1. Introduction

The main object of this paper is to construct a calculus of anisotropic pseudodifferential
operators (¢YDOs) on a manifold and apply it to semi-elliptic operators generated by
vector fields.
A simple example of a semi-elliptic differential operator on R"™ is the operator
n
(1.1) D (=12, my, €N,
k=1
Its symbol o(¢) = S°p_, & does not vanish in R\ {0}, i.e. is of the “elliptic” nature. On
the other hand the usual isotropic homogeneity of principal symbols of elliptic operators
is now replaced by its anisotropic analogue

U(tl/mlgl, e tl/mngn) = t20(€)a vt > 0.

Therefore, the corresponding calculus of ¢)DOs should include operators with symbols
which satisfy anisotropic estimates. Such symbols a(z,£) have different growth (decay)
rates as & — oo in different directions.

Let M be a C°°-smooth n-dimensional manifold and v, ..., v, be C°°-smooth vector
fields on M which span the tangent space T, M at each point € M. The generalization
of (1.1) to this situation is the semi-elliptic operator

n

(1.2) > (=1,

k=1
The vector fields vy, ...,v, may have nonzero commutators and the properties of op-
erators like (1.2) depend on the structure of the Lie algebra generated by vq,...,v,.

Correspondingly the theory of such operators is more geometric in spirit than the stan-
dard “elliptic” one. But still this is an “elliptic” theory and operators like (1.2) are much
more “elliptic” than Hérmander’s sums of squares of vector fields and their generaliza-
tions (see [Ho2], [Ho3, Vol. II1], [RS], [Goo], [HN], [Tal], [VSC], [Nua], [Mal] and the
references therein). In a sense semi-elliptic operators generated by vector fields may be
viewed as a bridge between elliptic operators and hypoelliptic operators of the type of
Hormander’s sums of squares of vector fields.

In this paper we construct a calculus of anisotropic ¥y DOs on M which allows one
to handle semi-elliptic operators generated by v4,...,,. The symbols of these ¥YDOs
belong to anisotropic analogues of the Hérmander classes S} ;. The coordinate directions
defining the anisotropy correspond to vq(z), ..., v,(x) at each point z € M. Since in
this situation invariance under diffeomorphisms is clearly out of the question, we cannot

(5]
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follow the usual way of defining ¥DOs on manifolds: local coordinates plus partitions
of unity. We have to use invariant tools only. In the case when M is a nilpotent Lie
group one can use the group convolution and Fourier transform to construct a calculus
of anisotropic ¢YDOs on M (see, e.g., [Dyl], [Dy2], [NS], [How|, [Mil], [Mel], [Ta2], [BG],
[Cum], [CGGP]). We do not suppose that M is a Lie group and thus have to choose a
different approach.

An invariant (= intrinsic = covariant) calculus of 1YDOs on manifolds equipped with
linear connections was developed in [Bok], [Wil], [Wi2], [Dra], [FK] and [Saf]. It is related
to quantization on manifolds and has been used to explicitly compute coefficients of
the short time on-diagonal asymptotics for the heat kernels corresponding to elliptic
operators (see [Und], [LQ], [GK1], [GK2], [Fu] and the references therein). All these
papers except [Saf] dealt with the standard ¢DOs, i.e. with $)DOs which can be defined
via local coordinates. For those operators invariant complete symbols were defined in a
coordinate-free way with the help of linear connections. The approach of [Saf] is more
radical: the invariant coordinate-free definition of ¥»DOs allows one to cover new classes
of operators where the coordinate approach is not applicable.

We follow the method of [Saf] to construct a calculus of anisotropic ¥DOs generated
by v1,...,v,. We deal with operators which act on sections of vector bundles over M. In
such a situation one needs connections of two kinds: connections on the above-mentioned
vector bundles and a connection on the underlying manifold M, more precisely on the
cotangent bundle T* M. In our case the latter is defined by the vector fields vy, ..., v,.
All necessary definitions and results from differential geometry are collected in Section
2. Some textbook material has been included in order to fix the notation and make
the presentation reasonably self-contained. The words “reasonably self-contained” are
understood in a purely pseudodifferential fashion: only those notions and facts of differ-
ential geometry which can be found in [Ho3, Vol. I] and [Tre, Vol. I] are included in the
pre-requisites.

There are two polynomials naturally associated with the operator (1.2). One is its
(principal) symbol >_7_ (37, vk (2)&)?™* defined on T* M. The other is the (principal)
presymbol Y, _, nzmk defined on M xR™. Not surprisingly presymbols of ¢)DOs are more
convenient to work with than symbols. We formulate the results in this paper in terms of
presymbols. The corresponding symbols are obtained by substituting >;- ; 1/,lC ()& for ny,
into the presymbols.

We introduce the spaces of (pre)symbols in Section 3 and define anisotropic ¥ DOs
generated by vq,...,v, in Section 4. The latter also contains a formula expressing the
presymbol of a ¥DO in terms of its amplitude and a theorem on the change of the
presymbol under a change of connections on the vector bundles. Section 5 deals with the
adjoints of ¥/ DOs.

The key result of the paper is Theorem 6.7 on composition of ¥YDOs with symbols
from the anisotropic classes S} 5. This theorem and the boundedness results of Section 7
are obtained under the restriction (6.1) which connects ¢ and the orders of anisotropy to
the geometry of the family vq,...,v,. In the case ¢ = 1 this restriction means that the
commutator [8Vj , 0y, ] is an operator of a strictly lower order than 0y,0,, and 9,,0,,.
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In Section 8 we show how our calculus relates to the existing works on anisotropic
(pseudo)differential operators on nilpotent Lie groups with dilations and in particular
discuss the condition (6.1) which is supposed to be satisfied in the remaining part of the
paper.

Section 9 is devoted to compact ¥y DOs. We prove in Section 10 that a semi-elliptic
¥DO is Fredholm in anisotropic analogues of Bessel-potential spaces H, if M is compact
and establish some basic properties of these spaces. More detailed results on anisotropic
function spaces on manifolds will be published in a forthcoming paper. It is shown in
Section 11 that under reasonable conditions on a semi-elliptic DO A the resolvent
(A — M)~ tisaDO with a “well behaved” symbol for sufficiently large \’s lying outside a
“parabolic” neighbourhood of the spectrum of the principal presymbol of A (see Definition
11.4). The results of this section are applied in Section 12 to construct complex powers
of A and study meromorphic continuations of their kernels. The information obtained
there is used in Section 13 where we deal with the exponential e~ 4 and establish the
full on-diagonal short time asymptotics of the heat kernel corresponding to A.

We return to the resolvent (A—XI)~! in Section 14 and prove asymptotic formulae for
its kernel. These formulae and a generalization of the Pleijel-Malliavin Tauberian theorem
(see Lemmas 15.1, 15.2) allow us to obtain an asymptotic formula for the spectral function
of A with a remainder estimate and more precise, in particular two-term, asymptotic
formulae for the Riesz means of the spectral function. The latter show that the remainder
estimate in the former is not optimal and that our asymptotic formula for the spectral
function is an analogue of that from [Ag]. It is unclear (to me!) whether one can obtain
the optimal remainder estimate using the wave equation method, because the standard
reduction to the first order operators does not seem to be working in the anisotropic case.
The method due to D. Robert and G. Métivier (see [Rol] and [Me2]) is probably more
promising here. (For asymptotic properties of the spectra of anisotropic elliptic ¥ DOs
on R™ see [Ar], [BS], [BB], [BBR], [HR1], [Ro2] and the references therein.)

It is worth mentioning that due to the anisotropy the second terms in the asymptotic
formulae for the Riesz means of the spectral function and of the distribution function of
eigenvalues may be nonzero even if A is a differential operator (see Remark 15.7), which
does not happen in the standard elliptic case (see [DG] and Remark 15.6).

2. Auxiliary geometric results

Vector fields. Let M be a C'°°-smooth n-dimensional manifold and vy, ..., v, be C>-
smooth vector fields on M. Suppose that vi(z),...,v,(x) span the tangent space T, M
at each point x € M. Then there exist functions C’ € C*(M) such that

(21) au,a auk Z kal/m’

where [-, -] denotes the commutator: [A, B] = AB — BA, while 0,, is the derivative in the
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direction of v}, i.e.
n

(2.2) Oy, = Y Vh(2) 0y
=1
in any local coordinate system.
Let 7'(x),...,7"(z) be the basis of the cotangent space T M dual to vj(x), j =
1,...,n
~ 1 iftk=y
k , =5k = '
23) o) =at={g 1ioh
It is clear that 7', ..., 7™ are C*-smooth 1-forms on M.
We will call a curve v : [a,b] — M a geodesic if

n
(2.0 30 = Gu(1), Vi (nb CR,
j=1
for some constants cq,...,c, € R. As usual, dot denotes the derivative with respect to
the “time” t.
2.1. REMARK. It isnot difficult to check that our vector fields v;(x), j = 1, ..., n, generate

a linear connection on M with Christoffel symbols
I7(x) = = (@) daivi" ()
1=1

(see (2.3)), such that the classical definition of a geodesic corresponding to this connection
coincides with (2.4).

Let us take an arbitrary point x € M. It follows from the standard results on ordinary
differential equations that if § = (y',...,7") € R" is sufficiently small, then there exists
a unique geodesic v =~ : [0,1] — M such that v(0) = = and

$(0) = 37w, ()

ie.
n

(2.5) ¥(t) = #r((®),  vte0.1].

j=1
So, we have a well defined mapping of a neighbourhood U C R™ of 0 € R™ into M:
(2.6) U3y exp,(¥) :=~Y1) € M.
It is clear that
(2.7) x = exp,(0).

Applying the theorem on the smoothness of solutions of ordinary differential equations
with respect to parameters we deduce that the mapping (2.6) is C*°-smooth. Differenti-
ating the equality

V2! () = 2 (7t)
with respect to 7 and taking 7 = 0, t = 1 one can easily prove that the differential of (2.6)
at 0 € R™ corresponds to the identity matrix in the coordinate system in 7, M defined
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by the basis v1(z), ..., v,(x). Hence (2.6) is a C*°-diffeomorphism of a sufficiently small
neighbourhood U C R”™ of the origin onto a neighbourhood W, C M of x € M. This
defines a coordinate system on W,: we say that the coordinates of a point y € W, are
y=@"...,y") e U CR™if
y = exp,(y)-

We will call this coordinate system the canonical coordinate system with the origin at
ze M.

In this coordinate system any geodesic ¥ (t) has the form t:
(2.8) V() = 72 (1) = exp, (7).

It follows from the above that if  and y are sufficiently close to each other, then
there exists a unique geodesic 7, , : [0,1] — M such that v, ,(0) = z, v, (1) = y. So,

Yya(t) =D cvi(ya(t), VEe[o1],
J=1

for some constants ¢; = ¢;(x,y) € R depending on = and y (see (2.5)). It is easy to see
that ¢; are C°°-smooth in a neighbourhood of the diagonal of M x M and

(2.9) cj(:c,y):ﬂj, ji=1,...,n,
where § = (y',...,y") are the coordinates of the point y in the canonical coordinate
system with the origin at = (cf. (2.5)). The last equality is equivalent to
(2.10) Yoo =V ify = exp, (7).
It is clear that
(2.11) cj(z,x) = 0.

Using the change of variable ¢ — 1 — ¢ we obtain
(2.12) ¢, y) = —¢;(y, ©).
Let vy be a C*°-smooth vector field on M. For any w € M there exists a unique
integral curve E(-,w) : [0,0] — M of vy starting at w:
OE(t,w)
ot

Here 6 = §(w,vp) > 0 is a sufficiently small number. If vy is sufficiently small, i.e.

vo(t) = Y ay(uw(u), e M,

=1(E(t,w)), E0,w)=w.

where -7 a;(u)| is sufficiently small, then we can take (w,vp) = 1.
We define

(2.13) Exp(vp)(w) = E(1,w)
whenever the right hand side is defined. It is obvious that

n

(2.14) exp,(5) = Bxp( D7, ) (#)

j=1
Throughout the paper 9 will denote the symmetrization of 9yt ... 05",
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2.2. LEMMA. For any multi-index o € Z"} and any smooth function f we have

(2.15) 9y f(x) = 0 f (exp, (¥))lg=0-
Proof. Tt is well known (see, e.g., [NSW, Proposition 4.2]) that the formal Taylor series
- 1 (6% ~o
Z a(ag f(exp,(9))|g=0)y
|a]=0

of f(exp, (7)) = f(Exp(X], #v;)()) at 0 € R” equals
1 o\l — 1 _
S (X 7a,) rw =3 @)
1=0 j=1 |or|=0
Comparing the coefficients we obtain (2.15). m
2.3. LEMMA. For any multi-indices o, 3 € ZT} such that |+ 3| > 2, the derivative
0900y ¢ (Y 2)y=2ma = 0502 ¢;(exp,. (7)), XD, () [=2=0
s a linear combination of terms of the form
® 2 (@ j
(2.16) dowCl L @ar R (x). .0 Gt o, ().
Here each of the “upper” indices ja,...,Jq coincides with one of the “lower” indices,

which are ki, m; and those corresponding to the multi-indices pu®, and >~ denotes the
contraction, i.e. the summation from 1 to n over these repeated indices. The remaining

D)+ D+ g+ 1= |a+ ]

“lower” indices correspond to those of o+ (3. Moreover,

(217) seresexp (i) ) = =81,
(2.18) eyl exp, (2)) = o],
(2.19) Oe;(exp,(7),2) =0 iflal > 2,
(2.20) 0c;(w,exp,(2) =0 if|5|>2,
o 0
(2.21) 507 52 & (€302 0,050, () ly—z-0 = 5L o)

Proof. The equalities (2.17)—(2.20) follow directly from (2.9) and (2.12).
Let y = exp,(y), z = exp,(Z). It follows from (2.9), (2.12) and (2.14) that

EXP( - iﬂlw) (y) =
=1

Consequently

H(,2)(y) = 2, where  H(F,2)(y) = Bxp( Y 2w ) Exp( = Y im).
=1 =1
Further,
0992 ¢; (exp,, (), exp,, (2)) ly=z=0 = 9502¢;(y, H(H, 2)(y))lj=2=0
= (895 + 05)8% ¢ (w, H(F, ?) (w))|j=z=i0,
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where w = exp, (w). Hence, it is sufficient to prove that

(2.22) 08" 08 0 ¢; (w, H(5,2)(w))|y=z=w=0

is a linear combination of terms of the form (2.16) with o = &’ + &”. Let us evaluate
(2.23) 9 0c;(w, H(F, %) (w))lj=z=0-

We have to find the formal Taylor (¥, Z)-series of the function

c](w EXp(Zz I/l>EXp( iy Vl) )

at 0 € R™ x R™. Using the Campbell-Hausdorff formula (see, e.g., [Ser, Part I, IV.7,
IV.8]) one can prove (see [NSW, Appendix]) that this formal series equals

o0

1
(2.24) —!afo(v)cj(w,v)h:w,
p=0

where 0,,(,) is a formal series of linear combinations of iterated commutators of

S, 20y, and — 30 710y,

Oy = Z%% Z "9y, — = [Zzlaw,zww}

SR [ e ) s S [Sr0.3 )

=1 =1 =1
Using (2.1) we obtain

n

EED SCETICHREES 3 Shicile INOCHBEE 3 S TFPL 000,

=1 kym I=1 || +18]>3 1=1

where Péuﬁ (v) is a linear combination of terms of the form (2.16) with [ and v instead of
j and x respectively. Now it follows from (2.15), (2.18) and (2.20) that (2.24) equals

PGS T T
le|+18123

where Qiﬂ (w) is a linear combination of terms of the form (2.16) with = w. It is clear
that (2.23) equals Qi, g(w) if [o'[ +|B] = 3 and

00 1

The cases when o = 0 or § = 0 are covered by (2.17)—(2.20). This enables us to find
(2.22) and completes the proof (see also (2.15)). m

2.4. LEMMA. We have

Ck(y7 Z)al/k(z)cj(y7 Z) = Cj(yv Z>7 ch Y,z )cj (ya ) - cj(yv Z)

=
Il
_
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Proof. Suppose z = exp, (Z). Then using (2.8)-(2.10) we obtain

n

d
Z Ck (ya Z)al/k ()€ (ya Z) = %Cj (ya Vz,y (t))

k=1

t=1
d .
— (3
7 (t2°)

The second equality of the lemma follows from the first one and (2.12). m

=7 =¢;(y, 2).
t=1

d
= —c;(y,exp, (t2))
dt Y 1

Connections on vector bundles. Let £ be a C*-smooth vector bundle over M. We
denote by C*°(€) the space of C'*°-sections of £. In particular C°°(T'M) is the space of
C*°-smooth vector fields on M.

A connection on £ is a continuous mapping
V:C®TM)x C®E)— C>?(E), C®(TM)xC>®E)> (v,w)— VyweCE),
satisfying the following linearity conditions:
Vipdmw =Vyw+ Vy,w, Vi (w+w)=V,w+Vyw, Ve,w=eVy,w,

and the Leibniz rule
Vl/o (QOW) = @vvow + (auosﬁ)M

for any v, 11 € C®(TM), w,wy € C(€) and p € C(M).

The mapping V,, : C>®(E) — C*°(€) is a first order linear differential operator:
it can be expressed locally as a sum of 0,, and a zero order term with a C'*°-smooth
matrix-valued coefficient. This operator is called the covariant derivative in the direction
of vo. If V' is another connection on &, then V,,, — V|, is a zero order operator, i.e. can
be viewed as an automorphism of £.

Every C*°-smooth vector bundle over a paracompact manifold M does have a con-
nection (see, e.g., [MS, Appendix C, Lemma 2]).

Let Z be a vector space and Hom(Z,E) and Hom(E, Z) be the C*°-smooth vector
bundles with the fibres

Hom(Z,E), =Hom(Z,&,), Hom(E,Z), =Hom(E,, Z)

constructed in the standard way (see [MS, §3]). Here Hom(X,Y) denotes the vector
space of all linear mappings from the vector space X to the vector space Y. For any
F € C*(Hom(Z,€)) and ¢ € Z we have F( € C*(£). So, we can define V, F €
C>®(Hom(Z,E)) by the equality

(2.25) (Vi F)C =V, (FQ).

Further, any @ € C*°(Hom(&,Z)) and w € C*°(€) give rise to a C'*°-smooth vector-
valued function Pw : M — Z. Hence we can define V,, & € C*(Hom(E,Z)) by the
equality

(2.26) (Vo @)w = 0,y (Pw) — PV, w.

Throughout the paper V3 will denote the symmetrization of Vyl...Vpn, where

Unp )

Vi,...,Un are the given vector fields.
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Let z,y € M and v : [0,1] — M be a C*-smooth curve such that v(0) = z, v(1) = y.
Let & be the restriction of £ to v([0,1]) C M and wy € C*°(&p). Suppose w € C®(€) is
an extension of wy, i.e. w|y(j0,1)) = wo, and vy € C*°(T'M) is such that

VO(fY(t)) - ;}/(t)a vt e [07 ”
Then it is not difficult to prove that V,,wl|(o,1) does not depend on the choice of w
and vg. Thus for any wy € C*° (&),
V.ywo e C™® (50)

is a well defined object. This construction generates a connection on &.
We will say that a vector w(y) € &, is a parallel displacement of a vector w(z) €
along the curve «y if there exists wy € C*(&p) such that wo(zr) = w(z), wo(y) = w(y) and
V;YCU() =0.

Using standard results on linear ordinary differential equations one can prove that for
any vector w(z) € &, there exists its unique parallel displacement w(y) € &, along the
curve 7 and that the mapping &, 3 w(z) — w(y) € &, is linear.

Let x,y € M be sufficiently close to each other and let &, , : £, — &, be the parallel
displacement along the geodesic v, ;. It is not difficult to see that &, , and &, P, , equal
the identity automorphism of &;:

(2.27) Cyy=1lg,, PyuPuy=Ig,

2.5. LEMMA. For any multi-index v € Zt \ {0} and any p,q € Zy such that p+q = ||
we have

«
Z alﬂlv y)V”) Pyaly== =0.
at+f=y
leel=p, |Bl=9

In particular
VZ(y)ijym‘y:r =0, vu(:}c Pyaly=2 = 0.

Proof. Let us fix arbitrary points x,y € M which are sufficiently close to each other. It
follows from the definition of the parallel displacement that

Vi Py o) 0@ =0, Yo €&y, L, Vs, €0,1].
According to (2.25)—(2.27) and the last equality,
(v;)’y,m(t)@yy,z(s)ﬂ’y,z(t))@Wy,z(t)vyy,z(s)w(s)
50 (O9(8) ™ Py ()70 (0) Vi () Py o (870 ()9 (5)
= =0 ()2 Vi e 0Py o (D12 ()W) =0, V() €&y (s)-
Therefore
v'yy,z(s)¢7y,w(5)a7y,m(t) = 0’ v’yy,z(t)é')’y,w(s)ﬁy,m(t) = 0’ vs7t € [0’ 1]

Hence,

(228) vzy,w(s)v?’yy,m(t)dsVy,m(S)»’Yy,x(t) =0, Vp,q € Zy, p+q>0.
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Since y.. = Y7, ¢j(x,y)v;, we have

il a s
> @)V ) Vit ) Pre () a ) =05 Vs, €[0,1],

ol l
lee|=p, |B|=q ol
where ct(z,y) = i (z,y) ...l (z,y). Taking s = 1, t = 0 we obtain
1 (0%
(229) Z MC +5(.T, y)vl/(y)vy(x) y,xr — Oa vpv qc Z-‘ra p + q> 0.
lee|=p, |Bl=q

Let b = (b',...,b") € R"™ be an arbitrary vector. Then the last equality implies, for
sufficiently small ¢t > 0,

1 o 8
Z aﬂ.tpﬂb +ﬂvy(y VV(I)éyﬂy:expz(tb) =0
lal=p, |B]=q

(see (2.9)). Dividing by #*7¢ and taking in the resulting equality ¢ = 0 we obtain

Z |ﬁlba+ﬁva y)vﬁ (z) yi'y « =0, VbeR". u
lel=p, |Bl=q
2.6. LEMMA. For any multi-index o € Z% and any w € C*(&) we have
0% Py (V)ly=2 = Viw(z).

Proof. Suppose |a| = r. Let b = (b,...,b") € R"™ be an arbitrary vector and v, =
S h_, b*uy. It follows from (2.26) that

r!

D> mb 0, Pau (V) = o)y (®) = D J17(V7, ) Pn) Vi (9)
|B|=r p+q=r
=SSt (VB e)
|B'[+18" |=r
Comparing the coefficients we obtain
al ’ ”
(2.30) ) Payw(y) = Z m(vg(y)ém,y)vg(y)w(y)‘

a'+a’'=a

Applying Lemma 2.5 we prove that this sum equals VSw(x) when y = z. =
2.7. LEMMA. For any multi-index oo € Z"} and any smooth function o,

Vo P W)Py.aly=2 = 0) ¢().
Proof. We have

o a! o o

o'la!
a'+a’'=a
It follows from Lemma 2.5 that this sum equals 0%¢(z) when y = z. =

Let £ and F be C*-smooth vector bundles over M with connections V€ and V7
respectively and let ¢ : £ — F be a C'°°-smooth vector bundle morphism. ¢ can be
viewed as an element of C*°(Hom(E,F)), where Hom(E,F) is the C*°-smooth vector
bundle with the fibres

Hom(E,F)y = Hom(E,, Fy)
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constructed in the standard way (see, e.g., [MS, §3]). Any w € C*°(&) gives rise to a
section ow € C*°(F). So, we can define V7 ¢o € C>(Hom(€, F)) by the equality

FE N\ _oF £
(2.31) (Vi3 fo)w =V, (ow) —oV; w.

As usual, (V]4)* will denote the symmetrization of (V7€) ... (V€)% where
Vi,...,Vn are the given vector fields.

3. Classes of symbols

Let d = (d,...,d,) € R™ be a vector such that di, >0, k=1,...,n, and

(3.1) > dik =n.

For any multi-index o € Z} we put

o,
(3.2) o d] =) ==
For any vector n € R™\ {0} we denote by |n|q the unique solution 7 = 7(n) = |n|q of the
equation
ZT*Z/dkni =1.
k=1

It follows from the implicit function theorem that 7(-) € C°*°(R™ \ {0}). Further, we put
|0la = 0. It is not difficult to prove that there exists Cq > 1 such that

(33) m+n'la < Callnla +n'la),  Vn,n" € R™
One can take, e.g., Cq = 2™a{dx} Tt is clear that
(3.4) max{|ne|*} < [nla < n™ B2 max{|ng| %},

[ < g < [p et ) > 1,
(3.5) ,
[P Bd < plg < gAYt gl < 1
Let r € R, 0 < 4,0 < 1. We denote by S;:(sd(M x R™) the class of all functions
a € C®(M x R™) such that for any compact set K C M,

(3:6) 1050y, (x) - - Ou,, () 0(x,m)| < constrca ., (1+ n|q)"—ele:alFalsd]
Vo€ 21, Vi1,...,4q €{1,...,n}, Vg € Zy, Vn e R", Vo € K,
where (3 is the multi-index corresponding to the set of indices {j1,...,jq}-

Let £ and F be C*°-smooth complex vector bundles over M and let € and F be the
corresponding induced vector bundles over M xR"™ defined by the projection M xR"™ — M
(see, e.g., [MS, §3]). We say that a € C°°(Hom(E, F)) belongs to the class §£:5d(8,}") if
it can be expressed locally as a matrix-valued function with components satisfying (3.6).

In order to give an invariant definition of 5;:?(8 , F) we need connections V¢ and V¥

on the bundles £ and F respectively. The class §;:5d(8 ,F) consists of all morphisms
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@ € C®(Hom(E, F)) such that for any compact set K C M,
B7) 05V VSl m) < constia ..., (1+ [nla) eI,
Vo€ Z7, Vi1, ..., jq €1{1,...,n}, Vg€ Zy, Vn e R", Vx € K,

where (3 is the multi-index corresponding to the set of indices {ji,...,jq} (see (2.31)).
Here ||-|| : Hom(E, F) — R is a continuous function such that its restriction to each fibre

'Hom(g', ﬁ)(w,n) = HOm(g(wm), .7?(93777))

is a norm on Hom(&,,F,). This definition of 5;:?(8,]—') does not depend on the choice
of connections V¢ and V7 due to the fact that if V and V’ are connections on the same
vector bundle, then V,; — V7, "is a zero order operator for any vector field vy on M.
Finally, let £, and F, be the vector bundles over the cotangent bundle T* M induced
by £ and F with the help of the projection T*M — M. We say that a vector bundle

morphism a € C*°(Hom(E,, F.)) belongs to the class 5’;?(5,}') if there exists a €
ggjéd(g,f) such that

(3.8) a(z,§) = a(z,0(z,f)),
where

(39) J(xag) = (0’1(1’,5), . '70—71(1'75))7 o—k(xag) = <Vk(x)7€>7 Vé- € T;M

Elements of S;?(E , F) will play the role of symbols of pseudodifferential operators.
Pseudodifferential operators can also be defined with the help of amplitudes. So, we will
need the corresponding classes of amplitudes. Let £M and FM be the vector bundles over
M x T*M induced by &, and F, with the help of the projection M x T*M — T*M.
We will say that a vector bundle morphism a € C*°(Hom(EM, FM)) belongs to the class
S;g(M;S,}") if there exists @ € §;?(M;S,}") such that

(3.10) a(y; =, &) = a(y;z,0(x,§)), Va,ye M, V& e T, M.

Here §£:§(M; &, F) denotes the class of all morphisms @ € C*(Hom(EM , FM)) such that
for any compact set K C M x M,

F.E FE o~
(3.11) 0700, (y) - - - A, () Vyjl @) Vyjq (m)a(y, x,n)||
< CONSb K aky,.. ey 1y (1 []a) el FoIBTm:Al

Voo € Z, Yki, ..o kp, g1y -5 dq €41,...,n}, Vp,q € Zy, Y € R, Y(y,z) € K,

where (3, p are the multi-indices corresponding to the sets of indices {ji,...,Jq},
{k1,...,kp} and EM, FM are the vector bundles over M x (M x R™) induced by &

and F with the help of the projection M x (M x R™) — M x R™.
For all p and ¢ the intersection
(3.12) ST =808 =50
reR reR

consists of morphisms which vanish with all their derivatives faster than any power of |{]
as |¢| — oo. Note that the mapping & — n = o(x,£) is invertible since the vectors
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vi(x), ..., vy(x) span the tangent space T, M (see also (3.5)). We will also use the notation
(3.13) S =S5 =56
reR reR

and the standard notation for asymptotic expansions of symbols and ampliﬁu(ies. Namely,
let a; € S”’ (E,F),jeN, r; » —oc0 as j — oo, and let @ € C>*°(Hom(E, F)). We will

write -
(3.14) ala,n) ~ > aj(x,n)
j=1

if l
a(w,m) =Y aj(wn) € SENEF), VIEN,
e

where 741 = max{r; : j > [+ 1}. The asymptotic expansion

aly; x,m) Za; y;a,m)

will be understood analogously.

Exactly as in the standard calculus of pseudodifferential operators (see, e.g., [Shu,
3.3] or [Tal, Ch. II, §3]) one can prove that for any sequence a; € §;i§d(5,]—'), jEeN,
such that r; — —oo as j — o0, there exists a unique modulo G0 symbol a € 5;?(5, F),
r = max{r;}, satisfying (3.14).

4. Anisotropic pseudodifferential operators on a manifold

We will need measures on M and the cotangent spaces Ty M, y € M, in order to give a
coordinate free definition of pseudodifferential operators. Let us consider the determinant

(4.1) det(v1(y),- - va(y)) = det(v]. ()} s

It depends on the choice of a coordinate system, but it is easy to see that

(42)  dM(y) = [det(](y))| 'y,  dN(Q) = |det(vi(y))ld(, ¢ € Ty M

are invariant, i.e. independent of the choice of a coordinate system. The determinant (4.1)

always differs from 0 because the vectors v1(y),...,v,(y) span the tangent space T, M.
Note that since

(det(v(y)) " = det(7f (y)),
where 7¥ (y) = Z;L Zz Uk (y)dy’ (see (2.3)), we have the following equality for differential
forms:
(det(v () tdy* A ... Ady™ =T (y) AL AT ().
Let us evaluate the determinant (4.1) in the canonical coordinate system with the
origin at x € M. Since

n

D7 = DB W0 = > v ()83, = v (y),

m=1 m=1
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(2.9) implies that our determinant equals
(43) T(Zay) = det(auk(y)cj(may))'

It is not difficult to prove that for any multi-index o € Z7,

(4.4) N T (@, Y)ly=a
is a universal polynomial in 97 Te(@), 18] < |af — 1, whose coefficients do not depend
on M or v, k=1,...,n. Indeed, 83(y)T(x,y) is a linear combination of determinants

whose components have the form

O, () - - Ou, () €5 (@, Y).

Using (2.1) we can express 0, ...0,, in terms of symmetrized derivatives 9 and op-
erators of multiplication by d,-derivatives of the functions C7}. According to (2.15) and
(2.20) all symmetrized derivatives of order greater than 1 vanish at y = x, while (2.18)
implies that

al’k(y)cj (CC, y>|y:w = 6%

Consequently, (4.4) is a linear combination of determinants whose components are poly-
nomials in 97 C ().
It follows from (2.15), (2.18) that

(4.5) T(z,x) = 1.

Since T (x,y) # 0 if y is sufficiently close to z, the last equality implies that 1’(z,y) > 0.
Let us give an explicit formula for (4.4) when |a| = 1. The columns of the determinant
T(x,y) are equal to 0,, o, c(z,y), k =1,...,n, where

(46) C(%,y) = (Cl(ajay)a"'acn(xay))'
Using (2.1), (2.15) and (2.20) we obtain
1
Ov; ) O () (& Y ly=2 = 5(00; ) O (v) + O () O ()@ Y) [y=o
1 m
+§ j,k(y)avm(y)c(x»y)‘y:z
m=1

1 m

9 CiW)0u,, ) c(@, y)ly=a-
Hence

(4.7) Oy, T (@ Y)ly=2 = Oy, () det(Dy, (1) (5 Y); - -+ Ou, () (@, ¥))[y=2

= Z det(0y, (4)c(,Y), - -+ Ouy_, () (T, Y)5 Ou; () Oy () (25 Y)
k=1

az/kJrl(y)c(xa y)’ ey aun(y)c(xa y))\y:z
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- Zdet ( V1 ( y)c € y) . 8uk 1( y)c T y Z um(u (J?,y),

al/k;+1(y)c(x7 y)a ey aun(y)c(xa y))

y=x
1 1
- chtarinn =} 3ct,
k=1 k=1
It was noticed in [Saf] that ¥'(z,y) =1 if

(4.8) cmo=0, Vm>k

Indeed, using (2.1) and Lemma 2.4 we obtain

Z cl(xv Z)al/z (Z)avk(z)cj (1‘, z)
=1

= Z@,jk(z)cl(x 2)0y, ()¢5 (x, 2) Z () (T, 2)) 0y, )¢5 (2, 2)

=1 =1

n

+ Y al@ 2)Cl(2)0,,, ¢ (@ 2)

I,m=1
= 00 (5)65(2,2) = Y (O, (2y€1(m, 2)) D ()¢5 (1, 2) + Y erl, 2)CP3(2)Dy,, ()¢5 (x, 2).
=1

Now it follows from the equality
(4.9) (Y2 (b)) = ¢ (2, exp, (1Y) = ty = te;(x,y),  y = exp,(y),
(see (2.8)—(2.10)) that the matrix function
F(t) = (8Vk(z)cj('r’ z))|Z:'yy,w(t)
satisfies the equation
tF'(t) = F(t) — F2(t) + tQ(t)F(t),

where .
= (D alw n)Cii (1))
=1

is a triangular matrix function with 0 on the diagonal. Consequently, the matrix function
G = F~! satisfies the equation

tG'(t) = —G(t) + I — tG(t)2(1),

where T is the identity matrix. Thus the matrix function H(¢) = t(G(t) — I) solves the
following problem:
H'(t) = —H(t)2(t) —t02(t), H(0) =0,

which can be regarded as a Cauchy problem in the space of triangular matrix functions
with 0 on the diagonal. Hence H is also such a matrix function. So, G and F = G~ are tri-
angular matrix functions with 1 on the diagonal. This implies that 7'(x,y) = det F(1) = 1.
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The determinant 7'(z,y) is an analogue of the so-called Van Vleck—Morette determi-
nant (cf. [DW, (17.28)], [Fri, (4.2.19)] and [Fu]; see also [FK, Remarks 2.4 and 2.5]).

Let V be a sufficiently small neighbourhood of the diagonal of M x M such that v, .
is defined and 7"(z,y) # 0 for any (x,y) € V. Let us fix a function xy € C°°(M x M) which
equals 1 in some neighbourhood of the diagonal of M x M and vanishes on (M x M)\ V.

4.1. DEFINITION. Let £ and F be C°°-smooth complex vector bundles over M with
connections V€ and V7 respectively and let  be a complex number, 7 € [0,1], r € R,
0 <§ < p<1. We will say that a continuous linear operator

A:CP(E) = C™(F)
is a pseudodifferential operator (¥ DO) with a T-symbol

oar=acSyS(EF)

if
(410)  (Aw)(@) = —— | | e 0007 a(z,, )05 w(y)T"(z.y)
(27T) MT;
x x(@,y) N, (Q) dM(y) + | K (z,p)w(y) dM(y), Vw € CF(E),

M

where z; = 7, (1), dM(y) and dN_(() are defined by (4.2), the superscripts F and &
indicate that the parallel displacements along geodesics ¥ and &¢ correspond to the
connections V¥ and V¢ (see Section 2),

K e OOO(HO’ITLMXM(g,F))
and Homarx (€, F) is the C*°-smooth vector bundle over M x M with the fibres
(’HomeM(E, }-))(x,y) = Hom(Ey, .7'-37)

constructed in the standard way (see, e.g., [Tre, Vol. I, Ch. I, §7]). The first term on the
right hand side of (4.10) is understood as an oscillatory integral (see below). The class of
such operators will be denoted by 47;’;1(5, F). The functions 04 = 049 and o = TA1/2
are said to be the symbol and the Weyl symbol of the DO A. The morphism a from
(3.8) corresponding to the 7-symbol (symbol, Weyl symbol) a of the DO A is called its
T-presymbol (presymbol, Weyl presymbol) and is denoted by G4, (G4, 74 ).

The strange factor Y%(z,y) appears in (4.10) by the following reason. If # = 1 then the
connection between partial differential operators and their symbols becomes very simple
(see (4.15), (4.16) and (4.21) below). On the other hand the formula (4.10) itself and
the formula for the adjoint operator are simpler if # = 0 (see Theorem 5.1 below). The
case § = 1/2 is also of interest due to its applications in quantum mechanics. All three
definitions of ¥)DOs have been used in the mathematics literature (6 = 1 in [FK], [Wil],
[Wi2], § = 1/2 in [LQ], 8 = 0 in [Saf]). We follow the suggestion made in [Fu] to define
¥DOs for an arbitrary 6 in order to treat all the above cases simultaneously. Of course
one can use factors much more general than Y% (x, ). However, this does not change the
class W;',’g (€, F) (see Theorem 4.4 below).
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The phase function (¥, . (7), {) seems to be a reasonable generalization of the standard
Euclidean one (y — x,(), because in any local coordinate system we have 4, ,(7) =
y' — 2’ +O(||y —2'||?), where 2/,3 € R™ are the coordinates of x and y respectively (see
[Saf]). Indeed, since the coordinates of x and y in the canonical coordinate system with
the origin at  are 0 and y, we have, due to (2.9),

le(z, y)ll = O(ly" —=2'l) asy—=
(see (4.6)). Now using the equality

(4.11) Ay, (t ch (@, y)v(1y,2(t), Vte|0,1],

we obtain in the chosen coordlnate system
t

Yya(t) = Yya(r) = Ay (s) ds = O(|ly’ = '),

y/ -2 = PYy,x(]-) - Vy,x(o)
1

= [0 (0) dt =3y (7) + O(g0ax, [y (t) = Ay (7))

= Yy,2(7) + O(lle(z, ) Igtagl\lvym() Yy (7))

= Yya(1) + O(ly = '|*) asy —a'.

If 7 =0 or § < min{dy} min{dj '}, the oscillatory integral on the right hand side of
(4.10) can be regularized in the standard way (see, e.g., [Shu, §1]). We can rewrite this
integral in a more convenient form which will be used throughout the paper. According

o (4.11) we have

(4.12) Ay, (T ZCJ z,y)o;(%r, ()

(see (3.9)). Using the change of variables

¢ n= U(Zﬂ C)
and the definition (3.8) we can show that our oscillatory integral equals
(4.13) S S e NN GT | Gz, mBE ()T (@, y)x(x, y) AM(y) dn,
where

n
= ci@ym;
j=1

Choosing in (4.13) the canonical coordinate system with the origin at x we obtain

1 B N _ _
SS ST Gz, @S w(y)x(z,y)T0 (2, y) dij dn,

R T 11

Y= expm(g)a
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(see (2.9) and (4.3)). Note that in (4.14) we integrate with respect to § over a small neigh-
bourhood of 0 € R™, because the function x(z, -) vanishes outside a small neighbourhood
of x.

Let us show how to regularize the oscillatory integral on the right hand side of (4.10)
in the general case. We will regularize (4.13) and consider the result as a regularization
of our oscillatory integral. We use the following Taylor formula:

éacf,zfa(zﬁ 77)@5

2T,y

N
1 e «a & yax
a|=0

1 o F,E\a~
VD) YD @) (O (V) a8, (7 — )Y dt
la]=N+1 0

(see (4.23) below). The oscillatory integral corresponding to the first sum on the right
hand side can be regularized in the standard way (see [Shu, §1] and also (4.24) below). It is
left to consider the integral corresponding to the second sum. If (N +1) min{d} ' }(¢—9) >
r + n, then integration by parts in 7 gives an absolutely convergent integral (see (4.24)).
It is not difficult to prove that for any
ac€ S;:(;d(&]:) and K € C*®(Homuxm(E,F)),
(4.10) defines a continuous operator A : C§°(E) — C°(F) (cf. [Shu, §2]).
Let us take arbitrary 7' € R™, wg € C*°(£), and in (4.14) put 7 = 0,
w(y) = e P x (@, )T (2, y) 85 wo(w), Y = expy(§).
Then due to (2.27) and the equality 2o = v,,,(0) =  the result equals
1

G ) 1 e Ot men(@) e, o, @) didn.
R" R

Since the function x?(z,exp,(+)) equals 1 in some neighbourhood of 0 € R", it is not
difficult to prove that the last integral equals
a(z,nwo (@) + doa, ' )wo(z), G € S™F(E,F)

(see, e.g., the proof of [Hol, Lemma 3.2]). Simple integration by parts shows that for the
chosen w the second term on the right hand side of (4.10) equals

@z, n)wo(z), @ € ST(E,F).
Thus we have proved the following result.
4.2. LEMMA. Let A be a ¥ DO with a symbol o4 € S;:g(é’,]—'). Then
oa(r,wo(z) = (Aw)(@) + gz, §wo(z),  Vwo € C(E),
where
w(y) = OOy (@ )T (2, )5 ,wo(x), g€ S F(E,F).

(Here we fix an arbitrary (x,&) € T*M, apply the operator A to the section w, regarding
y as the variable, and then evaluate the result Aw at the point x.)
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Let us consider the case when in (4.10), 7 = 0, K = 0 and a(x,§) is a polynomial
in &:
(4.15) a(z, &) = Z ao(x)o(x,8), aq € C°(Hom(E,F))

la|<N

(see (3.9)). Using the representation (4.14), (2.15), Lemma 2.6 and the fact that the
function x(z,-) equals 1 in some neighbourhood of x we obtain

(Ao)(@) = 75— §§ e @ (37 ant@m®) @S wy)x(@ n)T" (@,y) didy
(271—) R™ R la|] <N
= a0 () (=)0 (B oy ()@ (exp,(§)T7 7 (2, exp,(9))) ly=o
lal<N
= aa(2)(=0)1105 ) (85w T (@, ) y=2
lal<N
= ao (2)(=)N(VE ) ()T (@, ) [y=s
lal<N
= Y aal@lal 3 @ T ) e (V) ()
la]<N a'tal=a T
= (Z(%QWWWmemwm%Wm»
[BISN B/ |<N—|B|
Hence
(4.16) A= " bs(x)(V))?,  bg € C™(Hom(E, F)),

IBI<N

where the coefficients are given by the formula

(4.17) bg($> = Z (ﬁﬂ—:_ﬂ?l) ( )MH_ﬂ ‘66 Te 1(-%' y)ly zaﬁ+ﬂ( )
|B'|<N—|B]

Conversely, any differential operator (4.16) can be represented in the form (4.10),
where 7 = 0, K = 0 and the coefficients of the symbol (4.15) are given by the following
recurrent formulae:

iNbo(z) if |a] = N,
il*lbg, ()
4.18 o(x) = (a+a) o aa B
( ) Q (.’E) — Z W(_’L)l ‘au(y)Te 1(I7y)‘y:waa+a’($>
1<]|a/|<N—|e|
if o] < N

(see (4.5)). However, it is easier to find the coefficients a, with the help of Lemma 4.2:

Z bﬁ l/(’l/ ( <(zﬂ)’U(I,E»T‘l_e(II’"y)¢5,x>|y:$
IBISN

= D (@), (eI g, )
IBI<N
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= Y @ Y ol @)l (@)

‘ﬁ‘SN ,B/-‘rﬁ”—
e’ (a+a) le% «
= i ( > T T @y ymebara (@) )07 (2,€)
la| <N lo/|[<N—|a|

(see Lemma 2.7, (2.15), (2.18), (2.20) and (4.12)). Consequently,

|| Z (Oé-'-O/)'

(4.19) ao(z) =i T 00 T (@, )l y=abotar ().

la'[<N—|of

It is worth repeating that 83(/y)T(x,y)|y:I is a universal polynomial in 0¥ J’fk(x),
|#| < || — 1. In particular, using (4.7) we obtain

(4.20)  aq(x) =iVt (ba(x) + % Z (j + DC i (2)bare, (x)) if o = N -1,
k,j=1

where e; = (0,...,0,1,0,...,0) with 1 at the jth place.
The above formulae imply that the symbol of the operator ij equals

io;(x,§) + 1g—9 Z ck
k=1
In the case § =1 the formulae (4.17), (4.19) become very simple:
(4.21) ao(z) = i1%by ().
The same is true for an arbitrary 6 if (4.8) holds.

4.3. THEOREM. Let A be a v DO with a T-presymbol o4, € gz:?(é',]-'). Then A is a
Y DO with an s-presymbol G 4,5 € gr’d(é’,f),

ilal
~ ~ L _ la] g F.E
(4.22) G a2, 7) |Zo (s = )N (V) G ().
Proof. Let us consider the Taylor expansion of the Hom(&,, F)-valued function
Ql)(t) = W(Zt) = quztEA T(Ztﬂ n)dsi,y
Using (2.26), (2.28) and (2.31) we obtain

d"V¥(z -
dt(r ) _ =0, 0®r.Far (2P,
r! F moaF F.E ~ £ £
= 2 il e ) Py 0 (V3 0) T ar oMV, L)', L0
m-—+p+q=r

F.E r~
= dsfzt (wa(t)) UA,T(ztv U)Qﬁ,y-
Since Jy,» = > ¢j(x,y)vj, we have
d"W(z) _ r'
dtr Z,zt

ee|=r

( )(Vf(z) 5A7T(Za77>|2 Ztéft,y
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Hence
(4.23)  U(z;)

(1—8)" + 1 [V (z)

N
N 7dtN+1 (r—t)" dt

N
1 -
= Y @) - )BT (V) G a s () B

1
+(N+1) Y aca@,m B (V) Far () e B, (= 1) dt.
|a|]=N+1 :

Now using the equality
(424) ca(x7 y) —i{c(z,y)m) — z‘alaa i(c(z,y),m)

and integrating by parts we can derive (4.22) from (4.13). We skip the details which are
similar to those from the standard calculus of ¥/DOs. =

In the same way one can prove the following proposition.

4.4. THEOREM. Let 7,5 € [0,1], a € S;?(M;é’,}'), 0 <6< p<1, and let an operator
A:C§R(E) — C™(F) be defined by the formula

(Aw)(z) =

WS S 67i<’yy71(T)’C>@xf,zTa(zs;ZT?C)@Z.,yw(y)Te(xay)

MTz
x x(@,y) N, (C) dM(y),  Vw € Cg°(€).

Then A is a DO of the class WT’ (E,F) and its - and s-presymbols are given by the
following formulae:

- 2. gled N

UA,T(%W)N Z J(T_S)‘ oy 81/(y (y;xvn”y:m
|a=0

- 2. gled ol o

Gas(a,m) ~ Y — (s = IOy (VD) alys 2 m) =
laj=0

where a(y; z,€) = a(y; z,o(x,€)) (cf. (3.10)).

It was mentioned in Section 3 that the class S;:(;d(é' , F) of symbols does not depend on

the choice of the connections V€ and V7. It turns out that the class 47;’?(5 ,F) of ¥DOs

also does not depend on the choice of V€ and V¥. Let V¢ and V7 be another pair of
connections on £ and F and let ¢ and &7 be the corresponding parallel displacements
along geodesics.

4.5. THEOREM. Let A be a vy DO with a T-presymbol a € §;:§(5,}') with respect to the
pair V€, V7. Then A is a DO with a T—presymbolg € §;?(5,}") with respect to the
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pair @5, V¥ and
2, gledtiBlrlel (- — 1)I8l

b(x7n) ~ Z O['ﬁ' (v.lf(z))agpr,z|2=xa$+ﬁa(m) n)(vf(z))ﬂ¢21|zzl
lal,18]1=0 .
< jlal+8l plal (7 — 1)I81 _
(3 T T o a ~
~ Z O['ﬁ' (vf(z)) QZAZ:@’@W—H?G(Q:)n)(vf(z))ﬂ¢§7z|zzw
laf,18]1=0

Proof. The equality (2.27) implies
T Az, )L, =L b(x,y; 2, )P,

27,y Tz,

where
b(x,y; zr,m) = B, a(z-,n)PE &7

Zr T X2y YT Y2

Similarly to (4.23) we obtain

_ < (—rylal . N
b, 2, 1) ~ ( > o)V @Z,zu_z,)a(zﬂn)

|a|=0

© (1 _ )8l _
(X U (VP L ).
151=0 '

) — \al
~ T o ~ o _
b(l‘, Y; 2Ty 7]) ~ ( E ( Ck? ¢ (3:7 y)( v Z:(z)) 43:::27 |Z=ZT) CL(Z7—7 77)

|ee|=0

0 _ 7\I8I ~
(X U@ et ).

181=0
The remaining part of the proof uses (4.24) and integration by parts and is similar to
that of Theorem 4.3. m
4.6. REMARK. Later on we will need the following class of operators:
— r,d r,d
U, F) = (s (€,F) = [ ¥5(E,F).
reR reR
It is easy to see that any element of ¥ ~>°(&, F) is an integral operator with a C°*°-smooth
kernel.

5. Dual and adjoint operators
Let &£ be the vector bundle dual to &: & = Hom(&E,C). The transition matrices cjx

corresponding to £ are replaced by tc;k in the case of £’. Let £* be the vector bundle
adjoint to &, i.e. let £* be the complex conjugate of £’ (see, e.g., [MS, §14]). The transition

matrices corresponding to £* are c}.. In this case one has well defined bilinear and
sesquilinear mappings

(5.1) (Ve & x & —C,
(5.2) (,)e: € xEF—C, zeM.
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Using them we can define the connections V€ and V€~ generated by V€. For any sections
v e C®(E), we C®(E*) and any vector field vy € C*(T M) we define Vg v and VS
by the equalities
(5.3) (W, VE ) = By (w,v)e — (VE w, v)e,
(5.4) (w, Vf;w)g = Oy (w,w)e — (Vo w,w)e, VYw e C(E).
The first equality is in fact a special case of (2.26) with Z = C.

The connections V€ and V& generate the corresponding parallel displacements along

geodesics
g’ . / / E* . * *
D&y — &y Py & — &

xr xr

It follows from (5.3), (5.4) that for any x € M, e € &, € € £, and €* € £ the functions

Y — <¢§,z€’@§:rel>5’ Y (@5 €, @5* L€ )e

.3 . . . _ g _ g . .

are constant along geodesics starting at z. Taking ¢’ = & ¢, ¢ = & er with arbitrary
€, €&, €, € & we obtain

£
(5.5) (P €€, Ve € &, Ve, €&,

£ * *
(5.6) (P, .6 €, Ve € &, Ve, €&

Let w € C(€), v € C“X’(E’) and suppose that at least one of these sections has a

compact support. Similarly, let w € C*°(€*) and suppose that either w or w has compact

£ = <€@
= (e, L

oy €y)Es

\/\/

p2€y)Es

support. Then using (5.1), (5.2) we can define the following bilinear and sesquilinear

forms:

(5.7) (w,v)em = | (W), v(2))e AM(2),
(5.8) (w,we 1= | (w(z), w(@))e dM(x)
(see (4.2)).

All the above constructions can be carried out for the vector bundle F without any
changes.

5.1. THEOREM. Let 7,s € [0,1] and A € LT/T’ (E,F). Then there exist yDOs A’ €
W;:g(}"’,f’) and A* € Wr’é (F*,E*) such that
(Aw, v)Fm = (w, AV)em,  (Aw,w)Fm = (W, A"W)e M
for any w € C§°(€), v e C(F'), w e C§°(F*), and
i": Z‘\aHIﬁIHMI(S 47— 1)\045\6\(5 — 1)|#|

(5.9)  ocars(x,m) ~

13141

jal, 8], 1l =0 ot

X al/(z)au(z (Z7 ZI)|Z:Z,:I8'I?+B+N (vi‘/)}-/)ab—vg,r (1’7 777))

e ilal 4814 p — el glBl(g — 1)1l
- ) s+71—1)¥slPl(s —1
(10) Faslem)~ Y SRRl R

alflu!

[l B, ]=0

X 0000y A% (2, 2 ) amar a0y (VTG (),
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where o'y . € C>(Hom(F',&")) and i, € C>(Hom(F*,E*)) are the morphisms (see
Section 3) dual and adjoint to G4 -

@ar(@med)r =y (2,0 )e, Ve€&, W eF,
(Gar(ned™)r= (604, (2,n)Y")e, Ve &, V" €F

and
T(y )
A(z,y) =
= Tay)
If 0 =0 or (4.8) holds, then
2L dlel( —
(5.11) T s Z M@&(vfff Fyogy (x,—n),
\a| S+T* 1) a (TEFyaxx
(5.12) TA* s Z —8 (Ve o, (z,m),

and in particular the Weyl presymbols satisfy the equalities

(5.13) ow(,n) = @X (2, -n),  FA-(z,1) = (@F (z,)".
Proof. Using (5.5) and (5.6), from (4.10), (4.13) we obtain
(A0)w) = Gy | | eritcConal 5 (zrm@ Lo(@) T (@, y)x(@,y) dM () dn
R™ M
+ | K@, y)v(z) dM (@),
M
(A"w)(y) = (Qi)n | S e GE 5 (2L (@)Y (2, y)x(w,y) dM () di
R™
+ g K*(z,y)w(z) dM(z),

since (5.1) and (5.2) are bilinear and sesquilinear respectively. We will sketch the remain-
ing part of the proof for the operator A’. For A* it is quite similar.

Taking into account (2.12) and the equality z,(x,y) = z1--(y,z) and making the
change of variables n — —n we arrive at

1 —i{c(x ! ~,
(Av)(z) = T | | eritclenmas 5 (a1 p—m)@T _o(y)
R M

x A% (@, )T (2, y)x(y, ) dM(y) dn + | K'(y, 2)o(y) dM(y).
M
Now (5.9) can be proved similarly to Theorems 4.3-4.5.
If & = 0 or (4.8) holds, then A%(z,y) = 1 and (5.11), (5.12) follow from (5.9) and
(5.10). Taking s =7 =1/2 in (5.11), (5.12) we obtain (5.13). m

5.2. REMARK. Using Lemma 2.3 one can prove that 9° (Z)ay(z A%(2,2")| 2= 21— is a poly-
nomial in 9 CT () (cf. (4.4)).
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The operators A’ and A* were defined above with the help of the forms (5.7) and
(5.8), which depended on the choice of the measure dM (see (4.2)). In order to define
these operators in a more invariant way one has to deal with densities.

Let k € R and let 2% be the bundle of k-densities over M (see, e.g., [Ho3, Vol. 3,
§18.1] or [Tre, Vol. 2, Ch. VII, §2.5]). Since this bundle has one-dimensional fibres and
the corresponding transition functions are positive, it is clear that (5.1) and (5.2) define
the following mappings:

(Ve (E@ )y x (E@0%2), — QEHR2 (g 1 (E@Q), x (EX @282, — QE1He,

Therefore for any w € C®(E ® 2%), v € C®(£' ® 2'7") and w € C®(E* @ N'7F) we
obtain densities (w(x),v(x))e and (w(z),w(x))s. Hence, the following objects are well
defined:

(5.14) Ve dx,

A&
- fu

(5.15) x))e dz,

if at least one of the sections in each equality has a compact support.
For any k € R we can equip the tensor product £ ® 2 with a connection taking the
following natural parallel displacements along geodesics:

(5.16) LD = |det(v](y)| "L |det (v ()" : (€ @ 27, — (€@ 27),
(see [KN, Ch. III, Section 1]).
It is clear that the operator
N, :C®(ERN®) - C(E), (Nyw)(x)= |det(v,ﬁ(x))|”w(x),

is an isomorphism with the inverse

Ny C™(E) = CX(E@2%),  (N_yo)(x) = |det(v] (2))|"o(x),
and that any morphism a € C*®°(Hom(E,, Fi)) can be regarded as an element of the
space C®°(Hom((€ ® 27)., (F @ £2%).)) (see Section 3).

Let A, € !Z/;':g(é’ ® 2% F @ 2%) be a DO with a T-symbol a € S’Z:(;d(é’,]:) defined
with the help of (5.16). Then it is easy to see that the operator A := N A, N_, is a yDO
from W;:g(é’ ,F) with the same 7-symbol a.

Using the forms (5.14), (5.15) we can define the dual operator A, : C§°(F' @ 217F) —
C>(&' @ 2'7%) and the adjoint operator A% : C§°(F* @ 217%) — C=(E* @ 217%) by
the formulae

(Apw,v)r0 = (W, A)ee, (Aw,w)ro=(w, Aw)eo
for any w € C§P(E @ 27), v € CF(F @ N17F), w € C§°(F* ® 2'7%). Since
<A,€w,’l)>]:)_Q = <N7NANHM7U>]:,Q = (Aan7N17HU>]:,M
== <anaAlNl—nv>f,M = <w7Nﬁ—1A/N1—/{U>.’F,Q;

we have A/, = N,_1A’N;_. Similarly we obtain A% = N,_1A*N;_,. Therefore



30 E. Shargorodsky

A e U (F o™ o™, ALcl{(F o0 ™" 0™
and the s-presymbols of these 1)DOs are given by (5.9), (5.10) (see also (5.11)—(5.13)).

5.3. REMARK. Using the results of this section one can easily prove that any A €
Wrd(g F) admits an extension to a continuous operator from E'(£) = (C*(&* ® 2))
to D/(F) = (C§°(F* @ 2)). Suppose A is properly supported, i.e. for any ¢ € C§° (M)
the Schwartz kernels of the yDOs ¢ A and Apl have compact supports. Here [ is the
identity operator. Then A maps C§°(€) into C§°(F) and can be extended to continuous
operators from C*(€) to C°°(F), from E’(€) to E'(F) and from D'(€) to D'(F) (cf.
[Shu, Proposition 3.1]).

6. Composition of ¥YDOs

In the remaining part of the paper except Section 8, we will always suppose that
1 1 1
6.1 — >— 07 #0
(6.1) o(7+3)> 7 Hon#
(see (2.1)). For the applications we have in mind the most important class of symbols
is Sf:g. In this case (6.1) takes the form
1 1 1

2 — 4+ —>— ifCcn .
(6.2) a; +dk 4. it #£0

Since we regard 9, as an operator of order d;l, 0y;0,, and 0,, 0, are operators of order
d;l +d; ' and (6.2) means that the commutator [9,,,9,,] has a strictly lower order (see

(2.1)).

Let
(6.3) e=min{d; ', o(d; ' +d;") —d,' :1=1,...,n, CJ} #0}.
6.1. LEMMA. If |a+ 3| > 2 and
(6.4) 05y 08 ¢ (U 2)lymama # 0,

then
1
< ollfa+6) d| —e(la+ 5 - 1)
J
< ol(a-+9) | - emax{lal [8) < o(lfa + 8) = o+ 51).
Proof. It follows from (6.4) that at least one term

803

kl ma

(@)l (@) o el (@)

of at least one of the scalars (2.16) does not equal 0. Here each of the “upper” indices

J2s...,Jq coincides with one of the “lower” indices, which are k;,m; and those corre-
sponding to the multi-indices p(Y). The remaining

(6.5) D+ D 4 g+ 1= |+
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“lower” indices correspond to those of a + (3. Therefore

1 1
cd|+—+ . —
(ot B) s dl ot
1 1 1 1
=M d[ 4. 4| e d — it [—+—).
|l [+ + +(dk1+dm1>+ +<qu+qu)

Using (6.1) we obtain

1 _ _ _ _ _
g|(a+5):d|_zzg|(a+ﬁ):d|_dj1+g(dj;—d.;)+...+g(djq1—d?)

J Jq
J
=olp™ 1 d|+ ...+ o 1 d| + (o(dy, +d}t) —d; )
+ (o(d} +dpt) —od ) + . + (g(d,;ql +dt) = ed; )
> oe(|uM] 4.+ [0 9)) +eq = oe(|a+ Bl - 1)

(see (6.5)). It follows from (2.19), (2.20) that if (6.4) is satisfied and |a + 3] > 2, then
lal, 8] = 1 and |o+ B — 1 > max{|al, |8} = |a + B/2. =

Let
(6.6) hj(z,y, z) == cj(z,x) + cj(x,y) — ¢j(z,y).
It follows from (2.11) and (2.12) that

h’j(ajayax) = h]‘(l‘,x,z) = hj(I'?yay) = Oa

(67) 8g(y)hj(xvyaz)|zza: = S‘(y)hj(x,y,x) = 0’
af(z)hj (xﬂ Y, Z)|y:m = 8f(z)hj (.’E, x, 2) =0.

These equalities and Lemma 6.1 imply the following result.

6.2. COROLLARY. If
g(y)af(z)hj (2, v, Z)‘y:Z:w # 0,
then

(6.8) di < o(l(a+8) : d| - e(ja+ B — 1))

< ol(a-+9) | - emax{lal [81) < o{lfa + 8) sl = la+ 51).

Let
(69) 7/’(9%% Z) = C(l’,y) - h(l’,y, Z) = C(Z, y) - C(va)a
Le. %‘(33’% Z) = Cj(l‘,y) - hj(xaya Z)v Jj=1...,n

6.3. LEMMA. Suppose y and z are sufficiently close to x. Then for any o € 2%, q € Z
and j=1,...,n we have

2hj(x,y,2)= > Hjap s @V (@,y,2)c" (2,2)
18" +18"1<q

+ Y Hpewpsr@y, 0¥ @y, (@2), 2= exp,(3),
[B|+18"|=q+1
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where ﬁj,a,ﬁ’,ﬁ” are C*-smooth functions, Hj . g g7 (x) are polynomials in 95 CT (z)
and H; o p g7 (x) # 0 implies

1 €
7 =o(las ey ial=Slas s+ 1)
J
Proof. Let us use the Taylor expansion
o ]_ a/ " a/ al/
Ehi(ey2) = 3 08 0 R (0, 2) e (2 9)e (3, 2)
o/ |+]a”[<q — T

+ Z Gj,a,a’,a” (x,y,z)co‘ (x’y)ca (xvz)a
lo’ [+ |=q+1
y = exp,(¥), z = exp,(2).
It follows from Corollary 6.2 and Lemma 2.2 that for all nonzero terms of the first sum
we have

(6.10)

|~

< Q<|(a—|—o/ +a'):d| - §|a+a'—|—a”|>.
J

S

After the substitutio

=t

c(z,y) = ¥(x,y,2) + h(x,y, z) each of these terms takes the form

]_ 7 " ’ "
W@g 0% T (z,y, 2)ly=2ea0® (2,9, 2)c™ (2, 2)
]_ ’ " ’ 1" "
05 O )yt (D (120 (012),
7/+7//:a/ : : :

7' #0
Using the Taylor expansions of hy(z,y, z) and Corollary 6.2 we can rewrite the last sum
in the form

’ ! " 1"
Z Gjaar ot ()7 (2,1, 2)ct (2, y) e T (x, 2)
[ [+ |+ [+l [ <q

+ Z éj7a7a//,7/7p‘/’#//($7y,Z)’l/}’yl(l',y,Z)Cﬂl(ﬂf,y)cun+a”(l',2),
Y I+ |+ |+ la |=q+1

where G oo o7 are C®-smooth functions and G o o 47y () are polynomials in
9y C(z) (see Lemmas 2.2, 2.3 and (6.6)). Corollary 6.2 implies that if G a0 v/, (7)
# 0 then

e
[y :d| < Q(I(u’ ) dl = Sl +u”|>~

From this inequality, (6.10) and the equality 7' + 7" = o’ we obtain

| —

9
= g(|(a+7/+a,,) rd| - §Ia+7’+a"|) +1y":d|

QU

J
€
< g(l(a ) d] = Sla A a)
Since due to (6.7) the Taylor expansion of hy(x,y, z) does not contain first order terms,

we have |p/ + p”’| > 4" if 4" # 0, i.e.

//|

Y +u +p"+ | > +a
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Using the equality c(z,y) = ¥(x,y,2) + h(z,y,2) again and repeating the above
procedure several times we end up with

(6.11) 02hj(w,y,2)= > Hjappr (@0 (z,,2)c" (2,2)
187|418 1<q

Y Huws @y 207 @y, 2 (@,y)e (@, 2),
IvI+lul+18" |=q+1
where Hj o g g (x) have the required properties and ﬁj,am#ﬁu are C'°°-smooth.
The equalities (6.7) imply
h(z,y,2) = I'(z,y, z)c(x,y),

where I is a C*°-smooth matrix function and ||I'(z,y, z)|| < 1/2if y and z are sufficiently
close to x. Hence

¢(33, Y, Z) = C(ﬂ?,y) - h(ﬂ?,y, Z) = C(ﬂ]‘,y) = (I - F(l‘,y, Z))_l¢($’ Y, Z)
Plugging the last equality into (6.11) and taking into account that (I — I')~! is a C°-
smooth matrix function we conclude the proof. m

We define the d-degree of a polynomial p(n) = Z‘ 41<n Cy1” by the equalities

(6.12) d(p) = max|y:dl, p#£0, d(0) = —ox.
It follows from the obvious inequality
1/d1 n/dn :d
[ = Il < 3l = il
(see (3.4)) that
(6.13) [p(n)| < const (1 + |n]a)*
It is clear that
(6.14) d(p1 + p2) < max{d(p1).d(p2)}, d(9}p) <d(p)—|u:d]

Suppose J is a C*°-smooth complex vector bundle over M with a connection VY
and @7 is the corresponding parallel displacement along geodesics. Let

Yo(,y,2) =T (@, )T (2, 2)T" (2, ),

gl i lel

J ._ 8" a8 +y+u
Pl ()= > Y 5/15111 1 21905 %)
B/+57 =5 |l <8

x (Tg(x,y,z) exp (iihj(x;yaz)n])@zjzgpzjy@i )

(6.15) = p—
'—N
_ T 8T \B'++
= Y Y S ) (9,
B'+8" =0 |ul<|B
n
< (To(ey e (Do nywy. 2y )#7,)| o Bey
j=1 T

(see Lemma 2.5 and (2.27), (2.30)).
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6.4. REMARK. If |u| > |B], B’ + 8" = (3, then

=0.

Yy=z=x

- v(z) " v(y) T,27 2,y YT

(6.16) oo’ a‘””*“(n exp (ijzi;hjnj)qﬂ o7 o7 )

Indeed,
87’7‘ exp (’L Z hj’l]j) = Z‘W‘h/‘(x’ Y, Z) exXp (7’ Z hjnj)
j=1

Jj=1

and (6.7) implies (6.16), since |u| > 3"

The morphisms Pg,,y € C>(Hom(J,J)) (see Section 3 for the notation) are polyno-

mials in 7 (see (6.7)). Their coefficients are linear forms in (Vf(z))a” (Viy))“légyb:z:x.
Due to Lemma 2.3, (4.3) and (6.6) the coefficients of these forms are polynomials in

IO ().

It is clear that the definition (6.12) of the d-degree of a polynomial can be extended to
polynomials with coefficients from an arbitrary algebra (or a ring). For the polynomials
Pg 5 we have the following result.

6.5. LEMMA. For any 3,y € 27},

a(pg,) < o{(8+) - 518 -+91).
Ad(P7,) < o(|(B+7) : d| —el)),
d(Pf,) < |6 max{d;'}.
If |B+~| =3, then
d(P7.) < o(|(B+7): d| - 2¢).
Proof. A factor n; can appear in a monomial of the polynomial

’

Pﬂ’,ﬁ”,’%# (Z, T]) = 85(2)85(,:)’Y+M (TG €xp (7’ Z h]n])@izgjzjay@gr)
j=1

Yy=z=x

only together with some partial derivative of h; evaluated at y = 2z = x. The sum of
multi-indices corresponding to these derivativesis < '+ 3" +~v+pu = 8+~ + p for every
monomial. Using Corollary 6.2 one can easily prove that

d(Py 1) < ol|(B+70) : Al =5 1B+7+) < o(l(B+7) 1 dl = SI8+) + |- dl,
d(Py g ) < o(|(B+y+p) dl =l + 7+ ul) < o(|(B+7) - d] —ely]) + [ d].

Now the first and the second inequalities of the lemma follow from (6.14).

Let pa(x)n®, o € Z7, be a monomial of Pg g ,. Then (6.7) implies that |a| <
|3"| < |B|. Therefore |« : d| < |3|max{d; '} and we obtain the third inequality of the
lemma.

Let |8+ | = 3. If u # 0, we obtain as above

d(Py g ) < o(|(B+7) : d] = 2¢) + [p - d].
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It follows from (6.7) that Pg g~ 0 does not contain powers of 7 higher than 1. Therefore,
we can apply the first inequality in (6.8), which gives us

d(Ppr pry0) < o(|(B+7) s dl —e(|B+ ] = 1)) = o(|(B+7) : d] — 2e).
It is now left to apply (6.14). m

6.6. PROPOSITION. We have

(6.17) Pio=1, Py, =0, YVy#0, P{;=0, VB8#0.
For any k,m=1,...,n,
(6.18) Pk (@, m) Z

modulo a “function” of x. (Here and below we call elements of C*°(Hom(J,J)) “func-
tions” of x in order to emphasize that they do not depend on n. We also denote the
identity automorphism by 1.)

Proof. The first equality in (6.17) follows from (2.27), (4.5) and (6.7). The second one
is a consequence of (2.27), (6.7) and the equality Yp(x,y,z) = 1. Let us prove the third
equality in (6.17) (1).

Using Lemma 2.2 we obtain

(6.19) 77[‘3777(96, n)
i—lul

_ B 58" +y+u
- Z Z 5/15//1 ! #82 817

B'+8" =0 |ul<|B

x (Toexp (i hyny ) @07, 7., )
j=1

(0 + 0;)° Z ﬂ@gagﬂt (Te exp (z i:hjnj)éiijqusiw)

lul<igl ™ Jj=1

= ag( > if—‘!’”a‘g“a:; (Te exp (Z g:l hmj)@iz@f,y@iz)

[l <|B|

Yy=z=x

In particular

(6.20)  P7y(x,n)

- 85( 3 %8‘5&’; (Te exp (% Zn: hjm)@fz@gy@yjm)
lul<|8] =1

)
Z=XT

)

y =exp,(y), 2z = exp,(2).

(*) The idea of the proof is due to Yu. Safarov.
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It follows from (6.7) and the equality Yy (z, 2, z) = T~ *(x, ) that for 8 # 0,

(6.21) > tes (Te exp (z En: hjng)isfz@fy@ij) .
j=1 ‘

l1<18]

=z

1 N
- 5 ot (S )eeel)

lul<lgl ™ j=1
=Tz, 2) Z l‘@gh“(m,y,zﬂy:z
lul<lgl ™
18] 9!
= (z,2 ; 1<J1;]l<n Whjl .hy, -
18l

_ 1
=7 1(1” z) Z ﬁ Z Z E)gja(l) h’jl ‘y:z .. ang(l) hjl |y:z

1=0 " 1<j1,.j1<n 0€S,
= T_l(x, 2)Rg(z, 2),

where S is the symmetric group of degree [, i.e. the group of all permutations on {1, ...,1}.
Let ¥(x,2) := (Ogrhj|ly=z)nxn. Since any permutation is a composition of disjoint cyclic
permutations (see, e.g., [MB, Ch. II, Theorem 14]) and

Z agkl th |y:z8gk2 hk3 |y:z R 8gkq,1 hkq |y228gkq hk1 ‘y:z =Tr Wq(x, Z),
1<ks,...kg<n

we have
Rz, z) = Z Cqrvongm LrW (2, 2) .. . Tr W™ (2, 2),
0<q1+...+qm <|B]
where c¢g,, 4, are some constants depending only on qi,...,¢m,n and |3|. Therefore
Rg(z, z) is a polynomial in the eigenvalues A1 = Ai(z, 2),..., A\, = Ay (z, 2) of the matrix

U (z,z) whose coefficients are independent of ¥(z, z). In order to find these coeflicients
we may assume that ¥(z, z) is diagonal. In this case we have

Ro(z,2) = Y i!aghu(x,y, 2)y=z = > AP PR
lul<IB] 0<p1+...+pn <|6]
It is clear that this equality holds for any matrix ¥(z, z).
From (2.18) and (6.6) we obtain
Ogehj(2,y, 2)ly== = Ogrc;(@,y)|y=2 — Ogrc;(z, Y)ly=- = 0 — Oprcj (2,y)ly==-
The chain rule, (2.9), (2.18) and Lemma 2.2 imply

D Our (@, 2)0eei(2,9)ly=z = D (Ouy(2)7%) 0 (2,Y)|y==
k=1 k=1
(Z () 7) 0505 (2, y>)‘ = (Ou ()¢ (2, 9))ly=z = 67,

k=1 y=z
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i.e. (y,(2)Ck(,2))nxn = (I —¥(x,2))"". Therefore
Tz, 2) =det(I —¥(x,2)) = (1= X)...(1—=N\,)
(see (4.3)). Thus the LHS of (6.21) equals
(T=X1)...(1=A\n) > APL B
0<p1+...4+pn<|B|
By induction on n one can easily prove that this polynomial equals 1 modulo a polynomial
in A1,..., A, which contains only terms of degree higher than |3|. Since ¥(z,x) =0 due

to (6.7), we have A\, = O(|z]), m = 1,...,n. Hence the LHS of (6.21) is a C*°-smooth
function which equals 1 modulo O(|Z]/?1*1). Now it follows from (6.20) that 7),5’7,0 =0,

V3 # 0.
Let us prove (6.18). It follows from (6.7) that

Z %an 8§s (8;@ + 3gk )agm (Te exp (Z Zl hjnj>@mj,z¢zj,y@iz>
j=

s=1

y=z=x

y=z=x

+ 0O (T exp (1Y hyn; )@ 07,87
j=1
does not depend on 7, i.e. is a “function” of x. Using (2.21) we obtain

i N
=3 > (@)
j=1

y=z=x

Ozw Oym (Te exp (1 Jil h; nj) @£Z¢Zy¢ix)

modulo a “function” of z. Now (6.18) follows from (6.19). m

Let £, F and J be C°-smooth complex vector bundles over M and let A€ J/;}(gd(é’ ,F),

B e W;i;’d(J,E). In order to be able to define the composition AB : C§°(J) — C®(F)
we need at least one of the YDOs A and B to be properly supported (see Remark 5.3).

6.7. THEOREM. Let A € W;fg’d(é',}'), B € W;igd(j,é'), r,mo € R, 0< 0 < o< 1.
Suppose at least one of these ¥ DOs is properly supported and (6.1) is satisfied. Then
AB e v (J, F) and

G i— (el +1B8[+ 1)
- i o~ Tra~
(622) Gap(e)~ D O Ao (Vo) T P, (o)
lal,1B1,]v[=0
6.8. REMARK. Lemma 6.5 implies that the terms on the RHS of (6.22) form an asymptotic
series (see also (6.13)).

6.9. REMARK. By the definition (6.15) the polynomials Pb{,y do not depend on the vector
bundles £ and F. Suppose £ = F or £ = J. Substituting A=Ior B=1 (i.e. 04 =1 or
op =1) in (6.22), we obtain (6.17).

Proof of Theorem 6.7. Let 54 p € 5;16”2’(1(‘7,?) be a morphism satisfying (6.22). The
existence of such o4 p can be proved in the same way as in the standard calculus of
¥DOs (see, e.g., [Shu, Proposition 3.5]). The only difference is that we have to use the
mapping 1 — (7~ Y%y, .. 7= dy,) instead of n — 7 'n. Our aim is to prove that
AB is a DO with the presymbol o4 p.
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Using (4.13) with 7 =0 for A and 7 = 1 for B we obtain

(6.23) (ABw)(x) = | S(z,9)®7 ,w(y) T’ (z,y)x0(z, y)dM(y)
M
+ | Kap(@,pwy)dM(y), Yo e C§(E),
M

where K4 p € C®(Homprxp (T, F)) and the first term is understood as an oscillatory
integral with

1

S(z,y) =

W S S S e—i(c(w,z),n/)EA(x’n/)d;i,ze—i(c(z,y),n)@g

z,Y
R"l M Rn
x 51 (y, M@y T (2, )Y (2,9)T (z, 2)x(2,y)x(x, 2) dn dM(z) dnf

(see (2.27)). The cut-off function xo € C*°(M x M) equals 1 in some neighbourhood of
the diagonal of M x M and satisfies the equality xox = Xo-
Under the change of variables n = 17 + 7 the last integral takes the form
S(z,y) = — | [ ] eitenm it

2n
(27T) R™ M R™

3

X UA(x n+ "7) €xXp ( Z 1‘ Y, 2 )@1 zgpz yaB 1(% 7])43517,1

x Tz, y)Y% (=, y)T (z,2)x(2,y)x(z, 2) dndM(2) dif

(see (2.12) and (6.6)). Let z = exp,(Z). Then due to (2.9), (4.2) and (4.3) the last integral
equals

S(x,y) = 12n S S S e~ HEM U@ M5, (1,1 + 77)

(27) R™ R™ R
X Yy(z,y,2)exp (i hin; )5 05 Tp1(y,n)PT  x(z y)x(x, z) dndZ dij.
o\T,Y, p i z,2¥2,y0B,1\Y, 1)Ly X\ 2, Y)X\ZT, n n
j=1

Taking the Taylor expansion of & 4(x,n + 77) at the point 77 = 0 we obtain
1 U
(6.24)  S(x,y) = = S S S e~ HE) o —ile(z.y).m)

2n
(27T> R’!LRTLR”
X Z 'naaagA x,MYo(z,y, 2 exp( Zhjnj)éizéfy
laj<N 7 i=1

x op1(y, n)@izx(z, y)x(z, z) dndz dn
N+1 —i(Z,7) ,—ile(zy).m) 1 o
' (27T)2n ]RSH ]RSH ]RSn ‘ ‘ |a|§+1 of !
1

x (S (1= t)NO5Ga(w,n+ tn) dt) Ty(w,y,2) exp (l zn: hﬂh)

0 j=1
X @m Z@Z 40B.1(Y; n)@izx(z, y)x(z, z) dndz dn
= SN(«T,y) + RN(xay)
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Due to the presence of the factor xo(z,y) in the first term on the RHS of (6.23) we
can suppose that y is sufficiently close to x. In this case integration with respect to z and
7 gives

1 —i(c(x i e
Sn(,y) = J ettt 37— Quly e )i,

@m" g, la] <N
where
Qa(y;x,n) = 055 4(x,n) Palys 2,m)P5 5.1 (4, )Py ,
and

n
Poly;z,m) := 02 (Te(fc7y7 z) exp (Z Zhjnj)d% K3 ydfm)
j=1

Z=T

is a polynomial in 1 (see (2.27) and (6.7)). Therefore according to Theorem 4.4 the
operator defined by the oscillatory integral

(6.25) | Sn (@, 9)@7 )T (@, y)x0(x, y) dM(y)
M
is a DO with the presymbol
_ > i=lul
(6.26) G(ny(w,m) ~ Y —
o M
|u]=0
ilel _
Xagag Z O( anA(l' n)(POé(y;$777)q-5§,y0371(y7n)dsiz)'yzﬂf
laj<N T

;= Ual 181+ 1+ (1 + ")

= Z Z ﬁ-‘ra (x 77)
131~/ 1~ N n
la| <N p'+p'" =B+~ +~" Oz.ﬂ. DA JURyY
£,
X av 6“ P, (y;2,m)|y=z0 (VV(;Z)) "Gpa(z,n)
—(lal+18D) bra

Z Z alB! an oa(x,mn)
la|<N [B]=0

i— (Y 1+17v'D) (W Y )

t A ) _
g Z 'y wlp'’! 0y 35 Po(y;2,m)|y=2

WAp —=y'=y"=p

x 0) (Vo) G (w,m)

(see Lemmas 2.2, 2.5, 2.6 and (2.31)). Similarly to Lemma 6.5 one can prove that
’ / g
a0y 0% Patysz. )=o) < ol ) sl = ot ') = sl
Hence, the terms in (6.26) belong to §£:§(J,]—"), where
(6.27) r<mr—ol(f+ ) :d|

19
w0l u) s dl = Slat 1) <1 dl 4 ra = o s dl 40 d
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%3 / "
<ri+re— ?|a+ﬂ|_(9—5)|ﬂ - d|
—o(|B:d[ = | +d|+ ] :d|+ ]y d| = [p" : d])

<ratra—min { o= 8.2 fellal + 4] + i)

since u’ + ' —~" —~+" = 3. Thus,
i — (| +181)
- i o~
(628) O-(N)(m7"7) ~ Z Tﬁ'aﬁ+ (7,4(%7])
lal,|B8]=0 .
(YD (4 !
x Z ’Y/!’YH! MI!UN' a’Y alt P (y?x ﬂ)\y T

/JI/+/JI//7,Y/7,YI/:/B
7 £, "__ -
X 87’; (V,,(‘Z)V O-B,l(x777> +qN(xa77)a

where
—(la \+\5\)

(6.29)  Gn(zm)~— . Z i 051G 4(z, n)

la|>N+118|=0

=Y YD () "
y Z v (W +p")!

’ lu‘/ .
A/ 141 Nz 3;]7 8@ Po(yiz,n)|y=2

W p =y =y"=p

X 87’7 (vgj) O-B,l('ran)a

v(x)
N €S7N7 (\7)‘7:>7 TN Srl +r2—min{g—5,g}€(N+1)~

Let us prove that the first term on the RHS of (6.28) equals 04,5 (i.e. the RHS of
(6.22)) modulo S~*°. Suppose A is a differential operator, i.e. d4(z,7) is a polynomial
in . We can represent AB in the form (6.23), where

1 —i(c(zx,z —i{c(z ~
S(z,y) = oo S S S {e(@2)n)G ) (@, )BE e MG (2, )
(27) R™ M R®

x @7 @7 T (@, )T (2,9)T° (2, 2)x (2, y)x(x, 2) dn dM(z) dnf
Acting as above we obtain

1 —i(Z,7) - ~
S(z,y) = —(27r)2" S S S e~ EM) o —i{c(w,y)m) E : aaaUA (, n)¢i7z03(2777)¢z‘77y¢iz
Rn ]Rn R'Il

xexp (i3 by ) Tolw,y, 2)x(2,y)x(, 2) dn dZ dij.
j=1

Note that here we have a finite sum, since g4 (x,n) is a polynomial in n. Further,

1 —i{c(x i I
S(z,y) = @ S e~ie@y)m Z o Oyoa(x,n)
Rn «a

02 (85 (e )02, it e (12 o))
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Using Lemmas 2.2, 2.5, 2.6, Theorem 4.4, Remark 6.4 and (2.27), (2.31) we can prove as
above that AB is a DO with the presymbol

oo . Py
Il i~lal

~ M al ~
Fan) ~ Y m oo — > i On oA, )

|u[=0 a a'+a''=a
< (Vi) ol (28 (Toexn (135 oy ) 27.97,07, )
j=1
S
n

~ D

lulle’],]a’[=0

z:x)‘y:x
d+ﬂ”~ .7

8,7 O'A(m7 n)(vu(z))a/’&B(m7 77)
o agag// (TO exp (z il h]ﬂj)@mj,z@;{y@iz)
j=

z:az}‘y:z
s i— (e [+l [+l +HY [+ D) o ol ~
= Z o/l ply! 1y O oale,m)

ala !

le/ [l ||l [y 1,1y =0

n
y 8;;/” (Vg,j )a/gB (x7 77)8#854_7/4_7”6?”(1‘0 exp (l Z h]ﬁ])@] @j @j )

v(z) z,2% 2y Y.

= y=z=x
oo —(lal+|8' [+18” [+ +1ul)
_ L +6/ 48" =
- L] al@n)
[ |87 L8 Ty 1l =0
n
&7 - " /Jr + 3
x 0 (VD) G n (@, moyol of T (Tyexp (i3 by )@ 07,87, ) .

j=1
0 —(lal+I8l+ 1)

= X al g
Bly

leel, |81, |v1=0

On the other hand, we have in fact proved above that if A is a differential operator then
AB is a DO with the presymbol

o —(lal+I81)

TG 4(a, n)GZ(Vf&‘;)“GB(x, Py ().

CERNEEDY g0 ale )
lal,8]=0 .
A a) (! A ,
4 R ) L .
X Z ’Y/!’YN! /J/I!MH! a;;/ ag Pa(y,l’ﬂ?)b:r

WAp =y —y"=p
7 £, "__
><<977 (V j)“ op.1(z,m)-

v(z)

Since 7 4(x,n) is an arbitrary polynomial, we conclude that for any ¢ € Z7,

1 =D (Y
(6.30) Z alp! Z A1y N 9, 35 Po(y;2,m)|y=2
a+ﬁ:§ /V+M”*7'*W”:ﬂ

x o (VST G (@)

-y LY

a+f=¢ |v|=0

i~

~!

0y (Vo) s, n) P, (x,n)

modulo S—°.
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Let us return to the case when A is a ¢¥DO. It follows from (6.28), (6.30) that (6.25)
is the sum of ¥DOs with the presymbols ¢4 g and gy and an operator with the kernel
from C°(Homprx (T, F)). Consequently, AB is the sum of 1)DOs with the presymbols
oa.p and ¢y, an operator with the kernel from C°(Hompxn(J,F)) and the operator
defined by the oscillatory integral

| Bz, 9)07 w@)Y’ (2, y)x0(x, y) dIM(y)
M

(see (6.23), (6.24)). Due to (6.29) it is now left to prove that for any given L € N the
kernel Ry (z,y) is C*-smooth if N is sufficiently large.
Let us take an arbitrary compact set K C M and suppose x € K. Using (6.9), the
formula
o eI EAD _ ol go o—iE)
and integrating by parts, from (6.24) we obtain
1
RN(x,y) - S S S S (1 — t)N67i<2>7N7>67i<w(x7yxz)>n>
R™ R R7 0
> 05Ga(zn+ i) Ha(z,y, 2,m) P8 Fp1 (y, n)Py, dt dn dZ dij,
la|]=N+1

where I1,(z,y, z,m) is a linear combination of terms of the form

I, a0 (@, 2) (02 By (2,9 2)my,) - (02 oy (.. 2my.)
with C"*°-smooth 11,0, ,0 and aM + ...+ a® < a. Here the inequality between
multi-indices is understood component-wise and 11,1y, (7,y, 2) € Hom(&;, £, ). Since
o) . o0 (2,y,2) contains factors x(z,y) and x(z,z) or their derivatives it can be
nonzero only if y and z are sufficiently close to x. So, we can apply Lemma 6.3 with
g which will be chosen later (see (6.42) below). Using the formulae

1/)’8/(:16, v, z)e—iW(x,y,Z)m} — ilﬁl‘ag/e_iwu’y’z)’"),
B (z, 2)e"HEM = 3B —ilEM = ilﬂ”\ag”e—uz,ﬁ)

and integrating by parts we can represent Ry (x,y) as a linear combination of terms of
the form

1

631) | { | {eriEmeiwnmgutss, @+ 1)
R R™ R™ 0

X Mo g u(t,,y, 2005 00551 (y,n) Py, dt dn dZ diy,

z,y%n
where
(6.32) lul < o
and either

€
(6.33) s dl < o lfa+ 54+) 2= Sla+ 5411
or

1B+ >q.
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In the last case we have

(6.34) (3 +7):d| > eq
Let us consider the case (6.33). Suppose

4
(6.35) ol =N +12 max{d;'}, ie. Qfm > max{d; '}.
It is not difficult to see that u can be represented as a sum pu = u’ + p”, where
" €
' sdl < oy sal = 5l ).

wsdl < ofl(@+ 8) )= S+ ) + maxta) < o+ 6) ) Slal).

It is convenient to rewrite (6.31) in the form

1
| § § Qe eme ooy, )
R™ R™ R™ 0
X o gy (b, y, 2)5 0t 015 5.1 (y, m)y, dt dn dZ diy.

Then we use the equality n = (1 + t77) — t1] and represent (6.31) as a sum of terms of the
form

1
(6.36) S S X Xe—i(ime—i(w(w»y#)m)ﬁa”da’ﬁ’%a/ (1 + 7))
R Rn R™ O

X Mo gy p or (t,z,y, 2 )QS bW w’ (Y, ﬁ)@iz dt dn dz dn,
where o < p’ and
~ oe

ot (2,1) = 0 O P5a () € SAEF), o <l 2~ Lo,
~ " —~ ~. I d
b’y,;t” (yv 77) = 77“ 8;;03,1(%77) S 52,57 (\7; 8)7
" <ro, " <4 —ld i d] - %|a+6+’y\

(see (6.33)).
For each of the terms (6.36) such that

4
o' > max{d;'}, ie. %E|o/| > max{d; '},

we repeat the above manipulations: integration by parts with respect to z, Lemma 6.3,
integration by parts with respect to  and 7, the equality n = (n + ¢77) — ¢7]. Doing so we
decrease v’ and r’ + r” by at least

&y > max{d; '} and &\ > 2max{d; !
4 k 2 k

respectively. Repeating the entire cycle p times we prove that Ry (z,y) is a sum of terms
of the form
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1

(6.37) S S SS —iEM i@y Mg (2 n + 1)
R Rn R7 0

x II(t,3,, 2)P5 s (y, )Py, dt dn dZ diy

and

1
(6.38) S S S S i i e R ! (2, + 17])
R" R" R 0

x I (t, @y, 2)85 )b, (y, )Py, dt dn dZ dij,
where

(6.39)  da € STAEF), < %04, b € 87547, €),

e 4 -
" <ry, 41" < +r27\o/:d\f%\a|, '] < §max{dk1},

|| < |af (see (6.32)) and either
~ aor’ 143 —
! ESQ’(’;d(&]:), r'Srl—|/z:d|—Z|0¢|—pmax{dkl}7
(6.40) B, € ST NI, E), 1 <,
r4+r" <ri+ro—|p:d - %€|a| — 2pmax{d; '},
or
(641) e Sy N ) F, e SN E), (B4 d 2 e
(see (6.34)).
Let us take ¢ such that
(6.42) 0eq > 2max{d; ' }(N + 1+ p).
If (6.41) holds, then either |3 :d| > 27'eq or |y :d| > 271eq. In the first case we obtain
(6.40), since
la:d|>elal, |p:d| <max{d;'}|u| < max{d, '} a|=max{d, '}(N +1).
In the second case
b, (y.m) € Sh gNT.E), 1" <,
and we have (6.37), (6.39) with o/ = 0. So, it is sufficient to consider the integrals (6.37),
(6.39) and (6.38), (6.40).
The equalities (6.7) and (6.9) imply that the matrix
65¢(ma Y, Z) = _85h($a Y, Z) = _(an hk(ﬂ?, Y, Z))an

satisfies the inequality ||0z¢(x,y, z)|| < 1/2if y and z are sufficiently close to . Therefore

n= (I - ta%w(xa Y, Z))il((n + tﬁ) - t(ﬁ+ azw(% Y, 2)77)),

77 = (I - taﬂb(ma Y, Z))_l((ﬁ_'_ 3E¢($7 Y, 2)77) - aﬂﬂ(% Y, Z)(U + tﬁ))
and
(6.43) In| + [ < const (|7 + 9z¢(z, y, 2)n| + [n + t7j]).
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Let us consider the integral (6.37), (6.39). We apply the equality
(6.44) e HEM g i¥(y,2)m)

= (1+ [+ Bz0(w, 3, 2)nP?)
x (10 320 + 05, ((w, , 2), )0, e MW
j=1

and integrate by parts with respect to z. We repeat this p; times, where

1
(6.45) p1 = [ mm{dk}< (N+1) - 7”1)]
and [-] denotes the integer part. It follows from (3.5), (6.39), the inequality
—1 -1 -1 —1 -1
(6.46) 6(d;" +...+d; ) <d; +...+d; <max{d, }m

and the equalities || = N + 1, min{dy } max{d; '} = 1 that
V75 0y (aylar ()| < comsty, g, (14 | + t77])"C"

vip (@) 77T Y vy (@)
r(m) < min{dk}(rl - QZE(N + 1)) +m < —2p; +m,
for any j1,...,4m € {1,...,n} and any m € Z such that
max{d; ' }m < %(N +1) — 1.
Using (6.43), (6.46) and the inequality
(L4177 + 0z¢(z, y, 2)nl + [+ tn]) < (1 + (7 + Oz¢p(x, y, 2)nl) (1 + [n + i),
we prove that the integral (6.37), (6.39) can be represented in the form

(6.47) VV Vo g zn ) diazan,

R?L Rn R‘n.
where g(x,y, z,7,7) can be nonzero only if y and z are sufficiently close to x, and satisfies
the estimates

(648) V7TVl (0w - Oony 3@y 2 |
< CONSt, 1 jo oy (1 [1]@)™20™2) (14 ||+ [7]) 7 (™),
ri(my) < —p1 + i max{d Y tmy,  re(ma) < 1o+ max{d; ' }mo,
for any j1,...,Jmy s K1y - km, € {1, ...,n} and any mq,my € Z4 such that
max{d; '}m; < %(N +1)—7r.
Hence, due to (3.5) the integral (6.37), (6.39) can be represented in the form

(6.49) | o y 2 dzan,
R” R”

where g(x,y, z,7n) satisfies the estimates

(6:50) IV V0 (00 ) - Ouy 99,200

V7m

< const; ) (1+ |7]|)T(m1’m2),

1’--~1jm1ak m
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4
r(my, ma) < —p1 + " max{d; '} +m +n + max{dy }(rs + max{d; ' }m2),

for any j1,...,Jmy, K1y kmy, € {1,...,n} and any my, ms € Z such that
max{d; '}m; < QZE(N +1)—7r.
Here sy := max{s,0}.
Let us take an arbitrary L € N. Choosing N such that
(6.51) —p1 + é max{d; '} + L +n + max{dy } (r2 + max{d, '} L)+ < —(n + 1)

(see (6.45)), we prove that (6.37), (6.39) is CF-smooth. It is left to prove that for the
given L and N we can choose p such that (6.38), (6.40) is C-smooth.
We apply (6.44) and integrate by parts ps times, where

(6.52) p2 = B (ermin{dk}(ig(Nle) 7’1))} =p+p1
We then prove as above that (6.38), (6.40) can be represented in the form (6.47), (6.48),
where

ri(mi) < —p2 + (N +1) +my, max{d; ' }m; < pmax{d; '} + %(N +1)—ry.
Therefore (6.38), (6.40) admits a representation of the form (6.49), (6.50) with

r(mi,me) < —pg + (N + 1) +mq +n + max{dy } (r2 + max{d ' }mz).

Choosing p such that
(6.53) —pa+ (N + 1)+ L +n+max{dy}(ry + max{d, '} L)y < —(n +1)
(see (6.52)), we prove that (6.38), (6.40) is CL-smooth. m

Lemma 6.5, Proposition 6.6 and Theorem 6.7 imply the following result.
6.10. COROLLARY. Let the conditions of Theorem 6.7 be satisfied. Then

Gap(e,n) = Gale,map(@,n) —i)_ dy5ale,mV, T Fp(@n)

J
j=1

R ; . .
-5 Z Cl (@), 54 (2,1)0p,, T (1)
7,k,m=1

modulo gg:g(],}"), r <ry+re—2min{(p— 9) min{d;l}, oe}.

7. Ly-estimates

This section is devoted to the L,-boundedness of 1/ DOs. It is sufficient to consider ¥’ DOs
acting on scalar functionS,N i.e. the case. & =F = M x C, when dealing with this problem.
We will use the notation S0 (M) := SI'$ (M x C,M x C) and ¥, (M) := w)'$ (M x C,
M x C).
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Theorem 6.7 allows one to prove La-continuity of yDOs from u'/g:gi(M ). The proof is
based on the method due to L. Hormander and is almost identical to the corresponding
argument from the standard theory of $)DOs (see, e.g., [Shu, §6] or [Tal, Ch. II, §6]).

7.1. THEOREM. Let (6.1) be satisfied and A € WS’?(M), 0<d6<p<1 Then A:
Lo comp(M) — L joc(M) is continuous, i.e. for any ¢, po € C§° (M) the operator oAl :
Lo(M) — Lo(M) is bounded.

Now we are going to prove L,-continuity of )DOs from W? ’?(M ). The idea is to show
that these ¥YDOs are Calderén-Zygmund operators on a suitable space of homogeneous

type.

7.2. LEMMA. Let (6.2) be satisfied and let W C M be a set such that c(x,y) is defined
for any x,y € W and |c(x,y)|a < 1. Then there exists a constant C(W) < oo such that

|C(yﬂ Z)‘d < C(W)(|C(yax)|d + |C(Z, Z)‘d)a Vx,y, z € VV?
i.e. |e(z,y)|a s a quasimetric on W (see (2.12)).

Proof. Let us use the Taylor expansion

(-1

ci(y,2) = ci(y, x) + ¢, 2) + Y Tﬂ!ag(y)af(z)cj(y»Z)|y:z:zca(yax)cﬁ(%z)
2<]a+B|<N
+ Y Gapl,y,2)c(y,2)c (2, 2),
la+B|=N

where N > max{d;} max{d; '} and the functions G g are C>°-smooth (see (2.9), (2.12),
(2.17) and (2.18)). Now our statement follows from (3.4), Lemma 6.1 and the obvious
inequality
—1
max{e(y, 2)], (@, 2)|} < (le(y, 2)la + le(@, )la)" . 1=1,....n. =

7.3. REMARK. The last statement remains true if (6.2) is replaced by a weaker restriction:
1 1 1
—+—>-— i C, #0.
o a4 T, TORF
Indeed, in this case Lemma 6.1 holds with e = 0, p = 1. This generalization of Lemma
7.2 is a special case of the results obtained in [Nag], [NSW].

7.4. LEMMA. Let @ € S){(M). Then

1
@r)"

| e nG (@, n)x(@,y) dn = x(2, y)k(z, (2, 1)),
Rn
where for any compact set K C M,

— :d :d
100, (0 - -~ Oy, ()05, w)| < cOnstic ... g, ] g AT,

Voo € Z, Vii,...,q €1{1,...,n}, Vg € Zy, Yw € R"\ {0}, Vz € K,
and (3 is the multi-index corresponding to the set of indices {j1,...,7q}-

Proof. The proof follows closely the corresponding argument from the standard theory
of DOs (see, e.g., [Ste, Ch. VI, §4 and Ch. VII, §1]). Let us take v € C5°(R™) with the
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properties that u(n) = 1 for |n|g < 1, and u(n) = 0 for |n|q > 2. Let
v(n) = u(n) — w2V, 2 0y,
vo=u, vm(n) =02 ™My 27y ) m e N
It is clear that v,,, m € N, is supported in the shell
Q= {n eR™: 2m71 < plq < 2mF1Y,
Since £2,, is the image of 2y under the map n — (27/%y, ..., 2™/ y,), (3.1) implies
the following equality for the volume of £2,,: Vol £2,,, = 2™" Vol {2y. Hence, for

1 —i{w,m)
G | e m a2, m)vm(n) dn
R’V‘L

ke (2, w) ==

we have
(7.1) |w'ygyjl(w) o 3qu($)a$km(x, w)| < ConStK,a,'y,jl,...,jq2m(n_h:d|+|a:d‘+|ﬂ:dl)’

Yo,y € ZY, Vji,.... g €{1,...,n}, Vg€ Zy, Yw € R"\ {0}, Vz € K,
where [ is the multi-index corresponding to the set of indices {j1,..., jq}-

The equality 1 = >_""_ v, implies

m=0

Doy, () - - Ouy, () Do (0, ) Zayh(m.. s, () Do o (2, W).

Therefore it will suffice to estimate the sum .~ 100, (@) - - - Ou, () 0o o (2, w)|. We
break this sum into two parts: the first where 2™ < |w|3", the second where 2™ > |w|[ .
For the first one we use (7.1) with v = 0. This gives the upper bound

O( Z 2m(n+\o¢:d|+|ﬁ:d\)):O(|w|;(n+|a:d\+\ﬁ:d|))'
27n§|w‘;1

Let us estimate the second sum. For a given w we can choose [ such that |w;|% >
n~m2x{di}/2)y| 4 (see (3.4)). Then we apply (7.1), where v = (0,...,0,N,0,...,0) with
N >di(n+|a:d|+|8:d|) at the ith place. This gives the upper bound

O(\w|;N/d’) Z gm(n—N/di+|e:d|+]8:d]) _ (|w| (nt]o:d|+|B: d\)) -
2m>Jw|g!
7.5. LEMMA. Let k(z,y) := x(z,y)k(z, c(z,y)) be the function from the previous lemma.

Then for any compact set K C M there exist constants Ck,Ch < oo such that for any
x€K,y#x and z € M with |c(z,2)]la < Ck|c(z,y)|a we have

k(z,y)| < Cile(z,y)|3",

. -1
|C($ Z)|d>mm{dj }
‘ (:’E,y)‘d .
Proof. The first inequality follows directly from Lemma 7.4. Let us prove the second one.
We can break K into a finite number of sets W satisfying the conditions of Lemma 7.2.
So, it is sufficient to prove the inequality for such W instead of K.

[k, ) = k(2 9)| + [k(y, 2) — Ky, 2)| < Cile(w, y)lg (
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Suppose x,y,z € W and |c(x, 2)|a < (2C(W))~te(z,y)|a (see Lemma 7.2). It follows
from (4.9) and the definition of | - |4 that

(@, 722 (D)la = [te(z, 2)la < |e(@, 2)la < 2CW) " e(z,y)la, Yt € [0,1].
Therefore, (2.12) and Lemma 7.2 imply
|C(’Yz,a:(t)’ y)|d < C(W)(|C(72,x(t)7x)‘d + |c(:c, y)'d) < (C(W) + 1/2)|C(CE, y)'d,
le(z; y)la < CW)(le(, 7z 2(8))a + [e(7z,2(8), y)|a)
< 31e(z,1)la + COV)e(z(0), )l

Hence,
(7.2) 2CW) ez, y)la < le(rz0(t) y)la < (CW) +1/2)|e(z,y)]a.
Using the equality 4., = >0 _; ¢m (2, 2)Vim, we obtain

k(x,c(z,y)) — k(z,c(2,9))

= Sdi (Y, (t ('Yzm() y))dt
0

t
n 1
= = 3 enl@,2) |k (0, 9) oy
m=1 0

1

Z Cm €T, Z Sawzk‘(’yz l( ) )|w c(Vz,x(t) y)az/m (= )Cl(zlvy)|z’:'yz,x(t) dt.
=1 0

Let us substltute in this formula the Taylor expansions

Oy, ez y) = =6+ Y ol u(y)al/m(Z)Cl(Z Yly=c"(2,y)
1<|al<N
+ Y G2, y)e(#y),
|la]=N

where N > max{dj}max{dj*l} and the functions G, are C*°-smooth (see (2.9) and
(2.17)). Then it follows from (3.4), (7.2) and Lemmas 6.1, 7.4 that

|C(£IZ, Z) |d > min{d;l}
le(2,y)la '
The estimate for |k(y, z) — k(y, z)| can be proved similarly.

7.6. THEOREM. Let (6.2) be satisfied and A € Wy'5 (M), 0 < § < 1. Then A : Ly comp(M)
— Lpioc(M), 1 < p < o0, is continuous, i.e. for any ¢,po € C3°(M) the operator
woApl : Ly(M) — L,(M), 1 <p < o0, is bounded.

R, y) — F(z,y)] < const |c<x,y>|;"(

Proof. Tt is sufficient to prove L,-boundedness of ¢y ApI in the case when ¢, o € C5°(W)
and the open set W satisfies the conditions of Lemma 7.2.
Let us consider the ball

B(x,T)::{yEM:\C(:c,y)\d<7'}, zeW, 7 <1
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It follows from the definition of the measure M (see (4.2)) that
MB,7) = | 77 (@, exp,)dy

[Fla<T

(see (2.9) and (4.3)). Since, due to (3.1),

Vol{g € R"™ : |[gla < 7} = 7" Vol{y € R" : |yla < 1},
there exist positive constants C7,Cy < oo such that

Cim" < M(B(z, 7)) < Cot™, Vzxe W, Vre(0,1).
This estimate and Lemma 7.5 allow one to deduce L,-boundedness of pgApl from its
Lo-boundedness (Theorem 7.1) with the help of the theory of Calderén—Zygmund singular
integral operators on spaces of homogeneous type (see [CW, Ch. III], [Chr, Ch. VI]). =

7.7. REMARK. In the same way one can prove that pgApl is of weak type (1,1) and
maps L, boundedly to BMO.

8. Example: anisotropic ¢YDOs on Lie groups

Let G be an n-dimensional Lie group and G be the corresponding Lie algebra of right-
invariant vector fields on G. Let vy, ...,v, be a basis of G. Using it, we can identify G
with R™. There exist neighbourhoods U = {Z € R™ : |Z]q < const} of 0 € R” and W of
the identity e € G such that the exponential mapping exp, : R — G is a diffeomorphism
of U onto W. We set

6,2 := (r¥ 1z, .. 7YZ), F=(3,...,%,) €R™, 7 >0,

d;2 1= exp,(6-2), z=-exp,(Z)eW,

T(6:2), z€W, .
= 1.
erl) = {1 e PECEW) >
It is clear that ¢, € C§°(W) for any ¢ € C§°(W).
We will say that a distribution f € D/'(G) is locally d-homogeneous of degree u € C if

<f7901/7'>:7—u<f790>7 VT € (07 1)7 V(pECgo(W).
A distribution is called regular if it is smooth away from e, i.e. belongs to C®°(G \ {e}).
If there are no mu, ..., my, € Z; such that p = >77_, m;/d;, we denote by RHIG)
the class of all regular locally d-homogeneous distributions of degree p on G. If y =
2?21 my/dj for some my, ..., my € Z,, then RH3(G) will denote the class of all regular
distributions of the form f = fy + f1, where fy is a regular locally d-homogeneous
distribution of degree p,

filexp,(2)) = p(2)log|zla, VZeU,
and p is a d-homogeneous polynomial of d-degree pu.
Suppose k(z,-) € RHG(G) for any = € G. We will say that k € C*°(G, RHY) if
k e C=(G x (G\ {e})) and the function G 3 x — (k(z,-),¢) € C belongs to C*(G) for
any ¢ € C3°(Q).
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It follows from the right-invariance of the vector fields v, ..., v, that
dM(y) == |det(v] ()| *dy, vy e G,

(see (4.2)) is a right Haar measure on G (cf. [Hel, Ch. X, §1, Sect. 1]).
Let us consider an operator A : C§°(G) — C*°(G) defined by
(8.1) (Ap)(z) := (k(z,-) * ) (x), ¢ € CF(G),
where k € C(G,RHY) and « is the group convolution. So,
(k(z,) * ) (x) = (k(z, ), o(()"'2)A)
and A is the modular function of G, i.e. dM(z71) = A(2)dM(z). If k(z,-), © € G, is
locally integrable, then
(k(,) % 9)(x) = | k(z, 2)p(z " 2) A(2) dM(2) = | k(z, 2y~ ) (y) dM(y).
G G
Let us take x € C§°(W) which equals 1 in some neighbourhood of e. For every
z € G we consider the following distribution on R™: k(z,-) = x(exp.(-))k(z, exp.(-)). Let
a(x,-) be the Fourier transform of k(z,-), i.e. a(x,n) = F5_,k(z, 2). It follows from the
properties of k and the equality
p(6:2)1og |6,2]la = T#p(2) log|Z]a + ™ logTp(Z), Ze€R™\ {0}, >0,
that a € COO(G X Rn) and a = 50 +51, 50,61 S COO(G X Rn),
50(99,5T77) = Tﬁ“ina()(xan)a |77‘d >1, 721,

sup |77|(]:1V|87C7Y81/k1(a:) . . -aukp(a:)al(xa 77)| < 0,
z€E, nla>1

VN eR, Va € Z}, Vki,... .k, € {1,...,n}, Vp € Z,

for any compact set = C G. Hence a € §;OR6“_”’d(G).
Now using the inverse Fourier transform we can represent the operator (8.1) in the

form
(A) (@) = o | | @ E (o= 2) () A(2) dpdM(2)
(27T) GRn
+ (1= 22k, 2)p(=712) A(2) AM(2),
G

where the first term on the right hand side is understood as an oscillatory integral
(see, e.g., [Shu, §1]). It follows from the right-invariance of vy,...,v, and (2.12) that
cile,zy™) = ¢i(y,x) = —¢j(z,y), 5 = 1,...,n. Since Z; = ¢j(e, z), the change of vari-
able yields

(Ap) (@) = = | { e D, gy (ey™) dM(y) di
(2m) o
+ (1= X2 @y )k, 2y~ )e(y) dM(y).

G
Thus (8.1) isayYDO: A € ¥y "™ (G) (cf. Definition 4.1 and (4.13)) and the results
of Sections 4 and 5 apply to it. This is true for any Lie group G and any d = (dy, ..., d,).
However the results of Sections 6, 7 and of the following sections rely upon the restriction
(6.2): dj_1 +d; b > dytif C7 # 0. So, the main part of our calculus does not cover the
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case considered in [Dyl], [Dy2], [NS], [How], [Mil], [Mel], [Ta2], [BG], [Cum] and [CGGP].
These works deal with the case where G is a homogeneous group (see [FS, Ch. I]) and
0, is an algebra automorphism of G (a group automorphism of G) for any 7 > 0. This
means in particular that G is a nilpotent Lie group and dj_1 + d,:l =dtif T Z0.

9. Compact YDOs

In this section we deal with compactness of ¥DOs. It is sufficient to consider ¥/DOs
acting on scalar functions, i.e. the case ggéd(M) = g;:(;d(M x C,M x C), W;g(M) =
LP;':?(M x C, M x C). Let us start with the following simple statement.
9.1. LEMMA. Let Hi and Hs be Hilbert spaces and A : Hi — Hso be a bounded linear
operator. If there exist a constant C' > 0 and a compact linear operator K : Hy — Ha
such that

[Aul| < Cllul| + [[Kull,  Vu € Ha,

then for any € > 0 there exists a compact linear operator K. : Hi — Ha such that
[A-K| <C+e.

Proof. Let P. : H1 — Hy be the orthogonal projection onto the linear span of a finite
e-net of the relatively compact set {K*v : v € Ha, [jv|| < 1} (see, e.g., [BN, Definitions
5.6, 5.7, Theorems 5.7 and 17.8]). Since P. is a finite rank operator, K, := AP. is compact
and

A= K|l = |A(I = P.)|| < sup (C|(I = Pe)ul + | K(I — P)ul)

llull<1

SCH|EI-F)[=C+|(I-P)K"[|<C+e
(see [BN, Section 10.4 and Theorem 22.1]). m
9.2. THEOREM. Let (6.1) be satisfied, A € ng’:;j(M), 0<d<p<1and

(9.1) sup |da(z,n)| =0 as|nla — oo
TzEE

for any compact set = C M. Then oAl is compact on Lay(M) for any p, po € C§°(M).

Proof. Similarly to [Shu, Theorem 6.2] or [Tal, Ch. II, Theorem 6.3] one can prove that
for any § > 0 there exists an integral operator K5 with a C'°°-smooth kernel having
compact support such that

lpoApull < 8flull + IKsull,  Vu € La(M)
(see also Theorem 6.7). Now the compactness of A follows from the previous lemma. m

9.3. THEOREM. Let (6.2) be satisfied and A € Wﬁ’f(M), 0 <0< 1. If (9.1) holds, then
woApl is compact on L,(M), 1 < p < oo, for any, ¢, pe € C§°(M).

Proof. The compactness of A can be obtained from the previous theorem and Theorem
7.6 by interpolation (see [Kra]). m

9.4. REMARK. It is clear that (9.1) is satisfied if A € ¥, J4(M), 7 > 0.



Semi-elliptic operators generated by vector fields 53

10. Fredholm ¢¥DOs

10.1. DEFINITION. A DO A € W)§/(€, F) with a presymbol @ € SI'§ (€, F) is called
semi-elliptic if for every compact set = C M there exist C;, N > 0 such that

@™ @l <CA+lnla)™, |nla=N, z€Z,

where || - || : Hom(f £) — R is a continuous function such that its restriction to each
fibre Hom(F, 5)(3c n = Hom(f(l s E(x »)) is a norm on Hom(F,&,) (cf. Section 3).

It is not difficult to see that if A is semi-elliptic then there exists b € §;g’d(}" ,€)

such that ba — I € S’V—OO, ab—1 ¢ §_°°, where I denotes the identity morphism of the
corresponding vector bundle. Using Theorem 6.7 one can prove in the standard way (see,
e.g., [Shu, §5] or [Tal, Ch. III, §1]) the following result.

10.2. THEOREM. Let (6.1) be satisfied and A € W;’?(E,}") be semi-elliptic. Then there
exists a properly supported DO B € J/;g’d(]:,é’) such that BA — 1 € W=°(&£,€),
AB — I € U=°(F,F) (cf. Remark 4.6).

The operator B from the last theorem is said to be a parametriz of A. A DO By
is called a right (resp. left) parametriz of A if ABy—1 € W~=°(F,F) (resp. ByA—1I €
U—>°(&,E)). Suppose A has a left parametrix By € W;g’d(]-',f)) and a right parametrix
B, € W;g’d(]:, £). Considering BygAB; we obtain By — By € ~°(F,E). So, each of By
and Bj is a parametrix of A.

In the remaining part of this section we will suppose that the manifold M is com-
pact. This assumption together with the requirement that v (x), ..., v, (x) span the tan-
gent space T, M at each point z € M, i.e. that M is parallelizable, impose a strong
restriction on the topology of M. For example, the unit n-dimensional sphere S™ is par-
allelizable if and only if n = 1, 3 or 7 (see, e.g., [Sch, Ch. X]). On the other hand any Lie
group is parallelizable. We will also suppose that (6.2) is satisfied.

Now we are going to consider anisotropic analogues of Bessel-potential spaces on M.
Our approach is similar to the treatment of isotropic Sobolev H§-spaces in [Shu, §7].

Let I € Wf:g(M), s> 0, be a DO with the presymbol

(10.1) () + (L =vm)nla)’,

where the function ¢ € C§°(R™) equals 1 in some neighbourhood of 0. Since I, is semi-
elliptic, there exists I_; € ngd(M) such that
(10.2) R g:=14I,—1, Ry:=II4—1ec¥ (M)

(see Theorem 10.2). It follows from Theorem 6.7 (see also Corollary 6.10) that the presym-
bol a_g of I_, satisfies the condition

(@, m) = (D(n) + (1= $(n))Inla) ™ € ST~ (M),

where ¢ is defined by (6.3) with ¢ = 1.
Let Iy := I be the identity mapping. The ¢¥DO I is now defined for all s € R.
Below we will use the notation || - ||, := || - | Lp(M)]|.
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10.3. THEOREM. Let (6.2) be satisfied, s € R and 1 < p < co. Then
Hy (M) = {u € D'(M) : |[ull{}) := | Lull, + | R—sull, < oo}

is a Banach space with the norm || - \|§d,2 HyY(M) is a Hilbert space with the inner
product
(u,v) D = S Lu(Isv) dM + S R_ u(R_sv)dM.
M M

Proof. Since u = I_sI;u — R_su (see (10.2)), ||u||gdp) = 0 implies u = 0. Hence || - ||§dp) is
a norm and (-, -)gd) is an inner product. So, we only need to prove the completeness of
Hyd(M).

Suppose u,, € H;>d (M), n € N, is a Cauchy sequence. Then there exist v, w € L,(M)
such that

(10.3) lim |lv—Luylp, =0, lim ||lw—R_suy,|,=0.
n—oo n—oo

The operator I_, : D'(M) — D'(M) is continuous (see Remark 5.3). Therefore the first
equalities in (10.2) and (10.3) imply that u, converges in D'(M) to some u € D'(M).
Since R_g is an integral operator with a C'*°-smooth kernel (see Remark 4.6), it maps
D'(M) continuously into C°°(M). So, using (10.3) and the continuity of the operator I, :
D'(M) — D'(M), we obtain I,u = v € Ly(M), R_su=w € Ly(M). Thus, u € H34(M)
and it is left to prove that u, converges to u in H34(M)-norm.
We have u = I_,J;u— R_su=1_sv— w and
u—tp =I_gv—w—T_¢Iu, + R_gu, = I_s(v— Tyu,) — (w— R_suy,).
Consequently,
l|u — u”l”.(s(,ip) < s I-s(v — Isun)”p +|R-sI-s(v— Isun)Hp
+ s (w = R_sun)|lp + [R—s(w — R_sun) |-
The first, second and fourth terms on the right hand side converge to 0 due to (10.3) and
the continuity of the operators I,J_s =1+ Ry and R_sI_,, R_y, € ¥~°°(M) in L,(M).
The third term tends to 0 because R_u,, converges to w in C*° (M) and I, is continuous
on C*®(M). m
10.4. REMARK. A distribution u € D’'(M) belongs to H;’d(M) if and only if I;u €
L,(M), since R_su € C*(M) C L,(M).
10.5. THEOREM. C°°(M) is dense in H359(M).
Proof. Let us take an arbitrary u € H34(M). Then v := ILju € Ly(M), w := R_qu €
C*™(M) and there exists a sequence v, € C*(M), n € N, which converges to v in
Ly(M). Let us show that u, := I_yv, —w € C*°(M) converges to u in H34(M). We
have u —up = I_gv —w — I_gv, + w = I_4(v — vy,) (see (10.2)) and
flu — un\lfﬁ <L s (v — vn)llp + [R-sl-s(v— Un) |-
The convergence of the right hand side to 0 can be proved as in the proof of Theorem
10.3. m

10.6. THEOREM. For any T > 0 the space H;*T’d(M) is compactly embedded in H;’d(M).



Semi-elliptic operators generated by vector fields 55

Proof. Any operator R € W~°°(M) maps D’(M) continuously into C*°(M) (see Remark
4.6). Since H}»4(M), r € R, is continuously embedded in D’(M) and C* (M) is compactly
embedded in L,(M), the operator R : H4(M) — L,(M) is compact. It follows from
Theorems 6.7, 9.3 and Remark 9.4 that the DO I,I_,_, € Lpig’d(M) is compact in
L,(M). Now the statement follows from the equality Isu = I (Is4ru)—(IsR_s_7)u,
ue Htm4(M) (see (10.2)). m

10.7. THEOREM. Let s,r € R, 7 >0 and 1 < p < oco.

(i) If (6.1) is satisfied, then any A € W;’?(M), 0 <6 < p <1, is continuous from
HyY(M) to HS "4 (M) and compact from H34 (M) to HS "~ "%(M).

(ii) If (6.2) is satisfied, then any A € WIS(M), 0 < § < 1, is continuous from
H (M) to H3~"4(M) and compact from H34(M) to H3~"~79(M).

Proof. Let us prove (i). In order to show that A : Hy4(M) — H5 "% (M) is continuous
it is sufficient to prove that I,_, A : H3%(M) — Ly(M) is continuous. The continu-
ity of the last operator follows from the equality I,_,A = (Is_.AI_{)I; — I,_.AR_,
since I,_,Al_; € Wg:gi(M) is bounded on Lo(M) (see Theorems 6.7 and 7.1). Now the
compactness of A : H3(M) — Hy~ "~ "4 (M) follows from Theorem 10.6.

The proof of (ii) is almost identical. The only difference is that we use Theorem 7.6
instead of Theorem 7.1. m

10.8. THEOREM. Let (6.2) be satisfied, s € R, 1 < p < 00, and 1/p+1/p’ = 1. Then the
bilinear form
(w,0) = { u(@)o(x) dM(z), w0 € C%(M),
M
can be extended to a continuous bilinear form (-,-) : Hy4 (M) x H;S’d(M) — C. For any

continuous linear functional [ : H;’d(M) — C there exists a unique v € H;S’d(M) such
that [(u) = (u,v), Yu € Hg’d(M), The mapping | — v is an isomorphism of the spaces
(H34(M))" and H,,>(M).

Proof. It follows from (10.2) and Theorem 5.1 that
(u,v) = ((I-sIs — R_s)u,v) = (Lyu, I’ v) — (R_su,v)
— (L I’ ) — (R, (I, — Ru))
= (Lyu, I v) — (I'R_gu, [_sv) + (R_su, Rsv), u,v € C®(M),

where I | € Wy 3% (M), I, € W} s'(M). Applying the Holder inequality |(f, g)| < | fIl, gl
and Theorem 10.7 we obtain

[{u,0)] < const ||ul|(D)]|v] Y Yu,v € C®(M).

7S,p, bl
Now our first statement follows from Theorem 10.5.
Let us take an arbitrary continuous linear functional I : H34(M) — C. Since C*(M)
is continuously and densely embedded in HS9 (M), there exists a unique v € D’(M) such

that {(u) = (u,v), Yu € C°(M). So, we only need to prove that v € H];S’d(M), i.e. that
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I_sv e Ly (M) (see Remark 10.4). We have
(u, I_gv) = (I" ju,v) = 1(I"u).
Therefore
[(u, I_sv)| = |I(I"ju)| < const ||ILSu\|gflg < const ||ull,, VYue€ C®(M)
(see Theorem 10.7), i.e. I_sv € Ly (M). m

10.9. REMARK. It follows from Theorem 10.7(ii) that . ., ¢,0] is continuous from
Hy4(M) to Ly(M) if s > mmax{d, '} and ¢, € C*(M). Therefore Hy4(M) is con-
tinuously embedded in the standard isotropic Sobolev space W," (M), me Zy,if s >
mmax{d, '}. Consequently, H39(M) is continuously embedded in C(M) if s > ([L +
n/p] + 1) max{d, '}, where [-] denotes the integer part (see, e.g., [Ad, Theorem 5.4]). On
the other hand it is not difficult to show that I;u € C(M) C L,(M) for any u € C'(M) if
 is sufficiently large (see [Shu, §1]). Hence C'(M) is continuously embedded in H3*4(M)
if [ is sufficiently large (see Remark 10.4).

The above results admit an obvious extension to the spaces Hf,’d(é') of sections of a
C*°-smooth vector bundle £ over M and ¥DOs acting on such spaces. Using Theorems
5.1, 10.2, 10.7 and 10.8 one can prove in the standard way (see, e.g., [Shu, Theorem 8.1])
the following result.

10.10. THEOREM. Let (6.1) be satisfied and A € W;’?(E,f) be semi-elliptic. Then the
operator A : H3(E) — H5™"Y(F) is Fredholm, Ker(A) C C>(E) and there exist a finite
number of independent of s sections wy, ..., wy € C*(F') such that

Ran(A) = {v e Hy "YF): (v,w))rra=0, j=1,...,N}

(see (5.7)). If Au € Hy "YF) for u € D' (M) then u € HyY(E), if Au e C®(F) then
u € C>®(E). For any B € !I/;'VET’d(S,f), 7 > 0, we have Ind(A + B) = Ind(A). (Here
“Ker”, “Ran” and “Ind” stand for the kernel, range and index respectively.) In the case
o = 1 the same is true for the operator A : H;d(é') — H;‘T’d(]:), 1< p< oo, and
wi,...,wy € C®(F") can be chosen to be independent of s and p.

The last theorem shows that the index of A does not depend on s (or~ p) and is
defined by the equivalence class of the presymbol of A in the quotient space 5’;?(5 JF)/
g;;T’d(g ,F), 7 > 0. It would be interesting to obtain an Atiyah—Singer type formula for
the index of A.

10.11. REMARK. Theorem 10.10 remains true if we replace 7’ and (-,-)z pm by F* and
(v, )7 .m respectively (see (5.8)). A C*°-smooth vector bundle & is called Hermitian if
there exists a Hermitian metric on &, i.e. a C'°°-smooth function G : £ x & — C such
that its restriction to each fibre £, x &, is an inner product on &,. Every C'°°-smooth
vector bundle over a paracompact manifold has a Hermitian metric (see, e.g., [Hus, Ch. 3,
Theorems 5.5 and 9.5]). Using a Hermitian metric on £ one can identify £* with £.

10.12. THEOREM. Let (6.2) be satisfied and r € R. Then there exists A, € W{jg(é',f)
with the presymbol

(10.4) (W(n) + (1 —¥(n))Inla)"I € STH(E,E)



Semi-elliptic operators generated by vector fields 57

(cf. (10.1)) such that A, : H3%(E) — H3~"Y(E) is an isomorphism for every s € R and
1< p<oo. The DO A, also induces an isomorphism C*°(E) — C*(E).

Proof. According to the preceding remark we can suppose that £ is Hermitian. Let J,. €
W{:g(f,g) be a DO with the presymbol (10.4). J,. is semi-elliptic and Theorem 10.10
applies to it. We have Ind(J ) = —Ind(J}). On the other hand, Theorem 5.1 implies

that J, — J' € WT min{d;'}.d (€,€). Here we identify £* with £ (see Remark 10.11). So,
Ind(J,) = Ind(J*) due to Theorem 10.10. Therefore Ind(J,-) = 0. Let uy, ..., uy € C>®(E)
be a basis of Ker(J,). There exist sections wy,...,wy € C*°(€) independent of s and p
such that

Ran(J,) = {ve H,~ mdE): (v,w))gm =0, j=1,...,N},
y G(z), w(x)) dM(z) and G is a Hermitian metric on &. It is easy

to see that K := Z;V:l(~, uj)a,mw;j is an integral operator with a C*°-smooth kernel and
Ay := J, + K induces isomorphisms C*(£) — C*(€) and H;>d(5) — H;’“d(é') for
every sc Rand 1 <p<oco.

where (v, w)g,m = §

The following Garding inequality can be proved exactly as in the standard calculus of
¥DOs (see, e.g., [Tal, Ch. II, §8]).

10.13. THEOREM. Suppose (6.1) is satisfied, £ is Hermitian, A € J/g:?(c‘:, &) and
Reca(z,n) := (ca(z,n)+0a(x,n)*)/2 > Cn| > 0 for large |n|la. Then for any Cy < C
and any s € R there exists C7 > 0 such that

Re(Au, u)e p > Collull? 0 — Chllul?5,  Vu e Hy>9(€).

11. The resolvent of a semi-elliptic ¥DO

In this section we deal with ¢/DOs from W{g We suppose as usual that (6.2) is satisfied.
We have
e=min{d, ", d;" +d;' —d 1=1,...,n, CJ} 0} >0

(cf. (6.3)). Let N :={v1,...,v,} and
(11.1) Z.(N,d) {an + 30 s A ) T eZ+}.
cmo£0

It is clear that
(11.2) e =minZ,(N,d) \ {0}.

11.1. LEMMA. If |a+ 3| > 2 and
83@)85(2)6]‘ (yv Z)|y=z=x 7& Oa
then [(a+ B) :d| —d; ' € Zy (N, d).
Proof. Acting as in the proof of Lemma 6.1 we find that at least one term

el @orT ol (x) . ou Tl (w)

k1,m1
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of at least one of the scalars (2.16) does not equal 0 and
(a+8):d|—d;' = |(a+p):d] —d; ' + (), —d;,))) + ...+ (d; ) —d; 1)

J2 Jq
= p® d[+ .4 D d] 4 (dy) +dyt —d )
() —d) () d —dg ) € 2y (V). m

o mq

This lemma and the equalities (6.7) imply the following result.
11.2. COROLLARY. If
83(31)85(2)}%‘(33’ Y, Z)\y=z=w # 0,
then |(a+ B) : d| —d; ' € Zy (N, d).
Our next statement concerns the polynomials 73[377 , defined by (6.15).
11.3. LEMMA. [(B+7) :d| - d(P‘gﬁ) € Z4(N,d) for any B, € Z!} such that ’PgW Z0.
The same is true for the d-degree of any monomial of the polynomial ’P/‘gﬁ.

Proof. This follows from the preceding corollary and the fact that a factor 7; can appear
in a monomial of the polynomial ”Pg’,y only together with some partial derivative of h;
evaluated at y = z = x (cf. the proof of Lemma 6.5). m

11.4. DEFINITION. Let p,5 € C. A morphism b € gﬁg“’d(&}') will be called almost
d-homogeneous of degree pu € C if

(11.3) bz, 7Ny, T ) = TRb(z, ), pla > 1, 7> 1
We will say that a € 558'{’(1(5,.7:) belongs to HS™94(E, F) if
(11.4) ale,m) ~ > alz,n)

l€Z+(N,d)

(cf. (3.14)), where each a; € gﬁgﬂ_l’d(&}') is almost d-homogeneous of degree x — [.
Correspondingly we say that A € Wf‘g rxd (€, F) belongs to H¥"™4 (&, F) if its presymbol
@ belongs to HS*4(£, F). In this case dy from the right hand side of (11.4) is called the
principal presymbol of A.

We take | € Z,(N,d) in the asymptotic expansion (11.4) for the following reason.
Let A € HE"d(E, F), B € H¥">4(7,€) and suppose at least one of these DOs
is properly supported. Then it follows from Theorem 6.7 and Lemma 11.3 that AB €
Hwritr2d (7 F). On the other hand, Corollary 6.10 shows that even in the case where
the presymbols of A andB are almost d-homogeneous of degrees k1 and ko respectively,
the last inclusion does not necessarily hold if we take {3°)_, md; ' : 7 € Z} instead of
Z4(N,d) in Definition 11.4.

Let A € HU"4(&,&) be semi-elliptic and x € (0,00). We are going to construct a
special parametrix of A — Al which depends on A “in a nice way”. Since the principal
presymbol ag of A is almost d-homogeneous, the set of all eigenvalues of ag(x,n), z € =,
n € R™, coincides with some cone with vertex at 0 outside a bounded subset of C, for
any compact 5 C M. We will suppose that the set of all eigenvalues of ao(xz,n), x € M,
n € R™, lies in a closed cone C C C with vertex at 0, C # C. Since A is semi-elliptic,
Definition 11.4 implies that ag(x, n) is invertible for |n|q > 1. If A is a differential operator,
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ao(x,n) is a polynomial and hence is invertible for n £ 0. If A is not a differential operator
we will suppose, changing ag(x,n) for |n|a < 1 if necessary, that ag(x,n) is invertible for
all n € R™.

We are looking for a parametrix B()\) € W;('f’d(é', E), A€ C\C, of A— AI such that

its presymbol E()\) admits the following asymptotic expansion:

(11.5) bz~ > be(Niam),
qu+(N)d)

where by()\) € gigﬁq’d (€,€&) are rational functions of A and
(11.6)  by(r" Nz, 7Ny, r Yy = 775 b (N, ), [pla > 1, T > 1
Applying Theorem 6.7 we obtain from AB(A) — I € =°(&, &) the system

_ ~ i—(al+IBl1+17D)
(11.8)  (ao(w,n) — M)bg(X;z, ) + Z Talgy
I+4p+|od|+](B+7):d|-d(P§ ) +i=q
» p<q
X O (w, m)) (Vo ) by(Ns ., m) PG (x,m) = 0, g € Zy (N, d) \ {0},

where P§_  is the sum of all monomials of the polynomial P§_ of d-degree d(P§ ) — j.
From this system we can find successively bo(A),be(A),..., A € C\ C:
bo(As, ) = (@o(w,m) — A1),
bs()‘, T, 77) - - (60(‘%; 7’) - )‘1)7156(1’7 77)(60(333 77) - AI)il
—i Y (ao(w,n) = AI) ™ Oy do(,m) @o(x, n) — AI) "'V T Go(x,m)
(11.9) dit=¢

_ L1 . N _
x (@o(z,m) =AD" = o > O} (@)1 (@o(,m) = A7
dp M rdmt —ds t=¢
X Oy, o (w,m)(@o(w,m) — AI) ™0y, @0 (2, m) (@ (w,n) — M)~
(see (11.2) and Corollary 6.10).

11.5. LEMMA. The system (11.7), (11.8) has a unique solution and each gq()\;a:,n) is a
linear combination of products of factors (ag(z,n)—M )~ and gq,t(x, n),t=1,...,N. For
each of these products the number L of the factors (ag(x,n)—AI)~! satisfies the inequality
L < 2e71q+ 1, the left factor is always (ao(z,n) — A)~1 and gﬁ € HUrHd(E,€) is an
almost d-homogeneous (of degree k) product of ai, C} ., their (covariant) derivatives
and powers of n, where Ziv:l ke =(L—1)k—gq. If ¢q#0, then L > 2.

Proof. The conditions
I+p+la:dl+|(B+7):dl-d(P5,)+ji=q¢ p<q

from (11.8) imply p + (o] + |y]) < ¢ and ¢ — p > € (see Lemmas 6.5, 11.3 and (11.1),
(11.2)). Therefore 1 + |a| + |y| < 2e71(g — p). Now the inequality L < 2e1q + 1 follows
by induction. The remaining part of the lemma is also proved by induction. m
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11.6. REMARK. If A is a differential operator, then x; > 0. So, (L — 1)k —q > 0, i.e.
L>qg/k+1.

Let = C M be an arbitrary compact set. It is easy to see that if A is not a differential
operator and ag(x,n) is invertible for all n € R™, then gq()\;x,n) is well defined for
A€ (C\NCO)U{u e C: |ul <}, z € 5, where §o = §p(E) > 0 is sufficiently small.
This property will be used in the construction of complex powers of A (see Section
12). If A is a differential operator, we can, of course, change ag(z,n) for |nla < 1 and
make it invertible for all » € R™, but in this case Remark 11.6 is false. It is convenient
to introduce the following cut-off function. Since A is semi-elliptic and its presymbol
is a polynomial in 7, the numbers [, := kdj are integers (see (3.4)). The polynomial
Dpor(n) := Zk 1 77 b s d-homogeneous of degree 2« and there exist C1,Cs > 0 such that
Ci|n|3 < par(n) < Caoln|%*, Vi € R™. Our cut-off function is Y. (A, 1) = h(pax(n) + |A]%),
where h € C*(R), h(t) =0 for t <1/2, h(t) =1 for t > 1.

We will use the notation
(11.10) go)q()\; x,n) ;:Eq()\; x,m),

where it is supposed that ag(x,n) is invertible for all n € R™. If A is a differential operator,
we will also use the notation

(11.11) byaNizm) = XA mbg(As 2, m).

It is easy to see that Flgqu()\;x,n) and bx,q()\;x,n) are well defined for A € (C\C) U
{neC:|u| <}, z € Z,if 6 = do(Z) > 0 is sufficiently small.

11.7. LEMMA. Let ng be the dimension of a fibre of £. Then for any compact set = C M,

€
(1112)  [I95V <, ...V, 2 mboaNiz,m)|
[2¢ 7 g]+1+]|al+m ‘)\| noLo
< const= g a1, iim Z (1_|_|77|d)(Lo—1)H—q—|a:d\(1+‘)\|+|n‘g)—Lo (d—()\)) )
Lo=l

VAe C\C, Ya € Z, Vji,....jm €{1,...,n}, Vm € Z;, Vn € R", Vx € 5,

where l=11if g+ |a]+m=0,1=2if g+ |a|+m >0, [] denotes the integer part and
d(A) :==dist(X,C). If € is Hermitian and ag(z,n) is normal for all (x,n) € M xR", then
one can take (|A|/d(N))Eo instead of (|A|/d(N))"0Lo on the right hand side of (11.12).

Proof. It can easily be derived from Lemma 11.5 that
(11.13) ||8°‘ v (x) VUJ (J)bo’q()\ x,n)||

[2e ' gl +1+]al+m
< const Z (1 + ‘n|d)(Lo—1)n—q—|a:d\||(a'0($7n) _ )\I)_1HL°.
Lo=l

Let pi(x,n), ..., tiny (z,n) be the eigenvalues of ag(xz,n). The simple inequality
I Gio(a.m) — AT)™| < const [do( n) — AZ[|""det(o(z,n) — AD)|""
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(see, e.g., [Kat, Ch. I, (4.12)]) implies

no
(11.14)  [[(@o(a,n) = M) ™"l < comst (1 + A + [nlg)" ™" [ ] I, m) = A7
1=1
An elementary geometric argument shows that
d() _ |p(z,m) = A
AL T ()|
Since |pi(z,n) — A| > d()), we have

()|

A+ [ (z,m)| .

1
2\l >
L (z,m) — Al > 2d(>\) B

Our assumptions imply that there exists dg > 0 such that |u;(z,n)| > do, I = 1,..

for any n € R™ and = € =. Using the equality
(e, 7Ny ) = (e ), nla> 1 T2 1,
we obtain | (x,n)| > const (1 + [n|5) for any n € R™ and « € =. Therefore

A
(11.15) o) = A7 < const Sl (1+ -+ [af3)
Substituting this estimate into (11.14) we get
@0, m) = A1) ™M < const (14 [A] + [nlg) =" (IAl/d(X)™.

Now (11.12) follows from (11.13).
If £ is Hermitian and ag(x,n) is normal we can use

| @o(m) = AT) 1| < const max |pu(,n) — A~

=1,...,n0

instead of (11.14). This proves the last statement of the lemma. =
Let us introduce the following “parabolic neighbourhood” of the cone C:
(11.16) 2(C,0):={AeC:d\) <const\'}, 0<O<1.
11.8. COROLLARY. For any compact set = C M,
T €,E £ T
(1117) 105V, % - Vi (bog(Xiam)]

< const = g oy, jm (14 [1]a) 7707l (14 N 4 [n)5) 7 (W

VYA e C\C,

(11.18)  [05Ve,y - Vo2 g, m)|

S 0N g () 702 AT 0m0b sl |3 g ) O,
VA e C\ X(C,0), V8 € [0,1/ng], Ya € ZT,

Vi1, ey dm €4{1,...,n}, Vm € Z;, YVn e R", Vx € &,

where l=14f g+ |a|+m=0,1=2"if ¢+ |a| +m > 0. If € is Hermitian and ao(z,n)

| ‘ )7z0([261q]+1+a+m)
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)

is normal for all (x,n) € M x R™, one can take 1 instead of ng on the right hand sides

of (11.17) and (11.18).
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Proof. (11.17) is a direct consequence of (11.12). Let us prove (11.18). Since A € C\
X(C,0), we have |\|/d(\) < const |\|?. Tt is clear that 6ng < 1 implies

(L AL [l THAP™ < (L AL+ @)™ < (14 [nlg)e
Therefore the RHS of (11.12) can be estimated by

[2e " 1g]4+14]a)+m
const Z (1 + |,'7‘d)(Lo71)n7q7\a:d|+(6n071)(Lofl)n(1 + |>\| + |n‘g)fl|/\‘lt9no
Lo=l

< CODSt(l + |77|d)9710([2571q]+‘al+7n)l€+(l—1)(1—9”0)%—(1—‘a:dl(1 + |)\| + |77|f1)l(9n0_1)- -

11.9. REMARK. If A is a differential operator, (11.12), (11.17) and (11.18) remain valid
if we replace by q(A;2,7m) by by q(A;x,n) and ! by the smallest integer which is greater
than or equal to (¢ + | : d|)/k + 1. Indeed, similarly to Remark 11.6, in the analogue
of (11.13) we have (Lo — 1)k —q — | : d| > 0, i.e. Ly > (¢ + |a : d|)/k + 1. Note also
that we can suppose |n|5 + |A| > const with a positive constant, because by 4(A;z,n) =0
otherwise (see (11.11)). Therefore the inequality |u;(z,n)| > const |n|§, n € R", z € =,
implies
Al 4 [, m)| = const (JA] + |n]g) > const (1 + [A] + [n]q)-
Hence (11.15) holds and (11.12) follows as above.
Let us define a DO BN)(X\), N € Z, (N, d), by the formula

(11.19) (BN (Nw)(x)

1 —i{c(x 7
= | | emitelmnm S by (A2, m)@E w(y)T? (@, y)x (2, y) dM (y) dn,

n
(277) R™ M q<N

Yw € C(€)

(see (4.10), (4.13)). We can suppose that x is properly supported, i.e. for any compact
set = C M the intersections of the support of x with = x M and M x = are compact in
M x M. Then BNV )()\) is properly supported. Let us consider the operator

(11.20) TM(N) == (A= X)BM(\) - I
11.10. LEMMA. For any L € Zy and any N > n+ k + Lmax{d; '}, N € Z,(N,d),

there exists N € R such that T™N)(X) is an integral operator with a kernel r™)(\;z,y)
satisfying the estimate

(11.21) Vel Vol Ve Vo M)

L@ Vo @ Y ) Y, ) N
N

< =N 14 AN |_)“

— ConSt:aN7J17~--,Jm1 k1, km,z( + | D d()\) ’

Jiyee oy Jmis K1y e oskmy € {1,...,n}, mi,me € Z4, mi+me < L, VA€ C\C, Vz,y € &,
for any compact set = C M.

Proof. The lemma is proved by using the arguments from the proof of Theorem 6.7,
(11.7), (11.8), (11.10) and (11.17). Note that the function (14 |n|q)~*° is integrable on R™
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if s > n. This follows from the equality
Vol{n e R":7<nla <27} =7"Vol{n e R": 1< |nla <2}, 7>0
(cf. the proof of Lemma 7.4). u

11.11. REMARK. It is easy to see that (11.12), (11.17) and (11.21) remain valid for any
A from a sufficiently small disk {u € C: |u| < do}, if we replace on the right hand sides
[A] and |A]/d(X\) by 0 and 1 respectively.

11.12. LEMMA. Suppose 0 < e/(2ngk), 0 < 1/ng. For any L € Z. there exists Ng > 0
such that TN)(X), N > Ny, is an integral operator with a kernel r™N)(\;x,y) satisfying
the estimate

(11.22) V& .vEE  wSE L vEE N ()|

i@ Vg @ Yo @)Y v, )
Ong—1
< CONSEZ N iy, iy Ky sy (LA [A]) 0T,
jl?"'?j’ﬂl17k17"'7kmz € {1,...,71}, my,ma EZ+7 mi + ma SLv

YA €eC\ 2(C,0), Yo,y € =,

for any compact set = C M. If £ is Hermitian and ao(x,n) is normal for all (x,n) €
M x R™, we can take 6 < ¢/(2k), 0 < 1, and replace ng by 1 on the right hand side of
(11.22).

Proof. Tt follows from (11.18) that
||8a Rvid Eo,q()\ x,n)|| < const (1+ |n]a)” s1q+so(\a|+m)—\a:d|(1 + |)\|)9n0—1’

v (»8) Vim (a)
where 0 < gg := Ongk < £/2 and 1 := 1 — 2¢ " 0ngr > 0. A straightforward inspection
of the proof of Theorem 6.7 shows that it remains almost unchanged if the restrictions
on the DO B are slightly weakened, namely if

105V VT Fale )| < constia .y, (1 -+ [pla) oot el ol

Vi, (m ~~~~~ Jm
Vo€ Z, Vi1, ..., jm €{1,...,n}, Vm € Z, Vn € R", Vx € K,
where ( is the multi-index corresponding to the set of indices {ji,...,jm} and €9 <

min{(¢ — &) min{d; '}, 0e}/2 (cf. (3.7)). The only difference is that (6.27) should be
rewritten as follows:

%3
r< <= Slat i = (0— Sl dl+ el + )

min{ge, (0 — §) min{d; '}}
2
<71+ re = E(lal + |+ 2[u"),
where £ := min{(¢ — §) min{d; '}, 0c}/2 —e0 > 0.
In our case ¢ = 1, 6 = 0. So, by, have the necessary properties and we can ob-
tain (11.22) using (11.7), (11.8) and (11.10). The last statement of the lemma is proved
similarly. m

It is clear that the DO B(\) with the presymbol
N~ > bog(Aiz,m)

q€Zy (N d)

<ritre - (lod + 11T+ 2" ]) + o (] + 1))
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is a right parametrix of A — A\, i.e. (A — AI)B(X) € #~>°(€,&). Since A is semi-elliptic,
B()) is a parametrix of A — A (cf. Theorem 10.2). So, B™N)()) is an “approximate
parametrix” of A — AI. We are going to show that B(N)()) is a good approximation of
the resolvent of A — AI.

Suppose that the manifold M is compact. If A — AI is invertible on Hgvd(é’) for
some A, then A is an operator with a compact resolvent (see Theorems 10.6 and 10.10)
and its spectrum Spec(A) consists of isolated eigenvalues with finite multiplicities (see,
e.g., [Kat, Ch. III, Theorem 6.29]). Note that Spec(A) does not depend on s or p (see
Theorem 10.10).

11.13. THEOREM. Let (6.2) be satisfied and M be compact. Suppose A € HU*(E E) is
semi-elliptic, k € (0,00), Ind(A) = 0 (see Theorem 10.10), the set of all eigenvalues of
ag(z,n), x € M, n € R™, lies in a closed cone C C C with vertex at 0, C # C. Then for
any 0 < min{e/(2ngk), 1/no} there exists R > 0 such that Spec(A) C X(C,0) U {u € C:
|u| < R} (see (11.16)). For any 0 € [0,¢/(2nok)) N [0,1/no], s€ER, 1 <p < oo, L € Zy
and sufficiently large N € Z, (N, d) there exists N € R such that (A — X)~' — BA)(\),
A€ C\ (CUSpec(A)), is an integral operator with a kernel RN (X;x,y) satisfying the
estimates

(11.23) Ve, vEE wEE L vEE RO (\say)|

vip (@) 7T Y Vi (@) T vk (W) 7T Y Yk, (W)
< const (A~ M) )z ey (1+ DAY,
jl?"'?j’ﬂl17k17"'7kmz S {1,...,71}, mi,ma EZ+7 m1+m2 SLv
YA e C\ (CUSpec(A)), Yo,y € M,

(11.24) vag R Vit R vids R(N)()\;$7y)||

2@ Vo @ Yo @)Y v, )
< const [[(A = M)~ e gz (L AN,
jl?"'?j’ﬂl17k17"'7kmz S {1,...,71}, mi,ma EZ+7 m1+m2 SLv

YA e C\ (X(C,0)USpec(A)), Va,y € M.

If € is Hermitian and ao(x,n) is normal for all (x,n) € M x R™, we can replace ng by 1
in the restrictions for 6 and on the right hand side of (11.24).

Proof. Tt follows from Lemma 11.12 that ||T(N)(A)||LP(S)HLP(5) < lforall A € C\X(C,0)
with sufficiently large |\| if @ < min{e/(2ngx), 1/no}. Since (A=) BN (\) = I+TWN)())
(see (11.20)), A — A is right-invertible for such X’s. Taking into account the equality
Ind(A—\I) = 0 (see Theorem 10.10), we deduce that A—\I is invertible and (A—\I)~! =
BMM\ (I +TWM)~Lif X € C\ (X(C,0)U{u € C: |u| < R}) for sufficiently large R > 0.
This proves the first statement of the theorem.

The equalities BN (A\)=(A—XI)"Y(A=X)BM (\)=(A—=XI)" - (A=XI)'TIM) ()
imply (A — )=t — BN)(\) = —(A = XI)~'TWM) ().

Let us show that for every L € Z, there exists | € Zy such that

(A=A ore)—cr(e) < const [|[(A— AI>_1HHS.d(5)HH;,d(£), VA € C\ Spec(A4).

According to Remark 10.9 for a given L € Z there exist k € Z4 and [ € Z such that
the following continuous embeddings hold: C*(&£) — H;*’m’d(é') — CE(&). Hence for an
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arbitrarily fixed A\g € C\ Spec(A) we have

1A =AD" Here)—core)

S CODSt || A - )\I)_l HH;+km,d(€)*}H:§+km,d(£)

(
< const ||(A — )\QI)_k(A — )\I)_l(A — )\OI)k||Hls)+kx,,d(g)_>H;+kn,d(£)
(

—k
< const |[(A — Aol) ||H;,d(S)HH;+kn,d(€)

x [[(A - )‘I)_l HHgvd(g)HH;-d(g) 1(A - AO])kHH;MW’(g)HH;’d(g)
< const ||(A — )\I)’IHH;,d(g)_)H;,d(S), VA € C\ Spec(4)

(see Theorems 10.7 and 10.10).
Now (11.23) and (11.24) follow from Lemmas 11.10 and 11.12. =

11.14. COROLLARY. Let the conditions of the last theorem be satisfied. For any s € R
and 1 < p < oo there exists R > 0 such that

(11.25)  [|(A - )‘I)_l‘lH;*d(S)—»H;’d(E) < const (14 [A]) 71,
VA e C\ (XZ(C,0)U{ueC:|ul <R}).

For any L € Z. and sufficiently large N € Z(N,d) there exist R > 0 and N € R such
that (A —XI)~t — BIN)(X), X € C\ (CU Spec(A)), is an integral operator with a kernel
RW(\; x,y) satisfying the estimates

£ £, £ £ ) -
(11.26) ||Vyj1(w) . Vyjml @ Vor (5 'VVkmz (y)R(N)()\7 z,y)| < const (1 +|A|)72,

jl?"'?jmlaklv"'7k7rlz 6{17"')n}7 mi,ma EZ-‘,-; my +m2 SLa
YAeC\ (X(C,00u{peC:|ul <R}, Ve,y e M.

Proof. (11.26) follows from (11.24) and (11.25). (Since the ratio |A|/d(X) is bounded on
C\ X(C,0) (see (11.16)), one can use (11.23) instead of (11.24).) Let us prove (11.25).
Using Lemma 11.10 or Lemma 11.12, Theorem 10.8 and Remark 10.9 we can show that
HT(N)()\)HH;,CI((E)HH;A(E) < const < 1 for all A € C\ X(C,0) with sufficiently large |A|.
Now (11.25) follows from the equality (A — AI)~! = B (A)(I + T™))~1 (see the proof
of Theorem 11.13), Theorem 10.7(ii) and Corollary 11.8. m

11.15. COROLLARY. Let (6.2) be satisfied, M be compact and £ be Hermitian. Suppose
A€ HU (&, &) is semi-elliptic, k € (0,00), A is formally self-adjoint, i.e. A* = A (see
Theorem 5.1 and Remark 10.11). Then A is a self-adjoint operator on Lo(E,dM) with
the domain HS4(E) and for any 0 € [0,e/(2x)) N[0,1], L € Z, and sufficiently large
N € Z(N,d) there exists N € R such that (A — X)~' — B (X), A € C\ R, is an
integral operator with a kernel R(N)()\;x, y) satisfying the estimates
IVEE - Vo Ve Vo RN Nz, y)]
Vkmg )

v @) Vg @) Y v ()

A

N
——— ) dist(\,Spec(4))"!, VA€ C\R, Va,y € M,
[Tm |

< const (1 + )\|)1(
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Vo Vor @Vesw Vo, mRY Nz, vl

vjy (2) Vimy (@) iy (1) Vhy (
< const (1 4 |\|)? " dist(), Spec(4))~L, VYA e C\ Z(R,H), Vz,y € M,
JlseeosJmis K1y ooy kmy € {1,...,n}, my,ma € Zy, my+mg < L,
where X(R,0) := {p € C: |Im p| < const |u|*~%}.

Proof. The first statement can easily be derived from Theorem 10.10 in the standard
way (cf. [Shu, §8]). The equality A* = A implies that the principal presymbol ag(z,7n)
is self-adjoint for |n|q > 1 (see Theorem 5.1, Remark 10.11 and Definition 11.4). We
can suppose that ag(z,n) is self-adjoint for any n € R™. Therefore its eigenvalues are
real and we can take C = R. Since A is self-adjoint on Lo(€), we have Spec(4) C R
and [[(A — M) 7Y 1,8)—La(e) = dist(A, Spec(A4)) ™. Now the estimates for ROV (\;z, y)
follow from (11.23) and (11.24). m

11.16. REMARK. Suppose 0 € Spec(A). Then it is easy to see that
IV SV Ve Vo RN (Asz,y)| < const
mo

vj (2) Vimy () © vey (1)

for any A from a sufficiently small disk {u € C : |u| < do} if N is sufficiently large (cf.
Remark 11.11).

If A is a differential operator, we can construct a more accurate approximation of
the resolvent (A — AI)~1. Let BYY)(\) be the )DO defined by (11.19) with by o(X; 2, 7)
instead of by 4(\; z,7) and let TV (A) := (A — AI)BYY (\) — 1.

11.17. LEMMA. Suppose § < min{e/(Qnon), 1/no} and 5 C M is a compact set. For any
L, JeZ, there exists No > 0 such that T )()\), N > Ny, is an integral operator with a

kernel 73(( (\;z,y) satisfying the estimates

(11.27) Ve vEE  wEE L vEE

(V) (\.
@ Vg @ Vi @ Vo, @™ A2 Yl

ooy (L AN T (I /A ()Y,
jla"'ajmukl,-'-aka € {L'“an}, mi, Mg € Z+a my + ma S La
YAeC\C, Vz,y € &,

< CONSt= N jy i, K

(11.28) ||V§75 vEE  yeE R 7a(N)(Aggy)”

@ Vo @ Yo @) Vi, 07X
< CONSEE N 1oy kg (L [AD) T
jl?"'?j’ﬂl17k17"'7kmz € {1,...,71}, my,ma EZ+7 mp + mg SLv

YA e C\ 2(C,0), Yo,y € =,

where N > 0 depends on N. If € is Hermitian and ao(z,n) is normal for all (z,n) €
M x R™, we can replace ng by 1 in the restrictions for 6.

Proof. According to Remark 11.9 estimates (11.17) and (11.18) hold for Fl;qu (A\;z,m) with
1> (¢g+|a:d|)/k+1. It is easy to see that the right hand sides of these inequalities are
estimated from above by

CONSt 2,051, (14 A+ ]5) 717D/ (7] (2 rol2e a1t em)
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and
ConStE,q,a,jl,.u,jm(l + |n|d)9ngnm79no((172571Ongm)q+(17€719noﬁ)|a:d\)
X(l + ‘)\| + ‘ms)7(179710)(n+(172571Hnon)qu(lfs*19ngn)|a:d\)/n
respectively. The remaining part of the proof is simpler than the proofs of Lemmas 11.10
and 11.12, because A is a differential operator now and we do not have difficulties with

estimating the remainder in the composition formula (see also the third inequality in
Lemma 6.5). m

Similarly to Theorem 11.13 one can prove the following result.
11.18. THEOREM. Let A be a differential operator and the conditions of Theorem 11.13
be satisfied. Then for any 6 € [0,e/(2nok)) N [0,1/no], s € R, 1 < p < oo, L,J € Zy
and sufficiently large N € Z (N, d) there exists N € R such that (A — \I)~! — B;N)(/\),

A € C\ (CUSpec(A)), is an integral operator with a kernel R&N) (N z,y) satisfying the
estimates

IVE€,, .. Ve L VEE L VEE RN (X, y)|

vig (@) 77 Wiy () Tk (W) 77T Ve, (1)
< const (4~ A1) M ggey ey 1+ D7 (/AT
Jiseeesdmiy K1y skm, €{1,...,n}, my,mg € Z4, my+mg < L,
VA e C\ (CUSpec(A)), Ve,y € M,
|vee ovEE e vEE RN ()|

vin (@) 77T Vi (@) T vk (1) 77T kg, () TTX
< const [[(A = A1) e ey proa e (1A,
jlv"'vjmukla"'akmz € {17‘”7”}7 mi,ma EZJM m1+m2 SL?

YA e C\ (X(C,0)USpec(A)), Va,y € M.

Remark 11.16 remains valid for R&N)()\; x,y), while the estimates analogous to those
from Corollaries 11.14, 11.15 hold with the factor (1 + |A|)~7 on the right hand sides.

12. Complex powers of a semi-elliptic DO

We will suppose in this section that (6.2) is satisfied, M is compact, A € H¥"4(&, &)
is semi-elliptic, k € (0,00), the set of all eigenvalues of ag(z,n), z € M, n € R™, lies in
Cob ={peC:—-v<argu<wv},0<v<7and Spec(A) C C, \ { € C: |u| < d} for
sufficiently small §, > 0.

For z € C, Rez < 0, we set
(12.1) A= i [ xz(a-an~tan,
where I is a curve beginning at infinity, passing along the negative real line to a circle
[A| =6, § < dp, then clockwise around the circle, and back to infinity along the negative
real line. The function A? is analytic in C\ {A € R: A < 0} and equals 1 at A = 1. In
particular, \* = |\|?e!™* on the first part of I" and \* = |A\|*¢~ "% on the third one. Note
that the integral is absolutely convergent due to (11.25).
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If Rez > 0 we take an arbitrary m € N, m > Rez, and set A* := A™A*~™_ It is
not difficult to show that this definition does not depend on the choice of m and A* has
the standard properties of powers. In particular A° = I, A' = A and A*AY = A*tY,
Vz,w € C (see, e.g., [Shu, §10]).

It follows from Theorem 6.7 and the results of Section 11 that A% is a ¥ DO of class
HY"*4 (€, €) with a presymbol

A~ D @l (),

q€Z+ (N ,d)

where each @, € S'i Rez=ad g €Y is almost d-homogencous of degree rz — ¢. If Re z < 0,
then

(12.2) A (wm) = 5= | Mbog(Asz,m) dA

r

1
2m

(see (11.10)). W,(Jm) is the almost d-homogeneous part of degree km — ¢ of the presymbol
of the DO A™, m € N, which can be found with the help of Theorem 6.7. If Rez > 0,
m € N and m > Re z then we have

(123) @) () = )y
Ipt|a:d|+[(B4+7):d|-d(P] ) +i=q

% aﬁ+a (m)(x n)a'y( u(z))aa;(zz_M) (x,n)Pg’%j(x,n), |77‘d >1,

i~ Ual+IB81+1vD
alBly!

where Pgm ; 1s the sum of all monomials of the polynomial 77,(‘%Y of d-degree d(Pgﬁ) —J
(see (6.15)). It follows from the properties of A* that (12.3) does not depend on the choice
of m and

~ j—(al+I81+17D)
a

z+w) _ -
d @) = 2. alpiy!

I+pt|a:d|+](B+7):d|-d(P§ ) +i=q
x O (2, )0 (VS G ()P, s(@m),  Inla > 1, Vz,w € T,

It is easy to see that 65(Vf(i)) (Z)(x n) is an entire analytic function of z for any
qE€Zy(N,d), o, B €2, (x,n) € M x R" and

(12.4) a5 (x,m) = (@o(x,n))?
for nla > 1.

Suppose that a.(z,n), Oy, ao(z,n) and V ao(x 1) commute with ao(x,n). Then
One @o(x,m) and Oy, aop(x,n) commute (see Lemma 14.6 below). Using the equality C} , =
—C# . (see (2.1)) we obtain

m,k

(125)  B(han) =~ (@, n) [ole,n) — M)~
—1 Z Op, o (x, 1) V’ w)ao(:c n)(@o(z,m) — A\I)~™*

dkl—a

(see (11.9)) and consequently
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(12.6) @ (z,n) = za.(x,n)(@o(x, )"
z(z—1) ~ EE ~ ~ z—
T > Oy o (2, 1)V, (o (@, m) (@o(z,m))*~2,
d;1=a
if |nla > 1 and Re z < 0. The last equality holds for all z € C due to analyticity.

Since FZ;o’q()\; x,n) is analytic with respect to A everywhere in C except the eigenvalues

w1 (z,m), ..., pny(x,n) of Go(z,n), (12.2) can be rewritten in terms of residues:
(12.7) ay (a,m) Z Resx =, (2.n) (A D0,g (As 2,7)
m=1

for Re z < 0. This equality extends analytically to an arbitrary z € C.
Suppose kRez < —n. Since a®) € HS**4(£ &) C §’f§ez’d(5,5), A? is an integral
operator with a kernel A, (z,y) which is continuous in (z,y, z) and analytic in z. Moreover

Az (z,y) - <(271r)n

admits an analytic continuation to an entire C*°(Homarx p (€, E))-valued function of z.

S efi(c(a:,y),n)'d(z) (QL', 77) dﬂ) @i,yre (Z, y)X(xa y)
R?L

12.1. THEOREM (cf. [See]). (i) The restriction of A,(x,y) to the complement of the diag-
onal in M x M can be continued to an entire analytic function of z which is C'*°-smooth
n (2,9, 2).

(ii) A.(z,z) can be continued to a meromorphic function of z € C which can have

poles only at the points zy = (¢ —n)/k (¢ € Z+(N,d)), and the poles are simple. The
residue at zq equals

1

)= - s | S
In|=1
1
= Grn | ZResA o) AT 500 (A5 2, m) de n2 ds,
|n|=1m= 1 k=1
where p1(x,m), ..., tno(z,n) are the eigenvalues of ag(x,n). In particular
1
— —n/Kk
oo(z) = Gy S ao(z,m)) Zd

Inl=1
A, (z,x) is C®-smooth in (z,z) for z different from the poles. (z — z4)A.(x,x) is C*-
smooth in (z, z) for z close to z,.

(iii) A,(x,x) does not have a pole at z =0 and

_ 1 - 1,2 7 .
Ag(z,z) = e Slgdk n? ds § bo.n (—t; z, 1) dt.
pet b

(Note that n=>p_,d;' € Z4(N,d).)
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(iv) Suppose A is a differential operator. Then A,(x,y) =0 if © £y and z € Z,.
A, (x,x) does not have a pole at z = j € N and

Aj(z,x) = S de nid Stjgo,,iﬂn(—t;x,n) dt.
* =1 k=1 0

(Note that due to (3.4) the numbers ly := rdy are integers. Therefore rj € Z(N,d).
Since n € Z. (N, d), we have kj+n € Z,(N,d). The last integral is absolutely convergent
due to Remark 11.9.)

Proof. The theorem can be proved in the standard way (see, e.g., [Shu, §12]). The inte-
grals of almost d-homogeneous functions are evaluated with the help of Lemma 12.2 and
Corollary 12.3 (see below). =

12.2. LEMMA. Suppose f is a function continuous outside the open unit ball and
(12.8) ft g YAy =71 F (), Inla>1, 7> 1, Rep < —n.

Then

(12.9) \ roydn=- e | s de ned

In|=1 In|=1

Proof. Since Re u < —n, the integral on the left hand side of (12.9) is absolutely conver-
gent (cf. the proof of Lemma 11.10). Approximating f by smooth functions on the unit
sphere we can reduce everything to the case when f is smooth. Differentiating (12.8) in
7 and taking 7 = 1 afterwards we arrive at the following analogue of Euler’s formula:
Sy d,;lnk(?nkf(n) = pf(n). Then integrating by parts and using the equality (3.1) we
obtain

| Fdn = ~ Vo> dtmdn, fn) dn

1<Inla<R 1<|nla<R k=1
n
== | F)dn -+ | 7 de M d
1<Inla<R In|=1
1 —
+ | r)d di mwen(n) ds
[nla=R k=1
ie.
1 n
_ —1
| rodn=-— u+n Vs de nkd5+u+n Vorm Y di neen(n) ds
1<|nla<k Inl=1 [nla=R =
where (e1(n),...,en(n)) is the unit outward normal. So, it is left to prove that the last

integral vanishes as R — co. The equality |n|a = R is equivalent to >, _, R—2/dx n—1
= 0. Therefore (e1(n),...,en(n)) = const (R=2/%py, ..., R=?/dny,) with a positive con-
stant. Consequently, niex(n) > 0. Hence
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‘ S de nrer(n) dS| < max |f Zd_ S nrex(n) dS
[nla=R [nla=R
:constRRe“Zdlzl S O e A
k=1 [nla<R

= const R®°# Vol{neR™ : n|a<R}—0 as R —oo. =

For an arbitrary open subset U of the unit sphere || = 1 we denote by H(U,d) the
following “truncated horn”:

HU,d) = {( Dy, 7)o r > 1, n € UL
12.3. COROLLARY. Let f satisfy the conditions of the last lemma. Then

\fmydn=— S de i d

H(U,d)

for any open subset U of the unit sphere.

Proof. We need to prove (12.9) for the function x/(7,q)f, where x4 is the charac-
teristic (indicator) function of H(U,d). It is sufficient to approximate X3/ (r,q) pointwise
by continuous functions on the unit sphere and apply Lebesgue’s dominated convergence
theorem. m

For any w € (0,7 — v] we set

I (w) = sup [|(A = re= D |y ) Lage)-

For w > m — v we take II(w) = 1. Here v is the number from the restrictions on A
formulated at the beginning of this section. IT(w) is finite due to (11.25). If v =0 and A
is self-adjoint, then IT(w) < const w™!, Vw € (0, 7.
12.4. THEOREM. For any $1,s2 € R (s1 < s2) and ¢ > 0 there exist NeR and C >0
such that N does not depend on s1 and c, and

(12.10) A (z, )| < C(1+ |Imz|)ﬁe“‘1mz| min{ I7(|Tm z| 1), ecl'm =1}
for all z in the vertical strip s1 < Rez < sy excluding neighbourhoods of the poles z,.

Proof. The proof is based on the method used in the proof of [Ar, Proposition 3.4] (see
also [HR2]).
Let us start with the case s2 < 0. It follows from (12.1) and the results of Section 11

that A* = AEZ)) + E((N))7 where AE;;) is the DO with the presymbol 3 _ Zi((f) (x,7)

defined by a formula similar to (11.19), E((]ZV)) is the integral operator with the kernel

P e
Q) (@,9) = 5= | MRO (A, ) d
r
and N is sufficiently large.
Since RU)(\; 2, %) is analytic with respect to X in (C\ C,) U {u € C: |u| < o}, we
can replace the contour of integration I" by I'y = I U Ty U T, where Fwi = {retiv .
re6,00)}, I}) = {de™ 1 p € [, 9]}, § < & and ¢ € (v, 7] will be chosen later.
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Using (11.23) and Remark 11.16 we obtain

P
‘ 2L S NRIN (X2, y) CD\H < const S gRezelel-mzl g, < const g1e ze¥Itm =1,
ﬂ-Fg -
‘ QL S )‘ZR(N)()\M‘, Y) d)\H < const ewllmzln(¢ — v)(sin(¢) — U)>_ﬁ S rRez=1 g,
s
r* s

»

— const [Re 2| "L6Re* (sin(yp—v)) ~ NevIm =l (0 =v)Im 2l 7 ()
with constants independent of (z,y, 2) and ¥. For ) = v + ¢ we get

IEG) ()| < const el
Let us make a different choice of 9. If [Im z| < max{2/x, (7 — v)~'} we put ¢ = 7. If

[Im z| > max{2/m, (1 —v) "'} we take 1 = v+ |Im 2| 7. In the latter case [sin(y) —v)| =
sin(|Im z|~1) > 27~ !Im 2| ~!. Therefore

IS, (2, )] < const (1 + [Im z)N /™ = 17(|m 2| 1),

Derivatives of EE 1\;)(@ y) can be estimated in exactly the same way. So, for any L € Z4
and sufficiently large N € Z (N, d) there exist Cy > 0 and N € R such that

EE EE EE EE (2)
(12.11) ||Vuj1 (@) VVMI (I)V%1 ()" VUW (y)E(N) (z, )|l

< Co(1+ |Im z|)Ne“|ImZ| min{I7(|Tm z|~%), e?™ =1} my +my < L,
for all z in the strip s1 < Rez < s9 < 0

If Rez < —n/k then the DO A(N) is an integral operator with a kernel Agjg)(x Y),

and we need to estimate the meromorphlc continuation of
(2)
A (@@ S > ay
R g<N
It follows from (12.2) that

AR (@ @) = 15 (@) + I (2),
where

@) =5 ) | Y= o )m IS Ao (A2 m) dxdn,

Inl<1gsN [nl<tgsN T
z 1 >~z

17 () @) | > @@ @ mdn
[n|>14<N
1 1 S

= - P Z — (z,m de nk
(2m) o R q—l—nm )

1

i
~ G 3 —— IR ESCROER dAde n dsS
q<N [n|=1T k=1




Semi-elliptic operators generated by vector fields 73

(see Lemma 12.2). It is clear that Iéz) (z) is analytic with respect to z in the left half-plane
Rez < 0 and I( )( ) is meromorphic there with possible simple poles at z, = (¢ — n)/x.
We need to change the contour of integration in order to estimate these integrals as above.
Since 507(1()\;@17) is analytic with respect to A in (C\ C,) U {p € C: |u|] < do}, we
have
S )\zgo)q()\; x,n)dA = S )\Zgo’q()\;x, n) dA.
r ry

Using (11.12) and Remark 11.11 we obtain as above

H S )\Zgo,q()\;x,n)d)\H < const gReZe¥m =l
ry
H S )\Zgoﬂ(/\;x,n)d)\H < const |Re 2| "16Re = (sin(yp — v)) 012 Tal+D) gvlm |
ry
with constants independent of ¥, z,2 € M and 7, || < 1.
Taking 1) = v + |[Im z|~! for [Im 2| > max{2/, (1 — v)~!}, we can show that
@5, m) | < const (14 [Im zf)oB e herim =l ) < 1, 2 € M,
for all z in the strip s; < Rez < s5. Similarly we proceed for the derivatives

(1212)  95VEE, . VEE G (e, n)]| < const (1-+ [T 2o oA lalem o]
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Vo€ Z1, Yi1,...,dm €{1,...,n}, Vm € Zy, [n| <1, x € M.
The above inequalities imply that there exists C’ > 0 such that
JAG) ()| < € (1 [Tm o2 N Dt

for all z in the strip s; < Rez < sy excluding neighbourhoods of the poles z,. This
completes the proof in the case sy < 0.

Suppose so > 0 and take k > sq, k € N. Let us use the representation A* = A¥A*~% =
AkAgfv)k + A*E (sz)k). Acting as in the proof of Theorem 11.13 we can show with the
help of Theorem 10.7 and Remark 10.9 that A¥ is bounded from C*(M) to C(M) if L

is sufficiently large. Hence (12.11) implies that if N is sufficiently large, then AkE((IZV)k)

is an integral operator with a kernel ES\?) (z,y) satisfying the estimate

1B ()| < comst (1 + [T 2[)¥ ¥ =l min {I7(|Tm 2| 1), eclim =1}
for all z in the strip s; < Rez < s9 < k.
Further,

k g(z—k) _ i 2=k gk g(N)
ARAGY = o | Ak AR B (3) dx
(see (11.19) and (12.2)). It follows from Theorem 6.7 and (12.3) that for sufficiently
large N,

AFAGP = A(N)+ S)\Z RGN (n) d,
F
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where GECN)()\) is an integral operator with a kernel G,gN) (M) (=, y) satisfying the estimate
1GEY () (@, )| < comst (14 X))~ (|Al/d(A)N
(cf. Lemma 11.10). Therefore the kernel of i(2m)~1 Sr )\z*’“G,(CN)()\) dX is estimated by

const (1 + |Im z\)ﬁe”“mz‘ for all z in the strip s; < Rez < sy. This is easier to prove

than (12.11), since we do not need to deal with the norm of (A — AI)~! here. The kernel

of AE'IZ\;) is estimated as above (see (12.3) and (12.12)). =

12.5. COROLLARY. For any s1,s2 € R (51 < s2) and ¢ > 0 there exists C > 0 such that
1A (2, @)|| < Celvteltm=]

for all z in the vertical strip s; < Rez < 52 ezxcluding neighbourhoodsNOf the poles zq. If
v =0 and A is self-adjoint, there exist N € R and C > 0 such that N does not depend
on s1 and N

1Az (z, )|l < C(1 + Imz|)™
for z as above.

Let IT, ,(w) be the quantity which is obtained from IT(w) when we replace, in the
definition, the norm || - | L2(£) — La(E)] by || - |H;’d(5) — Hs’d(é’)H, seR,1<p<oo.
Then IT, ,(w) is finite due to (11.25). It is clear that Theorem 12.4 remains true with
II, ,(w) in place of IT(w). Acting as in its proof one can easily show that for any so < 0
and ¢ > 0 there exists a constant C' > 0 such that

(1213) [ A% gzaey_pzae)
<C(1+ ”AilHH;’d(g)_)H;vd(g))kev‘ImZ‘ min{I7, ,(|Im 2| 1), e =}

for all z in the strip —k < Rez < sg.
Suppose —1 < Rez < 0. Then we can shrink the circular part of I" to 0 and from
(12.1) we obtain

(12.14) A= (A )
0
Now the inverse Mellin transformation gives
apte b T e
(12.15) (A-AD" =2 ) S, ATz, —1<s<0,

for A € R_. The above estimate of the norm of A* allows one to extend (12.15) analytically
to all A € C\ C,.

13. The heat kernel of a semi-elliptic YDO

We will suppose in this section that the restrictions formulated at the beginning of the
last section are satisfied and 0 < v < 7/2. Then A generates the semigroup
i

13.1 AL
(13.1) e o

S eTNA-XD)THdN,  Jargt] < 7/2 — v,
r,
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where v < ¢ < 7/2 — |argt| and I}, is the curve beginning at infinity, passing to 0 along
the ray A = re®, r > 0, and back to infinity along A = re™*, r > 0. Let us substitute
(12.15) into (13.1), interchange the integrals and send ¢ to 0. This gives

1
(13.2) et = — S t*I'(—z)A% dz,

© 2mi
Re z=s

where I'(+) is the gamma-function (see [WW, 12.22]), —1 < s < 0 and ¢ > 0. Since the
operator-valued function under the integral sign is analytic for Rez < 0, the estimate
(12.13) allows one to show that (13.2) holds for any s < 0. The last equality extends
analytically in ¢ to |argt| < 7/2 — v.
One can easily prove by induction on [ that
Alet4 = 2i S Mem (A - M)7rd),  argt| < 7/2 —wv, VI € Z,.

™ ’
Fﬂ)

Therefore Ale~*4 is bounded on H;*d (&) for any s € R and p € (1, 00). This also follows
from (12.13) and (13.2). Theorems 10.7 and 10.10 imply that e~*4 is bounded from
H:4(E) to H;/’d(é’) for any s’ € R. Hence we deduce from Theorem 10.8 and Remark
10.9 that e~*4 is an integral operator with a C>-smooth kernel O(t,x,y).

13.1. THEOREM. O(t,xz,x) admits the following asymptotic expansion:

(13.3)  O(t,z,z) ~ Z Oy (x)tl=m/m Z éj (z)t/logt ast— 0,
€24 (N,d)UJ j=1
B ! largt| < w/2 — v,

where J ={q=n+jr:j € ZLy};

Oq(x) = =I'((n — q)/K)og(x) if ¢ € ZL(N,d)\ J;

~ (_1)j

0j(z) =0, Oy(z) = 7 Aj(z,z)
if q=n+jk, j € Zy and either q € Z,(N,d) or q € Z(N,d) but A,(z,x) does not
have a pole at z = j; and

é](x) = (jll)J 0q(2),
_ (_1)j . x) — M — x —Zz ﬂ
one) = S (e = 255)|_ (9 + 5 )|

ifq=n+jrk € Z,(N,d), j € N and A,(z,z) has a pole at z = j (see Theorem 12.1).
The above asymptotic expansion means that for any N € R, L € N and ¢ € (0,7/2 — v)
there exists a constant C > 0 such that

Haé (@(tv%m) - Z O (x)tla=m/m Z éj(l')tj log t) H <ctV
(g—n)/k<N j<N
foro<|t| <1, |argt| <7/2—v—¢c, I=1,...,L.
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Proof. Tt follows from (13.2) that

1 z
O(t,z,x) = 5 S t*I'(—2)A.(x,2)dz, s<-n/k.
Re z=s
Since
|['(—2)| < constre.(1 4 [Im z|)"Rezle=mlm=l/2 " Re» e R\ Z,

with a constant independent of Im z (see [Ar, Lemma 4.1]), Corollary 12.5 implies that
we can shift the path of integration letting s — oo and “jumping” over the poles. Using

the residue theorem we can obtain the above asymptotic expansion in the standard way
(see [DG], [Agr2]). m

13.2. REMARK. If A is a differential operator, then A, (z,x) does not have a pole at
z = j € N (see Theorem 12.1(iv)) and we do not have the second sum on the right hand
side of (13.3).

14. The asymptotics of the resolvent kernel
of a semi-elliptic DO

Let Zq’ q € Z4+(N,d), be the solution of the system which is obtained from (11.7), (11.8)
if we replace a;, I € Z, (N, d), by their d-homogeneous extensions a;:
al(xan) :51(33777), ‘77|d > 17
al(x,Tl/dlnl, ceey Tl/d"’ﬂn) =" A (z,m), n#0, 7>0.
Then
by(Ns@,m) = by(N;z,m),  Inla > 1,
by (TN x, Tl/dlm, e Tl/d"nn) =7 "N z,m), n#0, T>0.
If A is a differential operator, then a; = a;, /I;q = Eq.
14.1. THEOREM. Let (6.2) be satisfied, M be compact and £ be Hermitian. Suppose
A € HURA(E,E) is semi-elliptic and self-adjoint (see Corollary 11.15) and % > n. Then
the resolvent (A—XI)~1, X € C\Spec(A), is an integral operator with a kernel R(X;z,y)
which admits for any 6 € (0,£/(2K)) the following on-diagonal asymptotic expansion:
(14.1) RNz, z) ~ Z R;t(:v)(ﬂ)\)(n—q)/n—l +O(N2OD) a5 A — oo,
q€Z4 (N ,d)
g<n+r(1-20) AeC\ X(R,0), £ImA > 0,
where X(R,0) := {p € C: |Im p| < const |u|* =%},

S Bq(:lzi; x, 1) dn.
RTL

(14.2) RE(x) =

(2m)"
If A is a differential operator, then
(14.3) R\ z,z) ~ Z Rflt(x)($i)\)("_q)/“_l as |A\| — oo,

q€Z+ (N ,d)
AEC\ Z(R,6), +ImA >0,
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where Rf are defined by (14.2). The above asymptotic expansions are uniform in
rz e M.

Proof. Since
dist(), Spec(A)) > [Im A| > const [\'7¢, X e C\ Z(R, ),
Corollary 11.15 and Theorem 11.18 reduce the proof to the study of the integrals

1 -~
I, (A ) = W RSn be(A;2,m) dn
(see (11.10), (11.11) and note that X, (A,n) = 1 if |A| > 1).

Let us start with the case when A is a differential operator. Suppose A is purely imagi-
nary. Then [A| = Fi) if £Im A > 0. Using the change of variables 7 = (A7 rdigy o
|\ 7Y/ (rdn)p ) and taking into account the equality b, = b, we obtain

. n—q)/K— 1 T .
L\ ) = (i) 9/ IWRS” by(Ei; 2, 1) dn.
The above equality extends analytically to all A such that £Im A > 0. This completes
the proof for differential operators.

Let us consider the general case. It follows from Lemma 11.5 that if ¢ < n 4 k then

the integral

IAq(/\;J:) =

| By(Xsz,m) dn

o ),

exists. We obtain as above

T,(hi2) = (Fix) - o/s?

R S by(di;2,m)dy, +ImA>0.
R’VL
Further,
1

@r)"

L(xw) = I,(\o) = | Bz m) = By(Nsz,m)) dn.
[nla<1
We have

bo(X @, m) = bo(X; @, m) = (@o(w,m) = M)~ (do(, n) — o, ) @o(w, n) — AI) ™"

= O(]A™?),

by s, m) =By Nin) = (L+ Inl§ ON™), >0, fola < 1,

as |A| — oo (see Lemma 11.5). Hence
L% ) = Iy x) = O(A ),
ie.
I,(\z) = R;t(a:)(q:i)\)("_q)/”_l +O0(M\™?), q<n+k.
Suppose now ¢ > n + «. Using Lemma 11.5 again we obtain
I+ | svaemdan=00A 2+ | Ban)dy

[nla<1l  [nla>1 Inla>1

I,(\z) = @)
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1 ~
= -2 (n—q)/k—1__~ . ' ’
O(IN=) + A i S RN R ALY
A=t/ <In'la<1l [n'la>1
1 N
= O(IAI7%) + O(A| "=/ 1) 4 \)\|("7q)/”71W | by (A/IA;,m) dn
A=/ % <nla<1
= O(I\2) + |)\‘(n—q)/n—10( S |59 d77)-
A=/ <nla<1
Now,
1
S Inlg " %dn = S 7579dVol{n e R"™ : |n|a < 7}
[A[=1/m<nla<l [A[=1/x
1
=nVol{n € R" : |n|q < 1} S rrRatn=lgr
M‘—l/n
[ const log |\l qg=n-+k,
L const (A=A 1) g >0+ k.
Therefore

O(|M2log|A), q=n+k,
I,(\z) =
a(X;2) {O()\|2), g>n+k. m
14.2. THEOREM. Let the conditions of Theorem 14.1 be satisfied and the principal presym-
bol ag of A be positive. Then
(144)  Rzz)~ Y R(@)(=N)" L O(APOTY)  as A — oo,
q€Z+(N1d)
aenbei=20) A€C\ Z(Ry,0),
where Y(R,0) :={ € C:Rep >0, [Impu| < const |u[' =},
1

(14.5) Ri(@) = G | by (—152,7) dn.
Rn

If A is a differential operator, then

(14.6) R\ z,x) ~ Z Ry(x)(=N)=D/5=1 g5 |A| = 00, A€ C\ Z(Ry,H),
qEZ+(N,d)

where Ry are defined by (14.5). The above asymptotic expansions are uniform in x € M.

Proof. Our statement follows from Theorem 14.1. We only need to observe that now
negative values of A are allowed and we can use the formula

1 1 ¢~
(2m)" ——— \ by(=1s2,0)dn’, A€ [0,00). =

§ Bu i) d = (-0
Rn

RTL
14.3. THEOREM. Let the conditions formulated at the beginning of Section 12 be satisfied
and t > n. Then the resolvent (A — XI)~1, X € C\ Spec(A), is an integral operator
with a kernel R(\;xz,y) which admits for any w € (0,7 — v] the following on-diagonal
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asymptotic expansion:
(oo}
(14.7)  R\z,a) ~ Ro()(—A) "=/ L N "R, I og (=),
q€Z4 (N, d)UJ j=1
as |A| — oo, v4+w < targh <,

where J ={q=n+jr:j € ZLy};

-1
(14.8) ﬁq(x):ﬂ(sinﬂ'q;n) 0q4(x) ifqeZy(N,d)\J
(14.9) Rj(@) =0,  Rqlw) = (=1)4;(x,2)
if q=n+jK, j € Zy and either q € Z4(N,d) or ¢ € Z+(N,d) but A,(z,z) does not

have a pole at z = j; and

. _ _ _ o

Rj(x) = (=1) 1 o4(x),  Ry(z) = (-1) (Azu,x) - —Z{D
if g=n+jk €Z(N,d), j €N and A.(x,x) has a pole at z = j (see Theorem 12.1).
The above asymptotic expansion is uniform in x € M.

z=j

Proof. Tt follows from (12.15) that

. B i C*A)izil

R\ z,z) = 3 S WAZ(QC,Z) dz, —1<s<—-n/k.
Rez=s

Since

lsin7z| ! < conste ™™ |Imz| > 1,

with a constant independent of z, Corollary 12.5 implies that we can shift the path of
integration letting s — co and “jumping” over the poles. Using the residue theorem we
can obtain the above asymptotic expansion in the standard way (see [Agrl], [Agr2]). m

14.4. REMARK. If A is a differential operator, A, (z,z) does not have a pole at z = j € N
(see Theorem 12.1(iv)) and we do not have the second sum on the right hand side of
(14.7).

14.5. REMARK. Suppose A satisfies the conditions of Theorem 14.2 and is positive defi-
nite. Then it also satisfies the conditions of Theorem 14.3 with v = 0, and (14.4), (14.6),
(14.7) imply

(14.10) Ry(z) = Ry(x)

if g < n+ K or A is a differential operator. Let us give a direct proof of this equality. We
start with the case ¢ € Z4 (N, d) \ J. If ¢ < n + &, similarly to (12.14) we obtain

~(z sinmzg [ T
Q) (w,m) = =2 [ t9by(~t;z,m)dt,  |nla > 1, 2 = (g —n)/k.
0

It follows from Remark 11.6 that this formula remains true if ¢ > n+ xk and A is a

(2q)

differential operator. Taking into account that aq *’ is almost d-homogeneous of degree —n
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and using Lemma 12.2, from (14.8) and Theorem 12 1 we obtain

~ ™
(@) (2m) "k sin 2y | S L, (= 77 ek d
’r] =

s

= T o —15(2) d
(2m)"k sin T2 S ‘77|d Qg (x,n) n
[mla>1

~ @2ns Vo J el by (—t;2,m) dt dy
[7la>1 0
= OSO | o et | Ty (<L) o
(2m)"k 7|3 0 (—1;2,1) dn
0 |n/|a>t—1/#=
- (27-‘-1)11’% S |77‘,;_11bq(*].,l‘,’l7) S t*lfl/n dth}
1 ® t2|nlg "

= (@r)s S |77\;1bq(—1;x,77)/<;|77|dd77:Rq(x)'
R™

Suppose now ¢ = n+ jk, j € Zy, q € Z(N,d). Then due to our restrictions either A is
a differential operator or j = 0. In both cases A (x x) does not have a pole at z = j and

Ro(@) = (-1 Ay(a2) = o S dtutas | Ohy(~tizn)di
Inj=1 k=1 0

(see Theorem 12.1(iii) and (iv)). Acting as above we obtain (14.10).

Let A be the operator from Theorem 14.3. It follows from (14.5), (14.8), (14.10) and
Theorem 12.1(ii) that

(14.11) Ro(z) = ﬁ S (@o(z,m) + 1)~ dn
Br

-1
™ 1
i - -n/k
= w(sm - > (27r)”,‘-@‘ S (ao(z,n)) de nid
’r] =
Suppose in addition that A is self-adjoint. Then ap(z,n) is positive self-adjoint (see the
proof of Corollary 11.15) and
(@o(z,m) + 1)~ = [ (r+ 1) dB-(z,m),
0
where E.(x,n) is the orthogonal projection onto the subspace spanned by the eigenvectors
of ag(z,n) corresponding to eigenvalues less than or equal to 7. Therefore

1

oo

Ro(@) = G S §<T+ 1)~ dE, (x,1) dn
I -1
= @ §(7+ 1) d<RSn E.(z,n) dn)
1 T —1 n/k
G (S)(T + 1)~ tarm/ RS" Ey(z,n) dn.



Semi-elliptic operators generated by vector fields 81

Since

OSOO(T+ D=L/ 5 dr = B(%, 1 %) _ F(’I’L/H)Z]:((l]_>_ n/k) _ w(sinﬂ>1

(see, e.g., [WW, §812.14, 12.4 and 12.41]), we obtain

(14.12) Ro(z) = ﬂ(sin @>_ (2%)” S Ey(x,m) dn.

In the scalar case this equality takes the form

-1
™ ™ 1
14.1 = — | sin — .
(14.13) Ry(x) - (sm ﬁ) G S dn
ao(z,n)<1

If 55(x 1), On,ao(z,n) and Vijz ao(z,n) commute with ag(x,n), then 0y, dao(x,n)
and V m)ao(:c 1) commute (see Lemma 14.6 below) and using (12.5) and integration
by parts we deduce from (14.5) that

1 - N _
(14.14) Re() =~ \ Geun (2, m) @0z, m) + 1) "2 dn,
]Rn
where )
(14.15) Ao (2,1) 1= e (2,7) = o > 0, Va0, m).

d;lzs

Note that asup(x,n) and ag(z,n) commute (see Lemma 14.6 below). Suppose in addition
that A is self-adjoint. Then

o

asun(2,) | (7 + 1) "2dE, (z,m) dy
0

(r+1)72d( | Goun (@, ) Ex (w,m) dn)
o

=]
m
8
~—
I
\
Hee—

(r+1)72 drit(n—e)/x S Usub(z, ) E1(z, 1) dn.
]Rn

Ct—Q o= Q

Since
I'((n—e)/k+ 1)F(1 (n—¢)/k)
2

(2)
_n—¢n (n—6>F<1 n—s)
K K
n—¢ ( 6)
= sin 7~
K
(see [WW, §812.12, 12.14, 12.4 and 12.41]), we have
-1
m(n—¢)(k+n—¢ . n—¢ 1 ~
(1416) Rs(l’) — ( )E{Z ) (51117'( - > (27‘_)” ]RS" asub(m,n)E1($, 7]) d'l]

S (t+ 1)727("75)/’%7 =
0
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In the scalar case this equality takes the form

-1
n—e)k+n—c¢ . n—e¢ 1 ~

(417 Refe) = -TESAEE D a2 ) [ e
ao(z,m)<1

14.6. LEMMA. Let dyi,ds : R — R be derivations of a ring R, i.e.
di(x+y) =djz+d;y, dj(zy) = (djx)y+zdjy, Vrz,yeR, j=1,2.

Suppose dq and dy commute, i.e. [di,d2) = 0. If a € R is such that [d;a,a]l =0, j =1, 2,
then

[dia,dea]l =0, [did2a,a] = 0.
Proof. Since [d;a,a] = 0, we have
[d1,do]a® =0 = 2di((d2a)a) — 2da((dra)a) = 0
= (didsa)a + (dza)dia — (dadia)a — (dia)dea =0
= ([d1,dz2]a)a — [d1a,d2a] =0 = [dia,da] = 0.
Using the last equality we obtain
di[d2a,a) =0 = [did2a,a] + [d2a,dia] =0 = [didza,a] =0. =
14.7. REMARK. Let A € HU"™4(E, F) and let G gup = dsup be defined by (14.15) with

Vl,fk’g instead of fo. Suppose A’ € HW”l’d(J, £) is a ¥ DO with a presymbol @' (x,n) ~
> iz, (v,a) @ (2,m) (see Definition 11.4). Using Corollary 6.10 and the equality

vy (@otn) = (V7,5 a0)ay + ao(V,” ap)

l/k,
(see (2.31)) we obtain by a straightforward calculation
(1418) a\—AA’,sub = a\—A,subaé) + z74\0814’,sub
1 .. 1 . .
+ 2—2.{(10,(16 Ty Z Czi,m(x)nsank aoanmaf),
di ' dm! —ds T =e

where
~ o~ —~ ~, E o~ —~,
{ao, pte = Y (Onedolz, )V ay — V5 o, 1)0y,dp)

d,:lza
is an analogue of the Poisson bracket.
Suppose now A satisfies the conditions formulated at the beginning of Section 12 and
ae(x,m), On.ao(z,n) and Vf;‘im)ﬁo(x,n) commute with ag(x,n). Then using (12.4) and
(12.6) we obtain by a routine calculation

(14.19) 0 A= sub = Z/O'\A7sub(ao)z_1 = Zasub(a())'z_l, z e C.

14.8. REMARK. Let A be the operator from Theorem 14.2. Tt follows from (14.8), (14.10),
(14.12) and (14.13) that
1

n
14.2 = —— E d
(14.20) 00(z) - @) RSn 1(z,n)dn

and in the scalar case
(14.21) ()= -1 [ a
. QO K (271' n 77
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If ac(z,m), Oy, ao(x,n) and VV’ @) ao(a:7 1) commute with ag(x,n), then (14.16) and (14.17)
imply

(14.22) 0-(z) = (n— E)(”;r n-e 1 | Geun (2, m) B (2, m) iy
i

K (2m)"

and in the scalar case

(n—e)k+n—¢e) 1 .
(14.23) 0:(z) = = R | Gaw (@) dn.
ao(z,m)<1
Let us show that (14.20)—(14.23) remain true if 0 < k < n. Let r € N be such that rx > n.
We will use the superscript “(r)” to denote objects corresponding to the operator A". The
equality A% = (A")*/" implies g,(x) = rg,(f) (x). It follows from (12.4) that Eg)(x,n) =
E,(x,n). Using the analogue of (14.20) for A" we obtain
() n 1 n 1

oo(z) =rgy ' (7) = Tk ) RSH B (x,m) dy = E TR RS Ey(x,n)dn,

ie. (14.20), (14.21) hold. Let us prove (14.22), (14.23). Note that under our condi-
tions @l (z,7), 8%68 )(z,n) and A e )N(T)(a: 1) commute with @\’ (z,n) (see (12.4)
and (12.6)). The analogues of (14.8), (14 10), (14.14) for A™ and (12.4), (14.19) imply

-1 —1
. n—e . n—e¢ r T
7r<smﬂ' - ) Qa(x):ﬂ<s1n7r - > TQé)(x)Z—TRg)(x)
r (r
~ (@2n)r | alo (@ m)@g” (@, m) + D2 dy
RTL

—

= Gy | B ) o, )" (@l )+ 1) dy
2 ) oo
= S Asun (,1) S "+ 1) "2 dE (z,m) dn
R™ 0
2 o0
= W S N+ 1) 72 d( S Asub (z,m) E-(x,m) dn)
0 R»

= = | ) a0 | G (2, ) By () dn.
0 R"
Since

S Tr—l(Tr + 1)—2 drit=a)/s _ S =1/ t—|— 1) 2 t(A+n=e)/r)/r
0 0

1

r

(1 + = 5> S tm==)/ R (¢ 1) 72 i
K

0

1( n—a)n—s ( n—6>_1
-1+ | sinm
r K rK rK

(see the proof of (14.16)), we arrive at (14.22), (14.23).




84 E. Shargorodsky

15. Spectral asymptotics

We will suppose in this section that (6.2) is satisfied, M is compact, £ is Hermitian
and A € HU™Y(E,£), k > 0, is semi-elliptic and self-adjoint (see Corollary 11.15). The
spectrum Spec(A) of A on Ly(€) consists of isolated eigenvalues with finite multiplicities
(see the paragraph preceding Theorem 11.13). The inner product on Ls(€) is given by
the formula
(v, w)anm = | Glu(@), w(x)) dM(z),
M

where G is the Hermitian metric on £ and the measure M is defined by (4.2). Let E4
be the spectral measure corresponding to A and let A C R be such that A N Spec(A) is
finite. We will denote by e“(A; z,y) the kernel of the spectral projection E4(A), i.e.

(151) €A(A;l‘,y) = Z G(,Uk(y))uk(ﬂf), UANTIS Ma
AREA
where {uy }rez is a complete orthonormal system of the eigenvectors of A corresponding

to the eigenvalues A\;. We number the eigenvalues )\, in nondecreasing order taking into
account their multiplicities. We will also consider the following functions:

(15.2) NA(A) := dim E4(A =Y 1=TrEA(4).
ALEA
We denote by “Tr” (resp. by “tr”) traces of operators acting on Lo(E) (resp. on fibres
of £). Let €1, ..., €y, be an orthonormal basis of £,. Then
tred (A;z, x) ZG (A x,x)€5,€5) Z ZGej,uk )G (uk(x), €5)
j=1 Ag€A
= Z:\G(”Ltk(ﬂﬂ),fj)l2 = Y Gluk(),ux(2)).
AR€A j=1 AreA

Since {uy }rez is an orthonormal system, we obtain

(15.3) NA(A) = | tre(A; 2, 2) dM(z).
M
We will use the notation

(15.4) eﬁ()\;x,y) = eM£(0,\); 2, y), Nﬁ(x\) = NA(£(0,))), A>0.

Suppose the principal presymbol ay of A is positive. Then A may have only a finite
number of negative eigenvalues (see Theorem 11.13) and we can consider the spectral
function of A

(15.5) e (N a,y) = e (=00, A); 2, y)
and the distribution function of eigenvalues
(15.6) NAN) == N4((—o0, \)).

If kK > n, then the equality

(A=AD~ = (p— Nt dBA ()
R
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and Mercer’s theorem (see, e.g., [Smi, Theorem 7.7.2]) imply

(15.7) RO z,2) = | (=N de (s 2, @),
R
(15.8) [ tr RO 2, 2) dM (@) = | (= 2) 7 dN4(p)
M R

for sufficiently large negative A € R. By analyticity the above equalities hold for any
A € C\ Spec(A).
Let h be a (vector-valued) function defined on [0, 00). Its Riesz means are given by

the formula N

!

(159) h(l)()‘) = S (1 — l;) dh(,u), leN, e [0,00)
0

We will consider the Riesz means ei(l)()\;x,m), e(})()\;x,x), Nf,(l)()\) and N(‘?)()\). Our

argument will rely upon the following result.

15.1. LEMMA ([Sad], see also [Agrl] and [Agr2, §6.1c]). Let h be a piecewise constant
nondecreasing function on [0,00) and let

(oo}

S©) =\ (u= dh(w), ¢ ¢[0,00).
0
Suppose ¢ = X+ ip, A > 0, p > 0 and I'(¢) is a rectifiable curve which starts at C,
terminates at ¢ and has no common points with [0,00). Then

2\ !
'hm(A)i. S S(z)(l;) dz gi“A—Tw(o\, leN.

274 ml

)
If 1 =0, then the above inequality holds for h(gy = h with the coefficient (w=2 +272)1/2
instead of (wl)~1.

This lemma is a generalization of the Pleijel-Malliavin Tauberian theorem, which
deals with the case I = 0 (see [Ple]). It admits the following obvious generalization.

15.2. LEMMA. Let 'H be a complex Hilbert space and h be a piecewise constant function
on [0,00) taking values in the set of bounded self-adjoint operators on H. Suppose h is
nondecreasing, i.e.
(h(w)e,e) < (BNee), Ve €H, ifp <A
Then .
1 2 2 ulJrl
hay(N) — — S 1—=)dz|| < =—|S leN,
ro- 55 § s@(1-3) as) < 250 1s
(<)

where S(¢) and I'(¢) are defined as in Lemma 15.1. If 1 = 0, then the above inequality
holds for hy) = h with the coefficient 2(r=2 +272)1/2 instead of 2(rl)~ .
Proof. Tt is sufficient to apply Lemma 15.1 to the scalar-valued functions (he,¢€), € € H,
and use the inequality

B < 2\|Sh1p [(Be, €],
€l|l=1
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where B is an arbitrary bounded linear operator on H. To prove the last inequality we
represent B in the form B = By+iB;, where By = 27}(B+B*) and By = (2i)~!(B— B*)
are self-adjoint. Then

IBIl < 1Boll + [[B1l = sup [(Boe,€)| + sup [(Bie; e)|

llell=1 llell=1

<2 sup |(Boe,€) +i(Bie,€)] =2 sup |(Be,e)|.
llell=1 llell=1

(The example H = C2, B = (8 é) shows that the constant 2 is optimal in the above

inequality.) m
15.3. THEOREM. Let the principal presymbol ag of A be positive. Then
(15.10) e\ x, ) = so(2)ANVE +o(APTT/FY Vr < /2, as A — oo,

uniformly in x € M and

(15.11) NAN) = soAV" + o(A=/R%) Yr < /2, as A — oo,
where
1 1 _
(1512)  so(2) = —— | Es(wm)dn,  so=—— | N(iao(w,n)dndM(z)
(2m) i (2m) M aEn

and N(1;a0(x,n)) = tr E1(xz,n) is the number of eigenvalues of ag(x,n) which are less
than or equal to 1. In the scalar case

1 1
(15.13) so(z) = Ok | dn so= | dndma).
o (z,m)<1 o (z,n)<1

Proof. Let us consider the operator

A, = A — Z )\k(~,uk)G7Muk.

AL <0
Since uy € C*(€) (see Theorem 10.10), A’ € H¥™4(E, ) has the same presymbol as A,
is nonnegative and
e (Nay) =et(Nz,y), VA0

Therefore we can suppose without loss of generality that A is nonnegative.
Let us start with the case £ > n. From (15.7) we have
o0
(15.14) RO z,3) = | (= N7 de (s 2, ).
0
On the other hand

R(¢;z,2) = Ro(z) (=)™ 1+ 0(|¢|"=9/"71) as (| — o0, ¢ € C\ Z(Ry,0),

for arbitrary 0 := 7/k € (0,e/(2k)), due to Theorem 14.2. Now Lemma 15.2 implies

GA()\;:L',QZ) = QLM S Ro(x)(fz)n/ﬁfl dz+0()\(n77)/r¢)’ =\ +Z'>\177—/N,
IN(9)
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uniformly in x € M. Here I'({) is the arc of the circle centered at 0. Consequently,

Ary. _ 1 n/k—1 (n—7)/k
e <A,x,x>—Ro<x>%F§(O<—z> dz + O(\ ),

where I5(¢) consists of I'(¢) and the vertical interval [¢,(] and is oriented clockwise.
Since

1 n/k— ]"%nm —imn/K /K K yn/k . TN
o S (—z)/ 1dz:—%5)\/(e g— /):%)\/ sin —,
I'o(¢)
we obtain

(N z) = % sin % Ro(z)A"" + ON=7/%) = so(z)A™" + O(A=7)/F)

(see (14.12)). This completes the proof in the case k > n.
Suppose now 0 < Kk < n. Let r € N be such that r« > n. We have

" 1 —7)/(rK
eA()\;l',CC) — 4 ()\T;x,x) — ()\r)n/(rﬁ) (271.)n S El(xan) dn + 0(()\7‘)(71 )/( ))
]Rn

_ so(x))\”/“ _i_O()\(n—‘r)/m)

(cf. Remark 14.8). m

15.4. THEOREM. Let the principal presymbol ag of A be positive, k > n and | € N. Then

(15.15) eqy(Nza) = Y sP(@)ATDE (AT HITR),
q€Z+(N,d)
q<(i+1)e/2

(15.16) N(‘?) (\) = Z S((Jl))\("—fI)/K + O()\(n—(l-&-l)‘r)/ﬁ) as A — 0o,
qu-F(N’d)
g<(l+1)e/2

for every T <e/2 if l <2(n+k)/e —3, and

(]_5]_7) e‘(})()\, x, x) = Z s((Jl) (x))\(nflI)/fi + O(}\Q(’I’LJrli)/(li(l"r?)))fl)’

qu+(N1d)

q<(n+r)(1-2/(1+3))

(15.18) N(‘?)(/\) = Z s((]l))\(”7Q)/” + O HR)/ (=31 g5 X — 00
qu+(N)d)

g<(n+r)(1—2/(1+3))
if 1>2(n+k)/e—3. Here

sV(x) = ~B(L+1,(n — q)/r)0y(2),

(15.19) s ==B(I+1,(n —q)/r) | trog(x) dM(x), g #n,
M
and
(15.20) sO(z) = Ag(z,z), sV = S tr Ag(z, z) dM(z),
M
and
_I'(p)r(r)
Blp.r) = I'(p+r

s the beta-function.
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Suppose A is a nonnegative differential operator. Then (15.15) and (15.16) hold for
all I € N, where S((Zl)(x), sél), qEZ+N,d)\{n+jr:j€Zy} are given by (15.19) and

sy)(z) = 7.(,_17)”-!,141'(307%)7
JU =)
sy = ],7!(1 — ) Ag/ltr j(x, ) (), qg=n+jk.

The above asymptotic expansions are uniform in x € M.

Proof. We can assume without loss of generality that A is nonnegative (see the proof of
Theorem 15.3). Using Theorem 14.2, Lemma 15.2 and (15.14) we obtain

l
1 z
A . _ = _\(n—q)/k—1 _z
eny(Nz,x) = g Rq(x)2m, S (—z)\n74 (1 A) dz
qELy (N ,d) )
g<n+Kk—21

+ O()\zT/Iifl) + O()\(nf(lJrl)T)/n)

- ¥ Rq(x)%ﬂ_i | (—z)("_Q)/”_1<l—§)ldz

qEZ (N ,d) Io(¢)
g<n+Kk—21

+ O(Amax{%'/nf1,(n7(l+1)7)/n})7 <— =M+ Z-)\lf'r/n’

uniformly in z € M. Here I'({) and I5({) are the same as in the proof of Theorem 15.3.
Since the integrands are analytic in C \ [0, 00), we have

1 % 1 2\!

el _N\—a)/s=1(1 _ 2 - _N\—a)/s=1(1 _ 2

2mi S (=2) (1 )\> dz 2mi S (=2) <1 )\) dz
To(¢) |z|=X

_ )\(n—Q)/H% S Z(n—q)/r-i—l(l_’_Z)ldz7
™
|z]=1

where the circles |z| = A and |z| = 1 are oriented anticlockwise.
Let us evaluate the integral
1
13,0):=5— | 21 +2)ds, BeR €L
27
|z|=1
If B8 & 7Z, successive integration by parts gives

16,0 = L1 +1,0-1)=... L

Y
5 TSRS ISR
nrg) 1 . ri+nyre) ..
= (—1)lm% | lSZI AP gy = (—1>lmﬂ' sin(8+1)

=B(l+1,8)n ' sinnp.
Suppose (§ € Z. Then the integrand is analytic in C\ {0} and the residue theorem implies

o o
I(ﬁ,l)z{jg(g_j); it f=—j4, 0<j <,

0 otherwise.
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Putting together the above equalities we obtain

66)()\, z, .73) — Z S((]l)(x))\(n—q)/n + O()\max{QT/n—1,(n—(l+1)‘r)/n})
q€Z+(N7d)
qg<n+rk—21
(see Theorem 12.1(iii), (14.8)—(14.10) and (15.19), (15.20)). If I < 2(n + x)/c — 3 then

n—({0+1)T _ ¢ 27

€
I+1) < _e, SE 15T 1, vr<e),
(+)2_n+n 5 - - T <e/

K
and the above equality is equivalent to (15.15).

Suppose I > 2(n+k)/e —3. Then (n+k)/(14+3) <e/2. H0< 7 < (n+k)/(1+3),
then (n— (I +1)7)/k > 2(n+k)/(k(I+3)) = 1. If (n+k)/(1+3) < 7 < /2, then
21/k — 1> 2(n+ k)/(k(l + 3)) — 1. Therefore

2 — 1
max{T—l,n U+ )T}22n+ﬁ -1 VT<§,
K K

K (1+3 2
and equality is achieved for 7 = (n + k) /(I + 3) < &/2. This implies (15.17). We also have
2 n+k €
- 1- = PP
n+kK 5<(n+/€)< l+3><n+/§, S0<3) <=

If A is a nonnegative differential operator, then using (14.6) instead of (14.4) we
deduce that (15.15) and (15.16) hold for all I € N. Note that if ¢ =n + jx, j € Z, then
g < (I+1)e/2 implies j < I, and the coefficients in (15.21) are well defined. =

15.5. COROLLARY. Let the principal presymbol ag of A be positive and k > n. Then for
any l =2,3,... we have

(15.22) el (N, a) = 5§ ()X 4 5O (2)AP=I/7 oA/
uniformly in x € M and
(15.23) N(‘?)(/\) — Sél))\n/rc + Sgl)A(n—s)/n n O()\(n_s)/n) 45 A o0,
where Bl o
W, nB(l+1,n/k
s’ (@) = W}é Ey(x,m) dn,
(15.24)
@ _ nB(l+1,n/k) .
%0 ﬁ@ﬁy/MQRHNKLao@zn»dndwax>

and sg)(:c), s are given by (15.19). In particular, if a-(xz,n), Op.ao(z,n) and

ijx)ﬁo(x, n) commute with ag(x,n), then
B Nri(n—e)/k+2) ~
s‘gl)(x) - = F((n — E)/Ii i+ 1)(27’(’)” RS” aSHb(xan)El(zan) dna
(15.25)
s = - AR ZEMED) G ) Er(am) dy dM (@),

I'((n—e)/k+14+1)2m)"

and in the scalar case

M xR"™

O(p) — Nr(n—e)/k+2) o (e
D)= T ey (D ( S)q s (5 77)
(15.26) WP ((n— ) /m 4 2) R
MO ORI ST | Gawn(@,n) dndM(z).

ao (z,m)<1
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Proof. See Theorem 15.4 and (14.20)—(14.23). =

15.6. REMARK. Let k > n. Suppose e?(\; z, 2) admits a two-term asymptotic expansion
ANz, x) = s(@) N5 4 s, (2)ANTPE L fA)API/R
fA)=f(x)=0(1) asA— o0, 0<p<n.
Integrating by parts we obtain

2 A -1
0 0
A -1
= — A0, x) + Iso(@)A [/ (1_ g) du
0
2 -1 A -1
+lsp(x))\—1gu(n—p)/ﬁ (1_§> d/i"‘l)\_lSf(/i),u(n_p)/ﬁe_%) d/i
0 0
1
- _ eA(O; l‘,.’t) + ZSO(x))\n/nStn/n(l _ t)l_l dt
0
1
+ s A= p)/”St(” p)/n t)l—l dt
0
1/VX 1
+ lA<”*P>/“( |+ )f(At)ﬂ”*P)/“(l —t)"at
0 1/VX

= —e0;z,2) + 1B (l, 4 1) so(@) A"
K
nTp (n=p)/r 4 \(n=p)/x
+IB(l,—=+1)sp(x)A +A o(l) asA— o0
K

(see [WW], 12.4). If | > 2, s¢ ( ) # 0 and s,(x) # 0, then Corollary 15.5 implies p = ¢
and
K

(15.27) se(z) = I 6@5(1')'

In particular, if @.(x,n), O, ao(z,n) and Vf]’jz)ﬁo(az,n) commute with ag(x,n), then

K+n-—¢ ~
(15.28) s:(2) = = | @sun (2, m) B () d,
R’n
and in the scalar case
K+n—e¢ ~
(15.29) se(x) = —W S dsub (7, m) dn

ao (x,m)<1

(cf. (14.22), (14.23)). Hence, one may hope that under certain conditions e?(\;z,z)
admits the following two-term asymptotic expansion:

(15.30) ANz, x) = so(@) A" 4 s ()N TR L o(ATE/RY A X — oo,
where so(x) and sc(z) are given by (15.12), (15.13) and (15.27)—(15.29) respectively. We
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“derived” (15.30) under the assumption that x > n. The arguments from Remark 14.8
and the proof of Theorem 15.3 reduce the case 0 < k < n to k > n. Note also that one
can arrive at the conjecture (15.30) using Theorem 13.1 instead of Corollary 15.5.

15.7. REMARK. The coefficient s.(z) may be nonzero even if A is a differential operator,
which does not happen in the standard elliptic case (see [DG]). Indeed, let M be a two-
dimensional torus with the canonical coordinates (o1, p2) € [0,27]2, dy = 5/6, da = 5/4,
A =08} -85, + 09202, Then v = 24/5, ¢ = 4/5, ao(z,n) = ni + 15, ac(z,n) =
Gsub(7,m) = 1?13 and s.(z) is a strictly negative constant (see (15.29)).

Let us drop the condition that the principal presymbol ag of A is positive. Then we
have the following result.

15.8. THEOREM. We have
(15.31) ed(Nx,z) = sT(2)AVF 4 o(AXTT/R) as A — oo, VT < /2,

uniformly in x € M and

(15.32) NA) = sTXVE 4 o(ANT/R) s X — 00, V7 < g/2,
where
1 1 ~
(15.33) st(z) = — S Ef(z,n)dn, st= — S Ni(1;a0(z,n)) dndM(z),
(2m) 5 (2m) [P
n X n

Ef (z,m) (resp. E; (x,n)) is the orthogonal projection onto the subspace spanned by the
eigenvectors of ag(x,n) corresponding to positive (resp. negative) eigenvalues which are
less than or equal to 1 (resp. greater than or equal to —1), Ny (1;do(x,n)) = tr B} (z,n)
(resp. N_(1;a0(z,n)) = tr Ey (x,n)) is the number of eigenvalues of ao(x,n) which are
less than or equal to 1 (resp. greater than or equal to —1).

Proof. Since ag(z,n) is supposed to be invertible for all n € R™ (see Section 11), there
exists 6 > 0 such that ag(z,n) — A, |A] < 4, is invertible for all n € R™. We can also
assume that § < |Ag|, VAx € Spec(A)\{0}. Let us fix an arbitrary ¢ € (0, 7) and consider
the contours Fd(jr) =1y, wa) = —Fgr), where I, is the same as in the proof of Theorem
12.4. Tt follows from Theorem 6.7 and the formula
E4 = EA(%(0,00)) = A% | Ata-an-ta

r{®
that B4 € HY®4(&,&) and if |n|q > 1, the principal presymbol of E4 (of E4) equals the
orthogonal projection E4(x,n) (resp. E_(x,n)) onto the subspace spanned by the eigen-
vectors of ag(x,n) corresponding to positive (resp. negative) eigenvalues. Using Theorem
6.7 again we deduce that

At) == (BL —tEHA, >0,
is a self-adjoint semi-elliptic 1’DO from H¥*4(€, £) with the positive principal presymbol

ag(t;z,n) = (Ey(z,m) — tE_(z,m))ao(x, n).
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Theorem 15.3 implies

1
AW\ 2, z) = )\"/“—2 — S Ey(t;z,m) dn + o(A"~7/")
Earn]
1
= \"/" Ef (,m) dn
)
n/k 1 - Kay K n—r)/Kk
+ A/ @) S E; (x,tl/( DWpy, .t d")nn) dn—l—o()\( )/ )
R"L

= s (2)A" + 55 () A D)™" + o ANTT/R)as A — 00, VT < g/2,
uniformly in @ € M, where Ey(¢;x,m) is the orthogonal projection onto the subspace
spanned by the eigenvectors of ag(¢; x,n) corresponding to eigenvalues less than or equal
to 1. On the other hand it is clear that

ANz, z) = et(Nm, ) + e\t x, ) + e ({0} 2,2), A > 0.
Hence for any ¢t > 0 we have
(et (N, @) — 5§ (2)N") + (A (Nt 2, x) — s (2) (A7) = o(AT)/")
as A — 00, V7 <¢/2.
It follows from this equality and the similar one with ¢ = 1 that
(A (i) — st (@A7) — (e (X, ) — si () (X)) = o(A"=7)/)
as A — oo, Vt >0, V7 < /2,
uniformly in z € M, and our statement follows from Lemma 15.9 (see below). m
15.9. LEMMA. Let X be a normed space, 0 <t < 1, 8 € R and let functions h : R, — X,
f:[1,00) = Ry satisfy the inequality
[B(A) = h(tA)| < APF(N), VA= 1.
If B> 0, C1 :=sup,cp 00y f(A) <00 and Cy 1= supyep 1y [[MA)[| < oo, then

B
A < sw e ) rea). s

18 (v(ngugx
for any v : [1,00) — Ry such that 1 < y(\) <A\, VA > 1. If 3 <0 and [|[h(N)[| — 0 as
A — 00, then

sup f(u), VA>1

Proof. Suppose 3 > 0. Take an arbitrary A > 1 and choose k € N such that ¢t < tF+1)\ < 1.
We have

k
IO < A FQ) + RN < < A ( 32 6% (70) + A2 )]

=0
<MY @+ Y TN+ G )
YA SBASA 1<H A ()

B
< iiﬁ( sup f(ﬂ)+01<@) +02A‘5>7 VA > 1.

1 YA <A
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Suppose now 3 < 0 and ||h(N\)|| — 0 as A — co. Then

k
1ROV < NMEPFEIN) + [N <o < XY PRI + AN <

j=1

<MY N <

Jj=1

su , YA>1,
51 MZAp/tf(u)

since h(t %)) —» 0 as k — co. m

15.10. REMARK. The restriction (6.2) means that the commutator [9,,,d,,] is an operator
of a strictly lower order than 0,,0,, and d,,0,,. Therefore the main part of our calculus
does not apply to the case treated in the works on Hérmander’s sums of squares of vector
fields, their generalizations and anisotropic operators on Lie groups with dilations (see
the references in Sections 1 and 8), where the above operators are assumed to be of
the same order. In this case ¢ = 0 (see the beginning of Section 11) and the results of
the present section offer a partial explanation of the fact that no remainder estimates
seem to be known for the spectral function and the distribution function of eigenvalues
of Hormander’s sum of squares of vector fields (see [Mel] and [LMN], [MLN]) and its
generalizations (see [Lol], [Lo2]). It would be interesting to construct operators of this
type for which one can find spectral asymptotics more or less explicitly, and to find out
whether the remainder admits an estimate of the form O(“first term” x A7), g9 > 0.

Acknowledgements. I would like to thank Yu. Safarov whose paper [Saf] inspired this
work.
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