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Abstract

Let A be a, not necessarily closed, linear relation in a Hilbert space H with a multivalued
part mulA. An operator B in H with ranB ⊥ mulA∗∗ is said to be an operator part of A
when A = B b+ ({0} × mulA), where the sum is componentwise (i.e. span of the graphs).
This decomposition provides a counterpart and an extension for the notion of closability of
(unbounded) operators to the setting of linear relations. Existence and uniqueness criteria for
an operator part are established via the so-called canonical decomposition of A. In addition,
conditions are developed for the above decomposition to be orthogonal (components defined in
orthogonal subspaces of the underlying space). Such orthogonal decompositions are shown to be
valid for several classes of relations. The relation A is said to have a Cartesian decomposition
if A = U + iV , where U and V are symmetric relations and the sum is operatorwise. The
connection between a Cartesian decomposition of A and the real and imaginary parts of A is
investigated.
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1. Introduction

1.1. Some background. A linear relation A in a Hilbert space H is by definition a
linear subspace of the product space H×H. A linear relation A is (the graph of) a linear
operator if and only if mulA = {0}, where the multivalued part mulA of A is defined as
{g ∈ H; {0, g} ∈ A}. The formal inverse A−1 of a linear relation A is given by A−1 =
{{k, h}; {h, k} ∈ A}, so that domA−1 = ranA, ranA−1 = domA, kerA−1 = mulA, and
mulA−1 = kerA. The closure of a linear relation is a linear relation which is obtained
by taking the closure of the corresponding subspace in H × H. The linear relation A is
called closed as a relation in H if the subspace is closed in H × H. If A is (the graph
of) a linear operator, then A is said to be closable if the closure of A is (the graph of)
a linear operator. The adjoint A∗ = JA⊥ = (JA)⊥, with the operator J defined by
J{f, f ′} = {f ′,−f}, {f, f ′} ∈ H×H, is automatically a closed linear relation in H. Then
the second adjoint A∗∗ is equal to the closure A of A. A relation is said to be symmetric
if A ⊂ A∗ and selfadjoint if A = A∗. The study of general relations was initiated by
R. Arens [2]. Further work has been concerned with symmetric and selfadjoint relations
and, more generally, with normal, accretive, dissipative, and sectorial relations; see for
instance [3], [4], [8], [11], [14], [34].

Linear relations can be viewed as multivalued linear operators. They show up in a
natural way in a variety of problems. Some of these will be presented for the convenience
of the reader.

The first example shows the usefulness of relations by relating results for A to those
for the formal inverse A−1.

Example 1.1. Let A be a linear operator or a linear relation in a Hilbert space H, which
is not necessarily closed or densely defined. An element h ∈ H belongs to domA∗ if and
only if

(1.1) sup{(h, g) + (g, h)− (f, f); {f, g} ∈ A} <∞,

and an element k ∈ H belongs to ranA∗ if and only if

(1.2) sup{(f, k) + (k, f)− (g, g); {f, g} ∈ A} <∞.

The formulas (1.1) and (1.2) show the advantage of the language of relations: the formula
(1.2) is in fact the same as the formula (1.1) when the relation A is replaced by its formal
inverse A−1. Moreover, (1.1) is equivalent to

(1.3) sup{|(g, h)|2; {f, g} ∈ A, (f, f) ≤ 1} <∞,

[5]
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and (1.2) is equivalent to

(1.4) sup{|(f, k)|2; {f, g} ∈ A, (g, g) ≤ 1} <∞.

Again the relation between (1.3) and (1.4) via the formal inverse of A is evident. The
last two characterizations are versions of results which go back to Shmul’yan for bounded
operators A; for more details see [20].

As a second example it is shown that under very general conditions a densely defined
closable operator can be decomposed as the sum of a closable operator and a singular
operator (whose closure is a Cartesian product).

Example 1.2. Let A be a densely defined closable operator in a Hilbert space H; i.e.,
the closure A of A in H × H is the graph of a linear operator. Let ϕ ∈ H and let Pϕ be
the orthogonal projection from H onto the linear space spanned by ϕ. Then the operator
A admits the decomposition

(1.5) A = B + C,

with the densely defined operators B and C defined by

(1.6) B = (I − Pϕ)A, C = PϕA.

Then the operator B is closable for any choice of ϕ ∈ H, but the behaviour of the
operator C depends on the choice of ϕ ∈ H. If ϕ ∈ domA∗, then C ∈ B(H) (bounded
linear operators on H) and Ch = (h,A∗ϕ)ϕ for h ∈ H. However, if ϕ ∈ H \ domA∗, then
C is a so-called singular operator, i.e., ranC ⊂ mulC and C = H × span{ϕ}. For more
details and the connection with Lebesgue type decompositions, see [19].

As a third example consider the case of a monotonically increasing sequence of
bounded linear operators in the absence of a uniform upper bound.

Example 1.3. Let H be a Hilbert space and let An ∈ B(H) be a nondecreasing sequence
of nonnegative operators, i.e., 0 ≤ (Amh, h) ≤ (Anh, h), h ∈ H, for n ≥ m. If the sequence
An is bounded from above, i.e., (Anh, h) ≤ M(h, h), h ∈ H, for some M ≥ 0, then it
is known that there exists a strong limit A∞ ∈ B(H), i.e., ‖Anh − A∞h‖ → 0, h ∈ H,
and A∞ has the same upper bound. The situation is different when the family An does
not have an upper bound. The absence of a uniform bound leads to phenomena which
involve unbounded operators and relations. In fact, there exists a selfadjoint relation A∞
which is nonnegative, i.e., (f ′, f) ≥ 0, {f, f ′} ∈ A∞, such that An converges to A∞ in
the strong resolvent sense, i.e.,

(An − λ)−1h→ (A∞ − λ)−1h, h ∈ H, λ ∈ C \ R.

Moreover, the domain of the square root of A∞ is given by

domA1/2
∞ = {h ∈ H; sup

n∈N
(Anh, h) <∞}.

For more details and the connection with monotone sequences of semibounded closed
forms, see [5].

Often multivalued operators appear as extensions of symmetric operators, like in
boundary value problems for differential operators. Boundary conditions impose restric-
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tions in such a way that an underlying symmetric operator becomes nondensely defined;
cf. [9]. The situation can often be formalized in simple terms as follows.

Example 1.4. Let A be a selfadjoint operator in a Hilbert space H and let Z be, for
simplicity, a finite-dimensional subspace of H × H. Then the intersection A ∩ Z∗ is a
symmetric restriction of A, which may be nondensely defined, so that its adjoint A +̂Z, a
componentwise sum, may be multivalued. In this case, among the selfadjoint extensions of
A∩Z∗, there also occur multivalued operators. In connection with differential operators
this construction gives rise to nonstandard boundary conditions. If, for instance, A is a
selfadjoint Sturm–Liouville operator, then integral boundary conditions or perturbations
via delta functions or their derivatives fit into this framework with a proper choice of the
subspace Z; see [24] for more details.

In general, the spectral theory of differential equations offers many examples of mul-
tivalued operators. Linear relations provide the natural context for the study of general
selfadjoint boundary value problems involving systems of differential equations; cf. [6].
In fact, the theory of boundary triplets and boundary relations has been formulated to
discuss all extensions (singlevalued and multivalued) of symmetric relations; see [12], [13].
For instance, the description of selfadjoint extensions of a symmetric operator or relation
is always in terms of selfadjoint relations in a parameter space; such selfadjoint relations
also appear in Krĕın’s formula.

1.2. Decomposition of relations. There are many kinds of decompositions of linear
relations. For instance, for semi-Fredholm relations and for quasi-Fredholm relations there
is a so-called Kato decomposition (see [27]) or for closed linear relations a Stone decom-
position (see [21], [28]). The decompositions appearing in the present paper are concerned
with splitting linear operators and relations via components that are closable, nonclosable,
or purely multivalued, and components involving the real and imaginary parts of relations.

It is necessary to begin by explaining the so-called canonical decomposition of linear
relations which has been studied recently in [21]. Let A be a relation in a Hilbert space
and let A∗∗ be its closure. Let P the orthogonal projection from H onto mulA∗∗ and define
the relations Areg and Asing, the regular part and the singular part of A respectively, by

Areg = {{f, (I − P )f ′}; {f, f ′} ∈ A}, Asing = {{f, Pf ′}; {f, f ′} ∈ A}.

Then A admits the decomposition

A = Areg +Asing = {{f, h+ k}; {f, h} ∈ Areg, {f, k} ∈ Asing}.

The regular part Areg is actually a closable operator, whereas the singular part Asing

is a singular relation, i.e., its closure is a Cartesian product; cf. [21]. The canonical
decomposition of A above is strongly related to the Lebesgue decompositions of forms;
see [21]. The canonical decomposition of a relation is an example of a decomposition as
an operatorwise sum. However, relations also admit componentwise decompositions. The
aim of this paper is to present several decompositions of linear relations as operatorwise
sums and as componentwise sums.

The second type of decomposition introduced in the present paper for general, not
necessarily closed, linear relations is a componentwise decomposition of a relation A in
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an operator part and a multivalued part of the form

(1.7) A = B +̂Amul,

where the operator part B is (the graph of) an operator in H, Amul = {0}×mulA, and the
sum in (1.7) is componentwise (as indicated by +̂). To make the decomposition somewhat
reasonable or unique it is necessary to impose some additional assumptions on (1.7).
Assume for the moment that the relation A is closed. Then one possible choice is B = Aop

where Aop = {{f, f ′} ∈ A; f ′ ⊥ mulA}, so that B is a closed operator. Since mulA is
closed and H = domA∗⊕mulA, the identity (1.7) follows. This motivates the construction
in the general case. The extra assumption that ranB ⊂ domA∗ = (mulA∗∗)⊥ makes B
unique, namely B = Aop, where now

Aop = {{f, f ′} ∈ A; f ′ ⊥ mulA∗∗}

is a closable operator. Observe that Aop ⊂ Areg. It will be shown that B = Aop satis-
fies (1.7) precisely when Aop = Areg. A relation A which allows a decomposition (1.7)
with ranB ⊂ domA∗ will be called decomposable.

The third decomposition is related to the second type of decomposition, so it is again
componentwise. Assuming that A is decomposable the question is when the decomposi-
tion (1.7) is orthogonal with regard to the orthogonal splitting of the Hilbert space

H = domA∗ ⊕mulA∗∗.

A necessary and sufficient additional condition that appears now for A is

domA ⊂ domA∗ or, equivalently, mulA∗∗ ⊂ mulA∗.

Particular cases are studied for decomposable relations A which are in addition formally
domain tight and domain tight, i.e., satisfy

domA ⊂ domA∗ and domA = domA∗,

respectively. Furthermore, decomposable relations are studied under the condition that
their numerical range is a proper subset of C. Orthogonal decompositions for normal,
selfadjoint, and, for instance, maximal sectorial relations are obtained as byproducts.

The fourth type of decomposition to be studied in the present paper is the Cartesian
decomposition of a relation. By definition a Cartesian decomposition of a relation A is of
the form

(1.8) A = A1 + iA2,

where A1 and A2 are symmetric relations in H, i.e.,

A1 ⊂ (A1)∗, A2 ⊂ (A2)∗,

and where the sum in (1.8) is now again operatorwise; see [39] for the operator case.
It is a consequence of the Cartesian decomposition (1.8) that A satisfies the condition
domA ⊂ domA∗, and it will be shown that this is also a sufficient condition for the
existence of a Cartesian decomposition. The connection between the components A1 and
A2 of a Cartesian decomposition (1.8) of A and the real and imaginary parts of A is clear
if A is a densely defined normal operator; cf. [39]. In the general case, the connection is
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vague, but the situation becomes clear when the following extension of A is introduced:

A∞ = A +̂ ({0} ×mulA∗).

The special situation of Cartesian decompositions for normal relations will be treated
in [23].

1.3. Brief description. Here is a brief review of the contents of the paper. Section 2
contains a number of preliminary definitions and facts concerning linear relations. A
number of results which are known for linear operators are stated for the case of linear
relations; for completeness proofs are included. The notions of formally domain tight and
domain tight relations are introduced. Canonical decompositions and decompositions of
linear relations of the form (1.7) are taken up in Section 3. The notion of decomposable
relation is characterized in various ways. A number of examples is included illustrating
relations which are not decomposable. The question of the orthogonality of such decom-
positions is taken up in Section 4. In particular, relations whose numerical range is a
proper subset of C are treated. Cartesian decompositions of the form (1.8) are treated
in Section 5. This section also contains a treatment of the real and imaginary parts of a
linear relation.

2. Preliminaries

This section contains a number of basic definitions and results concerning linear relations
in a Hilbert space. These results are analogs or natural extensions of results which are
better known in the case of operators. It should be mentioned that many of the stated
results have their analogs also for linear relations acting from one Hilbert space to another
Hilbert space. However, for simplicity all the statements are formulated here for the case
of linear relations from a given Hilbert space back to itself.

2.1. Linear relations in a Hilbert space. Let H be a Hilbert space with inner product
(·, ·). The Cartesian product H×H will be provided with the usual inner product. A linear
relation (or relation, for short) A in H is by definition a linear subspace of the Hilbert
space H×H. The domain, range, kernel , and multivalued part of A are denoted by domA,
ranA, kerA, and mulA:

domA
def= {f ; {f, f ′} ∈ A}, kerA def= {f ; {f, 0} ∈ A},

ranA def= {f ′; {f, f ′} ∈ A}, mulA def= {f ′; {0, f ′} ∈ A};

they are linear subspaces of H. An operator is a relation when its is identified with its
graph. Clearly in this sense a relation A is an operator precisely when mulA = {0}.
Define the inverse of A by

A−1 def= {{f ′, f}; {f, f ′} ∈ A};
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then, by complete symmetry,

domA−1 = ranA, kerA−1 = mulA,

ranA−1 = domA, mulA−1 = kerA.

A relation A is closed if it is closed as a subspace of H×H, in which case kerA and mulA
are closed subspaces of H. The closure of a relation A in H×H is denoted by closA; the
notations domA and ranA indicate the closures of domA and ranA in H, respectively.
The closure of (the graph of) an operator is a closed relation which is not necessarily
(the graph of) an operator. An operator is said to be closable if the closure of its graph
is (the graph of an) operator. In what follows, the class of bounded everywhere defined
operators on H is denoted by B(H).

Observe that for any relation A one has

(2.1) dom(closA) = domA, ran(closA) = ranA.

Sometimes these identities can be improved. The following result for bounded operators
is standard; an extension for linear relations will appear later in Corollary 3.22 (see also
Proposition 2.12). A proof is given here for completeness.

Lemma 2.1. Let A be a bounded, not necessarily densely defined, operator in a Hilbert
space H. Then

(i) A is closed if and only if domA is closed;
(ii) A is closable and closA is bounded with ‖closA‖ = ‖A‖;
(iii) dom(closA) = domA.

Proof. (i) Assume that A is closed. If the sequence fn ∈ domA tends to f ∈ H, then the
inequality ‖A(fn − fm)‖ ≤ ‖A‖ ‖fn − fm‖ shows that Afn is a Cauchy sequence, so that
Afn → g for some g ∈ H. Therefore {fn, Afn} → {f, g}, which implies that f ∈ domA

and g = Af , since A is closed. In particular, domA is closed.
Conversely, assume that domA is closed. Let the sequence {fn, Afn} ∈ A converge to

{f, g}. Then f ∈ domA since domA is closed. It follows from the inequality ‖Afn−Af‖ ≤
‖A‖ ‖fn−f‖ that Afn → Af , in other words, g = Af or, equivalently, {f, g} ∈ A. Hence,
A is closed.

(ii) In order to show that A is closable, assume that {0, g} ∈ closA. Then there is
a sequence {fn, Afn} ∈ A such that {fn, Afn} → {0, g}, i.e., fn → 0 and Afn → g.
However, fn → 0 implies that Afn → 0, so that g = 0. Thus, A is closable.

As to boundedness, recall that by definition

‖A‖ = sup{‖Af‖ : f ∈ domA, ‖f‖ ≤ 1}.

Since closA is an operator and every f ∈ dom(closA) can be approximated by a sequence
fn ∈ domA with fn → f and Afn → (closA)f , the equality ‖closA‖ = ‖A‖ follows easily
from the above definition of the operator norm.

(iii) It follows from (2.1) that dom(closA) ⊂ dom(closA) = domA.
Conversely, assume that f ∈ domA. Then there exists a sequence fn ∈ domA such

that fn → f . Since Afn is a Cauchy sequence there exists an element g such that Afn → g.
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Observe that {f, g} ∈ closA. By (ii), closA is an operator, and hence f ∈ dom(closA)
and g = (closA)f .

The following statement concerning closable extensions of bounded densely defined
operators is an immediate consequence of Lemma 2.1.

Corollary 2.2. If A ⊂ B, B is closable, and A is bounded and densely defined, then B

is bounded and, moreover, B∗∗ = A∗∗.

The assumption that B is closable is essential in Corollary 2.2; cf. Example 3.24.

2.2. Adjoint relations. Let A be a relation in a Hilbert space H. The adjoint A∗ of A
is the closed (automatically linear) relation defined by

A∗
def= {{f, f ′} ∈ H× H; 〈{f, f ′}, {h, h′}〉 = 0 for all {h, h′} ∈ A},

where the form 〈·, ·〉 is defined by

〈{f, f ′}, {h, h′}〉 = (f ′, h)− (f, h′), {f, f ′}, {h, h′} ∈ H× H.

Note that the adjoint A∗ is given by

(2.2) A∗ = JA⊥ = (JA)⊥,

where the operator J , defined by

(2.3) J{f, f ′} = {f ′,−f}, {f, f ′} ∈ H× H,

is unitary in H × H. If A is a relation, then A∗∗ = (A∗)∗ gives the closure of A, i.e.,
A∗∗ = closA, due to (2.2). Note that for two relations A and B one has

(2.4) A ⊂ B ⇒ B∗ ⊂ A∗.

Furthermore, it follows directly from the definition that

(A−1)∗ = (A∗)−1.

Lemma 2.3. Let A be a relation in a Hilbert space H. Then

(2.5) (domA)⊥ = mulA∗, (ranA)⊥ = kerA∗,

and, likewise,

(2.6) (domA∗)⊥ = mulA∗∗, (ranA∗)⊥ = kerA∗∗.

Proof. The first identity in (2.5) follows from

{0, g} ∈ A∗ ⇔ {0, g} ∈ J(A⊥) ⇔ {g, 0} ∈ A⊥ ⇔ g ∈ (domA)⊥.

The second identity is obtained by going over to the inverse. The identities in (2.6) follow
from those in (2.5) by going over to the adjoint.

In particular, observe that

(2.7) mulA∗∗ = {0} ⇔ domA∗ dense in H.

Lemma 2.4. Let A be a relation in a Hilbert space H. Then the following equivalences are
valid:

(2.8) domA ⊂ domA∗ ⇔ domA ⊂ domA∗ ⇔ mulA∗∗ ⊂ mulA∗,
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and, likewise,

(2.9) domA∗ ⊂ domA ⇔ domA∗ ⊂ domA ⇔ mulA∗ ⊂ mulA∗∗.

In particular,

(2.10) domA = domA∗ ⇔ mulA∗∗ = mulA∗,

Proof. The first equivalence in (2.8) is valid since the subspace domA∗ of H is closed. The
second equivalence in (2.8) is based on the identity mulA∗ = (domA)⊥. The equivalences
in (2.9) follow if in (2.8) the relation A is replaced by the relation A∗ and the identity
(2.1) is used. The identity (2.10) is now obvious.

It is a consequence of Lemma 2.3 that the Hilbert space H has the following orthogonal
decompositions:

H = domA∗∗ ⊕mulA∗, H = ranA∗∗ ⊕ kerA∗.

However, there are also similar, nonorthogonal, decompositions of H.

Lemma 2.5. Let A be a relation in a Hilbert space H. Then

(2.11) H = domA∗∗ + ranA∗, H = ranA∗∗ + domA∗.

Proof. Recall from (2.2) that JA∗ = A⊥. This implies that H × H = A∗∗ ⊕ JA∗, which
leads to (2.11).

2.3. Special relations. A relation A is said to be symmetric if A ⊂ A∗; a relation is
symmetric if and only if (g, f) ∈ R for all {f, g} ∈ A. A relation A is said to be essentially
selfadjoint if A∗∗ = A∗ and it is said to be selfadjoint if A = A∗. A relation A in a Hilbert
space H is said to be formally normal if there exists an isometry V from A into A∗ of
the form

V {f, g} = {f, h}, {f, g} ∈ A, {f, h} ∈ A∗,

i.e., V leaves the first component f invariant and ‖g‖ = ‖h‖. A formally normal relation
A in a Hilbert space H is said to be normal if the isometry V is from A onto A∗.
Normal relations and consequently selfadjoint relations are automatically closed. Finally,
a relation A in H is said to be subnormal if there exists a Hilbert space K containing H

isometrically and a normal relation B in K such that A ⊂ B.

2.4. Sums and products. Let A1 and A2 be relations in H. The notation A1 +̂ A2

denotes the componentwise sum of A1 and A2:

(2.12) A1 +̂A2
def= {{f1 + f2, f

′
1 + f ′2}; {f1, f ′1} ∈ A1, {f2, f ′2} ∈ A2}.

In particular,

dom(A1 +̂A2) = domA1 + domA2, mul(A1 +̂A2) = mulA1 + mulA2.

Lemma 2.6. The componentwise sum satisfies the identities

(A1 +̂A2)∗ = A∗1 ∩A∗2, clos(A1 +̂A2) = (A∗1 ∩A∗2)∗.

Proof. Observe that

(A1 +̂A2)∗ = J(A1 +̂A2)⊥ = J(A⊥1 ∩A⊥2 ) = JA⊥1 ∩ JA⊥2 = A∗1 ∩A∗2,
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according to the definition of the adjoint operation. This gives the first identity, and the
second identity is obtained by taking adjoints in the first one.

The following identities are also clear:

clos(A1 +̂A2) = clos(A1 +̂ closA2) = clos(closA1 +̂ closA2).

The notation A1 +A2 is reserved for the operatorwise sum of A1 and A2:

(2.13) A1 +A2
def= {{f, f ′ + f ′′}; {f, f ′} ∈ A1, {f, f ′′} ∈ A2}.

In particular, it follows from the definition in (2.13) that

(2.14) dom(A1 +A2) = domA1 ∩ domA2, mul(A1 +A2) = mulA1 + mulA2.

In the case when A1 and A2 are operators this sum is the (graph of the) usual operator
sum.

Lemma 2.7. The operatorwise sum satisfies

(2.15) A∗1 +A∗2 ⊂ (A1 +A2)∗.

If A1 or A2 belongs to B(H), then

(2.16) A∗1 +A∗2 = (A1 +A2)∗.

Proof. Let {f, f ′1 + f ′2} ∈ A∗1 +A∗2 with {f, f ′1} ∈ A∗1 and {f, f ′2} ∈ A∗2. Now assume that
{h, h1 + h2} ∈ A1 +A2 with {h, h1} ∈ A1 and {h, h2} ∈ A2. Then

〈{f, f ′1 + f ′2}, {h, h1 + h2}〉 = (f ′1, h)− (f, h1) + (f ′2, h)− (f, h2) = 0,

which implies that {f, f ′1 + f ′2} ∈ (A1 +A2)∗. This shows (2.15).
For the converse, let {f, f ′} ∈ (A1+A2)∗, so that for all {h, h1} ∈ A1 and {h, h2} ∈ A2,

0 = 〈{f, f ′}, {h, h1 + h2}〉 = (f ′, h)− (f, h1 + h2) = (f ′, h)− (f, h1)− (f, h2).

Suppose that, for instance, A2 ∈ B(H); then h2 = A2h and the above identity implies
that

(f ′ −A∗2f, h) = (f, h1)

for all {h, h1} ∈ A1, so that {f, f ′−A∗2f} ∈ A∗1. Together with {f,A∗2f} ∈ A∗2, this means
that {f, f ′} ∈ A∗1 +A∗2. This shows (2.16).

The notation A1A2 indicates the product of A1 and A2:

(2.17) A1A2
def= {{f, f ′}; {f, h} ∈ A2, {h, f ′} ∈ A1}.

In particular, mulA1 ⊂ mul(A1A2). Moreover, if A2 is an operator, then mulA1 =
mul(A1A2). In the case when A1 and A2 are both operators the product in (2.17) is the
(graph of the) usual operator product. The product of relations is clearly associative.
Observe that

AA−1 = IranA +̂ ({0} ×mulA), A−1A = IdomA +̂ ({0} × kerA),

which shows that products of relations require some care. For λ ∈ C the notation λA

agrees in this sense with (λI)A.
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Lemma 2.8. The product satisfies

(2.18) A∗2A
∗
1 ⊂ (A1A2)∗.

If A1 belongs to B(H), then

(2.19) (A1A2)∗ = A∗2A
∗
1.

Proof. Let {f, f ′} ∈ A∗2A
∗
1, so that {f, g} ∈ A∗1 and {g, f ′} ∈ A∗2. Now assume that

{h, h′} ∈ A1A2, so that {h, k} ∈ A2 and {k, h′} ∈ A1. Then

〈{f, f ′}, {h, h′}〉 = (f ′, h)− (f, h′) = (g, k)− (g, k) = 0,

which yields {f, f ′} ∈ (A1A2)∗. This shows (2.18).
Conversely, let {f, f ′} ∈ (A1A2)∗, so that for all {h, h′} ∈ A1A2 one has

0 = 〈{f, f ′}, {h, h′}〉 = (f ′, h)− (f, h′).

However, since A1 ∈ B(H) it is easily seen that {h, h′} ∈ A1A2 if and only if {h, k} ∈ A2

and h′ = A1k. Hence, {f, f ′} ∈ (A1A2)∗ if and only if for all {h, k} ∈ A2,

0 = (f ′, h)− (f,A1k) = (f ′, h)− (A∗1f, k).

Therefore {f ′, A∗1f} ∈ A∗2, and {f, f ′} ∈ A∗2A∗1. This shows (2.19).

Now let A1 and A2 be relations in the Hilbert spaces H1 and H2, respectively. The
notation A1 ⊕̂ A2 stands for the componentwise orthogonal sum of A1 and A2 in the
Hilbert space (H1 ⊕ H2)× (H1 ⊕ H2):

A1 ⊕̂A2
def= {{f1 ⊕ f2, f ′1 ⊕ f ′2}; {f1, f ′1} ∈ A1, {f2, f ′2} ∈ A2}.

Hence (A1 ⊕̂A2)∗ = A∗1 ⊕̂A∗2, where the adjoints are taken in the corresponding Hilbert
spaces.

It follows from the definition (2.17) that for any R ∈ B(H) the product AR is given by

AR = {{f, f ′}; {Rf, f ′} ∈ A}.

This product can be made more explicit if R or I − R is an orthogonal projection onto
a closed subspace containing domA.

Lemma 2.9. Let A be a relation in a Hilbert space H, let X and Y be closed subspaces
of H such that mulA∗ = X⊕Y, and let R be the orthogonal projection onto domA⊕ X.
Then

AR = A ⊕̂ (Y× {0}), A(I −R) = (domA⊕ X)×mulA.

In particular,

domAR = domA⊕Y, domA(I −R) = domA⊕ X.

Proof. Since domA ⊂ ranR the definition of the product AR shows that A ⊂ AR, and
since Y = kerR ⊂ kerAR it is also clear that Y× {0} ⊂ AR. Hence

A ⊕̂ (Y× {0}) ⊂ AR.

For the converse inclusion, let {f, f ′} ∈ AR. Then

{f, f ′} = {Rf, f ′}+ {(I −R)f, 0} ∈ A ⊕̂ (Y× {0}.

This shows the first identity.
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On the other hand, ran(I −R) ∩ domA = Y ∩ domA = {0}. Hence, the definition of
the product gives A(I −R) = ker(I −R)×mulA, which yields the second identity.

2.5. Some auxiliary results. Let H be a Hilbert space and let M and N be closed
subspaces of H. Then M + N is closed if and only if M⊥+ N⊥ is closed; see, for instance,
[26, IV, Theorem 4.8].

Lemma 2.10. Let A and B be closed relations in a Hilbert space H. Then the following
statements are equivalent:

(i) A +̂B is closed;
(ii) A∗ +̂B∗ is closed.

Proof. (i)⇒(ii). The graphs of A and B are closed linear subspaces of the Hilbert space
H×H. Hence, the sum A +̂B is a closed linear subspace of H×H if and only if the sum
of the orthogonal complements

(2.20) A⊥ +̂B⊥

in H⊕H is also closed. Recall that the adjoints of A and B are given by A∗ = JA⊥ and
B∗ = JB⊥, where the operator J is defined in (2.3). Hence the sum in (2.20) is closed in
H× H if and only if

J(A⊥ +̂B⊥) = JA⊥ +̂ JB⊥ = A∗ +̂B∗

is closed in H× H.
(ii)⇒(i). Since A and B are closed one has A∗∗ = A and B∗∗ = B. Hence this

implication follows by symmetry.

The following observation, based on Lemma 2.10, goes back to Yu. L. Shmul’yan [37].
A weaker version for so-called range space relations can be found in [27].

Theorem 2.11. Let A be a closed relation in a Hilbert space H. Then

(i) domA closed ⇔ domA∗ closed;
(ii) ranA closed ⇔ ranA∗ closed.

Proof. (i) First observe that A = A∗∗, since A is assumed to be closed. Hence,

(2.21) (A∗ +̂ ({0} × H))∗ = A ∩ ({0} × H) = {0} ×mulA.

In particular, (2.21) leads to

(2.22) (A∗ +̂ ({0} × H))∗∗ = (mulA)⊥ × H.

Assume that domA is closed, so that A +̂ ({0}×H) is a closed subspace in H×H. By
Lemma 2.10 this implies that A∗ +̂ ({0} ×H) is a closed subspace of H×H, so that with
(2.22) it follows that

(2.23) A∗ +̂ ({0} × H) = (mulA)⊥ × H,

or, equivalently, domA∗ = (mulA)⊥. Hence, domA∗ is closed.
Now assume that domA∗ is closed, so that A∗ +̂ ({0} ×H) is closed. By Lemma 2.10

this implies that A +̂ ({0} × H) is closed, i.e., domA is closed.
(ii) This can be seen by going over to the inverse of A.
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The next proposition enhances the previous theorem by giving necessary and sufficient
conditions for domA∗ and ranA∗ to be closed, respectively.

Proposition 2.12. Let A be a relation in a Hilbert space H. Then the following state-
ments are equivalent:

(i) domA∗ is closed;
(ii) ranPA∗∗ ⊂ domA∗, where P is the orthogonal projection onto domA∗;
(iii) ranQA∗ ⊂ domA∗∗, where Q is the orthogonal projection onto domA.

Similarly the following statements are equivalent:

(iv) ranA∗ is closed;
(v) P ′(domA∗∗) ⊂ ranA∗, where P ′ is the orthogonal projection onto ranA∗;
(vi) Q′(domA∗) ⊂ ranA∗∗, where Q′ is the orthogonal projection onto ranA.

Proof. By Lemma (2.5) A satisfies the identities (2.11). The implications (ii)⇒(i) and
(v)⇒(iv) are obtained by applying P to the second identity in (2.11) and P ′ to the first
identity in (2.11). The implications (iii)⇒(i) and (vi)⇒(iv) follow by first applying Q

to the first identity in (2.11) and Q′ to the second to see that domA∗∗ and ranA∗∗,
respectively, are closed; then apply Theorem 2.11.

The implications (i)⇒(ii) and (iv)⇒(v) are clear, while (i)⇒(iii) and (iv)⇒(vi) follow
from Theorem 2.11, because then equivalently domA∗∗ (ranA∗∗, respectively) is closed.

Observe that in Proposition 2.12 the statements (i)–(iii) are actually connected with
the statements (iv)–(vi) via the formal inverse A−1 of A.

The descriptions of domA∗ and ranA∗ can be given by means of certain functionals;
cf. Example 1.1 (see [20] for further details).

The following result (cf. [19, Lemma 4.1]) follows easily from Proposition 2.12.

Corollary 2.13. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) domA∗ = H;
(ii) ranA∗∗ ⊂ domA∗;
(iii) A (and thus also A∗∗) is the graph of a bounded operator.

Proof. The equivalence of (i) and (ii) is obtained directly from Proposition 2.12.
(i)⇒(iii). If domA∗ = H, then domA∗∗ is closed by Theorem 2.11 and mulA∗∗ = {0}.

Now apply the closed graph theorem.
(iii)⇒(i). The boundedness of A∗∗ implies that domA∗∗ is closed; see Lemma 2.1.

Hence, also domA∗ is closed by Theorem 2.11. It follows from mulA∗∗ = {0} that
domA∗ is dense. Therefore domA∗ = H.

Remark 2.14. Note that the decomposition A = B+C in Example 1.2 with a nontrivial
singular part C is possible if and only if domA∗ 6= H; according to Corollary 2.13 this is
equivalent to the operator A in Example 1.2 being unbounded.

There are similar corollaries characterizing A−1, A∗, or A−∗ being a bounded (sin-
glevalued) operator. It can also be noted that PA∗∗ appearing in Proposition 2.12 is in
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fact the regular part of the closure A; see Section 3. The connection between Proposition
2.12 and Corollary 2.13 can be strengthened by means of decompositions in Section 3.

2.6. Points of regular type and the resolvent set. Let A be a relation in a Hilbert
space H. Then λ ∈ C is said to be an eigenvalue of A if {f, λf} ∈ A for some nonzero
f ∈ H. The set of points of regular type of A is denoted by γ(A); it consists of those
λ ∈ C for which there exists a positive constant c(λ) > 0 such that

(2.24) ‖f ′ − λf‖ ≥ c(λ)‖f‖, {f, f ′} ∈ A.

In other words, λ ∈ C is a point of regular type of A if and only if (A−λ)−1 is (the graph
of) a bounded linear operator, defined on ran(A−λ). In particular, the relation A is closed
if and only if ran(A − λ) is closed in H for some λ ∈ C of regular type. Furthermore,
γ(closA) = γ(A). It is clear that γ(A) ⊂ γ(closA). To see the other inclusion, let λ ∈
γ(A), so that (A−λ)−1 is a bounded linear operator. From clos (A−λ)−1 = (closA−λ)−1

it follows that λ ∈ γ(closA).
It is well known that γ(A) is an open set for operators, and this remains true also for

relations; see [43], [44]; cf. also [15, 16].

Theorem 2.15. Let A be a relation in a Hilbert space H. Then γ(A) is an open set. In
particular, if µ ∈ γ(A) and |λ− µ| ‖(A− µ)−1‖ < 1, then λ ∈ γ(A) and

(2.25) ‖(A− λ)−1‖ ≤ ‖(A− µ)−1‖
1− |λ− µ| ‖(A− µ)−1‖

.

Moreover, if µ ∈ γ(A) and |λ−µ| ‖(A−µ)−1‖ < 1, then ran(A−λ) is not a proper subset
of ran(A− µ).

Proof. Let µ ∈ γ(A) and {f, g} ∈ A. Since (A − µ)−1 is a bounded linear operator, it
follows from (A− µ)−1(g − µf) = f that

‖f‖ ≤ ‖(A− µ)−1‖ ‖(g − µf)‖.

For each λ ∈ C one has
g − λf = g − µf − (λ− µ)f,

which implies that
‖g − λf‖ ≥ ‖g − µf‖ − |λ− µ| ‖f‖.

Hence,

‖(A− µ)−1‖ ‖g − λf‖ ≥ ‖(A− µ)−1‖ ‖g − µf‖ − |λ− µ| ‖(A− µ)−1‖ ‖f‖
≥ ‖f‖ − |λ− µ| ‖(A− µ)−1‖ ‖f‖
= (I − |λ− µ| ‖(A− µ)−1‖)‖f‖.

With the inclusion {g−λf, f} ∈ (A−λ)−1 and the assumption |λ−µ| ‖(A−µ)−1‖ < 1 this
inequality shows that (A − λ)−1 is a bounded linear operator, whose norm is estimated
by (2.25).

Assume that ran(A − λ) is a proper subset of ran(A− µ). Choose k ∈ ran(A− µ)
	 ran(A−λ) with ‖k‖ = 1. Then ‖k− g‖ ≥ 1 for all g ∈ ran(A−λ). Let kn ∈ ran(A−µ)
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be such that kn → k. Then there exist hn such that {hn, kn} ∈ A − µ, so that also
{hn, kn + (µ− λ)hn} ∈ A− λ. In particular,

1 ≤ ‖k − (kn + (µ− λ)hn)‖ ≤ ‖k − kn‖+ |µ− λ| ‖hn‖
≤ ‖k − kn‖+ |µ− λ| ‖(A− µ)−1‖ ‖kn‖.

Letting n→∞ leads to
1 ≤ |µ− λ| ‖(A− µ)−1‖,

a contradiction. Hence ran(A− λ) is not a proper subset of ran(A− µ).

The resolvent set ρ(A) of A is the set of all λ ∈ C such that λ ∈ γ(A) and ran(A−λ)
is dense in H. Observe that ρ(closA) = ρ(A).

Theorem 2.16. Let A be a relation in a Hilbert space H. Then ρ(A) is open. In particular,
if µ ∈ ρ(A) and |λ− µ| ‖(A− µ)−1‖ < 1, then λ ∈ ρ(A).

Proof. Since µ ∈ ρ(A) one has µ ∈ γ(A) and ran(A − µ) = H. Now by Theorem 2.15
λ ∈ γ(A) and ran(A−λ) is not a proper subset of ran(A−µ). Therefore ran(A−λ) = H,
so that λ ∈ ρ(A).

If A is closed, then λ ∈ ρ(A) if and only if (A− λ)−1 ∈ B(H).

2.7. Defect numbers. It is useful to recall the notion of opening between subspaces.
Let L1 and L2 be linear (not necessarily closed) subspaces of a Hilbert space H. Let
P1 and P2 be the orthogonal projections onto the closures L1 and L2 of L1 and L2,
respectively. The opening θ(L1,L2) is defined by θ(L1,L2) = ‖P1 − P2‖. It is clear that
θ(L1,L2) = θ(L1,L2) = θ(L⊥1 ,L

⊥
2 ). Moreover, θ(L1,L2) ≤ 1, and if θ(L1,L2) < 1, then

dim L1 = dim L2. In order to use the opening the following formula is useful:

θ(L1,L2) = max
(

sup
f∈L1

‖(I − P2)f‖
‖f‖

, sup
f∈L2

‖(I − P1)f‖
‖f‖

)
.

The following result is a standard fact for operators; for relations it appears precisely in
the same form.

Theorem 2.17. Let A be a relation in a Hilbert space H. Then the defect

dim ran(A− λ)⊥

is constant for λ in connected components of γ(A).

Proof. Let λ, µ ∈ γ(A) and let Pλ and Pµ be the orthogonal projections onto the sub-
spaces ran(A− λ)⊥ and ran(A− µ)⊥, respectively.

Step 1. For each h ∈ H,

‖(I − Pµ)h‖ = sup
{f,g}∈A

|(h, g − µf)|
‖g − µf‖

= sup
{f,g}∈A

|(h, g − λf + (λ− µ)f)|
‖g − µf‖

.

In particular, if h ∈ ran(A− λ)⊥, then

‖(I − Pµ)h‖ = |λ− µ| sup
{f,g}∈A

|(h, f)|
‖g − µf‖

.
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Since ‖f‖ ≤ ‖(A− µ)−1‖ ‖g − µf‖, {f, g} ∈ A, it follows that

‖(I − Pµ)h‖ ≤ |λ− µ| ‖(A− µ)−1‖ ‖h‖.

Step 2. Completely similar, it follows for k ∈ ran(A− µ)⊥ that

‖(I − Pλ)k‖ = |λ− µ| sup
{f,g}∈A

|(k, f)|
‖g − λf‖

≤ |λ− µ| ‖(A− λ)−1‖ ‖k‖.

Hence, if |λ− µ| ‖(A− µ)−1‖ < 1, then

‖(I − Pλ)k‖ ≤ |λ− µ| ‖(A− µ)−1‖
1− |λ− µ| ‖(A− µ)−1‖

‖k‖.

Step 3. Now let |λ− µ| ‖(A− µ)−1‖ < 1/2. Then it follows from Steps 1 and 2 that

θ(ran(A− λ)⊥, ran(A− µ)⊥) < 1,

which implies the equality

dim ran(A− λ)⊥ = dim ran(A− µ)⊥;

see [1], [26].

Step 4. For each µ ∈ γ(A) there exists a positive number δ = 1
2‖(A− µ)−1‖−1 such that

|λ− µ| < δ implies that λ ∈ γ(A) and that at λ there is the same defect as at µ. Now let
Γ be a connected open component of γ(A). Then Γ is arcwise connected and each pair
of points in Γ can be connected by a (piecewise) connected curve with compact image.
It remains to use compactness to divide the curve into pieces of length δ/2 to conclude
that dim ker(A∗ − λ̄) is constant in Γ.

2.8. The numerical range. Let A be a relation in a Hilbert space H. The numerical
range W(A) of A is defined by

W(A) = {(f ′, f); {f, f ′} ∈ A, ‖f‖ = 1} ⊂ C,

and by {0} ⊂ C if A is purely multivalued, i.e. if domA = {0}. Clearly, all eigenvalues
of A belong to the numerical range W(A) of A. Observe that the numerical range of the
inverse of A is given by

W(A−1) = {λ ∈ C; λ̄ ∈ W(A)}.

The following result will be proved along the lines of [40]; cf. [26], [36].

Proposition 2.18. Let A be a relation in a Hilbert space H. Then the numerical range
W(A) is a convex set in C.

Proof. Let λ1, λ2 ∈ W(A) and assume that λ1 6= λ2. It will be shown that each point
on the segment between λ1 and λ2 belongs to W(A), i.e., it will be shown that for each
u ∈ [0, 1],

uλ1 + (1− u)λ2 ∈ W(A).

For this purpose write λi = (gi, fi), where {fi, gi} ∈ A, ‖fi‖ = 1, i = 1, 2, and define, for
x1, x2 ∈ C,

F (x1, x2) = (x1g1 + x2g2, x1f1 + x2f2), G(x1, x2) = ‖x1f1 + x2f2‖2,
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and

H(x1, x2) =
F (x1, x2)− λ2G(x1, x2)

λ1 − λ2
.

Note that if G(x1, x2) = 1, then F (x1, x2) ∈ W(A), or, in other words,

H(x1, x2)λ1 + (1−H(x1, x2))λ2 = λ2 +H(x1, x2)(λ1 − λ2) ∈ W(A).

Hence, the proof will be complete if for each u ∈ [0, 1] there exist numbers x1, x2 ∈ C for
which

G(x1, x2) = 1, H(x1, x2) = u.

Observe that H(x1, x2) = x1x̄1 + c1x̄1x2 + c2x1x̄2 for some c1, c2 ∈ C. Define

δ = 1 if c̄1 = c2, δ =
c̄1 − c2
|c̄1 − c2|

if c̄1 6= c2

so that |δ| = 1. When t1, t2 ∈ R it follows that

G(t1, δt2) = t21 + 2βt1t2 + t22, H(t1, δt2) = t21 + γt1t2,

where β = re(δ(f2, f1)) and γ = δc1 + δ̄c2. Hence −1 ≤ β ≤ 1 and γ ∈ R. For t1 ∈ [−1, 1]
note that (1− β2)t21 ≤ 1 and choose

t2 = −βt1 ±
q

1− (1− β2)t21,

with the + sign when β ≥ 0 and the − sign when β < 0. Then

G(t1, δ(−βt1 ±
q

1− (1− β2)t21)) = 1,

and
H(t1, δ(−βt1 ±

q
1− (1− β2)t21)) = (1− βγ)t21 ± γt1

q
1− (1− β2)t21.

The last expression is a real continuous function in t1 which takes the value 0 at t1 = 0
and the value 1 at t1 = 1. Hence the segment [0, 1] is in the range of values of this
function.

Hence either W(A) = C or W(A) 6= C, in which case W(A) lies in some halfplane.
The first case may actually occur if, for instance, kerA∩mulA 6= {0}, so that A contains
nontrivial elements {0, h} and {h, 0}. If the relation A′ is an extension of A, i.e., A ⊂ A′,
then W(A) ⊂ W(A′). In particular,

(2.26) W(A) ⊂ W(closA) ⊂ closW(A),

where the last inclusion is straightforward to verify. All sets in (2.26) are convex.

2.9. An extension preserving the numerical range. Let A be a relation in a Hilbert
space H and associate with it the relation A∞ defined by

(2.27) A∞
def= A +̂ ({0} ×mulA∗);

the sum in (2.27) is direct if and only if mulA ∩ mulA∗ = {0}. The relation A∞ is an
extension of A and

(2.28) domA∞ = domA, mulA∞ = mulA+ mulA∗.
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Clearly, if mulA ⊂ mulA∗ then mulA∞ = mulA∗. Moreover, A∞ = A if and only
mulA∗ ⊂ mulA (which is the case when, for instance, A is densely defined). Due to
mulA∗ = (domA)⊥ it follows from (2.27) that

(2.29) W(A∞) =W(A).

Constructions in terms of the extension A∞ can be found in [10] and [22]. A key obser-
vation is given in the following lemma.

Lemma 2.19. Let A be a relation in a Hilbert space H. Then (A∞)∗ can be expressed as
a restriction of A∗:

(2.30) (A∞)∗ = {{f, f ′} ∈ A∗; f ∈ domA}.

In particular,

(2.31) dom (A∞)∗ = domA ∩ domA∗, mul (A∞)∗ = mulA∗.

Proof. It follows from (2.27) and Lemma 2.6 that

(A∞)∗ = A∗ ∩ (domA× H),

which leads to the description (2.30) and the identities in (2.31).

2.10. Formally domain tight and domain tight relations. A relation A in a Hilbert
space H is said to be formally domain tight if

(2.32) domA ⊂ domA∗.

Formally normal and symmetric relations are formally domain tight. If a relation A is
formally domain tight, then (2.32) shows that

(2.33) (mulA ⊂) mulA∗∗ ⊂ mulA∗.

A densely defined formally domain tight relation A is (the graph of) a closable operator,
i.e., mulA∗∗ = {0}. Furthermore, for a formally domain tight relation A it follows that

(2.34) mulA∗ ⊂ mulA ⇒ mulA = mulA∗ = mulA∗∗.

A relation A in a Hilbert space H is said to be domain tight if

(2.35) domA = domA∗.

Normal and selfadjoint relations are domain tight. If a relation A is domain tight, then

(2.36) mulA∗∗ = mulA∗.

A domain tight relation A is densely defined if and only if A is (the graph of) a closable
operator, i.e., mulA∗∗ = {0}.

Remark 2.20. The notions of formally domain tight and domain tight relations seem
to be new. It is clear that symmetric, formally normal, and subnormal relations may be
viewed as prototypes of formally domain tight relations and that selfadjoint and normal
relations may be viewed as prototypes of domain tight relations. Densely defined domain
tight symmetric or formally normal operators must necessarily be selfadjoint or normal,
respectively; on the other hand, domain tight symmetric or domain tight formally normal
relations are selfadjoint or normal when extra information about the multivalued parts is
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provided; cf. Corollary 2.27. For subnormal operators the situation is different: in principle
they are not domain tight (see [38] for some discussion) but even if they are, they may
not be normal as their normal extensions in most cases go beyond the initial space; this
is less visible in the case of relations and Section 2.12 sheds some more light on that.

Remark 2.21. Further examples of formally domain tight and domain tight relations or
operators come from the q-deformation of the above mentioned classes. This is motivated
by the theory of quantum groups; the relevant Hilbert space operators were introduced
by S. Ôta [30], [31]. The balanced operators proposed by S. L. Woronowicz [45] appear
to be in the same spirit.

Lemma 2.22. Let A be a relation in a Hilbert space H. Then

(i) A is formally domain tight if and only if

(2.37) domA ⊂ domA ∩ domA∗;

(ii) if A is domain tight then

(2.38) domA = domA ∩ domA∗.

Proof. (i) The inclusion domA ⊂ domA∗ is equivalent to the inclusion in (2.37).
(ii) If A is formally domain tight, then (2.37) gives

domA ⊂ domA ∩ domA∗ ⊂ domA∗.

Hence, if A is domain tight, then (2.38) follows.

If B is a formally domain tight relation, then any restriction A of B, i.e., A ⊂ B, is
also formally domain tight; see (2.4). The following lemma contains a kind of converse
statement.

Lemma 2.23. Let A and B be relations in a Hilbert space H which satisfy A ⊂ B. If A
is domain tight and B is formally domain tight, then B is domain tight.

Proof. The inclusion A ⊂ B implies that B∗ ⊂ A∗. Therefore, it follows that

(2.39) domA ⊂ domB, domB∗ ⊂ domA∗.

The assumptions on A and B are

domA = domA∗, domB ⊂ domB∗.

Combining these assumptions with the inclusions in (2.39) gives

domA ⊂ domB ⊂ domB∗ ⊂ domA∗ = domA,

which leads to domB = domB∗, i.e., B is domain tight.

Remark 2.24. Let A be a relation in a Hilbert space. Then clearly

A domain tight ⇒ A and A∗ formally domain tight.

Moreover, if domA∗∗ = domA, then

A and A∗ formally domain tight ⇒ A domain tight.

If A∗∗ is formally domain tight, then A is formally domain tight.



Decompositions of linear relations 23

The relation A∞ introduced in (2.27) can be used to obtain a characterization for A
to be domain tight or formally domain tight.

Proposition 2.25. Let A be a relation in a Hilbert space H and let the extension A∞ of
A be defined by (2.27). Then

(i) A is formally domain tight if and only if A∞ is formally domain tight;
(ii) A∞ is domain tight if and only if domA = domA ∩ domA∗;
(iii) A is domain tight if and only if A∞ is domain tight and domA∗ ⊂ domA. Further-

more, in this case (A∞)∗ = A∗ = (A∗)∞.

Proof. (i) According to (2.28) and (2.31) the relation A∞ is formally domain tight (i.e.,
domA∞ ⊂ dom (A∞)∗) if and only if

domA ⊂ domA ∩ domA∗.

Hence, the statement follows from Lemma 2.22.
(ii) The assertion follows from (2.28) and (2.31).
(iii) Let A be domain tight. Then domA = domA ∩ domA∗ by Lemma 2.22. Hence,

A∞ is domain tight by (ii). Moreover, domA∗ = domA ⊂ domA.
Conversely, if A∞ is domain tight and domA∗ ⊂ domA, then part (ii) implies that

domA = domA ∩ domA∗ = domA∗. Thus, A is domain tight.
It is clear for a domain tight relation A that

{{f, f ′} ∈ A∗; f ∈ domA} = A∗.

Hence, the identity (2.30) implies that (A∞)∗ = A∗. In general, (A∗)∞ is an extension
of A∗, and A∗ = (A∗)∞ if and only if mulA∗∗ ⊂ mulA∗. Therefore, if A is domain tight,
the identity (2.36) implies that A∗ = (A∗)∞.

Lemma 2.26. Let A be a relation in a Hilbert space H and let the extension A∞ of A be
defined by (2.27). If A is formally domain tight, then

(i) mulA∞ = mulA∗;
(ii) A∞ = A if and only mulA∗ = mulA;
(iii) A ∩ ({0} ×mulA∗) = {0} ×mulA, and the sum in (2.27) is direct if and only if A

is an operator;
(iv) A∞ is an operator if and only if A is densely defined.

Moreover, if A is domain tight and mulA∗∗ = mulA, then A∞ = A. In particular, if A
is domain tight and closed, then A∞ = A.

Proof. (i) Since A is formally domain tight, (2.33) shows that mulA ⊂ mulA∗. This
shows the assertion.

(ii) Note that A = A∞ if and only if mulA∗ ⊂ mulA. If A is formally domain
tight, then (2.34) implies that the inclusion mulA∗ ⊂ mulA is equivalent to the identity
mulA∗ = mulA.

(iii) Since A is formally domain tight, the inclusion mulA ⊂ mulA∗ in (2.33) leads to
the assertions.
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(iv) If A is densely defined, then mulA∗ = {0}, so that mulA∗∗ = {0} by (2.33), and
A is a closable operator. Hence, A∞ is an operator. Conversely, if A∞ is an operator,
then necessarily mulA∗ = {0}, so that A is densely defined.

For the last statement, observe that (2.35) implies (2.36). The assumption mulA∗∗ =
mulA implies that mulA∗ = mulA. The assertion now follows from (ii).

2.11. Selfadjointness of symmetric relations. Let A be a symmetric relation in a
Hilbert space H. Then its closure A∗∗ is formally domain tight, as the closure is symmetric.
If A is densely defined, then mulA∗∗ = {0}, so that, in fact, A is a closable operator.

If A is a selfadjoint relation, then, in particular, A is symmetric, domain tight, and
mulA∗ ⊂ mulA.

Lemma 2.27. Let A be a symmetric domain tight relation in a Hilbert space H, such that
mulA∗ ⊂ mulA. Then A is selfadjoint. In particular, a closed domain tight symmetric
relation is selfadjoint.

Proof. It suffices to show that A∗ ⊂ A. Let {f, g} ∈ A∗, so that f ∈ domA∗ = domA,
which implies that there is an element h such that {f, h} ∈ A (⊂ A∗). Hence, g − h ∈
mulA∗ ⊂ mulA. Therefore

{f, g} = {f, h}+ {0, g − h} ∈ A.

Hence, A∗ ⊂ A, and thus A is selfadjoint.
When A is closed and domain tight, it follows from (2.36) that mulA∗ = mulA.

Hence, the last observation is clear.

If A is a symmetric relation, then, clearly, also the extension A∞ is symmetric (for
instance, see (2.29)). The following result goes back to [10].

Lemma 2.28. Let A be a relation in a Hilbert space H and let the extension A∞ of A be
defined by (2.27). Then A∞ is selfadjoint if and only if A is symmetric and domA =
domA ∩ domA∗.

Proof. (⇒) If A∞ is selfadjoint, then A is symmetric and A∞ is domain tight, so that
domA = domA ∩ domA∗; cf. Proposition 2.25.

(⇐) If A is symmetric and domA = domA ∩ domA∗, then A∞ is symmetric and
domain tight. Moreover mul (A∞)∗ = mulA∗ by Lemma 2.19 and mulA∞ = mulA∗ by
Lemma 2.26, so that A∞ is selfadjoint; cf. Lemma 2.27.

2.12. Extensions in larger Hilbert spaces. Let H and K be two Hilbert spaces with
the inclusion H ⊂ K being isometric. Let A be a relation in H and let B be a relation
in K. Assume that B is an extension of A, i.e.,

(2.40) A ⊂ B.

Then it is clear that

(2.41) domA ⊂ domB ∩ H, P (domB∗) ⊂ domA∗,

where P is the orthogonal projection of K onto H. The assumption A ⊂ B implies
the first inclusion in (2.41) trivially and it implies the second inclusion in (2.41) since
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{Pf, Pg} ∈ A∗ for all {f, g} ∈ B∗. The relation B is said to be a tight extension of A if

domA = domB ∩ H,

and, likewise, B is said to be a ∗-tight extension of A if

P (domB∗) = domA∗.

Tight and ∗-tight extensions will be discussed only in this subsection. If the relation B

is formally domain tight in K, then

(2.42) domB ∩ H ⊂ P (domB∗).

Hence, if B is a tight and ∗-tight extension of A, and if B is formally domain tight in K,
then (2.42) shows that A is formally domain tight in H. The next result is a counterpart
to Lemma 2.23.

Lemma 2.29. Let A be a relation in the Hilbert space H and let B be a relation in the
Hilbert space K which satisfy (2.40).

(i) If A is domain tight in H and B is formally domain tight in K, then

(2.43) domB ∩ H = P (domB∗),

and B is a tight and ∗-tight extension of A.
(ii) If the identity (2.43) holds and if B is a tight and ∗-tight extension of A, then A is

domain tight in H.

Proof. (i) If the extension B of A is formally domain tight in K, then

(2.44) domA ⊂ domB ∩ H ⊂ P (domB∗) ⊂ domA∗.

The second inclusion follows from domB ⊂ domB∗. The other inclusions follow from
(2.41). The assumption that A is domain tight in H and the inclusions in (2.44) imply
the identity in (2.43). In particular, B is a tight and ∗-tight extension of A.

(ii) Assume that the identity (2.43) holds and that B is a tight and ∗-tight extension
of A. By the definitions of tight and ∗-tight extensions it follows that domA = domA∗.

If B is a tight extension of A, then any tight extension of B is again a tight extension
of A. There is a similar statement for ∗-tight extensions of A.

A densely defined symmetric operator always has a tight selfadjoint extension; a
detailed argument is given in [38], which in turn implements the suggestion made in [1],
where a tight extension is called an extension of the second kind. A densely defined
subnormal operator need not have any tight normal extensions; an example of Ôta [32]
gives a negative answer to the question in [38].

Tight and ∗-tight extensions as discussed in [41] are essential in identifying solutions
of the commutation relation of the q-harmonic oscillator as q-creation operators when
q > 1, in which case nonuniqueness of normal extensions occurs; see [42, Theorem 21].

2.13. Range tight relations. Let A be a relation in a Hilbert space H. The notions of
formally domain tight and domain tight refer to properties relative to the domains domA

and domA∗. Similar notions exist relative to the ranges ranA and ranA∗. A relation A
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in a Hilbert space H is said to be formally range tight if

ranA ⊂ ranA∗,

and it is said to be range tight if

ranA = ranA∗.

Clearly, a relation A is (formally) range tight if and only if the relation A−1 is (formally)
domain tight. Hence, all earlier statements for (formally) domain tight relations have their
counterparts for (formally) range tight relations. As an example consider the following
consequence of Lemma 2.27.

Let A be a symmetric range tight relation in a Hilbert space H, such that kerA∗ ⊂
kerA. Then A is selfadjoint. In particular, a closed range tight symmetric relation is
selfadjoint. The same result for densely defined closed range tight symmetric operators
was obtained independently by Z. Sebestyén and Z. Tarcsay (personal communication).

2.14. Maximality with respect to the numerical range. The following results
are included for completeness. In some form or other they go back to R. McKelvey
(unpublished lecture notes) and F. S. Rofe-Beketov [34]; see also [18].

Lemma 2.30. Let A be a relation in a Hilbert space H withW(A) 6= C. Let λ /∈ closW(A),
i.e., d(λ) = dist(λ, closW(A)) > 0. Then

(i) (A− λ)−1 is a bounded linear operator with

(2.45) ‖(A− λ)−1‖ ≤ 1/d(λ);

(ii) mulA ⊂ mulA∗.

Proof. (i) Let λ /∈ closW(A) and let {f, f ′} ∈ A with ‖f‖ = 1. Then

(f ′, f)− λ = (f ′, f)− λ(f, f) = (f ′ − λf, f),

so that
d(λ) ≤ |(f ′, f)− λ| ≤ ‖f ′ − λf‖, {f, f ′ − λf} ∈ A− λ.

Since λ is not an eigenvalue of A, the inequality in (2.45) follows from the above inequality.
(ii) Let ϕ ∈ mulA, so that {f, f ′ + cϕ} ∈ A for all {f, f ′} ∈ A and all c ∈ C. Since

W(A) 6= C, the identity
(f ′ + cϕ, f) = (f ′, f) + c(ϕ, f)

shows that (ϕ, f) = 0. Hence mulA ⊂ (domA)⊥ = mulA∗.

Let A be a relation in a Hilbert space H with W(A) 6= C. According to Lemma 2.30
the complement ∆(A) = C \ closW(A) is a subset of the set of regular points of A.
Hence ran(A − λ) is closed for some λ /∈ closW(A) if and only if A is closed. Since
closW(A) is a closed convex set (see Proposition 2.18 and (2.26)), it follows that either
∆(A) is an open connected set, or ∆(A) consists of two open connected components (if
W(A) is a strip bounded by two parallel straight lines). Furthermore, by Theorem 2.17,
dim ker(A∗− λ̄) is constant for λ ∈ ∆(A) or for λ in each of the connected components of
∆(A). If ker(A∗ − λ̄) = {0} for some λ ∈ C \ closW(A) then ∆(A) or the corresponding
component (to which λ belongs) is a subset of ρ(A).
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Note that in the statements (i) and (ii) of Lemma 2.30 the relation A may be replaced
by the closure A∗∗. In particular, this shows that a densely defined relation A with
W(A) 6= C satisfies mulA∗∗ = {0}; in other words, A is a closable operator. Furthermore,
it follows that ran(A∗∗−λ) is closed. These observations lead to the following useful result.

Corollary 2.31. Let A be a relation in a Hilbert space H with W(A) 6= C. Let λ /∈
closW(A). Then

ran(A∗ − λ̄) = H.

Proof. In general H = ran(A∗−λ̄)⊕ker(A∗∗−λ). By Lemma 2.30 and the above remarks,
it follows that H = ran(A∗ − λ̄) and that ran(A∗∗ − λ) is closed. Then also ran(A∗ − λ̄)
is closed by Theorem 2.11, so that ran(A∗ − λ̄) = H.

A relation A in a Hilbert space H with W(A) 6= C is said to be maximal with respect
to the numerical range W(A) if ran(A − λ) = H for some λ /∈ closW(A). Then, clearly,
λ ∈ ρ(A) and A is closed. In fact, A is maximal if and only if some open connected
component of ∆(A) is contained in the resolvent set of A.

Lemma 2.32. Let A be a relation in a Hilbert space H with W(A) 6= C. Assume that A
is maximal with respect to W(A). Then

(2.46) mulA = mulA∗.

Proof. It suffices to show that mulA∗ ⊂ mulA; cf. Lemma 2.30. Let A∞ be the extension
ofA defined in (2.27). ThenW(A∞) =W(A) according to (2.29). Hence, if λ /∈ closW(A),
then λ is not an eigenvalue of A∞. Moreover, since A∞ is an extension of A it follows
that ran(A− λ) ⊂ ran(A∞ − λ). It follows from W(A∞) =W(A) and ran(A∞ − λ) = H

that A∞ is closed. Therefore (A∞ − λ)−1 ∈ B(H), so that λ ∈ ρ(A∞). It follows from
(A − λ)−1 ⊂ (A∞ − λ)−1 that (A − λ)−1 = (A∞ − λ)−1, in other words A∞ = A. This
shows that mulA∗ ⊂ mulA.

3. Componentwise decompositions of relations

In this section the canonical operatorwise decomposition of a relation in a Hilbert space is
used to characterize componentwise decompositions by means of an operator part. Again,
for simplicity, the results are formulated for linear relations in a Hilbert space, instead of
linear relations acting from one Hilbert space to another Hilbert space.

3.1. Canonical decompositions of relations. A relation A in a Hilbert space H (or
a relation from a Hilbert space H to another Hilbert space K) is said to be singular if

(3.1) ranA ⊂ mulA∗∗ or equivalently ranA ⊂ mulA∗∗.

The equivalence here is due to the closedness of mulA∗∗. Furthermore, the inclusion

(3.2) mulA∗∗ ⊂ ranA
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follows from (2.1) as mulA∗∗ ⊂ ranA∗∗. Therefore, a linear relation A is singular if and
only if

(3.3) ranA = mulA∗∗,

which follows from (3.1) and (3.2). There is also an alternative characterization in terms
of sequences which goes back to Ôta [29] in the case of densely defined operators; cf. [19].

Proposition 3.1. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) A is singular;
(ii) for each ϕ′ ∈ ranA there exists a sequence {hn, h′n} ∈ A such that hn → 0 and

h′n → ϕ′.

Proof. The equivalence is obtained by rewriting the condition ranA ⊂ mulA∗∗ element-
wise using the definition of the closure A∗∗ of A.

In what follows, a relation A in a Hilbert space H (or a relation from a Hilbert space
H to another Hilbert space K) is said to be regular if its closure A∗∗ is an operator. Thus
a regular relation is automatically an operator.

Let A be a not necessarily closed relation in the Hilbert H and define the subspace
HA by

(3.4) HA
def= domA∗ = H	mulA∗∗.

Since mulA ⊂ mulA∗∗, it follows that

(3.5) HA ⊂ H	mulA.

Let P be the orthogonal projection from H onto HA. Introduce the following relations:

(3.6) Areg
def= PA = {{f, Pg}; {f, g} ∈ A},

called the regular part of A, and

(3.7) Asing
def= (I − P )A = {{f, (I − P )g}; {f, g} ∈ A},

called the singular part of A. Observe that domAreg = domAsing = domA. The following
operatorwise sum decomposition for linear relations acting from one Hilbert space to
another was proved in [21, Theorem 4.1]; in the case that A is an operator it can be
found in [29], [25]. A short proof can be given by means of Lemmas 2.8 and 2.9.

Theorem 3.2. Let A be a relation in a Hilbert space H. Then A admits a canonical
operatorwise sum decomposition

(3.8) A = Areg +Asing,

where Areg is a regular operator in H and Asing is a singular relation in H with

(3.9) (Areg)∗∗ = (A∗∗)reg, (Asing)∗∗ = ((A∗∗)sing)∗∗, mulAsing = mulA.

Proof. Let P be the orthogonal projection from H onto HA = domA∗. The decomposition
(3.8) is clear.

By definition Areg = PA and hence by Lemmas 2.8 and 2.9,

(Areg)∗ = (PA)∗ = A∗P = A∗ ⊕̂ (mulA∗∗ × {0}).
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In particular, dom (Areg)∗ = domA∗⊕mulA∗∗, so that dom (Areg)∗ = H, which is equiv-
alent to mul (Areg)∗∗ = {0}; cf. Lemma 2.3. Thus, the relation Areg in (3.6) is regular.

Again, by definition Asing = (I − P )A and hence by Lemmas 2.8 and 2.9,

(Asing)∗ = ((I − P )A)∗ = A∗(I − P ) = domA∗ ×mulA∗.

Since dom (Asing)∗ = domA∗, it follows that mul (Asing)∗∗ = mulA∗∗; cf. Lemma 2.3.
Therefore, ranAsing ⊂ mulA∗∗ = mul (Asing)∗∗ and Asing is singular.

It remains to prove the identities in (3.9). The identities (PA)∗ = A∗P = (PA∗∗)∗

show that
(Areg)∗ = A∗P = ((A∗∗)reg)∗

and hence (Areg)∗∗ = ((A∗∗)reg)∗∗. Since ran(I −P ) = mulA∗∗ it follows that (A∗∗)reg ⊂
A∗∗. This implies that (A∗∗)reg is closed: indeed, if {fn, f ′n} ∈ A∗∗ and {fn, Pf ′n} →
{f, f ′}, then {f, f ′} ∈ A∗∗ and f ′ = Pf ′, so that {f, f ′} = {f, Pf ′} ∈ (A∗∗)reg. Therefore,
((A∗∗)reg)∗∗ = (A∗∗)reg, yielding the first identity in (3.9).

Likewise, the equalities ((I − P )A)∗ = A∗(I − P ) = ((I − P )A∗∗)∗ imply that

(Asing)∗ = A∗(I − P ) = ((A∗∗)sing)∗.

Hence (Asing)∗∗ = ((A∗∗)sing)∗∗, and the second identity in (3.9) is proved.
Finally, since mulA ⊂ mulA∗∗, one obtains

mulAsing = {(I − P )f ′ : {0, f ′} ∈ A} = {f ′ : {0, f ′} ∈ A} = mulA.

This completes the proof.

Several illustrations of Theorem 3.2 can be found in [19], [21]. Canonical decompo-
sitions of relations have their counterparts in the canonical decomposition of pairs of
nonnegative sesquilinear forms (see [19]).

It is clear from the definitions that A is regular if and only if Asing in (3.8) is the zero
operator on domA, and similarly, A is singular if and only if Areg in (3.8) is the zero
operator on domA. The condition that A is singular can also be characterized as follows;
cf. [21].

Proposition 3.3. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) A is singular;
(ii) domA∗ ⊂ kerA∗ or, equivalently, domA∗ = kerA∗;
(iii) A∗ = domA∗ ×mulA∗;
(iv) A∗∗ = domA×mulA∗∗.

In particular, if one of the relations A, A−1, A∗, or A∗∗ is singular, then all of them are
singular.

Proof. (i)⇒(ii). The identity in (3.3) implies that (ranA)⊥ = (mulA∗∗)⊥, which is equiv-
alent to kerA∗ = domA∗ by Lemma 2.3. In particular, domA∗ ⊂ kerA∗.

(ii)⇒(iii). Let {f, g} ∈ A∗. Now f ∈ domA∗ implies that f ∈ kerA∗. Therefore
{f, 0} ∈ A∗ and then also {0, g} ∈ A∗, or g ∈ mulA∗. This shows that {f, g} ∈ domA∗×
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mulA∗. Conversely, let {f, g} ∈ domA∗ × mulA∗. Then {0, g} ∈ A∗. Moreover, f ∈
domA∗ and by (ii), f ∈ kerA∗, i.e., {f, 0} ∈ A∗. Thus {f, g} ∈ A∗.

(iii)⇒(iv). Taking adjoints in (iii) yields A∗∗ = (mulA∗)⊥ × (domA∗)⊥, which gives
(iv) by means of Lemma 2.3.

(iv)⇒(i). Now ranA∗∗ = mulA∗∗ gives ranA ⊂ mulA∗∗. Thus A is singular.
The last statement is clear from the equivalence of (i)–(iv).

The following characterizations for regularity of A are immediate from the definitions.
Further characterizations of regularity are given after componentwise decompositions
have been introduced; see Proposition 3.11.

Proposition 3.4. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) A is regular, i.e., a closable operator;
(ii) mulA∗∗ = {0};
(iii) A∗ is densely defined.

Proof. The equivalence of (i) and (ii) holds by definition of closability. The equivalence
of (ii) and (iii) is obtained from Lemma 2.3.

Boundedness of the regular and singular parts of A in Theorem 3.2 can be character-
ized as follows.

Proposition 3.5. Let A be a relation in a Hilbert space H. Then:

(i) Areg is a bounded operator if and only if domA∗ is closed;
(ii) Asing is a bounded operator if and only if it is the zero operator on domA, i.e.,

Asing = domA× {0}.

In particular, if ranAsing 6= {0} then Asing is either an unbounded operator or a multi-
valued relation with mulAsing = mulA.

Proof. (i) According to Theorem 3.2, Areg is regular (i.e. closable) and (Areg)∗∗ =
(A∗∗)reg. Hence by Lemma 2.1, Areg is bounded if and only if (A∗∗)reg is bounded, or
equivalently, dom(A∗∗)reg = domA∗∗ is closed. Then, equivalently, domA∗ is closed by
Theorem 2.11.

(ii) Assume that Asing is a bounded operator, so that also (Asing)∗∗ is a bounded
operator. According to Theorem 3.2, Asing is singular, so that

ranAsing ⊂ mul (Asing)∗∗ = {0}.

Therefore, Asing = domA×{0}. Conversely, if Asing = domA×{0} then ranAsing = {0},
and Asing is bounded and singular.

The last statement is immediate from (ii) and (3.9) in Theorem 3.2.

Note that by Proposition 3.5, domA∗ is closed if and only if Areg is bounded, which
by Corollary 2.13 is equivalent to dom (Areg)∗ = H. Thus, domA∗ is closed if and only if
dom (Areg)∗ = H, which is also clear from the identity

dom (Areg)∗ = domA∗ ⊕mulA∗∗.
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From Proposition 2.12 one obtains, in place of part (i) in Proposition 3.5, the following
formally weaker, but equivalent, criterion for boundedness of Areg.

Corollary 3.6. Areg is a bounded operator if and only if ran (A∗∗)reg ⊂ domA∗, or
equivalently, ran (Areg)∗∗ ⊂ domA∗.

Proof. By Theorem 3.2, (Areg)∗∗ = (A∗∗)reg and hence the assertion follows from Propo-
sition 3.5(i) and the equivalence of items (i) and (ii) in Proposition 2.12.

Corollary 3.7. Let A be a relation in a Hilbert space H. Then

A ⊂ Areg +̂ (A∗∗)mul ⊂ (A∗∗)reg +̂ (A∗∗)mul.

Proof. Let {f, f ′} ∈ A and consider f ′ = Pf ′ + (I − P )f ′. This leads to

{f, f ′} = {f, Pf ′}+ {0, (I − P )f ′}.

Hence, the first inclusion is clear. Furthermore, the second inclusion follows from

Areg ⊂ (Areg)∗∗ = (A∗∗)reg,

where the identity holds by Theorem 3.2.

Remark 3.8. Let A be a relation in a Hilbert space H, which satisfies mulA∗∗ ⊂ mulA∗.
Then W(A) =W(Areg). To see this, observe that

(Aregf, f) = (Pf ′, f) = (f ′, f), {f, f ′} ∈ A;

cf. Lemma 2.4.

3.2. Componentwise decompositions of relations via the operator part. By
means of the Hilbert space HA the restriction Aop of A is defined by

(3.10) Aop
def= {{f, g} ∈ A; g ∈ HA}.

Equivalently, Aop can be written in the following way:

(3.11) Aop = A ∩ (H× HA).

By definition Aop is (the graph of) an operator in H (see (2.1)) and clearly

(3.12) Aop ⊂ Areg,

where Areg is as in (3.6). Since Areg is closable in H, the operator Aop is also closable
in H. By means of the multivalued part of A the restriction Amul of A is defined by

(3.13) Amul
def= {0} ×mulA.

In particular, the relation Amul is closed in H × H if and only if the subspace mulA is
closed in H. By taking adjoints in (3.13) one gets

(3.14) (Amul)∗ = (mulA)⊥ × H,

so that Amul is a symmetric relation in H. By taking adjoints in (3.14) one gets

(3.15) (Amul)∗∗ = {0} ×mulA.

The following theorem is concerned with the decomposition of a, not necessarily closed,
relation A in the graph sense via its multivalued part.
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Theorem 3.9. Let A be a relation in a Hilbert space H. If there exists a relation B in H

such that

(3.16) A = B +̂Amul, ranB ⊂ HA,

then the sum in (3.16) is direct and B is a closable operator which coincides with Aop.
In particular, the decomposition of A in (3.16) is unique.

Proof. It follows from (2.1) that the sum in (3.16) is direct. The equality in (3.16) implies
that B ⊂ A and domB = domA. Since ranB ⊂ HA, it follows from (3.10) that B ⊂ Aop;
in particular, B is a closable operator in H. Furthermore, the inclusion B ⊂ Aop implies
that domA = domB ⊂ domAop, and thus domAop = domA. Since Aop and B ⊂ Aop

are (closable) operators with domB = domAop, the equality B = Aop follows.

Hence if A admits a componentwise sum decomposition of the form (3.16), then

(3.17) A = Aop +̂Amul,

and Aop in (3.10) can be viewed as the minimal operator part of A which together with
Amul decomposes A as a componentwise sum; cf. (2.12). Clearly, by (3.5) the condition
ranB ⊂ HA = H 	 mulA∗∗ implies that ranB ⊂ H 	 mulA. It is precisely in the case
where mulA is dense in mulA∗∗ (recall that A is not necessarily closed) that the condition
ranB ⊂ HA in (3.16) is equivalent to the condition ranB ⊂ H	mulA.

A relation A in a Hilbert space H is said to be decomposable if the componentwise
decomposition (3.16), or equivalently, (3.17) is valid; cf. Subsection 1.2. The next theorem
gives necessary and sufficient conditions for A to be decomposable and, furthermore, re-
lates the decomposition of the relation A in (3.17) to the operatorwise sum decomposition
of A in (3.8).

Theorem 3.10. Let A be a relation in a Hilbert space H, let P be the orthogonal projection
from H onto HA = domA∗, and let the relations Areg, Amul, and Aop be defined as above.
Then the following statements are equivalent:

(i) A is decomposable;
(ii) domAop = domA;
(iii) Areg = Aop;
(iv) Areg ⊂ A;
(v) ran (I − P )A ⊂ mulA;
(vi) A = Areg +̂Amul.

Proof. (i)⇒(ii). This implication is clear, since domAmul = {0}.
(ii)⇒(iii). The assumption gives domAop = domA = domAreg. Now (3.12) implies

that Aop = Areg, since Aop and Areg are operators.
(iii)⇒(iv). This implication is clear, since Aop ⊂ A by definition.
(iv)⇔(v). Let {f, g} ∈ A and write {f, g} = {f, Pg} +̂ {0, (I − P )g}. Here {f, Pg} ∈

Areg and the condition {f, Pg} ∈ A is equivalent to {0, (I − P )g} ∈ A. This shows that
Areg ⊂ A if and only if (I − P )(ranA) ⊂ mulA, which proves the claim.

(iv)&(v)⇒(vi). By decomposing {f, g} ∈ A as {f, g} = {f, Pg} +̂ {0, (I − P )g} one
concludes that A ⊂ Areg +̂Amul. The reverse inclusion is clear, and thus (vi) follows.
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(vi)⇒(i). It suffices to prove that Areg = Aop. The equality in (vi) implies that
Areg ⊂ A. Hence, if {f, g} ∈ Areg then {f, g} ∈ A, g ∈ HA, and thus {f, g} ∈ Aop.
Therefore, Areg ⊂ Aop, while the reverse inclusion is always true; cf. (3.12).

This completes the proof.

Recall that A is a bounded operator if and only if ranA∗∗ ⊂ domA∗; see Corollary
2.13. From Theorem 3.10 one gets the following characterization for the essentially weaker
condition ranA ⊂ domA∗.

Proposition 3.11. Let A be a relation in a Hilbert space H. Then the following state-
ments are equivalent:

(i) ranA ⊂ domA∗ (= HA);
(ii) Aop = A;
(iii) A is regular, i.e., a closable operator;
(iv) HA = H;
(v) A is a decomposable operator.

Proof. (i)⇔(ii). This is clear from the definition of Aop in (3.10).
(ii)⇒(iii). If Aop = A then, together with Aop, A is closable.
(iii)⇒(iv). If A is closable, then mulA∗∗ = {0} and hence HA = H.
(iv)⇒(v). If HA=H then Areg =A and hence A is decomposable by Theorem 3.10(iv).
(v)⇒(i). If A is a decomposable operator, then Amul = {0}×{0} and hence (I−P )A

= 0 by Theorem 3.10(v). This means that ranA ⊂ ker(I − P ) = HA.

The next result is clear from Proposition 3.11.

Corollary 3.12. An operator A in a Hilbert space H is decomposable if and only if it
is regular, i.e., Asing = 0.

Hence, an operator A is decomposable in the sense of Theorem 3.9 if and only if it is
closable; in this case Amul = {0} × {0} and A = Aop. In this sense the decomposability
property introduced via Theorem 3.9 can be seen as an extension to linear relations of
the notion of closability of operators.

Singular operators and relations are not in general decomposable; for them the fol-
lowing result holds.

Proposition 3.13. Let A be a relation in a Hilbert space H. Then

(i) A is singular and decomposable if and only if A = domA × mulA, or equivalently,
domA = kerA.

(ii) A singular operator A is decomposable if and only if it is bounded, or equivalently, A
is the zero operator on its domain, i.e., A = domA× {0}.

Proof. (i) The relation A is singular if ranA ⊂ mulA∗∗. This is equivalent to Areg =
domA×{0}. By Theorem 3.10, A is decomposable if and only if A = Areg +̂Amul. Hence,
if A is singular and decomposable, then A = domA × mulA. Conversely, if A is of the
form A = domA×mulA, then clearly A is singular and decomposable. Furthermore, it
is easy to check that A = domA×mulA is equivalent to domA = kerA.

(ii) This is clear from part (i) and Proposition 3.5(ii).
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Next some sufficient conditions for decomposability of relations are given.

Corollary 3.14. If the relation A satisfies mulA = mulA∗∗, then A is decomposable
and the relation Amul is closed.

Proof. Note that I−P is the orthogonal projection onto mulA∗∗. Therefore, in this case
ran (I − P )A ⊂ mulA∗∗ = mulA, and hence A is decomposable by Theorem 3.10(v).
Since A∗∗ is closed, also mulA = mulA∗∗ and Amul are closed.

Corollary 3.15. If the relation A is a closed, then A is decomposable and the relations
Aop = Areg and Amul are closed.

Proof. Since A is closed, mulA = mulA∗∗ and the first statement is obtained from
Corollary 3.14. Moreover, it is clear from (3.11) that Aop is closed.

Later, in Proposition 3.21, it is shown that if mulA is closed then the sufficient
condition mulA = mulA∗∗ for decomposability becomes also necessary.

Let A be a relation in the Hilbert space H which is not necessarily closed. Then the
closure of A is given by A∗∗; recall that (A∗∗)mul = {0}×mulA∗∗. It is useful to observe
that

mulA ⊂ mulA ⊂ mulA∗∗,

and, furthermore, that

(3.18) (Amul)∗∗ = (A∗∗)mul ⇔ mulA = mulA∗∗;

cf. (3.15). Observe that HA∗∗ = HA. Therefore the operator (A∗∗)op is given by

(3.19) (A∗∗)op = A∗∗ ∩ (H× HA).

It is clear from (3.11), (3.13), and (3.19) that Aop ⊂ (A∗∗)op and Amul ⊂ (A∗∗)mul.
Therefore, Corollary 3.15, applied to A∗∗, implies that

(Aop)∗∗ ⊂ (A∗∗)op, (Amul)∗∗ ⊂ (A∗∗)mul.

The following result is a direct consequence of Theorem 3.10.

Proposition 3.16. Let A be a relation in a Hilbert space H. Then A∗∗ is decomposable
and has the following componentwise sum decomposition:

(3.20) A∗∗ = (A∗∗)op +̂ (A∗∗)mul.

Moreover, if the relation A is decomposable, then

(3.21) (Aop)∗∗ = (A∗∗)op, (Amul)∗∗ = (A∗∗)mul.

Proof. Let A be any relation in H. Then A∗∗ is closed, and by Corollary 3.15, A∗∗ is
decomposable, which leads to the decomposition (3.20).

Now assume that A is decomposable as A = Aop +̂ Amul. Then it follows from
ranAop ⊂ HA that

(3.22) A∗∗ = (Aop)∗∗ +̂ (Amul)∗∗.

The identities (3.22) and (3.15) lead to the decomposition

(3.23) A∗∗ = (Aop)∗∗ +̂ ({0} ×mulA).
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The operator Aop is closable and ranAop ⊂ HA. Hence, (Aop)∗∗ is an operator and
ran (Aop)∗∗ ⊂ HA. Because (Aop)∗∗ is an operator, it follows from (3.23) that mulA∗∗ =
mulA; thus (3.23) reads

A∗∗ = (Aop)∗∗ +̂ (A∗∗)mul.

An application of Theorem 3.9 to A∗∗ shows that (Aop)∗∗ = (A∗∗)op. This completes the
proof.

If a relation A is closed, then it is decomposable by Corollary 3.15, and Proposi-
tion 3.16 is a refinement of earlier results. Observe that in Proposition 3.16 one has

(3.24) (A∗∗)op = (A∗∗)reg = (Areg)∗∗

by Theorems 3.10 and 3.2. For a relation A which is not necessarily decomposable, it
follows from A ⊂ A∗∗ and (3.20) that

A ⊂ (A∗∗)op +̂ (A∗∗)mul.

This inclusion can also be seen from Corollary 3.7. If A is a relation and one of the
identities in (3.21) is not satisfied, then A is not decomposable. Although the conditions
in (3.21) are necessary for A to be decomposable, they are not sufficient. In fact, it is
possible that both identities in (3.21) are satisfied, while A is not decomposable; see
Example 3.25.

A relation A whose regular part is bounded need not be decomposable; see e.g. Ex-
ample 3.24. Decomposability of such relations is characterized in the next result.

Proposition 3.17. Let A be a relation in a Hilbert space H. Then the following state-
ments are equivalent:

(i) A is decomposable with a bounded operator part Aop;
(ii) Areg = Aop is bounded;
(iii) domA∗ is closed and Areg = Aop.

Furthermore, the following weaker statements are equivalent:

(iv) Aop is bounded, densely defined in domA, and (Amul)∗∗ = (A∗∗)mul;
(v) Areg is bounded and the conditions in (3.21) are satisfied;

(vi) domA∗ is closed and the conditions in (3.21) are satisfied.

If, in addition, ran (I − P )A ⊂ mulA or mulA is closed, then the conditions (iv)–(vi)
are also equivalent to the conditions (i)–(iii).

Proof. (i)⇔(ii). This is clear from Theorem 3.10; see items (i) and (iii).
(ii)⇔(iii). This is an immediate consequence of Proposition 3.5.
(iv)⇒(v). Since Aop ⊂ Areg and the operator Areg is closable, the assumption that

Aop is densely defined and bounded in domA leads to the equality

(Aop)∗∗ = (Areg)∗∗;

cf. Corollary 2.2. Hence (Areg)∗∗ and, in particular, Areg is bounded. Moreover, (Aop)∗∗ =
(A∗∗)op is now obtained from (3.24).
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(v)⇒(iv). If Areg is bounded then Aop ⊂ Areg is bounded, too. By Proposition 3.16,
(A∗∗)reg = (A∗∗)op. Hence, if (Aop)∗∗ = (A∗∗)op then domAop = dom (A∗∗)op =
dom (A∗∗)reg = domA (cf. Lemma 2.1), i.e., Aop is densely defined in domA.

(v)⇔(vi). Again this holds by Proposition 3.5.
To prove the last statement note that (i) implies (v) by Proposition 3.16. On the

other hand, if ran (I − P )A ⊂ mulA then A is decomposable by Theorem 3.10 and thus
(iv) implies (i). Similarly, the assumption that mulA is closed together with (Amul)∗∗ =
(A∗∗)mul implies that mulA = mulA∗∗, so that A is decomposable by Corollary 3.14.
Hence, again (iv) implies (i).

Proposition 3.17 indicates that even in the case where Areg is a bounded operator,
the equalities in (3.21) are not sufficient for the decomposability of A. In fact, this may
happen also in the case where Areg is closed and bounded; see Example 3.28. However,
if mulA is closed then the situation is different; see Corollary 3.22.

3.3. Componentwise decompositions for relations via the multivalued part.
Theorem 3.10 shows that a relation A in a Hilbert H is decomposable in the sense of
Theorem 3.9 if and only if Aop = Areg, where Areg = PA with P the orthogonal projection
from H onto HA = H	mulA∗∗. Closely related to the regular part Areg is the relation

(3.25) Am
def= PmA = {{f, Pmf

′}; {f, f ′} ∈ A},

where Pm is the orthogonal projection from H onto H	mulA. Am can be thought of as
the maximal operator part of A; cf. Theorem 3.18 below. Observe that

mulAm = {Pmf
′; {0, f ′} ∈ A} = {0},

i.e., Am is an operator. Note that

(3.26) H = domA⊕mulA∗∗ = domA⊕ (mulA∗∗ 	mulA)⊕mulA,

so that ranP ⊂ ranPm. Therefore Areg = PAm and, in addition,

(3.27) Aop ⊂ Am.

The operator Am can be used to give a further equivalent condition for A to be decom-
posable, which is stated as item (ii) in the next theorem.

Theorem 3.18. Let A be a relation in a Hilbert space H. Then Am is an operator and
the following statements are equivalent:

(i) A is decomposable;
(ii) Am = Aop.

Furthermore, the following weaker statements are equivalent:

(iii) Am = Areg;
(iv) ranAm ⊂ HA;
(v) mulA∗∗ = mulA;
(vi) Am is a closable operator.

If, in addition, mulA is closed, then the conditions (iii)–(vi) are also equivalent to the
conditions (i)–(ii).
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Proof. (i)⇒(ii). It suffices to show that Am ⊂ As. Let A be decomposed as in (3.17). If
{f, f ′} ∈ A, then {f, f ′} = {f,Aopf}+{0, ϕ} with ϕ ∈ mulA. In particular, Pmf

′ = Aopf

for {f, f ′} ∈ A, i.e. Am ⊂ Aop.
(ii)⇒(i). If Am = Aop, then domAop = domA and by Theorem 3.10 this is equivalent

to A being decomposable.
Next the equivalence of (iii)–(vi) will be proved.
(iii)⇒(iv). This is clear since ranAreg ⊂ HA.
(iv)⇒(v). Observe that (Am)∗ = (PmA)∗ = A∗Pm and (Am)∗∗ = (A∗Pm)∗ ⊃ PmA

∗∗

by Lemma 2.8. The assumption in (iv) implies that ran (Am)∗∗ ⊂ HA; cf. (2.1). Then also
ranPmA

∗∗ ⊂ HA and, in particular, Pm(mulA∗∗) ⊂ HA, which means that mulA∗∗ =
mulA; cf. (3.26).

(v)⇔(vi). It follows from Lemma 2.9 that (Am)∗ = A∗Pm = A∗ ⊕̂ (mulA × {0}), so
that

dom (Am)∗ = domA∗ ⊕mulA.

Now the operator Am is closable if and only if (Am)∗ is densely defined (cf. Proposition
3.4), which is equivalent to mulA∗∗ = mulA.

(v)⇒(iii). If mulA∗∗ = mulA then Pm = P and, therefore, Am = PA = Areg.
Next it is shown that the conditions (iii)–(vi) follow from the conditions (i) and (ii).

Namely, if Am = Aop or, equivalently, A is decomposable, then Aop = Areg by Theo-
rem 3.10, and hence Am = Aop = Areg.

As to the last statement of the theorem, observe that if mulA is closed then the
condition (v) implies (i) by Corollary 3.14.

Observe that the conditions (iii)–(vi) in Theorem 3.18 do not in general imply de-
composability of A; see for instance Example 3.25.

Next, decompositions of linear relations A whose multivalued part mulA is closed in
the Hilbert space H will be briefly treated.

Lemma 3.19. Let A be a relation in a Hilbert space H with mulA closed. Then A admits
the decomposition

(3.28) A = Am +̂Amul,

where Am is an operator with domAm = domA.

Proof. It has been shown that Am is an operator and that domAm = domA. Now,
rewrite A as follows:

A = PmA+ (I − Pm)A = {{f, Pmg} +̂ {0, (I − Pm)g}; {f, g} ∈ A}.

This implies that A ⊂ Am +̂Amul.
Conversely, since mulA is closed, one has Amul ⊂ A and thus also PmA ⊂ A. There-

fore, PmA+ (I − Pm)A ⊂ A.

The decomposition of A in Lemma 3.19 for relations A with mulA closed is not of
the type as introduced via Theorem 3.9, since the condition ranAm ⊂ HA (= domA∗)
need not be satisfied. This implies that the decomposition given in Lemma 3.19 does not
behave well for instance under closures: in particular, the operator Am in (3.28) is not
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in general closable. In fact, when mulA is closed, Theorem 3.18 shows that the operator
Am is closable precisely when A is decomposable in the sense of Theorem 3.9.

One can reformulate the situation also by means of the decompositions of the form
(3.17) alone.

Corollary 3.20. Let A be a relation in a Hilbert space H with mulA closed. Then

A is decomposable ⇔ Am is a decomposable operator.

In this case, the decomposition of Am is trivial, i.e., Am = (Am)op, and the decompositions
in (3.17) and (3.28) coincide:

(3.29) A = Am +̂Amul = Aop +̂Amul.

Proof. According to Proposition 3.11 the operator Am is decomposable if and only if
(Am)op = Am, or equivalently, Am is closable. This means that mulA = mulA∗∗. By
Theorem 3.18 this last condition is equivalent to A being decomposable. In this case
Am = Aop and (3.29) follows.

The characterizations of decomposability of A in the case where mulA is closed are
collected in the next result. It shows that decomposability of A (with mulA closed) is
a natural counterpart and extension of the notion of closability of operators; see also
Proposition 3.11.

Proposition 3.21. Let A be a relation in a Hilbert space H with mulA closed. Then the
following statements are equivalent:

(i) A is decomposable;
(ii) Am = Aop;
(iii) Am = Areg;
(iv) ranAm ⊂ HA;
(v) mulA∗∗ = mulA;
(vi) Am is a closable operator.

Proof. Since mulA is closed, the result is obtained from Theorem 3.18.

The next result enhances Proposition 3.17.

Corollary 3.22. Let A be a relation in a Hilbert space H with mulA closed. Then the
following statements are equivalent:

(i) A is decomposable with a bounded operator part Aop;
(ii) the operator Am in (3.25) is bounded.

Proof. (i)⇒(ii). Since A is decomposable, Proposition 3.21 shows that Am = Aop, and
hence (ii) follows.

(ii)⇒(i). If Am is bounded, then it is closable (see Lemma 2.1). Hence, by Proposi-
tion 3.21, A is decomposable and Aop = Am is bounded.

Observe that the condition (ii) in Corollary 3.22 is essentially weaker than, for in-
stance, the condition (ii) (or (v)) in Proposition 3.17; in particular, no equality Am = Aop

is assumed in part (ii) of Corollary 3.22. In fact, Corollary 3.22 is a natural extension of
the basic Lemma 2.1 stating that a bounded operator is closable.
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3.4. Componentwise decompositions of adjoint relations. Let A be a relation in
a Hilbert space H, then its adjoint A∗ is automatically a closed (linear) relation. Let
HA∗ = H	mulA∗ and let P∗ be the orthogonal projection from H onto HA∗ . Recall the
definitions of the regular part of A∗:

(A∗)reg
def= {{f, P∗g}; {f, g} ∈ A∗},

and of the singular part of A∗:

(A∗)sing
def= {{f, (I − P∗)g}; {f, g} ∈ A∗}.

Observe that dom (A∗)reg = dom (A∗)sing = domA∗. The relation A∗ admits the canoni-
cal operatorwise sum decomposition:

A∗ = (A∗)reg + (A∗)sing,

where (A∗)reg is a regular operator in H and (A∗)sing is a singular relation in H; cf.
Theorem 3.2. By means of the Hilbert space HA∗ the restriction (A∗)op of A∗ is defined
by

(A∗)op
def= {{f, g} ∈ A∗; g ∈ HA∗}.

Observe that (A∗)op can be rewritten in the following way:

(A∗)op = A∗ ∩ (H× HA∗).

The next decomposition result follows from Theorem 3.9, Theorem 3.10, and Corollary
3.15.

Theorem 3.23. Let A be a relation in a Hilbert space H. Then (A∗)op = (A∗)reg is a
closed operator and A∗ has the following componentwise decomposition:

(3.30) A∗ = (A∗)op +̂ (A∗)mul.

If there exists a relation B in H such that

(3.31) A∗ = B +̂ (A∗)mul, ranB ⊂ HA∗ ,

then the sum in (3.31) is direct and B = (A∗)op is a closed operator. In particular, the
decomposition of A∗ in (3.31) is unique.

3.5. Some examples of operators or relations which are not decomposable.
Let A be a relation in a Hilbert space H. If A is decomposable then Proposition 3.16
shows that both identities in (3.21) are satisfied. By Corollary 3.12 any operator which
is not regular or, equivalently, not closable is not decomposable, as it violates the second
identity in (3.21) in Proposition 3.16. This subsection contains examples which illustrate
the absence of decomposability.

The first example provides a singular operator which is not regular, but for which
the first identity in (3.21) holds. The second example shows a relation which is not
decomposable as it violates the first identity in (3.21), while the second identity in (3.21)
is satisfied. In the second example there is also a relation for which both identities (3.21)
are satisfied, while the relation is not decomposable. The third example gives a relation A
which is not decomposable and which satisfies neither of the identities (3.21). Finally, the
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fourth example shows that a decomposable relation A whose operator part is bounded,
can become nondecomposable after a one-dimensional perturbation of its operator part.

Example 3.24. Let T = T ∗ be an unbounded selfadjoint operator in a Hilbert space H

and let H+ ⊂ H ⊂ H− be the rigged Hilbert spaces associated with |T |1/2; cf. [7]. Denote
the duality between H+ and H− by (f, ϕ), f ∈ H+ and ϕ ∈ H−. With elements ϕ ∈ H−\H
and y0 ∈ H define the following unbounded operator A in H:

(3.32) Af
def= (f, ϕ)y0, f ∈ domA

def= H+ = dom |T |1/2.

Clearly, the operator A is densely defined. To determine A∗ assume that {h, k} ∈ H× H

satisfies
0 = (k, f)− (h,Af) = (k, f)− (h, (f, ϕ)y0) = (k − (h, y0)ϕ, f)

for all f ∈ domA; here (k, f) is meant in the sense of the duality. Since domA =
dom |T |1/2 = H+, the previous identities imply that k − (h, y0)ϕ = 0. Now k ∈ H and
ϕ ∈ H−\H, thus k = 0 and (h, y0) = 0. Conversely, if {h, k} ∈ H×H, and (h, y0) = 0 and
k = 0, then {h, k} ∈ A∗. Therefore, A∗ is given by

A∗ = {{h, 0} ∈ H× H; (h, y0) = 0}.

Note that A∗ is (the graph of) an operator (since A is densely defined) and that domA∗

is not dense. Clearly,

(3.33) A∗∗ = {{f, g} ∈ H× H; g ∈ span{y0}} = H× span{y0},

so that

(3.34) mulA∗∗ = span{y0}.

The orthogonal projection P onto HA = (span{y0})⊥ satisfies Py0 = 0. Therefore the
canonical decomposition (3.8) of A is trivial:

(3.35) Areg = {{f, 0}; f ∈ domA}, A = Asing.

Next, observe that the operator Aop in (3.10) is given by

(3.36) Aop = {{f, 0}; f ∈ domA, (f, ϕ) = 0}.

It follows from the identity (3.34) that the operator A is not decomposable (cf. Corollary
3.12); of course, this also follows by comparing (3.35) and (3.36). Since Aop is densely
defined it follows that

(Aop)∗∗ = H× {0},

and it follows from (3.33) that

(A∗∗)op = {{f, g} ∈ A∗∗; g ∈ Hop} = H× {0}.

Hence, the first equality in (3.21) is satisfied, but the second is not. Finally, observe that
while the operator A in (3.32) is singular and not decomposable, its closure A∗∗ is singular
and decomposable (cf. (3.33) and Proposition 3.13).

Example 3.25. Let M be a dense subspace of the Hilbert space H and let B be a relation
in H. Define the relation A in H by

(3.37) A
def= B +̂ ({0} ×M),
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so that domA = domB and mulA = mulB + M. It follows from (3.37) that

A∗ = B∗ ∩ (M⊥ × H),

and, since M is dense, one obtains

(3.38) A∗∗ = clos(B∗∗ +̂ ({0} × H)).

Observe that B∗∗ +̂ ({0} × H) = domB∗∗ × H. Hence, by means of (2.1) it follows from
(3.38) that

(3.39) A∗∗ = domB∗∗ × H = domB × H.

It is clear that

(3.40) mulA = H, mulA∗∗ = H.

In particular, HA = {0} (see (3.4)), so that the orthogonal projection P is trivial: P = 0.
Therefore the canonical decomposition (3.8) of A is trivial:

(3.41) Areg = domB × {0}, A = Asing.

Next, observe that Aop in (3.10) is given by

(3.42) Aop = A ∩ (H× {0}) = kerA× {0}.

It follows from (3.41) and (3.42) that

(3.43) A decomposable ⇔ kerA = domB;

cf. Proposition 3.13. The identities (3.42) and (3.39) give

(3.44) (Aop)∗∗ = kerA× {0},

and

(3.45) (A∗∗)op = domB × {0}.

Hence, as to the first equality in (3.21) of Proposition 3.16, a comparison of (3.44) and
(3.45) leads to

(3.46) (Aop)∗∗ = (A∗∗)op ⇔ kerA = domB.

It follows from (3.40) that the second equality (Amul)∗∗ = (A∗∗)mul in (3.21) is satisfied.
The conditions (3.43) and (3.46) will now be reformulated in a special case.

Lemma 3.26. Let M be a dense subspace of the Hilbert space H and let B be a relation
in H. Define the relation A by (3.37) and assume that ranB ∩M = {0}. Then

(3.47) A decomposable ⇔ kerB = domB ⇔ B singular and decomposable,

and

(3.48) (Aop)∗∗ = (A∗∗)op ⇔ kerB = domB ⇒ B singular.

Proof. It follows from the definition (3.37) that kerB ⊂ kerA. To show the converse
inclusion, let {f, 0} ∈ A, so that {f, 0} = {f, g}+{0, ϕ} with {f, g} ∈ B and ϕ ∈M. The
condition ranB∩M = {0} implies that g = 0 and ϕ = 0. In particular, {f, 0} ∈ B. Hence
kerB = kerA. The first equivalences in (3.47) and (3.48) now follow from (3.43), (3.46).
The second equivalence in (3.47) holds by Proposition 3.13. Finally, to see the implication
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in (3.48) observe that domB = kerB ⊂ kerB∗∗, so that B−1, and thus also B, is singular
by Proposition 3.3.

Let B be a nontrivial injective operator which satisfies ranB ∩ M = {0}. Then
domB 6= kerB = {0} and the first equality in (3.21) is not satisfied (and A is not
decomposable). For instance, take B = span{h, h} where h ∈ H is nontrivial and h 6∈M.

Let B be the densely defined operator in Example 3.24 (see (3.32)), where y0 6∈M is
a nontrivial vector, so that ranB ∩M = {0}. Then B satisfies domB = kerB and the
first equality in (3.21) is satisfied. Clearly, B does not satisfy kerB = domB, so that A
is not decomposable.

Example 3.27. Let M be a nonclosed subspace and let y0 ∈ H, and assume that H =
clos M⊕span{y0}. Let B be a densely defined singular operator with mulB∗∗ = span{y0};
cf. e.g. Example 3.24. Let the bounded operator C ∈ B(H), C 6= 0, have the property that
ranC ⊂ clos M \M. The operator B +C is densely defined with dom(B +C) = domB,
and according to (2.15),

(B + C)∗ = B∗ + C∗, (B + C)∗∗ = B∗∗ + C,

so that
dom (B + C)∗∗ = domB∗∗, mul (B + C)∗∗ = span{y0},

cf. (2.14). Define the relation A in H by

A
def= (B + C) +̂ ({0} ×M),

so that A∗ = (B + C)∗ ∩ (M⊥ × H), which leads to

(3.49) A∗∗ = span{(B + C)∗∗ +̂ ({0} × clos M)}.

Observe that (B+C)∗∗ = (B+C)∗∗ +̂({0}×span{y0}) and since clos M⊕span{y0} = H,
one concludes that

(3.50) (B + C)∗∗ +̂ ({0} × clos M) = (B + C)∗∗ +̂ ({0} × H) = domB∗∗ × H.

A combination of (3.49) and (3.50) leads to

(3.51) A∗∗ = domB∗∗ × H = H× H,

since domB is dense in H. In particular, mulA∗∗ = H, so that HA = {0} (see (3.4))
and the orthogonal projection P is trivial: P = 0. Therefore the canonical decomposition
(3.8) of A is trivial:

(3.52) Areg = domB × {0}, A = Asing.

Next, observe that Aop in (3.10) is given by Aop = A ∩ (H× {0}), so that

(3.53) Aop = (kerB ∩ kerC)× {0},

since ran(B +C)∩M = {0} and ranB ∩ ranC = {0}. Therefore, a comparison of (3.52)
and (3.53) shows that the relation A is not decomposable; already domB 6= kerB since
by construction B is an operator with ranB = span{y0}. Furthermore, note that (3.53)
implies that

(3.54) (Aop)∗∗ = clos(kerB ∩ kerC)× {0},
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while it follows from (3.51) that

(3.55) (A∗∗)op = H× {0}.

A comparison of (3.54) and (3.55) shows that the first identity of (3.21) is not satisfied,
since kerC 6= H by the assumption C 6= 0. Finally, the identities mulA∗∗ = H and
mulA = M and mulA = clos M imply that the second identity of (3.21) is not satisfied;
cf. (3.18).

Hence, the relation A in this example is not decomposable and, moreover, the two
identities (3.21) in Proposition 3.16 are not satisfed. Another way to construct such an
example is to take the orthogonal sum of the relations in Examples 3.24 and 3.25.

The next example shows that a decomposable relation A whose operator part is
bounded, can become nondecomposable after a one-dimensional perturbation of its op-
erator part.

Example 3.28. Let B be a bounded operator in H and let M ⊂ H	ranB be a nonclosed
subspace. Define the relation A by A = B +̂ ({0} ×M), so that

A∗∗ = B∗∗ +̂ ({0} × clos M).

The relation A is decomposable with Areg = B and Amul = {0} ×M. Let f0 ∈ domB

and let e ∈ (clos M) \M. Define Bef = Bf + (f, f0)e, f ∈ domB, and define the relation
Ae by Ae = Be +̂ ({0} ×M), so that

A∗∗e = B∗∗e +̂ ({0} × clos M).

Observe that mulAe=mulA=M and mulA∗∗e =mulA∗∗=clos M. However, ran (I−P )Ae
= span{e} + M so that ran (I − P )Ae 6⊂ mulAe, and thus Ae is not decomposable by
Theorem 3.10. In this case Ae still satisfies the equalities in (3.21):

((Ae)op)∗∗ = (B �f⊥0 )∗∗ = (B∗∗e +̂ ({0} × clos M))op = ((Ae)∗∗)op

and
((Ae)mul)∗∗ = {0} × clos M = ((Ae)∗∗)mul.

4. Orthogonal componentwise decompositions of relations

Let A be a decomposable relation in a Hilbert space H, so that it has a component-
wise sum decomposition as in (3.17). Furthermore, the adjoint A∗, being closed, has a
componentwise decomposition as in (3.30). Necessary and sufficient conditions for these
componentwise decompositions to be orthogonal will be given.

4.1. Orthogonality for componentwise sum decompositions of relations. For
any relation A in a Hilbert space H the identities

(Amul)∗ = (mulA)⊥ × H, (Amul)∗∗ = {0} ×mulA

are valid, where the adjoint is, as usual, with respect to the Hilbert space H. The last
identity is concerned with taking closures, which are automatically with respect to the
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Hilbert space mulA∗∗. It is also useful to consider the adjoint of Amul as a relation in the
Hilbert space mulA∗∗. The proof of the following lemma is straightforward.

Lemma 4.1. Let A be a relation in a Hilbert space H. The adjoint of the relation Amul =
{0} ×mulA in the Hilbert space mulA∗∗ is given by

(Amul)∗ = (mulA∗∗ 	mulA)×mulA∗∗.

In particular,

mulA∗ = mulA∗∗ ⇔ (Amul)∗ = (Amul)∗∗,

mulA = mulA∗∗ ⇔ (Amul)∗ = Amul.

Hence, the relation Amul is essentially selfadjoint in the Hilbert space mulA∗∗ if
and only if mulA = mulA∗∗, and the relation Amul is selfadjoint in the Hilbert space
mulA if and only if mulA = mulA∗∗. The following proposition is a further specification
of the results in Proposition 3.16. Recall that HA = HA∗∗ ; it will be shown that the
decompositions (3.17) and (3.20) are orthogonal with respect to the splitting H = HA ⊕
mulA∗∗, simultaneously.

Proposition 4.2. Let A be a decomposable relation in a Hilbert space H. Then the
componentwise sum decomposition (3.17) of A is orthogonal,

(4.1) A = Aop ⊕̂Amul,

if and only if

(4.2) domA ⊂ domA∗ or, equivalently, mulA∗∗ ⊂ mulA∗.

In this case Amul is essentially selfadjoint in mulA∗∗. Moreover, in this case the compo-
nentwise sum decomposition (3.20) of A∗∗ is automatically orthogonal,

(4.3) A∗∗ = (A∗∗)op ⊕̂ (A∗∗)mul,

and (A∗∗)mul is selfadjoint in mulA∗∗.

Proof. It is assumed that A is decomposable, i.e., A = Aop +̂Amul. Clearly, the subspaces
ranAop and mulA are orthogonal; cf. (3.11). Hence, the componentwise sum decompo-
sition is orthogonal if and only if the condition domAop ⊂ H 	 mulA∗∗ is satisfied.
Note that by Theorem 3.10 this last condition is equivalent to (4.2); cf. Lemma 2.4. Fur-
thermore, the decomposability of A implies that mulA = mulA∗∗; cf. Proposition 3.16.
Lemma 4.1 now guarantees that Amul is essentially selfadjoint in mulA∗∗. It is clear that
(A∗∗)mul is selfadjoint in mulA∗∗; cf. Lemma 4.1.

Corollary 4.3. Let A be a decomposable relation in a Hilbert space H. Then the fol-
lowing statements are equivalent:

(i) mulA∗∗ ⊂ mulA∗ and (A∗∗)op ∈ B(domA∗);
(ii) domA∗∗ = domA∗.

Proof. (i)⇒(ii). If mulA∗∗ ⊂ mulA∗, then (4.3) holds by Proposition 4.2. Moreover, if
(A∗∗)op ∈ B(domA∗), then

domA∗∗ = dom (A∗∗)op = domA∗.



Decompositions of linear relations 45

(ii)⇒(i). If domA∗∗ = domA∗, then mulA∗∗ = mulA∗; cf. Lemma 2.4. Hence (4.3)
holds by Proposition 4.2. Furthermore,

dom (A∗∗)op = domA∗∗ = domA∗.

Hence the closed operator (A∗∗)op is defined on all of domA∗, so that it is bounded by
the closed graph theorem.

Let A be a decomposable relation. Then it has already been shown in Proposition
3.16 that

(Aop)∗∗ = (A∗∗)op, (Amul)∗∗ = (A∗∗)mul.

When A is decomposable and satisfies (4.2), these equalities also follow from a comparison
between (4.1) and (4.3). Under the same circumstances, A is closed if and only if Aop

and Amul are closed; and Aop is densely defined if and only if domA = domA∗, which is
equivalent to mulA∗∗ = mulA∗.

Proposition 4.4. Let A be a relation in a Hilbert space H. Assume that there is a closable
operator B (in HA) such that

(4.4) A = B ⊕̂Amul.

Then B coincides with Aop. In particular, the relation A is decomposable and satisfies
the condition (4.2).

Proof. The assumption (4.4) implies that the condition in Theorem 3.9 is satisfied, so
that B = Aop. In particular, it follows that domAop = domA, so that A is decomposable
by Theorem 3.10. Since B is an operator in Hop it is clear that domA = domAop =
domB ⊂ HA = domA∗, which leads to (4.2).

A combination of Propositions 4.2 and 4.4 leads to the following corollary.

Corollary 4.5. Let A be a relation in a Hilbert space H. Then A has an orthogonal
decomposition of the form (4.1) if and only if A is decomposable and satisfies (4.2).

Corollary 4.6. Let A be a relation in a Hilbert space H which satisfies mulA = mulA∗∗,
so that A is decomposable and Amul is selfadjoint in mulA∗∗. Then A admits the orthog-
onal composition (4.1) if and only if mulA ⊂ mulA∗.

Proof. The condition mulA = mulA∗∗ implies that A is decomposable; cf. Corollary 3.14
and Lemma 4.1. Furthermore, the condition (4.2) in Proposition 4.2 is now equivalent to
mulA ⊂ mulA∗.

If A is a closed relation in a Hilbert space H, then A is decomposable and Amul is
selfadjoint in mulA∗∗; cf. Corollary 3.15 and Lemma 4.1. Hence A admits the orthogonal
composition (4.1) if and only if mulA ⊂ mulA∗ (see Corollary 4.6).

4.2. Orthogonality for componentwise sum decompositions of adjoint rela-
tions. Let A be a relation in a Hilbert space H. Since the relation A∗ is closed it is
decomposable and has the componentwise decomposition (3.30); cf. Theorem 3.23. The
adjoint of the relation (A∗)mul in the Hilbert space mulA∗ is given by

((A∗)mul)∗ = {0} ×mulA∗ = (A∗)mul,
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and the relation (A∗)mul is selfadjoint in the Hilbert space mulA∗; cf. Lemma 4.1. The
following result is obtained by combining Lemma 2.4, Corollary 3.15, Proposition 4.2,
and Proposition 4.4. The orthogonal componentwise decomposition is with respect to the
orthogonal splitting H = HA∗ ⊕mulA∗.

Proposition 4.7. Let A be a relation in a Hilbert space H. Then the componentwise sum
decomposition of A∗ in (3.30) is orthogonal,

(4.5) A∗ = (A∗)op ⊕̂ (A∗)mul,

if and only if

(4.6) mulA∗ ⊂ mulA∗∗.

Corollary 4.8. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) mulA∗ ⊂ mulA∗∗ and (A∗)op ∈ B(domA);
(ii) domA = domA∗.

Proof. (i)⇒(ii). If mulA∗ ⊂ A∗∗, then (4.5) holds by Proposition 4.7. Moreover, if
(A∗)op ∈ B(domA), then

domA∗ = dom (A∗)op = domA.

(ii)⇒(i). If domA = domA∗, then mulA∗ = mulA∗∗; cf. Lemma 2.4. Hence (4.5)
holds by Proposition 4.7. Furthermore, the closed operator (A∗)op is defined on all of
domA, so that it is bounded by the closed graph theorem.

Another way to decompose A∗ is to assume that A has an orthogonal componentwise
decomposition as in (4.1). Hence, the following orthogonal componentwise decomposition
is with respect to the orthogonal splitting H = HA ⊕mulA∗∗.

Proposition 4.9. Let A be a decomposable relation in a Hilbert space H, which satis-
fies (4.2). Then A∗ has the orthogonal componentwise decomposition

(4.7) A∗ = (Aop)∗ ⊕̂ (Amul)∗,

where (Aop)∗ and (Amul)∗ stand for the adjoints of Aop and Amul in Hop and mulA∗∗,
respectively. Moreover, (Amul)∗ = {0} ×mulA∗∗ is selfadjoint in mulA∗∗.

Proof. Taking adjoints in (4.1) gives (4.7). It follows from Proposition 4.2 that Amul is
essentially selfadjoint in mulA∗∗ or, equivalently, that (Amul)∗ is selfadjoint in mulA∗∗;
cf. Lemma 4.1.

Since the closable operator Aop need not be densely defined in HA its adjoint (Aop)∗ is
a relation with multivalued part mul (Aop)∗. The following result is a direct consequence
of (4.7).

Corollary 4.10. Let A be a decomposable relation in a Hilbert space H, which satisfies
(4.2). Then

mulA∗ 	mulA∗∗ = mul (Aop)∗,

so that
(A∗)mul = {0} × (mul (Aop)∗ ⊕mulA).
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A combination of Propositions 4.2 and 4.10 leads to a decomposition result for formally
domain tight relations.

Proposition 4.11. Let A be a decomposable relation which is formally domain tight.
Then A admits the orthogonal decomposition (4.1), where Aop is a formally domain tight
operator in Hop and Amul is essentially selfadjoint in mulA∗∗.

Proof. Since A is formally domain tight, it follows that mulA∗∗ ⊂ mulA∗. Since A is
assumed to be also decomposable, the conditions of Proposition 4.2 are satisfied. Hence
the orthogonal decomposition of A in (4.1) and the orthogonal decomposition of A∗

in (4.7) are valid. Recall that Amul = {0} × mulA and (Amul)∗ = {0} × mulA∗∗; cf.
Proposition 4.9. Hence, it follows from (4.1) and (4.7) that

domAop = domA ⊂ domA∗ = dom (Aop)∗.

In other words, the operator Aop is formally domain tight in Hop.

Let A be a relation in a Hilbert space H, which satisfies mulA∗∗ = mulA∗. Then
the orthogonal splitting H = HA ⊕ mulA∗∗ generated by mulA∗∗ coincides with the
orthogonal splitting H = HA∗ ⊕ mulA∗ generated by mulA∗. Hence, in this case the
orthogonal decompositions (4.1), (4.7), and (4.5) (cf. (4.6)) are with respect to the same
splitting.

Proposition 4.12. Let A be a decomposable relation in a Hilbert space H, which satisfies
mulA∗∗ = mulA∗. Then A admits the orthogonal decomposition (4.1) where Aop is a
densely defined operator in Hop and Amul is an essentially selfadjoint relation in mulA∗∗.
Moreover,

(4.8) (Aop)∗ = (A∗)op.

Proof. It follows from the condition mulA∗∗ = mulA∗ that the identity (4.5) is valid.
Since A is assumed to be decomposable, the condition mulA∗∗ = mulA∗ also implies
that the identity (4.1) holds. It follows from Corollary 4.10 that Aop is a densely defined
operator in Hop. The identity (4.1) itself shows that the identity (4.7) holds. Furthermore,
the condition mulA∗∗ = mulA∗ implies that both decompositions (4.5) and (4.7) are
relative to the same orthogonal splitting of the Hilbert space H. Therefore, the identity
(4.8) is immediate.

A combination of Propositions 4.2 and 4.12 leads to a decomposition result for domain
tight relations.

Proposition 4.13. Let A be a decomposable relation in a Hilbert space H, which is
domain tight. Then A admits the orthogonal decomposition (4.1) where Aop is a densely
defined domain tight operator in HA and Amul is essentially selfadjoint in mulA∗∗.

Proof. If A is a domain tight relation, so that domA = domA∗, then mulA∗∗ = mulA∗

and Proposition 4.12 applies. It follows from the decompositions (4.1) and (4.7), that

dom (Aop)∗ = dom (A∗)op = domA∗ = domA = domAop,

which shows that Aop is domain tight in HA.
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The relations A which are domain tight, i.e., domA = domA∗, and which satisfy
the additional condition mulA = mulA∗, can be characterized in terms of orthogonal
decompositions.

Proposition 4.14. Let A be a relation in a Hilbert space H. Then A is domain tight and
mulA = mulA∗ if and only if A = B ⊕̂ Amul where B is a densely defined domain tight
(closable) operator in HA and Amul is selfadjoint in mulA∗∗. In this case B = Aop.

Proof. (⇒) Assume that A is domain tight and that mulA = mulA∗. Then it follows
that mulA∗∗ = mulA. Hence, A is decomposable by Corollary 3.14 and Amul is selfadjoint
in mulA∗∗ by Lemma 4.1. By Proposition 4.13 it follows that Aop is a densely defined
domain tight operator in HA. Furthermore, Aop is closable, which is clear from the fact
that A is decomposable, but also from the fact that Aop is domain tight and densely
defined. According to Proposition 4.13 the relation A decomposes as A = Aop ⊕̂Amul.

(⇐) Assume that A = B ⊕̂Amul where B is a densely defied domain tight operator in
HA and Amul is selfadjoint in mulA∗∗. Then A∗ = B∗ ⊕̂Amul, so that domA = domB =
domB∗ = domA∗, and A is domain tight. The condition that Amul is selfadjoint in
mulA∗∗ implies that mulA = mulA∗∗; cf. Lemma 4.1. Since B is densely defined and
domain tight, it follows that B is a closable operator. Hence, by Proposition 4.4, the
identity B = Aop is established.

4.3. Some classes of relations with orthogonal componentwise decompositions.
This subsection describes orthogonal componentwise decompositions for some classes of
relations described via the numerical range and for some subclasses of domain tight
relations.

Let A be a decomposable relation in a Hilbert space H and assume that mulA∗∗ ⊂
mulA∗. Then

(4.9) W(A) =W(Aop).

To see this, note that Theorem 3.10 shows that Areg = Aop, and then apply Remark 3.8.
Now some consequences of the assumption W(A) 6= C are listed.

Proposition 4.15. Let A be a decomposable relation in a Hilbert space H such that
W(A) 6= C. Then the relation A admits the orthogonal decomposition (4.1), Amul is
essentially selfadjoint in mulA∗∗, and W(Aop) = W(A). Moreover, if ρ(A) 6= ∅, then
Aop is a closed densely defined operator in Hop, Amul is selfadjoint in mulA∗∗, and
ρ(Aop) 6= ∅.

Proof. By Lemma 2.30 the condition W(A) 6= C implies that mulA ⊂ mulA∗, and thus
also mulA ⊂ mulA∗. By Proposition 3.16 the condition that A is decomposable implies
that mulA = mulA∗∗. Therefore the inclusion mulA∗∗ ⊂ mulA∗ is valid. Since A is
assumed to be decomposable, Proposition 4.2 may be applied. The identity W(Aop) =
W(A) follows from (4.9).

If ρ(A) 6= ∅, then Lemma 2.32 shows that A is closed and mulA∗ = mulA. Hence,
Proposition 4.12 applies, so that Aop is densely defined closed operator in HA and mulA
is closed. The decomposition A = Aop ⊕̂Amul, where Amul is selfadjoint in mulA∗∗, shows
that A and Aop have the same resolvent set.
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Let A be a relation in a Hilbert space H. Then A is symmetric if and only ifW(A) ⊂ R.
A relation A is said to be dissipative if W(A) is a subset of the upper halfplane:

im (f ′, f) ≥ 0, {f, f ′} ∈ A,

and a relation A is said to be accretive if W(A) is a subset of the right halfplane:

re (f ′, f) ≥ 0, {f, f ′} ∈ A.

A relation A is said to be sectorial with vertex at the origin and semiangle α, α ∈ (0, π/2),
if W(A) is a subset of the corresponding sector in the right halfplane:

(4.10) (tanα) re (f ′, f) ≥ |im (f ′, f)|, {f, f ′} ∈ A;

cf. [3], [4], [18], [35]. A relation A is said to be nonnegative if W(A) is a subset of [0,∞).
In each of these cases the closure gives rise to a similar inequality. Hence, if the relation
A belongs to one of the above classes, it may be assumed in addition that A is closed.
Therefore Proposition 4.15 may be applied and the operator part Aop in the orthogonal
decomposition (4.1) belongs to the same class as the original relation A.

In each of these cases the relation A is said to be maximal with respect to the indi-
cated property if the complement of closW(A) (or one of its components) belongs to the
resolvent set so that ρ(A) is not empty. It can be shown that maximality is equivalent to
the absence of nontrivial (relation) extensions with the same property; cf. [26], [33], [14],
[18], [17].

Corollary 4.16. Let A be a maximal symmetric (dissipative, accretive, sectorial, non-
negative) relation in a Hilbert space H. Then A admits an orthogonal decomposition of
the form A = Aop ⊕̂ Amul, where Aop is a closed, densely defined, maximal symmetric
(dissipative, accretive, sectorial, nonnegative) operator in the Hilbert space HA and Amul

is a selfadjoint relation in mulA∗∗.

The result for maximal symmetric relations can also be seen as a consequence of
Proposition 4.11, since symmetric relations are formally domain tight. Selfadjoint and
normal relations are domain tight and there is a decomposition result for them corre-
sponding to Corollary 4.16, as an application of Proposition 4.12; see [8] and [23] for
further details.

Corollary 4.17. Let A be a selfadjoint (normal) relation in a Hilbert space H. Then
A admits an orthogonal decomposition of the form A = Aop ⊕̂ Amul, where Aop is a
selfadjoint (normal) operator in the Hilbert space HA and Amul is a selfadjoint relation
in mulA∗∗.

Recall that selfadjoint and normal operators are automatically densely defined;
cf. (2.36).

5. Cartesian decompositions of relations

In this section the notions of real and imaginary parts of a relation in a Hilbert space are
confronted with the notion of a Cartesian decomposition.



50 S. Hassi et al.

5.1. Real and imaginary parts of relations. Let A be a relation in a Hilbert space H.
The real part reA and the imaginary part imA of A are defined by

(5.1) reA
def=

1
2

(A+A∗) =
{{

f,
f ′ + f ′′

2

}
; {f, f ′} ∈ A, {f, f ′′} ∈ A∗

}
,

and

(5.2) imA
def=

1
2 i

(A−A∗) =
{{

f,
f ′ − f ′′

2 i

}
; {f, f ′} ∈ A, {f, f ′′} ∈ A∗

}
,

with the operatorwise sums defined as in (2.13). It is clear from the definitions that

(5.3)
{

dom reA = dom imA = domA ∩ domA∗,

dom reA∗ = dom imA∗ = domA∗∗ ∩ domA∗.

The real and imaginary parts of A are connected by

(5.4) re(iA) = − imA, im(iA) = reA.

In what follows the relations reA± i imA and their connections with the original relation
A will be studied.

Proposition 5.1. Let A be a relation in a Hilbert space H. Then

(i) reA ⊂ reA∗ = reA∗∗ ⊂ (reA)∗ and imA ⊂ − imA∗ = imA∗∗ ⊂ (imA)∗;
(ii) if A is closed, then reA = reA∗ and imA = − imA∗;
(iii) mul reA = mul imA = mulA + mulA∗ and if, in addition, A is formally domain

tight, then mul reA = mul imA = mulA∗.

Proof. (i) Since A ⊂ A∗∗, it follows from (2.15) that

1
2

(A+A∗) ⊂ 1
2

(A∗∗ +A∗) ⊂
(

1
2

(A+A∗)
)∗
,

1
2 i

(A−A∗) ⊂ − 1
2 i

(A∗ −A∗∗) ⊂
(

1
2 i

(A−A∗)
)∗
.

The assertions concerning reA and imA are now clear.
(ii) Here A = A∗∗ and thus the stated equalities are clear from (5.1) and (5.2).
(iii) The first assertion is immediate from (5.1) and (5.2). If A is formally domain tight,

then it follows from (2.33) that mulA ⊂ mulA∗ and thus mulA+mulA∗ = mulA∗, which
implies the second assertion.

The real and imaginary parts reA and imA of a relation A are symmetric relations,
due to Proposition 5.1. They are defined in terms of operatorwise sums involving A

and A∗. There are also connections with the componentwise sum A +̂A∗.

Proposition 5.2. Let A be a linear relation in a Hilbert space H. Then

(i) reA ⊂ A +̂A∗ and imA ⊂ A +̂A∗;
(ii) ran(reA) = mul(A +̂A∗) and ran(imA) = mul(A +̂A∗);
(iii) reA± i imA ⊂ reA +̂ ({0} × ran imA) ⊂ A +̂A∗;
(iv) imA± i reA ⊂ imA +̂ ({0} × ran reA) ⊂ A +̂A∗.
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Proof. (i) The first inclusion follows from (5.1) and

2
{
f,
f ′ + f ′′

2

}
= {f, f ′}+ {f, f ′′} ∈ A +̂A∗, {f, f ′} ∈ A, {f, f ′′} ∈ A∗.

The second inclusion can be shown similarly.
(ii) The second inclusion will be shown. Let {0, g} ∈ A +̂A∗. Then

{0, g} = {f, f ′} − {f, f ′′}, {f, f ′} ∈ A, {f, f ′′} ∈ A∗,

so that {
f,

g

2 i

}
=
{
f,
f ′ − f ′′

2 i

}
∈ imA.

Hence mul(A +̂ A∗) ⊂ ran(imA). The reverse inclusion follows immediately from (5.2).
This proves the second identity. The first identity is now obtained as follows:

ran(reA) = ran(im iA) = mul(iA +̂ (iA)∗) = mul(−A +̂A∗).

(iii) Let {f, ϕ± iψ} ∈ reA± i imA with {f, ϕ} ∈ reA and {f, ψ} ∈ imA. Then clearly

{f, ϕ± iψ} = {f, ϕ} +̂ {0,± iψ} ∈ reA +̂ ({0} × ran imA),

which shows the first inclusion in (iii). The second inclusion in (iii) follows from (i)
and (ii).

(iv) This is obtained from (iii) by means of (5.4).

The next result gives necessary and sufficient conditions for a relation A to be formally
domain tight.

Theorem 5.3. Let A be a relation in a Hilbert space H. Then the following statements
are equivalent:

(i) A is formally domain tight;
(ii) A ⊂ reA+ i imA;
(iii) (reA) +̂A∗ = A +̂A∗;
(iv) there exists a relation B in H such that domA = domB and A ⊂ B∗;
(v) there exists a relation C in H such that A ⊂ reC + i imC.

Proof. (i)⇒(ii). Let {f, g} ∈ A. Since domA ⊂ domA∗, there exists h ∈ H such that
{f, h} ∈ A∗. Then clearly

{f, g} =
{
f,
g + h

2
+ i

g − h
2 i

}
∈ reA+ i imA.

Hence A ⊂ reA+ i imA.
(ii)⇒(iii). By Proposition 5.2, reA ⊂ A +̂A∗ and hence

(reA) +̂A∗ ⊂ A +̂A∗.

Thus it is enough to prove the reverse inclusion: A +̂A∗ ⊂ (reA) +̂A∗. It suffices to prove
that A ⊂ (reA) +̂ A∗. Therefore, let {f, f ′} ∈ A. Then by (ii), {f, f ′} ∈ reA+ i imA, so
that f ∈ domA∩ domA∗ by (5.3) and, in particular, f ∈ domA∗. Hence, there exists an
element f ′′ such that {f, f ′′} ∈ A∗. Then
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{f, f ′} = {2f, f ′ + f ′′} − {f, f ′′} ∈ (reA) +̂A∗.

This completes the proof of the equality in (iii).
(iii)⇒(i). Let f ∈ domA. Then {f, f ′} ∈ iA for some f ′ ∈ H. By (iii), {f, f ′} ∈

(reA) +̂ A∗, so that f = f1 + f2 with f1 ∈ dom reA and f2 ∈ domA∗. It follows from
(5.3) that f1 ∈ domA∗. Hence, f = f1 + f2 ∈ domA∗. Thus (i) has been shown.

(i)&(ii)⇒(iv). Define B def= reA− i imA. Then by Proposition 5.1 and (2.15),

B∗ ⊃ (reA)∗ + i(imA)∗ ⊃ reA+ i imA ⊃ A.

Furthermore, it follows from domA ⊂ domA∗ and (5.3) that

domB = dom reA = dom imA = domA ∩ domA∗ = domA.

Hence (iv) has been shown.
(iv)⇒(i). By taking adjoints in A ⊂ B∗ one gets B ⊂ B∗∗ ⊂ A∗, so that domA =

domB ⊂ domA∗. Hence A is formally domain tight.
(v)⇒(i). Taking adjoints in A ⊂ reC + i imC one obtains, by Proposition 5.1 and

(2.15),
A∗ ⊃ (reC + i imC)∗ ⊃ (reC)∗ − i(imC)∗ ⊃ reC − i imC.

Since domA ⊂ dom reC = dom imC ⊂ domA∗, this shows that A is formally domain
tight.

(ii)⇒(v). This implication is trivial.

The following lemma contains a result analogous to the equivalence of (i) and (iii) in
Theorem 5.3. Moreover, the identities reA = reA∗ and imA = − imA∗ will be shown
under different conditions than in Proposition 5.1.

Lemma 5.4. Let A be a relation in a Hilbert space H. Then

(i) domA∗ ⊂ domA if and only if

(5.5) (reA) +̂A = A +̂A∗;

(ii) if domA∗ ⊂ domA ⊂ domA∗, then

(5.6) reA = reA∗, imA = − imA∗.

Proof. (i) Assume that A+̂A∗ = (reA)+̂A, which, in particular, leads to A∗ ⊂ (reA)+̂A.
Since dom reA = domA ∩ domA∗ (see (5.3)), it follows that domA∗ ⊂ domA.

Now assume domA∗ ⊂ domA. It suffices to show that A +̂ A∗ ⊂ (reA) +̂ A, as the
reverse inclusion is always true by Proposition 5.2. Let {f, f ′′} ∈ A∗, then there exists
{f, f ′} ∈ A. Hence,

{f, f ′′} = {2f, f ′ + f ′′} − {f, f ′} ∈ (reA) +̂A.

It follows that A∗ ⊂ (reA) +̂A, but then also A +̂A∗ ⊂ (reA) +̂A. Therefore, (5.5) has
been proved.

(ii) By Lemma 2.4, it follows from domA∗ ⊂ domA ⊂ domA∗ that mulA∗∗ = mulA∗.
According to Proposition 5.1, reA ⊂ reA∗. To prove the reverse inclusion assume that
{f, g} ∈ reA∗. Then for some {f, g′} ∈ A∗ and {f, g′′} ∈ A∗∗ one has 2g = g′ + g′′. Here
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f ∈ domA∗ ∩ domA∗∗ and since domA∗ ⊂ domA, one has {f, f ′} ∈ A for some f ′.
Consequently, {f, g′′} − {f, f ′} ∈ A∗∗ and

g′′ − f ′ ∈ mulA∗∗ = mulA∗ ⊂ mul reA,

where the last inclusion is due to Proposition 5.1(iii). Therefore,

{f, g} =
{
f,
f ′ + g′

2

}
+
{

0,
g′′ − f ′

2

}
∈ reA,

and hence reA∗ ⊂ reA. This proves the identity reA = reA∗. The second identity in
(5.6) is obtained from the first one by means of the equalities re(iA) = − imA and
re (iA)∗ = imA∗; cf. (5.4).

The following characterizations for a relation to be domain tight are consequences of
Lemma 5.4; cf. Theorem 5.3.

Proposition 5.5. Let A be a relation in a Hilbert space H. The following conditions are
equivalent:

(i) A is domain tight;
(ii) (reA) +̂A = (reA) +̂A∗;
(iii) reA +̂ ({0} × ran imA) = A +̂A∗.

In this case,

(5.7) reA +̂ ({0} × ran imA) = (reA) +̂A = (reA) +̂A∗ = A +̂A∗.

Proof. (i)⇒(ii). If domA = domA∗ then (reA) +̂ A∗ = A +̂ A∗ by Theorem 5.3(iii),
while (reA) +̂A = A +̂A∗ due to (5.5) in Lemma 5.4. This gives the identity in (ii).

(ii)⇐(i). If (reA) +̂ A = (reA) +̂ A∗, then, in particular, A ⊂ (reA) +̂ A∗. Since,
by (5.3), dom reA = domA ∩ domA∗, it follows that domA ⊂ domA∗. The inclusion
domA∗ ⊂ domA follows in a similar way. Hence, A is domain tight.

(i)⇒(iii). In view of the second inclusion in Proposition 5.2(iii) it suffices to show the
inclusion A +̂ A∗ ⊂ reA +̂ ({0} × ran imA) when A is domain tight. Since A is domain
tight, A∗ is formally domain tight; cf. Remark 2.24. Hence, Theorem 5.3 implies

A ⊂ reA+ i imA, A∗ ⊂ reA∗ + i imA∗ = reA− i imA,

where the last identity is obtained from Lemma 5.4. It remains to use Proposition 5.2(i)
to get the claimed inclusion.

(iii)⇒(i). The equality in (iii) implies that domA ∩ domA∗ = domA + domA∗; cf.
(5.3). This last identity is clearly equivalent to domA = domA∗.

Finally, the equalities stated in (5.7) are clear from the above arguments.

5.2. Cartesian decompositions of relations. A relation A in a Hilbert space H is
said to have a Cartesian decomposition if there are two symmetric relations A1 and A2

in H such that

(5.8) A = A1 + iA2,

with the operatorwise sum defined as in (2.13), so that domA = domA1 ∩ domA2 and
mul(A1 + A2) = mulA1 + mulA2; cf. (2.14). In particular, if A is an operator, then A1
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and A2 in (5.8) are operators. The Cartesian decomposition for operators is extensively
considered in [39].

Example 5.6. Let A be a maximal sectorial relation in H with vertex at the origin and
semiangle α; cf. (4.10). Then there exist a nonnegative selfadjoint relation H in H and a
selfadjoint operator B ∈ B(H) with ranB ⊂ (mulA)⊥ and ‖B‖ ≤ tanα such that

A = H1/2(I + iB)H1/2;

cf. [18], [26], [35]. Clearly,H andH1/2BH1/2 are symmetric relations, butH+iH1/2BH1/2,
their operatorwise sum, need not be equal to A. In general, the inclusion

H + iH1/2BH1/2 ⊂ A

holds. There is equality if, for instance, ranB ⊂ domH1/2.

Proposition 5.7. Let A be a relation in a Hilbert space H, let A have a Cartesian
decomposition (5.8), and define the relation B by B = A1− iA2. Then A and B have the
same domain domB = domA, they are formally domain tight, and form a dual pair:

B ⊂ A∗, A ⊂ B∗.

Moreover, the symmetric components A1 and A2 satisfy

(5.9) A1 ∩ (domA× H) ⊂ reA, A2 ∩ (domA× H) ⊂ imA,

and A1 ± iA2 ⊂ reA± i imA.

Proof. If A has a Cartesian decomposition of the form (5.8), then clearly A and B have
the same domain. By (2.15) and the symmetry of A1 and A2 it follows that

(5.10) A∗ = (A1 + iA2)∗ ⊃ A∗1 − iA∗2 ⊃ A1 − iA2 = B.

Hence, domA = domB ⊂ domA∗, so that A is formally domain tight. A similar argument
shows that B is formally domain tight. Moreover, (5.10) shows that B ⊂ A∗, which also
leads to A ⊂ A∗∗ ⊂ B∗; hence A and B form a dual pair.

To show the first inclusion in (5.9), let {f, f ′1} ∈ A1 with f ∈ domA. Then there exists
f ′2 ∈ H such that {f, f ′2} ∈ A2. Hence, {f, f ′1+i f ′2} ∈ A due to (5.8) and {f, f ′1−i f ′2} ∈ A∗
due to (5.10), so that {f, f ′1} ∈ reA. Thus, A1 ∩ (domA×H) ⊂ reA and then in view of
(5.4) the second inclusion in (5.9) follows as well.

The inclusions A1 ± iA2 ⊂ reA± i imA follow directly from (5.9).

A formally domain tight relation A satisfies A ⊂ reA + i imA; cf. Theorem 5.3. By
means of Cartesian decompositions this inclusion can be made more precise, yielding
some characterizations of a relation A being formally domain tight.

Theorem 5.8. Let A be a relation in a Hilbert space H and let the extension A∞ of A
be as defined in (2.27). Then the following conditions are equivalent:

(i) A is formally domain tight;
(ii) A admits a Cartesian decomposition A = A1 +iA2 for some symmetric relations A1

and A2 in H;
(iii) A∞ admits the Cartesian decomposition

(5.11) A∞ = reA+ i imA.
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Proof. (ii)⇒(i). This implication follows from Proposition 5.7.
(iii)⇒(i). Since A ⊂ A∞ this implication follows from Theorem 5.3. Another approach

is that A∞ is formally domain tight by Proposition 5.7, but then A is formally domain
tight by Proposition 2.25.

(i)⇒(iii). Let A be formally domain tight. Then A ⊂ reA + i imA by Theorem 5.3.
Furthermore, Proposition 5.1(iii) shows that {0}×mulA∗ ⊂ reA+i imA. This yields the
inclusion A∞ = A +̂ ({0} × mulA∗) ⊂ reA + i imA. Conversely, each element {f, g} ∈
reA+ i imA is given by

(5.12) {f, g} =
{
f,
f ′ + f ′′

2
+ i

h′ − h′′

2 i

}
,

where {f, f ′}, {f, h′} ∈ A and {f, f ′′}, {f, h′′} ∈ A∗. Then

2{f, g} = {2f, f ′ + f ′′ + h′ − h′′} = {f, f ′}+ {f, h′}+ {0, f ′′ − h′′}(5.13)

∈ A +̂ ({0} ×mulA∗).

This proves the inclusion reA+ i imA ⊂ A∞.
(i)⇒(ii). By Theorem 3.23, A∗ can be decomposed as A∗ = (A∗)op +̂(A∗)mul; see also

Corollary 3.15. Here (A∗)op is an operator with dom (A∗)op = domA∗. Now define

A1
def=

1
2

(A+ (A∗)op), A2
def=

1
2 i

(A− (A∗)op);

cf. (5.1), (5.2). The assumption domA ⊂ domA∗ shows that domA1 = domA2 = domA;
therefore A1 ⊂ reA and A2 ⊂ imA, so that A1 and A2 are symmetric relations. The
inclusion A ⊂ A1 + iA2 can be proved in the same way as the implication (i) ⇒ (ii)
in Theorem 5.3, when domA ⊂ domA∗ = dom(A∗)op is used. The reverse inclusion
A1 + iA2 ⊂ A can be seen with a similar, but simpler, calculation as used in (5.12),
(5.13). Therefore, A = A1 + iA2.

Domain tight relations can now be characterized via Cartesian decompositions as
follows.

Theorem 5.9. Let A be a relation in a Hilbert space H and let the extension A∞ be as
defined in (2.27). Then the following conditions are equivalent:

(i) A is domain tight;
(ii) A∞ and (A∗)∞ admit the Cartesian decompositions

A∞ = reA+ i imA, (A∗)∞ = reA− i imA;

(iii) A and A∗ satisfy

(5.14) A ⊂ reA+ i imA, A∗ = reA− i imA;

(iv) for some symmetric relations A1 and A2 in H one has

(5.15) A = A1 + iA2, A∗ = reA− i imA.

Proof. (i)⇒(ii). Assume that A is domain tight. Then A and A∗ are formally domain
tight; cf. Remark 2.24. The first identity in (5.9) holds by (5.11). Since A is domain tight,
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Lemma 5.4 shows that reA∗ = reA and imA∗ = − imA. Now Theorem 5.8 (applied to A∗)
gives the second identity in (5.9):

(A∗)∞ = reA∗ + i imA∗ = reA− i imA.

(ii)⇒(i). It follows from (5.3) and the Cartesian decompositions in (5.9) that

domA = domA∞ = domA ∩ domA∗ = dom (A∗)∞ = dom A∗,

which shows that A is domain tight.
(i)&(ii)⇒(iii). The inclusion in (5.14) is clear from (5.9) as A ⊂ A∞. Since A is

domain tight, mulA∗∗ = mulA∗ and therefore (A∗)∞ = A∗ +̂ ({0} × mulA∗∗) = A∗.
Thus the second identity in (5.14) is also immediate from (5.9).

(iii)⇒(iv). The inclusion in (5.14) implies that A is formally domain tight. Hence,
the first identity in (5.15) is obtained from Theorem 5.8(ii).

(iv)⇒(i). The first identity in (5.15) shows that A is formally domain tight by Theo-
rem 5.8, while the second identity in (5.15) implies that domA∗ ⊂ dom reA = dom imA =
domA ∩ domA∗; cf. (5.3). Hence, A is domain tight.

In the above characterization some of the conditions do not look symmetric. By turn-
ing to a more special class of domain tight relations the description will be more sym-
metric.

Theorem 5.10. Let A be a relation in a Hilbert space H. Then the following conditions
are equivalent:

(i) A is domain tight and mulA = mulA∗;
(ii) A and A∗ admit the Cartesian decompositions

(5.16) A = reA+ i imA, A∗ = reA− i imA;

(iii) A and A∗ admit the Cartesian decompositions

(5.17) A = A1 + iA2, A∗ = A1 − iA2

for some symmetric relations A1 and A2 in H.

Proof. (i)⇒(ii). The assumption mulA = mulA∗ implies that A∞ = A. Therefore, the
statement follows from (5.9) and (5.15).

(ii)⇒(iii). In (5.16) the relations reA and imA are symmetric. Hence, this implication
is trivial.

(iii)⇒(i). It is clear from (5.17) that domA = domA1 ∩ domA2 = domA∗ and
mulA = mulA1 + mulA2 = mulA∗.

The special domain tight relations in Theorem 5.10 can also be characterized by means
of decomposable domain tight relations; cf. Proposition 4.14.
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[7] Yu. M. Berezanskĭı, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova

Dumka, Kiev, 1965 (in Russian); English transl.: Transl. Math. Monogr. 17, Amer. Math.

Soc., 1968.

[8] E. A. Coddington, Extension theory of formally normal and symmetric subspaces, Mem.

Amer. Math. Soc. 134 (1973).

[9] E. A. Coddington and A. Dijksma, Self-adjoint subspaces and eigenfunction expansions

for ordinary differential subspaces, J. Differential Equations 20 (1976), 473–526.

[10] E. A. Coddington and H. S. V. de Snoo, Positive selfadjoint extensions of positive sym-

metric subspaces, Math. Z. 159 (1978), 203–214.

[11] R. Cross, Multivalued Linear Operators, Dekker, 1998.

[12] V. A. Derkach, S. Hassi, M. M. Malamud, and H. S. V. de Snoo, Boundary relations and

their Weyl families, Trans. Amer. Math. Soc. 358 (2006), 5351–5400.

[13] V. A. Derkach and M. M. Malamud, The extension theory of hermitian operators and the

moment problem, J. Math. Sci. 73 (1995), 141–242.

[14] A. Dijksma and H. S. V. de Snoo, Self-adjoint extensions of symmetric subspaces, Pacific

J. Math. 54 (1974), 71–100.

[15] —, —, Symmetric and selfadjoint relations in Krĕın spaces I, in: Oper. Theory Adv. Appl.
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Cartesian, 8, 53
componentwise b+, 7

extension
∗-tight, 25
tight, 25

opening of (two) subspaces, 18
operator, 9

closable, 10
orthogonal splitting, 8

part of relation
imaginary imA, 50
maximal operator Am, 36
minimal operator Aop, 8, 31, 32
multivalued mulA, 5, 9
real reA, 50
regular Areg, 7
singular Asing, 7

product of relations, 13

relation, 5
A∞, 6, 9, 20, 21
accretive, 49
adjoint A∗, 5, 11
closed, 5
closure A, 5
decomposable, 8, 32
defect, 18
dissipative, 49
domain domA, 9
domain tight, 21
eigenvalue, 17
essentially selfadjoint, 12
formally domain tight, 21
formally normal, 12
formally range tight, 26
inverse A−1, 5, 9
kernel kerA, 9

nonnegative, 49
normal, 12
numerical range W(A), 19
point of regular type, 17
range ranA, 9
range tight, 26
sectorial with vertex at the origin and

semiangle α, 49
selfadjoint, 5, 12
subnormal, 12
symmetric, 5, 12

resolvent set ρ(A) of A, 18

sum of relations, 12
componentwise

orthogonal b⊕, 14
componentwise b+, 12
operatorwise +, 13
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