Introduction and an outline of results

The present paper concentrates on special problems from the so called “hypercomplex
analysis”. The starting point is the problem of generalizing the notion of complex struc-
ture, fundamental in complex analysis. We introduce a notion of Clifford-type structure,
and as a consequence, the notion of Clifford-type manifold.

The holonomy groups of manifolds having an affine connection with zero torsion have
been classified by M. Berger [1]. The possible restricted holonomy groups for irreducible
Riemannian manifolds which are not symmetric spaces are the following:

50(n), U(n), SU(n), Sp(n)xSp(1),
Sp(n) for all n > 2,
the special groups: Ga, Spin(7), Spin(9).

Let us recall that the manifolds with holonomy groups in SO(n) are the oriented
Riemannian manifolds and only general results may be obtained about the topology of
this large class.

Riemannian manifolds with holonomy groups in U(n) are nothing but K#hler mani-
folds. These manifolds have been extensively studied for many years and by many authors
including Chern, Hodge, Welil etc.

Manifolds whose holonomy groups form subgroups of Sp(n) x Sp(1) have also turned
out to be very interesting. These manifolds are called “quaternionic manifolds”. Many pa-
pers have been devoted to studying their properties by Berger, Bonan, Marchiafava, Mar-
tinelli, Salamon and others. One reason for giving quaternionic Kahler manifolds serious
consideration is Wolf’s observation [35] that for each compact simple Lie group G there
exists a quaternionic-K&hler symmetric space G/H. This theory contrasts favourably
with the more sporadic situation of Hermitian symmetric spaces, and the existence of a
complex contact manifold fibring over G/H generalizes to the non-symmetric case. The
presence of a closed, but highly non-generic, 4-form on a quaternionic Kahler manifold
is responsible for both similarities to and differences from symplectic geometry.

Let us recall that the quaternionic unitary group Sp(n) is not a maximal subgroup
of SO(4n), since it commutes with the action of the group Sp(1) of unit quaternions.
The group Sp(n) x Sp(1) is only a proper subgroup of SO(4n) if n > 1. One can
consider 4n-dimensional Riemannian manifolds with holonomy group contained in Sp(n)
or Sp(n) x Sp(1). These two cases are in fact quite different, more so than for example
SU(n) from U(n). More precisely, Sp(n) is included in SU(2n), so Riemannian manifolds
with holonomy contained in Sp(n) are particular cases of Kahler manifolds with zero Ricci
curvature. On the other hand, Sp(n) x Sp(1) is not a subgroup of U(2n). We have
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6 W. Krélikowski

THEOREM. The subgroup Sp(n) x Sp(1) is a mazimal subgroup of SO(4n).
According to the above remarks one defines:

DEFINITION. A 4n-dimensional Riemannian manifold is called

(a) hyperkdhlerian if its holonomy group is contained in Sp(n),
(b) quaternionic-Kdhler if its holonomy group is contained in Sp(n) x Sp(1).

(Let us add that this established terminology may be confusing, because a quater-
nionic-K#hler manifold may not be a Kahler manifold in the ordinary (i.e. complex)
sense.)

The most remarkable results are the following:

THEOREM ([1]). A hyperkdhlerian manifold is Ricci-flat.
THEOREM ([2]). If n > 2, a quaternionic-Kdhler manifold is Einstein.

THEOREM ([25]). All quaternionic-Kdhler manifolds whose dimension is a multiple of 8
are spin manifolds.

There are analogies between the theory of (complex) Kahler manifolds and that of
quaternionic-K&hler manifolds. We recall that a (complex) Kahler manifold (M, g, J) may
be viewed as a Riemannian manifold (M, g) together with an almost complex structure
J such that (g, J) is almost Hermitian and J is parallel for the Levi-Civita connection V
of g. It turns out (since V is torsion-free) that V.J = 0 implies that J is in fact a complex
structure.

Quaternionic analogs of the notions of almost complex structure and complex struc-
ture have been looked for, but there is more than one possible choice here. There is
no good notion of “holomorphic functions” in the quaternionic case. Nevertheless, there
exists a “quaternionic holomorphic calculus”, developed by R. Fueter [10, 11| and later
by A. Sudbery [32], but it does not fit all expected purposes.

It is well known that in complex analysis there are many conditions equivalent to holo-
morphy. It was discovered by several authors that the transmission of those conditions
to the quaternions gives in each case different classes of functions (see e.g. [31]). The
most promising attempt was the definition of “quaternionic holomorphy”, proposed in
1935 by Fueter [10], which generalized the Cauchy—Riemann equations. Henceforth these
mappings appeared in the literature as “regular mappings in the sense of Fueter”. They
have many properties “analogous” to those of holomorphic mappings although the proofs
are difficult from the technical point of view because of, among other things, the non-
commutativity of quaternions. In many cases the analog does not exist, for example, there
are no simple functions which are regular in the sense of Fueter. In 1979 A. Sudbery [32]
collected, classified and proved the most fundamental properties of regular mappings.
Anyway, up to now, there does not exist a “quaternionic analysis” in the same sense as
the complex analysis; nonetheless in the 1970’s K. Imaeda [14] presented an exceptionally
beautiful, simple and convincing application of quaternions to electromagnetism.

Nevertheless, one can find some analogs. Thus, if (M, g) is a Riemannian manifold
then one defines:
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DEFINITION.

(a) An almost quaternionic structure is defined as a covering {U;} of M with two
almost complex structures I; and J; on each U; such that I;J; = J;I; and the
3-dimensional vector space of endomorphisms generated by I;, J; and K; := I;J;
is the same on all of M.

(b) A Riemannian metric g is quaternionic-Hermitian if g is Hermitian for each of I;
and J; above.

In analogy to the complex case one introduces

DEFINITION. A quaternionic manifold is an almost quaternionic manifold admitting a
torsion-free Gl(n,H) x Sp(1)-connection.

The subgroup GI(n,H) x Sp(1) of Gl(4n,R) is defined as follows. We identify R*"
with the (right) vector space H" over Hj; then GI(n,H) is the linear group (acting on the
left) of the vector space H" (over H), and Sp(1) is the group of unit quaternions acting
on H" by scalar multiplication on the right.

We have

THEOREM. A quaternionic-Kdhler manifold is quaternionic-Hermitian and quaternionic.

Let us recall that an almost complex structure with a complex torsion-free connection
is integrable, and hence a complex structure (the Newlander—Nirenberg theorem; see
e.g. [17]). This is not true for quaternionic manifolds and the analogy breaks down here
definitely. Thus, let us again emphasize that the quaternionic theory is quite different
from the complex one.

As a generalization of the notion of quaternionic manifold (and complex manifold as
well) we introduce a quite general object called a Clifford-type manifold.

In the first chapter Clifford-type manifolds are investigated. Among other things an
analog of the fundamental 2-form of complex analysis is defined and using it a decomposi-
tion analogous to the Hodge decomposition for Kéhler manifolds is given for Clifford-type
manifolds. By the Chern theorem [8] we get an increasing sequence of Betti numbers for
Clifford-type manifolds.

In the second chapter, using the Clifford-type structure, we define Clifford-type holo-
morphy and prove two features of Clifford-type holomorphic mappings without counter-
parts in complex analysis.

The third chapter is devoted to generalizing the following, well known theorem of
complex analysis to the quaternionic and octonionic projective spaces:

THEOREM ([17, pp. 167, 368]). The sectional curvature K (o) of a Kdhler manifold
(M™, g,J,§2) of constant holomorphic sectional curvature 1 is given by

111 + 3cos® a(o)],
where o is a plane tangent to M™, i.e. a real 2-dimensional subspace of T, M™, x € M™
and cos a(o) :=|g(X, JY)|, where (X,Y) is an orthonormal basis in o.

Moreover, as an application we obtain quaternionic and octonionic counterparts of
the following Klingenberg theorem [15]:
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THEOREM. Let M?" be a Kdihler manifold of real dimension 2n > 4. Assume that for
all 2-planes o tangent to M>", the sectional curvature K (o) satisfies the inequality

9/16 < K(0)/K1[a(0)] <1,

where
Kila(o)] == 2[1 + 3cos” a(0)].

Then M is compact and has the homotopy type of the complex projective n-space CP"™.

Next, in the fourth chapter, we prove the most remarkable result of the paper. Namely,
using the fundamental notions of quaternionic analysis we show that there are no 4-
dimensional almost K&hler manifolds which are locally conformally flat with a metric of
a special form. Precisely we prove

THEOREM. A 4-dimensional almost Kdihler manifold (M*,g,J,2) does not admit any
locally conformally flat Riemannian metric g of the form

g := go(p)[dw? + dz® + dy* + dz?], peUc M*,

go(w,z,y,2) = go(r), 1 :=w’+2"+y>+2°

where go(r) is a real, positive, analytic, non-constant function in r ((U;w,z,y,z) is an
arbitrary system of local coordinates on M*).

This result is significant at least because the standard model of 4-dimensional hyper-
bolic space is the Poincaré model, i.e. the unit ball in R* equipped with the metric

g= A= —47'2)2 (dw? + dz? + dy* + dz?).

Finally, in the last fifth chapter we present some results on quaternionic Lagrangian
submanifolds. For instance, we give a necessary and sufficient condition for a graph to be
quaternionic Lagrangian. We also present explicit forms of some characteristic differential
equations naturally connected with some types of quaternionic Lagrangian submanifolds.
Moreover, we show that two immersions which lead to an almost quaternionic and a
Lagrangian submanifold, respectively, cannot be homotopic.

The paper ends with a correction to my previous paper On Fueter—Hurwitz reqular
mappings (Dissertationes Math. 353, 1996). It has turned out that Theorem 2.6.2 on
page 58 there is false. A suitable counterexample has been found by J. Kijowski.

I. Clifford-type structures*

I.1. Fundamental notions and basic properties. Let V be a real vector space.

DEFINITION 1.1. An almost Clifford-type structure C, on V is a set of n almost complex
structures {I,...,I,} such that

Iodg+ 1l = —26081d, o,8=1,...,n,

* Editors’ note: This chapter also appeared in [19].
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where Id stands for the identity endomorphism of V', and § is the Kronecker delta; more-
over we assume that no I; is a product of two, four etc. others from the set {Iy,...,I,}.

REMARK 1.1. (a) If n = 1, then C; = {I} with I? = —Id. Thus, C; is nothing but an
almost complex structure. Recall that the standard form of an almost complex structure

o=(21) e

where V' has an even dimension (see e.g. [17]).

(b) If n = 2, then Co = {1, J} with I = J% = —Id and I.J + JI = 0. Define K := I.J;
then IJK = —Id and K2 = —Id. Thus, Cs corresponds to the almost quaternionic
structure (see e.g. [3, 18, 19, 27, 30]). The standard form of an almost quaternionic
structure is

1S

0 I00O0 0 0 IO
-1 00 O 0 0 01
I(): 7J0: )
0 00 —1 -7 0 00
0 0I O 0 -I00

0 0 0 I

0 0-10

KO: )

01 00

-0 0 0

where dimg V' = 4n.

Note that any almost Clifford-type structure C,, = {I1, ..., I,} induces the following
set of almost complex structures:

L4 Il7~'~7In;

11127-[1]33 s 7-[1]’1’7,3 s >In71[n;

no triple is an almost complex structure;

LilsIsly, ... In—3ln—2ln—11n;
e no odd tuple is an almost complex structure; etc.

Denote by p/, the number of the above almost complex structures. Then

O () e
() () () () itnisewn

/!

pr=2"—pl.

Set
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Then for n > 3 we have the following general formulae:
pn=2"=2p — (n—=3), pp=2p,_1+(n-3).

By straightforward calculations we get
pi=1, py=3, ph=6, p,=11, pi=20, pgz=37, p,=70, p;=135 etc.

Denote by V(n) a real vector space endowed with a Clifford-type structure C,, =
{I1,....I,}.
THEOREM 1.1. We have dimg V(n) = 2"s, where s > 0 is an integer.
Proof. Assume that a real vector space V is equipped with an almost Clifford-type struc-
ture C,, = {I1,...,I,}. Since

G:={a'lL +---+a"I,; a*,...,a" €Rand (a')* +---+ (a")* = 1}

is a compact group, V can be split into a direct sum of irreducible vector subspaces (see
e.g. [8, p- 14]) and thus it suffices to prove the theorem for V irreducible.

Let X € V, X # 0. Consider the vector subspace V; of V' generated by X, 1 X, [, X,
.., 1,1 X. Then I,V; cannot belong to V7. Indeed, otherwise there would exist a matrix

0 n—1
(%) -.. Qg
A=+ . 1 [eMmR)
0 n—1
p_q - Gp_3

(M(n;R) denotes the set of n x n matrices with real coefficients) with det A # 0 such
that
X =a)X + a1 X 4 +a) ', 1 X,

L(LX)=a)X +al[l X+ +a} ', 1 X,

Since I,(I,X) = —X, we get
L(I,X) = L(adX +al[L X + - +ay ' 1,1 X)
= a3, X +a} (LX) + - +al ', (I,_1X)
= a(adX +a} 1 X + -+ +al ' ,_1X)
+ap(aX +alL X +---+ a1, 1 X)

=+ ag_l(a%_lX +ap_LX A+ + aZjIn—lX)a
SO
[(ad)? + ajal + -+ af 'ad_,]X

+ [afad + ajat + -+ af al_JHX

T [a9ap ™" +abay ™t 4+ ap L H L X = <X
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This implies
0N2 | 1.0 n-10 _
(ag)” +agai + - +ag ap_, =—1,
0,1, 1.1 - _
agag +agay +- -+ ag ap_; =0,

(1.1)

adal "t +afal Tt + - agra "] = 0.
On the other hand, we have
0=1,I,X)+I,(I,X) fora=1,...,n—1,
which gives
X talh X+ +a 'L X+ L[adX +af[LX + -+ al ', 1X] =0,
ie.
X valh X+ +a 'L X +adlo X +ailah X + - +af L, 1 X = 0.

For a =1 we get

a) —al =0, ie af=a},
ai +a) =0, ie a)=—aj,
a?=al=-..=aV' =0,
ag=ay=--=ay ' =0
For a = 2 we get
as a?)a
a3 = —aj,
ay = a3 = ay ' =0,
ay = ag =+ = ag L=
Generally, for « = m we have
ad,=ad, m=1,...,n—1,
Q= —al =~} =+ = —a7},
ar =0, m=1,...,n—1,
a3=a}=---=aV"'=0,
=== =0,
ay=di=a3=---=a} ' =0,
ap_y=ap g =--=ap ;=0
Substituting the above relations to the system (1.1) we get (a9)? = —1, which is a

contradiction.
Consider the subspace Vj of V' generated by V; and I,,V;. Since V} is invariant under
the whole group G, we must have Vy = V since V is irreducible. Thus

V=VvVielV.
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Then dim V = dim V; +dim(Z, V1), so dimV = 2dim V3, i.e. dimV(n) = 2dim V(n—1).
Since dim V(1) = 2s for some integer s > 0, we conclude that dim V(n) = 2"s. m

I.2. Clifford-type numbers. In order to consider at the same time quaternions
and octonions (even complex numbers) we introduce “Clifford-type numbers”.
Assume that n =1,3,7.

DEFINITION 2.1. Denote by A,, the field of Clifford-type numbers. A typical element a
of A,, can be written as

a:=xg+e1r; +exxo+ - +enry, To,T1,...,T, ER n=1237,

and we assume that the Clifford-type units eq, ..., e, satisfy

exem +emer = —20pm, k,m=1,...,n,
that is,
er=—1,k=1,...,n; epem=—emer, k#m, kkm=1,...,n,
and
{exem} = {xe1,...,xen}, € = —e€g, €klm = —€xem, k#m, k,m=1... n.

We also have
ab="ba, a,beA,.
EXAMPLE 2.1.
1. C — complex numbers with the complex unit e; = 7 satisfying i> = —1 and i = —i.
(Complex multiplication is commutative and associative.)
2. H — quaternions with the quaternionic units e; = ¢, e; = j, es = k satisfying
==k’ =ijk=—-1, ij=k, jk=1, ki=j,
i=—i, j=—j, k=—Fk.
(Quaternionic multiplication is not commutative but it is associative.)
3. O — octonions with the octonionic units e, ..., e7 satisfying
e% =-1, k=1,...,7, ewem+temer=0, k#*m, kkm=1,...,7,
€€ = €3, €263 = €1, €361 = €2, €164 = €5,
egey = €6, €34 =e€7, epe] =ey4 etc.,
€1€3 = —€2,
ejes = —e4, €1 = —ey, ejer=ceg etc.
and
€ = —ég.
(Octonionic multiplication is not commutative and not associative.)
Let A2 = R(™+DP denote the “Clifford-type” Euclidean p-space with coordinates A :=
(al,...,aP), where

o’ =x5+erx] Fews+---tepzy, s=1,...,p,
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and A := Xo+e1 X1 + -+ e, X, with X; = (z},22,...,27),i=0,1,...,n. Thus R?

denotes the subset of A2 with X; =---=X,, =0.
Define the right multiplication e : AP x A,, — AP by

Aea:=(a'-a,...,a’-a), AcAP

PoacA,.
We emphasize that A” can be identified with R(** 1P endowed with n almost complex
structures I, ..., I, satisfying
IaIg + Iﬁ[a = — 2(5a[3 Id,
LX =X, ..., I,X =e,X, XeRrtir

where Id stands for the identity mapping in R("+VP. Thus we can treat A? = R(*+1DP a5
a p-dimensional right module over A,,. One defines a bilinear form (,) on .A? as follows:
if A= (a',...,a?), B=(b',...,b") € A2, then

12 o o o
(A,B) = 3 az::l(aabo‘ +b%a®) =Re(A4, B) := Re;aaba,
where
a® =1y —e1x] —eaws — - —epx,, S=1,...,p.

Then (A, B) is an inner product in .A?, considered as an (n+ 1) - p-dimensional real vector
space. Note that
(A,B) = L[(A. B) + (B, A)].

Denote by SP,,+1(p) the set of all endomorphisms of A?. which preserve the Clifford-
type symplectic product ( , ). (In the quaternionic case (n = 3) SP,(p) is nothing else
than the well known group usually denoted by Sp(p).)

The norm of A € A? is defined as usual by

p
JA[? = (A, 4) =Y aPaP?
B=1

and can be used to express the inverse element of A # 0:

1
A7l =
Al

Note that SP,11(1) = {a € A, : ||a|]| = 1} is a group, and SP,,1(p) C SO[(n + 1)p].

A.

LEMMA 2.1. (A, B) is invariant under the action of SP,11(p).

Proof. SP,+1(p) is defined as the set of all endomorphisms of AP, which preserve the
“symplectic product” (A, B). Our inner product is (4, B) = 3[(4, B) + (B, A)]. Hence it
is clearly invariant. m

1.3. The fundamental form (2. Let V' be a real vector space equipped with an almost
Clifford-type structure C,, = {I1,...,I,}. Let (A2)’ be the dual space of AZ over A,, and
aq,...,q, be a basis of (A2). We may write

aS:bgOz(S)—l—b;ai—l-‘i‘bgag bgab;77bgeR) 52177p7
1

PR

so that a2, « ,af forms a basis of (AP)" over R.
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DEFINITION 3.1. Define n skew symmetric bilinear forms w,...,w, on A? as follows:
(3.1) wl(A,B) = <A,IlB>, 1= 1,...,7’L.

Assume that
n+1=2%

for some integer w > 0.
DEFINITION 3.2. We define a 2*-form (2 on AP, by
R:=wi N ANwi+- - Fwa A Awy, .

DEFINITION 3.3. Define an action of the group SP,1(p) X SP,+1(1) on AP as follows:
let A€ AP and (A, \) € SP,41(p) x SPu11(1); then

(A, A = AAN,
i.e. apply 4 to A and multiply on the right by .

DEFINITION 3.4. Let A € SP,,11(1) (i.e. A € A, and ||A]| = 1). Define a map \* on the
bilinear forms wy,...,w, (defined by (3.1)) as follows:

)\*wl(A,B) = t,dl(AA,.B)\)7 1= L...,n.
THEOREM 3.1. The form {2 is invariant under the action of SP,11(p) X SP,41(1).

Proof. By Lemma 2.1, (2 is invariant under the action of SP,.1(p) on the left. Now, let
A € A, with ||A|| =1, i.e. X represents an element of SP,;(1). Then

N2 =X A AN+ F XN A AN W,

w times w times

According to Definitions 3.3 and 3.4 and by a simple calculation we have
Nwi(A, B) = wi(A\, BX) = (AN, LBX) = ||\|?(A, I;B) = | \||*w;(A, B)

for i =1,...,n. Thus A\*{2 = {2, hence {2 is invariant under the action of SP,;(1) on
the right. m

I.4. Splitting of forms. One can extend the definition of the “star” operator * and the
operators L and A, known from classical differential geometry, to the Clifford-type case.

Let A(AP)" be the exterior algebra over R obtained by considering (AP)" as a real
2% p-dimensional vector space. Every element of A\(A?)’ is a linear combination of simple
s=1,...,p.

1 a™

PERRINE 24

r-forms w := 1 A - -+ A (3., where §3; is one of a2, «

DEFINITION 4.1. Define *, L and A on (A?P)" as follows: if w is a simple r-form then *w
is the simple [(n + 1)p — r] = (2%p — r)-form such that

w/\*w:a?/\a%/\-~-/\a?/\-~-/\ag/\a117/\---/\ag.
Next we extend by linearity to (AP)’. For an arbitrary exterior form w we define
Lw:=02Nw, Aw:=x*(2Ax*w).
REMARK 4.1.

1. For all w € (A2)’ we have s*+w = w.
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2. L: N(AD) — Ny = AT (ADY
3. A N (AR) — NP ARy = N (A
DEFINITION 4.2. Define a bilinear form (, ) on A"(A2)" by
(w,w") = *x(wAx")  forw,w’ € N'(AL).

LEMMA 4.1. We have (Lw,w') = (w, Aw') for w € A"(A2) and ' € N T (APY =
N

Proof. This follows by straightforward calculations.

LEMMA 4.2. The mapping
LN (AR — N AR = AT (A
is a monomorphism forr+ (n+1) <p+1 (r+2¥ <p+1).

Proof. We have to prove that for w € A"(AR)’, r + (n+ 1) < p+ 1, the relation Lw =
2 ANw =0 implies w = 0. Assume that w # 0 and write
w= Z 7A07A17--~,Ana?40 A 041141 ARRRNA O‘Zlna
A, A1, An
where Ag, Ay,..., A, C{1,...,p} and if A; = {iy,...,is} then o)y :=al A---Aal .
In the summation above, consider the terms with the highest total degree, say t, in

a%s and a'’s. Let w’ be the sum of these terms:

/ 0 1
W = E YAo,Aq1,..., A, X4, A Qp, A A O‘Z" 7é 0,

where the summation is taken over the indices Ay, Ay,..., A, such that |Ag| + |41 =1t
(|Ao|, |A1| denote the cardinalities of Ay and Aj, respectively).

Similarly, we express Lw = {2 A w in terms of a%o, a}41, ...,af and consider the
terms with the highest total degree in a°’s and a!’s. From the expressions for 31, ..., B,
it follows that the sum of these terms is given by

P
Z anaf Al Aol AW
d,r=1
The equation Lw = 0 implies that this sum is zero, which means that
Z ( Z WAD,AI,,,,’Anag Aag Aa® Aal A 04?40 A 041141) A a1242 N Naly =0.
A27-<~7An 0,k,A0,A1
This implies that
P P
(Zag A aé) A (Zag A a;) A ( Z WAo,...,Ana,O% A a}41> =0
5=1 k=1 Ag,Ar
for each fixed Ao, ..., A,, or
(22 A" =0,
where

)
Q= E AdAna} and W= E Vag,.nAn O, Ay, # 0.
6=1 Ao, Ay
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Let us consider the p-dimensional complex vector space with the coordinate system
o +iaf, ..., ag—i-ia;.
Then (2 is the fundamental 2-form. By the Hodge decomposition theorem [13] (since
degw” < p — 3), the equality
QN AS)=0
implies that 2’ A w” = 0, which in turn implies that w”’ = 0, which is a contradiction. m

DEFINITION 4.3. An r-form w is said to be effective if Aw = 0. We denote by A.; C
N (AP) the set of all effective r-forms.

THEOREM 4.1. Forr <p+1 and z :=[r/(n+ 1)] (=[r/2%]), we have the following direct
sum decomposition:

N A = Ng@ LA "o o ALY
Proof. By Lemma 4.2, L is a monomorphism. Moreover, by Lemma 4.1, A is the adjoint
of L and it is therefore onto for r < p + 1.

We will prove the theorem by induction on r.

The statement is true for r = 0,1,2,...,[(n+ 1) — 1] = 2% — 1, since A lowers degree
by n+ 1= 2" and hence A" = A7; for these ’s.

Assume that the assertion is true for m < r. We shall prove it for m = r. We claim
that A\ is the orthogonal complement of L/\T_(n—"l)(Aﬁ)’ in \"(AR).

It is easy to show the orthogonality. Let w € A\l and Lw’ € L/\Tﬁ(nﬂ)(Aﬁ)’. Then

(w, Lw') = (Aw,w") = (0,0") = 0.

To prove that A\, is the orthogonal complement of LA™ (AP) take w € A\"(AR)
such that (w, Lw’) =0 for all ' € /\T_(nH)(Afl)’. Then (Aw,w’) = 0 and hence Aw =0
because ( , ) is a nondegenerate bilinear form.

Thus, by the induction hypothesis we have

A (ALY = N LA™ any = Ao LN T e e LAY
THEOREM 4.2. We have 2P # 0.

Proof. Since 2 :=wi A+~ Awy + -+ wy A+ Aw, (with w-fold wedge products), 2P
is a sum of 2¥p-forms. Thus, it will be a sum of

0 1 0 A 1 0 A 1
(4.1) gag Aag A Aaf Nag Aag Ao Nag A Nag Ao A+ A ay,

where ¢ = +1. We will show that € equals +1.
Each term of 27 is a product of 2-forms:

0 1 2 3 n—1 n.
ag Nag, agNay, ..., og Aoy,
adAna?, adnaal, Lo ot PAalTh A Aol
(4.2) a2 nad  alna
al Al
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For example (recall that n + 1 = 2" implies that n is an odd integer), if n = 3, then
we have

ao/\ozl/\a2/\oz3,
and
a A al, a? A 043,
a® A a2, ad A 041,
a® A a3, al Aa?.
For n = 5:
a®rat Aa? Ao Aat A a5,
ozo/\ozl7 a? A a3, ot A a5,
ao/\az7 ad A a4, a® A al,
ozo/\oz?’7 al A a2,
ozo/\oz47
a®Aa®
etc.

Now, let us take one of the summands and rearrange it so that the subscripts will
be in nondecreasing order, i.e. so that the summand will be an exterior product of
(n+1)p (=2"p) elements:

0 1 n
ay, O, ..., O,
0 1 n
Ao, Ao, ) Qg
0 1 n
Oép, Oép, ) apa

such that the first n 4+ 1 elements in the product will have subscript 1, the next n + 1
will have subscript 2 etc. Since in the original product, we multiply pairs with the same
indices, in order to achieve the new product, we have to permute the elements in the
product by means of an even permutation. Hence we do not change the value of the
product.

Take the term in the product consisting of n + 1 elements with index s. Since it is a
product of terms in (4.2), it must be one of the following (n+ 1) — 1 forms (else it would
be 0):

adANalANa2 Ao AaT AR,
Al ANaZANa3 ANt Aal,
QAN Aot A AaTEA QR Aal A2,

which are equal to each other. So, each summand is equal to (4.1) with € = +1 and 27
is a nonzero multiple of it. m
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I.5. Clifford-type manifolds

DEFINITION 5.1. Assume that (M, g) is a Riemannian manifold. An almost Clifford-type
structure C,, on (M, g) is defined as a covering {U’} of the manifold M with a set of
almost complex structures {I¢,..., I’} on each U’ such that
ILIG + IGI, = —26,51d

and the n-dimensional vector spaces of endomorphisms generated by the complex struc-
tures I%,... It

Endy: := {a'I! +---+a"I!; a',...,a" € R},
are the same on all of the manifold (we assume that no I ]l is a product of two, four etc.
others from the set {I%,... I\ }).

DEFINITION 5.2. A Riemannian metric g is Clifford-type-Hermitian if g is Hermitian for
each Iy,...,1I,.

DEFINITION 5.3. (a) A Riemannian manifold (M, g) with an almost Clifford-type struc-
ture C,, is called an almost Clifford-type manifold.

(b) An almost Clifford-type manifold (M, g,C,) with the metric g Clifford-type-
Hermitian is called almost Clifford-type-Hermitian.

Assume that (M, g,C,,) is an almost Clifford-type-Hermitian manifold. Let {I;,..., I}
€ C,. Counsider the 2-forms wy,...,w, defined by

wi(X,Y)=¢(X,LY), j=1,...,n
where X and Y are arbitrary C°°-vector fields on M.
DEFINITION 5.4. If n 4+ 1 = 2%, define the 2*-form (2 as follows:

:=wi AN ANwi+-+wp Ao Awy, .
w times w times
DEFINITION 5.5. An (n + 1)p-dimensional Riemannian manifold M is called a Clifford-
type manifold if its holonomy group is a subgroup of SP[(n + 1)p] x Sp(n+ 1).

EXAMPLES 5.1.

1. The basic examples of Clifford-type manifolds are quaternionic manifolds. Note
that for n = 2 there are three almost complex structures on a given Riemannian manifold
(M, g), namely: Iy, I5,1I3 := I1I5, and dimg M = 22 = 4. These manifolds are called
almost-quaternionic (see e.g. [5], [18], [30]).

If g is Hermitian for I; and I then g is called almost-quaternionic-Hermitian.

If the fundamental 4-form (2 is closed then an almost-quaternionic-Hermitian man-
ifold is called almost-quaternionic-Kdhler. The most important example of an almost-
quaternionic-Kahler manifold is the quaternionic projective space HP™ with the standard
metric (see e.g. [5], [27]).

2. More generally, in the case when the holonomy group of a given almost-quaternio-
nic-Hermitian manifold (M?™,g) is contained in the group Sp(m) x Sp(1), then
the manifold is called quaternionic-Kdhler (see e.g. [3], [30]). An important result by
Berger [2] states that a quaternionic-K&hler manifold (of dimension 4n > 8) is Einstein
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(i-e., a Riemannian manifold of constant Ricci curvature). Moreover, quaternionic-Kéahler
manifolds whose dimension is a multiple of 8 are spin manifolds ([25], [30]).

Some examples of manifolds with holonomy group contained in Sp(m), Sp(m) x Sp(1)
or Spin(n) can be found in [30].

Let M be an (n+ 1)p-dimensional Clifford-type manifold and 2 € M. We can identify
T, M with A?. However, this Clifford-type structure of 7, M may not be invariant under
parallel displacement. Using this identification we could define {2 which is invariant under
parallel displacement. One can prove

THEOREM 5.1. 2 is invariant under the action of SP[(n+ 1)p] x SP(n+1).
Proof. Analogous to that of Theorem 3.1. m

Hence {2 is independent of the choice of a Clifford-type structure on 7, M. By the
above discussion and Theorem 4.2 (2P # 0) we have

LEMMA 5.1. The form {2 defined above is a closed differential form of degree 2" and of
mazximal rank.

THEOREM 5.2. Let M be a 2¥p-dimensional Clifford-type manifold and let B® denote its
ith Betti number. Then B*"" #0 fori=0,1,...,p.

Proof. By Lemma 5.1, 2 is a closed 2%-form of maximal rank. Hence (2° is a nonzero
element of H?"*(M,R) and so B%"* = dim H?"*(M,R) # 0. m

DEFINITION 5.6. Define the operators %, L and A on the space of differential forms
E"(M,R), as follows: if w is a differential r-form then xw is the (2*p — r)-form such

that
(#w)y := *(w,) for all x € M,

Lw:=02Nw, Aw:=*(2Nx*w).
A differential form w is said to be effective if Aw = 0.
THEOREM 5.3. Let M be a 2¥p-dimensional Clifford-type manifold and w a differential
form on M of degree r <p—+ 1. Then

[p/2%]
B i pav
w = E L'wy ,
i=0

where wk: denotes an effective k-form.

Proof. Let 5§f(]\/[ ,R) denote the space of effective k-forms. By Theorem 4.1 for
r < p+ 1 there is a direct sum decomposition
E"(M,R) = EL(M,R) & LE > (M,R) & --- & L' (M, R),
where t := [r/2%]. m
The Chern theorem [8] states the following. Let M be a compact Riemannian mani-
fold with a structure group G and W1, ..., W) be the irreducible invariant subspaces of

E1(M,R) under the action of G and let Py, : £1(M,R) — W; be the projection map of
E1(M,R) into W;. Then, if a ¢g-form w is harmonic, so is Py, w.
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Clearly each of the L€’ 2"(M,R) is an invariant subspace of £"(M,R) under the
action of the holonomy group G. So each LiECT;Qwi(M ,R) is a sum of the W;’s. Therefore
the projection of a harmonic form into LiE:{T ’(M ,R) is again harmonic and we have
the following:

THEOREM 5.4. If M is a Clifford-type manifold of dimension 2“p, then for each i =
0,1,2,...,2% — 1 with i + 2%z < p+ 1, z = [p/2%], we have the following increasing
sequence of Betti numbers:

B’i é BiJrQw g . é Bi+21uz.

I1. On some feature of hypercomplex analysis

I1.1. Introduction. Using a Clifford-type structure we define Clifford-type holomorphy
and prove two features of Clifford-type holomorphic mappings without counterparts in
complex analysis.

I1.2. Clifford-type holomorphy. Take n almost complex structures I, ..., I, defined
on a real vector space V satisfying the condition

Iodg+ 1l = —26081d, o,8=1,...,n,

so that no I, is a product of two, four etc. others from the set {I,...,I,}.

Let X € V, X # 0. Then the vector subspace VofV generated by X, 1 X, ..., I,
(see p. 9) has dimension

dimV = p/, + 1.

EXAMPLE 2.1. (a) If n = 1, then we have one almost complex structure, pj = 1 and
dimV =dimV =2 (V 2 R2 > C).

(b) If n = 2, then we have two almost complex structures, p) = 3 and dimV =
dimV =4 (V=R'~CqeCxH).

(c) If n = 3, then we have three almost complex structures Iy, I, I3 which generate a
set of six almost complex structures on V', namely:

11712713, I4 = 11[27 I5 = 11[3, Iﬁ = Ig[g [(11[213)2 7é 71(1]
Thus py = 6 and dim V = 7 etc.
DEFINITION 2.1. Let V = (V,C,) and W = (W, 5n) be two real vector spaces equipped
with two almost Clifford-type-Hermitian structures C,, = (I1,...,I,) and C,, = (I1, ..., I,),

respectively. Assume that @ : V — W is a smooth map. Then @ is called Clifford-type
holomorphic if

(2.1) Iyodb=dbol,, a=1,...,n.

REMARK 2.1. (a) If n =1, then (2.1) reduces to the equation
Todd=dbol.
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In this case the Clifford-type holomorphy is nothing but the holomorphy of complex
analysis. Moreover, we have

~ 1/0 0
(IodP=dPol) & [§<8—m+ia—y>(u+iv):Owith¢:u+iv .
(b) If n = 2, then (2.1) reduces to the system

{fo dd = ddo I,

Jodd =ddoJ.
In this case the Clifford-type holomorphy is nothing but the quaternionic Q-holomorphy
(see e.g. [18], [21]).

WARNING. It is important to emphasize that Q-holomorphy and Fueter regularity (see
e.g. [11], [18], [21]) are two different notions, i.e.

Todd=dbol 1/ 0 ) ) 9
1 o . O . O [ 0 .1 .9 k 3\ _
{fod@:dq’)oj} & |:4<8x0+18x1+J5$2+ 8333>(u +iut + ju” + ku’) =0/,

where & = u® + iu! + ju? + ku’.

I1.3. Two properties of Clifford-type holomorphic maps. A real vector space V
with an almost Clifford-type structure C,, = {I1,...,I,} can be turned into a Clifford
vector space by defining scalar multiplication by Clifford numbers as follows: if a €
Aley, ... e,) = ASHE then
a=a"+a'e;+--+a"e,
+a'%eies 4 -+ a'ere, + aPeses + -+ a" D, e,

123 —2 —1
+a'Bejeges + - +amDOe e e, 4 -

23..n

12...(n—1 12...
+a (’I’L )6162"'671_1‘1”"“{’(1 6263"'6n+a n6162~-~6n,

where a®,a',...,a",...,a'> " € R. For X € V we set
a-X= (ao +ate; +---+ae, +aeies + -+ a'?ejes. .. en)X
=X+ h X+ 4 a"I,X +a [ (LX) + -+ a'? " (I ... (I,X).
DEFINITION 3.1. Take a point a € R?"%. The right Clifford line passing through a is

defined by
C-line(a) == {a' e R*"*; ' = a- ¢, c € CSHHF},
Assume that
n > 1.
THEOREM 3.1. Let U be an open neighbourhood of the origin in R*"%. Let & : R?"s —R?"
be a Clifford-type holomorphic map with respect to the almost Clifford-type structures
{hL,...,I,} and {I,...,I,}, respectively. If ® is singular at the origin then ® is a
constant map.
Proof. Denote by U C U the intersection of U with a right Clifford line, i.e. the right
multiples by elements of AT = A(eq,...,e,); here R?"* is identified with (AS!f)s.
Such a 2"s-dimensional submanifold is easily seen to be almost Clifford-type.
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The singular set of @5 is defined by det[d(@lﬁ)] = 0 and it is a complex subvari-
ety N of U in the complex structures Iy,...,I,. In particular, it cannot be isolated
because it is non-null. At a regular point x € N the real tangent space of N must be
invariant under each Iy,...,I,. So, N is 2"-dimensional at = and thus at all points of

U. Then & -

o is constant and because U is the union of the right slices (7, @ is also

constant. m

REMARK 3.1. A Clifford-type affine map from R2"*' to R2"*2 is a map of the form
®(X) = XA+ B, where A € M(sq,50; AS"F) and B € R?"*2. Identifying R?"*t and
R2"s2 with (ASHT)s1 and (ACHT)s2 we have &#(X) = AX + B, where A is the transpose
matrix of A with real 2" x 2" submatrices replaced by Clifford numbers and where X
and B are s1- and so-tuples of Clifford numbers, respectively.

PROPOSITION 3.1. Let U and V be open sets in R2"** and R?"52, respectively. Let & :
U — V be Clifford-type holomorphic with respect to Clifford-type structures on R?"*' and
R2"%2 respectively. Then ® is the restriction to U of a Clifford-type affine map from
R%"s1 g0 R%"52,

Proof. Since the validity of the assertion is not affected by translations of the range or
domain, one can assume that U and V contain the origin and that $(0) = 0. Consider the
map X — &(X) — Xd®(0). Since dd(0) € M(s1, s2; ASHT), this function is Clifford-type
holomorphic and by the construction its Jacobian is zero. Thus, composing it with any
projection 7; : R2"%2 — R?" defined by

1 on 1 n 1 2"\ o1 2" L
(@] X ey Ty ey & ey Ty ey @s ) = (2, yxf ),  i=1,..., 82,

(R [ yVsg »Vsg i i

one gets a constant map by Theorem 3.1. Thus, #(X) = XdP(0). m

ExAMPLE 3.1. The above theorem is not true for n = 1 (s = 1), i.e. in complex analysis.
Take, for instance, the map @ : C — C defined by &(z) := 22. It satisfies the assumption
of Theorem 3.1 but @ is singular at 0 and it is not a constant map.

Putting n = 2 we obtain the simplest, quaternionic form of Theorem 3.1, namely

THEOREM 3.2. Let U be an open neighbourhood of 0 in R** and & : R* — R* a Clifford-
type holomorphic map (quaternionic Q-holomorphic) with respect to the quaternionic
structures (I1,I5) and (I, I5), respectively. If @ is singular at O then ¢ is a constant
map.

III. Sectional curvature of a Clifford-type projective space

II1.1. Introduction. The main aim of this chapter is a generalization of a theorem of
complex analysis (Theorem 1.1 below, see e.g. [17, pp. 167, 368]) to the quaternionic
and octonionic projective spaces (Theorem 2.2).

Let (M"™,g,J) be a Kahler manifold of complex dimension n and 2z € M. Let o
be a plane in T, M (i.e. a real 2-dimensional subspace of T, M) and {X,Y} an or-
thonormal basis in . The angle a(c) between o and J(o) is defined by cosa(o) :=
9(X, V).
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THEOREM 1.1 ([17]). The sectional curvature K (o) of a Kdhler manifold (M™,g,J) of
constant holomorphic sectional curvature 1 is given by

(1.1) 11 + 3cos” a(o)].

Moreover, as an application we obtain quaternionic and octonionic counterparts of
the following theorem of Klingenberg. If M is a Kdhler manifold then one defines

(1.1) Kila(o)] == 21 + 3cos” a(o)].
Klingenberg [15] proved the following:
THEOREM 1.2. Let M be a Kdhler manifold of real dimension 2n > 4. Assume that for
all 2-planes o tangent to M, the sectional curvature K (o) satisfies the inequality
9/16 < K(0)/Ki[a(o)] < 1.
Then M is compact and has the homotopy type of the complexr projective n-space CP™.

II1.2. Sectional curvature of a Clifford-type projective space. The Lie algebra

$pn+1(p) of SP,41(p) is the set of all p x p skew-symmetric (Clifford-type number) matri-

ces, 1.e. matrices (a;;), where each a;; is a Clifford-type number satisfying the condition
aj; = —agj,

where @ denotes the conjugate of a.

LEMMA 2.1. Let B(A, B) denote the real part of the trace of A-B, where A, B € sp,+1(p).
Then B(A, B) is the Killing form of sp,11(p) up to a constant factor.

Proof. Since for any Clifford-type numbers a,b € A,, we have Re(a - b) = Re(b - a), the
form

B(A,B) :=TrRe(A - B)
is clearly symmetric: B(A, B) = B(B, A).
Since sp,11(p) is simple, we only need to show that B is invariant under the action

of SP,11(p)- If we represent A and B as real (n + 1)p-dimensional square matrices A
and B, then we obtain

("Jrl P n

ReTr(A- B) = Tr = > Y AlLBE,

i,j=1 k=0

where A = (A;;) and A;; = A), +e1Aj;+---+e, A}, and similarly for B. Since Tr(A-B)
is invariant under O[(n + 1)p] D SP,+1(p), we have our result. m

Let A= (a',...,aP), B = (b',...,bP) € AP, where
aS:x8+elxi+"'+€nfEi, bs=y8+61yf+-~-+6nyi, s=1,...,p.
Considering A? as a real (n + 1)p-dimensional space, we have

(A B) = %Z( 4 b —sz

i=1 =1 5=0
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Considering A? as a “Clifford-type number” p-space, we have
P
(A,B) =) a't'.
i=1

It is easy to check that

(2.1) (A,B) = (A, B) + f:exA,Be».

i=1

THEOREM 2.1. The sum Yy ., (A, Be;)? is invariant under the action of SP,i1(p) x
SP,41(1).
Proof. SP,11(p) is defined as the set of all endomorphisms of A}, which preserve the
“Clifford-type symplectic” product (A, B) = >V, a’b’. Since (A, B) = 1[(A, B)+(B, A)],
the inner product (,) is invariant under the action of SP,,11(p).

SP,+1(1) is the set of all unit Clifford-type numbers. Let A € SP,;11(1). By a
straightforward calculation one can show that

(AX, BA) = (BX, AX) = [A[*(A, B) = |A[*(B, A).

Thus (,) is invariant under SP,1(p) X SP,4+1(1). m

The group SP,+1(p) X SP,+1(1) acts transitively on the set of all unit vectors in A2,
hence in the sum (2.1) we may assume that A = (a',0,...,0).

REMARK 2.1. If A and B are unit vectors then > ., (A, Be;)? < 1.

Proof. Since, by assumption,

€; = —e;, e;ej = ey, €€ = —kepy,
we have

(eiej)(eiej) = —(Lem)(xem) = *(em)Q =+1.
Moreover (A, Be;) € Rfori=1,...,n. Thus

I(4, B)II* = (A, B)(A,B) = (A, B)” + )_ (4, Bes) < || A|*|| BJ]*.

i=1
Since ||A|| = ||B|| = 1 and (A4, B)> > 0, we obtain the required inequality. m
Define the Clifford-type projective space A, PP as
A PP = APTL A%
with the group A} := {a € A,, : a # 0} acting by right multiplication.
NOTE. For the complex projective space CPP we assume that p = 2m > 4, for the

quaternionic projective space HPP we assume that p = 4m > 8 and for the octonionic
projective space QPP we have p = 8m = 16.

A point of A,PP represents a Clifford-type line v in AP*!. The line v can be
identified with the group SP,;1(1). The subgroup of SP,i(p + 1) stabilizing v is
SPp11(p) x SP,4+1(1). This description gives A, PP the structure of the symmetric space
SPui1(p+1)/SPyy1(p) x SP,11(1) whose holonomy group equals SP,,1(p) X SP,+1(1).
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DEFINITION 2.1. Let M = A,P? and z € M. For any unit vectors A and B in T, M
define the “angle” function «(A, B), 0 < a(A, B) < m/2, by the equality
cos? (A, B) := Z (A, Be;)?.
i=1
REMARK 2.2. a(A, B) is well defined since it is independent of the choice of a Clifford-
type structure on T, M (see the definition of SP,11(p) X SP,4+1(1)).

We shall now calculate the sectional curvature K of the Clifford-type projective space
M in terms of a. Choose an almost Clifford-type structure on 7, M for x € M, and
given an element A in T, M write A = (a',...,aP) as an element of A?. Then there is a
representation of A as an element of SP,1(p+ 1) by the skew-symmetric Clifford-type
number matrix (a;;), where

ayp=—ap =a"' fori=23,...,p+1
and a;; = 0 otherwise (see e.g. [28]).
LEMMA 2.2. For A, B € T, M we have
(2.2) B([A, B, [A, B)]) = 2[(A, B)> — (A, B)(B, A) + (B, A)* — (A, A)(B, B)].

Proof. Using the following representation of A = (a',...,a?) and B = (b',...,bP) as
elements of AP:

0 a' a® ... a?
—al 0 0

A—A=|-a2 0 0 0 [ €spnyi(p+1),
—a? 0 0 ... 0

0 bt vr ...

b1 0 0 ... 0
B—B=|-v20 0 ... 0 € spny1(p+1)
- 0 0 ... 0

and the equality (4, B)(B, A) = (B, A)(A, B), which is easy to check, (2.2) is obtained
by a straightforward calculation. m

LEMMA 2.3. If A and B are orthonormal (as real vectors, i.e. (A,B) =0, (4, A) =
(B,B) =1) in T, M, then

B([A, B],[A, B])) = 2-[3(A, B)* —1].
Proof. Since
(A, Aey) = -+ = (A, Ae,) =0, (B,Ae;) =—(A,Be;), i=1,...,n,

for any A, B € AP, the lemma follows immediately from Lemma 2.2. m
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THEOREM 2.2. Let M = A, PP, x € M, and let A and B be two orthonormal vectors in
T, M. Furthermore, let K denote the sectional curvature of M. Then
(2.3) 0<K(A,B)=1[1+3cos’a(4,B)] < 1.
Proof. For a symmetric space,
K(A, B) = —cB([4, B), [4, B)),
where ¢ is a positive real number (see e.g. [17]). By Lemma 2.3 we have
K(A, B) = 2c[1 — 3(A, B)?].

Now, for the orthonormal vectors A and B, it is straightforward to show that

(A,B)> = —(A, Be;)” — -+ — (A, Bey,)® = —cos® a(A, B).

Hence K(A, B) = 2c[1+3 cos? a(A, B)]. The latter function attains a maximum of 8c when
A = Bej. On the other hand, the sectional curvature of M with the usual Riemannian
metric attains a maximum of 1 (see e.g. [17]),s0 c=1/8. m

IT1.3. Quaternionic and octonionic manifolds with restricted curvature. We
are going to prove the following generalization of the Klingenberg theorem 1.2:

THEOREM 3.1. Let M be a compact quaternionic (resp. octonionic) manifold of real
dimension 4n > 8 (resp. 8n = 16). Assume that for all 2-planes o tangent to M, the
sectional curvature K (o) satisfies the inequality

9/16 < K(0)/K;la(o)] <1,

where K1[a(o)] is expressed by the formula (1.1), p. 23. Then M has the same integral
cohomology ring as HP™ (resp. OP™).

For the notation and definitions of this part we refer to [15-17].
Let M be an m-dimensional complete and simply connected Riemannian manifold
and let G = {p(s); 0 < s < oo} be a geodesic ray in M, parametrized by arc length.

DEFINITION 3.1 ([15]). For n =1,3,7 we say that G satisfies condition (II,n) if

1. there are no conjugate points in [0, 7),

2. there are n conjugate points in [7r, %TF),

3. there are no conjugate points in [%w, 27r),

4. there are A\ conjugate points in [27, %w), A>n+1.

According to [15, 16] condition (II,n) is satisfied for any geodesic ray G in: the
complex projective space (n = 1), quaternionic projective space (n = 3) and octonionic
projective space (n = 7).

THEOREM 3.2. Let M be a quaternionic (resp. octonionic) manifold of dimension 4n
(resp. 8n), G a geodesic ray on M, Gy the initial geodesic segment of length 2#/\/5 with
0 = 9/16 (according to Definition 3.1). Assume that the sectional curvature K (o) of each
plane section o tangent to Gy satisfies

(3.1) § < K(o)/Ki|a(o)] < 1.

Then G satisfies (I1,3) (resp. II,7).
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Proof. The idea of the proof is analogous to that of Proposition 3.3 in [15]. We will use
Theorem 2.2.
First of all let us rewrite the inequalities (3.1) in the form

(3.2) 15 < 5K [a(0)] < K(0) < Ki[a(o)] < 1

because
1/4 < Kjla(o)] < 1.

Let G, be a geodesic segment of length 27/4/5 in the quaternionic (resp. octonionic)
projective space M’ = HP" (resp. M’ = OP™). There exists an isometry I, compatible
with ¢, 7 and k (eq, ..., e7), mapping the tangent space at the initial point of G onto the
tangent space at the initial point of G{; which carries the initial direction of Gy to the
initial direction of GY,.

The isometry I gives rise to a 1-1 correspondence between the plane section ¢ tangent
to G and the plane section ¢’ = I(0) tangent to G{,.

Since a(o) and a(o’) are invariant under the action of Sp(n) x Sp(1) (= SPs(n) x
SPy(1)) (resp. SPs(n) x SPs(1)) and SP,41(p) C SO[(n+ 1)p|, they are invariant under
parallel translation along G and G, respectively.

For the complex projective space CP" with the usual Riemannian metric, the curva-
ture K (o) of o depends only on the angle a(c0) and is given by

K(o) = Ki[o(0)] = L[1 + 3 cos® a(0)]

(see [17], [29]). By Theorem 2.2, for quaternionic and octonionic projective spaces
K[a(o)] reduces to the sectional curvature K (o) (see (2.3), p. 26).
The inequality K (o) < Kj[a(o)] of (3.2) yields

K(0) < Ki|a(o)] = Ki[a(Io)] = K'(I0).

Now we need Lemma 3.1 of [15, p. 538]. Let M and M’ be Riemannian manifolds of
the same dimension n. Let G = {p(s)} and G’ = {p(s)}, s € [0, a], be geodesic segments
in M and M’, respectively, parametrized by arc length. Let I : M, — M;/(o) be an
isometry which carries the initial direction of G into the initial direction of G’. Then I
determines an isometry I of M, onto Mz’),(s): map My, by parallel translation along
G onto Mgy, apply I : My — M;I)'(o)’ and use parallel translation along G’. This
isometry I : M) — M;/;'(s) induces a 1-1 map of 2-planes 0 C M), tangent to G, onto
2-planes ¢’ C M;,(S), tangent to G’, which will also be denoted by I. With this notation
we have the following

LEMMA 3.1. Let M and M’ be Riemannian manifolds of the same dimension. Denote
by K and K' the Riemannian curvatures of M and M’, respectively. If K(o) < K'(Io)
then

index G’ > index G.

Since G, has no conjugate points in [0, 7), hence has index 0, also G has index 0,
hence no conjugate points in that interval.

Since GY has 3 (resp. 7) conjugate points in [r,7/v/3), Gy has at most 3 (resp. 7)
conjugate points in [, 7/V/3).
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Now, let M" be the quaternionic (resp. octonionic) projective space obtained from
M’ by multiplying the usual metric by 1/v/6 > 1 and let K" be its curvature. Let Gf
be a geodesic of length 27/ V4 in M" and introduce the isometry I as before. Then
the inequality 6 K[a(0)] < K(o) of (3.2) can be rewritten as K" (Io) < K (o), because
Kila(o)] = Kh|a(lo)] = K'(Io) = (1/6)K" (I0).

Since G has 3 (resp. 7) conjugate points in [0,7/+/9), Gy has exactly 3 (resp. 7) con-
jugate points in [0, 7/v/8). By a similar argument we conclude that G has no conjugate
points in [7/v/§,27) and 4n — 3 (resp. 8n — 7) conjugate points in [27, 27/+/3).

Putting § = 9/16 yields the assertion of the theorem. m

Let us recall the following theorem due to Klingenberg [16, p. 338]:

THEOREM 3.3. Let M be a complete and simply connected Riemannian manifold of real
dimension (k + 1)n with n > 2 and k = 3 or 7. Assume that there is a point xy in
M such that condition (I1,k) holds for all geodesic rays starting from xy. Furthermore,
assume that k+ X > m = dim M. Then M has the same integral cohomology ring as the
symmetric space HP" for k = 3 and QP" for k =7.

Using the above theorem we obtain the final result, i.e. Theorem 3.1.

Proof of Theorem 3.1. Theorem 3.1 follows from Theorems 3.2 and 3.3, by noting from
the proof of Theorem 3.2 that A =4n — 3 (resp. A=8n—17). m

IV. Quaternionic condition for the existence of
4-dimensional locally conformally flat almost Kahler manifolds*

IV.1. Introduction. Using the fundamental notions of quaternionic analysis we will
show that there are no 4-dimensional almost K&hler manifolds which are locally confor-
mally flat with a metric of a special form.

A basic question in quaternionic analysis is the proper generalization of the notion of
holomorphy. At the outset it may not be clear which of several conditions, equivalent for
holomorphic mappings of complex numbers, can best be generalized to the quaternionic
skew field H.

A typical element of H can be written as
qg:=w+ir+jy+kz, w,x,y,z€R,

and the quaternionic units satisfy i> = j2 = k> = ijk = —1. The conjugate of ¢ is
defined by
q:=w—1ix — jy — kz
and the modulus (norm) by
lgli* :=q-7=7-q=w”+a*+y* + 2%

The norm can be used to express the inverse element: for ¢ € H, ¢ # 0, we have

-1 q
q = 179
lall?

* Editors’ note: This chapter also appeared in [20].
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The following relation is easy to check:

M 2=9"9, q@,q €H

DEFINITION 1.1. A function f : H — H is called (left) differentiable at g if the limit
df
Y (q) = lim h~! h) —
ag\ 0 = i kI f g+ R) = f9)]

exists.

It is the most natural definition at first sight but it leads to a very restricted class of
functions:

THEOREM 1.1. If df/dq ezists, then f(q) = a+ gb, a,b € H.

Quaternions do not commute, hence a reasonable generalization of the term a,z"
from the complex case is

a0qaiq---qan+1, a; €M, i=0,1,...,n+1.

But the definition of holomorphy using sums of such terms leads to a quite general
class of functions, namely to all the real-analytic mappings from R* to R*.

In 1935 R. Fueter [10] proposed a definition of “regularity” for quaternionic functions
via an analogue of the Cauchy-Riemann equations. The class of Fueter regular functions
seems in many ways to express very well the spirit of complex analysis in the quaternionic
context, as many classical results (e.g. Cauchy’s integral formula, Morera’s theorem, the
Laurent expansion etc.) carry over in a more or less natural way [31, 32]. But, because of
the non-commutativity of quaternions, many properties of holomorphic functions cannot
be generalized to Fueter regular functions. For instance, the composition of two regular
functions is not, in general, regular, so we cannot define a “quaternionic” manifold via
Fueter regular transition functions. Nevertheless, this theory is still being developed.

IV.2. Basic notions and Main Theorem*. Let M?" be a real C°°-manifold of
dimension 2n endowed with an almost complex structure J and a Riemannian metric g.
If the metric ¢ is invariant under the action of J, i.e.

g(JX,JY)=g(X,Y)

for any vector fields X and Y on M?", then (M?",J,g) is called an almost Hermitian
manifold.
Define the fundamental 2-form {2 by

NX,Y):=g(X,JY).
An almost Hermitian manifold (M?2", J, g, £2) is said to be almost Kdhler if (2 is a closed
form, i.e. df2 =0.
Suppose that n = 2.

Recall that a Riemannian manifold (M*, g) is called locally conformally flat if for
every point py € M* there exists a system of local coordinates (Upy; w, x,y, z) such that

* Editors’ note: Sections IV.2-1V.5 also appeared in [20].
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the metric g is expressed by
(8) 9= go(p)[dw® + da® + dy* + d=*],  p € Uy,

where g is a real positive C'°°-function defined in U, .
Our aim is to prove
MAIN THEOREM. A 4-dimensional almost Kdhler manifold does not admit any locally
conformally flat Riemannian metric of the form
go(w,,y,2) = go(r), 1°:=w’ +2° +y* + 2%
where go(r) is an analytic function in r different from a constant.
We first prove

Basic LEMMA. If (M*,J, g, (2) is a 4-dimensional almost Kihler and locally conformally
flat manifold, then go (defined by (g)) is the modulus of a quaternionic left (right) regular
function in the sense of Fueter [10] uniquely determined by J and S2.

IV.3. Proof of Basic Lemma. Let us denote by the same letters the matrices g, J and
{2 with respect to the coordinate basis. These matrices satisfy the equality

g-J=10.
The metric g, by assumption, is proportional to the identity, so it has the form
1000
0100
g=90-1=go-
0010
0001
An almost complex structure .J satisfies the condition .J? = —I. This formula and the

fact that {2 is skew-symmetric imply that J is a skew-symmetric and orthogonal 4 x 4
matrix.
It is easy to check that J is of the form

0 a b c 0 a b c
—a 0 c —b —-a 0 —c b
J a or b
() (@) b —c 0 a (b) -b ¢ 0 -—a
—c b —a 0 —c =b a O

with
a®+b*+c* =1
Take a 4 x 4 skew-symmetric orthogonal matrix
0 a b c
—a 0 7 s
—b —r 0 t
—c —s5 =t 0
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The conditions
a2+ b2 42 =1,

aAd+ri4+s2=1,
b+ttt =1,
s+t =1
imply that
a?=t%, =52 =1
So, if t = —a # 0, the orthogonality of the rows gives
as+bt=0, ac—rt=0,

hence

If t = a # 0, we obtain the second matrix. If £ = ¢ = 0, it is again easy to see that the
matrix is of one of the two types (J).
Suppose that J is of the form (Ja). Then

0 a -bec 0 A -BCC

—a 0 ¢ b -A 0 C B
2=go- =

b —¢c 0 a B —-C 0 A

—¢ —b —a 0 -C —-B —-A 0

Since (A/g0)? + (B/g0)? + (C/g0)? = a®> + b*> + ¢ = 1 we get
(3.1) A+ B*+C? =gl
Using the formula (see e.g. [17, p. 36])

d(X,Y,7Z) = %{XQ(K Z2)+YQZ, X))+ Z(X,Y)
- QX Y], 2) - (2, X],Y) - Q[Y, Z], X) },

the condition d{2 = 0 can be written in the form:

0 =3d2(0;,0y,0,) = Ay + B, + C,

0 =3df2(0z, 0y, 0w) = By — Ay + Cy,

0=3d2(0;,0,,04) = Cyp — A, — By,

0 =3d$2(dy,0.,0,) = Cy — B, + Ay,

(3.2)

The system (3.2), although overdetermined, does have solutions. We will show that it
has a nice interpretation in quaternionic analysis.

IV.4. Fueter’s regular functions. Any function F : H — H can be written as
F=Fy+iF, +jF,+ kF;,

where the F; are real-valued. Fj is called the real part of F, and iFy + jF> + kF3 the
imaginary part of F.
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In [10] Fueter introduced the following operators:

516&;1<i+i2+j2+k2> grihtil(i+£i+£j+g>
4\ow Ox Oy 0z )’ & 4\Oow Oz Oy 0z )’
analogous to (% = %(6% + z%) in complex analysis, to generalize the Cauchy—Riemann
equations.

A quaternionic function F is said to be left regular in the sense of Fueter (respectively,
right regular in the sense of Fueter) if it is differentiable in the real variable sense and

(4.1) Olets F =0 (resp. Orignte ' = 0).
Note that the first equation of (4.1) is equivalent to the system

OwFy — 0, Fy — 0yF> — 0, F3 =0,

OwFy + 0, Fy + 0y F3 — 0. F, =0,

OwFs — 0, F5 + 0y Fy + 0.F1 =0,

OwFs + 0, Fy — 0y Fy + 0, Fy = 0.

There are many examples of left and right regular functions. Many papers have been
devoted to studying their properties (see e.g. [18]). Quaternionic generalizations of the
Cauchy theorem, Cauchy integral formula, Taylor series in terms of special polynomials
etc. have been found.

Now we need an important result of [32]. Let v be an unordered set of n integers
{i1,...,in} with 1 < i, < 3; v is determined by three integers ni,ns and nz with
n1 + ng + ng = n, where n; is the number of 1’s in v, ny the number of 2’s, and ng the
number of 3’s. There are 3(n+ 1)(n + 2) such sets v and we denote the set of all of them
by o,.

Let e;, and x;,_ denote ¢, j, k and x,y, z according as %, is 1,2 or 3, respectively. Then
we define the following polynomials:

1
P(q) = D (wei, —wy,) - (wey, —a4,),

where the sum is taken over all n!n;!ny!ng! different orderings of nq 1’s, no 2’s and ng 3’s;
when n =0, so v = (), we take Py(q) = 1.

For example we give the explicit forms of the polynomials P, of the first and second
degrees:

P =wi—x,

Py =wj—y,

P; = wk — z,
P = 5(a® —w) —awi, P = 3(y —w?) —ywj,
P = 2y — wyt — wxj, Pos = yz —wzj — wyk,
P53 =2z —wzi — wxk, P33 = %(22 —w?) — zwk.

In [32] Sudbery proved the following
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PROPOSITION 4.1. Suppose F' is left reqular in a neighbourhood of the origin 0 € H. Then
there is a ball B = B(0,r) in which F(q) is represented by a uniformly convergent series

F(g)=>_> PJ(qa,, a, €H

n=0ve€o,
Let F satisfy the assumptions of Proposition 4.1. Then
3
F(q) =ao+ Zpiai + ZPijaij + Z Pijraijk + - -
i=1 i<y i<j<k
and so
_ 3
F(q) =1ao +Z@Pi Jrzaijpij + Z @ijePijr + -+ .
i=1 i<j i<j<k
Multiplying the above expressions we get
3

(4.2) IF (@)1 = llaoll® + Y _(Piai@io + ao@; P;)
=1

+ > (Pyjaijao + aoai; Pij) + ) Piaia; P;

i<j i,J
+ Z (Pijraijrao + aolijkPijr)
i<j<k
3
+ Z Z(PmamaijPij + Pijal-jdem) + .
m=1 {<j
We are now in a position to complete the proof of the Basic Lemma. Set
(4.3) Fapc(q) :=Ci+ Bj + Ak,

where we have identified ¢ € H with (w,z,y,2) € R*. Then (3.2) is nothing but the
condition that Fspc is left regular in the sense of Fueter. Then, by (3.1), we have

(4.4) |Fagc| = go. =

IV.5. Proof of Main Theorem. Assume that the metric g in question is given by
go(w,,y,2) = go(r), r?:=w?+a?+y®+2%

where go(r) is an analytic function different from a constant in some neighbourhood of
r =0, i.e. we have

(5.1) 9o(r) =bo +bir +bar® + -+ by 4 -

Let us apply equation (4.2) to Fapc defined by (4.3). Combining (4.2), (4.4) and
(5.1) we get

(5.2) bo = ||aoll?,
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3
(53) bl’l" = Z(Piaﬂo —+ aoaipi),
i=1
(5.4) bor? = Z(P ;@0 + agli; Pij) + ZPala]P],
1<j ,J
(5.5) byr? = Z (Pijraijr@o + aolijiPijr)
i<j<k
3
+ Z Z(PmamﬁijPij + P awaum)
m=1i<j

etc. Thus we obtain by > 0. It is easy to verify that equality (5.3) leads to a1, as, a3 = 0,
by = 0. Hence, (5.4) can be rewritten as

(5.6) bor? = Z(Pijaijao + aOEijPij).
i<j
Consider the equality (5.6). Set

dij == aijag = dj; + dj;i+ di;j + dk

(i,j, k denote the quaternionic units) and rewrite (5.6) in the form
by(w? 4+ 22 +y? + 22) = QZRe(Pijdij).
i<j

Then we get
bo(w? + 2% + 3> + 2%) = 2Re { [ (2% — w?) — zwi]di1 } +2Re { [3(y? — w?) — ywj]doa }

+2Re {[1(2* — w?®) — zwk]ds3} + -

= (@ — )y + (o — 0Py + (2 — )y,
Comparing the terms in z2,4? and 22 we obtain by = df; = dJ, = dj; but then

bow? = —3w?by. Thus by = 0 and, as a result of (5.6), a;; = 0.
The equality (5.5) takes the form

bar® = Z (Pijraijrao + ao@ijn Pijr)-
1<j<k
This implies that b3 = 0, a;;, = 0.
Now we will prove that by = 0. We have
(5.7) byr* = Z(Pijklaijklao + ao@jriPijrr).-
There are $(4 + 1)(4 + 2) = 15 polynomials P;j;;. We will write all of them:
P11 = i(wz — x)(wz —z)(wi — x)(wi — z),
Paygo = 55 (wj — )

_ 1
Ps333 = 554

—_
S
<.
I
<
~—
—~
S
. S,
|
<
~—
—~
S
<
I
<
~

1
Pr112 = 55

_ L
P13 = 52 \ Wt —

Pazosz = 57(wj —y)
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1
Pra2s = 55

(wi —z)(
Pi333 = i(wi —xz)(wk — 2)(wk — 2)(wk — )
Passs = 57 (wj — y)(wk — 2)(wk — 2)(wk — 2),
Prizz = g (wi — z)(wi — x)(wj — y)(wj — y),
Pi133 = 57 (wi — ) (wi — x)(wk — 2)(wk — 2),
Paoss = 52 (wj — y)(wj — y)(wk — 2)(wk — 2),
Priss = o (wi — z)(wi — ) (wj — y)(wk — 2),

Piags = 57
Praszz = oz (wi — x)(wj — y)(wk —
The equality (5.7) can be rewritten in the form
by(w? + 22 + 4% 4 2%)? = ZZRe(Pijkldijkl), where  d;jr = a;jkiGo.
Note that
by(w? + 22 + 2 + 24?2 =2 Z Re(P;jridijrt)
= FHlw' + 2+ d) g+ Glwt oyt dB + Flw! + 2t 4 JdSass
+ glw! Il + w0t )
= 35w (di111 + sy + 3333 + di1p + dY 135 + d3a33)
+ 157t d i + 5y Do + 152" d3333-
where
Y = Redijp.
Comparing the terms in =%, y*, 2* and w* we get
byt = %d?111$4;
bay* = %dgzm?fl,
baz" = {5ds3352",
baw* = %w4(d(1)111 + 3999 + d3s33 + dY199 + d3133 + d9933).

Comparing the terms in x2y2, 2222 and y?2% we have
2b42%y% = ﬁ$292d(1)122a 242222 = ix222d?133, 2b49%2°% = iy222d8233.
Then we get

by = by + ba + ba + 75 (195 + Y135 + dBass),
—2by = 15(dY122 + d135 + d5a33)
and finally —2b, = 1204, which is impossible. Thus b4 = 0, a;j1; = 0.
By analogous considerations we obtain by = by =bs=by=---=b, =---=0.
Thus go(r) has to be a constant: go(r) = v/bg, contrary to assumption. m
REMARK 5.1. If J is of the form (Jb) then the proofs of the Basic Lemma and Main

Theorem are similar. One has to replace the left regular quaternionic function in the
sense of Fueter with the right one (see [18, p. 10]).
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IV.6. Examples

EXAMPLE 6.1. Let

1 2 _ 2 2 2 2
T rt=w"+x"+y° +z°.

go(w7 x,Y, Z) =
Then
1
1 2(p) = ——
(6 ) gO(T) (1+T)2

Comparing the right sides of (4.2) and (6.1) we see that
3

ap 7é 0, —2r = Z(Piaido + aodipi),

=1-2r4+3r —4r 4+ (=1)"(n+ 1)r" +---

which is impossible. -
EXAMPLE 6.2. Take
gdmxwwkzvf%ﬁ7 r? =w? +2? +y? + 2%
Then
(6.2) B() = oy = 1= 41— b (D

Comparing the right sides of (4.2) and (6.2) we get agp # 0, a; =0, a;; =0 and

5 3 o
—r° = E (Pijraijrto + aolijiPijr),

i<j<k
which is impossible.
EXAMPLE 6.3. Let
1 2 2 2 2 2
w,T,Y,z2) = —F—, re=w"+x*+y° +2°.
Then
(6.3) 92(7"):#:1—1—7“2—}—%7"34—---

’ 0 1—r2 3 '
Comparing the right sides of (4.2) and (6.3) we have ag # 0, a; = 0 and
(64) 7’2 = Z(Pijaija() + aoaijﬁij).

1<j
Set

dij = a;jap = d?j + d}ji + dfjj + d?jk
and rewrite (6.4) in the form
w?+2? +y? + 22 = QZRe(Pijdij).
1<j
Then we get
w? 4+ 2% 4+ y* + 22 = 2Re { [ (2? — w?) — zwi]di1 }
+2Re { [%(yz — wz) — ywj]d22}
+2Re {[1(2* —w?) — 2wk]ds3} + -
= (@~ )y + (o — 0y + (2 - w?)dy)
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Comparing the terms in z2,4? and 22 we get df; = d9, = dJ; = 1 but then w? = —3w?,

and this is impossible.

EXAMPLE 6.4. Let

1
go(w,z,y,z):m, T2:w2+x2+y2+22.

Then
1
2 2
(6.5) 90(7")*7(1 r2)4—1+4r 4o

Comparing the right sides of (4.2) and (6.5) we obtain ag # 0, a; = 0 and
47“2 = Z(Pijaijdo + aoaijpij).
1<j
As in Example 6.3, we have
2w? + 227 + 2y +22° = Z Re(P;;d;;).
i<j
This time, comparing the terms in 22, 4% and 22, we get ag # 0, a; = 0, d¥; = d3y =
d9; = 4, but then —6w? = 2w?, which is again impossible.
REMARK 6.1. The Poincaré model, i.e. the unit ball B* in R* with the metric
4
g = m(dw2 +da? +dy? +d2?), r?i=w? 4yt 422

is not an almost K&hler manifold.

IV.7. Contribution to the theory of Fueter regular functions. From the proof
of the Main Theorem one may conclude

PROPOSITION 7.1. The Fueter equation (4.1) does not admit any solution with modulus
of the form
IF|=g(r), r*=w’+a®+y*+27%

where g(r) is an analytic function in r different from a constant.

V. On quaternionic Lagrangian submanifolds

V.1. Introduction. In some analogy to the complex case we present here some results
on quaternionic Lagrangian submanifolds. For instance, we give a necessary and suffi-
cient condition for a graph to be quaternionic Lagrangian. We also present the explicit
forms of some characteristic differential equations naturally connected with some type of
quaternionic Lagrangian submanifolds.

Moreover, we show that the immersions which lead to the almost-quaternionic and
Lagrangian submanifolds, respectively, cannot be homotopic. To do it we use the Lich-
nerowicz homotopy invariant K (@) of maps & : M — N between a compact special
almost Hermitian manifold M and an almost K&hler manifold N (see [23, 24]). It turns
out that the idea of the construction of K(®) can be applied to many different contexts.
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Under a suitable general hypothesis a homotopy invariant K¢ , (&) can be considered for
smooth maps @ : (M, g) — (N, h) between Riemannian manifolds which admit “canon-
ically” defined p-forms ¢ € A\’M and n € A\”N playing the role of the Kéhler 2-form
in the complex case. In particular we succeed in applying the Lichnerowicz homotopy
invariant to almost quaternionic-Kéhler manifolds.

V.2. Preliminaries. Recall that H” can be identified with R*" endowed with three
almost complex structures I, J and K satisfying the conditions:

IP=J=K=-1d,
IX :=iX, JX:=jX, KX:=kX forall X cR¥"
where Id stands for the identity mapping in R*".
We treat H® = R*” as an n-dimensional right module over the quaternions H. One

defines a bilinear form (,) on H" as follows: if Q@ = (q1,...,4n), P = (p1,...,pn) € H",
then

n

<Q7P> = % Z(qaﬁa +paaa) = RG(Q, P) = Re Z GaPqy-
a=1

a=1
It is easy to check that
(@ P)=3l(Q.P)+(P,Q).
Then (@, P) is an inner product on H" considered as a 4-dimensional real vector space.

Recall that Sp(n) is the group of automorphisms of the right quaternionic vector
space H" which are unitary with respect to the canonical Hermitian product ( , ).

DEFINITION 2.1. Consider the 2-forms w1, ws and w3 defined by

wi (@, P) = (Q,IP),
w2 (Q, P) := (Q, JP),
ws3(Q, P) := (Q,KP).
Define [27]
2 :=wi ANwy +wo Awg + w3 A ws.

THEOREM 2.1 ([4]). 2 is a well defined 4-form, independent of (I,J, K) and invariant
on the group Sp(n) x Sp(1). Moreover, it is non-degenerate because

Q2" = (2n + 1)lvol(R*™).
(Note that Sp(1) can be identified with the group of unitary quaternions.)

V.3. Lagrangian planes

DEFINITION 3.1 ([22]). An oriented real n-plane ¢ in H" is called Lagrangian if

(3.1) the four subspaces &, 1€, J&, K¢ are totally orthogonal in H".
Note that we may replace (3.1) by the following condition:

(3.2) {2 restricted to ¢ vanishes.
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DEFINITION 3.2. An n-dimensional oriented submanifold M of H" is called a Lagrangian
submanifold of H" if the tangent space to M at each point is Lagrangian.

THEOREM 3.1. Suppose 2 C R"™ is open and f : 2 — R" is a C'-mapping. Let M
denote the graph of f in H® = R" +iR" + jR™ +kR". Then M is Lagrangian if and only
if the Jacobian matriz [0f'/0x;] is symmetric. In particular, if £2 is simply connected,
then M is Lagrangian if and only if f is the gradient field of some potential function
F e C*(0).

Proof. We replace f by its Jacobian f, at some fixed point. Then f, : R® — R" is linear
and its graph is of the form

TM =A{x+ifi(z) +jfe(x) +Ekfu(x); 2 € R"}.

By definition TM is Lagrangian if and only if Jv L TM, Jv L TM and Kv 1. TM for
allveTM.

Suppose v = = + i fu(x) + jf«(z) + kfi(x). Then
Iv=—f.(z) +iz — jfu(z) + kfi(2).

Thus, TM is Lagrangian if and only if — f.(z) + iz — jfu«(x) + kf(x) and &' +if.(2') +
Jfe(@") + kf.(2') are orthogonal for all x,2’ € R™, i.e. if and only if

—(fe(@),2") + (@, fu(@)) = (fe (@), f(@)) + (fi(2), fx(2")) =0,
i.e. if
—(fu(z), 2"y + (z, fu(2')) =0 for all z, 2" € R™.

Consequently, M is Lagrangian if and only if the Jacobian matrix of f is symmetric at
each point of (2. Since {2 is simply connected, this is equivalent to the existence of a
potential function F': 2 - R with VF = f. n

PROPOSITION 3.1. If ¢ C C?" is Lagrangian (in the complex sense) then & C H?" is
Lagrangian as well (in the quaternionic sense).

Proof. Let us first prove the assertion for n = 1. If ¢ C C? then for all uc,vc € & we
have (Iuc,vc)e = 0, where I denotes a complex structure in C2. Denote by (21, z2) the
coordinates in C2. Without loss of generality we can assume that

€ = {(z1,22) € C? 2z = 0}.

We have C2 C H? = C*. Let (q1,q2) denote the coordinates in H?. Without loss of
generality we can assume that

Q=21+ 2], Q2= 23+ 2,
where (I,.J, K := I.J) is a quaternionic structure in H?. Then

E={(q,q2) €eH* q1 = 21, ¢2 = 0}.
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Let ug, vm € §. By the definition of the inner product (, )y we have
(Tum, vi)y = Refi(e1 +iy1)j (2] +iy})} = Re{(iz1 — y1)(jh + jiy))}
= Re{(iz1 — y1)(—jz} — jiy1)}
= Re{—ijz12 —ijiz1yy + jyr1o) + jiyiy, }
= {~kz1a} — jeryy + jyat — kyyry = 0.
Analogously we get
(Jum, va)g = (Kum, vi)y = (Tum, Jvn)y = (Tug, Kva)y = (Jun, Kva)y = 0.

Now, let n > 1. By the definition of ¢ C C?", for all uc,vc € £ we have (Tuc, vc)e= 0.

Denote by (21,...,2n, Zni1,- - 22n) the coordinates in C?". Without loss of generality
we can assume that
f = {(21,212,. . .,Zzn) e (C2n; Zpal == 2op = 0}
Let (q1,---,qn,Qns1,---,q2n) denote the coordinates in H?". We can assume that

q1 = 21+ Zn+1J,
Gn = Zn + 22nJ,
Gnt1 = 22n+1 + Z3n4+1J,
Gn+2 = Z2n+2 + Z3n+2J,
Gon = 23n + ZanJ-
Then
é.: {(Q17~-~a‘Jan+17~-~a(J2n) S H2n7 q1 = Z1y---3qn = Zn,qn+1 :07"'7q2n :O}
Hence, for all uy, vy € € we get
<IUH7'U]H1>H = <JUH7'U]HI>H = <K’LLH,UH>H
= <IUH, JU]HI>H = <IUH,KUH>H = <JUH,KUH>H =0. m
Recall the classical facts (see e.g. [12]):

LEMMA 3.1. Suppose that fi1,..., f, are smooth, real-valued functions on an open set
2 C C" and suppose that dfy, ..., df, are linearly independent at points of M := {z € (2;
fi(z) = -+ = fu(2) = 0}. Then the submanifold M is Lagrangian if and only if all the

Poisson brackets

N~ (01 0fk _ 0F 0fk _ . N~ (005 0k 0f; Of
Ui i} = ; (3IJ1 oy 33/; 3961) B 2z; (33; 0z 3ZZ 351)

vanish on M.

THEOREM 3.2. Suppose that F € C?(£2) with 2°°*® C R", F : 2 — R. Let f := VF
denote the gradient field and let M denote the graph of f in C" = R" & iR"™. Then M
(with the correct orientation) is Lagrangian if and only if

(3.3) Im{detc({ +iHess F)} = 0.
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REMARK 3.2. By straightforward calculations the condition (3.3) can be rewritten in the
following “real” form:

o forn=1: (F,, =0) AF =0,

o forn=2: (Fyy +F,y =0) AF =0,

o for n = 3: AF = det(Hess F') (Monge—Ampére equation),

o for n =4:

AF = det(Hess F)123 + det(Hess F)o34 + det(Hess F')134 + det(Hess F') 124,

where
Fii Fip Fis
det(HeSSF)lgg = det F21 F22 F23 5
F3y I3y IF33
Fuy Fup Fy3 Fyy Fyz Foy
det(HessF)234 = det F24 F22 F23 = det F32 F33 F34 5
F3y I3y IF33 Fup Fuz Fyy
Fii Fuy Fis Fi1 Fiz Fuiy
det(Hess F)134 := det | Fyy Fyq Fyz | =det | Fyy Fz3 Fiy |,
F3y I3y IF33 Fyy Fuz Fyy
Fiy Fip Fuy
det(HeSS F)124 = det F21 F22 F24
Fyy Fup Fyy

The quaternionic version of Theorem 3.2 looks as follows:

THEOREM 3.3. Suppose that F € C?(Q2) with 2°P°" C R", n =1,2,3,4 (F: 2 — R).
Let G := %F and g := VG denote the gradient field and let M, denote the graph of g
in H" = R" @ iR" @ jR" & kR"™, n =1,2,3,4. Then M, (with the correct orientation) is
Lagrangian if and only if
(3.4)  Im;{detH(I 4+ iHessG + jHess G + k Hess G)}
=Im;{detH(I + iHess G + j Hess G + k Hess G) }
= Imy{det H(I + i Hess G + j Hess G + kHess G)} = 0.
In real variables the condition (3.4) looks as follows:
e forn=1:. AG=AF =0,
o forn=2: ANG=AF =0,
o for n = 3: AG = det(HessG), AF = 3det(Hess F),
o forn =4:
AG = det(Hess G)123 + det(Hess G)a34 + det(Hess G)134 + det(Hess G) 124,
AF = 3[det(Hess F)1235 + det(Hess F')234 + det(Hess F')134 + det(Hess F')124].

Proof. This follows by straightforward calculations. m
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V.4. Ellipticity. Suppose that F is a real-valued function defined on a domain
2 C R" and consider the gradient map f := VF : Q —R" f= (8—F(x), e, %—i(w))

ow
with the Jacobian matrix f, = F, = Hess F' = ( B, 8 ) at each point.1
Assume that the following relations are satisfied:
Re{dety(I +if. +jfc+kf)} >0,
(w.1) Im;{detu(I +if. + jfe +kfo)} =0,
Im;{detu(I +ifs + jfc +kf)} =0,
Img{detg(I +ifs +jfu +kf)} =0.

The first inequality determines the appropriate orientation.
Consider a scalar function U on {2 and set u := VU : {2 — R. Then

Uy = Uy = Hess U.

Assuming that F' is a given solution of (4.1) we consider the linearized operators defined
as follows:

L% = Tmy, %{detH[I Fi(fe 4 tus) + J(fr + tus) + k(fi +tus)] o,
L, := Im; %{detH[IJr i(fi 4 tus) + J(fo + tus) + k(fio +tus)] Fp—o,

L = Ty S {detall + (. + tua) + (e + ) + K(fe + )]}
on all such functions U. For simplicity, set
A=T+ife +ifs+kfs
and observe that
detg (A + itu, + jtu. + ktu,) = detg{ A[I + (it + jt + kt)] A" u,}
= (dety A)(detu[l + (it + jt + kt) A" u,]).
Consequently,

d
pn detm(A + itu, + jtu, + ktu,)j—o = (dety A)(detu[l + (it + jt + kt) A" '] ji—0)

= (dety A) Tr[(i 4+ j + k) A" u,]
= Tr[(i +j + k) A~ (det A)u.].
Define
A* = A" det A.
Then
Tr[(i +j + k) A7 (det A)u,] = Tr[(i + j + k) A%u.).
Since u, is a real n X n matrix, we have
Imy ;1 {Tr[(i + j + k) A w.]} = Te{Imy, ;5 [(i + 7 + k) A us]} = Tr[Re(A%uy)).
Hence the linearization can be written as
Lio(U) = Lj(U) = Lh(U) = Lp(U),  Lp(U) = Te[Re(A"w.)] = Tr[Re(a"U.)]
and the inequality from (4.1) can be expressed as det A > 0.
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Observe that Ly (= Tr[Re(A*U.,.)]) is elliptic if and only if the matrix Re A* is
positive definite.
However, after an appropriate orthogonal change of basis the symmetric matrix

0*F
f+ = Fyx = Hess F' = (8%8@)

becomes diagonal and we can write

L+dA + A + kY 0 0 ... 0
y 0 L+ida +jA + kA3 0 ... 0
0 0 0 ... 14\, + 5\, + KN/
Then
A" =A"1det A
1
THix TN TRAY 0 0 - ’
1
_ 0 [Erpremsvens VAN N 0 det A.
1
0 0 0 TFixn TiA, RN

Since det A > 0, we obtain

1
[EDVERGVAERNOVHE 0 0 ... 0
-1
Re A* — 0 EEy et LI 0 det A.
1
’ 0 0 A PR

Thus we proved the following

THEOREM 4.1. The linearization of the special Lagrangian operator at any solution F of
the system
Re{dety (I +if.+jfc +kfe)} >0,

Im; ;e {detu (I +if. +jfe+kf)} =0

is a homogeneous second order elliptic operator

Z” i O°U
LF(U) = a’j(x) 81’7’83}‘]’
i,j=1

where (a¥(x)) is a positive definite symmetric matriz at each point.

V.5. Homotopic quaternionic mappings. Let us recall

DEFINITION 5.1. Let (M,g) be a 4n-dimensional Riemannian manifold. An almost
quaternionic structure on M is defined as a covering {U;} of the manifold with two
almost complex structures I; and .J; such that I;.JJ; = —.J;I; and the 3-dimensional vector
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spaces of endomorphisms generated by I;, J; and K, := I, J;:
Endy, := {al; + BJ; + 7Ki; a, 8,7 € R}

are the same on the whole manifold.
Moreover, a Riemannian metric g is quaternionic-Hermitian if g is Hermitian for each

I and J.

DEFINITION 5.2. The standard enhanced quaternionic structure of H" is a 3-dimensional
subspace (g of the space Endg H" generated by (any) such triple (I, J, K) := (I1, I2, I3).
We call (I, I, I3) an admissible hypercomplez base of Q.

DEFINITION 5.3. Let (1,15, I3) € Qo. Consider the 2-forms wy,ws and ws defined by
wU(X,Y) = (X 1Y),  wa(X,Y) = g(X,JY), ws(X,Y):=g(X,KY),
where X and Y are arbitrary C°°-vector fields on M. Next, define
2 :=w ANwy +wo ANwg + w3 A ws.

DEFINITION 5.4. Let (M*™, g) and (N*", h) be almost-quaternionic-Hermitian manifolds
and @ : (M*™ g) — (N*" h) a smooth map. Then @ is called Q-holomorphic if for every
p € M*™ and each hypercomplex base (I{, I3, I3) € Q)" there exists a hypercomplex base
(I, I, I5) € Qg(p) such that

(5.1) Io(P.), = (45*)17[/

I a=1,23.
EXAMPLE 5.1. Any 4-dimensional, oriented, Riemannian manifold can be considered
as an almost-quaternionic-K#hler manifold. A diffeomorphism ¢ : M* — M* is Q-

holomorphic iff it preserves the fixed orientation.

REMARK 5.1. Let (N*", h) be an almost-quaternionic-Hermitian (resp. Kihler) manifold
and M*™ any smooth, orientable 4m-dimensional (resp. <4n-dimensional manifold).
Suppose that & : M*™* — N*" is a smooth immersion and for every p € M*™ the space
N .

Consider on M*™ the Riemannian metric g := @*h. Then there is a unique (natu-
ral) quaternionic structure @ on M*™ such that (M*™, g) is an almost-quaternionic-
Hermitian (resp. Kihler) manifold endowed with the fundamental 4-form 2 := @* QN
and @ : (M*™, g) — (N*" h) is a Q-holomorphic map. The manifold (M*™ &*h) is
called an immersed almost-quaternionic submanifold of (N*" h).

®,.(T,M*™) is a quaternionic subspace of Ty

Now, we need the Lichnerowicz homotopy invariant K (®):

DEFINITION 5.5 ([23]). Let (M%™, g) and (N%",h) be almost-quaternionic-Hermitian
manifolds with dimg M*™ = 4m and dimg N** = 4n. Suppose that M*™ is compact.
Assume that @ : (M*™ g) — (N4" h) is a smooth mapping. Define

K(®) := §M<QM, & Q) dV,
where (23, and (25 represent the fundamental 4-forms on M and N, respectively.

THEOREM 5.1 ([23, 24]). Let (M*™,g) and (N*", h) be two almost-quaternionic-Kdihler
manifolds (M*™ being compact). Suppose that @ : (M*™ g) — (N4" h) is a smooth
map. Then K(P) is a smooth homotopy invariant.
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THEOREM 5.2 ([18]). Let (M*™, g) and (N*",h) be almost-quaternionic-Kdihler mani-
folds. Suppose that @ : (M*™ g) — (N*" h) is a Q-holomorphic isometric mapping.
Then
K(®) = 12m(2m + 1)Vol(M).

In particular @ cannot be homotopic to a constant map.
Proof. Let p € M*™. Choose orthonormal bases of the form

(er, I, Iher, Iher, ... em, I em, Ihem, Iiem),
and

(fi, nfu, L frs Isfas e ooy fos Dt frs D2 fos I3 f),
in T,M*™ and Ty, N*", respectively, where (I{,1},1%) is a hypercomplex base of Q}'
and (Iy, I5, I3) is a hypercomplex base of Qg(p), and condition (5.1) holds.

Suppose that @ is Q-holomorphic. It is clear that 2™ = @*2Y and (M ¢* N )p
= [|22™]|2. Notice that the only components of 22/ which are different from 0 are those
that correspond (up to permutations) to the 4-ples of vectors:

(52) (et;IaetaesaIaes), (Ibetajcetajbesajces) for t,S: 17"~7m7 t;éS
and
(5.3) (et, Inet, Ines, Ices) fort,s=1,....,m

for any circular permutation (a,b,c) of (1,2,3). It is easy to see that, up to permuta-
tioms, there are 3m(m — 1) different components of the type (5.2), 3m(m — 1) different
components of the type (5.3) with ¢t # s and m different components of the type (5.3)
with ¢ = s. By a simple calculation we get

Q(eg, e, es, Ines) = 2(Ipey, Leer, Ines, Ices) = (e, Loer, Ines, Ices) =2 fort # s
and
$2(et, Lues, Iper, Icer) = 6.
Since [|2M |2 = 3m(m — 1)22 + 3m(m — 1)2> + m6* = 12m(2m + 1), by integrating we
get the required formula. =

REMARK 5.2. Theorem 5.2, with a slight modification, holds when & is a conformal
immersion.

Let us recall that 4-dimensional immersed quaternionic submanifolds M* of a quater-
nionic-K#hler manifold (N4" h), n > 1, are totally geodesic (see e.g. [33]) and semi-
conformally flat. In the case when the scalar curvature of (N4", h) is positive the only
possible types for compact M* are HP! = S* and CP? (see [26]).

COROLLARY 5.1. Every immersed quaternionic submanifold of (N*" h) which is isomet-
ric to HIP! defines a non-trivial element in the group my(N*").

REMARK 5.3. The above fact was well known in the case when (N*" h) is the quater-
nionic projective space HP" and ¢ : HP! — HP" is a canonical immersion of a quater-
nionic projective space (see [36, p. 30]).

Let us introduce yet the following
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DEFINITION 5.6. Let (N%" h) be an almost-quaternionic-Hermitian manifold an M4™
any smooth 4m-dimensional manifold. Suppose that & : M*™ — N** is a smooth
immersion. We will say that (M*™, &) is an immersed Lagrangian submanifold of (N*", h)
if at every point p € M*™ and for any hypercomplex base (I, I, I3) € Qg(p) the four
subspaces @, (T,M*™), 1,®.(T,M*™), a = 1,2,3, are totally orthogonal in To(p) N4,

Then, we have

THEOREM 5.3 ([18]). Let (N*",h) be an almost-quaternionic-Kéhler manifold. Sup-
pose that M*™ is a compact, oriented, 4m-dimensional manifold (m < n). Let ®; :
M4 — N4 and &y : M*™ — N*' be two immersions such that (M*™ &) and
(M*™ &,) are almost-quaternionic and Lagrangian, respectively. Then &, and &5 cannot
be homotopic.

Proof. By Remark 5.1 we can consider M*™ as an almost-quaternionic-Kéhler manifold
with the Riemannian metric g := ®}h and the almost quaternionic structure Q@ natu-
rally induced by ®;. By Definition 5.6 we get ®;(2%) = 0. Hence K(®2) = 0. On the
other hand, by Remark 5.1 and Theorem 5.2 we have K(®;) # 0. Then the statement
follows by Theorem 5.1. m
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Erratum to the paper
“On Fueter-Hurwitz regular mappings”
by Wiestaw Kroélikowski
(Dissertationes Mathematicae 353 (1996))

Theorem 2.6.2 on page 58 is false. To obtain a correct version one has to add the following
assumption:

Re[D(Gpm — imGo)] =0,
where
Gy = (P, Po) + (P, P1) + (P, P2) + K(DPrr,, P3),
m=0,1,2,3, i9=1, i1 =14, ix =J, i3 =k,
i, j, k are the quaternionic units and the operator D is defined by
D := (9o — idh — jO» — kO3).

The correct version and its proof are contained in my book The Fueter—Hurwitz Op-
erator and o Clifford-type Structure submitted to Springer Lecture Notes.



