19) of degree lessthan n and that degG = n. From (19) we obtain
π−1
∏

l=0

(x− lλ−1)
∣

∣

∣
G(x) −G(0).But

π−1
∏

l=0

(x− lλ−1) = λ1−π(λπ−1xπ − x)and
λπ−1(x+ λ−1)π − (x+ λ−1) = λπ−1xπ − x.Taking

G1(x) =
G(x) −G(0)

λπ−1xπ − xwe dedu
e from (19) that G1(x+ λ−1) = G1(x), hen
e by the indu
tive assumption
G1(x) = H1(λ

π−1xπ − x), H1 ∈ K(λ)[x],and (20) holds with H = xH1(x) +G(0).Proof of Theorem 1. Ne
essity. First assume (13). Sin
e by Lemma 14, χ1, χ2 are linearlyindependent over K we 
an write
f(x, y) =

n
∑

i=0

aiχ
n−i
1 χi2, where ai ∈ K(λ1, λ2),(21)



Weak automorphs of binary forms 17and we set
I = {i : ai 6= 0}.It follows from (16) and Lemma 14 that

f(αx+ βy, γx+ δy) =
∑

i∈I

aiλ
n−i
1 λi2χ

n−i
1 χi2(22)

= λn1
∑

i∈I

ai(λ2/λ1)
iχn−i1 χi2 = r

∑

i∈I

aiχ
n−i
1 χi2.Sin
e T is in PGL2(K) of order ν, λ2/λ1 is a primitive root of unity of order ν in K.If I = {j}, then we have (17) with ψ = aj . If |I| > 1, then the 
ondition (22) impliesthat there exist integers c1, c2 su
h that 0 ≤ cj < ν and i ≡ c2, n− i ≡ c1 mod ν for all

i ∈ I. Sin
e
p = χν1 +χν2 , q = λ1χ

ν
1 +λ2χ

ν
2 is equivalent to χν1 =

q − λ2p

λ1 − λ2
, χν2 =

λ1p− q

λ1 − λ2
,(23)if λ1, λ2 are in K we obtain (17) with

ψ(p, q) =
∑

i∈I

ai(λ1 − λ2)
(c1+c2−n)/ν(q − λ2p)

(n−i−c1)/ν(λ1p− q)(i−c2)/ν .(24)If λ1 6∈ K, then χ1, χ2 are 
onjugate over K by Lemma 14, and denoting 
onjugation byprime, from (14) and (21) we obtain
0 = f ′(x, y) − f(x, y) =

n
∑

i=0

a′iχ
n−i
2 χi1 −

n
∑

i=0

aiχ
n−i
1 χi2 =

n
∑

i=0

(a′i − an−i)χ
n−i
1 χi2,hen
e a′i = an−i for all i ≤ n. It follows that i and n− i belong simultaneously to I, thus

c1 = c2. Now, the form ψ(p, q) given by (24) satis�es
ψ′(p, q) − ψ(p, q) =

∑

i∈I

a′i(λ2 − λ1)
(2c1−n)/ν(q − λ1p)

(n−i−c1)/ν(λ2p− q)(i−c1)/ν

−
∑

i∈I

ai(λ1 − λ2)
(2c1−n)/ν(q − λ2p)

(n−i−c1)/ν(λ1p− q)(i−c1)/ν

=
∑

i∈I

an−i(λ2 − λ1)
(2c1−n)/ν(q − λ1p)

(n−i−c1)/ν(λ2p− q)(i−c1)/ν

−
∑

i∈I

an−i(λ1 − λ2)
(2c1−n)/ν(q − λ2p)

(i−c1)/ν(λ1p− q)(n−i−c1)/ν = 0and sin
e the extension K(λ1, λ2)/K is separable, we get ψ ∈ K[x, y] and from (21) and(23) we again obtain (17).Assume now that (14) holds. Sin
e, by Lemma 15, χ1, χ2 are linearly independentover K, we have
f(x, y) = g(χ1, χ2), g ∈ K(λ)[x, y].By (16) and Lemma 15,

(λχ1, λχ2 + χ1) = g(χ1(αx+ βy, γx+ δy), χ2(αx+ βy, γx+ δy))

= f(αx+ βy, γx+ δy) = rf(x, y) = rg(χ1, χ2),hen
e G(x) = g(1, x) satis�es
G(x+ λ−1) = rG(x)
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hinzeland, by Lemma 16, we have either G ∈ K, or π 6= 0 and
G(x) = H(λπ−1xπ − x), H ∈ K(λ)[x].In the former 
ase we have (18) with

ψ(p, q) = 1, c1 = n if π = 0,

ψ(p, q) = p⌊n/π⌋, c1 = n− π

⌊

n

π

⌋ if π > 0, λ ∈ K,

ψ(p, q) = pn/2, c1 = 0 if π = 2, λ 6∈ K.In the latter 
ase we have for n ≡ c1 mod π, 0 ≤ c1 < π,
g(χ1, χ2) = χn1G

(

χ2

χ1

)

= χn1H

(

λπ−1

(

χ2

χ1

)π

− χ2

χ1

)

,thus (18) holds with
ψ(p, q) = p(n−c1)/πH(q/p).If λ ∈ K, then 
learly ψ ∈ K[p, q].It remains to 
onsider the 
ase π = 2, λ 6∈ K. Let

ψ(p, q) = pmψ1(p, q), where ψ1(0, 1) 6= 0(25)
(m = (n− c1 − deg g)/2), so that

(ψ1(χ
2
1, λχ

2
2 − χ2χ1), χ1) = 1.(26)By (18) we have χ2m+c1

1 | f , (χ2
1)

2m+c1 | f2 , and sin
e χ2
1 is irredu
ible over K, also

(χ2
1)
m+⌈c1/2⌉ | f . By (18), (25) and (26) this gives

2m+ 2⌈c1/2⌉ = 2m+ c1,hen
e c1 = 0, ψ(χ2
1, λχ

2
2 − χ2χ1) = f ∈ K[x, y] and sin
e

χ2
1 = γ2x2 + βγy2 ∈ K[x, y], λχ2

2 − χ1χ2 = γxy + αy2 ∈ K[x, y](27)and χ2
1, λχ

2
2 − χ1χ2 are algebrai
ally independent over K, it follows that ψ ∈ K[p, q].Su�
ien
y. If (13) holds and T is of order ν in PGL2(K), then we have λν1 = λν2 , hen
e

χi(αx+ βy, γx+ δy)ν = λν1χ
ν
i and, by (17),

f(αx+ βy, γx+ δy) = λc11 λ
c2
2 λ

ν degψ
1 f,thus (16) holds. Also, if λ1, λ2 ∈ K, then (15) holds. If λ1, λ2 are 
onjugate over K,then (15) holds again by the 
ondition c1 = c2, sin
e χ1χ2, χν1 +χν2 and λ1χ

ν
1 +λ2χ

ν
2 areinvariant under 
onjugation.If (14) holds and π = 0, then, by (18), f(αx+ βy, γx+ δy) = λc1f , thus (16) holds.Also (15) holds, sin
e in this 
ase λ ∈ K. If π > 0, then by (18) and Lemma 15,

f(αx+ βy, γx+ δy)

= λc1χc11 ψ(λπχπ1 , λ
π−1(λπχπ2 + χπ1 ) − (λχ2 + χ1)λ

π−1χπ−1
1 ) = λc1+degψf,thus (16) holds. Also if λ ∈ K, then (15) holds. If λ 6∈ K, then π = 2, c1 = 0 and (15)follows from (27).



Weak automorphs of binary forms 19Proof of Corollary 1. If T =
( α β

γ δ

)

K∗ ∈ Aut(f,K) of order ν > 1 in PGL2(K) satis�es(13), then, by Lemma 1, ζ + ζ−1 ∈ K, where ζ = λ2/λ1 is a primitive root of unity oforder ν in K. If n ≡ 0 mod ν the �rst term of the alternative holds. By Theorem 1 wehave n ≡ c1 + c2 mod ν, thus n 6≡ 0 mod ν implies ci := max{c1, c2} > 0. If χi ∈ K[x, y]we take g = χi, and if χ1, χ2 are 
onjugate over K, we take g = χ1χ2.If T satis�es (14), then either π = 0 and f = χc11 , in whi
h 
ase we take g = χ1, or
π > 0, in whi
h 
ase we have n ≡ c1 mod π. By assumption, n 6≡ 0 mod π, thus c1 > 0,
π 6= 2 and we take g = χ1.Proof of Corollary 2. Let T0(x, y) = (αx+βy, γx+ δy), T =

( α β

γ δ

)

K∗ ∈ Aut(f,K) be oforder ν > 1 in PGL2(K), and L be a linear fa
tor of f in K[x] su
h that f/L is irredu
ibleover K. Sin
e L(T0) | f(T0) | f and f/L is of degree n − 1 > 1 we have L(T0)/L ∈ K∗,hen
e (
f. Lemmas 14 and 15)
L = aχi, a ∈ K∗, where i = 1 or 2 in 
ase (13), i = 1 in 
ase (14).(28)In 
ase (13) it follows that λ1, λ2 ∈ K, thus a primitive root of unity ζν = λ2/λ1is in K. Now (17) implies that either ci = 1 and c3−i = 0, in whi
h 
ase ν |n − 1, or

ci = c3−i = 0 and
χi |ψ(χν1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2).This gives

χi |ψ(χν3−i, λ3−iχ
ν
3−i) = χν degψ

3−i ψ(1, λ3−i),hen
e ψ(1, λ3−i) = 0,
ψ = (λ3−ip− q)ψ1, ψ1 ∈ K[p, q],and

f/χi = (λ3−i − λi)χ
ν−1
i ψ1(χ

ν
1 + χν2 , λ1χ

ν
1 + λ2χ

ν
2)is redu
ible for n > 2, 
ontrary to assumption.In 
ase (14) it follows from (28) that λ ∈ K and, by (18), we have π > 0. If c1 = 1we have n ≡ 1 mod π, 
ontrary to assumption, while if c1 = 0,

χ1 |ψ(χπ1 , λ
π−1χπ2 − χ2χ

π−1
1 ).This gives

χ1 |ψ(0, λπ−1χπ2 ) = (λπ−1χπ2 )degψψ(0, 1),hen
e ψ(0, 1) = 0, ψ = pψ1, ψ1 ∈ K[p, q] and
f/χ1 = χπ−1

1 ψ1(χ
π
1 , λ

π−1χπ2 − χ2χ
π−1
1 )is redu
ible for n > 2, 
ontrary to assumption.Proof of Corollary 3. If π = 3 the 
on
lusion holds trivially. If π 6= 3 then by Theorem 1,

f = χc11 χ
c2
2 ψ(χ3

1 + χ3
2, λ1χ

3
1 + λ2χ

3
2),where χ1, χ2 are given in De�nition 3, c1, c2 are non-negative integers and ψ is a binaryform over K. If √−3 6∈ K, then χi 6∈ K[x, y], by Lemma 14; hen
e, by Theorem 1,

c1 = c2 and the above equation for f gives 4 ≡ 2c1 mod 3. It follows that c1 = c2 = 2,
ψ ∈ K∗ and f is a square in K[x, y].
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hinzelProof of Corollary 4. For T0 = (αx+ βy, γx+ δy) we take
c(T0) =

{

λ
o(T )
1 = λ

o(T )
2 if (13) holds,

λo(T ) if (14) holds.If T0K
∗ ∈ Aut(f,K) we have, by Theorem 1, for the 
ase (13),

f(T0)
o(T ) = λ

c1o(T )
1 λ

c2o(T )
2 c(T0)

degψ·o(T )f = c(T0)
c1+c2+degψ·o(T )f = c(T0)

deg ff ;and for the 
ase (14),
f(T0)

o(T ) = λc1o(T )c(T0)
degψ·o(T )f = c(T0)

c1+degψ·o(T )f = c(T0)
deg ff.If, moreover, f(ξ, 1) = 0 implies T ∗ξ 6= ξ, then c1 = c2 = 0 if (13) holds, and c1 = 0 if(14) holds, hen
e

deg f = degψ · o(T ) and f(T0) = c(T0)
degψf = c(T0)

deg f/o(T )f.Proof of Corollary 5. It su�
es to apply Theorem 1 withK repla
ed byK and T repla
edby ( α β

γ δ

)

K∗.Definition 5. Let G be a �nite subgroup of PGL2(K) whi
h is not a π-group, and let,in the notation of Lemma 6,
χj0 =

∏

η∈Ojr{∞}

(x− ηy)
∏

η∈Oj∩{∞}

y, χj = χ
[Kj :K]i
j0 (1 ≤ j ≤ h).Further, if (2) holds, set

p = χ
|G|/deg χ1

1 , q = χ
|G|/deg χ2

2 ;and if (3) holds and K1 = K(ϑ), set
p = χ

|G|/degχ1

1 + χ
|G|/deg χ2

2 , q = ϑχ
|G|/deg χ1

1 + σ1(ϑ)χ
|G|/degχ2

2 .Corollary 6. Either χj ∈ K[x, y] for all j ≤ h, or χ1, χ2 are 
onjugate over K and for
h = 3, χ3 ∈ K[x, y]. Moreover G ⊂ Aut(χj ,K) for all j ≤ h.Proof. This is an immediate 
onsequen
e of Lemma 6.Corollary 7. We have p, q ∈ K[x, y] and (p, q) = 1.Proof. First, p and q are forms over K. If (3) holds, or (2) holds and [K1 : K]i =

[K2 : K]i = 1, this is 
lear, sin
e degχj = |Oj | divides |G| for all j ≤ h. If (2) holdsand [Kj : K]i = 2, then for ea
h S ∈ G r {E} and ξ ∈ Oj with S∗ξ = ξ we have
o(S) ≡ 0 mod 2, hen
e 2|Oj | | |G| by Lemma 5.Now, if (2) holds we have χj ∈ K[x, y] (1 ≤ j ≤ h), hen
e p, q ∈ K[x, y]. If (3) holds,then χ2 = σ1(χ1), hen
e σ1(p) = p, σ1(q) = q, thus p, q ∈ K[x, y]. Sin
e (χ1, χ2) = 1 wehave (p, q) = 1.Theorem 2. Let G be a �nite subgroup of PGL2(K) whi
h is not a π-group. A form
f ∈ K[x, y] r {0} satis�es

f ∈ K[x, y](29)and
G ⊂ Aut(f,K)(30)
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f =

h
∏

j=1

χ
cj

j ψ(p, q),(31)where χj and p, q are given in De�nition 5, ψ is a binary form over K and cj are integerssatisfying 0 ≤ cj < |G|/degχj and c1 = c2 if χ1, χ2 are 
onjugate over K.Corollary 8. Under the assumption of Theorem 2 about G, a form f ∈ K[x, y] satis�es(30) if and only if (31) holds , where χj are given in De�nition 5,
p = χ

|G|/degχ1

1 , q = χ
|G|/degχ2

2 ,

ψ is a binary form over K and cj are integers satisfying 0 ≤ cj < |G|/degχj.The proof of Theorem 2 is based on �ve lemmas.Lemma 17. Let f ∈ K[x, y] r {0} be a form and , for ξ ∈ K, ef (ξ) be the multipli
ity of
ξ as a zero of f(x, 1), and ef (∞) be the multipli
ity of 0 as a zero of f(1, y). We have

S ∈ Aut(f,K)(32)if and only if for all ξ ∈ K ∪ {∞},
ef (S

∗ξ) = ef (ξ).(33)Proof. By making a preliminary linear transformation we may assume that
f =

n
∏

i=1

(x− ξiy) and S =

(

α β

γ δ

)

K∗,where
αδ − βγ 6= 0.(34)Ne
essity. If (32) holds and for some ξi we have γξi + δ = 0, then with an r ∈ K∗,

(αξi + β)n = f(αξi + β, γξi + δ) = rf(ξi, 1) = 0,hen
e αξi+β = 0 and αδ−βγ = 0, 
ontrary to (34). Thus γξi+ δ 6= 0 (i = 1, . . . , n) and
n
∏

i=1

(

αx+ βy − αξi + β

γξi + δ
(γx+ δy)

)

=
(αδ − βγ)n

(−1)nf(−δ, γ)

n
∏

i=1

(x− ξiy)

=
(βγ − αδ)n

f(−δ, γ) f(x, y) =
(βγ − αδ)n

rf(−δ, γ) f(αx+ βy, γx+ δy)

=
(βγ − αδ)n

rf(−δ, γ)

n
∏

i=1

(αx+ βy − ξi(γx+ δy)),hen
e (33) holds.Su�
ien
y. If (33) holds, there is a permutation σ of {1, . . . , n} su
h that
αξi + β

γξi + δ
= ξσ(i).
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hinzelThen by (34) we have γξi + δ 6= 0 for all i ≤ n and it follows that
f(αx+ βy, γx+ δy) =

n
∏

i=1

(αx+ βy − ξσ(i)(γx+ δy))

=
∏

(

αx+ βy − αξi + β

γξi − δ
(γx+ δy)

)

=
(αδ − βγ)n

(−1)nf(−δ, γ)

n
∏

i=1

(x− ξ1y) =
(βγ − αδ)n

f(−δ, γ) f(x, y),hen
e (32) holds.Lemma 18. If ef (η) = 0 for all η ∈ O(G) and G ⊂ Aut(f,K), then
deg f ≡ 0 mod |G|.Proof. Let us divide all ξ ∈ K ∪ {∞} with ef (ξ) > 0 into 
lasses by assigning ξ1 and ξ2to the same 
lass C if ξ1 = S∗ξ2 for some S ∈ G. Sin
e ef (η) = 0 for all η ∈ O(G), wehave ξ 6= S∗ξ for all ξ with ef (ξ) > 0, hen
e by Lemma 17, the number of elements inea
h 
lass is |G|. On the other hand, by Lemma 17, for ea
h C in the set Γ of all 
lasses,there is e(C) ∈ N su
h that ef (ξ) = e(C) for all ξ ∈ C. We obtain

deg f =
∑

ξ∈K∪{∞}

ef (ξ) =
∑

C∈Γ

e(C)|G| ≡ 0 mod |G|.Lemma 19. If f ∈ K[x, y] r {0}, G ⊂ Aut(f,K) and (χj , f) 6= 1 then χj | f .Proof. Assume that ef (η) > 0 for some η ∈ Oj . By Lemma 17 we have ef (S∗η) > 0 forall S ∈ G, hen
e χj0 | f . Therefore,
χj | f [Kj :K]i .(35)If [Kj : K]i = 1 the assertion is proved. If [Kj : K]i = 2, then Oj ⊂ Kj rK. Therefore,for all η ∈ Oj , (x− ηy)2 is irredu
ible over K and (35) implies
(x− η)2 | f,whi
h gives χj | f , as asserted.Remark. For K = C the lemma is well known (see [27, Vol. II, �70℄) and for π 6= 2 theproof given there needs no modi�
ation.Lemma 20. The �eld L = {ϕ ∈ K(t) : ϕ(S∗) = ϕ for all S ∈ G} is generated by

p(t, 1)/q(t, 1), where p, q are given in De�nition 5.Proof. By De�nition 5, G ⊂ Aut(χj0,K), hen
e, by Corollary 3, for every S0 ∈ GL2(K)with S = S0K
∗ ∈ G we have

χj0(S0)
o(S) = c(S0)

degχj0χj0.If S∗ξ = ξ for some ξ ∈ Oj , we have, by Lemma 5,
o(S) | |G|/|Oj| = |G|/degχj0,and so

χj(S0)
|G|/degχj = χj0(S0)

|G|/degχj0 = c(S0)
|G|/o(S)χ

|G|/deg χj

j .(36)
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0ξ 6= ξ for all ξ = Oj the same 
on
lusion holds by the se
ond part of Corollary 4.Therefore,

p(S0) = c(S0)
|G|/o(S)p, q(S0) = c(S0)

|G|/o(S)q(37)and
p(S∗

0t, 1)

q(S∗
0 t, 1)

=
p(t, 1)

q(t, 1)
, thus p(t, 1)

q(t, 1)
∈ L.Sin
e (χ1, χ2) = 1 we have p(t, 1)/q(t, 1) 6∈ K and, by Lüroth's theorem, L = K(r), where

r ∈ K(t) rK. Without loss of generality we may assume that r = p1/q1, where p1 and
q1 are 
oprime polynomials of the same degree d. Let

p2 = p1(x/y)y
d, q2 = q1(x/y)y

d.Sin
e r(S∗t) = r(t) for all S ∈ G we have, for all S0 ∈ GL2(K) with S0K
∗ ∈ G,

p2(S0) = c1(S0)p2, q2(S0) = c1(S0)q2,where c1(S0) ∈ K∗. It follows that
λp2(S0) + µq2(S0) = c1(S0)(λp2 + µq2)(38)for all λ, µ in K. Now, 
hoose λ0 and µ0 in K su
h that

(39)
λ0p2(η, 1) + µ0q2(η, 1) 6= 0 for all η ∈ O(G) r {∞},

λ0p2(1, 0) + µ0q2(1, 0) 6= 0 if ∞ ∈ O(G).This is possible, sin
e 〈p2(η, 1), q2(η, 1)〉 6= 〈0, 0〉 and p(1, 0) 6= 0. By Lemma 18 we have
d ≡ 0 mod |G|.On the other hand, sin
e p(t, 1)/q(t, 1) ∈ K(r) we have

|G| = deg p(t, 1)/q(t, 1) ≡ 0 mod d.It follows that d = deg p(t, 1)/q(t, 1) and K(p(t, 1)/q(t, 1)) = K(r) = L.Lemma 21. If f1 is a binary form over K of degree divisible by |G| and for every S0 ∈
GL2(K) with S = S0K

∗ ∈ G we have
f1(S0) = c(S0)

deg f1/o(S)f1,then f1 = ψ1(p, q), where p, q are given in De�nition 5 and ψ1 is a binary form over K.Proof. By (37) for every S0 in question
q(S0)

deg f1/|G| = c(S0)
deg f1/|G|qdeg f1/|G|,hen
e

f1(S
∗t, 1)

q(S∗t, 1)deg f1/|G|
=

f1(t, 1)

q(t, 1)deg f1/|G|
,and sin
e this holds for every S ∈ G,

f1(t, 1)

q(t, 1)deg f1/|G|
∈ L.By Lemma 20 we have

f1(t, 1)

q(t, 1)deg f1/|G|
= u

(

p(t, 1)

q(t, 1)

)

.
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hinzelLet u = v/w, where v, w are 
oprime polynomials over K. Putting v(x, y) = v(x/y)ydeg vand w(x, y) = w(x/y)ydegw, we obtain
f1(t, 1)

q(t, 1)deg f1/|G|
=
v(p(t, 1), q(t, 1))q(t, 1)degw

w(p(t, 1), q(t, 1))q(t, 1)deg v
.Sin
e (p(t, 1), q(t, 1)) = 1 by Corollary 7, we have

(w(p(t, 1), q(t, 1)), v(p(t, 1), q(t, 1))) = 1and
(v(p(t, 1), q(t, 1))w(p(t, 1), q(t, 1)), q(t, 1)) = 1,hen
e w ∈ K∗ and deg f1/|G| ≥ deg v, and
f1(t, 1) = w−1v(p(t, 1), q(t, 1))qdeg f1/|G|−deg v.Substituting t = x/y and 
an
elling the denominators we obtain

f1 = w−1v(p, q)qdeg f1/|G|−deg v.Proof of Theorem 2. Ne
essity. By Lemma 19 we may write
f =

h
∏

j=1

χ
cj

j f0, where f0 ∈ K[x, y],
(

f0,
h
∏

j=1

χj

)

= 1.(40)If χ1 6∈ K[x, y], then by Corollary 6, χ1, χ2 are 
onjugate and χc11 | f implies χc12 | f , hen
e
c1 ≤ c2. Similarly c2 ≤ c1, hen
e c1 = c2 as asserted and f0 ∈ K[x, y]. Now,

ef0(η) = 0 for all η ∈ O(G)and by Lemma 18,
deg f0 ≡ 0 mod |G|.Moreover, by Corollary 4, for every S0 ∈ GL2(K) with S = S0K

∗ ∈ G we have
f0(S0) = c(S0)

deg f0/o(S)f0.By Lemma 21 with f1 = f0,
f0 = ψ(p, q),where ψ is a binary form over K, thus (31) follows from (40).Now, by (36) for ea
h j ≤ k and every S0 ∈ GL2(K) with S0K

∗ ∈ G,
χ
|G|/degχj

j (S0) = c(S0)
|G|/o(S)χ

|G|/degχj

j ,hen
e, applying Lemma 21 with f1 = χ
|G|/degχj

j if χj ∈ K[x, y], or with f1 =

(χ1χ2)
n|G|/degχj if χ1, χ2 are 
onjugate, we obtain

χ
|G|/degχj

j = ψj(p, q) or (χ1χ2)
|G|/degχj = ψ1(p, q),respe
tively, where ψj are binary forms over K. This gives the required upper boundfor cj .
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ien
y. Assuming (31) we obtain (29) by Corollary 6 and the 
ondition c1 = c2if χ1, χ2 are 
onjugate over K. On the other hand, for every S0 ∈ GL2(K) su
h that
S = S0K

∗ ∈ G we have, by (31),
ψ(p(S0), q(S0)) = c(S0)

|G|/o(S)ψ(p, q),thus G ⊂ Aut(ψ(p, q),K) and (30) follows from (31) by Corollary 6.Proof of Corollary 8. It su�
es to apply Theorem 2 withK repla
ed byK and G repla
edby GK∗/K∗.Example. We give without proof formulae for χ1, χ2, χ3 for dihedral subgroups of
PGL2(K). For the dihedral subgroup of order 4 generated by

(

a b

c −a

)

K∗,

(

d e

f −d

)

K∗, where a, . . . , f ∈ K, (a2 + bc)(d2 + ef) 6= 0,

2ad+ bf + ce = 0(the last 
ondition ensures 
ommutativity) we have
χ1 = cx2 − 2axy − by2, χ2 = fx2 − 2dxy − ey2,

χ3 = (cd− af)x2 − 2(ad+ bf)xy − (bd− ae)y2.For the dihedral group of order 2ν > 4 generated by
(

a b

a(ζ + ζ−1) + b −a

)

K∗ and (

1 + ζ + ζ−1 −1

1 1

)

K∗,where ζ is a primitive root of unity of order ν 6≡ 0 mod π, a, b ∈ K, (aζ+b)(aζ−1+b) 6= 0,the polynomials χi (1 ≤ i ≤ 3) are given by the formulae
χ3 = x2 − (ζ + ζ−1)xy + y2,

χ(3−ε)/2 =
B −A

ζ−1 − ζ
(ζ−1(x− ζy)ν + ζ(x− ζ−1y)ν)

+

(

ε
√
AB − ζB − ζ−1A

ζ−1 − ζ

)

((x− ζy)ν + (x− ζ−1)ν) (ε = ±1)if
A = (−aζ2 − bζ)ν 6= B = (−aζ−2 − bζ−1)ν ,and

χ1 = (ζ − ζ−1)(x− ζy)ν + (ζ−1 − ζ)(x− ζ−1y)ν ,

χ2 = (x− ζy)ν + (x− ζ−1y)ν ,otherwise. We shall use the fa
t, easy to 
he
k dire
tly, that for a = 1, b = 0 the twogenerators of the group are weak automorphs of χi, hen
e Aut(χi,K) 
ontains the groupfor i = 2 or 3.For the dihedral group generated by
(

−1 b

0 1

)

K∗ and (

λ 1

0 λ

)

K∗,where π > 0, λ ∈ K∗, b ∈ K, the polynomials χi (1 ≤ i ≤ 2) are given by the formulae
χ1 = y, χ2 = −2λπ−1xπ + 2xyπ−1 + (λπ−1bπ − b)yπ.
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hinzelDefinition 6. Let G be a π-subgroup of PGL2(K) generated by elements SiK∗, where
Si =

(

a b

c d

)−1(
λi 1

0 λi

)(

a b

c d

)

(1 ≤ i ≤ g),(41)
ad− bc 6=0, λ−1

1 , . . . , λ−1
g are linearly independent over Fπ and either a, b, c, d, λj are in K,or a = 0, b = 1, c ∈ K, K(d) is a quadrati
 inseparable extension of K and d+ λj ∈ K.Then we put

χ1 = cx+ dy, χ2 = ax+ by,

p = χπ
g

1 , q = χ2

∏

〈a1,...,ag〉∈F
g
πr{0}

(

χ1 + χ2

(

g
∑

j=1

ajλ
−1
j

)−1)

.

Corollary 9. We have p ∈ K[x, y], q ∈ K[x, y], (p, q) = 1 and p, q are algebrai
allyindependent.Proof. The assertion is 
lear unless π = 2, λ1 6∈ K. In the ex
eptional 
ase c ∈ K,
λ2

1 ∈ K, hen
e p ∈ K[x, y]. Also for ea
h j ≤ g,
dλ−2

j + λ−1
j ∈ K,hen
e for all 〈a1, . . . , ag〉 ∈ Fg2 r {0},

d
(

g
∑

j=1

ajλ
−1
j

)2

+

g
∑

j=1

ajλ
−1
j ∈ K,whi
h gives χ1+χ2(

∑g
j=1 ajλ

−1
j )−1 ∈ K[x, y] and q ∈ K[x, y]. Moreover, (p, q) = 1, sin
e

(χ1, χ2) = 1, and sin
e p, q are forms, it follows that they are algebrai
ally independent.Theorem 3. Let G, χ1, p, q be as in De�nition 6. A form f ∈ K[x, y]r{0} satis�es (29)and (30) if and only if
f = χc11 ψ(p, q),(42)where ψ is a binary form over K, c1 is an integer , 0 ≤ c1 < |G| and if χ1 6∈ K[x, y] then

c1 is even.Corollary 10. Under the assumption of Theorem 3 about G, χ1, p, q a form f ∈ K[x, y]satis�es (30) if and only if (42) holds , where ψ is a binary form over K and c1, c2 areintegers with 0 ≤ c1 < |G|.Corollary 11. If a binary form f has at least two 
oprime linear fa
tors over K and
G is a π-group 
ontained in Aut(f,K), then |G| ≤ deg f.The proof of Theorem 3 is based on the following lemma.Lemma 22. If π > 0, G ∈ K[x], λi ∈ K(λ1)

∗ (1 ≤ i ≤ g), λ−1
1 , . . . , λ−1

g are linearlyindependent over Fπ and
G(x+ λ−1

i ) = riG(x), ri ∈ K∗ (1 ≤ i ≤ g),(43)then
G(x) = H(P (x)), H ∈ K(λ1)[x],(44)
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P (x) =

∏

〈a1,...,ag〉∈F
g
π

(

x+

g
∑

j=1

ajλ
−1
j

)

.

Remark. For K being a �nite �eld of 
hara
teristi
 π and λi ∈ K the lemma is due toDi
kson.Proof. On 
omparing the leading 
oe�
ients on both sides of (43) we obtain ri = 1

(1 ≤ i ≤ g). We shall prove (44) by indu
tion on the degree of G, say n. If n = 0 then(44) holds with H = G. Assume that (44) is true for all G satisfying (43) of degree lessthan n, and that degG = n. From (43) we obtain, for all 〈a1, . . . , ag〉 ∈ Fgπ,
G
(

−
g
∑

j=1

ajλ
−1
j

)

= G(0),hen
e by the linear independen
e of λ−1
1 , . . . , λ−1

g over Fπ,
P (x) |G(x)−G(0).Taking
G1(x) =

G(x) −G(0)

P (x)we dedu
e from (43) that G1(x + λ−1
i ) = G1(x) (1 ≤ i ≤ g), hen
e by the indu
tiveassumption

G1(x) = H1

(

P (x)
)

, H1 ∈ K(λ1)[x],and (44) holds with H(x) = xH1(x) +G(0).Proof of Theorem 3. Ne
essity. Sin
e ad − bc 6= 0 and χ1, χ2 are linearly independentover K, we have
f(x, y) = g(χ1, χ2), g ∈ K(λ1)[x, y].By (41),
χ1(Si) = λiχ1, χ2(Si) = λiχ2 + χ1,(45)hen
e, by (30), for some ri ∈ K,

g(λiχ1, λiχ2 + χ1) = g(χ1(Si), χ2(Si)) = f(Si) = rif = rig(χ1, χ2),thus G(x) = g(1, x) satis�es
G(x+ λ−1

i ) = riG(x).By Lemma 22 we have
G(x) = H

(

P (x)
)

, H ∈ K(λ1)[x].Hen
e
g(χ1, χ2) = χn1G

(

χ2

χ1

)

= χn1H

(

χ2

χ1

)

and for n ≡ c1 mod πg with 0 ≤ c1 < πg, (42) holds with
ψ(p, q) = p(n−c1)/π

g

H

(

q

p

∏

〈a1,...,ag〉∈F
g
πr{0}

g
∑

j=1

ajλ
−1
j

)

.If λ1 ∈ K we have ψ ∈ K[p, q].
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hinzelIt remains to 
onsider the 
ase π = 2, K(λ1) a quadrati
 inseparable extension of K.In this 
ase χ1 6∈ K[x, y] and χ2
1 is irredu
ible over K. Let ψ(p, q) = pmψ1, where

ψ1 ∈ K[p, q] and ψ1(0, 1) 6= 0. Sin
e, by Corollary 9, (p, q) = 1 we have (ψ1(p, q), χ1) = 1and it follows from (42) that
χ2gm+c1

1 | f, χ2gm+c1+1
1 ∤ f.Further

χ2g+1m+2c1
1 | f2and sin
e χ2

1 is irredu
ible,
χ

2gm+2⌈c1/2⌉
1 | f, 2gm+ 2⌈c1/2⌉ = 2gm+ c1,

c1 ≡ 0 mod 2, and χc11 ∈ K[x, y]. It now follows from (42) that
ψ(p, q) ∈ K[x, y].By Corollary 9, p, q ∈ K[x, y] and p, q are algebrai
ally independent. Hen
e ψ ∈ K[p, q].Su�
ien
y. Sin
e χ1 or χ2

1 in the ex
eptional 
ase and p, q are de�ned over K, (29) is
lear. On the other hand, by (45),
p(Si) = λπ

g

i p,

q(Si) = (λiχ2 + χ1)
∏

〈a1,...,ag〉∈F
g
πr{0}

(

λiχ1 + (λiχ2 + χ1)
(

g
∑

j=1

ajλ
−1
j

)−1)

= (λiχ2 + χ1)λ
πg−1
i

×
∏

〈a1,...,ag〉∈F
g
πr{0}

(

g
∑

j=1

ajλ
−1
j

)−1 ∏

〈a1,...,ag〉∈F
g
πr{0}

(

χ1

g
∑

j=1

ajλ
−1
j + χ2 + χ1λ

−1
i

)

= λπ
g

i

∏

〈a1,...,ag〉∈F
g
πr{0}

(

g
∑

j=1

ajλ
−1
j

)−1 ∏

〈a1,...,ag〉∈F
g
π

(

χ1

g
∑

j=1

ajλ
−1
j + χ2

)

= λπ
g

i q,hen
e
f(Si) = χ1(Si)

c1ψ(p(Si), q(Si)) = λc1+π
g degψ

i χc11 ψ(p, q) = λc1+π
g degψ

i fand (30) holds.Proof of Corollary 10. It su�
es to apply Theorem 3 with K repla
ed by K and Grepla
ed by GK∗/K∗.Proof of Corollary 11. Sin
e Aut(f,K) ⊂ Aut(f,K) we may assume that K = K. ByLemma 3 every π-group 
ontained in PGL2(K) must 
ontain a π-group 
onsidered inTheorem 3. Sin
e f has at least two 
oprime linear fa
tors, the 
ase ψ ∈ K in (42) isex
luded. Hen
e
|G| ≤ degψ(p, q) ≤ n.



Weak automorphs of binary forms 293. Upper bounds for |Aut(f,K)|We shall proveTheorem 4. If a form f ∈ K[x, y] r {0} of degree n has at least three 
oprime linearfa
tors over K, then Aut(f,K) is �nite. Moreover , if
f = cf0(αx+ βy, γx+ δy)k, where c ∈ K∗, α, β, γ, δ∈K, αδ − βγ 6= 0,(46)

f0 = xqy − xyq, Fq ⊂ K, k ∈ N, then Aut(f,K) ∼= PGL2(Fq); otherwise either
(47) π = 2, n = 2̺+ 1, Aut(f,K) ∼= D2̺+1,or
(48) π = 3, n = 10, Aut(f,K) ∼= A5,or
(49) |Aut(f,K)| = lm,where l 6≡ 0 mod π, ζl + ζ−1

l ∈ K, l < n, m ≤ n.Remark. It is not 
lear whether there exist f and K satisfying (48).Corollary 12. Assume that f ∈ K[x, y] and all fa
tors of f(x, 1) irredu
ible over Kare separable. Then Aut(f,K) is �nite if and only if either K is �nite, or f has at leastthree 
oprime linear fa
tors over K.Definition 7. For π = 0 or π > n we put
Un(K) =

{

ν ∈ N : ν ≤ n and ζν + ζ−1
ν ∈ K

}

,

Vn(K) = {ν ∈ N : ν ≤ n and ζν ∈ K} ,
a1(n,K) = supUn(K), a2(n,K) = sup{ν ∈ Un(K) : ν ≡ n mod 2},
b(n,K) = supVn(K),

M = {6, 10, 15, 21, 22} ∪ {25, . . .} r {29, 32, 44},where the dots represent 
onse
utive integers greater than 25.Corollary 13. We have a2(n,K) ≤ a1(n,K) ≤ n for every n and a2(n,K) = a1(n,K)

= n for n ≤ 4, a1(n,K) ≥ 6 for n ≥ 6, a2(n,K) ≥ 6 for even n ≥ 6, 2 ≤ b(n,K) ≤
a1(n,K) for n ≥ 2.Definition 8. Let A(n,K) and B(n,K) for n≥3 be the maximum of |Aut(f,K)| overall forms f of degree n in K[x, y] or K[x, y] respe
tively with at least three 
oprime linearfa
tors over K and whi
h are not perfe
t powers in K[x, y].Theorem 5. We have

A(n,K) = B(n,K) = π3g − πg if n = πg + 1, Fπg ⊂ K,and
A(n,K) ≤ n(n− 1) otherwise.
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hinzelMoreover , if π = 0 or π > n then
A(n,K) =











































12 if levelK ≤ 2, n = 4,

max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2 and either
n = 6, 8, 14 or n = 12,

√
5 6∈ K or

n = 2m, m ≥ 9 and √
5 6∈ K if m ∈ M,

max{a1(n,K), 2a2(n,K), 60} if levelK ≤ 2,
√

5 ∈ Kand n/2 ∈ M,

max{a1(n,K), 2a2(n,K)} otherwise;
B(n,K) =











































12 if n = 4,
√
−3 ∈ K,

max{b(n− 1,K), 2a2(n,K), 24} if level K ≤ 2 and either
n = 6, 8, 14 or n = 12,

√
5 6∈ K or

n = 2m, m ≥ 9 and √
5 6∈ K if m ∈ M,

max{b(n− 1,K), 2a2(n,K), 60} if level K ≤ 2,
√

5 ∈ Kand n/2 ∈ M,

max{b(n− 1,K), 2a2(n,K)} otherwise.Corollary 14. We have A(n,C) = 2n unless n = 4, 6, 8, 12, 20, when A(n,C) =

12, 24, 24, 60, 60, respe
tively.Remark 1. P. Olver [19℄ and then I. Ber
henko and P. Olver [1℄ gave a bound for
|Aut(f,C)| assumed �nite, whi
h asserts that

A(n,C) ≤ 6n− 12and apart from an ex
eptional 
ase
A(n,C) ≤ 4n− 8.The bound given in Corollary 14 is better for all n > 4, n 6= 6, 8, 12. This bound for

n > 30 has been anti
ipated by Summerer in an unpublished paper [25℄, dealing onlywith non-singular forms.Remark 2. Let A0(n, π) = maxA(n,K), where K runs through all �elds of 
hara
ter-isti
 π. By an analysis of subgroups of PSL2(Fq) listed in [12, Chapter 12℄ one 
an guessexpli
it values for A0(n, π) also for 0 < π ≤ n. Namely, if n > 20 and πg ≤ n < πg+1,then 
onje
turally A0(π
g + 1, π) = π3g − πg, otherwise A0(n, π) = π2g − πg unless g = 1,

(π2 − π)/2 < n, n 6≡ mod π or n = π2 − π or g = 3, n = π4 − π2, when A0(n, π) = 2n or
π3 − π or π6 − π2, respe
tively. For n ≤ 20 there are apparently three ex
eptions to thisrule: A0(8, 5) = 24, A0(12, 7) = A0(20, 7) = 60.For the proof of Theorem 4 we need the followingDefinition 9. For ξ ∈ K ∪ {∞}, we set

Aut(f,K, ξ) = {S ∈ Aut(f,K) : S∗ξ = ξ},

Autπ(f,K, ξ) =

{

{S ∈ Aut(f,K, ξ) : S∗π = E} if π > 0,
{E} otherwise.



Weak automorphs of binary forms 31Lemma 23. Let f ∈ K[x, y]r{0} be a form of degree n, let Z = {ξ ∈ K∪{∞} : ef (ξ) > 0}and suppose |Z| ≥ 3. For every ξ ∈ Z the set Autπ(f,K, ξ) is a �nite normal subgroupof Aut(f,K, ξ) and the quotient group is 
y
li
 of order l < n with l 6≡ 0 mod π su
h that
ζl ∈ K(ξ), where K(∞) = K.Proof. Assume �rst ξ = ∞. Then S∗ξ = ξ is equivalent to S =

(

α β

0 1

)

K∗, where α ∈ K∗,
β ∈ K. Let

H =

{

α ∈ K∗ : there exists β ∈ K su
h that ( α β

0 1

)

K∗ ∈ Aut(f,K)

}

.Then H is a subgroup of the multipli
ative group K∗ and if α∈H and S =
( α β

0 1

)

K∗ ∈
Aut(f,K), then the order of α inK∗ is �nite. Indeed, otherwise, taking ξ1, ξ2 in Zr{∞},
ξ1 6= ξ2, we should obtain, by Lemma 17,

S∗iξj ∈ Z for all i ∈ N and j = 1, 2,hen
e for some i′j < i′′j = i′j + ij ,
S∗i′jξj = S∗i′′j ξj (j = 1, 2);

αijξj + β(αij − 1)/(α− 1) = S∗ijξj = ξj ;

(α− 1)ξj + β = 0 (j = 1, 2), ξ1 = ξ2, a 
ontradi
tion.The above 
al
ulation also shows that if α ∈ H r {1} and S =
(

α β

0 1

)

K∗ ∈ Aut(f,K),then the order of α in K∗ is equal to the order ν of S in PGL2(K) and is not divisibleby π. Sin
e |Z| ≥ 3, in Theorem 1 applied to f , K and S the 
ase ψ ∈ K is ex
ludedand we have ν ≤ n with equality possible only if
f = a((α− 1)x+ βy)n + byn, a, b in K.It now follows from ef (∞) > 0 that f(1, 0) = 0, hen
e a = 0, f = byn, |Z| = 1, a
ontradi
tion. Hen
e ν < n. Sin
e there are only �nitely many α ∈ K∗ with αν = 1 forsome ν < n, H is �nite and 
y
li
 by the well known lemma (see [3, Algebrai
 Supplement,�3℄). Its order l equal to the order of a generator satis�es
|H| = l < n, l 6≡ 0 mod π, ζl ∈ K.(50)Let
G =

{(

1 β

0 1

)

K∗ ∈ Aut(f,K)

}

.Then G is a normal subgroup of Aut(f,K,∞), whi
h in turn is a subgroup of Aut(f,K).If π = 0, then G = {E}, for otherwise taking ξ1 ∈ Z r {∞} and β ∈ K∗ su
h that
S =

(

1 β

0 1

)

K∗ ∈ G we should obtain, by Lemma 17, ξ1 + iβ = S∗iξ1 ∈ Z, a 
ontradi
tion,sin
e ξ1 + iβ (i = 0, . . . , n) are distin
t. If π > 0 then
G = Autπ(f,K,∞)is a π-group and, by Corollary 11,

|G| = πg ≤ n.The quotient group Aut(f,K,∞)/G is isomorphi
 to H, hen
e the assertion followsfrom (50).
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hinzelAssume now ξ 6= ∞ and put f1 = f(ξx+ y, x). We have f1(1, 0) = f(ξ, 1) = 0, hen
e
ef1(∞) > 0 and, by the already proved 
ase of the lemma, Autπ(f1,K(ξ),∞) is a �nitenormal subgroup of Aut(f1,K(ξ),∞) and the quotient group is 
y
li
 of order l < n with
l 6≡ 0 mod π su
h that ζl ∈ K(ξ).Now

Aut(f,K, ξ) ⊂
(

ξ 1

1 0

)

Aut(f1,K(ξ),∞)

(

ξ 1

1 0

)−1

,

Autπ(f,K, ξ) ⊂
(

ξ 1

1 0

)

Autπ(f1,K(ξ),∞)

(

ξ 1

1 0

)−1

,and the assertion of the lemma follows from simple fa
ts from group theory.Lemma 24. For ξ ∈ Z (notation of Lemma 23), let m be the length of the orbit of ξunder the a
tion of Aut(f,K). If |Aut(f,K, ξ)| ≡ 0 mod π, then m ≡ 1 mod π, alsoeither ξ ∈ K or
π = 2, Aut(f,K, ξ) = Autπ(f,K, ξ).(51)Proof. By Lemma 17, Aut(f,K), hen
e also Autπ(f,K, ξ), a
ts on Z. Let O(ξ) be theorbit of ξ under the a
tion of Aut(f,K). Sin
e for η ∈Z and S ∈Autπ(f,K, ξ) r {E},

S∗η = η implies η = ξ, Autπ(f,K, ξ) a
ts on O(ξ) r {ξ} and all orbits are of length
|Autπ(f,K, ξ)|. Hen
e m = |O(ξ)| ≡ 1 mod π. By Lemma 3, Autπ(f,K, ξ) has anelement

S0 =

(

a b

c d

)−1(
λ 1

0 λ

)(

a b

c d

)

K∗,where ad − bc 6= 0, λ 6= 0 and either a, b, c, d, λ ∈ K, or π = 2, c ∈ K∗, and K(d) isa quadrati
 inseparable extension of K. The 
ondition S∗
0ξ = ξ gives ξ = −d/c. Inthe former 
ase it follows that ξ ∈ K, in the latter 
ase K(ξ) is a quadrati
 inseparableextension of K and for S =

( α β

γ δ

)

K∗ ∈ Aut(f,K, ξ) the equation S∗ξ = ξ gives α = δ,
Sπ = e, hen
e (51) holds.Proof of Theorem 4. Suppose |Aut(f,K)| is divisible exa
tly by πg = q, and for ξ ∈ Z,let m(ξ) be the length of the orbit of ξ under the a
tion of Aut(f,K). For all ξ ∈ Z wehave

|Aut(f,K)| = |Aut(f,K, ξ)|m(ξ)(52)and, by Lemma 17,
m(ξ) ≤ |Z| ≤ n.(53)If |Aut(f,K, ξ)| 6≡ 0 mod π for at least one ξ ∈ Z then, by Lemma 23, Aut(f,K, ξ) is
y
li
 of order l < n with l 6≡ 0 mod π. By Lemma 1 we have ζl + ζ−1

l ∈ K. Moreover,by (52),
|Aut(f,K)| = lm(ξ),whi
h together with (53) gives (49).If |Aut(f,K, ξ)| ≡ 0 mod π for all ξ ∈ Z, then, by Lemma 24, m(ξ) 6≡ 0 mod π, hen
eby (52),

|Aut(f,K, ξ)| ≡ 0 mod q



Weak automorphs of binary forms 33and Autπ(f,K, ξ) is a π-Sylow subgroup of Aut(f,K). Sin
e all π-Sylow subgroups are
onjugate and the only 
onjugates of Autπ(f,K, ξ) in Aut(f,K) are, by Lemma 17, thegroups Autπ(f,K, η), where ef (η) = ef (ξ), it follows that for all ξ ∈ Z, m(ξ) = |Z|, ef (ξ)has the same value, say k, and the number σ of π-Sylow subgroups is |Z| ≥ 3. It follows,by Lemma 11, that either
(54) π = 2, |Z| = 2̺+ 1, Aut(f,K) ∼= D2̺+1,or
(55) π = 3, |Z| = 10, Aut(f,K) ∼= A5,or
(56) |Z| = q + 1, Aut(f,K) ∼= Hi,where H1 = PGL2(Fq) and H2 = PSL2(Fq).For k = 1 the 
ase (54) gives (47), while (55) gives (48). For k > 1, (54) and (55)give (49) with l = 2̺+ 1, m = 2 or l = 10, m = 6, respe
tively. The 
ase (56) for q = 2gives (47) with ̺ = 1. For q > 2, (56) gives

|Aut(f,K, ξ)| = q2 − q or (q2 − q)/(π + 1, 2).In the notation of Lemma 23, l = q − 1 or (q − 1)/(π + 1, 2), hen
e q > 1 and, byLemma 24, ξ ∈ K. The 
ondition ζl ∈ K(ξ) of Lemma 23 now gives Fq ⊂ K.By Lemma 13, Aut(f,K) is 
onjugate in PGL2(K) to HiK
∗/K∗, hen
e there exist

α, β, γ, δ in K su
h that αδ − βγ 6= 0 and
Aut(f,K) =

(

α β

γ δ

)−1

Hi

(

α β

γ δ

)

K∗/K∗.(57)Sin
e ef (ξ) = k for all ξ ∈ Z, we have
f = fk1 , where f1 ∈ K[x, y], deg f1 = |Z|.(58)Put

f2 = f1(δx− βy,−γx+ αy), a0 = (αδ − βγ)−n.It follows from (58) that
f = a0f2(αx+ βy, γx+ δy)k, deg f2 = q + 1,(59)and

Aut(f,K) =

(

α β

γ δ

)−1

Aut(f2,K)

(

α β

γ δ

)

.(60)Hen
e, by (57),
Aut(f2,K) = HiK

∗/K∗.(61)By Corollary 8, applied with G = Aut(f2,K)K∗/K∗, by De�nition 5 and Lemmas 8 and9 we obtain
f2 = χc11 χ

c2
2 ψ(p, q),
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hinzelwhere
χ1 = y

∏

ξ∈Fq

(x− ξy), χ2 =
∏

ξ∈F
q2rFq

(x− ξy), p = χ
|Hi|/(q+1)
1 , q = χ

|Hi|/(q
2−q)

2

and ψ is a form over K. The 
ondition deg f2 = q+1 implies c1 = 1, c2 = 0, ψ ∈ K, f2 =

(xqy−xyq)ψ, hen
e (46) follows from (59). Sin
e Aut(xqy−xyq,K) ⊃ PGL2(Fq)K
∗/K∗we have i = 1 in (61) and Aut(f,K) ∼= PGL2(Fq) by (60). This has been dedu
ed fromthe assumption that |Aut(f,K, ξ)| ≡ 0 mod π for all ξ, while in the opposite 
ase oneof the formulae (47)�(49) holds. Sin
e f2 does not satisfy (47)�(49), we have, indeed,

Aut(f,K) ∼= Aut(f2,K) ∼= PGL2(Fq).Proof of Corollary 12. By Theorem 4 the 
ondition given in the 
orollary is su�
ient.In order to prove that it is ne
essary assume that K is in�nite and f has at most two
oprime linear fa
tors over K. We distinguish three 
ases: the zeros of f(x, 1) are in K;the zeros of f(x, 1) are 
onjugate quadrati
 irrationalities over K and π 6= 2; and thezeros of f(x, 1) are 
onjugate quadrati
 irrationalities over K and π = 2.In the �rst 
ase f is equivalent over K to a form f1 = axmyn, where a ∈ K,m, n arenon-negative integers and f has in�nitely many pairwise inequivalent weak automorphs
( α 0

0 1

)

K∗, α ∈ K∗.In the se
ond 
ase f is equivalent overK to a form f2 = a(x2−cy2)m, where a, c ∈ K∗,
m ∈ N and f1 has in�nitely many pairwise inequivalent weak automorphs ( α cγ

γ α

)

K∗,where 〈α, γ〉 runs through in�nitely many solutions in K of the equation α2 − cγ2 = 1,and from ea
h pair 〈α, γ〉, 〈−α,−γ〉 we use only one solution.In the third 
ase f is equivalent over K to a form f3 = a(x2 + bxy + cy2)m, where
a, b, c ∈ K∗ and m ∈ N. Now we distinguish two sub
ases.If c/b2 is algebrai
 over F2 then (c/b2)2k−1 = 1 for a 
ertain k ∈ N, hen
e c = d2,where d = b(c/b2)k ∈ K∗. It follows that f3 has in�nitely many pairwise inequivalentweak automorphs ( dα bdα+d2

1 dα

)

K∗, where α runs over K∗. On the other hand, f3 has aweak automorph ( c bc

b b2+c

)

K∗.If c/b2 is trans
endental over F2, then this automorph is of in�nite order in PGL2(K).Indeed, otherwise we should have (see proof of Lemma 1) for a 
ertain λ ∈ K and a rootof unity ζ, λ(1 + ζ) = b2, λ2ζ = c2, hen
e ζ + ζ−1 = b4/c2, a 
ontradi
tion.Proof of Corollary 13. We have ζν ∈ K for ν ≤ 2, and ζν + ζ−1
ν ∈ K for ν ≤ 4 or ν = 6.For the proof of Theorem 5 we need six lemmas.Lemma 25. Assume n ≥ 3 and either π = 0 or π > n. If f of degree n has at least three
oprime linear fa
tors over K and Aut(f,K) is 
y
li
, then

|Aut(f,K)| ≤
{

a1(n,K) if f ∈ K[x, y],

max{a2(n,K), b(n− 1,K)} if f ∈ K[x, y].There exist forms f1 ∈ K[x, y], f2, f3 ∈ K[x, y] of degree n, ea
h with at least three



Weak automorphs of binary forms 35
oprime linear fa
tors over K and not a perfe
t power in K[x, y], su
h that
∣

∣Aut(f1,K)
∣

∣ ≥ a1(n,K),
∣

∣Aut(f2,K)
∣

∣ ≥ a2(n,K),
∣

∣Aut(f3,K)
∣

∣ ≥ b(n− 1,K).Proof. If G = Aut(f,K) is 
y
li
, then by Theorem 1 and Corollary 5,
f = χc11 χ

c2
2 ψ(p, q),(62)where

degχi = 1, deg p = deg q = |G|,and ψ is a form over K or over K if f ∈ K[x, y] or f ∈ K[x, y], respe
tively. By theassumption on linear fa
tors of f , we have degψ ≥ 1, hen
e
n = deg f = c1 + c2 + |G| degψ ≥ |G|.(63)On the other hand, by Lemma 1,

η|G| := ζ|G| + ζ−1
|G| ∈ K,(64)hen
e by De�nition 7,

|G| ≤ a1(n,K).(65)To estimate |G| for f ∈ K[x, y] a division into 
ases is ne
essary.If c1 + c2 ≡ 0 mod 2, then
n ≡ |G| degψ mod 2.For n odd this implies n ≡ |G| mod 2, hen
e

|G| ≤ a2(n,K).(66)For n even either degψ ≡ 1 mod 2, and then again (66) holds, or degψ ≡ 0 mod 2, inwhi
h 
ase by (63) and (64),
|G| ≤ a1(n/2,K).But

n ≡ 0 mod 2 implies a1(n/2,K) ≤ a2(n,K),(67)sin
e if a1(n/2,K) ≡ 1 mod 2, we have
2a1(n/2,K) ≤ n and η2a1(n/2,K) ∈ K.If c1 + c2 ≡ 1 mod 2, then c1 6= c2, hen
e χ1 ∈ K[x, y] by Theorem 1, and ζ|G| ∈ Kby Lemma 14. Now (63) implies |G| ≤ n− 1, hen
e by De�nition 7,

|G| ≤ b(n− 1,K),whi
h together with (65) and (66) proves the �rst part of the lemma.To prove the se
ond part we put
f1 = χ

n−a1(n,K)
1 (p+ q), f2 = (χ1χ2)

(n−a2(n,K))/2(p+ q), f3 = χ
n−b(n−1,K)
1 (p+ q),where χ1, χ2 and p, q are given in De�nition 5 for G 
y
li
 of order a1(n,K), a2(n,K),

b(n − 1,K), respe
tively. Now p + q is prime to χ1χ2, is not a perfe
t power in K[x, y]and has |G| 
oprime linear fa
tors over K. Hen
e the fi are not perfe
t powers and sin
e
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hinzelfor n ≥ 3, by Corollary 13, a1(n,K) ≥ 3, a2(n,K) ≥ 3, b(n − 1,K) ≥ 2, ea
h fi has atleast three 
oprime linear fa
tors over K.Lemma 26. Assume n ≥ 3 and either π = 0 or π > n. If f of degree n has at least three
oprime linear fa
tors over K and Aut(f,K) is dihedral , then
|Aut(f,K)| ≤ 2a2(n,K).There exists a form f0 ∈ K[x, y] of degree n, with at least three 
oprime linear fa
torsover K and not a perfe
t power in K[x, y], su
h that
|Aut(f0,K)| ≥ 2a2(n,K).Proof. If G = Aut(f,K) is dihedral, then by Lemma 7, Theorem 2 and Corollary 8,
f = χc11 χ

c2
2 χ

c3
3 ψ(p, q),(68)where

degχ1 = degχ2 = |G|/2, deg p = deg q = |G|and ψ is a binary form over K or K if f ∈ K[x, y] or f ∈ K[x, y], respe
tively. On theother hand, by Lemma 1,
η|G|/2 ∈ K.(69)It follows from (68) that

n = c1|G|/2 + c2|G|/2 + 2c3 + |G| degψ.(70)For n odd it follows that |G|/2 ≡ 1 mod 2 and c1 + c2 ≡ 1 mod 2, hen
e
|G|/2 ≤ n, |G|/2 ≡ n mod 2,thus by De�nition 7 and (69),

|G| ≤ 2a2(n,K).(71)For n even, if c1 + c2 ≡ 1 mod 2, the same inequality holds; if c1 + c2 ≡ 0 mod 2, then,by (70) and the assumption on linear fa
tors of f , either c1 + c2 ≥ 2 or ψ 6∈ K, hen
e
|G|/2 ≤ n/2, |G|/2 ≤ 2a1(n/2,K),and by (67) we again obtain (71).In order to prove the se
ond part of the lemma we put

f0 = χ2χ
(n−a2(n,K))/2
3 ,where χ2, χ3 are given in the Example (p. 25) for G dihedral of order 2a2(n,K) with

a = 1, b = 0. Sin
e degχ2 = a2(n,K) and degχ3 = 2 we have deg f0 = n, and sin
e
χ2, χ3 ∈ K[x, y] we have f0 ∈ K[x, y].Now, χ2 is prime to χ3, is not a perfe
t power in K[x, y] and has a2(n,K) ≥ 3 
oprimelinear fa
tors over K. Hen
e f0 is not a perfe
t power in K[x, y] and has at least three
oprime linear fa
tors over K.Lemma 27. Let n ≥ 3 and either π = 0 or π > n and let f ∈ K[x, y] be a form of degree
n and not a perfe
t power. If Aut(f,K) 
ontains a subgroup isomorphi
 to Gi, where
G1 = A4, G2 = S4, G3 = A5, then

n = c1
|Gi|
i+ 2

+ c2
|Gi|
3

+ c3
|Gi|
2

+ c4|Gi|,(72)



Weak automorphs of binary forms 37where ci are non-negative integers andeither (c1, c2, c3) = 1 or c4 6= 0.(73)Moreover ,
levelK ≤ 2 and if i = 3, then √

5 ∈ K.(74)If (72)�(74) are satis�ed with c4 = 0, then there exists a form f ∈ K[x, y] of degree n,with at least three 
oprime linear fa
tors over K and not a perfe
t power in K[x, y], su
hthat Aut(f,K) 
ontains Gi. Moreover , for i > 1 su
h a form f exists in K[x, y].Proof. If Aut(f,K) 
ontains a subgroup isomorphi
 to Gi, then PGL2(K) 
ontains su
ha subgroup, hen
e (74) holds by Lemma 2. Further, by Corollary 8, we have
f =

k
∏

i=1

χci

i ψ(p, q),(75)where χi and p, q are given in De�nition 5 and ψ is a binary form over K. By Lemma 7we have h = 3,
degχ1 =

|Gi|
i+ 2

, degχ2 =
|Gi|
3
, degχ3 =

|Gi|
2
,(76)while, by De�nition 5,

deg p = deg q = |Gi|.Now (72) follows from (75) with c4 = degψ, and (73) follows from (75) and the 
onditionthat f is not a perfe
t power in K[x, y].In the opposite dire
tion, if (72)�(74) hold with c4 = 0, we take
f =

3
∏

i=1

χci

i .By De�nition 5, χi are 
oprime and separable, hen
e the number of 
oprime linear fa
torsof f over K is at least
|Gi|
(

sgn c1
i+ 2

+
sgn c2

3
+

sgn c3
2

)

≥ |Gi|
i+ 2

≥ 4.Also f is not a perfe
t power in K[x, y], sin
e (c1, c2, c3) = 1 by (73). For i > 1, χiare of distin
t degrees, hen
e no two of them are 
onjugate over K and, by Corollary 6,they are in K[x, y]. Thus f ∈ K[x, y].Lemma 28. Assume π = 0 or π > 3. A quarti
 form f ∈ K[x, y] with at least three
oprime linear fa
tors over K, whi
h is not a perfe
t power in K[x, y] and for whi
h
Aut(f,K) 
ontains a subgroup isomorphi
 to A4, exists if and only if √−3 ∈ K.Proof. If Aut(f,K) 
ontains a subgroup isomorphi
 to A4, then it has an element oforder 3. By Corollary 3 it follows that either √

−3 ∈ K, or f is square in K[x, y], thepossibility ex
luded by the 
ondition on f .For the opposite dire
tion, we take f = x4 −xy3. This form has two non-trivial weakautomorphs de�ned over K,
S =

(

−1 1

2 1

)

K∗, T =

(

ζ3 0

0 1

)

K∗.They satisfy the equations S2 = E, T 3 = E, TST = ST−1S, hen
e 〈S, T 〉 ∼= A4.
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hinzelLemma 29. If levelK ≤ 2, √5 ∈ K and either π = 0 or π > 5, then there exists aform f ∈ K[x, y] of degree 60, with at least three 
oprime linear fa
tors over K and nota perfe
t power in K[x, y], su
h that Aut(f,K) 
ontains a subgroup isomorphi
 to A5.Proof. By Lemma 2, PGL2(K) 
ontains a subgroup isomorphi
 to A5. Let χ1, χ2, χ3 bethe polynomials de�ned in De�nition 5 for this group G, su
h that χi ∈ K[x, y] and
degχ1 = 12, degχ2 = 20, degχ3 = 30(see the proof of Lemma 27). We assert that for a 
ertain ε = ±1,

fε = χ5
1 + εχε2has the required properties.If rε is the number of distin
t zeros of fε(x, 1), then by the abc-theorem for polynomials(see [18℄)

rε > 60 − degχ1(x, 1) − degχ2(x, 1) ≥ 28,thus fε has at least 29 
oprime linear fa
tors over K. If fε is a perfe
t power in K[x, y],then
fε = g2

ε , gε ∈ K[x, y].Moreover, Aut(gε,K) = Aut(fε,K), hen
e Aut(gε,K) 
ontains G and, by Corollary 8,
gε =

3
∏

i=1

χdεi

i ψε, ψε ∈ K.Sin
e (fε, χ1χ2) = 1 and deg fε = 2 degχ3 we 
on
lude that
dε1 = dε2 = 0, dε3 = 1and

fε = ψ2
εχ

2
3.If this holds for ε = 1 and ε = −1, then

2χ5
1 = f1 + f−1 = (ψ2

1 + ψ2
−1)χ

2
3,whi
h 
ontradi
ts (χ1, χ3) = 1.Lemma 30. The equation

m = 3c1 + 4c2 + 6c3(77)is solvable in 
oprime non-negative integers for every m ≥ 9, and the equation
m = 6c1 + 10c2 + 15c3(78)is solvable in su
h integers if and only if m ∈ M r {30}.Proof. Solvability of (77) for m < 12 
an be 
he
ked 
ase by 
ase. By a 
lassi
al theoremdue to Curran Sharp [8℄ every integer greater than ab−a−b is a linear 
ombination of a, bwith non-negative 
oe�
ients. Form ≥ 12 we havem−6 ≥ 6 and hen
em−6 = 3c1+4c2,where c1, c2 are non-negative integers. It su�
es to take c3 = 1.Solvability of (78) for odd m < 31 and for even m < 76 
an be 
he
ked 
ase by
ase. For odd m ≥ 31, (m − 15)/2 ≥ 8 is an integer and, by Curran Sharp's theorem,

(m− 15)/2 = 3c1 + 5c2, where c1, c2 are non-negative integers. It su�
es to take c3 = 1.



Weak automorphs of binary forms 39For even m ≥ 76, (m − 30)/2 ≥ 23 is an integer, hen
e by Curran Sharp's theorem
(m− 30)/2 = 3d1 + 5d2, where d1, d2 are non-negative integers. Moreover, sin
e 23 >

3 · 4 + 5 · 2, we have either d1 ≥ 5 or d2 ≥ 3. If at least one di is odd we take c1 = d1,
c2 = d2, c3 = 2, otherwise we take c3 = 2 and either c1 = d1−5, c2 = d2+3 or c1 = d1+5,
c2 = d2 − 3.Proof of Theorem 5. The assumption that f is not a perfe
t power in K[x, y] implies inthe 
ase (46) that k = 1, n = q + 1. This gives A(πg + 1,K) = B(πg + 1,K) = π3g − πgif Fπg ⊂ K. On the other hand, (47)�(49) imply

|Aut(f,K)| ≤ n(n− 1),hen
e A(n,K) ≤ n(n − 1) if either n 6= πg + 1 or Fπg 6⊂ K. This bound is attained forevery π > 0 and n = πg. Indeed, for q = πg,
Aut(xq − xyq−1,Fq) ⊃

{(

α β

0 1

)

K∗ : α ∈ F∗
q , β ∈ Fq

}

.Assume now that π = 0 or π > n. By Theorem 4,
|Aut(f,K)| 6≡ 0 mod πand, by Lemma 7, G = Aut(f,K) is either 
y
li
, dihedral or polyhedral. The �rst two
ases are 
onsidered in Lemmas 25 and 26. If G is a polyhedral group, then (72) holdsby Lemma 27, and sin
e all terms on the right-hand side are even, n is even.For n odd it follows that Aut(f,K) is either 
y
li
 or dihedral, and by Lemmas 25, 26,

A(n,K) ≤ max{a1(n,K), 2a2(n,K)},
B(n,K) ≤ max{b(n− 1,K), 2a2(n,K)}.The inequalities in the opposite dire
tion follow from the se
ond part of Lemmas 25 and26. This gives the theorem for n odd.For n even a further study of polyhedral groups is ne
essary. For n = 4 the equation(72) gives i = 1, |Gi| = 12, c3 = c4 = 0. Sin
e 12 > 8 = max{a1(4,K), 2a2(4,K)} weobtain from Lemmas 25�27,

A(4,K) =

{

12 if levelK ≤ 2,

max{a1(4,K), 2a2(4,K)} otherwise,and from Lemmas 25, 26 and 28,
B(4,K) =

{

12 if √−3 ∈ K,

max{b(3,K), 2a2(4,K)} otherwise.For even n > 4 we have 2a2(n,K) ≥ 12, hen
e the equation (72) is of interest only for
i > 1, and if n < |G|, then (c1, c2, c3) = 1 by (72), (73).For n = 6, 8, 14 and i > 1, (72) gives i = 2 and 〈c1, c2, c3〉 = 〈1, 0, 0〉 or 〈0, 1, 0〉 or
〈1, 1, 0〉, respe
tively. It follows by Lemmas 25�27 that for n = 6, 8, 14,

A(n,K) =

{

max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2,

max{a1(n,K), 2a2(n,K)} otherwise;
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B(n,K) =

{

max{b(n− 1,K), 2a2(n,K), 24} if levelK ≤ 2,

max{b(n− 1,K), 2a2(n,K)} otherwise.For n = 10, 16 the equation (72) has no solution with i > 1 and (c1, c2, c3) = 1, hen
e,by Lemmas 25�27,
A(n,K) = max{a1(n,K), 2a2(n,K)},

B(n,K) = max{b(n− 1,K), 2a2(n,K)}.For n = 12, i > 1 and (c1, c2, c3) = 1, (72) gives i = 2, 〈c1, c2, c3〉 = 〈0, 0, 1〉 or i = 3,
〈c1, c2, c3〉 = 〈1, 0, 0〉. Hen
e, by Lemmas 25�27,

A(12,K) =











max{a1(n,K), 2a2(n,K), 24} if levelK ≤ 2,
√

5 6∈ K,

60 if levelK ≤ 2,
√

5 ∈ K,

max{a1(n,K), 2a2(n,K)} otherwise;
B(12,K) =











max{b(n− 1,K), 2a2(n,K), 24} if levelK ≤ 2,
√

5 6∈ K,

60 if levelK ≤ 2,
√

5 ∈ K,

max{b(n− 1,K), 2a2(n,K)} otherwise.By Lemma 30 for n = 2m, m ≥ 9, (72) always has a solution with i = 2, c4 = 0,
(c1, c2, c3) = 1, and has a solution with i = 3, c4 = 0, (c1, c2, c3) = 1 if and onlyif m ∈ M r {30}. Sin
e M 
ontains all integers greater than 29 ex
ept 32 and 44, byLemmas 25�27, the formulae for A(n,K) and B(n,K) hold for all even n, ex
ept possiblyfor n = 2m, m = 30, 32, 44. For m = 30 the formulae follow from Lemmas 25, 26 and29, for m = 32 or 44 the only solution of (72) does not satisfy (73), hen
e the formulaefollow from Lemmas 25�27.Proof of Corollary 14. For K = C we have a1(n,K) = n = a2(n,K).

4. Criteria for a form to have a non-trivial automorphover a given arbitrary �eldTheorem 6. Let f ∈ K[x, y] be a form of degree n > 2 without multiple fa
tors over K.If Aut(f,K) is non-trivial and f(x, 1) of degree m is irredu
ible over K, then the Galoisgroup of f(x, 1) over K is either imprimitive or 
y
li
 of prime order m. For n ≤ 4 the
onverse holds unless n = 4 and m = 3.Corollary 15. Assume that K 
ontains no primitive 
ubi
 root of unity and f ∈ K[x, y]is a form of degree 2, 3 or 4 without multiple fa
tors over K. The group Aut(f,K) is non-trivial if and only if the Galois group of f(x, 1) over K is either transitive imprimitiveor abelian with the lengths of orbits not 〈3, 1〉.Corollary 16. Let f ∈ K[x, y] be a 
ubi
 form with f(1, 0) 6= 0 and without multiplefa
tors over K and G be the Galois group of f(x, 1) over K. Then Aut(f,K) ∼= D3 if
G ∼= C1, Aut(f,K) ∼= C2 if G ∼= C2, Aut(f,K) ∼= C3 if G ∼= C3, and Aut(f,K) ∼= C1 if
G ∼= D3.



Weak automorphs of binary forms 41Remark. For quarti
 forms f the stru
ture of the Galois group G(f) of f(x, 1) over Qdoes not determine in general the stru
ture of Aut(f,Q), for instan
e for f1 = x4 +x3y+

x2y2 + xy3 + y4, f2 = x4 + 4x3y− 6x2y2 − 4xy3 + y4, G(fi) ∼= C4, while Aut(f1,Q) ∼= C2(proof by means of Lemma 17), and Aut(f2,Q) 
ontains C4 generated by ( 1 1

−1 1

)

Q∗.The proof of Theorem 6 is based on the followingLemma 31. Given a pair 〈g, h〉 of 
oprime binary forms over K ea
h of degree at most
2 and not both in K[xπ, yπ], there exists a non-trivial 
ommon weak automorph T of gand h. Moreover , if

g =

2
∑

i=0

aix
2−iyi, h =

2
∑

i=0

bix
2−iyiwe 
an take

T =

(

α β

γ δ

)

K∗, where (

α β

γ δ

)

=

(

−a0b2 + a2b0 − a1b2 + a2b1

a0b1 − a1b0 a0b2 − a2b0

)

.Proof. If g, h are both of degree 2 and T is as above we have
∣

∣

∣

∣

α β

γ δ

∣

∣

∣

∣

= −R(g, h) 6= 0,where R(g, h) is the resultant of g and h (see [21, p. 219℄). Also 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉implies π = 2, ai = bi = 0, g ∈ K[xπ, yπ], h ∈ K[xπ, yπ], 
ontrary to assumption.Moreover
g(αx+ βy, γx+ δy) = R(g, h)g(x, y),

h(αx+ βy, γx+ δy) = R(g, h)h(x, y),thus T is a 
ommon weak automorph of g and h. The 
ase where one of the forms g, his linear is redu
ed to the former by repla
ing this form by its square.Proof of Theorem 6. Ne
essity. By the assumption f is not divisible by y2, hen
e f(x, 1)is of degree m ≥ n − 1 ≥ 2. If m = 2 the assertion is trivial, thus assume m ≥ 3. Let
Z = {ξ ∈ K ∪ {∞} : ef (ξ) > 0}. By Lemma 17, if T ∈ Aut(f,K), we have T ∗(Z) = Zand sin
e T ∗∞ ∈ K ∪ {∞}, f has no zeros in K and T ∗(Z r {∞}) = Z r {∞}. If
T is non-trivial, the orbits of Z r {∞} under the a
tion of T ∗, say O1, . . . , Ol, are oflengths greater than 1, sin
e the equation T ∗ξ = ξ gives [K(ξ) : K] ≤ 2 < m. Theyare blo
ks of imprimitivity of the Galois group G in question, provided l > 1. Indeed,if τ ∈ G and ξ ∈ Oi, τ (ξ) ∈ Oj , then τ (T ∗ξ) = T ∗τ (ξ) ∈ Oj . If l = 1, but m is
omposite, m = m1m2, mi > 1, we repla
e T by Tm1 and l by m1. It remains to
onsider the 
ase l = 1, m a prime. Then T ∗ ∈ G. Indeed, sin
e f(x, 1) is irredu
ible,
G is transitive, thus if f(ξ, 1) = 0 there exists τ0 ∈ G su
h that τ0(ξ) = T ∗ξ. It followsthat τ0(T ∗iξ) = T ∗iτ0(ξ) = T ∗i+1(ξ), hen
e τ0 = T ∗. Also for every τ ∈ G we have
τ (ξ) = T ∗jξ for some j, thus τ (T ∗iξ) = T ∗iτ (ξ) = T ∗i+jξ = T ∗j(T ∗iξ) for ea
h i, so
τ = T ∗j , hen
e G is 
y
li
, generated by T ∗.Su�
ien
y for n ≤ 4. In view of Lemma 31 and the 
ondition 〈n,m〉 6= 〈4, 3〉 it su�
esto 
onsider f(x, 1) of degree n and moni
. Let n = 3 and f(x, 1) = x3 + ax2 + bx + c.Sin
e G is 
y
li
 there exist d, e, g in K su
h that f(ξ, 1) = 0 implies f(dξ2 +eξ+g, 1) = 0
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hinzelwhere 〈d, e, g〉 6= 〈0, 0, g〉, 〈0, 1, 0〉. The system of three linear equations for α, β, γ, δ,
(e− ad)γ + dδ = 0,

−α+ (g − bd)γ + eδ = 0,

−β − cdγ + gδ = 0,has a non-zero solution 〈α, β, γ, δ〉 ∈ K4. This solution satis�es for all zeros ξ of f(x, 1)the equation
(dξ2 + eξ + g)(γξ + δ) = αξ + β.Note that γξ + δ = 0 would give α = β = γ = δ = 0 sin
e ξ 6∈ K, a 
ontradi
tion. Hen
e

γξ + δ 6= 0 and
dξ2 + eξ + g =

αξ + β

γξ + δ
.It follows that for some r ∈ K,

f

(

αx+ β

γx+ δ
, 1

)

(γx+ δ)3 = rf(x, 1)and
f(αx+ βy, γx+ δy) = rf(x, y).Observe that αδ − βγ = 0 or 〈α, β, γ, δ〉 = 〈α, 0, 0, α〉 would give dξ2 + eξ + g ∈ K or

dξ2 + eξ + g = ξ, 
ontrary to [K(ξ) : K] = 3.Now, let n = 4. Sin
e m = 4, G is imprimitive. It follows that f is redu
ible over aseparable quadrati
 extension of K, say K(η). Thus we have
f = b

(

2
∑

i=0

aix
2−iyi

)(

2
∑

i=0

a′ix
2−iyi

)

,where ai, a′i ∈ K(η) and ai, a′i are 
onjugate over K, while b ∈ K. Applying Lemma 31with bi = a′i we �nd that the fa
tors of f have a 
ommon non-trivial automorph with thematrix
M =

(

−a0a
′
2 + a2a

′
0 −a1a

′
2 + a2a1

a0a
′
1 − a1a

′
0 a0a

′
2 − a2a

′
0

)

,hen
e also with the matrixM/(η−η′). However, the last matrix is invariant with respe
tto 
onjugation, so its elements are in K.Proof of Corollary 15. This follows at on
e from Theorem 6 and Corollary 2.Remark. The assumption ζ 6∈ K, where ζ is a primitive 
ubi
 root of unity, 
annotbe omitted in Corollary 15, as the following example shows: K = Q(ζ), T =
( ζ 0

0 1

)

K∗,
f = x(x3 + 2y3).Proof of Corollary 16. By Corollary 1, Aut(f,K) 
an 
ontain a 
y
li
 group Cν for
ν = 2 or 3 only. The lengths of the orbits of an arbitrary set under the a
tion of D2are even, hen
e, by Lemma 17, Aut(f,K) 
annot 
ontain a 
opy of D2. On the otherhand, |Aut(f,K)| ≤ 6 by Theorem 5. This limits the possible types of Aut(f,K) to
D3,C3,C2 and C1. If G ∼= C1, then f is equivalent over K to axy(x + y) and Aut(f,K)
ontains the automorphs ( 0 1

1 0

)

K∗ and ( 0 −1

1 1

)

K∗ of orders 2 and 3, respe
tively, thus
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Aut(f,K) ∼= D3. If G ∼= C2, then, by Corollary 2, Aut(f,K) does not 
ontain C3 and,by Lemma 31, Aut(f,K) 
ontains a C2, thus Aut(f,K) ∼= C2. If G ∼= C3, then, byTheorem 6, Aut(f,K) is non-trivial, while, by Corollary 1, it does not 
ontain C2, hen
e
Aut(f,K) ∼= C3. Finally, if G ∼= D3, then Aut(f,K) ∼= C1 by Theorem 6.

5. The 
ase of an algebrai
ally 
losed �eldIn this se
tion K is an algebrai
ally 
losed �eld of 
hara
teristi
 π, Π is the 
orrespondingprime �eld and f is a non-singular binary form over K of degree n.If n = 3, then Aut(f,K) ∼= D3 by Corollary 16. We shall now 
onsider n = 4.Definition 10. For a form f(x, y) =
∑4

i=0 aix
4−iyi put

A(f) = a2
2 − 3a1a3 + 12a0a4,

B(f) = 27a2
1a4 + 27a0a

2
3 + 2a3

2 − 72a0a2a4 − 9a1a2a3.Remark. A(f), B(f) are invariants of f and satisfy
27D(f) = 4A(f)3 −B(f)2,where D(f) is the dis
riminant of f (see [27, Bd I, �70℄).Theorem 7. For a non-singular quarti
 binary form f over K we have

Aut(f,K) ∼=



















S4 if A(f) = B(f) = 0,

A4 if A(f) = 0, B(f) 6= 0,

D4 if A(f) 6= 0, B(f) = 0,

D2 if A(f)B(f) 6= 0.The proof is based on three lemmas.Lemma 32. For a non-singular quarti
 binary form f over K, Aut(f,K) 
ontains C3 ifand only if A(f) = 0.Proof. Ne
essity. If π 6= 3 and the 
y
li
 group in question is generated by ( α β

γ δ

)

K∗ wehave, by Theorem 1,
f = χi(aχ

3
i + bχ3

3−i) = aχ4
i + bχiχ

3
3−i,where i ∈ {1, 2}, χ1, χ2 are given in De�nition 3 and a, b are in K. Denoting by R1 theresultant of χ1, χ2 and by f1 the form ax4 + bxy3 we obtain, by the above Remark,

A(f) = R2
1A(f1) = 0.If π = 3 we have, again by Theorem 1,

f = χ1(aχ
3
1 + b(λ2χ3

2 − χ2χ
2
1)) = aχ4

1 − bχ3
1χ2 + bλ2χ1χ

3
2,where λ, χ1, χ2 are as in De�nition 4 and a, b are in K. Denoting by R2 the resultant of

χ1, χ2 and by f2 the form ax4 − bx3y + bλ2xy3 we obtain, by the Remark,
A(f) = R2

2A(f2) = 0.
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ien
y. The form f is 
learly equivalent, by a linear transformation over K, to aform
f3 = xy(x2 + axy − y2).The 
ondition A(f) = 0 gives a2 + 3 = A(f3) = 0. If π 6= 3 we 
hoose a primitive 
ubi
root of unity ̺ and 
on
lude that a = ±(̺2 − ̺). Then the transformation T2(x, y) =

(̺2x± ̺y, y) of order 3 in PGL2(K) satis�es f3(T2) = f3, hen
e Aut(f,K) 
onjugate to
Aut(f3,K) 
ontains C3.If π = 3 the 
ondition A(f3) = 0 gives a = 0. Then the transformation T2(x, y) =

(x+y, y) of order 3 in PGL2(K) satis�es f3(T2) = f3, hen
e again Aut(f,K) 
ontains C3.Lemma 33. For a non-singular quarti
 binary form f over K, Aut(f,K) 
ontains C4 ifand only if B(f) = 0.Proof. Ne
essity. If π = 2, then by Lemma 1 no element of PGL2(K) is of order 4, hen
ethe assumption implies π 6= 2. If ( α β

γ δ

)

K∗ is an element of order 4 in Aut(f,K), thenby Theorem 1,
f = aχ4

1 + bχ4
2,where χ1, χ2 are given in De�nition 3. Denoting by R3 the resultant of χ1, χ2 and by f4the form ax4 + by4 we have, by the Remark,

B(f) = R3
3B(f4) = 0.Su�
ien
y. Sin
e D(f) 6= 0 the assumption B(f) = 0 implies π 6= 2 by the Remark.Then (see [11, �13℄) f is equivalent, by a linear transformation over K, to a form

f5 = x4 +mx2y2 + y4, m ∈ K.The 
ondition B(f) = 0 gives
2m3 − 72m = B(f5) = 0,hen
e m = 0,±6. But the forms x4 ± 6x2y2 + y4 are equivalent to f6 = x4 + y4, sin
e

x4 + 6x2y2 + y4 = 1
2 (x+ y)4 + 1

2 (x− y)4,

x4 − 6x2y2 + y4 = 1
2 (x+ ζy)4 + 1

2 (x− ζy)4,where ζ is a primitive quarti
 root of unity. On the other hand, the transformation
T3 = (ζx, y) of order 4 in PGL2(K) satis�es f6(T3) = T3, hen
e Aut(f,K) 
onjugate to
Aut(f6,K) 
ontains C4.Lemma 34. For a non-singular quarti
 binary form f over K, Aut(f,K) 
ontains D2,but no D2 × C2.Proof. If π 6= 2 then by the already quoted result f is equivalent by a linear transforma-tion over K to a form

f5 = x4 +mx2y2 + y4, m ∈ K.The transformations T4(x, y) = (y, x) and T5(x, y) = (−x, y) satisfy T 2
4 = E = T 2

5 ,
T4T5 = T5T4, f5(T4) = f5 = f5(T5), hen
e Aut(f,K) 
onjugate to Aut(f5,K) 
on-tains D2. On the other hand, it 
ontains no D2 × C2, sin
e this group is not on the listgiven in the proof of Lemma 7.



Weak automorphs of binary forms 45If π = 2 then f is equivalent, by a linear transformation over K, to a form
f7 = xy(x+ ξy)(x+ ξ−1y), ξ ∈ K r {0, 1}.The transformations T6(x, y) = (x + ξy, ξx + y), T7(x, y) = (ξx + y, x + ξy) satisfy

T 2
6 = e = T 2

7 , T6T7 = T7T6, f7(T6) = (ξ + 1)4f7 = f7(T7), hen
e Aut(f,K) 
onjugate to
Aut(f7,K) 
ontains D2. On the other hand, it 
ontains no D2 × C2 by Corollary 11.Proof of Theorem 7. If A(f) = B(f) = 0, then sin
e D(f) 6= 0 we have π = 3 by theRemark. The form f is equivalent, by a linear transformation over K, to a form

f3 = xy(x2 + axy − y2)and the 
ondition A(f) = 0 implies a = 0. Hen
e Aut(f,K) ∼= Aut(f3,K) ∼= PGL2(F3)
∼= S4 by Theorem 4.If A(f), B(f) are not both 0, then (46) is not satis�ed, hen
e by Theorem 4 andLemma 34,

|Aut(f,K)| divides 8 or 12.(79)If A(f) = 0 and B(f) 6= 0, then by Lemmas 32�34, Aut(f,K) 
ontains C3 and D2, butno C4 and no D2 ×C2. Hen
e its 2-Sylow subgroup is D2. On the other hand, Aut(f,K)
ontains no C6 by Theorem 1. Hen
e, Aut(f,K) ∼= A4 by (79).If A(f) 6= 0 and B(f) = 0, then by Lemmas 32�34, Aut(f,K) 
ontains C4 and D2,but no C3 and no D2 × C2. Therefore, by (79), |Aut(f,K)| = 8 and Aut(f,K) ∼= D4.If A(f)B(f) 6= 0, then by Lemmas 32�34, Aut(f,K) 
ontains D2, but no C3, no C4and no D2 × C2. Therefore, by (79), |Aut(f,K)| = 4 and Aut(f,K) ∼= D2.Now, we pro
eed to the 
ase n ≥ 5.Definition 11. Fn(K) is the set of all binary forms f of degree n de�ned over K su
hthat Aut(f,K) is non-trivial.Theorem 8. Fn(C) is Zariski 
losed for n ≤ 5 only.Lemma 35. F5(C) is Zariski 
losed.Proof. f ∈ F5(C) if and only if R = 0, where R is the Hermite invariant of f of degree 18.Indeed, if f ∈ F5(C), then, by Theorem 1, f is equivalent over C to one of the forms
x5−iyi (0 ≤ i ≤ 2), xy(x3 + y3), x5 + y5,(80)or

x(Ax4 +Bx2y2 + Cy4).(81)In ea
h 
ase we 
he
k in the tables of Faà di Bruno [13, Anhang, Tabelle III, Die irre-du
iebeln Invarianten IV5℄ that R = 0. To prove the 
onverse, let α be the 
ovariantof f of degree 1 and order 5. If α = 0, then a

ording to Clebs
h [5, �93℄, f is eitherequivalent over C to one of the forms (80), or has a fa
tor of multipli
ity at least three,in whi
h 
ase it has a non-trivial automorph by Lemma 31. If α 6= 0, but R = 0, thenagain a

ording to Clebs
h [5, �94℄, f is equivalent over C to a form (81). It now su�
esto apply Theorem 1 in the opposite dire
tion.



46 A. S
hinzelLemma 36. For k ≥ 2 and n ≥ k + 3 we have
f0(x, y) = xk

n−k
∏

i=1

(x− iy) 6∈ Fn(C).Proof. Assuming f0(αx+ βy, γx+ δy) = f0(x, y) we obtain
(αx+ βy)k | f0(x, y),hen
e k ≥ 2 implies β = 0 and we have

αk
n−k
∏

i=1

(

(α− iγ)x− iδy
)

=
n−k
∏

i=1

(x− iy),thus the sequen
e 〈(α − iγ)/iδ〉1≤i≤n−k is a permutation of 〈1/i〉1≤i≤n−k. Clearly,
α/δ, γ/δ ∈ Q and 
omparing the maxima and minima in both sequen
es we obtainfor α/δ > 0,

α

δ
− γ

δ
= 1,

α

δ(n− k)
− γ

δ
=

1

n− k
,for α/δ < 0,

α

δ
− γ

δ
=

1

n− k
,

α

δ(n− k)
− γ

δ
= 1.In the former 
ase it follows that α/δ = 1, γ/δ = 0, thus the automorph is trivial; in thelatter 
ase

α

δ
= −1,

γ

δ
= −1 − 1

n− k
,thus 
omparing the se
ond greatest terms in both sequen
es we get

− 1

n− k − 1
+ 1 +

1

n− k
=

1

2
,whi
h gives n− k = 2, 
ontrary to assumption.Lemma 37. For an integer n ≥ 5 and a real number t ∈ (0, 1) we have ft(x, y) ∈ Fn(C),where

ft(x, y) =



























n/2
∏

i=1

(x− iy)

(

x− 2(i− 1)t

i+ it− 2t
y

) if n ≡ 0 mod 2,

(n−1)/2
∏

i=1

(x− iy)

(

x− it

i+ it− t
y

) if n ≡ 1 mod 2.Proof. For t ∈ (0, 1) let
g(x, y) =

⌊n/2⌋
∏

i=1

(x− iy),

ht(x, y) =



























n/2
∏

i=1

(

x− 2(i− 1)t

i+ it− 2t
y

) if n ≡ 0 mod 2,

x

(n−1)/2
∏

i=1

(

x− it

i+ it− t
y

) if n ≡ 1 mod 2,

T (x, y) =

{

(2tx− 2ty, (t+ 1)x− 2ty) if n ≡ 0 mod 2,

(tx, (t+ 1)x− ty) if n ≡ 1 mod 2.



Weak automorphs of binary forms 47For n ≡ 0 mod 2 we have
g(T (x, y)) = g(2t, t+ 1)ht(x, y), ht(T (x, y)) = ht(2t, t+ 1)g(x, y),hen
e

ft(T (x, y)) = ft(2t, t+ 1)ft(x, y)and T is a non-trivial weak automorph of ft.Similarly, for n ≡ 1 mod 2,
g(T (x, y)) = g(t, t+ 1)ht(x, y), ht(T (x, y)) = ht(t, t+ 1)g(x, y),hen
e

ft(T (x, y)) = ft(t, t+ 1)ft(x, y)and T is again a non-trivial weak automorph of ft.Proof of Theorem 8. For n ≤ 4, Fn(C) 
onsists of all binary forms over C by Lemma 31;the 
ase n = 5 is 
overed by Lemma 35. Suppose that, for n ≥ 6, Fn(C) is given by thealternative of systems of equations Fij(a0, . . . , an) = 0 (j ∈ Ji). Using Lemma 37 anddenoting the 
oe�
ients of ft(x, y) by a0(t), . . . , an(t) we obtain for at least one i0 and tarbitrarily 
lose to 0,
Fi0j(a0(t), . . . , an(t)) = 0 (j ∈ Ji0).Taking the limit as t tends to 0 we obtain
Fi0j(a0, . . . , an) = 0 (j ∈ Ji0),where ∑n

i=0 aix
n−iyi = f0(x, y). Thus by our assumption f0 ∈ Fn(C), 
ontrary to Lem-ma 36.
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