
1. Introduction

We solve the global Cauchy problem for the Dirac equation in Sobolev and weighted

Sobolev spaces. This is first done on classes of globally hyperbolic asymptotically flat

space-times with weak regularity and fall-off at infinity. The theorems are proved for

general first order symmetric hyperbolic systems and then applied to Dirac’s equation.

They are also valid for space-times compact in space or admitting several asymptotically

flat ends. Then we consider in some detail the Schwarzschild and Kerr black holes. They

can be described in such a way that the previous theorems are immediately applicable.

We also choose to consider them from the point of view of an observer static at infinity.

The horizon then appears as a boundary for the spacelike geometry. We prove similar

theorems in this situation.

A space-time is a pair (M, g) where M is a four dimensional manifold without

boundary and g is a Lorentzian metric, i.e. a symmetric two-form onM with signature
(+ − −−). All the space-times we consider are globally hyperbolic. The notion of global
hyperbolicity is naturally required for the concept of Cauchy problem to make sense. To

be more precise, let us consider some relativistic field equation (E) on a space-time (M, g);

the Cauchy problem can be formulated as follows: prove that if we specify the values of

the field at some initial time t0, then the solution of (E) can be propagated continuously in

time, from these initial data, onto the whole space-time and the field is thus everywhere

uniquely determined by its values at time t0. There are two implicit assumptions in this

formulation: firstly, there exists a time function t globally defined on M, secondly, the
information contained in the hypersurface Σt0 := {t = t0} can be propagated via the field
equation on the whole space-time. Equation (E) being relativistic, this means that any

point of M can be reached from Σt0 along a non-spacelike curve (in fact timelike since

M is assumed to have no boundary). The existence of such a surface, called a Cauchy
hypersurface, is equivalent to global hyperbolicity.

Jean Leray introduced the notion of global hyperbolicity in 1952 (see [41]). In 1970,

Robert Geroch [22] showed that Leray’s definition is equivalent to the existence of a

Cauchy hypersurface. The work of Geroch establishes that a globally hyperbolic space-

time (M, g) has a very precise structure:

• it admits a globally defined time function t,
• the level hypersurfaces Σt of t define a foliation ofM, all Σt are spacelike Cauchy

hypersurfaces and are homeomorphic to a given 3-manifold Σ.

Hence (M, g) possesses two orthogonal foliations: {Σt}t and the congruence of the
integral lines of ta, the unit timelike future-oriented vector field normal to the Σt. This

[5]
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endowsM with a product structureM≃ Rt×Σ. The metric g and covariant derivative
∇ can also be decomposed into timelike and spacelike parts by projecting them along
the two foliations. Field equations on (M, g) are then naturally expressed as evolution

equations on Rt ×Σ. This is the principle of the 3 + 1 decomposition of a space-time: it
is nothing but the complete use of the structure of globally hyperbolic space-times. This

3 + 1 decomposition is also referred to as the ADM decomposition because of the way

Arnowitt, Deser and Misner formalized and used it to obtain a Hamiltonian formulation

of general relativity (see R. Arnowitt, S. Deser, C. W. Misner [1] for a review of their

work, see also C. W. Misner, K. Thorne, J. A. Wheeler [44], Chapter 21).

Another important property of globally hyperbolic space-times is that they admit a

spin structure (1). This is a consequence of the product structure M ≃ Rt × Σ and of
the fact that Σ is 3-dimensional and therefore parallelizable if orientable (see E. Stiefel

1936 [59] and R. P. Geroch 1968 [20] and 1970 [21]). In 1981 and 1982, A. Sen ([56] and

[57]) described the 3 + 1 decomposition of spinor field equations on globally hyperbolic

space-times using Penrose’s abstract indices and two-spinor formalism. He applied this

technique to obtain formulations as evolution equations of the neutrino equation, the

spinor form of Maxwell’s equations and the Dirac form of spin 3/2 massless field equa-

tions. An important feature of Sen’s work is the use of the vector field ta: it provides a

natural embedding of the restriction to a hypersurface Σt of the SL(2,C) spin bundle of

M into the SU(2) spin bundle intrinsic to the geometry of Σt. The spin bundle on M
thus inherits a hermitian structure. The quantity conserved by the evolution for a spinor

field equation (Dirac and spin 3/2) is the L2 norm of the solution on Σt induced by this

hermitian structure.

The present work is entirely based on such 3 + 1 decomposition techniques. It is

organized in five parts:

Chapter 2. We recall in details the 3 + 1 decomposition of globally hyperbolic space-

times, leaving the purely spinorial aspects until the next chapter. In a recent contribution

in collaboration with L. J. Mason [42], we used this decomposition to define in terms of

weighted Sobolev spaces some classes of globally hyperbolic asymptotically flat space-

times. We reformulate these definitions using the numbering of weighted Sobolev spaces

proposed by Robert Bartnik [5] which has the advantage of indicating explicitly the rate

of fall-off at spacelike infinity.

Chapter 3. In the literature, one finds essentially two ways of expressing the Dirac

equation: one in terms of Dirac spinors and Clifford products by the vectors of a Lorentz

frame (which are interpreted as multiplications by Dirac matrices via a choice of spin-

frame) and the other using the two-spinor formalism and abstract indices. We describe

Dirac’s equation and its 3+1 decomposition on globally hyperbolic space-times using each

(1) We have chosen to define space-times as four dimensional manifolds endowed with a
Lorentzian metric. One can perfectly well consider a space-timeM of dimension n+ 1, for any
positive integer n, with a metric of signature (+ − . . .−). Although global hyperbolicity will
always guarantee the existence of a product structureM≃ Rt ×Σ, it will not in general entail
the existence of a spin structure. For example, if Σ is the n-sphere, it is only parallelizable for
n = 1, 3 and 7.
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of the two formalisms. We emphasize as often as possible the link between the fundamental

structures of each framework. In particular, the expression of Dirac’s equation in the two-

spinor formalism, when translated into the language of Dirac spinors, corresponds to a

particular form of Dirac matrices. We derive their general expression; for a natural choice

of spin-frame, this gives one of the standard choices for Dirac matrices. After performing

the 3 + 1 decomposition of the Dirac equation, we show it is a first order symmetric

hyperbolic system on Rt×Σ; we express its spacelike part in terms of the Dirac operator
on the leaves Σt of the foliation and of the extrinsic curvature of the Σt. We also express

the current vector using two-spinors and Dirac spinors. Proving that it is divergence-free

is particularly simple using the two-spinor formalism.

Chapter 4. On the classes of asymptotically flat space-times defined in Chapter 2,

we solve the global Cauchy problem for Dirac fields in Sobolev and weighted Sobolev

spaces. Regular solutions to Dirac’s equation have been studied on curved space-times

by J. Dimock [16] in 1982 and more recently by A. DeVries [14], [15] with applications

to Kerr–Newman metrics. We adopt here a different approach, centred on minimum

regularity: the fundamental result is the existence and uniqueness of solutions to the

Cauchy problem in L2; the use of identifying operators or successive differentiations of

the equation then allows us to infer the stability of Sobolev and weighted Sobolev spaces

under the evolution. This type of analytic study of the Cauchy problem, based on a

3 + 1 decomposition of space-time, is akin to the techniques used in F. Cagnac and

Y. Choquet-Bruhat [6], Y. Choquet-Bruhat [8], Y. Choquet-Bruhat, D. Christodoulou

and M. Francaviglia [10] and subsequent contributions by Y. Choquet-Bruhat and co-

workers. Theorems 1 and 2 establish the well-posedness of the Cauchy problem in L2 and

Sobolev spaces for Ck metrics satisfying assumptions slightly broader than asymptotic
flatness. Theorem 3 deals with the existence and uniqueness of solutions in weighted

Sobolev spaces for classes of asymptotically flat space-times and the conservation of the

charge of Dirac fields is proved in Theorem 4. The first three theorems are consequences of

much more general results (Propositions 4.1 and 4.2) valid for large families of first order

symmetric hyperbolic systems with weakly regular coefficients. These two propositions

extend the results of [42] in three important ways:

• They authorize to work with less regular metrics: the difference with a metric, flat
outside a compact set in space, is only required to be in H3 on each spacelike slice.

• The maximum regularity allowed for the solutions is improved: Hk−1 for a metric in
Hk. In [42], three degrees of regularity were lost between the metric and the solution. This

was due to the use of Sobolev embedding theorems. Product theorems between Sobolev

spaces enable us to lose only one degree of regularity. One cannot expect to improve

this because of the presence of connection terms in equations such as Dirac, Maxwell,

Rarita–Schwinger or Bianchi.

• They establish the well-posedness in weighted Sobolev spaces of the Cauchy problem
for general symmetric hyperbolic systems. This gives us a control on the behaviour of the

solutions at spacelike infinity at each time. As far as we are aware, no such result can be

found in the literature, even for smooth metrics.
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The proof of Propositions 4.1 and 4.2 relies essentially on the theory of abstract

evolution systems. The research in this domain was initiated by T. Kato in 1953 [30]

and some important contributors have since been M. Da Prato and M. Iannelli [13],

T. J. R. Hughes, T. Kato and J. E. Marsden [28], S. Ishii [29], T. Kato [32, 33, 34, 35,

36, 37], T. Kato and H. Tanabe [38], F. J. Massey III [43], N. Okazawa and A. Unai [49],

J. Prüss [54], H. Tanabe [60, 61] and K. Yosida [65] (this list of references has no claim to

being exhaustive, for example we have almost essentially considered the hyperbolic case;

for a comprehensive list of references in the parabolic case, see for example D. Daners and

P. Koch Medina [12]). We do not need the latest refinements of this theory, references

[32], [33] and [34] are sufficient, together with adequate choices of identifying operators,

to prove the propositions when the topology of space-time is trivial. We take advantage

of the finite propagation speed to extend the results to nontrivial topology.

Chapters 5 and 6. The Schwarzschild and Kerr space-times are asymptotically flat so-

lutions to the Einstein vacuum equations describing respectively a spherically symmetric

black hole and a rotating black hole. The symmetry of the Schwarzschild solution allows

one to adapt to this geometry some standard methods of the analysis of hyperbolic equa-

tions in flat space. In particular, the development of time dependent scattering theories

for linear fields outside a Schwarzschild black hole has been the subject of numerous

studies: see A. Bachelot [2], [3], A. Bachelot and A. Motet-Bachelot [4], J. Dimock [17],

J. Dimock and B. S. Kay [18] and the author [47] (for other analytic studies of linear

and nonlinear equations, see also A. Motet-Bachelot [45] and the author [46], [48]). The

geometry of the Kerr solution is more complex and only one time dependent scattering

construction is known to date (see D. Häfner [23]). The first step is to choose a way

of describing the geometry of the black hole. This can either be guided by the type of

information one wishes to obtain, or imposed by the analytic techniques one uses. Both

are true in the case of the scattering theories referred to above. The point of view they

all adopt is that of an observer static with respect to infinity. Hence, only the exterior of

the black hole is considered and it is described using Schwarzschild or Boyer–Lindquist

coordinates respectively. The first reason for such a choice lies in the history and nature

of scattering theory: its purpose has always been to study how a distant observer per-

ceives the influence of an object on the propagation of fields and to decide whether the

information collected by such observers can be used to describe the object completely. If

experimental measurements of the scattering of fields by a black hole are to be performed,

it must be by good approximations of observers static at infinity (like gravitational wave

detectors on Earth). A second and equally important reason is the analytic convenience

of working with an explicit coordinate system in which the coefficients of the equations

do not depend on time. This time independence is in fact almost compulsory since time

dependent scattering theory relies heavily on the existence of a unitary propagator on a

fixed Hilbert space. We choose two different ways of describing the geometry of the black

hole:

• First we adopt the point of view of an observer static with respect to infinity. Our
purpose is to describe as precisely as possible the implications of such a choice for the

analysis of field equations, more particularly as regards the functional framework for the
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Cauchy problem. The exterior of the black hole is globally hyperbolic and we perform

a 3 + 1 decomposition of the geometry using the time function t of the Schwarzschild

or Boyer–Lindquist coordinates respectively (this decomposition is of course completely

trivial in the Schwarzschild case but not for the Kerr metric). The horizon then appears

as a smooth boundary for the spacelike slices and the lapse function of the space-time

metric vanishes there. Thus, describing the exterior of the black hole by means of the time

function t yields a decomposition of the metric which differs from the general decomposed

form for the classes of asymptotically flat space-times of Chapter 2. This is essentially due

to the fact that the Killing vector field ∂/∂t is not uniformly timelike outside the black

hole but becomes null at the horizon. The practical consequence is that the theorems

of Chapter 4 cannot be directly applied here. We have to define function spaces on

the spacelike slices which take the boundary into account. A natural choice is to use

Sobolev and weighted Sobolev spaces with zero traces on the horizon; this corresponds

to the physical property that no field comes out of the black hole. Analyzing in detail

the geometry of the slices and of the spacelike part of the Dirac equation, we extend

the theorems of Chapter 4 to the exterior of Schwarzschild and Kerr black holes. In

both cases, the crucial step is to show that the successive domains of the spacelike Dirac

operator are the Sobolev spaces and that the norms are equivalent. We also verify the

well-known property: the L2 norm of Dirac fields (massive or not) is conserved under the

evolution. The results obtained here concerning the well-posedness of the Cauchy problem

for Dirac fields in Sobolev and weighted Sobolev spaces are new both for Schwarzschild

and Kerr space-times. Note that the description of the exterior of a Kerr black hole

adopted here, based on the 3 + 1 decomposition of the geometry induced by the time

function t of the Boyer–Lindquist coordinates, is often referred to as the point of view of

locally nonrotating observers (see for example C. W. Misner, K. Thorne and J. A. Wheeler

[44] or R. M. Wald [63]). It does away with the time/space cross terms in the metric and

the rotation of space-time simply appears via the extrinsic curvature of the slices. This

gives us a framework for studying evolution systems which is much more agreable than

Boyer–Lindquist coordinates (recall that we use here only the time coordinate t of the

Boyer–Lindquist coordinate system).

• We adopt a second, more global point of view. It is easy to see, using Kruskal–
Szekeres coordinates or Kerr coordinates respectively, that the horizon of the black hole

is not a singularity of space-time but a regular null hypersurface. The metric can be ex-

tended smoothly accross it and we consider maximal analytic extensions of Schwarzschild

and Kerr space-times. For a natural choice of foliation, we show that the theorems of

Chapter 4 can be applied in this framework.

In a first appendix, we detail some technical aspects of the choice of a spin-frame

adapted to the exterior of Schwarzschild and Kerr black holes described using the time

function t. We also give the calculation of the timelike connection terms appearing in

Dirac’s equation for this choice of spin-frame. A second appendix contains a possible way

of expressing the Dirac equation on the Kerr metric and of writing it in the form of an

evolution system. Although we have chosen in this work to use a more intrinsic form of

Dirac’s equation, we give this analytic formulation for completeness.
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2. Geometrical and functional framework

2.1. Notations. Many of our equations will be expressed using the two-component

spinor notations and abstract index formalism of R. Penrose and W. Rindler [53].

Abstract indices are denoted by light face Latin letters, capital for spinor indices and

lower case for tensor indices. Abstract indices are a notational device for keeping track of

the nature of objects in the course of calculations, they do not imply any reference to a

coordinate basis, all expressions and calculations involving them are perfectly intrinsic.

For example, gab will refer to the space-time metric as an intrinsic symmetric tensor field

of valence
[
0

2

]
, i.e. a section of T∗M⊙ T∗M and gab will refer to the inverse metric as

an intrinsic symmetric tensor field of valence
[
2

0

]
, i.e. a section of TM⊙ TM (where

⊙ denotes the symmetric tensor product, TM the tangent bundle to our space-time
manifoldM and T∗M its cotangent bundle).
Concrete indices defining components in reference to a basis are represented by bold

face Latin letters. Concrete spinor indices, denoted by bold face capital Latin letters,

take their values in {0, 1} while concrete tensor indices, denoted by bold face lower case
Latin letters, take their values in {0, 1, 2, 3}. Consider for example a basis of TM, that
is a family of four smooth vector fields onM: B = {e0, e1, e2, e3} such that at each point
p of M the four vectors e0(p), e1(p), e2(p), e3(p) are linearly independent, and the cor-
responding dual basis of T∗M: B∗ = {e0, e1, e2, e3} such that ea(eb) = δa

b
, δa
b
denoting

the Kronecker symbol; gab will refer to the components of the metric gab in the basis B:
gab = g(ea, eb) and g

ab will denote the components of the inverse metric gab in the dual

basis B∗, i.e. the 4 × 4 real symmetric matrices (gab) and (gab) are the inverse of one
another. In the abstract index formalism, the basis vectors ea, a = 0, 1, 2, 3, are denoted

by ea
a or ga

a. In a coordinate basis, the basis vectors ea are coordinate vector fields and

will also be denoted by ∂a or ∂/∂x
a; the dual basis covectors ea are coordinate 1-forms

and will be denoted by dxa.

Brackets on each side of a group of indices denote symmetrization and square brackets

correspond to skew-symmetrization.

The indexed 1-form dxa ∈ T∗M⊗SA⊗SA′ and the indexed vector ∂a ∈ TM⊗SA⊗SA′
(see below for the meaning of the notations SA, SA

′

, SA and SA′) are used to suppress

form and vector indices: dxa maps the 1-form ωa as an indexed quantity to the same

1-form ω = ωadx
a with its index suppressed, ∂a maps the vector field V

a to the same

vector field V = V a∂a with its index suppressed.
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Most of the function spaces that we use in this work are defined in Section 2.3, where

the general classes of asymptotically flat space-times are described. We define here some

other spaces which will be useful to us but whose definition would not fit naturally in

that section:

• given E and F two Banach spaces, L(E,F ) denotes the Banach space of bounded
linear operators from E to F ;

• the notationMn(C) refers to the space of complex n× n matrices;
• given a measure space (X,µ) and p ≥ 1, Lp(X, dµ) denotes the space of mea-

surable functions (in fact of equivalence classes of measurable functions, two functions

being equivalent if they are equal µ-almost everywhere) such that |f |p is µ-integrable
over X. Lpcomp(X, dµ) is the subspace of compactly supported elements of L

p(X, dµ) and

Lploc(X, dµ) the space of (equivalence classes of) measurable functions such that |f |p is
integrable over any compact subset of X;

• the function spaces Ck, Ck0 , Ckb , Ckδ , Hk, Hkcomp, Hkloc, Hkδ and L2δ are defined in
Section 2.3.

2.2. The principles of the 3+1 decomposition. We shall work on a smooth 4-

manifoldM equipped with a Lorentzian metric g with signature (+ − −− ). (M, g) is

oriented, time-oriented and is also assumed to be globally hyperbolic. We denote by ∇a
the Levi-Civita connection on (M, g). Global hyperbolicity implies (see Geroch [20]–[22]):

1. (M, g) admits a spin structure and we choose one. M is then endowed with an
SL(2,C) principal bundle PS of spin-frames. The bundle S of negative or anti-selfdual

spinors (denoted SA in the abstract index formalism) is given by

S = PS ×̺ C2(2.1)

where ̺ is the standard representation of SL(2,C) on C2; the bundle S of positive or

selfdual spinors (denoted SA
′

in the abstract index formalism) is

S = PS ×̺ C2(2.2)

i.e. the complex structure in S is simply replaced by its opposite. The complex tangent

bundle is TaM⊗C = SA⊗SA′ . Hence, an abstract tensor index a is a couple of abstract
spinor indices, one primed, the other unprimed, clumped together: a = AA′. The dual
bundle S∗ to S is denoted by SA in the abstract index formalism and S

∗
is denoted

by SA′ . The symplectic forms on S and S are denoted respectively by εAB and εA′B′

and are referred to as the Levi-Civita symbols. εAB can be viewed as an isomorphism

from S onto S∗ which to κA associates κA = κBεBA. The inverse isomorphism, denoted
by εAB , to κA associates κ

A = εABκB. Similarly, εA′B′ and the corresponding ε
A′B′ can

be regarded as lowering and raising devices for primed indices. The metric g is expressed

in terms of the Levi-Civita symbols as gab = εABεA′B′ .

2. There exists a global “time function” t onM. The level hypersurfaces Σt, t ∈ R, of
the function t define a foliation ofM, all Σt being Cauchy hypersurfaces and homeomor-
phic to a given smooth 3-manifold Σ. Geroch’s theorem does not say anything about the

regularity of the leaves Σt; the time function is only proved to be continuous and they
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are thus simply understood as topological submanifolds ofM. H. P. Seifert [58] showed
that the time function can be regularized and one can then understand the leaves Σt as

Ck submanifolds ofM if the metric is itself Ck. For simplicity, we shall assume that the
time function is smooth on M and the leaves are diffeomorphic to Σ. In such a case,
the function t is indeed a smooth time coordinate on M. It is constructed so as to be
increasing along any nonspacelike future-oriented curve and the smoothness of t allows

us to consider its gradient: ∇at is everywhere orthogonal to the level hypersurfaces Σt
of t and is therefore everywhere timelike; it is also future-oriented. We identifyM with
the smooth manifold R×Σ and consider g as a tensor valued function on R×Σ whose
regularity and fall-off at infinity can be specified. Note that there can be several manners

of identifying points on different hypersurfaces Σt, i.e. of fixing the product structure

M ≃ R × Σ. The natural idea is to quotient M by the integral lines of the timelike
vector field ∇at, but one could choose other timelike vector fields.
If in addition, our space-time is asymptotically flat, then there exists a compact subset

K of Σ such that Σ \K is diffeomorphic to the exterior of a ball in R3 (assuming that
the manifold Σ has only one asymptotically flat end; if Σ has several asymptotically

flat ends, then Σ \ K is the union of a finite number of manifolds with boundary Mi,
i = 1, . . . , N , each Mi being diffeomorphic to the exterior of a ball in R

3).

We use the foliation to perform a 3+1 (or space/time) decomposition of the metric.

Let T a be the future-pointing timelike vector field normal to Σt, normalized for later

convenience to satisfy

T aTa = 2,

i.e.

T a =

√
2

|∇t|∇
at, where |∇t| = (gab∇at∇bt)1/2.(2.3)

At each point p ∈ M, the metric g can be decomposed into its orthogonal parts along
T a and (T a)⊥ = TpΣt:

gab =
1

2
TaTb − hab(2.4)

where −h is the restriction of g to TpΣt, whence
T ahab = 0,(2.5)

and the 1-form Ta is given by

Tadx
a =

√
2

|∇t|∇atdx
a =

√
2

|∇t| dt.(2.6)

We define the lapse function N(p) by

Tadx
a = Ndt, i.e. N =

√
2

|∇t|(2.7)

and the decomposition of the metric g then takes the form

g =
1

2
N2dt2 − h.(2.8)
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We now choose to define the product structure using the timelike vector field ∇at (or
equivalently T a), the vector field ∂/∂t is then defined independently of the choice of

coordinates on Σ and is everywhere orthogonal to Σt. More explicitly, we have(
∂

∂t

)a
=
N

2
T a,(2.9)

whence

hab

(
∂

∂t

)a
= 0.(2.10)

For this choice of product structure, let us consider a coordinate system onM≃ R×Σ:
x0 = t, x1, x2, x3. From (2.10), we infer that the expression of h in these coordinates is

as follows:

habdx
adxb =

3∑

a,b=1

hab(t, x
1, x2, x3)dxadxb.

Thus h is naturally interpreted as a time-dependent Riemannian metric on Σ.

We use the decomposition of the metric to project the connection ∇a along T a and
along (T a)⊥. We obtain

∇a =
1

2
TaT

b∇b − hab∇b =
1

2
Ta∇T +Da,(2.11)

where∇T = T a∇a is the covariant derivative along T a and Da = −hab∇b is the part of∇a
orthogonal to T a: T aDa = 0. Da is the four-dimensional covariant derivative restricted

(by composition with the projection operator −hab) to act tangent to Σt. It differs from
the Levi-Civita connection on (Σt, h(t)) by a combination of the extrinsic curvature (or

second fundamental form) of the leaves of the foliation. In particular DaTb = Kab = K(ab)
is
√
2 times the extrinsic curvature. More precisely we have (1)

Kab = DaTb = ha
chb
d∇cTd = −

1

N

∂

∂t
hab(2.12)

and obviously T aKab = 0.

Using the spinor form TAA
′

of the vector T a to convert primed indices to unprimed in-

dices and vice versa (2), we introduce modified forms of the spacelike part of the covariant

derivative

DAB = T
A′

A DBA′ = T
A′

(A∇B)A′ , DA′B′ = T
A
A′DB′A = T

A
(A′∇B′)A.(2.13)

These will naturally arise when considering the spacelike part of a Dirac or a Weyl

equation.

2.3. Classes of asymptotically flat space-times. Weighted Sobolev spaces are par-

ticularly well adapted to the description of asymptotically flat space-times because they

contain information about both the regularity and fall-off at infinity of functions. We

(1) Note that the expression of the extrinsic curvature as the time derivative of the spacelike
part of the metric is only valid for the product structure defined by the vector field T a.

(2) The normalization of T a implies that TAA′T
B′

A = −εA′B
′

and TA
′

A T
B
A′ = −εAB. This shows

that converting indices twice leads to a sign change. Also, the conversion of indices commutes
with the Levi-Civita connection of (Σt, h(t)) but not with Da.
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shall define classes of asymptotically flat metrics by requiring that they are continuously

differentiable in time up to a certain order with values in some weighted Sobolev space

on Σ. Hence, we need to define Sobolev-type spaces on Σ without explicit reference to

the metric g that we are trying to characterize. To this end, we equip Σ with a smooth

Riemannian metric h̃ which is euclidian outside a compact set. We denote by D̃ and

dVolh̃ the covariant derivative and the volume element on Σ associated with h̃ and by

〈 , 〉 the positive definite inner product induced by h̃ on tensors and spinors at a point.
The families of function spaces that we shall use are the following:

• Ck(Σ), k ∈ N ∪ {∞}; the space of k times continuously differentiable functions
on Σ. Ck0 (Σ) will denote the subspace of compactly supported functions and Ckb (Σ) the
subspace of functions uniformly bounded on Σ together with their derivatives.

• Sobolev spaces: Hs(Σ), s ∈ N; the completion of C∞0 (Σ) in the norm

‖f‖Hs(Σ) =
{ s∑

p=0

\
Σ

〈D̃pf, D̃pf〉 dVolh̃
}1/2

.(2.14)

The space H0(Σ) is L2(Σ, dVolh̃) denoted simply by L
2(Σ). Hscomp(Σ) is the subspace of

compactly supported elements of Hs(Σ) and Hsloc(Σ) the space of functions f ∈ L2loc(Σ)
(or of distributions f on Σ) such that, for any cut-off function χ ∈ C∞0 (Σ), we have
χf ∈ Hs(Σ).
• Weighted Sobolev spaces: Hsδ (Σ), s ∈ N, δ ∈ R; the completion of C∞0 (Σ) in the

norm

‖f‖Hsδ (Σ) =
{ s∑

p=0

\
Σ

(1 + r2)−δ−3/2+p〈D̃pf, D̃pf〉 dVolh̃
}1/2

,(2.15)

where r(x) is the h̃-distance from x to a fixed point O ∈ Σ (the function space is

independent of the choice of O). We are using the numbering of weighted Sobolev spaces

proposed by R. Bartnik (3) in [5]; the power 3/2 in the expression of the norm is to be

understood as n/2, n being the dimension of the spacelike slices. This numbering has the

advantage of indicating clearly the rate at which the functions in Hsδ fall off or grow at

infinity, as we shall see shortly. The space H0δ (Σ) will be denoted by L
2
δ(Σ).

• Ckδ (Σ), k ∈ N, δ ∈ R; the space of functions in Ck(Σ) for which the norm

‖f‖Ckδ (Σ) = sup
x∈Σ

k∑

l=0

{(1 + r2)−δ+l〈D̃lf, D̃lf〉}1/2(2.16)

is finite. This gives the following control on the behaviour of f and its derivatives at

spacelike infinity:

D̃lf = O(rδ−l) as r → +∞, 0 ≤ l ≤ k.

(3) The numbering of weighted Sobolev spaces used in [9] and in [42] was the “usual” one
which is different from the one used by R. Bartnik. Whenever we quote results from these sources,
we simply re-express them using Bartnik’s numbering. We also use the notational conventions
of R. Bartnik for Ckδ spaces; in [9] and [42], the weight index δ for these spaces has the sign
opposite to the one chosen here.
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This is effectively a control on the fall-off at spacelike infinity of f and its derivatives if

δ < 0.

The continuous embedding (see Y. Choquet-Bruhat and D. Christodoulou [9])

Hkδ →֒ Ck−2δ′ (Σ), δ′ > δ, k ≥ 2,(2.17)

gives an estimate on the behaviour at infinity of functions in a weighted Sobolev space

and their derivatives. It is important to remark that the correspondence between the

weight and the growth or fall-off at infinity is not quite exact. Indeed, a function f in Hkδ
will not necessarily behave at infinity like rδ, but we shall have f = O(rν) for any ν > δ.

We now define the classes of asymptotically flat space-times that we shall consider.

Definition 2.1. We say that the metric g on R×Σ is of class (k, δ), k ∈ N∗, δ ∈ R if

g −
(
dt2 − h̃− ̺(x)m

r

)
∈ Cl(Rt;Hk−lδ (Σ)), ∀l; 0 ≤ l ≤ k

(where m is a symmetric 2-form constant outside a compact set, ̺ is a smooth cut-off

function on Σ such that ̺ ≡ 0 in a neighbourhood of O and ̺ ≡ 1 outside a compact
domain) and if moreover g satisfies the nondegeneracy condition

(H) There exist two continuous, strictly positive functions on R: C1, C2 such that for

each (t, x) ∈ R×Σ the lapse function N and the eigenvalues λi(t, x), i = 1, 2, 3, of
h(t, x) as a symmetric form relative to h̃ satisfy C1(t) ≤ N(t, x) ≤ C2(t), C1(t) ≤
λi(t, x) ≤ C2(t).

The intersection of all classes (k, δ), k ∈ N∗, will be called the class (∞, δ).
Of course, the definition of these classes of metrics is independent of the choice of h̃.

Remark 2.1. 1. The quantity m/r, appearing in the comparison metric used to define

the classes (k, δ) (in Definition 2.1), allows for the presence of energy (or mass) in our

space-times. It is usually simply the term with 1/r in the asymptotic expansion of the

Schwarzschild metric in powers of 1/r, i.e. for r large enough,

m

r
=
2M

r
dt2 +

2M

r
dr2.

This gives, outside a compact set, the following expression for the comparison metric:

dt2 − h̃− ̺(x)m
r
=

(
1− 2M

r

)
dt2 −

(
1 +
2M

r

)
dr2 − r2dω2,

that is, the first two terms (constant and in 1/r) in the asymptotic expansion of the

Schwarzschild metric at infinity.

2. Definition 2.1 is valid for space-times admitting one or several asymptotically flat

ends. One could, in principle, associate different mass terms m/r to each asymptotic end;

though mathematically reasonable, the physical significance of such a choice would be

rather mysterious.

It was remarked in [42] that if g is of class (k, δ), k ≥ 3, δ < 0, we can define the
spaces H l(Σt), H

l
̺(Σt), t ∈ R, 0 ≤ l ≤ k−2, ̺ ∈ R, associated with the metric h(t) on Σ

and (H) entails that the norms on these spaces are equivalent to the norms on H l(Σ) and

H l̺(Σ) respectively, this norm equivalence being uniform on each compact time interval.
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We see from (2.17) that if g is of class (k, δ), k ≥ 2, δ ∈ R, then

g −
(
dt2 − h̃− ̺(x)m

r

)
∈ Cl(Rt; Ck−l−2δ′ (Σ)), ∀l, δ′; 0 ≤ l ≤ k − 2, δ′ > δ.

Note that g compared to the flat metric at infinity satisfies (the fall-off here is weaker

because the Schwarzschild termm/r is no longer present in the comparison metric dt2−h̃)
g − (dt2 − h̃) ∈ Cl(Rt;Hk−lν (Σ)), ∀l, ν; 0 ≤ l ≤ k, ν > max(δ,−1)(2.18)

and therefore

g − (dt2 − h̃) ∈ Cl(Rt; Ck−l−2ν (Σ)), ∀l, ν; 0 ≤ l ≤ k − 2, ν > max(δ,−1).
To express things in a simpler way, a metric g of class (k, δ) will be asymptotically flat

as soon as k ≥ 2 and δ < 0 in the sense that g will be continuous on R × Σ and will
tend to the Minkowski metric at spacelike infinity. Such metrics will be called weakly

asymptotically flat. In order to give a stronger, more physical meaning to asymptotic

flatness, one usually imposes

D̃l
(
g −
(
dt2 − h̃− m

r

))
= O(r−3/2−l), r → +∞.(2.19)

This is guaranteed by any δ < −3/2, but as already mentioned, the nature of the embed-
ding (2.17) is such that this correspondence is not exact. Metrics of class (k, δ), k ≥ 2,
δ < −3/2 will always fall off at spacelike infinity a little faster than (2.19); conversely, if
g satisfies (2.19), then g will belong to all classes (k, δ), δ > −3/2 (k depending on the
regularity of g). Black hole space-times such as Schwarzschild or Kerr satisfy (2.19) at

infinity and in fact a little more:

D̃l
(
g −
(
dt2 − h̃− m

r

))
= O(r−2−l), r → +∞.

In [11] and [39], a weaker version of asymptotic flatness is considered, with only the

following requirements as r → +∞

g −
(
dt2 − h̃− m

r

)
= o(r−1), D̃l

(
g −
(
dt2 − h̃− m

r

))
= o(r−l−1).

Note that even in the weakest version of asymptotic flatness (k ≥ 2, δ < 0) property
(H) is a direct consequence of the fact that g is a nondegenerate continuous Lorentzian

metric on R×Σ which tends to the Minkowski metric at spacelike infinity.

3. Dirac fields on globally hyperbolic space-times

In this chapter, we only require the space-time (M, g) to be globally hyperbolic and

we shall use the foliation {Σt}t to perform a 3+1 decomposition of the Dirac equation.
Throughout this whole chapter, the product structure will be associated with T a.

3.1. The Dirac and Weyl equations. We first describe the Dirac equation on (M, g)

in terms of Dirac spinors. The bundle of Dirac spinors onM is defined as
SDirac = S

∗ ⊕ S = SA ⊕ SA
′

.(3.1)
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We choose on M a local orthonormal Lorentz frame, i.e. a set of four real vector fields
{e0, e1, e2, e3} such that

g00 = −gaa = 1, a = 1, 2, 3; gab = 0, a 6= b,
gab denoting g(ea, eb), i.e. the components of gab in the basis {e0, e1, e2, e3}. We make
the most natural choice for e0 here, that is,

e0
a :=

1√
2
T a(3.2)

and e1, e2, e3 are thus everywhere tangent to the hupersurfaces Σt. The Dirac operator

onM is defined by

D =
3∑

a=0

ea.∇ea(3.3)

where ea. denotes the Clifford product by the vector ea and ∇ea the directional covariant
derivative along ea. The Dirac equation onM is then

(D + im)Ψ = 0,(3.4)

Ψ ∈ SDirac and m ≥ 0 is the mass of the particle. More explicitly, via a choice of spin-
frame, the Clifford multiplication of a Dirac spinor Ψ by each vector ea will be described

as the multiplication by a 4 × 4 matrix γa. The Dirac matrices γ0, γ1, γ2, γ3 satisfy the
axioms of Clifford multiplication

γaγb + γbγa = 2gab Id4, a,b = 0, 1, 2, 3,

and the Dirac equation is then expressed in the following manner

3∑

a=0

γa∇eaΨ + imΨ = 0.(3.5)

In terms of two-component spinors and abstract indices, the same equation (3.4) takes

the form {
∇AA′φA = µχA

′

,

∇AA′χA′ = µφA, µ = m/
√
2.

(3.6)

The structure here is much clearer: we have two Weyl equations (one for anti-neutrinos

and the other for neutrinos) coupled by the mass. We have chosen to express the second

equation in a form which emphasizes the fact that it is the complex conjugate of an

equation of the type of the first one. However, we can equivalently write it

∇AA′χA
′

= −µφA.
It is easy to recover from (3.6) the more broadly used expression (3.5) involving Dirac

matrices. We choose a normalized spin-frame {oA, ιA} (also denoted {ε0A, ε1A}), that
is, a pair of sections of SA such that oAι

A = 1. The dual basis of SA is {εA0, εA1}
where εA

0 = −ιA and εA1 = oA. The choice of {oA, ιA} is usually done by choosing a
Newman–Penrose tetrad: a set of four null vector fields {la, na,ma,ma}, la and na being
real and ma complex, such that

lan
a = 1, mam

a = −1, lam
a = 0, nam

a = 0.
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The spin-frame {oA, ιA} is then fixed, up to an overall sign, by requiring
la = oAoA

′

, na = ιAιA
′

, ma = oAιA
′

, ma = ιAoA
′

.

We define the Infeld–van der Waerden symbols ga
AA

′

as the spinor components of the

frame vectors in the spin-frame:

ga
AA

′

= ea
AA

′

= ga
aεA

AεA′
A
′

=

(
na −ma
−ma la

)
(3.7)

(recall that ga
a = ea

a denotes the vector field ea). We use these quantities to express

equation (3.6) in terms of spinor components:




−i∇AA′φA = −igaAA
′∇aφA = −i

m√
2
χA

′

,

−i∇AA
′

χA′ = i∇AA′χA
′

= igaAA′∇aχA
′

= −i m√
2
φA,

(3.8)

where ∇a denotes ∇ea . For a = 0, 1, 2, 3, we introduce the 2× 2 matrices
Ma = tgaAA

′

, Na = gaAA′ ,(3.9)

and the 4× 4 matrices
γa =

(
0 i

√
2Na

−i
√
2Ma 0

)
.(3.10)

Putting Ψ := φA⊕χA
′

, the components of Ψ in the spin-frame are Ψ = t(φ0, φ1, χ
0′ , χ1

′

)

and (3.8) becomes
3∑

a=0

γa∇eaΨ + imΨ = 0.

Remark 3.1. The matrix V AA
′

of the spinor components of a vector V a in a normalized

spin-frame has the important property that

det(V AA
′

) =
1

2
VaV

a.

Indeed,

VaV
a = V aV bgab = V

AA
′

V BB
′

εABεA′B′ = 2(V
00′V 11

′ − V 01′V 10′)
since

εAB = εA′B′ =

(
0 1

−1 0

)
.

Hence, we have

det(g0
AA

′

) =
1

2
, det(ga

AA
′

) = −1
2
, a = 1, 2, 3,

and therefore detM0 = 1/2, detMa = −1/2, a = 1, 2, 3. The process for obtaining Na
from Ma is first to transpose Ma in order to obtain the matrix gaAA

′

and then to lower

the two concrete spinor indices. This exchanges the diagonal terms and changes the sign

of the terms outside the diagonal, whence Na = (detMa)(Ma)−1. Consequently,

γ0 = i

(
0 (

√
2M0)−1

−
√
2M0 0

)
, γa = −i

(
0 (

√
2Ma)−1√

2Ma 0

)
, a = 1, 2, 3.
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We clearly see that

(γ0)2 = −(γ1)2 = −(γ2)2 = −(γ3)2 = Id4.
We still need to prove that these matrices anticommute in order to see that they form a

set of Dirac matrices.

Lemma 3.1. The matrices γa, a = 0, 1, 2, 3, defined by (3.9) and (3.10), form indeed a

set of Dirac matrices.

Proof. This is in fact a classic result and a straightforward consequence of the following

identity (see [53], Vol. 1, p. 124)

gab = εABεA′B′ga
AA

′

gb
BB

′

which is the component version of gab = εABεA′B′ . This identity is equivalent to

εB
Agab = gbBA′g

aAA
′

+ gaBA′g
bAA

′

,

i.e.

NbMa +NaMb = gabId2 = gabId2,

as well as to

εA′
B
′

gab = gaAB
′

gbAA′ + g
bAB

′

gaAA′ ,

i.e.

MaNb +MbNa = gabId2 = gabId2.

This proves the lemma.

From now on, we shall assume our Dirac matrices to be of the form (3.10), i.e. to be

compatible with the description of the Dirac equation in terms of two-component spinors.

We see that in the formalism of two-component spinors and abstract indices, the

Clifford product by the frame vectors e0, e1, e2, e3 is represented on S
∗ and S as

ea. : φ ∈ S∗ 7→ −i
√
2 gaAA

′

φA ∈ S,
ea. : χ ∈ S 7→ i

√
2 gaAA′χ

A′ ∈ S∗,
and we have

−i
√
2∇AA′φA =

3∑

a=0

ea.∇eaφ = Dφ,

i
√
2∇AA′χA

′

=

3∑

a=0

ea.∇eaχ = Dχ.

The Weyl equations for antineutrinos and neutrinos, respectively:

∇AA′φA = 0, ∇AA′χA′ = 0 (or equivalently ∇AA′χA
′

= 0),

are simply the massless Dirac equations

Dφ = 0, Dχ = 0,
where the Dirac operator D is restricted to act on the spin-bundles S∗ and S respectively
instead of SDirac. The Dirac equation in terms of two-component spinors (3.6) can be
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written as {Dφ = −imχ,
Dχ = −imφ.(3.11)

Remark 3.2. The Clifford product by e0, when restricted to act on S
∗ (respectively on S),

takes the form

e0. : φ ∈ S∗ 7→ −i
√
2 g0AA

′

φA = −iTAA
′

φA = −iεA
′B′TB′

AφA ∈ S,
respectively,

e0. : χ ∈ S 7→ i
√
2 g0AA′χ

A′ = iTAA′χ
A′ = iεBAT

B
A′χ
A′ ∈ S∗.

This shows that the Clifford multiplication by e0 and the conversion of indices are essen-

tially the same operation. They commute with the Levi-Civita connection on each leaf of

the foliation, but not with the connection Da.

We conclude this section with an explicit choice of spin-frame and the corresponding

expressions of Dirac matrices:

Remark 3.3. A particularly convenient choice of spin-frame corresponds to the New-

man–Penrose tetrad

la =
1√
2
(e0
a + e1

a), na =
1√
2
(e0
a − e1a), ma =

1√
2
(e2
a + ie3

a).(3.12)

The spinor components of the frame vectors (i.e. the Infeld–van der Waerden symbols)

are then

g0
AA

′

=
1√
2

(
1 0

0 1

)
, g1

AA
′

=
1√
2

(
1 0

0 −1

)
,

g2
AA

′

=
1√
2

(
0 1

1 0

)
, g3

AA
′

=
1√
2

(
0 −i
i 0

)
,(3.13)

and the associated Dirac matrices are

γ0 = i

(
0 σ0

−σ0 0

)
, γa = i

(
0 σa

σa 0

)
, a = 1, 2, 3,(3.14)

where σ0, σ1, σ2, σ3 are the Pauli matrices:

σ0 =

(
1 0

0 1

)
, σ1 =

(
1 0

0 −1

)
, σ2 =

(
0 1

1 0

)
, σ3 =

(
0 i

−i 0

)
.(3.15)

3.2. 3+1 decomposition of the equation. The bundle of Dirac spinors SDirac is

equipped with an SL(2,C)-invariant inner product given by

(3.16) (Φ, Ψ) = iψ̺− iφχ = iψA′̺A
′ − iφAχA, for Φ = φA⊕ ̺A

′

and Ψ = ψA⊕χA
′

.

This inner product is of course not positive definite.

We consider the hypersurfaces of the foliation; each Σt is equipped with an SU(2)-

principal bundle PS(t) of spin-frames. The vector field e0 gives a natural embedding of

PS(t) into the SL(2,C)-principal bundle PS of spin-frames of M and thus realizes PS

as a lift of the bundles PS(t). e0 thus provides SDirac with a hermitian positive definite

SU(2)-invariant inner product:
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〈Φ, Ψ〉 = (e0.Φ, Ψ) = (i
√
2 g0AA′̺

A′ ⊕−i
√
2 g0AA

′

φA, ψA ⊕ χA
′

)(3.17)

=
√
2 [g0AA

′

φAψA′ + g
0
AA′̺

A′χA] = TAA
′

φAψA′ + TAA′̺
A′χA.

We see that e0 also induces positive definite hermitian inner products on S and S:

〈φ, ψ〉 = TAA′φAψ
A′

, 〈̺, χ〉 = TAA′̺A
′

χA.(3.18)

The Clifford product by any of the frame vectors e0, e1, e2, e3 is a self-adjoint operator for

the scalar product (· , ·). Indeed, for any choice of the spin-frame {oA, ιA}, the matrices
Ma, Na, a = 0, 1, 2, 3, defined in (3.9) are hermitian and this entails that the matrices γa,

a = 0, 1, 2, 3, of (3.10) are self-adjoint for the inner product (· , ·). This property implies
that the Clifford multiplication by e0 is self-adjoint for the inner product 〈· , ·〉 while the
Clifford product by ea, a = 1, 2, 3, anticommutes with e0. and is therefore skew-adjoint

for 〈· , ·〉.

Remark 3.4. If we choose the spin-frame {oA, ιA} such that
TAA

′

= TAA′ = Id2,(3.19)

i.e.

e0
a =

1√
2
(la + na) =

1√
2
(oAoA

′

+ ιAιA
′

),

then the matrix γ0 is given by

γ0 = i

(
0 σ0

−σ0 0

)
, σ0 = Id2(3.20)

and the inner product (· , ·) takes the simple form
(Φ, Ψ) = Ψ †γ0Φ, Ψ † = tΨ = (Ψ1, Ψ2, Ψ3, Ψ4).(3.21)

The positive definite inner product takes an even simpler form

〈Φ, Ψ〉 = (γ0Φ, Ψ) = Ψ †(γ0)2Φ = Ψ †Φ.(3.22)

This can also be seen directly in the expression of 〈Φ, Ψ〉 involving two-component spinors:
〈Φ, Ψ〉 = TAA′φAψA′ + TAA′̺A

′

χA = φ0ψ0′ + φ1ψ1′ + ̺
0′χ0 + ̺1

′

χ1

= φ0ψ0 + φ1ψ1 + ̺
0′χ0′ + ̺1

′

χ1′ .

In this case, the skew-adjointness of ea., a = 1, 2, 3, for this inner product simply means

that the matrices γa, a = 1, 2, 3, are skew hermitian.

Henceforth, we shall systematically work with this type of spin-frame, i.e. we shall

always assume (3.19), (3.20) satisfied and the expressions of the two inner products (· , ·)
and 〈· , ·〉 in terms of components will always be (3.21) and (3.22). We say that such
spin-frames are adapted to the foliation.

We now describe the 3+ 1 decomposition of the Dirac equation. From the expression

of the Dirac operator

D =
3∑

a=0

ea.∇ea ,
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we can immediately write equation (3.4) as an evolution system:

e0.∇e0Ψ = −
3∑

a=1

ea.∇eaΨ − imΨ

and Clifford multiplying the whole equation by e0, we obtain

∇e0Ψ = −
3∑

a=1

e0.ea.∇eaΨ − im e0.Ψ.(3.23)

We denote

DW (t) :=
3∑

a=1

ea.∇ea =
3∑

a=1

ea.Dea on Σt.(3.24)

DW (t) is the Dirac operator on Σt associated with the connection Da, we call it the
Dirac–Witten (1) operator. Let us introduce DΣ(t) the Dirac operator associated with
the Levi-Civita connection on (Σt, h(t)). The difference between DW (t) and DΣ(t) is
explicitly given by (see A. Sen [56] and [57], also M. Herzlich [26])

DW (t) = DΣ(t) +
1

2
√
2
Ke0.(3.25)

whereK = Tr(Kab) = Ka
a is
√
2 times the trace of the extrinsic curvature. An interesting

upshot of this is that for a maximal foliation, that is, a foliation for which the extrinsic

curvature of the leaves is trace-free, the Dirac–Witten operator and the standard Dirac

operator coincide on each Σt. Another advantage of such foliations is that dVolh(t) is

independent of t. In the present work, however, we will consider general foliations and

not require them to be maximal.

The operator DW (t) is formally self-adjoint on L2(Σt; SDirac) endowed with the inner
product

〈Φ, Ψ〉L2(Σt) =
\
Σ

〈Φ, Ψ〉 dVolh(t)(3.26)

i.e. it is symmetric on C∞0 (Σt; SDirac) for this inner product (2). We have the Boch-
ner–Lichnerowicz–Weitzenböck–Witten formula (see for example [26] or [51])

D∗W DW = D2W = D∗D+R(3.27)

(1) This name refers to the fact that this Dirac operator, associated with the restriction to
Σt of the full space-time connection and not with the torsion-free connection on (Σ,h(t)), was
used by Witten in his historic paper [64].
(2) K being a real scalar and the Clifford multiplication by e0 being a bounded self-adjoint

operator on L2(Σt) endowed with the inner product (3.26), the self-adjointness (or the formal
self-adjointness) of DW is equivalent to that of DΣ and their domains are equal. The formal self-
adjointness of Dirac operators is established in [40]. Note that the operator DW (t) and the inner
product (3.26) are intrinsic quantities; the property of formal self-adjointness is itself intrinsic.
In the case of space-times which are asymptotically flat, or compact in space, we have in fact
more: DW (t) is self-adjoint on L2(Σt;SDirac) endowed with the inner product (3.26) with domain
H1(Σt;SDirac). This can be proved for smooth metrics using the essential self-adjointness of Dirac
operators on complete Riemannian manifolds admitting a spin or a spinc structure, established
in [19], and the formula (3.27) to show that the domain of the closure is H1. The result can then
be extended to C1 metrics using the theorem of stability of bounded invertibility (T. Kato [31]).
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where R is the endomorphism of SDirac (its restriction to S∗ or S is also an endomorphism
of S∗ or S respectively) defined as

R = 1
2

(
G(e0, e0) +

3∑

a=1

G(e0, ea)e0.ea.
)

(3.28)

where Gab = Rab − 1/2Rgab is the Einstein tensor of (M, g), Rab is the Ricci tensor and

its trace R = Ra
a is the scalar curvature.

We can write the Dirac equation as

∇e0Ψ = −e0.DW (t)Ψ − im e0.Ψ = −e0.DΣ(t)Ψ −
1

2
√
2
KΨ − im e0.Ψ.(3.29)

The operator e0.DΣ(t) is formally skew-adjoint on L2(Σt), since DΣ(t) and e0. are sym-
metric and e0. anticommutes with ea. for a = 1, 2, 3 and commutes with the Levi-Civita

connection (3) on (Σt, h(t)). Therefore, the Dirac equation is a first order symmetric

hyperbolic system on Σ. We express this property more precisely in the following lemma:

Lemma 3.2. Given a spin-frame {oA, ιA} adapted to the foliation, for any coordinate
system on Σ, equation (3.29) takes the form

∂Ψ

∂t
=
N(t, x)√
2

{ 3∑

a=1

Aa(t, x)
∂Ψ

∂xa
+ (−imγ0 +B(t, x))Ψ

}
(3.30)

where Aa, a = 1, 2, 3, are 4 × 4 hermitian matrices , N is the lapse function and B is a
4× 4 matrix. The factor N/

√
2 comes from the expression of the time derivative

∇e0 =
√
2

N

(
∂

∂t
+ connection terms

)
.

The coefficients of the matrices Aa are coefficients of the metric h(t). This is easily seen

when the orthonormal basis {e0, e1, e2, e3} is proportional to the coordinate basis , i.e.

ea = λ
a
∂

∂xa
, a = 1, 2, 3,

no sum being involved here; the coefficients λa are given by

λa =

[
− g
(

∂

∂xa
,
∂

∂xa

)]−1/2
, a = 1, 2, 3,

and the matrices Aa are then

Aa = −λaγ0γa, a = 1, 2, 3.

The coefficients of Aa will merely be more complicated combinations of the metric coeffi-

cients when the coordinate basis is not orthogonal. The matrix B is made of space-time

connection coefficients , i.e. of first order derivatives of the coefficients of the metric g

(and not just h(t) since some connection terms come from the time derivative).

(3) Note however that unless the foliation is maximal, e0.DW (t) is not formally skew-adjoint
on L2(Σt); it is the sum of the skew-symmetric operator e0.DΣ(t) and of 1

2
√
2
K, the latter being

a real bounded scalar potential and therefore symmetric, and even self-adjoint. This comes from
the fact that e0. does not commute with the connection Da.
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These properties are all we shall need to solve the Cauchy problem for the Dirac

equation in the next section.

We also describe the 3+1 decomposition of the Dirac equation in terms of two-compo-

nent spinors and abstract indices. Using the splitting

∇a = 1
2
T a∇T +Da =

1√
2
T a∇e0 +Da,

we can rewrite equation (3.6) as
{
TAA

′∇e0φA = −
√
2DAA

′

φA + µ
√
2χA

′

,

TAA′∇e0χA
′

= −
√
2DAA′χ

A′ − µ
√
2φA.

Multiplying the first equation by TBA′ , the second by T
AB′ and using the following facts:

TBA′D
AA′ = −TBA

′

DAA′ = −DBA, TAB
′

DAA′ = D
B′
A′ ,

we obtain {
∇e0φA =

√
2DA

BφB +mTAB′χ
B′ ,

∇e0χA
′

= −
√
2DA

′

B′χ
B′ −mTBA′φB.

(3.31)

We denote

D(t):φA 7→ DABφB, D̂(t):χA
′ 7→ −DA′B′χB

′

, on Σt.(3.32)

We shall call D(t) the Sen–Witten (4) operator on Σt.
√
2D and

√
2 D̂ are the operator

−e0.DW = −e0.
3∑

a=1

ea.Dea

restricted to act respectively on the spin-bundles S∗ and S instead of SDirac. We have

− 1√
2
e0.DW (t) =

(
D (t) 0

0 D̂ (t)

)
.

The skew-symmetry of e0.DΣ for the inner product (3.26) on L2(Σt; SDirac) is equivalent
to the skew-symmetry of both

√
2D+ 1

2
√
2
K and

√
2 D̂+ 1

2
√
2
K for the respective inner

products on L2(Σt; S
∗) and L2(Σt; S) defined by (note that unless the foliation is maximal,

D and D̂ are not skew-symmetric for these inner products)

(3.33) 〈φ, ψ〉L2(Σt;S∗) =
\
Σ

TAA
′

φAψA′ dVolh(t), 〈̺, χ〉L2(Σt;S) =
\
Σ

TAA′̺
A′χA dVolh(t).

In a local coordinate basis on Σ, we see that D and D̂ take the form

3∑

α=1

aα(t, x)
∂

∂xα
+ b(t, x)

(4) The equation DA
BφB = 0 is referred to as the Sen–Witten equation in [53]. It is the

equation studied by A. Sen in [56] to find the neutrino “zero-modes” or time independent normal-
izable solutions of the neutrino equation. It is also closely related to the Dirac–Witten operator.
The notation Da in Sen’s paper refers to the Levi-Civita connection on (Σt, h(t)). His way of
writing the “Sen–Witten” equation is therefore DA

BφB − (π/(2
√
2))φA = 0, π = K/

√
2 being

the trace of the extrinsic curvature. In [53], Da denotes −hab∇b. We have chosen to follow the
notations of Penrose and Rindler which are now the established standard.
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where aα, α = 1, 2, 3, are 2× 2 hermitian matrices made of coefficients of the metric h(t)
and b is a 2× 2 matrix made of connection coefficients.
Finally, we recall a fundamental property (see for example [52]) of the Dirac equation:

the existence of a conserved current. We give the expressions of the current vector in

terms of two-component spinors as well as Dirac spinors. The proof of this property is

particularly simple in terms of two-component spinors as we shall see.

Lemma 3.3. Let Ψ := φA⊕χA
′

be a solution to (3.4) and consider the real future-oriented

nonspacelike vector

Ua = φAφ
A′

+ χAχA
′

.(3.34)

Assume that Ψ has enough regularity to give a meaning to Ua and its divergence. A

reasonably minimal requirement is Ψ ∈ H1loc(Rt×Σ; SDirac) (Sobolev spaces on Rt×Σ can
be defined using the Riemannian metric dt2 + h̃). Then the vector field Ua is divergence-

free, i.e.

∇aUa = 0.(3.35)

Consequently , the 3-form ω = ∗Uadxa is closed. The symbol ∗ denotes the Hodge dual
defined by

∗Uadx
a =
1

6
Uaeabcd dx

b ∧ dxc ∧ dxd

where eabcd is an alternating tensor , i.e. the totally antisymmetric tensor

eabcd = iεACεBDεA′D′εB′C′ − iεADεBCεA′C′εB′D′ .
In a spin-frame adapted to the foliation, the current vector takes the form

Ua =
1√
2

3∑

a=0

(Ψ †γ0γaΨ)ea
a.(3.36)

Proof. Let Ψ ∈ H1loc(Rt ×Σ; SDirac) be a solution to (3.4) and Ua the vector (3.34). We
have

∇aUa = ∇AA
′

(φAφA′) +∇AA
′

(χA′χA)

= φA′∇AA
′

φA + φA∇AA
′

φA′ + χA∇AA
′

χA′ + χA′∇AA
′

χA

= φA′∇AA
′

φA + φA∇AA′φA + χA∇AA
′

χA′ + χA′∇AA′χA′ .
Using equation (3.6), the divergence of Ua becomes

∇aUa = µ(φA′χA
′

+ φAχ
A + χAφ

A + χA′φ
A′

)

which is identically zero due to the antisymmetry of the spinor inner product. Hence the

null vector Ua is divergence-free and its dual 3-form is therefore closed.

We conclude this proof by obtaining (3.36) from (3.34). The components of Ua are

given by

Ua = eaaUa = g
aAA′φAφA′ + g

a

AA′χ
A′χA

and in a spin-frame, this yields

Ua = φ†Maφ+ χ†Naχ
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where φ† = (φ0, φ1) = (φ0′ , φ1′) and χ
† = (χ0′ , χ1′) = (χ0, χ1). If the spin-frame is

adapted to the foliation, then

γ0γa =
√
2

(
Ma 0

0 Na

)

and we get

Ua =
1√
2
Ψ †γ0γaΨ.

This proves Lemma 3.3.

4. The general Cauchy problem

In this chapter, we work on globally hyperbolic space-times (M, g),M≃ Rt×Σ, where,
outside a compact subset K, the smooth 3-manifold Σ is the disjoint union of a finite

number of manifolds with boundary:

Σ = K ∪
( N⋃

i=1

Mi

)
, Mi ≃ R3 \B(0, 1), Mi ∩Mj = ∅ if i 6= j.

The product structure R×Σ is associated with the vector field T a. We use the 3+1 decom-
position of Dirac’s equation to solve the Cauchy problem in Sobolev and weighted Sobolev

spaces on the classes of asymptotically flat metrics defined in Chapter 2. The theorems

are obtained (except Theorem 4) as consequences of more general results (Propositions

4.1 and 4.2) proved for first order symmetric hyperbolic systems.

The theorems and propositions of this chapter are valid whether Σ admits one or

several asymptotic ends Mi. The case with no asymptotic end (Σ compact) can also be

considered: the results still hold but weighted Sobolev spaces then reduce to ordinary

Sobolev spaces and the expressions of Theorem 3 and Proposition 4.2 are thus slightly

modified.

We give the fundamental theorem concerning the well-posedness of the Cauchy prob-

lem for (3.4). It is valid for a wide family of metrics including the classes (k, δ), δ < 0,

k ≥ 3.
Theorem 1. Assume the metric g to satisfy hypothesis (H) of Definition 2.1 and

g ∈ C(Rt; C1b (Σ)) ∩ C1(Rt; C0b (Σ)).
Then, for any real number s, for any initial data Ψ0 ∈ L2(Σ; SDirac), equation (3.4) has
a unique solution Ψs ∈ C(Rt;L2(Σ; SDirac)), such that

Ψs|t=s = Ψ0.
Remark 4.1. For such low regularities of g and Ψs as are considered in Theorem 1, we

still have a relatively natural and “strong” notion of solution. The regularity assumptions

on g and Ψs entail in particular

g ∈ C1(Rt ×Σ), Ψs ∈ L2loc(Rt ×Σ).
We can define the first order partial derivatives of Ψs, with respect to a given coordinate

basis, in the sense of distributions; these derivatives will belong to H−1loc (Rt×Σ) which is
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the dual of the subspace H1comp(Rt×Σ) of compactly supported elements of H1(Rt×Σ).
In equation (3.4), the coefficients of the first order terms are coefficients of the metric,

they are C1 on Rt × Σ. These terms are therefore multipliers of H1comp(Rt × Σ) and
by duality multipliers of H−1loc (Rt × Σ). The coefficients of the zero order terms are the
mass and connection coefficients, they are continuous on Rt ×Σ and thus multipliers of
L2loc(Rt × Σ). It follows that D acts continuously from L2loc(Rt × Σ) to H−1loc (Rt × Σ).
Consequently, equation (3.4), for a metric g and a spinor valued function Ψs having the

regularity assumed in Theorem 1, is to be understood as an equality in H−1loc (Rt × Σ).
The initial data condition is completely straightforward because of the continuity in time

of Ψs.

For all Cauchy problems subsequently considered, the function space F in which the

solutions take their values will always be embedded in L2loc(Σ) and the coefficients of

the first order part of the equations considered will always be at least C1 on Rt × Σ.
Concerning the zero order part, we shall allow for regularities lower than C0(Rt × Σ)
and we shall sometimes consider general (not necessarily local) potentials. However, the

zero order part will always act continuously from C(Rt;F ) to L1loc(Rt;L2loc(Σ)), which is
a distribution space. Hence, the notion of solution will be interpreted as it is here (the

equation being understood as an equality in a space of distributions).

Using the well-posedness of the Cauchy problem in L2, we can show for more regular

metrics the existence of more regular solutions.

Theorem 2. Assume that the metric g satisfies hypothesis (H) of Definition 2.1 and

g ∈ Cl(Rt; Ck−lb (Σ)), ∀l; 0 ≤ l ≤ k,
for some positive integer k, then for any initial data Ψ0 ∈ Hm(Σ; SDirac), 0 ≤ m ≤ k− 1,
the solution Ψs ∈ C(Rt;L2(Σ; SDirac)) to (3.4) associated with s and Ψ0 satisfies

Ψs ∈ Cl(Rt;Hm−l(Σ; SDirac)), ∀l; 0 ≤ l ≤ m.
We can also show the existence of solutions with a controlled growth or fall-off at

spacelike infinity. In particular, we obtain, using product theorems for weighted Sobolev

spaces, the existence of solutions with values in Hk−1µ , µ ∈ R, for a metric g of class
(k, δ), δ < 0, k ≥ 3.
Theorem 3. Assume that g is of class (k, δ), k ≥ 3, δ < 0, and consider some initial
time s ∈ R.
1. For any initial data Ψ0 ∈ L2µ(Σ; SDirac), µ ∈ R, equation (3.4) has a unique solution

Ψs ∈ C(Rt;L2µ(Σ; SDirac)) such that
Ψs|t=s = Ψ0.

(Note that L2µ  L2 for µ < −3/2 but for µ > −3/2 we have L2  L2µ.)

2. For µ ∈ R and for m ∈ N such that 0 ≤ m ≤ k− 1, if the initial data Ψ0 belongs to
Hmµ (Σ; SDirac) then the solution Ψs ∈ C(Rt;L2µ(Σ; SDirac)) associated with Ψ0 and some
initial time s satisfies

Ψs ∈ Cl(Rt;Hm−lµ (Σ; SDirac)), ∀l; 0 ≤ l ≤ m.
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For metrics slightly more regular than was assumed in Theorem 1, we can prove that

the charge of the solutions is conserved:

Theorem 4. Assume that the metric g is regular enough to guarantee that the solution

of (3.4) associated with some compactly supported initial data in H1(Σ; SDirac), belongs

to

C(Rt;H1(Σ; SDirac)) ∩ C1(Rt;L2(Σ; SDirac)).
This is in particular true for metrics satisfying hypothesis (H) of Definition 2.1 and

having the regularity

g ∈
2⋂

l=0

Cl(Rt; C2−lb (Σ)),

as in Theorem 2, or , taking into account the compact support of the initial data, the finite

propagation speed and the results of Theorem 3, for metrics of class (k, δ), k ≥ 3, δ < 0.
Consider Ψ ∈ C(Rt;L2(Σ; SDirac)) a solution of (3.4). Define the “charge” of Ψ at time t
as

E(t) := ‖Ψ(t)‖2L2(Σt) =
\
Σ

〈Ψ(t), Ψ(t)〉 dVolh(t) =
\
Σ

|Ψ(t)|2 dVolh(t).(4.1)

Then E(t) is constant throughout time.

Remark 4.2. It is important to note that the measure dVolh(t) in the definition of the

charge above is the volume element associated with the metric h(t) on Σ and therefore

depends on time. Hence, the conservation of the charge is not to be understood as the

conservation of the norm on a fixed L2 space; the norm is tied in with the space-time

geometry which is time-dependent.

If however (M, g) admits a foliation by maximal hypersurfaces Σt, i.e. surfaces for

which the trace of the extrinsic curvature vanishes, then, as was already mentioned earlier,

the volume element dVolh(t) onΣ will no longer depend on time and the charge will indeed

be the norm on a fixed L2 space on Σ.

Remark 4.3. 1. The regularity of the metric: if we want a metric of class (p, δ) to have

the regularity assumed in Theorem 2, we need to impose p ≥ k+2 (and of course δ < 0)
because of the Sobolev embedding (2.17). This means that for a metric of class (k, δ),

k ≥ 3, δ < 0, we can only guarantee the existence of solutions with values in Hk−3
and this was the case in the results of [42]. In Theorem 3 however, by working entirely

in weighted Sobolev spaces we avoid the use of Sobolev embeddings and we lose only

one rank of regularity between the metric and the solution, which is the minimum loss

possible. A similar result with (nonweighted) Sobolev spaces is given in Proposition 4.2;

note however that assuming the metric to live simply in Sobolev spaces is not so well

adapted to general relativity since we have less control on its fall-off at infinity than if

we use weighted Sobolev spaces.

In Theorem 3 we have assumed g to be of class (k, δ) with k ≥ 3 simply because
we have only defined the classes (k, δ) for integral values of k. If we allow k to be any

positive real number, then we can define the class (k, δ) as the set of metrics g satisfying
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hypothesis (H) and

g −
(
dt2 − h̃− m

r

)
∈ Cl(Rt;Hk−lδ (Σ)), ∀l; 0 ≤ l ≤ [k].

Of course, one needs to define Sobolev spaces of nonintegral order on Σ but this is eas-

ily done using local charts whose domains are regular open sets of Σ and the standard

definition of Sobolev spaces on regular open sets of Rn. In this new context, imposing

simply k > 5/2 and δ < 0 would just be enough to guarantee the validity of the prod-

uct theorems between weighted Sobolev spaces which are the fundamental tools for the

proof of Theorem 3. Thus the theorem would still hold under these hypotheses with only

the slight modification that m needs to be lower than [k] − 1 instead of k − 1. We see
that for 5/2 < k < 3 we could still guarantee the existence of solutions with values

in H1µ.

2. Weighted Sobolev spaces : there is a strong motivation for proving the existence of

solutions to field equations with values in weighted Sobolev spaces in that it has direct

applications to the analysis of Einstein’s equations. Indeed, as was remarked in [42] (see

Section 7.1 of this reference for more details), controlling the fall-off at spacelike infinity

of solutions to the spin 3/2 field equations is a first step towards the control of the

fall-off at spacelike infinity of solutions to Einstein’s equations. Spin 3/2 field equations

in the framework of weighted Sobolev spaces would hardly be more difficult to study than

Dirac’s equations (see Chapter 7 for more details).

3.Weyl’s equations: all the results given here for Dirac’s equation are naturally valid

for Weyl’s neutrino and anti-neutrino equations

∇AA′ψA′ = 0 and ∇AA
′

ηA = 0

since they are special cases of a massless Dirac equation where one of the two spinors

vanishes.

Proof of Theorem 1. We choose a unitary spin-frame {oA, ιA} adapted to the foliation
and a local coordinate basis x1, x2, x3 on Σ. Equation (3.4) then takes the form (3.30)

which we recall here

∂Ψ

∂t
=
N(t, x)√
2

{ 3∑

a=1

Aa(t, x)
∂Ψ

∂xa
+ (−imγ0 +B(t, x))Ψ

}

where Aa, a = 1, 2, 3, are 4 × 4 hermitian matrices made of coefficients of h(t) and B
is a 4× 4 matrix made of space-time connection coefficients. The Dirac spinor Ψ is now
represented by its components in the spin-frame and is thus to be considered as a function

on Rt ×Σx with values in C4.
When the topology is trivial, the theorem is a consequence of known results con-

cerning symmetric hyperbolic systems (see T. Kato [32] and [33]). An extension of these

results to curved space-times with nontrivial topology was given in [42], but the regu-

larity assumptions on the metric were stronger than they are here. We give and prove

a general result for symmetric hyperbolic systems on R × Σ with weakly regular coeffi-
cients:
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Proposition 4.1. Consider a symmetric hyperbolic operator ∂/∂t−A(t) on R×Σ, ho-
mogeneous of the first order , acting on B, an n-dimensional tensor or spinor bundle on
R×Σ. More precisely , this means that after a choice of local coordinates and of Lorentz
frame or spin-frame, each fibre of B is identified with Cn and A(t) takes the form

A(t) =
3∑

i=1

ai(t, x)
∂

∂xi

where the ai’s are n × n hermitian matrices. Assume that such choices have been made
and consider the sections of B as Cn-valued functions. Assume that the coefficients ai
have the regularity

ai ∈ C(Rt; C1b (Σ;Mn(C)))

and consider some potential b such that

b ∈ L1loc(Rt;L(L2(Σ;Cn))).

Then, for any s ∈ R, for any u0 ∈ L2(Σ;Cn), the equation
∂u

∂t
= A(t)u+ b(t)u(4.2)

has a unique solution u ∈ C(Rt;L2(Σ;Cn)) such that u|t=s = u0. The propagator for

equation (4.2), defined by

V(t, s) : u0 7→ u(t),

where u is the solution to the Cauchy problem as above, satisfies

(i) ∀t, s∈R, V(t, s)∈L(L2(Σ;Cn)), V is strongly continuous on R2t,s with values in
L(L2(Σ;Cn)) and V(t, t) = IdL2(Σ;Cn),
(ii) ∀r, s, t ∈ R, V(t, s) = V(t, r)V(r, s).

Note that by strongly continuous we mean continuous for the topology of strong conver-

gence of bounded operators : if An and A are bounded operators from a separable Hilbert

space E to another separable Hilbert space F , we say that An converges strongly to A as

n→ +∞ if Anφ→ Aφ in F as n→ +∞, for any φ ∈ E.

Theorem 1 is then an easy consequence of the previous proposition: if the metric g is

as assumed in Theorem 1, then the lapse-function N and the Ai’s whose coefficients are

coefficients of the metric, satisfy

N,Ai ∈ C(Rt; C1b (Σ)) ∩ C1(Rt; C0b (Σ)).

The matrix B is made of connection coefficients which are first order derivatives of the

metric, whence

N√
2
(B − imγ0) ∈ C(Rt; C0b (Σ;M4(C))) →֒ L1loc(Rt;L(L2(Σ;C4))).

Thus Proposition 4.1 can be applied and entails Theorem 1.
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Proof of Proposition 4.1. We solve the Cauchy problem for the “free” equation (1)

∂u

∂t
= A(t)u,(4.3)

then we interpret b as a bounded operator on the space of solutions and the proposition

follows by a standard fixed point theorem. We first consider the situation where Σ has

trivial topology. In such a case, (Σ, h̃) is diffeomorphic to R3 and all (weighted or not)

Sobolev spaces on Σ are isomorphic to the same spaces on R3. (4.3) then becomes an

equation on Rt × R3:

∂u

∂t
=

3∑

i=1

ai(t, x)
∂u

∂xi
, ai ∈ C(Rt; C1b (R3x;Mn(C))).

The well-posedness of the Cauchy problem for such an equation is well known in a variety

of spaces and in particular, using the isomorphisms L2(Σ) ≃ L2(R3) and H1(Σ) ≃
H1(R3), we get from the results of T. Kato in [32]–[34], the existence of a unique family

of operators {U(t, s)} defined on Rt × Rs and satisfying
a. U is strongly continuous from R2t,s to L(L2(Σ;Cn)) and U(t, t) = IdL2(Σ;Cn),
b. U(t, s)U(s, r) = U(t, r),
c. U is strongly continuous from R2t,s to L(H1(Σ;Cn)),
d. ∂U(t, s)/∂t = A(t)U(t, s), ∂U(t, s)/∂s = −U(t, s)A(s) which both exist in the

strong sense in L(H1(Σ;Cn);L2(Σ;Cn)) and are strongly continuous from R2t,s to this
space.

We can also remark that the solutions propagate at a finite speed and the propagation

speed at each time t is estimated uniformly on R3 by the continuous function of t

C(t) = 3 sup{‖ai(t, x)‖; 1 ≤ i ≤ 3, x ∈ R3}.(4.4)

This is a standard result for first order symmetric hyperbolic systems on R3. A proof can

be found in R. Racke [55] for C1 solutions. We can prove it in our less regular case by
performing the same estimates as in [55] for a smooth function on R×R3 not supposed to
satisfy the equation, extending the final estimate to functions in C(Rt;L2(R3)) by density
and simplifying it at last by restricting it to solutions of the equation. Of course (4.4)

implies that the propagation speed on (Σ, h̃), i.e. for the distance associated with h̃ which

is uniformly equivalent to the euclidian distance on R3, is estimated at each time by

C̃(t) = λC(t)

where λ is a positive constant such that, for each x, y ∈ Σ ≃ R3 we have dh̃(x, y) ≤
λ|x − y|, | · | being the euclidian distance on R3. This result will be of some technical
importance for solving the Cauchy problem in nontrivial topology and for proving the

conservation of the charge of Dirac fields.

(1) The rather inappropriate denomination “free equation”, which appears several times in
this work, comes from a bad habit that the author has contracted doing scattering theory and
talking with other scattering theorists. What we mean by this is merely a simplified equation,
obtained by removing some potential (“interaction”). We also tend to refer to the propagators
for these “free” equations as “free” propagators.
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If the topology of Σ is not trivial, it is in any case necessarily finite: indeed, it is

entirely determined by the (finite) number of asymptotically flat ends and by the (finite

since Σ is a manifold) topology of Σ inside a large enough compact subset. Hence we

can cover Σ with a finite number of smooth open sets of trivial topology {Ωi}1≤i≤p,
p ∈ N∗. We have on each Ωi a control on the propagation speed of type (4.4) where the
sup is taken over Ωi and this control can be made uniform over Σ using the fact that

ai ∈ C(Rt; C1b (Σ)). Hence, the propagation speed for the solutions of (4.3) is controlled
on Rt ×Σ by a continuous function of t: C̃(t). We use this property to define “domains
of dependence” for the sets Ωi. This is done by evolving the boundary ∂Ωi of Ωi along

the flow of the vector field

C̃(t)νa +
1√
2
T a,

where νa is the interior unit normal to ∂Ωi, from a certain time t0 ∈ R on. For t ≥ t0,

we obtain open sets Ωi(t), delimited by the evolved boundary, with Ωi(t0) = Ωi. The

continuity of C̃(t) makes it possible to choose the covering {Ωi} so that, when evolving
the sets into their domains of dependence from a time t0, {Ωi(t)}1≤i≤p is still a covering
of Σ by trivial topology smooth open sets if t0 ≤ t ≤ t0+ ε for a certain ε > 0. Moreover,
ε can be chosen independently of t0 if t0 is restricted to belong to a compact time interval.

Let us now consider some initial time s ∈ R and some initial data u0 ∈ L2(Σ;Cn). We
consider T > 0 fixed and study the existence of the solution on [s−T, s+T ]. We first put
t0 = s. Using the well-posedness of the Cauchy problem in trivial topology, we have in the

domain of dependence of each Ωi the existence of a unique solution continuous in time

with values in L2. Uniqueness in the trivial topology case guarantees local uniqueness

and allows us to recover a global solution on Σ from the solutions in the domains of

dependence as long as the Ωi(t) form a covering of Σ, i.e. at least on [t0, t0 + ε] where

ε > 0 is as above and is fixed on the whole interval [s − T, s + T ]. The solution thus
obtained is continuous on [s, s+ ε] with values in L2(Σ): indeed, we have a finite number

of sets in the covering and for each t ∈ [s, s + ε], the norm on L2(Σ) is equivalent (the
equivalence being uniform on [s, s + ε]) to the sum of the flat L2 norms on each Ωi(t),

i.e.

‖f‖L2(Σ) =
{\
Σ

〈f, f〉 dVolh̃
}1/2
≃
{∑

i

\
Ωi(t)

|f(x)|2 dµL(x)
}1/2

(4.5)

where dµL is the Lebesgue measure on R
3. Then we put t0 = s + ε. In this manner, by

steps of length ε, we propagate the solution forward in time up to time s+ T . Reversing

time in equation (4.3) allows us to propagate backwards down to s − T . Hence we have
the existence of a unique solution in C([s−T, s+T ];L2(Σ;Cn)) for any T > 0 fixed, that

is, the existence and uniqueness on C(Rt;L2(Σ;Cn)).
The well-posedness of the Cauchy problem can be expressed in terms of propagators.

In each domain of dependence of a set Ωi we have a local propagator inherited from the

flat space propagator and satisfying local analogues of properties a,b,c,d. Local uniqueness

allows us to patch together these propagators to recover the global propagator for the

equation on Σ, which we shall still denote by U(t, s). Using the norm-equivalence (4.5)
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and the corresponding equivalence for H1 norms

(4.6) ‖f‖H1(Σ) =
{\
Σ

(〈f, f〉+ 〈D̃f, D̃f〉) dVolh̃
}1/2

≃
{∑

i

\
Ωi(t)

(
|f(x)|2 +

∣∣∣∣
∂f

∂x1
(x)

∣∣∣∣
2

+

∣∣∣∣
∂f

∂x2
(x)

∣∣∣∣
2

+

∣∣∣∣
∂f

∂x3
(x)

∣∣∣∣
2)
dµL(x)

}1/2
,

we infer from the properties of the local propagators that U(t, s) has properties a, b, c
and d. Hence, we can guarantee the existence of solutions with values in H1 as well as L2.

In order to solve the Cauchy problem for equation (4.2) in C(Rt;L2(Σ)), we express
it as a fixed point problem for an integral functional (this is the so-called Duhamel

principle). Given u0 ∈ L2(Σ) and s, T ∈ R, the following two problems are equivalent:
∂u

∂t
= A(t)u+ b(t)u, u ∈ C([s, T ];L2(Σ)), u|t=s = u0,(4.7)

and

u(t) = Su(t) := U(t, s)u0 +
t\
s

U(t, τ )b(τ )u(τ ) dτ, u ∈ C([s, T ];L2(Σ)),(4.8)

where U(t, s) is the propagator for the free equation (4.3) constructed above.
Before solving problem (4.8), we justify the equivalence between (4.7) and (4.8). We

work in the case of a source, the extension to the potential being trivial as we shall see.

We consider the equation
∂u

∂t
= A(t)u+ f(t)(4.9)

where f ∈ L1loc(Rt;L2(Σ)). The fact that the solutions to the Cauchy problem for (4.9)
in L2 are given by the integral formula

u(t) = U(t, s)u0 +
t\
s

U(t, τ )f(τ ) dτ(4.10)

was justified in an abstract setting by H. Tanabe [61], using the theory of analytic semi-

groups, under the assumption that f is C1 in time and for solutions living in the common
domain of the operators A(t). We have here the advantage of dealing with operators

A(t) which are differential operators. This allows us to give to the propagator U on L2 a
somewhat stronger meaning than what is possible to achieve in the abstract framework.

We have, in the strong sense on L(L2(Σ;Cn);H−1(Σ;Cn)), ∂U(t, s)/∂t = A(t)U(t, s);
this operator is strongly continuous from R2t,s to L(L2(Σ;Cn);H−1(Σ;Cn)) as the com-
position of U , strongly continuous from R2t,s to L(L2(Σ;Cn)) with A(t), strongly con-
tinuous from Rt to L(L2(Σ;Cn);H−1(Σ;Cn)). Using this remark, we can show that for
u0 ∈ L2(Σ), the function u ∈ C(Rt;L2(Σ)) defined by (4.10) satisfies (4.9): since U(t, s)
is closed on L2(Σ), we have

t\
s

U(t, τ )f(τ ) dτ = U(t, s)
t\
s

U(s, τ)f(τ ) dτ
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and therefore, all time derivatives being strong derivatives on Rt with values in H
−1(Σ),

∂

∂t
u(t) =

(
∂

∂t
U(t, s)

)(
u0 +

t\
s

U(s, τ)f(τ ) dτ
)
+ U(t, s) ∂

∂t

( t\
s

U(s, τ)f(τ ) dτ
)

= A(t)U(t, s)
(
u0 +

t\
s

U(s, τ)f(τ ) dτ
)
+ U(t, s)U(s, t)f(t) = A(t)u(t) + f(t).

Therefore u is a solution of (4.9) such that u(s) = u0. Moreover, the uniqueness in

C(Rt;L2(Σ)) of solutions to (4.9) is guaranteed by the uniqueness for (4.3) in the same
class. This proves that the solutions to the Cauchy problem for (4.9) in L2 are given by

(4.10). Now, the equivalence between (4.7) and (4.8) is easily seen. If u is a solution of

(4.8), then by the calculation above with f(t) replaced by b(t)u(t), we show that it satisfies

(4.2). Conversely, for u solution to (4.7), putting f(t) = b(t)u(t) ∈ L1loc([s, T ];L2(Σ)), we
have

∂

∂t
u(t) = A(t)u(t) + f(t), u(s) = u0,

whence, by the expression of solutions in the case of a source, u satisfies (4.8).

Remark 4.4. In the proofs of Proposition 4.2 and Theorems 5 and 6, we shall rely a

number of times on Duhamel’s principle. In each case, the function space where the

solutions live will be embedded in L2 or at least in L2loc and so, the equivalence between

the Cauchy problem and its integral formulation can be justified just as we did here; the

only slight difference may be that A(t)U(t, s) acts continuously from the function space
considered to H−1loc instead of H

−1.

We now proceed to solving problem (4.8). This is easily done by remarking that the

space C([s, T ];L2(Σ)) is stable under the functional S and for |T − s| small enough, S is
a strict contraction on the closed ball

Bs,T,u0 := {u ∈ C([s, T ];L2(Σ)); ‖u(t)‖L2(Σ) ≤ 2‖u0‖L2(Σ) ∀t ∈ [s, T ]}.
Whence the existence of a unique fixed point for S in C([s, T ];L2(Σ)) for |T − s| small
enough. The uniform boundedness of U and the integrability of b on each compact time
interval imply that any solution to (4.8) on a compact time interval [s, T ] satisfies the

inequality (obtained using Gronwall’s lemma):

‖u(t)‖L2(Σ) ≤ C(s, T ) exp
(
C(s, T )

\
[s,T ]

‖b(τ )‖L(L2(Σ)) dτ
)
‖u0‖L2(Σ)

where C(s, T ) = sup{‖U(t, τ )‖L(L2(Σ)); t, τ ∈ [s, T ]}. Hence, any solution to (4.7) on [s, T ]
is uniformly bounded in L2(Σ) on this interval, which suffices to ensure the existence of

a unique solution to the Cauchy problem for (4.2) in C(Rt;L2(Σ)). Properties (i) and (ii)
of the propagator are straightforward consequences of the uniqueness of solutions and of

the integral formulation (4.8) of the Cauchy problem together with the properties of U
and b. This proves Proposition 4.1.

Remark 4.5. It is worth noting that in the case where b is simply a matrix valued

potential, as it is the case in equation (3.30), the solutions to (4.2) propagate at a finite

speed with the same bound on the propagation speed as the solutions to (4.3). This
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can be proved by considering the case where the initial data u0 is compactly supported

and restricting the functional S to the closed subspace Es,T,u0 of C([s, T ];L2(Σ)), made
of elements u such that supp(u(s)) ⊂ supp(u0) and the support of u propagates at
a speed less than C̃(t) at each time t. This subset is stable under S thanks to the
bound on the propagation speed for (4.3) and S is a strict contraction for |T − s| small
enough on Es,T,u0 ∩ Bs,T,u0 which is not empty. This shows that the fixed point of S in
C([s, T ];L2(Σ)) belongs to Es,T,u0 and entails the propagation of the solutions to (4.2)
at a speed lower than C̃(t).

Proof of Theorems 2 and 3. As in the proof of Theorem 1, we prove a general result for

first order symmetric hyperbolic systems on R×Σ:

Proposition 4.2. Consider the same first order symmetric hyperbolic system (4.2) as

for Proposition 4.1.

1. If the coefficients of the equation satisfy : ai ∈ C(Rt; Cpb (Σ;Mn(C))), for some
p ∈ N∗, and b ∈ L1loc(Rt;L(Hp(Σ;Cn))), then the propagator for equation (4.2) satisfies

V is strongly continuous from R2t,s to L(Hp(Σ;Cn)).(4.11)

If moreover ai ∈ Cl(Rt; Cp−lb (Σ;Mn(C))) for all l ∈ N such that 0 ≤ l ≤ p and we also

assume b ∈ Cl(Rt;L(Hp−l(Σ;Cn);Hp−l−1(Σ;Cn))) for all l ∈ N, 0 ≤ l ≤ p − 1, then
for any initial time s ∈ R and any initial data u0 ∈ Hp(Σ;Cn), the solution u to (4.2)
associated with s and u0 satisfies

u ∈ Cl(Rt;Hp−l(Σ;Cn)), ∀l; 0 ≤ l ≤ p.(4.12)

2. Given ̺ ∈ R, if ai ∈ C(Rt; C1b (Σ;Mn(C))) and b ∈ L1loc(Rt;L(L2̺(Σ;Cn))), for
any initial time s ∈ R and any initial data u0 ∈ L2̺(Σ;Cn), equation (4.2) has a unique
solution u ∈ C(Rt;L2̺(Σ;Cn)) such that u(s) = u0. Hence the propagator for equation

(4.2) can be defined on L2̺(Σ;C
n) and satisfies

V is strongly continuous from R2t,s to L(L2̺(Σ;Cn)).(4.13)

3. Consider ν < 0, k ∈ N, k ≥ 3, ̺ ∈ R and m ∈ N, m ≤ k. Moreover , consider

three fixed hermitian matrices a10, a
2
0, a

3
0 ∈Mn(C), corresponding to the limits at spacelike

infinity of a1, a2, a3. If ai−ai0 ∈ C(Rt;Hkν (Σ;Mn(C))) and b ∈ L1loc(Rt;L(Hm̺ (Σ;Cn))),
then

V is strongly continuous from R2t,s to L(Hm̺ (Σ;Cn)).(4.14)

If moreover we suppose that ai − ai0 ∈ Cl(Rt;Hk−lν (Σ;Mn(C))) for all l ∈ N, 0 ≤ l ≤ k
and b ∈ Cl(Rt;L(Hm−l̺ (Σ;Cn);Hm−l−1̺ (Σ;Cn))) for all l ∈ N, 0 ≤ l ≤ m − 1, then
for any initial data u0 ∈ Hm̺ (Σ;Cn) and any initial time s ∈ R, the solution u to (4.2)
associated with s and u0 satisfies

u ∈ Cl(Rt;Hm−l̺ (Σ;Cn)), ∀l; 0 ≤ l ≤ m.(4.15)

4. This last part extends a result given in [62], p. 364. Similarly to part 3, we consider

k ∈ N, k ≥ 3, m ∈ N, m ≤ k and three hermitian matrices a10, a
2
0, a

3
0 ∈ Mn(C). If

ai − ai0 ∈ C(Rt;Hk(Σ;Mn(C))) and b ∈ L1loc(Rt;L(Hm(Σ;Cn))), then
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V is strongly continuous from R2t,s to L(Hm(Σ;Cn)).(4.16)

If moreover ai − ai0 ∈ Cl(Rt;Hk−l(Σ;Mn(C))) for all l ∈ N such that 0 ≤ l ≤ k and

b ∈ Cl(Rt;L(Hm−l(Σ;Cn);Hm−l−1(Σ;Cn))) for all l ∈ N, 0 ≤ l ≤ m − 1, then for any
initial data u0 ∈ Hm(Σ;Cn) and any initial time s ∈ R, the solution u to (4.2) associated
with s and u0 satisfies

u ∈ Cl(Rt;Hm−l(Σ;Cn)), ∀l; 0 ≤ l ≤ m.(4.17)

It is easy to show that Proposition 4.2 entails Theorems 2 and 3. In Theorem 2, the

regularity of the metric implies that the coefficients of the Dirac equation satisfy

N,Ai ∈ Cl(Rt; Ck−lb (Σ)), ∀l; 0 ≤ l ≤ k,
N√
2
(B − imγ0) ∈ Cl(Rt; Ck−l−1b (Σ;M4(C))), ∀l; 0 ≤ l ≤ k − 1

and

Cl(Rt; Ck−l−1b (Σ;M4(C))) →֒ Cl(Rt;L(Hk−l(Σ;C4);Hk−l−1(Σ;C4))).
Hence, applying point 1 of Proposition 4.2 gives the result and Theorem 2 is proved.

In Theorem 3, for all ν > max(δ,−1), we have for a = 1, 2, 3
N −
√
2 ∈ Cl(Rt;Hk−lν (Σ)), ∀l; 0 ≤ l ≤ k,(4.18)

N√
2
Aa −Aa0 ∈ Cl(Rt;Hk−lν (Σ)), ∀l; 0 ≤ l ≤ k,(4.19)

B ∈ Cl(Rt;Hk−l−1ν (Σ)), ∀l; 0 ≤ l ≤ k − 1,(4.20)

where Aa0 are the coefficients of the first order terms of the Dirac equation on (R × Σ,
dt2− h̃) in the same coordinate basis. (4.18) and (4.19) are simple consequences of (2.18):
the regularity of the derivatives is clear since they essentially are derivatives of the metric;

the only slight difficulty is to show that (N/
√
2)Aa − Aa0 belongs to the right weighted

L2 space and this is done using the fact that g − (dt2 − h̃) tends to zero at infinity (in
addition to being in the required weighted L2 space) and doing an asymptotic expansion

at infinity of (N/
√
2)Aa −Aa0 .

The important thing is that ν is allowed to be strictly negative. The weight ν in the

regularity of B is due to the presence of timelike derivatives of the metrics; if we had only

spacelike derivatives, the weight would be ν − 1. In order to study the regularity of the
potential, we write it as

N√
2
(B − imγ0) =

(
N√
2
− 1
)
B − im

(
N√
2
− 1
)
γ0 +B − imγ0.

Using (4.18), (4.20) and the continuous multiplication property (see Y. Choquet-Bruhat

and D. Christodoulou [9])

(4.21) Hs1µ1(Σ)×Hs2µ2(Σ) →֒ Hsµ(Σ) for s1, s2 ≥ s, s < s1 + s2 −
3

2
, µ > µ1 + µ2,

we can easily show that
(
N√
2
− 1
)
B ∈ Cl(Rt;Hk−l−1ν (Σ)), ∀l; 0 ≤ l ≤ k − 1.
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This is done by proving that for p+ q = l ≤ k − 1, we have

∂pt

(
N√
2
− 1
)
∂qtB ∈ Cl(Rt;Hk−l−1ν (Σ))

which only requires k > 3/2 and ν < 0. Consequently,

N√
2
(B − imγ0) + imγ0 ∈ Cl(Rt;Hk−l−1ν (Σ)), ∀l; 0 ≤ l ≤ k − 1.

We then show, using (4.21) that, for l,m ∈ N, 0 ≤ l ≤ m − 1, 1 ≤ m ≤ k − 1 and for
̺ ∈ R,

Hk−l−1ν (Σ) →֒ L(Hm−l̺ (Σ);Hm−l−1̺ (Σ)).

The term imγ0 being constant, we conclude that

N√
2
(B − imγ0) ∈ Cl(Rt;L(Hm−l̺ (Σ);Hm−l−1̺ (Σ)))

for 0 ≤ l ≤ m−1, 1 ≤ m ≤ k−1, ̺ ∈ R. We also show in the same manner that, provided
k > 5/2,

N√
2
(B − imγ0) ∈ C(Rt;L(Hm̺ (Σ)))

for 0 ≤ m ≤ k − 1 and ̺ ∈ R. Hence, Theorem 3 is a consequence of points 2 and 3 of
Proposition 4.2.

Remark 4.6. It is easily seen that the conditions imposed on the ai’s and b in Proposition

4.2 to obtain (4.15) and (4.17) are slightly too strong. However, we have chosen these

conditions because they arise naturally for wave equations such as Dirac or Rarita–

Schwinger and the optimal conditions would make the proposition much less readable.

Proof of Proposition 4.2. We prove the four points of the proposition only in the case

of trivial topology. Since all the spaces in which the solutions take their values have

norms defined by integrals over Σ, if the topology of Σ is not trivial we can always take

advantage of the finite propagation speed to localize the problem into the domains of

dependence of the open sets in a covering such as in Proposition 4.1. In each case the

norm on the function space on Σ will be equivalent to the sum of the analogous flat

norms in the sets of the covering. Thus, the results in trivial topology can be extended

to nontrivial topology in exactly the same manner as in Proposition 4.1. We simply work

with the equation on Rt × R3x:
∂u

∂t
=

3∑

i=1

ai(t, x)
∂u

∂xi
+ b(t)u.(4.22)

We only need to establish the regularity of the propagator for the equation

∂u

∂t
=
3∑

i=1

ai(t, x)
∂u

∂xi
,(4.23)

the potential term b(t) being treated via a fixed point method. In each case, we have

chosen for b exactly the regularity required to solve the integral problem (4.8) with

values in the right space. Further, the integral formulation allows us to interpret properties

(4.11), (4.13), (4.14) and (4.16) of the propagator V for equation (4.22) as straightforward
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consequences of the same properties for the free propagator (2) U and the regularity of b.
In cases where we assume more regularity on b and the ai’s, the properties (4.12), (4.15)

and (4.17) of the solution can be read off immediately from equation (4.22).

Each part of the proposition is deduced from the results of Proposition 4.1, either

through the use of suitable identifying operators, or, in the case of weighted Sobolev

spaces, simply by differentiating the equation.

Point 1: Since ai ∈ C(Rt; Cpb (R3)), p ≥ 1, we know from [32]–[34] (see proof of Proposi-
tion 4.1 above) that the free propagator U exists as a bounded operator on L2(R3) and
H1(R3). The property

(Pm) U strongly continuous from R2t,s to L(Hm(R3;Cn))
is true for m = 0 and m = 1. We now assume p ≥ 2. If we can infer from (Pm) the
property (Pm+2), provided 0 ≤ m ≤ m + 2 ≤ p, then (4.11) is proved for U . Let us
assume (Pm) true and consider some initial data u0 ∈ Hm+2(R3;Cn) and some initial
time s ∈ R; u being the associated solution, we put

v = (Id−∆)u.
Id−∆ is an isomorphism from Hσ+2(R3) onto Hσ(R3) for any σ ∈ R. Thus, v0 := v(s) ∈
Hm(R3;Cn) and v satisfies the equation

∂v

∂t
=

3∑

i=1

ai(t, x)
∂v

∂xi
+

3∑

i=1

[Id−∆, ai(t, x)] ∂
∂xi
(Id−∆)−1v.(4.24)

Since ai ∈ C(Rt; Cpb (R3)), p ≥ 2, the commutator [Id−∆, ai(t, x)] is of the form

[Id−∆, ai(t, x)] =
3∑

j=1

(
cij(t, x)

∂

∂xj
+ dij(t, x)

)

where

cij ∈ C(Rt; Cp−1b (R3)), dij ∈ C(Rt; C
p−2
b (R

3)).

Therefore, the potential satisfies

3∑

i=1

[Id−∆, ai(t, x)] ∂
∂xi
(Id−∆)−1 ∈ C(Rt;L(Hm(R3))).

This together with (Pm) implies that equation (4.24) has a propagatorW that is strongly
continuous from R2t,s to L(Hm(R3)). Hence, the free propagator U can be defined on
Hm+2 by

U(t, s) = (Id−∆)−1W(t, s)(Id−∆)
and is strongly continuous from R2t,s to L(Hm+2(R3)).
Point 2: Given ̺ ∈ R, we use the following isomorphism between L2̺ and L2:

Φ : f 7→ (1 + r2)−(̺+3/2)/2f, Φ : L2̺
≃→ L2.

(2) See footnote 1 of this chapter.
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Given u0 ∈ L2̺(R3;Cn) and s ∈ R, we deduce that u ∈ C(Rt;L2̺(R3;Cn)) is a solution of
(4.23) such that u(s) = u0 if and only if v := Φ(u) ∈ C(Rt;L2(R3;Cn)) is a solution of

(4.25)
∂v

∂t
=

3∑

i=1

ai(t, x)
∂v

∂xi
+

3∑

i=1

ai(t, x)

[
(1 + r2)−(̺+3/2)/2,

∂

∂xi

]
(1 + r2)(̺+3/2)/2v

such that v(s) = v0 := Φ(u0) = (1 + r
2)−(̺+3/2)/2u0. The commutator is simply the

smooth function[
(1 + r2)−(̺+3/2)/2,

∂

∂xi

]
= − ∂

∂xi
((1 + r2)−(̺+3/2)/2) = O(r−(̺+5/2)), as r → +∞.

Therefore the potential satisfies

3∑

i=1

ai(t, x)

[
(1+r2)−(̺+3/2)/2,

∂

∂xi

]
(1+r2)(̺+3/2)/2∈C(Rt; C0b (R3)) →֒ C(Rt;L(L2(R3))).

We infer that equation (4.25) has a propagator W that is strongly continuous from R2t,s
to L(L2(R3;Cn)). This allows us to define the free propagator U on L2̺ by

U(t, s) = Φ−1W(t, s)Φ
and conclude that it is strongly continuous from R2t,s to L(L2̺(R3;Cn)).
Point 4: This part of the proposition will be useful for the proof of point 3, therefore

we prove it first. This is done exactly as for point 1 with the additional tool of product

theorems between Sobolev spaces. We have assumed ai − ai0 ∈ C(Rt;Hk(R3;Cn)) with
k ≥ 3. Consequently ai ∈ C(Rt; C1b (R3;Cn)) and thus U acts as a strongly continuous
propagator on L2 andH1. Then we use (Id−∆)−1 to go up toH l+2 fromH l, 0 ≤ l ≤ k−2;
the commutator [Id−∆, ai(t, x)] is of the form

[Id−∆, ai(t, x)] =
3∑

j=1

(
cij(t, x)

∂

∂xj
+ dij(t, x)

)

where

cij ∈ C(Rt;Hk−1(R3)), dij ∈ C(Rt;Hk−2(R3)).
Using the usual product rule between Sobolev spaces

Hσ1(R3)×Hσ2(R3) →֒ Hσ(R3) for σ1, σ2 ≥ σ, σ < σ1 + σ2 − 3/2,
we find that, for 0 ≤ l ≤ k − 2, since k ≥ 3 > 5/2,

Hk−1(R3)×H l(R3) →֒ H l(R3) and Hk−2(R3)×H l+1(R3) →֒ H l(R3).

The conclusion is therefore the same as in point 1:

3∑

i=1

[Id−∆, ai(t, x)] ∂
∂xi
(Id−∆)−1 ∈ C(Rt;L(H l(R3))),

and this allows us to define the propagator U on H l+2. Therefore, by induction, U satisfies
(4.16) for any m such that 0 ≤ m ≤ k and this proves the fourth part of Proposition 4.2.
Point 3: The regularity of the ai’s (Hkν →֒ C1b (R3) since k ≥ 3 and ν < 0) and points
1 and 2 imply that we can define U as a strongly continuous propagator on L2 and L2̺
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for any ̺ ∈ R. We assume that for some integer m, 1 ≤ m ≤ k, the following property is
satisfied:

(Pm−1) U can be defined as a strongly continuous propagator onHp̺ (R3) for any ̺ ∈ R
and for any integer p such that 0 ≤ p ≤ m− 1.

We wish to show that (Pm−1) implies (Pm); this will prove point 3 by induction. For
a given ̺ ∈ R, we establish, using (Pm−1), that U is a strongly continuous propagator
on Hm̺ (R

3). We consider u0 ∈ Hmcomp(R3;Cn). The finite propagation speed and point 4
entail:

U(t, s)u0 ∈ C(R2t,s;Hmcomp(R3;Cn)) →֒ C(R2t,s;Hm̺ (R3;Cn)).
If we prove the existence of a positive, continuous function C on R2t,s such that, for any

u0 ∈ Hmcomp, we have
‖U(t, s)u0‖Hm̺ ≤ C(t, s)‖u0‖Hm̺ ,(4.26)

this will allow us, by density of Hmcomp into H
m
̺ , to define U as a strongly continuous prop-

agator on Hm̺ . Hypothesis (Pm−1) already gives us the existence of a positive, continuous
function C1 on R

2
t,s such that, for any u0 ∈ Hmcomp,

‖U(t, s)u0‖Hm−1̺
≤ C1(t, s)‖u0‖Hm−1̺

.(4.27)

For u0 ∈ Hmcomp(R3), we put u(t, s) = U(t, s)u0 and vj(t, s) = ∂u(t, s)/∂xj for j = 1, 2, 3.
We have vj |t=s = ∂u0/∂xj ∈ Hm−1̺−1 (R

3) and v1, v2, v3 satisfy

∂vj
∂t
=

3∑

i=1

ai(t, x)
∂vj
∂xi
+

3∑

i=1

∂ai

∂xj
(t, x)vi, j = 1, 2, 3.(4.28)

This is a system of three evolution equations whose principal part reduces to (4.23) and

which are coupled by the potentials ∂ai/∂xj . The regularity of the ai’s and the continuous

embedding (4.21) imply (since k > 5/2 and ν < 1)

∂ai

∂xj
∈ C(Rt;Hk−1ν−1 (R3;Mn(C))) →֒ C(Rt;L(Hm−1̺−1 (R

3;Cn))).

This property together with the assumption that the propagator U for (4.23) is strongly
continuous from R2t,s to L(Hm−1̺−1 (R

3)) entail that the system (4.28) admits a strongly

continuous propagator on (Hm−1̺−1 (R
3;Cn))3 (this is proved using a fixed point method).

An immediate consequence is the existence of a positive, continuous function C2 on R
2
t,s,

such that, for any u0 ∈ Hmcomp(R3;Cn),
3∑

i=1

∥∥∥∥
∂

∂xi
U(t, s)u0

∥∥∥∥
Hm−1̺−1

≤ C2(t, s)
3∑

i=1

∥∥∥∥
∂

∂xi
u0

∥∥∥∥
Hm−1̺−1

.(4.29)

Putting (4.27) and (4.29) together gives us (4.26) and concludes the proof of Proposi-

tion 4.2.

Proof of Theorem 4. We apply the result of Lemma 3.3 to obtain the conservation of

the charge. Let us consider some initial data Ψ0 ∈ H1(Σ; SDirac) with compact sup-

port on Σ and some initial time s. Let Ψ be the corresponding solution to (3.4) in

C(Rt;H1(Σ; SDirac)) ∩ C1(Rt;L2(Σ; SDirac)). For T > s, we integrate the closed 3-form
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ω = ∗Uadxa on a closed surface σ made of a timelike tube, large enough not to intersect
the support of the solution on the time interval [s, T ], and of the spacelike hypersurfaces

Σs = {t = s} and ΣT = {t = T}. Such a surface exists thanks to the finite propaga-
tion speed and the integration of ω over σ has a meaning because the vector field Ua,

or equivalently the 3-form ω, belongs to W 1,1loc (Rt × Σ) (the Sobolev space on Rt × Σ
of functions in L1loc with their first derivative in L

1
loc); therefore one can apply Stoke’s

theorem to evaluate the integral of ω over the compact, piecewise C1 hypersurface σ. We
have proved the closedness of ω in Lemma 3.3. We obtain\

ΣT

1√
2
T aUa dVolh(T ) −

\
Σs

1√
2
T aUa dVolh(s) = 0

since 1√
2
T a and − 1√

2
T a are the outgoing unit normals to σ on ΣT and Σs respectively.

We have

T aUa = T
AA′φAφA′ + TAA′χ

A′χA = 〈Ψ, Ψ〉 = |Ψ |2.
Similar arguments can of course be used for T < s. This proves the conservation of E(t)

for solutions associated with initial data in H1comp(Σ). The result then carries over to

solutions with values in L2(Σ) by continuity on L2 of the propagator for equation (3.4)

and by density of H1comp in L
2. This concludes the proof of Theorem 4.

5. The case of the Schwarzschild geometry

The space-time containing only a spherically symmetric uncharged black hole of mass

M > 0 is described by the Schwarzschild metric whose expression in the Schwarzschild

coordinates t, r, θ, ϕ on Rt × ]0,+∞[r × S2θ,ϕ is given by

gabdx
adxb =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2dω2(5.1)

where dω2 is the euclidian metric on S2:

dω2 = dθ2 + sin2 θdϕ2.

Putting

F (r) = 1− 2M/r

we have

gabdx
adxb = Fdt2 − F−1dr2 − r2dω2.(5.2)

This metric has two singularities: the horizon {r = 2M} is only a coordinate singularity,
the metric can be extended analytically through it; and the origin {r = 0} which is a
true curvature singularity. The horizon separates the exterior of the black hole {r > 2M},
which is a stationary domain where ∂/∂t is timelike and ∂/∂r spacelike, from the interior

{r < 2M}, a dynamic region where ∂/∂t is spacelike, ∂/∂r timelike, and the inertial
frames are dragged towards the singularity at {r = 0} (the time orientation implicit in
this description is such that the timelike vector field ∂/∂r is past pointing).
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5.1. The exterior of the black hole. We first consider the Schwarzschild geometry

from the point of view of an observer static with respect to infinity. Such observers only

see the exterior of the black hole and their perception of space-time is described by the

time function t of the Schwarzschild coordinates outside the black hole. To their eyes,

light rays falling into the black hole slow down infinitely as they approach the horizon and

never cross it. One way of seeing this is to calculate the radial null geodesics. Introducing

the Regge–Wheeler variable

r∗ = r + 2M Log(r − 2M)
we have

dr

dr∗
= F

and the metric g takes the form

g = F (dt2 − dr2∗)− r2dω2.
The radial null geodesics are the straight lines

ω = ω0, t = ±r∗ + C, C ∈ R, ω0 ∈ S2

and the horizon {r = 2M} (corresponding to r∗ → −∞) is reached in infinite time t.
A remarkable consequence of this property is that if we choose for Dirac’s equation

(or Maxwell’s, or the Klein–Gordon equation alike) some initial data whose support is

contained in {r ≥ 2M + ε}, ε > 0, then the support of the solution will only reach the
horizon when t becomes infinite.

We shall see that results similar to those of the previous section are still valid in this

framework, but before we can express them properly, we need to study the geometry of

the spacelike slices.

5.1.1. The spacelike geometry of the exterior of the black hole. The exterior of the black

hole is globally hyperbolic. We consider the foliation induced by the time function t, i.e.

the slices are

Σt = {t} × ]2M,+∞[r × S2ω, t ∈ R,
with the induced Riemannian metric

h = F−1dr2 + r2dω2.(5.3)

The 3+1 decomposition of the geometry is given by (callingM the exterior of the black
hole):

M = Rt ×Σ, Σ = ]2M,+∞[r × S2ω, g = Fdt2 − h = N2

2
dt2 − h(5.4)

with the lapse function N =
√
2F 1/2. The exterior of the black hole is static: ∂/∂t is a

Killing vector field (since g does not depend on t), is timelike outside the black hole and

is everywhere orthogonal to the Cauchy hypersurfaces Σt. The time orientation is chosen

by deciding that ∂/∂t is future pointing and the normalized vector field T a is then

T a∂a =
√
2F−1/2

∂

∂t
=
2

N

∂

∂t
.
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We consider a generic spacelike slice (Σ, h). The metric h appears singular at r = 2M .

This is merely due to the choice of coordinates; introducing as the new radial variable

u(r) the h-distance to the horizon, we show that (Σ, h) is a smooth manifold and that

the horizon is a smooth boundary.

Given p = (R,ω) ∈ Σ, the h-distance from p to the horizon H = {r = 2M} × S2ω is
given by

u(R) =
\

[2M,R]

F−1/2 dr =
\

[2M,R]

√
r√

r − 2M dr.(5.5)

This distance is finite and H thus appears as the boundary of (Σ, h). Since

du

dr
= F−1/2,

the metric h can be written as

h = du2 + r2dω2(5.6)

and

Σ = ]0,+∞[u × S2ω.
The function u(r) is continuous and strictly increasing from [2M,+∞[ onto [0,+∞[, it is
C∞ on ]2M,+∞[ but it is not differentiable at 2M . However, the inverse function satisfies
Lemma 5.1. The function u 7→ r(u) is C∞ on [0,+∞[ and all its derivatives are uniformly
bounded on [0,+∞[. In particular , the first derivative dr/du = F 1/2 (and therefore also
the lapse function) is uniformly bounded together with all its derivatives on [0,+∞[.
Proof. The first and second derivatives F 1/2 and M/r2 are continuous on [0,+∞[u
whence r is C2 on [0,+∞[u. If r is Ck on [0,+∞[u, then so is the second derivative
and the lemma is thus proved by induction.

This entails that h is smooth on Σ = [0,+∞[u × S2ω; (Σ, h) is a smooth manifold
with boundary. On (Σ, h), we introduce Sobolev spaces with all traces equal to zero at

the boundary:

Definition 5.1. Hm0 (Σ), m ∈ N, is the completion of C∞0 (Σ) in the Sobolev norm

‖f‖Hm(Σ) =
(\
Σ

m∑

p=0

〈Dpf,Dpf〉 dVolh
)1/2

(5.7)

where D, 〈· , ·〉 and dVolh are the covariant derivative, the positive definite inner product
on tensors and spinors at a point and the volume element on Σ induced by h. Note that

on spinors, 〈· , ·〉 is nothing but the hermitian inner product induced by T a. The subscript
0 in Hm0 (Σ) must not be mistaken for a weight subscript; weighted Sobolev spaces on Σ

with zero traces will be denoted by Hm0,δ(Σ). H
0
0 (Σ) is simply L

2(Σ, h).

We wish to prove that the Cauchy problem for the Dirac equation is well-posed in

these spaces. To this end, we establish that the successive domains in L2 of the Dirac

operator on Σ with homogeneous boundary conditions at the horizon are the Sobolev

spaces Hm0 (Σ) and that the norms are equivalent.



44 J.-P. Nicolas

We consider the Dirac operator DΣ associated with the Levi-Civita connection on
(Σ, h). It is formally self-adjoint on L2(Σt; SDirac) and satisfies

D∗Σ DΣ = D2Σ = D∗D = −∆h.(5.8)

The notation D for the Levi-Civita connection on (Σ, h) is justified by the fact that the

exterior of the black hole is static: the extrinsic curvature of the slices Σt is zero, whence

the projection on Σ of the space-time connection (Da = −hab∇b) coincides with the
Levi-Civita connection on (Σ, h). Consequently, D∗D = −∆h and DΣ coincides with the
Dirac–Witten operator on Σ embedded in (M, g). Also, the endomorphism R vanishes
here since Gab = 0 (Schwarzschild’s space-time is a solution of the Einstein vacuum

equations) and (5.8) is therefore obtained from (3.27). Note that the equality (5.8) is

true when applied to Ψ ∈ C∞0 (Σ; SDirac). The coefficients of DΣ and ∆h being smooth
on Σ, these operators are continuous on D′(Σ; SDirac), the space of Dirac spinor valued
distributions on Σ (that is, the dual of C∞0 (Σ; SDirac)). Hence, (5.8) naturally extends
by continuity (1) to an equality of operators acting on D′(Σ; SDirac), and in particular
on any Sobolev-type space on Σ. The norm in Hk0 (Σ) can be defined using DΣ in the
following manner:

Proposition 5.1. Consider the following norm on Hk0 (Σ; SDirac):

|||Ψ |||k =
( k∑

p=0

\
Σ

〈DpΣΨ,DpΣΨ〉 dVolh
)1/2

.(5.9)

The norms ‖ · ‖Hk and ||| · |||k are equivalent on Hk0 (Σ; SDirac).
Remark 5.1. We consider the operator

D/ := e0.DΣ , e0 = F
−1/2 ∂

∂t
=
1√
2
T a∂a.(5.10)

D/ is formally skew-adjoint on L2(Σ; SDirac) and satisfies
D/ ∗D/ = −D/ 2 = D2Σ = −∆h.(5.11)

Moreover, the norm |||.|||k can be expressed using D/ as well as DΣ ; we have for all Ψ in

(1) One can also think directly in terms of duality. There are different ways of defining
the duality product between D′(Σ;SDirac) and C∞0 (Σ;SDirac). The most natural is to construct
it as an extension of the positive definite innner product on L2(Σ;SDirac) without complex
conjugation. More precisely, to a locally integrable Dirac spinor field Ψ on Σ we associate the
distribution TΨ , usually simply denoted by Ψ , in the following manner: for all Φ ∈ C∞0 (Σ;SDirac),

〈Ψ, Φ〉D′,C∞
0
=
\
Σ

〈Ψ(x), Φ(x)〉 dVolh =
\
Σ

Φ†(x)Ψ(x) dVolh =
\
Σ

tΦ(x)Ψ(x) dVolh.

Thus, considering a differential operator L on Σ, i.e. involving only derivatives tangent to Σ, its
transposed with respect to the above duality product will be L∗, where L∗ is its formal adjoint for
the positive definite inner product on L2(Σ;SDirac). Hence the equality (5.8), where the operators
are considered as acting on C∞0 (Σ;SDirac), immediately entails by definition of D′(Σ;SDirac) the
same equality where the operators are now considered as acting on D′(Σ;SDirac). Indeed, all the
operators involved being formally self-adjoint, we obtain by duality the complex conjugate of
(5.8) which is equivalent to (5.8).
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Hk0 (Σ; SDirac),

|||Ψ |||k =
( k∑

p=0

\
Σ

〈D/ pΨ,D/ pΨ〉 dVolh
)1/2

.(5.12)

All this is an immediate consequence of the fact that e0. is hermitian for 〈· , ·〉, anti-
commutes with DΣ and e0.e0. = Id. Note that restricting D/ to S∗ and S respectively, we
get similar results for D and D∗.

Proof of Proposition 5.1. The Bochner–Lichnerowicz–Weitzenböck formula (5.8) gives

immediately that for Ψ ∈ C∞0 (Σ; SDirac), and by density for Ψ ∈ H10 (Σ; SDirac), we have
‖DΣΨ‖L2(Σ) = ‖DΨ‖L2(Σ)

and therefore ‖Ψ‖H1 = |||Ψ |||1. In order to prove the equivalence of higher order norms
using this first result, we prove the following lemma:

Lemma 5.2. For any k ∈ N, there exist constants 0 < C1 < C2 < +∞ such that , for all
Φ ∈ Hk+20 (Σ; SDirac),

C1‖Φ‖2Hk+2 ≤ ‖Φ‖2Hk + ‖∆hΦ‖2Hk ≤ C2‖Φ‖2Hk+2 .(5.13)

Proof. Let us consider a smooth Riemannian manifold (Σ̃, h̃) such that Σ̃ = Σ ∪K, K
compact, Σ̃ topologically trivial and h̃|Σ = h. (Σ̃, h̃) is then a smooth asymptotically

flat Riemannian manifold with trivial topology. This entails that Σ̃ ≃ R3. Parametrizing
Σ̃ by R3, we see that there exist 0 < K1 < K2 < +∞ such that (h̃ab and h̃ab are here
considered as 3× 3 matrices)

K1 ≤ det h̃ ≤ K2, K1Id3 ≤ h̃ab ≤ K2Id3, K1Id3 ≤ h̃ab ≤ K2Id3.
The norms in the Sobolev spaces Hk(Σ̃; h̃) are equivalent to the norms in the usual

Sobolev spaces on R3. The Laplacian ∆h̃ acting on Dirac spinors is given (with respect

to a spin-frame) by

∆h̃ =

[ 3∑

a,b=1

(det h̃)−1/2
∂

∂xa

(
(det h̃)1/2h̃ab

∂

∂xb

)]
Id4 + connection terms

=

( 3∑

a,b=1

h̃ab
∂2

∂xa∂xb

)
Id4 +R,

the remainder R being a first order differential operator whose coefficients are first or

second order derivatives of the metric h̃ and are therefore in L∞(Σ̃) together with all
their derivatives. And of course ∆h̃|Σ = ∆h.
The first immediate consequence is the existence of 0 < C2 < +∞ such that, for any

Φ ∈ C∞0 (Σ̃; SDirac),
‖Φ‖2

Hk(Σ̃)
+ ‖∆h̃Φ‖2Hk(Σ̃) ≤ C2‖Φ‖

2
Hk+2(Σ̃)

.

Choosing only spinor fields Φ in C∞0 (Σ; SDirac), we obtain one of the two inequalities
(5.13).

The second consequence is that, via a choice of spin-frame, Id−∆h̃ is an isomorphism
from Hk+2(R3;C4) onto Hk(R3;C4) for any integer k, since (Id − ∆h̃)−1 is a pseudo-
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differential operator of order −2. Therefore Id−∆h̃ is an isomorphism from Hk+2(Σ̃;C4)

onto Hk(Σ̃;C4) for any k ∈ N (for a slightly weaker result implying also the second
inequality (5.13), see for example [27], p. 197, Corollary 8.4.7).

We conclude that for each k ∈ N there exists 0 < C̃1 < +∞ such that, for any
Φ ∈ Hk+2(Σ̃; SDirac)

C̃1‖Φ‖Hk+2(Σ̃) ≤ ‖(Id−∆h̃)Φ‖Hk(Σ̃) ≤ ‖Φ‖Hk(Σ̃) + ‖∆h̃Φ‖Hk(Σ̃).
Choosing Φ ∈ C∞0 (Σ; SDirac) gives the other one of the two inequalities (5.13) and proves
Lemma 5.2.

We now proceed to proving Proposition 5.1 using Lemma 5.2. We already know that

‖ · ‖L2(Σ) = ||| · |||0, ‖ · ‖H1(Σ) = ||| · |||1.
Lemma 5.2 for k = 0 gives the following:

C1‖Φ‖2H2(Σ) ≤ ‖D2ΣΦ‖2L2(Σ) + ‖Φ‖2L2(Σ) ≤ C2‖Φ‖2H2(Σ) for all Φ ∈ H20 (Σ).
Hence, the norm

(‖Φ‖2H2(Σ) + ‖DΣΦ‖2L2(Σ))1/2 = (‖Φ‖2H2(Σ) + ‖DΦ‖2L2(Σ))1/2

(which is clearly equivalent to ‖ · ‖H2(Σ)) is equivalent to ||| · |||2. This proves the result of
Proposition 5.1 for k = 2. We now suppose this result to be true for 0 ≤ k ≤ m, m ≥ 2
and we prove it for k = m+ 1. Lemma 5.2 gives

C1‖Φ‖2Hm+1(Σ) ≤ ‖Φ‖2Hm−1(Σ) + ‖D2ΣΦ‖2Hm−1(Σ) ≤ C2‖Φ‖2Hm+1(Σ)
for all Φ ∈ Hm+10 (Σ).

Moreover, using the equivalence for k = m− 1, we deduce that
‖Φ‖2Hm−1(Σ) + ‖D2ΣΦ‖2Hm−1(Σ)

≃ ‖Φ‖2L2(Σ) + ‖DΣΦ‖2L2(Σ) + 2
m−1∑

p=2

‖DpΣΦ‖2L2(Σ) + ‖DmΣΦ‖2L2(Σ) + ‖Dm+1Σ Φ‖2L2(Σ).

This proves the equivalence for k = m+ 1 and Proposition 5.1 follows by induction.

5.1.2. The global exterior Cauchy problem. We now prove the well-posedness of the

Cauchy problem for the Dirac equation in Sobolev and weighted Sobolev spaces outside

the black hole. We have already introduced the Sobolev spaces Hk0 (Σ), k ∈ N; we now
define weighted Sobolev spaces with zero traces at the horizon:

Definition 5.2. For k ∈ N, ̺ ∈ R, the weighted Sobolev space with zero traces at the
horizon: Hk0,̺(Σ), is the completion of C∞0 (Σ) in the norm

‖f‖Hk̺ (Σ) =
( k∑

p=0

\
Σ

(1 + u2)−̺−3/2+p〈Dpf,Dpf〉 dVolh
)1/2

,(5.14)

u being the h-distance to the horizon introduced earlier. We could replace 1 + u2 by r2

for example without changing the function space, we would simply replace the norm by

an equivalent norm since r ≃ u at infinity.
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The following theorem is the analogue of Theorems 1 to 4 in the Schwarzschild space-

time described using the point of view of observers static with respect to infinity:

Theorem 5. 1. For any initial data Ψ0 ∈ L2(Σ; SDirac), the Dirac equation outside the
black hole has a unique solution Ψ ∈ C(Rt;L2(Σ; SDirac)) such that Ψ |t=0 = Ψ0. Moreover ,
the evolution is unitary in L2(Σ), i.e.

‖Ψ(t)‖L2(Σ) = ‖Ψ0‖L2(Σ) for all t ∈ R.
The propagator for the Dirac equation outside the black hole, U(t, s), only depends on t−s
since the space-time is static. We denote it by U(t− s) and t 7→ U(t) is a one-parameter
group of unitary operators on L2(Σ; SDirac).

2. If Ψ0 ∈ Hk0 (Σ; SDirac), k ∈ N, the associated solution Ψ satisfies

Ψ ∈
k⋂

l=0

Cl(Rt;Hk−l0 (Σ; SDirac));

U(t) is a strongly continuous one-parameter group of bounded operators on Hk0 (Σ; SDirac)
for all k ∈ N.
3. For any initial data Ψ0 ∈ L2̺(Σ; SDirac), ̺ ∈ R, the Dirac equation outside the

black hole has a unique solution Ψ ∈ C(Rt;L2̺(Σ; SDirac)) such that Ψ |t=0 = Ψ0. U(t) is
a strongly continuous one-parameter group of bounded operators on L2̺(Σ; SDirac) for all

̺ ∈ R.
4. If Ψ0 ∈ Hk0,̺(Σ; SDirac), k ∈ N, ̺ ∈ R, the associated solution Ψ satisfies

Ψ ∈
k⋂

l=0

Cl(Rt;Hk−l0,̺ (Σ; SDirac));

U(t) is for all k ∈ N, ̺ ∈ R, a strongly continuous one-parameter group of bounded
operators on Hk0,̺(Σ; SDirac).

Proof. With the notations we have introduced in the previous section, the Dirac equation

outside the black hole takes the form

∇e0Ψ = −D/ Ψ − ime0.Ψ.
We choose a spin-frame {oA, ιA} adapted to the foliation; γ0 is then given as the constant
hermitian matrix

γ0 = i

(
0 Id2
−Id2 0

)

and expressing more explicitly the timelike derivative, we obtain
∂Ψ

∂t
= − N√

2
(D/Ψ + imγ0Ψ +BΨ)(5.15)

where the matrix B (not quite the same as the matrix B of Chapters 3 and 4) contains

the connection terms coming from the time derivative; B is of course independent of t.

In Appendix A, we describe more precisely the type of spin-frame in which we work

and we calculate a general expression of the matrix B in such a spin-frame; this general

calculation is valid for both Schwarzschild and Kerr metrics. We also give an explicit

expression of B in Schwarzschild’s space-time for a particular choice of spin-frame already

used in [48]. Suffice it to say here that for our choice of spin-frame, we have the following

result, proved in Appendix A:
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Lemma 5.3. The coefficients of the matrix (N/
√
2)B are uniformly bounded on Σ together

with all their derivatives.

This will be useful for controlling the Sobolev norms of the solutions.

1. The Cauchy problem in L2(Σ): The essential observation here is that if we choose

the initial data Ψ0 with compact support in Σ, the support of the solution will propagate

along null geodesics (i.e. characteristic lines) and will only touch the horizon as t tends to

infinity (according to the remark at the beginning of this section). Therefore, we will never

see the lapse function reach the value zero and we can apply the results of Theorem 1. Let

us develop this argument more precisely. We use the Schwarzschild coordinates (t, r, ω)

for simplicity. For ε > 0, we consider on Rt×[0,+∞[r×S2ω a smooth Lorentzian metric εg,
which coincides with g on Rt × [2M + ε,+∞[r × S2ω, i.e. “outside the black hole and not
too close to the horizon”. For the background metric on Σ̃ = [0,+∞[r×S2ω, we simply
choose the euclidian metric

h̃ = dr2 + r2dω2

and we compare εg with a metric g̃ on R×Σ̃ which, outside a compact set, is the beginning
of the expansion in 1/r of the Schwarzschild metric (this metric has the form chosen for

background Lorentzian metrics in Definition 2.1):

g̃ =

(
1− ̺(r)2M

r

)
dt2 −

(
1 + ̺(r)

2M

r

)
dr2 − r2dω2.

Here ̺ is a smooth cut-off function on [0,+∞[, identically zero on [0, 3M ] and equal to 1
on [4M,+∞[ (for example). We see that for each ε > 0, εg is of class (∞, δ) on R× Σ̃ for
any δ > −2 since

D̃l(εg − g̃) = O(r−2−l), r → +∞, ∀l ∈ N,
where D̃ is the Levi-Civita connection on (Σ̃, h̃), i.e. the euclidian connection on R3.

Hence, it turns out that for any ε > 0, the metric εg fits in our classes of asymptoti-

cally flat (and even strongly asymptotically flat) space-times and the results of Theorem

1 can be applied to the space-times (Rt × Σ̃, εg), ε > 0. Thus, if we consider some ini-
tial data Ψ0 in L

2(Σ̃; SDirac), the Dirac equation on (Rt × Σ̃, εg) has a unique solution
Ψ ∈ C(Rt;L2(Σ̃; SDirac)) such that Ψ(0) = Ψ0. Moreover, the norm of Ψ(t) in L

2(Σ̃t) is

constant throughout time. We now consider Ψ0 with compact support in ]2M,+∞[r×S2ω
and we choose ε > 0 small enough so that

[0, 2M + ε]r × S2ω ∩ suppΨ0 = ∅.
The solution Ψ(t) coincides on ]2M,+∞[r×S2ω with a physical solution to the Dirac
equation outside the black hole on the time interval [T ε1 , T

ε
2 ] ∋ 0 during which the support

of Ψ does not touch [0, 2M + ε]r × S2ω. As ε → 0, we have T ε1 → −∞ and T ε2 → +∞.
This entails that for any initial data Ψ0 ∈ L2(Σ; SDirac) with compact support in Σ, the
Dirac equation on (Rt × Σ, g) has a unique solution Ψ ∈ C(Rt;L2(Σ; SDirac)) such that
Ψ(0) = Ψ0 and we have

‖Ψ(t)‖L2(Σ) =
\
Σ

〈Ψ(t), Ψ(t)〉 dVolh = ‖Ψ0‖L2(Σ).

Hence the first part of Theorem 5 follows by density.
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2. The Cauchy problem in Sobolev spaces: We consider Ψ0 ∈ C∞0 (Σ; SDirac). Applying
the results of Theorem 2 to the metrics εg, ε > 0, we see that the associated solution

Ψ is in C∞(Rt; C∞0 (Σ; SDirac)). We show by induction that all the norms |||Ψ(t)|||k are
controlled in the following manner: there exist αk, βk > 0 independent of Ψ0 such that

|||Ψ(t)|||k ≤ αkeβk|t||||Ψ0|||k .

This will prove this part of theorem 5 by density.

To this end, we apply D/ k to the expression (5.15) of the Dirac equation for our choice
of spin-frame. We get

∂

∂t
(D/ kΨ) = − N√

2
(D/ (D/ kΨ) + imγ0D/ kΨ +BD/ kΨ)(5.16)

+

[
D/ k,− N√

2

]
D/ Ψ +

[
D/ k,− N√

2
imγ0
]
Ψ +

[
D/ k,− N√

2
B

]
Ψ.

We see that equation (5.16) has the form

∂

∂t
(D/ kΨ) = − N√

2
(D/ + imγ0 +B)D/ kΨ +G(t)

where the term G(t) satisfies (using Lemmata 5.1, 5.3 and then the norm equivalence of

Proposition 5.1)

‖G(t)‖L2(Σ) ≤ C‖Ψ(t)‖Hk ≤ C ′|||Ψ(t)|||k
with C and C ′ independent of t and Ψ . We shall express |||Ψ(t)|||k using D/ instead of DΣ
(according to Remark 5.1)

|||Ψ(t)|||2k =
k∑

p=0

‖D/ pΨ(t)‖2L2(Σ).

Denoting by U(t) the propagator for the Dirac equation outside the black hole, we have
the following expression for D/ kΨ(t):

D/ kΨ(t) = U(t)D/ kΨ0 +
t\
0

U(t− s)G(s) ds.

This yields the following estimate:

‖D/ kΨ(t)‖L2 ≤ ‖D/ kΨ0‖L2 + C ′
|t|\
0

|||Ψ(s)|||k ds

≤ ‖D/ kΨ0‖L2 + C ′
|t|\
0

‖D/ kΨ(s)‖L2 ds+ C ′
|t|\
0

|||Ψ(s)|||k−1 ds.

Gronwall’s inequality then implies

‖D/ kΨ(t)‖L2 ≤
(
‖D/ kΨ0‖L2 + C ′

|t|\
0

|||Ψ(s)|||k−1 ds
)
eC
′|t|.
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Therefore, assuming that we have already established the existence of αk−1, βk−1 > 0
independent of Ψ0 such that

|||Ψ(t)|||k−1 ≤ αk−1eβk−1|t||||Ψ0|||k−1 for all t ∈ R,
we have

‖D/ kΨ(t)‖L2(Σ) ≤ (‖D/ kΨ0‖L2 + C ′|t|αk−1eβk−1|t||||Ψ0|||k−1)eC
′|t|

and we infer the existence of αk, βk > 0, independent of Ψ0, such that

|||Ψ(t)|||k ≤ αkeβk|t||||Ψ0|||k for all t ∈ R.(5.17)

Hence, starting from the conservation of the L2 norm of the solutions, we prove by

induction that inequality (5.17) is true for all k ∈ N and for all Ψ0 ∈ C∞0 (Σ; SDirac) with
constants αk, βk independent of Ψ0. Of course, inequality (5.17) is very crude, but it is

enough to obtain the qualitative informations we need.

We now consider Ψ0 ∈ Hk0 (Σ; SDirac) and a sequence Ψ
n
0 ∈ C∞0 (Σ; SDirac) which

converges towards Ψ0 in H
k
0 (Σ). (5.17) and the linearity of the Dirac equation imply that

the associated solutions Ψn converge in C(Rt;Hk0 (Σ)). Since Ψn converges towards Ψ in
C(Rt;L2(Σ)) by continuity of the propagator on L2, we conclude that Ψ ∈ C(Rt;Hk0 (Σ)).
We can read off directly from the equation the additional regularity of Ψ :

Ψ ∈
k⋂

l=0

Cl(Rt;Hk−l0 (Σ; SDirac)).

Moreover, by continuity, (5.17) is still valid for solutions with values in Hk0 (Σ) and this

proves that U(t) is a strongly continuous one-parameter group of bounded operators on
Hk0 (Σ) for all k ∈ N. This concludes the proof of the second part of Theorem 5.
3. The Cauchy problem in weighted L2 spaces : We do not detail the proof of the third

part of Theorem 5; it is identical to the proof of the fourth part given below, without the

additional complication due to the control of the regularity.

4. The Cauchy problem in weighted Sobolev spaces: The results of Theorem 3 concern-

ing the well-posedness of the Cauchy problem in weighted Sobolev spaces on space-times

of class (k, δ) together with the second part of Theorem 5 are sufficient to prove the fourth

part of Theorem 5. Let us consider Ψ0 ∈ Hk0,̺(Σ; SDirac), k ∈ N, ̺ ∈ R. We introduce a
cut-off function χ ∈ C∞(Σ), χ ≡ 0 for u > 2 and χ ≡ 1 for u < 1 (for example), where u
is the h-distance to the horizon H = ∂Σ. We split the initial data Ψ0 into a part localized

near the horizon and an “asymptotic” part which does not touch H:

Ψ0 = Φ0 +Θ0, Φ0 := χΨ0.

Then Φ0 ∈ Hk0 (Σ; SDirac) and the solution Φ to the Dirac equation outside the black hole
associated with Φ0 satisfies

Φ ∈ Cl(Rt;Hk−l0 (Σ)), 0 ≤ l ≤ k.
Moreover, the support of Φ propagates at finite speed, i.e. there exists a smooth increasing

function d on [0,+∞[ satisfying
d(0) = 2, d(t)→ +∞ as t→ +∞
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such that, for all t ∈ R,
suppΦ(t) ⊂ {x ∈ Σ; u(x) ≤ d(|t|)}.

For any R > 0, k ∈ N, ̺ ∈ R, and for any f ∈ Hk0 (Σ) with support in {u ≤ R}, we have
f ∈ Hk0,̺(Σ) and
(5.18) min(1, (1 +R2)(−̺−3/2)/2)‖f‖Hk(Σ)

≤ ‖f‖Hk̺ (Σ) ≤ max(1, (1 +R
2)(−̺−3/2+k)/2)‖f‖Hk(Σ).

This immediately implies that for any T > 0, ̺ ∈ R,

Φ ∈
k⋂

l=0

Cl([−T, T ];Hk−l0,̺ (Σ; SDirac)),

i.e.

Φ ∈
k⋂

l=0

Cl(Rt;Hk−l0,̺ (Σ; SDirac)).

Furthermore, using (5.17), (5.18) and Proposition 5.1, we see that

‖Φ(t)‖Hk0,̺(Σ) ≤ C
max(1, (1 + d(|t|)2)(−̺−3/2+k)/2)

min(1, 5(−̺−3/2)/2)
αke

βk|t|‖Φ0‖Hk0,̺(Σ).(5.19)

As for Θ0, we choose 0 < ε < 1; then Θ0 belongs to the space H
k
̺ (Σ̃) associated with

the metric εg, assumed for convenience, in this last part of the proof, to coincide with g

for u > ε instead of r > 2M + ε. Using Theorem 3, this implies that the Dirac equation

on (Rt × Σ̃, εg) has a unique solution εΘ ∈ C(Rt;Hk̺ (Σ̃)) such that εΘ(0) = Θ0 and εΘ
satisfies

εΘ ∈
k⋂

l=0

Cl(Rt;Hk−l̺ (Σ̃)).

If we denote by εU(t, s) the propagator for the Dirac equation on (Rt×Σ̃, εg) and introduce
a continuous function εK on Rt such that

εK(t) ≥ ‖εU(t, 0)‖L(Hk̺ (Σ̃))
then we obtain

‖εΘ(t)‖Hk̺ (Σ̃) ≤
εK(t)‖Θ0‖Hk̺ (Σ̃) =

εK(t)‖Θ0‖Hk̺ (Σ).

Thanks to the finite propagation speed, there exists T1(ε) < 0 < T2(ε) such that for

T1(ε) < t < T2(ε), the support of
εΘ(t) is contained in {u > ε}. Therefore, using

the equivalence (locally uniform in time) of the norm ‖ · ‖Hk̺ (Σ̃) associated with the
background flat metric and the norms ‖ · ‖Hk̺ (Σ̃t) associated with the “physical” metric
εg, which coincides with g in {u > ε}, we have

εΘ ∈
k⋂

l=0

Cl([T1(ε), T2(ε)];Hk−l0,̺ (Σ; SDirac))

and

‖εΘ(t)‖Hk̺ (Σ) ≤
εC εK(t)‖Θ0‖Hk̺ (Σ).
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We put εC(t) := εC εK(t). Since we have T1(ε) → −∞ and T2(ε) → +∞ as ε → 0, we
easily infer that the Dirac equation on Rt×Σ has a unique solution Θ(t) in C(Rt;Hk0,̺(Σ))
such that Θ(0) = Θ0 and moreover

Θ ∈
k⋂

l=0

Cl(Rt;Hk−l0,̺ (Σ; SDirac)).

Θ is defined as follows: for any 0 < ε < 1,

Θ(t) := εΘ(t) for T1(ε) < t < T2(ε).

We now wish to show that the norm of Θ(t) is controlled by the norm of Θ0 for all times.

We fix ε0 = 1/2. Then, we have for t ∈ [T1(1/2), T2(1/2)]
‖Θ(t)‖Hk̺ (Σ) ≤

0C(t)‖Θ0‖Hk̺ (Σ),
where nC denotes the function εC associated with εn. Now putting ε1 = 1/4, we have

for t ∈ [T1(1/4), T2(1/4)],
‖Θ(t)‖Hk̺ (Σ) ≤

1C(t)‖Θ0‖Hk̺ (Σ),
and so on for ε2 = 1/8, etc.

The sequence T1(1/2
n) is strictly decreasing towards −∞ and T2(1/2n) is strictly

increasing towards +∞. We now choose a continuous function C(t) on R such that
C(t) ≥ nC(t) for t ∈ [T1(1/2n), T1(1/2n−1)] ∪ [T2(1/2n−1), T2(1/2n)];

then for all t ∈ R we have
‖Θ(t)‖Hk̺ (Σ) ≤ C(t)‖Θ0‖Hk̺ (Σ)(5.20)

and the function C does not depend on Θ0 (that is, does not depend on the choice of Ψ0),

it only depends on the choice of the cut-off function χ and the definition of the metrics εg.

Now putting the two solutions together, we find that the Dirac equation has a unique

solution Ψ = Φ+Θ in C(Rt;Hk0,̺(Σ)) such that Ψ(0) = Ψ0 and

Ψ ∈
k⋂

l=0

Cl(Rt;Hk−l0,̺ (Σ; SDirac)).

Moreover, for all t ∈ R,
‖Ψ(t)‖Hk0,̺(Σ) ≤ ‖Φ(t)‖Hk0,̺(Σ) + ‖Θ(t)‖Hk0,̺(Σ) ≤ C̃(t)(‖Φ0‖Hk0,̺(Σ) + ‖Θ0‖Hk0,̺(Σ))

where C̃(t) is a continuous function on R, independent of the choice of Ψ0, whose existence

is deduced from estimates (5.19) and (5.20). Finally, we have

‖Φ0‖Hk0,̺(Σ) + ‖Θ0‖Hk0,̺(Σ) ≤ C‖Ψ0‖Hk0,̺(Σ)
where C is a constant depending only on the cut-off function χ, involving the L∞ norms
of its derivatives of order lower than k on {1 < u < 2}.
Hence, U(t) is a strongly continuous one-parameter group of bounded operators on

Hk0,̺(Σ) for all k ∈ N, ̺ ∈ R. This concludes the proof of Theorem 5.

5.2. Maximal extension of Schwarzschild’s space-time. After having adopted, in

the previous section, the point of view of an observer static with respect to infinity, and
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thus limited our study to the exterior of the black hole foliated using Schwarzschild’s time

coordinate, we describe here briefly the global geometry of Schwarzschild’s space-time.

We define the Kruskal–Szekeres variables inside and outside the black hole. These will

allow us to show that the horizon is not a singularity of the metric. The maximal analytic

extension of Schwarzschild’s space-time will then appear naturally. Most of the material

of this section is standard, it can be found under various forms in [7], [24] and [44] for

example.

5.2.1. Kruskal–Szekeres coordinates. Outside the black hole, Kruskal–Szekeres coordi-

nates (T,X, ω), where ω denotes the angular variables of the Schwarzschild coordinate

system, are defined by

T =
1

2
er∗/(4M)(et/(4M) − e−t/(4M)), X =

1

2
er∗/(4M)(et/(4M) + e−t/(4M))(5.21)

where r∗ is the Regge–Wheeler variable

r∗ = r + 2M Log(r − 2M).
This coordinate system maps the exterior of the black hole Rt × ]2M,+∞[r × S2ω onto
the quadrant {X > |T |} of RT ×RX ×S2ω. The horizon now appears as the hypersurface
{(T,X, ω); T = X > 0, ω ∈ S2}. The outgoing (resp. incoming) radial null geodesics,
represented in (t, r∗, ω) coordinates as the straight lines {(t, r∗ = t+ s, ω); t ∈ R} (resp.
{(t, r∗ = −t+s, ω); t ∈ R}) for fixed s ∈ R and ω ∈ S2, are described in Kruskal–Szekeres
coordinates as the straight lines {(T,X = T + S, ω)} (resp. {(T,X = −T + S, ω)}) for
fixed S and ω.

Inside the black hole, the definition is very similar. We consider a Regge–Wheeler

coordinate adapted to this domain

r∗ = r + 2M Log |r − 2M | = r + 2M Log(2M − r),
the expression of the variables T and X in terms of t and r∗ is then given by

T =
1

2
er∗/(4M)(e−t/(4M) + et/(4M)), X =

1

2
er∗/(4M)(e−t/(4M) − et/(4M)).(5.22)

The interior of the black hole Rt× ]0, 2M [r×S2ω is mapped onto the domain {(T,X, ω) ∈
R × R × S2; |X| < T <

√
X2 + 2M} and the singularity at r = 0 is represented as the

product of S2ω with the hyperbola in the (T,X)-plane: {(T,X); T 2 −X2 = 2M, T > 0}.
The expression of the metric in Kruskal–Szekeres coordinates is the same inside and

outside the black hole

g =
16M2

X2 − T 2
(
1− 2M

r

)
(dT 2 − dX2)− r2dω2.

This can be simplified using the fact that

X2 − T 2 = (r − 2M)er/(2M)(5.23)

and we obtain

g =
16M2

r
e−r/(2M)(dT 2 − dX2)− r2dω2(5.24)

where r is determined implicitly in terms of T and X by (5.23). The function

(r − 2M)er/(2M) is analytic in r and strictly increasing from ]0,+∞[ onto ]−2M,+∞[.
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It follows that r is an analytic function of X2 − T 2, and therefore of (T,X), on −2M <

X2−T 2 < +∞. An immediate consequence is the analyticity of the metric g on the whole
Schwarzschild manifold described in (T,X, ω) coordinates as {(T,X, ω) ∈ R × R × S2;
T + X > 0, T <

√
X2 + 2M} (the singularity at r = 0 is not considered as a subset

of the Schwarzschild manifold). This shows in particular that the metric g is not sin-

gular at the horizon of the black hole; the expression (5.24) of g and the description

of the horizon in (T,X, ω) coordinates reveal it to be a smooth null hypersurface of

Schwarzschild’s space-time. Other properties of the horizon can be infered from its de-

scription in Kruskal–Szekeres coordinates and more particularly the fact that it is an event

horizon (for more details, the reader is referred to the references given at the beginning

of this section).

5.2.2. Maximal Schwarzschild space-time. As we have seen above, the metric (5.24) can

be extended analytically on the region

MK = {(T,X, ω) ∈ R× R× S2ω; X2 − T 2 > −2M}.

We obtain a new space-time (MK, g) called the Kruskal extension, or maximal analytic
extension, of Schwarzschild’s space-time. It contains the Schwarzschild manifold (MS , g),
whereMS is the subset ofMK

MS = {(T,X, ω) ∈MK; X + T > 0}.

The additional part of (MK, g), which we denote (MŠ , g), where

MŠ = {(T,X, ω) ∈MK; X + T < 0},

is isometric to (MS , g) with its time orientation reversed: it describes a “Schwarzschild
white hole”. More explicitly,MŠ is the image of the Schwarzschild space-time, described
in Schwarzschild coordinates, by the transformations (5.21) and (5.22) with the signs of

T and X reversed. The space-time (MK, g) is best pictured by a Penrose diagram, which
can be constructed by defining the new coordinates:

α = arctan

(
T +X√
2M

)
− arctan

(
T −X√
2M

)
,

β = arctan

(
T +X√
2M

)
+ arctan

(
T −X√
2M

)
.

(MK, g) is globally hyperbolic. We choose a foliation {Sτ}τ∈R by smooth Cauchy hyper-

surfaces in the following manner:

• We consider the foliations {Σt}t∈R and {Σ̌t}t∈R of domains I and III (see figures

5.1 and 5.2) induced by the Schwarzschild coordinate t in these two regions. In region I,

t is defined in terms of T and X by the inverse of transformation (5.21), in region III

we must use the inverse of transformation (5.21) with the signs of T and X reversed. In

both cases, we obtain

t = 2M Log

(
X + T

X − T

)
.
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r = constant > 2M

r = 2M

r = 2M

r = constant < 2M

t = constant

Singularity (r = 0)

X

T
Singularity (r = 0)

r = constant < 2M

r = 2M

r = 2M

r = constant > 2M

I

II

III

IV

Fig. 5.1. The maximal analytic extension of Schwarzschild’s space-time in Kruskal–Szekeres
coordinates: domains I and III correspond to r > 2M , domain II represents the interior of the
black hole and domain IV the interior of the white hole

−i−i

 

Singularity (r = 0)

r = 2M

t = constant

i

 r = constant > 2M

r = 2M

r = constant < 2M

t = constant

 r = 2M

+i

i0

+i

 r = constant > 2M

t = constant

r = 2M

r = constant < 2M

Singularity (r = 0)

I

II

III

IV

β

0 α

α − β = π

β + α = π

β − α = π

β = π/2

β = −π/2

β + α = −π

Fig. 5.2. The Penrose diagram of maximal Schwarzschild space-time
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This yields the descriptions of surfaces Σt and Σ̌t in Kruskal–Szekeres coordinates:

Σt =

{
(T,X, ω); X > 0, T =

et/(2M) − 1
et/(2M) + 1

X, ω ∈ S2
}
,

Σ̌t =

{
(T,X, ω); X < 0, T =

et/(2M) − 1
et/(2M) + 1

X, ω ∈ S2
}
.

• We only require that the hypersurface Sτ , outside the domain of dependence of a
neighbourhood of the horizon at T = 0, coincides with Στ if X > 0 and with Σ̌−τ if
X < 0. Let us explain this requirement more precisely. At T = 0, the horizon is reduced

to the two-sphere {(0, 0, ω)} of RT ×RX ×S2ω at which the horizons of the black hole and
of the white hole intersect. The variables T +X and T −X are null variables: the domain
of dependence of a neighbourhood {(0, X, ω); |X| < C} (for a given C > 0) of the horizon

at T = 0 will be the region {|X| < |T | + C}. The condition imposed on the surfaces Sτ
means that for each τ ∈ R, Sτ coincides with Στ in the region {X > |T |+ C} and with
Σ̌−τ in the region {X < −|T | − C}. This condition can be expressed more explicitly in
terms of τ : for a given K ∈ R, Sτ coincides with Στ in the part of region I such that (r
being defined implicitly by (5.23) in terms of T and X)

r∗ = r + 2M Log(r − 2M) > |τ |+K
and Sτ coincides with Σ̌−τ in the part of region III such that r∗ > |τ |+K. We indicate
the typical shape of a surface Sτ in Figure 5.3.

Σ−τ

neighbourhood of
the crossing sphere at t = 0

t = 0t = 0

Σ

Sτ

τ

and its domain of dependence

Fig. 5.3. Foliation of maximal Schwarzschild space-time

For these foliations, the asymptotic behaviour of the metric g at spacelike infinity on

each Sτ is the same as the behaviour of g for fixed t and r → +∞ (this last is described
in the proof of Theorem 5). Hence, using such foliations allows us to show that (MK, g)
belongs to our classes of asymptotically flat space-times (with two asymptotic ends); it
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belongs to all classes (∞, δ) for δ > −2. Thus the theorems of Chapter 4 can be applied
directly to this framework and guarantee the existence and uniqueness of solutions to

the Dirac equation with values in L2, Hk, L2µ, H
k
µ (for any k ∈ N and µ ∈ R) on

each hypersurface Sτ . This proves that solutions to the Dirac equation on the maximal

extension of Schwarzschild’s space-time are well behaved as long as they do not reach the

singularity {X2 − T 2 = −2M}.

6. Dirac’s equation on the Kerr metric

Kerr’s space-time is more perplexing than Schwarzschild’s space-time of which it is a

generalization. The Kerr metric describes a rotating uncharged black hole; in Boyer–

Lindquist coordinates on Rt × Rr × S2ω, it takes the form

(6.1)

gµνdx
µdxν =

(
1− 2Mr

̺2

)
dt2 +

2a sin2 θ(r2 + a2 −∆)
̺2

dtdϕ− ̺2

∆
dr2

− ̺2dθ2 −
(
(r2 + a2)̺2 + 2Mra2 sin2 θ

̺2

)
sin2 θ dϕ2,

̺2 = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2,

where a is the angular momentum per unit mass andM > 0 is the mass of the black hole.

The black hole rotates around the axis going through its North and South poles. This

results into a nonzero coefficient gtϕ that couples the variables t and ϕ. The function ∆ is

the analogue of r2(1−2M/r) in Schwarzschild’s space-time; it defines the horizons as the

sets of points where ∆ = 0. These horizons appear as singularities in the expression (6.1)

above, but they are merely coordinate singularities, the metric can be extended smoothly

through them. The only true curvature singularity of the metric is the equatorial ring

defined by ̺2 = 0, i.e. r = 0 and θ = π/2. There are three types of Kerr space-times

depending on the respective importance of the rotation and the mass:

• Slow Kerr space-time for 0 < |a| < M (the case a = 0 reduces to the Schwarzschild

metric). ∆ has two real roots r− and r+:

0 < r− =M −
√
M2 − a2 < M < r+ =M +

√
M2 − a2 < 2M,(6.2)

so there are two horizons on either side of the sphere {r =M}.
• Extreme Kerr space-time for |a| =M .M is then a double root for ∆ and the sphere

{r =M} is the only horizon.
• Fast Kerr space-time for |a| > M . ∆ has no real root and the space-time has no

horizon. There is no black hole in this case, the ring singularity is a naked singularity.

We consider only the case of slow Kerr metrics. Horizons separate the space-time in

connected regions called Boyer–Lindquist blocks:

Block I is the exterior of the black hole {r > r+}. It is the simplest of all three blocks.
In this region, the vectors ∂/∂r, ∂/∂θ, ∂/∂ϕ are spacelike and, for r ≫ 1, ∂/∂t is timelike.
However, block I contains a region called the ergosphere in which gtt < 0 and thus ∂/∂t
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is spacelike. The ergosphere is the toroidal domain around the outside horizon:

E = {(t, r, θ, ϕ); r+ < r < M +
√
M2 − a2 cos2 θ}.

Inside E , the effects of the rotation are extreme and along every future-oriented nonspace-
like curve, the quantity aϕ is strictly increasing.

Block I, like any Boyer–Lindquist block, is not stationary, i.e. there is no timelike

Killing vector field globally defined on it. However, the exterior of the ergosphere is

stationary, and even absolutely stationary, since ∂/∂t is the unique (up to multiplication

by a constant) timelike Killing vector field globally defined there. Also, every point in

block I, even inside the ergosphere, has a stationary neighbourhood.

Block II is the region between the outer and inner horizons {r− < r < r+}; it only
exists in the slow case. ∂/∂r is timelike there and ∂/∂t, ∂/∂θ, ∂/∂ϕ are spacelike. It is

a dynamic domain where the inertial frames are dragged towards the inner horizon (the

time orientation implicit in this description is such that ∂/∂r is past pointing).

Block III lies beyond the inner horizon {−∞ < r < r−}. It contains another ergo-
sphere

E ′ = {(t, r, θ, ϕ); M −
√
M2 − a2 cos2 θ < r < r−},

the ring singularity and a time machine (being the only region where ∂/∂ϕ is timelike)

which allows any two points in block III to be joined by a future-oriented timelike curve.

Hence, not only is block III not stationary, it is not causal either.

For a detailed description of the geometry of Kerr black holes, see [50].

6.1. The exterior of the black hole. In this section, we study Dirac fields in block

I from the point of view of an observer who is static with respect to infinity, as we

did in Section 5.1 for the Schwarzschild black holes. The perception of such observers

is limited to block I and is described by the time function t of the Boyer–Lindquist

coordinates. Just as in the Schwarzschild case, light rays in block I can only reach the

horizon when t becomes infinite. Hence, if the support of a Dirac field (for example)

does not touch the horizon at some particular time t0, it will never touch it for finite

values of t, i.e. the distance d(t) of the support of the field to the horizon at time t is

a strictly positive continuous function on Rt; it may (and usually does) tend to zero

when t → ±∞. To explain this property more precisely, we consider the principal null
geodesics (the analogues of radial null geodesics in Schwarzschild’s space-time). They are

the straightest routes to or from the horizon and are defined by

ṙ = ±1, θ̇ = 0, ϕ̇ =
a

∆
, ṫ =

r2 + a2

∆
.

Introducing a new coordinate r∗ such that

dr∗
dr
=
r2 + a2

∆
> 0 on ]r+,+∞[

we get

ṙ∗ = ±ṫ
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and therefore, along a principal null geodesic we must have

t = ±r∗ + C.
The horizon r = r+ corresponds to r∗ → −∞ and is consequently reached only when t
becomes infinite.

In this framework, we solve the Cauchy problem for the Dirac equation in Sobolev

and weighted Sobolev spaces. We first study the geometry of {t = constant} slices; their
extrinsic geometry which is nontrivial and even singular at the horizon will make the

analysis of the Dirac–Witten operator slightly more intricate.

6.1.1. The spacelike geometry of block I. We denote by M the space-time outside the
black hole and we choose the foliation of M by the level hypersurfaces of the time-
function t:

Σt = {t} × ]r+,+∞[r × S2θ,ϕ.(6.3)

For each t, the hypersurface Σt is spacelike since at each point, its tangent plane is

spanned by the three spacelike vectors ∂/∂r, ∂/∂θ, ∂/∂ϕ. This shows that t is indeed

a time function, i.e. its gradient ∇at is a timelike vector field, in spite of the fact that
in Boyer–Lindquist coordinates, ∂/∂t is not everywhere timelike in block I. The time

orientation is fixed by deciding that ∇at is future pointing.

The 3+ 1 decomposition of the Kerr metric in block I. We perform the 3 + 1 decompo-

sition of the metric g relative to the foliation {Σt}t∈R. We calculate the expression of the

vector

T a =

√
2

|∇t|∇
at

in Boyer–Lindquist coordinates. To do this, we look for a future pointing timelike vector

field Ua orthogonal to Σt at each point and we normalize it to obtain T
a. The time

orientation yields that t increases along all timelike future pointing curves, hence we

choose Ua of the form

Ua∂a =
∂

∂t
+A

∂

∂r
+B

∂

∂θ
+ C

∂

∂ϕ

and imposing that Ua should be everywhere g-orthogonal to ∂/∂r, ∂/∂θ and ∂/∂ϕ, we

obtain

Ua∂a =
∂

∂t
− gtϕ
gϕϕ

∂

∂ϕ
=

∂

∂t
+

2aMr

(r2 + a2)̺2 + 2Mra2 sin2 θ

∂

∂ϕ
.(6.4)

We put

α(r, θ) = − gtϕ
gϕϕ
=

2aMr

(r2 + a2)̺2 + 2Mra2 sin2 θ
.(6.5)

The norm of Ua is then given by

|U |2 = UaUa = gtt −
(gtϕ)

2

gϕϕ
=
−∆ sin2 θ
gϕϕ

=
∆̺2

(r2 + a2)̺2 + 2Mra2 sin2 θ
> 0 in block I,

and the vector T a is

T a =

√
2

|U | U
a.
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If we introduce the vector fields ra, θa, ϕa defined as

ra∂a = |grr|−1/2
∂

∂r
, θa∂a = |gθθ|−1/2

∂

∂θ
, ϕa∂a = |gϕϕ|−1/2

∂

∂ϕ
,

then {1/
√
2T a, ra, θa, ϕa} is a local orthonormal Lorentz frame in block I; the metric

can therefore be written as

gab =
1

2
TaTb − hab, hab = rarb + θaθb + ϕaϕb

and the 1-forms Ta, ra, θa and ϕa are given by

Tadx
a=
√
2 |U | dt=

√
2

√
gtt −

(gtϕ)2

gϕϕ
dt, radx

a=−|grr|1/2dr, θadx
a=−|gθθ|1/2dθ,

ϕadx
a= |gϕϕ|−1/2(gtϕdt+ gϕϕdϕ)=−|gϕϕ|1/2(dϕ− α dt).

This gives the expression of the lapse function

N =
√
2 |U | =

√
2

(
gtt −

(gtϕ)
2

gϕϕ

)1/2
=

(
2∆̺2

(r2 + a2)̺2 + 2Mra2 sin2 θ

)1/2
.

In Boyer–Lindquist coordinates, the product structure is associated to the Killing vector

field ∂/∂t. If we wish our decomposition of the metric to be useful, we must interpret hab
as a (time dependent) metric on

Σ := ]r+,+∞[r × S2θ,ϕ.
This requires choosing the product structure associated with T a. An explicit way of doing

this is to define the new coordinates τ , R, Θ, Φ:

τ = t, R = r, Θ = θ, Φ = ϕ− (t− t0)α(r, θ) (mod2π)
for a given t0 ∈ R. We obtain the following expression of g:

g(τ ) =
N2

2
dτ2 − h(τ )(6.6)

=

(
gtt −

(gtϕ)
2

gϕϕ

)
dτ2 + grrdR

2 + gθθdΘ
2

+ gϕϕ

(
dΦ+ (τ − t0)

∂α

∂R
dR + (τ − t0)

∂α

∂Θ
dΘ

)2

=

(
gtt −

(gtϕ)
2

gϕϕ

)
dτ2 +

(
grr + (τ − t0)2

(
∂α

∂R

)2
gϕϕ

)
dR2

+

(
gθθ + (τ − t0)2

(
∂α

∂Θ

)2
gϕϕ

)
dΘ2 + gϕϕdΦ

2

+ 2(τ − t0)2
∂α

∂R

∂α

∂Θ
gϕϕdRdΘ + 2(τ − t0)

∂α

∂R
gϕϕdRdΦ

+ 2(τ − t0)
∂α

∂Θ
gϕϕdΘdΦ.

Note that for these new variables, we have

∂

∂τ
= Ua∂a,

∂

∂R
=

∂

∂r
,

∂

∂Θ
=

∂

∂θ
,

∂

∂Φ
=

∂

∂ϕ
, T a∂a =

√
2

|U |
∂

∂τ
=
2

N

∂

∂τ
.
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The intrinsic and extrinsic geometry of the slices. All slices Στ , τ ∈ R, have the same
geometry (both intrinsic and extrinsic) since in Boyer–Lindquist coordinates the metric

g is independent of t (∂/∂t is a Killing vector field). We consider a generic slice (Σ, h(τ0))

and we choose t0 = τ0 in order to simplify the expression of h(τ0):

h(τ0) = −grrdR2 − gθθdΘ2 − gϕϕdΦ2

=
̺2

∆
dR2 + ̺2dΘ2 +

[
(R2 + a2)̺2 + 2MRa2 sin2Θ

̺2

]
sin2Θ dΦ2,

̺2 = R2 + a2 cos2Θ, ∆ = R2 − 2MR+ a2.

The coefficient ̺2/∆ is singular at the horizon H = {r+}R × S2Θ,Φ; we introduce a new
radial coordinate to show that the metric h(τ0) can be extended smoothly through H.

Putting

F (R) :=
∆

R2
= 1− 2M

R
+
a2

R2
=
(R− r+)(R− r−)

R2
,

we define u(R) for R ∈ [r+,+∞[ by

u(R) :=

R\
r+

F−1/2(s) ds.

(Note that for extreme Kerr space-time, we would have r+ = r− =M and consequently,
the integral defining u(R) would diverge. Hence, the h-distance to the horizon would be

everywhere infinite in block I.) The function u of R is continuous strictly increasing from

[r+,+∞[ onto [0,+∞[, it is C∞ on ]r+,+∞[ but is not differentiable at r+. As in the
Schwarzschild case, we easily show the following result; the proof is identical to that of

Lemma 5.1 and we do not repeat it here:

Lemma 6.1. The inverse function u 7→ R(u) is smooth from [0,+∞[ onto [r+,+∞[ and
all its derivatives are uniformly bounded on [0,+∞[.
Lemma 6.1 will allow us to prove that each slice is a smooth manifold with boundary

H and that the lapse function is smooth on Σ. The following corollary expresses these

properties as well as the fact that h(τ ) depends regularly on τ :

Corollary 6.1. The manifold

(Σ = [0,+∞[u × S2Θ,Φ, h(τ0))
is a smooth manifold with boundary. The lapse function N , which is independent of τ ,

is regular and uniformly bounded on Σ together with all its derivatives. Moreover , the

metric h(τ ) is a smooth function of τ ; to be more explicit , we have

hab ∈ C∞(Rτ ; C∞b (Σ;TabM)), hab ∈ C∞(Rτ ; C∞b (Σ;T abM)).
Remark 6.1. The extrinsic curvature

1√
2
Kab = −

1√
2N

∂

∂τ
(hab)

is singular at the horizon since N vanishes there but not ∂τhab. However,

NKab ∈ C∞(Rτ ; C∞b (Σ;TabM)).
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In the Dirac system considered as an evolution equation on block I, Kab will only appear

multiplied by N and will consequently play the part of a bounded potential.

Proof of Corollary 6.1. We write the metric h(τ0) in the form

h(τ0)=
̺2

R2
du2+

̺2

(1 + u)2
(1+u)2dΘ2+

[
(R2 + a2)̺2 + 2MRa2 sin2Θ

̺2(1 + u)2

]
(1+u)2 sin2Θ dΦ2.

The functions
̺2

R2
,

̺2

(1 + u)2
,
(R2 + a2)̺2 + 2MRa2 sin2Θ

̺2(1 + u)2

are smooth on Σ, positive, uniformly bounded together with all their derivatives and

uniformly bounded away from zero. Hence, h(τ0) is a smooth, symmetric, positive def-

inite 2-form on Σ, uniformly controlled below and above by the euclidian metric on Σ

considered as R3 rB(0, 1):

du2 + (1 + u)2dΘ2 + (1 + u)2 sin2Θ dΦ2.

This shows in particular that (Σ, h(τ0)) is a smooth Riemannian manifold with bound-

ary H. Given a regular coordinate system on Σ, say the underlying euclidian coordinates

on R3 r B(0, 1), the 3 × 3 matrices hij and hij , representing the metric h(τ0) and its
inverse in this coordinate basis are smooth and bounded on Σ together with all their

derivatives. This is expressed more intrinsically by

hab(τ0) ∈ C∞b (Σ;TabM), hab(τ0) ∈ C∞b (Σ;T abM).
The lapse function N is given by

N(R,Θ) =

(
2R2̺2

(R2 + a2)̺2 + 2MRa2 sin2Θ

)1/2
F 1/2.

It is the result of the multiplication of F 1/2 by a smooth function onΣ, uniformly bounded

together with all its derivatives and uniformly bounded away from zero. Therefore, as a

trivial consequence of Lemma 6.1 and the equality dR/du = F 1/2, we have

N ∈ C∞b (Σ).

We now study the regularity of h(τ ) with respect to τ . Let us consider the expressions

of h(τ ) and h(τ0) in the coordinate system R, Θ, Φ with t0 = τ0:

h(τ ) = −grrdR2 − gθθdΘ2 − gϕϕ
(
dΦ+ (τ − τ0)

∂α

∂R
dR+ (τ − τ0)

∂α

∂Θ
dΘ

)2
,

h(τ0) = −grrdR2 − gθθdΘ2 − gϕϕdΦ2.
Putting

Φ̃ = Φ+ (τ − τ0)α(R,Θ) (mod 2π),
we have

h(τ ) = −grrdR2 − gθθdΘ2 − gϕϕdΦ̃2.
h(τ ) is obtained from h(τ0) by a rotation around the axis of the black hole whose angle
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(depending on τ , R and Θ) is

(τ − τ0)α(R,Θ) = −(τ − τ0)
gtϕ(R,Θ)

gϕϕ(R,Θ)
.

The function α(R,Θ) is smooth on Σ and bounded together with all its derivatives.

Denote by G(τ − τ0) the C∞-diffeomorphism of Σ
G(τ − τ0) : (R,Θ,Φ) 7→ (R,Θ,Φ+ (τ − τ0)α(R,Θ)).

Then hab(τ ) (resp. h
ab(τ )) is the pullback of hab(τ0) (resp. h

ab(τ0)) by G(τ − τ0). This
entails

hab ∈ C∞(Rτ ; C∞b (Σ;TabM)), hab ∈ C∞(Rτ ; C∞b (Σ;T abM))
and concludes the proof of Corollary 6.1.

On Σ, we introduce Sobolev spaces with zero traces at the horizon associated with

the metric h(τ ):

Definition 6.1. For k ∈ N, Hk0 (Στ ) is the completion of C∞0 (Σ) in the norm

‖f‖Hk(Στ ) =
( k∑

p=0

\
Σ

〈(DΣτ )pf, (DΣτ )pf〉τ dVolh
)1/2

,

where DΣτ is the Levi-Civita connection on (Σ, h(τ )), dVolh and 〈· , ·〉τ are the volume
element on Σ and the positive definite inner product induced by the metric h(τ ). Note

that the volume element dVolh(τ) is independent of τ as can be seen by an explicit

calculation in R, Θ, Φ coordinates:

dVolh(τ) = −grrgθθgϕϕ dR dΘ dΦ = dVolh(τ0), ∀τ ∈ R.
This time-independence, which is a consequence of the fact that ∂/∂t and ∂/∂ϕ are

Killing vector fields, justifies the notation dVolh.

Remark 6.2. 1. For any τ ∈ R, the norms in Hm0 (Στ ) and Hm0 (Στ0) are equivalent. This
equivalence is locally uniform in time (and the constants in the norm estimates depend

not only on τ but also on the bundle in which functions take their values). Hence, we

shall simply denote by Hm0 (Σ) the Sobolev space of order m on Σ with zero traces at

the horizon, associated with the metric h. Our standard norm on this space will be that

associated with h(τ0); we denote it by ‖ · ‖Hm(Σ). When we wish to use explicitly the
norm associated with the metric h(τ ), we return to the notation ‖ · ‖Hm(Στ ).
2. Note that the norm ‖·‖Hm(Σ) is equivalent to the flat Sobolev norm on Σ considered

as R3 rB(0, 1) (see the beginning of the proof of Corollary 6.1).

3. For Dirac or Weyl spinor fields, the hermitian product 〈· , ·〉τ is that induced by
the vector field T a which is independent of τ . Therefore, for any such spinor field Ψ on

Σ, we have

‖Ψ‖L2(Στ ) = ‖Ψ‖L2(Σ) ∀τ ∈ R
and the conservation of the L2(Στ )-norm for solutions to the Dirac equation will in fact

mean the conservation of the fixed standard norm on L2(Σ).
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On each slice (Σ, h(τ )) embedded in (M, g), we consider the Dirac–Witten operator

DW (τ ). The extrinsic geometry of the slices being nontrivial, DW (τ ) does not coincide
with the Dirac operator DΣ(τ ) on (Σ, h(τ )) and we have (see (3.25))

DW (τ ) = DΣ(τ ) +
1

2
√
2
Ke0.

K = Ka
a is singular at the horizon, however, thanks to Remark 6.1, we have

NK ∈ C∞(Rτ ; C∞b (Σ)).
In the Dirac system written as an evolution equation, K will be multiplied by N and the

quantity NK will merely be a bounded potential.

We now study the Dirac operator DΣ(τ ) on (Σ, h(τ )). DΣ(τ ) is formally self-adjoint
on L2(Σ) and satisfies the Bochner–Lichnerowicz–Weitzenböck formula

(DΣ(τ ))∗DΣ(τ ) = (DΣ(τ ))2 = D
∗
ΣτDΣτ +

1

4
Scalh(τ) = −∆h(τ) +

1

4
Scalh(τ).(6.7)

Because of the nonzero extrinsic curvature, the scalar curvature Scalh(τ) of (Σ, h(τ )) is

not necessarily zero, although the scalar curvature of (M, g) is zero. But we have

Scalh(τ) ∈ C∞(Rτ ; C∞b (Σ)).
This will be enough to guarantee that, similarly to the Schwarzschild case, the Sobolev

norms can be expressed using DΣ :
Proposition 6.1. Consider on Hk0 (Σ; SDirac) the following norm for τ ∈ R:

|||Ψ |||k,τ =
( k∑

p=0

\
Σ

〈(DΣ(τ ))pΨ, (DΣ(τ ))pΨ〉 dVolh
)1/2

(as mentioned in Remark 6.2, the hermitian product 〈· , ·〉τ on Dirac spinors is indepen-
dent of τ and we denote it 〈· , ·〉). The norms ‖ · ‖Hk(Σ) and ||| · |||k,τ are equivalent on
Hk0 (Σ; SDirac), the equivalence being locally uniform in τ .

Remark 6.3. The operator

D/ (τ ) = e0.DΣ(τ ), e0 =
1√
2
T a∂a,

is formally skew-adjoint on L2(Σ; SDirac), satisfies

(D/ (τ ))∗D/ (τ ) = −(D/ (τ ))2 = (DΣ(τ ))2 = −∆h(τ) +
1

4
Scalh(τ)(6.8)

and we have for any Ψ ∈ Hk0 (Σ; SDirac)

|||Ψ |||k,τ =
( k∑

p=0

\
Σ

〈(D/ (τ ))pΨ, (D/ (τ ))pΨ〉 dVolh
)1/2

, ∀τ ∈ R.

Proof of Proposition 6.1. For each τ ∈ R, we prove that for all k ∈ N, we have the
following norm equivalence on Hk0 (Σ; SDirac):

‖ · ‖Hk(Στ ) ≃ ||| · |||k,τ .(6.9)

Owing to the regularity in time of h(τ ), this equivalence is locally uniform in time and

finally Proposition 6.1 follows from Remark 6.2.



Dirac fields 65

The proof of equivalence (6.9) follows exactly the proof of Proposition 5.1. We work

on (Σ, h(τ )) for τ ∈ R fixed. We clearly have
‖Ψ‖L2(Σ) = |||Ψ |||0,τ for all Ψ ∈ L2(Σ; SDirac)

and (6.7) implies (6.9) for k = 1 on H10 (Σ; SDirac) (this time, we do not have the equality

of the norms because of the nonzero scalar curvature). We then have the exact equivalent

of Lemma 5.2 for ∆h(τ) on Σ: for any k ∈ N there exist 0 < C1 < C2 < +∞ such that,
for all Ψ ∈ Hk+20 (Σ; SDirac),

C1‖Ψ‖Hk+2(Στ ) ≤ ‖Ψ‖Hk(Στ ) + ‖∆h(τ)Ψ‖Hk(Στ ) ≤ C2‖Ψ‖Hk+2(Στ ).

This immediatly yields the existence for all k ∈ N of 0 < C̃1 < C̃2 < +∞ such that, for
all Ψ ∈ Hk+20 (Σ; SDirac),

C̃1‖Ψ‖Hk+2(Στ ) ≤ ‖Ψ‖Hk(Στ ) + ‖(DΣ(τ ))2Ψ‖Hk(Στ ) ≤ C̃2‖Ψ‖Hk+2(Στ )
since the scalar curvature only perturbs ‖∆h(τ)Ψ‖Hk(Στ ) by bounded terms of order lower
than or equal to k. This last inequality allows us to prove (6.9) for all k by induction and

thus to prove Proposition 6.1.

6.1.2. The global exterior Cauchy problem. We give a generalization of Theorem 5 to

the exterior of slow Kerr black holes. We first need to define the weighted Sobolev spaces

on Σ with zero traces at the horizon:

Definition 6.2. For k ∈ N, ̺ ∈ R, τ ∈ R, the weighted Sobolev space with zero traces at
the horizon, Hk0,̺(Στ ), is defined as the completion of C∞0 (Σ) in the norm

‖f‖Hk̺ (Στ ) =
( k∑

p=0

\
Σ

(1 + u2)−̺−3/2+p〈(DΣτ )pf, (DΣτ )pf〉τ dVolh
)1/2

.

Here u is the function defined earlier

u(R) =

R\
r+

F−1/2(s) ds.

u is not the h(τ ) distance to the horizon but it is uniformly equivalent to it. Replacing

1 + u2 by r2 would replace the norm by an equivalent one. The norms ‖ · ‖Hk̺ (Στ ) and
‖ · ‖Hk̺ (Στ0 ) are equivalent for any given τ ∈ R and this equivalence is locally uniform
in τ . Therefore, we simply denote by Hk0,̺(Σ) the weighted Sobolev space of order k and

weight ̺ on Σ with zero traces at the horizon associated with the metric h. We use the

norm ‖ · ‖Hk̺ (Στ0 ) as the standard norm on this space and we denote it by ‖ · ‖Hk̺ (Σ). For
k = 0, we write H00,̺(Σ) = L

2
̺(Σ). The norm ‖ · ‖L2̺(Στ ) in L2̺(Σ; SDirac) is independent

of τ . Note that the norm ‖ · ‖Hk̺ (Σ) is equivalent to the flat weighted Sobolev norm on Σ
considered as R3 rB(0, 1).

We have the following theorem concerning the well-posedness of the Cauchy problem

on block I in Sobolev and weighted Sobolev spaces:

Theorem 6. 1. For any initial data Ψ0 ∈ L2(Σ; SDirac), the Dirac equation outside the
black hole has a unique solution Ψ ∈ C(Rτ ;L2(Σ; SDirac)) such that Ψ |τ=τ0 = Ψ0. More-
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over , the evolution is unitary in L2(Σ), i.e.

‖Ψ(τ )‖L2(Σ) = ‖Ψ0‖L2(Σ) for all τ ∈ R.
The propagator U(τ, σ) for the Dirac equation outside the black hole is strongly continuous
on Rτ × Rσ with values in L(L2(Σ; SDirac)).
2. If Ψ0 ∈ Hk0 (Σ; SDirac), k ∈ N, the associated solution Ψ satisfies

Ψ ∈
k⋂

l=0

Cl(Rτ ;Hk−l0 (Σ; SDirac)),

U(τ, σ) is strongly continuous on Rτ ×Rσ with values in L(Hk0 (Σ; SDirac)) for all k ∈ N.
3. For any initial data Ψ0 ∈ L2̺(Σ; SDirac), ̺ ∈ R, the Dirac equation outside the black

hole has a unique solution Ψ ∈ C(Rτ ;L2̺(Σ; SDirac)) such that Ψ |τ=τ0 = Ψ0. U(τ, σ) is
strongly continuous on Rτ × Rσ with values in L(L2̺(Σ; SDirac)) for all ̺ ∈ R.
4. If Ψ0 ∈ Hk0,̺(Σ; SDirac), k ∈ N, ̺ ∈ R, the associated solution Ψ satisfies

Ψ ∈
k⋂

l=0

Cl(Rτ ;Hk−l0,̺ (Σ; SDirac)),

U(τ, σ) is , for all k ∈ N, ̺ ∈ R, strongly continuous on Rτ × Rσ with values in
L(Hk0,̺(Σ; SDirac)).
Proof. The Dirac equation outside the black hole has the form

∇e0Ψ = −D/ (τ )Ψ −
1

2
√
2
K(τ )Ψ − ime0.Ψ(6.10)

with e0 = (1/
√
2)T a∂a. We choose a spin-frame {oA, ιA} adapted to the foliation such as

defined in Appendix A; equation (6.10) becomes

∂Ψ

∂τ
= − N√

2

(
D/ (τ ) + 1

2
√
2
K(τ ) + imγ0 +B(τ )

)
Ψ(6.11)

where

γ0 = i

(
0 Id2
−Id2 0

)

and B is the 4×4 matrix containing the connection terms coming from the time derivative.
The following result is a consequence of Appendix A and the regularity of NK(τ ):

Lemma 6.2. The potential in equation (6.11) satisfies (K is of course to be understood

here as K Id4)

N√
2

(
1

2
√
2
K(τ ) + imγ0 +B(τ )

)
∈ C∞(Rτ ; C∞b (Σ;M4(C)).

We now proceed to proving Theorem 6. The proof is very similar to that of Theorem 5

and therefore we simply highlight the parts which differ from it.

1. The well-posedness of the Cauchy problem in L2(Σ): For ε > 0, we consider on

Rτ × Σ̃, Σ̃ := [0,+∞[R×S2Θ,Φ, a smooth Lorentzian metric εg which coincides with g for
R > r+ + ε. We choose the same background metrics as in the Schwarzschild case

h̃ = dR2 +R2dΩ2, dΩ2 = dΘ2 + sin2Θ dΦ2,
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g̃ =

(
1− ̺(R)2M

R

)
dτ2 −

(
1 + ̺(R)

2M

R

)
dR2 −R2dΩ2,

where ̺ is a smooth cut-off function on [0,+∞[ such that ̺ ≡ 0 on [0, 3M ] and ̺ ≡ 1 on
[4M,+∞[.
For each ε > 0, we show that εg is of class (∞, δ) on Rτ × Σ̃ for any δ > −2. In

{R > r+ + ε}, we have

εg = g =

(
gtt −

(gtϕ)
2

gϕϕ

)
dτ2 +

(
grr + (τ − τ0)2

(
∂α

∂R

)2
gϕϕ

)
dR2

+

(
gθθ + (τ − τ0)2

(
∂α

∂Θ

)2
gϕϕ

)
dΘ2 + gϕϕdΦ

2

+ 2(τ − τ0)2
∂α

∂R

∂α

∂Θ
gϕϕdRdΘ + 2(τ − τ0)

∂α

∂R
gϕϕdRdΦ

+ 2(τ − τ0)
∂α

∂Θ
gϕϕdΘdΦ.

We recall that

α = − gtϕ
gϕϕ
=

2aMR

(R2 + a2)̺2 + 2MRa2 sin2Θ

and

−gϕϕ =
(
(R2 + a2) +

2MRa2 sin2Θ

̺2

)
sin2Θ,

whence, as R→ +∞,

D̃l(α) = O(R−3−l), D̃l
(
∂α

∂Θ

)
= O(R−5−l),

D̃l
(
∂α

∂R

)
= O(R−4−l), D̃l(gϕϕ) = O(R

2−l), l ∈ N,

where D̃ is the Levi-Civita connection on (Σ̃, h̃). From these properties, we infer that for

any l ∈ N, we have as R→ +∞:

D̃l
(
gRΘ
R

)
= D̃l
(
2(τ − τ0)2

gϕϕ
R

∂α

∂R

∂α

∂Θ

)
= O(R−8−l),

D̃l
(

gRΦ
R sinΘ

)
= D̃l
(
2(τ − τ0)

gϕϕ
R sinΘ

∂α

∂R

)
= O(R−3−l),

D̃l
(

gΘΦ
R2 sinΘ

)
= D̃l
(
2(τ − τ0)

gϕϕ
R2 sinΘ

∂α

∂Θ

)
= O(R−5−l).

We must remember, in order to understand the formulae above, that the asymptotically

constant 1-forms are not dR, dΘ, dΦ but dR, RdΘ and R sinΘ dΦ. There remains to

estimate the fall-off of the diagonal terms of g − g̃. We start with the lapse function:

gττ = gtt −
(gtϕ)

2

gϕϕ
=

∆

R2
̺2R2

(R2 + a2)̺2 + 2MRa2 sin2Θ
.

The quantity ∆/R2 behaves like 1− 2M/R at infinity since

∆

R2
= 1− 2M

R
+
a2

R2
,
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also
̺2R2

(R2 + a2)̺2 + 2MRa2 sin2Θ
= 1− a2̺2 + 2MRa2 sin2Θ

(R2 + a2)̺2 + 2MRa2 sin2Θ
.

Therefore,

gττ −
(
1− 2M

R

)
= O(R−2), R→ +∞,

and for all l ∈ N,

D̃l
(
gττ −

(
1− 2M

R

))
= O(R−2−l), R→ +∞.

The radial term gRR is

gRR = grr + (τ − τ0)2gϕϕ
(
∂α

∂R

)2
= −̺

2

∆
+ (τ − τ0)2gϕϕ

(
∂α

∂R

)2
.

The time dependent term satisfies, for all l ∈ N,

D̃l
(
(τ − τ0)2gϕϕ

(
∂α

∂R

)2)
= O(R−6−l), R→ +∞.

As for the time independent term, we have

̺2

∆
−
(
1 +
2M

R

)
=
̺2

R2
1

1− 2MR + a
2

R2

−
(
1 +
2M

R

)

=

(
1 +

a2 cos2Θ

R2

)(
1− 2M

R
+
a2

R2

)−1
−
(
1 +
2M

R

)

whence

D̃l(gRR − g̃RR) = O(R−2−l), R→ +∞, l ∈ N.
The time dependent term in gΘΘ is also short range:

D̃l
(
(τ − τ0)2

gϕϕ
R2

(
∂α

∂Θ

)2)
= O(R−10−l), R→ +∞,

and we simply need to study gθθ − g̃ΘΘ:
gθθ − g̃ΘΘ = −̺2 +R2 = −a2 cos2Θ

and therefore

D̃l
(
1

R2

(
gΘΘ − g̃ΘΘ

))
= O(R−2−l), R→ +∞, l ∈ N.

The only remaining term is

gΦΦ − g̃ΦΦ = −R2 sin2Θ
(
(R2 + a2)̺2 + 2MRa2 sin2Θ

R2̺2
− 1
)

= −R2 sin2Θ
(
a2̺2 + 2MRa2 sin2Θ

R2̺2

)

and this expression entails

D̃l
(

1

R2 sin2Θ
(gΦΦ − g̃ΦΦ)

)
= O(R−2−l), R→ +∞, l ∈ N.
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We conclude that for any l ∈ N, ε > 0,
D̃l(εg − g̃) = O(R−2−l), R→ +∞.

The metric εg being smooth on R×Σ̃, this proves that εg is of class (∞, δ) for any δ > −2.
Then we follow the proof of point 1 of Theorem 5 to solve the Cauchy problem in

L2(Σ; SDirac) for equation (6.11) with initial data on the typical slice Στ0 , i.e. on any

slice we choose to consider as typical. We also obtain the conservation of the physical

L2(Σ) norm of the solutions, ‖Ψ(τ )‖L2(Στ ); but since the norm ‖ · ‖L2(Στ ) is the same for
all τ ∈ R, this shows that the standard L2(Σ) norm of the solutions is conserved all the
time. The time dependence of the coefficients of the equation prevents the propagator,

U(τ, σ) : Ψ(σ) 7→ Ψ(τ ), from being a group; the conservation of the L2 norm together

with the strong continuity of the propagators for the metrics εg imply that U is strongly
continuous on Rτ × Rσ with values in L(L2(Σ; SDirac)). This proves the first part of
Theorem 6.

2. Well-posedness of the Cauchy problem in Sobolev spaces: For a smooth solution Ψ

associated with some initial data Ψ0 ∈ C∞0 (Σ; SDirac), we consider the evolution equation
for (D/ (τ ))kΨ , k ∈ N, in order to prove by induction estimates on the Sobolev norms of
Ψ . Applying (D/ (τ ))k to equation (6.11), we obtain

∂

∂τ
((D/ (τ ))kΨ(τ )) = − N√

2

(
D/ (τ ) + 1

2
√
2
K(τ ) + imγ0 +B(τ )

)
(D/ (τ ))kΨ(τ )(6.12)

+

{
∂

∂τ
((D/ (τ ))k)

}
Ψ(τ )− 1√

2
[(D/ (τ ))k, N ]D/ (τ )Ψ(τ )

− 1√
2

[
(D/ (τ ))k, 1

2
√
2
NK(τ )

]
Ψ(τ )− im√

2
[(D/ (τ ))k, Nγ0]Ψ(τ )

− 1√
2
[(D/ (τ ))k, NB(τ )]Ψ(τ ).

We write equation (6.12) as

∂

∂τ
((D/ (τ ))kΨ(τ )) = − N√

2

(
D/ (τ ) + K(τ )

2
√
2
+ imγ0 +B(τ )

)
(D/ (τ ))kΨ(τ ) +G(τ ).

Using Lemma 6.2 and the norm equivalence of Proposition 6.1, we have

‖G(τ )‖L2(Σ) ≤ C(τ )‖Ψ(τ )‖Hk(Σ) ≤ C ′(τ )|||Ψ(τ )|||k,τ
where C and C ′ are continuous positive functions on R, independent of Ψ . The integral
formula

(D/ (τ ))kΨ(τ ) = U(τ, τ0)((D/ (τ0))kΨ0) +
τ\
τ0

U(τ, σ)G(σ) dσ(6.13)

then allows us to obtain by induction estimates of the kind

|||Ψ(τ )|||k,τ ≤ αk(τ )|||Ψ0|||k,τ0(6.14)

where αk is a continuous positive function on R, independent of Ψ0. These estimates

prove the well-posedness of the Cauchy problem in Hk0 (Σ) and together with the integral

formulae (6.13), they establish that U(τ, σ) is strongly continuous on R2τ,σ with values in
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L(Hk0 (Σ; SDirac)) for all k ∈ N. The additional regularity of the solutions is then read off
directly from the equation.

3, 4. The Cauchy problem in weighted L2 and Sobolev spaces : For this last part, we

follow the lines of the proof of the fourth part of Theorem 5. The only slight differences

are first that we need to take account of the initial time τ0 which is not necessarily zero

and second that we must use the estimates (6.14) instead of (5.17). We obtain estimates

of the form

‖Ψ(τ )‖L2̺(Σ) ≤ α̺(τ )‖Ψ0‖L2̺(Σ), ‖Ψ(τ )‖Hk̺ (Σ) ≤ βk,̺(τ )‖Ψ0‖Hk̺ (Σ)
where α̺ (̺ ∈ R) and βk,̺ (k ∈ N∗, ̺ ∈ R) are continuous positive functions on R,
independent of Ψ0. As previously, the strong continuity of U(τ, σ) on R2τ,σ with values
in L(Hk0,̺(Σ; SDirac)) is a consequence of the strong continuity of the propagators in the
metrics εg and of the estimates above. This concludes the proof of Theorem 6.

6.2. Maximal extension of Kerr’s space-time. The global geometry of Kerr’s space-

time (and in particular slow Kerr) is far more complex than that of Schwarzschild’s

space-time. An entire chapter of B. O’Neill’s book [50] is devoted to the construction

of the maximal extension. Our purpose in this section is to describe this construction

schematically and to point out the so-called Kruskal domains in maximal slow Kerr

space-time for which, with a natural choice of foliation, the theorems of Chapter 4 can

be applied.

6.2.1. Kerr-star and star-Kerr coordinates. Just as we did in the Schwarzschild case, we

choose a coordinate system which will allow us to represent globally the whole of Kerr’s

space-time. This choice is guided by the following physical considerations: if a particle is

to pass from block I to block II across the outer horizon and then from block II to block

III across the inner horizon, its most direct course is to follow an incoming principal null

geodesic. The whole idea of the Kerr-star coordinate system is to turn incoming principal

null geodesics into coordinate lines. Such geodesics are defined on all three blocks in

Boyer–Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = −1, θ̇ = 0, ϕ̇ =

a

∆
.

Keeping the coordinates r and θ, we introduce two new coordinates t∗ and ϕ∗ of the form

t∗ = t+ T (r), ϕ∗ = ϕ+A(r)

where the functions T and A are required to satisfy

dT

dr
=
r2 + a2

∆
,
dA

dr
=

a

∆
.

(t∗, r, θ, ϕ∗) defines a coordinate system in each Boyer–Lindquist block (1), called Kerr-
star coordinates, in which the incoming principal null geodesics are described by

ṙ = −1, θ̇ = 0, ṫ∗ = ṫ+
dT

dr
ṙ = 0, ϕ̇∗ = ϕ̇+

dA

dr
ṙ = 0,

(1) With the exception of the axis (θ = 0 and θ = π); this coordinate singularity can be
dealt with simply (see [50], Lemma 2.2.2); we shall systematically ignore it.
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i.e. they are the r coordinate curves parametrized by s = −r (or −r+C). The expression
of the Kerr metric in Kerr-star coordinates is given by

g = gttdt
∗2 + 2gtϕdt

∗dϕ∗ + gϕϕdϕ
∗2 − ̺2dθ2 − 2dt∗dr + 2a sin2 θ dϕ∗dr,(6.15)

where gtt, gtϕ, gϕϕ and gθθ = −̺2 are as defined in (6.1), i.e.

gtt =

(
1− 2Mr

̺2

)
, gtϕ =

a sin2 θ(r2 + a2 −∆)
̺2

,

gϕϕ = −
(
(r2 + a2)̺2 + 2Mra2 sin2 θ

̺2

)
sin2 θ, ̺2 = r2 + a2 cos2 θ.

We see from (6.15) that the metric g is smooth on all three blocks, with the exception

of the ring singularity {̺2 = 0} = {r = 0 and θ = π/2} in block III, and across both
horizons (the component grr in Boyer–Lindquist coordinates was the only component of

g to be singular at the horizons and it does not appear in (6.15)).

Kerr-star space-time is defined as the manifold

M∗ = Rt∗ × Rr × S2θ,ϕ∗ \ {(t∗, r, θ, ϕ∗); r = 0 and θ = π/2}
equipped with the smooth metric (6.15) and with the time orientation such that the null

coordinate vector field −∂/∂r, defined and smooth on the whole ofM∗ and whose integral
lines are the incoming principal null geodesics, is future oriented. This time orientation is

consistent with the fact that, in Boyer–Lindquist coordinates, the Killing vector field ∂/∂t

is future oriented outside the ergosphere in block I and also with the description of block

II given at the beginning of the chapter, with −∂/∂r (in Boyer–Lindquist coordinates)
future pointing. This space-time contains all three blocks, glued smoothly at the horizons

by the requirement that incoming principal null geodesics should cross horizons smoothly

and that their orientation defines the time orientation. Block II is thus glued to block

I in such a way that it lies in the future of block I and similarly, block III lies in the

future of block II. The horizons {r = r+} and {r = r−} are smooth null hypersurfaces of
(M∗, g). The fact that they are null is easily shown considering the metric induced by g
on hypersurfaces of constant r

gr = gttdt
∗2 + 2gtϕdt

∗dϕ∗ + gϕϕdϕ
∗2 − ̺2dθ2.

This induced metric has determinant

det(gr) = −̺2(gttgϕϕ − (gtϕ)2) = ̺2∆ sin2 θ
and thus degenerates for ∆ = 0, i.e. at the horizons. See Figure 6.1 for a Penrose diagram

of Kerr-star space-time.

This construction is similar to what we did in Schwarzschild’s space-time, when

we first used Kruskal–Szekeres coordinates to show that the metric could be extended

smoothly across the horizon. In the Schwarzschild case, the maximal extension of the

space-time followed naturally by extending the domain of definition of the Kruskal–

Szekeres coordinate system. This we cannot do here since the domain of definition of

Kerr-star coordinates is already maximal. We shall need to use other coordinate systems

which will allow us to glue Boyer–Lindquist blocks in different manners.
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Kerr-star coordinates were defined by modifying Boyer–Lindquist coordinates so that

incoming principal null geodesics could become coordinate lines. Using outgoing principal

null geodesics instead of the incoming ones, we obtain the star-Kerr coordinate system.

These geodesics are defined on all three blocks in Boyer–Lindquist coordinates by

ṫ =
r2 + a2

∆
, ṙ = 1, θ̇ = 0, ϕ̇ =

a

∆
.

Keeping r and θ, we introduce the new coordinates

∗t = t− T (r), ∗ϕ = ϕ−A(r)
where the functions T and A are the same as used to define t∗ and ϕ∗. In the star-Kerr
coordinate system (∗t, r, θ, ∗ϕ), the outgoing principal null geodesics are the r coordinate
lines parametrized by s = r and the Kerr metric takes the form

g = gttd(
∗t)2 + 2gtϕd(

∗t)d(∗ϕ) + gϕϕd(
∗ϕ)2 − ̺2dθ2(6.16)

+2d(∗t)dr − 2a sin2 θ d(∗ϕ)dr.
This gives rise to star-Kerr space-time which is the manifold

∗M = R ∗t × Rr × S2θ,∗ϕ \ {(∗t, r, θ, ∗ϕ); r = 0 and θ = π/2}
equipped with the smooth metric (6.16) and time orientation such that, in star-Kerr co-

ordinates, the null coordinate vector field ∂/∂r, which is defined and smooth all over ∗M
and whose integral lines are the outgoing principal null geodesics, is future pointing. This

space-time contains all three blocks, glued together at the horizons which appear as reg-

ular null hypersurfaces. The gluing is done by requiring that the outgoing principal null

geodesics should cross the horizons smoothly. The time orientation reflects this choice;

it is consistent with the fact that in Boyer–Lindquist coordinates ∂/∂t is future pointing

outside the ergosphere in block I, but incompatible with −∂/∂r future oriented in block
II: in star-Kerr space-time, the inertial frames in block II are dragged outwards from

the inner horizon to the outer horizon. There is a canonical isometry between the star-

Kerr and Kerr-star space-times. This isometry preserves the time orientation of blocks

I and III but reverses that of block II. Star-Kerr space-time can be seen as a block I,

to the past of which is glued a block II with its time orientation reversed, to the past

of which is glued a block III: it describes a “slow Kerr white hole”. See Figure 6.1 for

the Penrose diagram of star-Kerr space-time (II′ refers to a block II with reversed time
orientation).

Kerr−star space−time Star−Kerr space−time

I

I

II II’

III

III

Fig. 6.1. Penrose diagrams of Kerr-star and star-Kerr space-times
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II’

II’

II’

II

II

II

I

I

I

II’

I’

I’

I’

III III’

III III’

III III’

Fig. 6.2. Maximal slow Kerr space-time

I

II’

III

I

II’

III

II

I’

III’

Fig. 6.3. First step in the construction of
maximal slow Kerr space-time

II’

II

III III’

Type II−III Kruskal domain

II’

II

I’ I

Type I−II Kruskal domain

Fig. 6.4. The two different types of Kruskal
domains
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6.2.2. Maximal slow Kerr space-time. The maximal analytic extension of slow Kerr

space-time is constructed using both Kerr-star and star-Kerr space-times. We start with

Kerr-star space-time: all the incoming principal null geodesics are complete but the out-

going ones are not. The idea is to glue other blocks so as to make the outgoing principal

null geodesics complete. The solution for blocks I and III is simple: we consider them

as belonging to star-Kerr space-times, i.e. we glue to the future of block III a block II′

followed by a new block I and to the past of block I a block II′ preceded by a new block
III. For block II, the situation is trickier; we also wish to understand block II as part

of a star-Kerr space-time, but this is incompatible with the time orientation of block II.

The solution is to reverse the time orientation of the whole star-Kerr space-time. We are

thus led to gluing to the future of block II a block III′ (block III with its time orien-
tation reversed) and to its past a block I′ (block I with reversed time orientation). The
resulting space-time is shown in Figure 6.3. We keep on extending this new space-time

whenever a family of principal null geodesics is incomplete. The extension is done step

by step and is based on the same simple principle: if a family of principle null geodesics

is incomplete, it means that the Kerr-star (in the incoming case) or star-Kerr (in the

outgoing case) space-time which it generates lacks one or two blocks; this is cured by

gluing the lacking blocks, bearing in mind the consistency of the time orientation of

the whole space-time. In this manner, we construct maximal slow Kerr space-time (see

Figure 6.2) as a reunion of four types of space-times: Kerr-star space-times, Kerr-star

with their time orientation reversed, star-Kerr and star-Kerr with their time orienta-

tion reversed. Important objects in this maximal extension are the so-called Kruskal

domains. They are “diamond shaped” reunions of four contiguous blocks. At their “cen-

tre” lies a 2-sphere, referred to as the crossing sphere, where the horizons intersect.

Building this crossing sphere rigorously and extending the metric over it are impor-

tant difficulties in the construction of maximal slow Kerr space-time. This is done by

means of Kruskal–Boyer–Lindquist coordinates (see [50] for a fully detailed account).

There are two types of Kruskal domains, as shown in Figure 6.4. Type II-III contains

two copies of block III; it is not causal, therefore not globally hyperbolic, and contains

two timelike singularities (the ring singularity of each block III). Because of the lack of

causality, the notion of Cauchy problem is not even meaningful on type II-III domains.

Type I-II domains are much more gentle. They are globally hyperbolic and contain no

singularity. They can be treated in exactly the same manner as maximal Schwarzschild

space-time.

For a type I-II Kruskal domain, we consider a foliation {Sτ}τ∈R (see Figure 6.5) by

Cauchy hypersurfaces such that, outside the domain of dependence of a neighbourhood

of the crossing sphere, for each τ ∈ R the hypersurface Sτ coincides in block I with the
level hypersurface Στ = {t = τ} of the time coordinate t of Boyer–Lindquist coordinates
and in block I′ with Σ−τ (suffice it to say that the Boyer–Lindquist coordinates in blocks
I, II, I′ and II′ are defined unambiguously from the Kruskal–Boyer–Lindquist coordinates
defined on the whole domain). For such a foliation, the asymptotic behaviour of the

metric g at infinity on each slice Sτ is the same as the behaviour for fixed t and r → +∞
studied at the beginning of the proof of Theorem 6. Therefore, the Kruskal domains of
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Sτ for τ < 0

Σ−τ

Σ−τ

II’

II

I’ I

t = 0

Sτ

t = 0

τ > 0

for Στ

Στ for 

τ < 0

for 

τ > 0for 

τ > 0

τ < 0for 

and its domain of dependence

a neighbourhood of the crossing
spheres at  t = 0

Fig. 6.5. Foliation of a type I-II Kruskal domain

type I-II thus foliated are interpreted as space-times (with two asymptotically flat ends)

of class (∞, δ) for any δ > −2. This allows us to apply directly the theorems of Section 4.
We obtain the existence and uniqueness of solutions to Dirac’s equation with values in

L2, L2µ for all µ ∈ R, Hk for all k ∈ N, Hkµ for all k ∈ N and µ ∈ R, on the slices Sτ .
A simplified interpretation is that Dirac fields are well-behaved at least as long as they

do not cross the inner horizon (either in the future or in the past).

7. Concluding remarks

As was remarked in [42], the fact that the spin-connection of a Ricci-flat space-time

can be regarded as a pair of pure gauge Rarita–Schwinger fields may provide analytic

means of controlling the fall-off at spacelike infinity of solutions to Einstein’s vacuum

equations, assuming we can obtain some precise control on the weighted Sobolev norms

of spin 3/2 fields. For such a project, it is of course vital to have the existence theorems in

weighted Sobolev spaces for solutions to the Rarita–Schwinger equations. The theorems

of Section 4, by giving such existence results for symmetric hyperbolic systems, are a

first step in this direction. They can be applied directly to the Dirac form of the Rarita–

Schwinger equations. In order to work with the Witten form, we would need to control the

nonlocal term. Whether this can be done regardless of the value of the weight remains to

be seen. The next step, namely the precise control in time of the weighted Sobolev norms

of Rarita–Schwinger fields, is difficult and requires detailed hypotheses on the evolution

in time of the spacelike geometry of our space-times.
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Concerning Schwarzschild black holes, it would be interesting to study the behaviour

(explosive or not) of a smooth solution to Dirac’s equation as it approaches the singularity.

This poses the problem of the description of the Dirac field near the singularity. More

precisely, the norm of the spinor at a point is defined in terms of the timelike vector

T a, which can be determined by a choice of a foliation or more simply by a choice of

spin-frame. This vector is normalized with respect to the metric, but at the singularity,

the metric blows up. It is therefore necessary to understand what the correct choice

of spin-frame is near the singularity before addressing the question of how Dirac fields

behave there. The noncausal character of block III should discourage hopes of attempting

similar studies in Kerr space-time, or at least one should not think of it in terms of the

behaviour of a Dirac field as it propagates towards the singularity.

Another interesting and difficult problem is the construction of a time-dependent

scattering theory for Dirac fields on the exterior of a Kerr black hole. The point of view

would be that of an observer static at infinity. In spite of its ugliness, it may be necessary

to use the form of Dirac’s equation given in Appendix B because it has the advantage of

being independent of time.

Appendix A

A choice of spin-frame and the expression of the time
connection terms in Kerr and Schwarzschild geometries

We consider a general framework of which the exterior of both Kerr and Schwarzschild

black holes is a particular case. On

M = Rτ ×Σx, Σ = ]0,+∞[u × S2Θ,Φ,
we have a Lorentzian metric g of the form

g =
(N(x))2

2
dτ2 − h(τ ).

The lapse function N is independent of time and satisfies

N ∈ C∞b (Σ), N > 0 on Σ, N |∂Σ = 0
where Σ = [0,+∞[u × S2Θ,Φ. h(τ ) is a Riemannian metric on Σ, depending on time, and
satisfying

h ∈ C∞(Rτ ; C∞b (Σ)).
Moreover, there exist two continuous strictly positive functions C1 and C2 on R such

that, as a quadratic form, the metric h(τ ) satisfies

C1(τ )h̃ ≤ h(τ ) ≤ C2(τ )h̃ for all τ ∈ R,
where h̃ is the euclidian metric on Σ considered as R3 rB(0, 1):

h̃ = du2 + (1 + u)2dΩ2, dΩ2 = dΘ2 + sin2Θ dΦ2.
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The vector field T a, timelike, future pointing, g-orthogonal to the foliation {Στ = {τ}
×Σ}τ∈R and normalized so that TaT

a = 2 is given by

T a∂a =
2

N

∂

∂τ
.

These hypotheses are far weaker than the properties satisfied by Kerr or Schwarzschild

metrics outside the black hole, but they will suffice for the calculations we perform here.

A.1. A choice of spin-frame. We describe the choice of a Newman–Penrose tetrad

{la, na,ma,ma}, the spin-frame {oA, ιA} is then fixed up to an overall sign by requiring
(A.1) la = oAoA

′

, na = ιAιA
′

, ma = oAιA
′

, ma = ιAoA
′

.

Let us consider a global smooth coordinate system on Σ: {x1, x2, x3}. For example, we
can take

x1 = (1 + u) sinΘ cosΦ, x2 = (1 + u) sinΘ sinΦ, x3 = (1 + u) cosΘ.

With our choice of coordinate u in Schwarzschild and Kerr metrics, replacing Θ and Φ

by θ and ϕ in the Schwarzschild case, this coordinate system is smooth outside the black

hole. We simply assume here that u, Θ and Φ are sufficiently well chosen so that this is

also the case (alternatively, we need not be that explicit and we can simply consider a

given global smooth coordinate system on Σ). The metric h in this coordinate system

takes the form

h(τ, x) =

3∑

a,b=1

hab(τ, x)dx
adxb, hab = hba.

The coefficients hab satisfy the following properties

(A.2) hab ∈ C∞(Rτ ; C∞b (Σ)),
and for any ξ ∈ R3, (τ, x) ∈ R×Σ,

(A.3) C1(τ )|ξ|2 ≤
3∑

a,b=1

hab(τ, x)ξ
aξb ≤ C2(τ )|ξ|2.

We consider on (Rτ ×Σ, g) a smooth global orthonormal Lorentz frame

(A.4)

(
1√
2
T a, Xa, Y a, Za

)
such that Xa, Y a, Za ∈ C∞(Rτ ; C∞b (Σ)).

Such a global frame exists because Rτ ×Σ is diffeomorphic to Rτ ×
(
R3 \B(0, 1)

)
and is

therefore parallelizable. The family {Xa, Y a, Za} is for each τ ∈ R a global orthonormal
section of the principal bundle (the bundle of local frames) of (Σ, h(τ )). Each vector

field is at each point an eigenvector of the matrix hab, normalized so that its norm with

respect to h is 1. The regularity of h and its equivalence (locally uniform in time and

uniform in space) to the euclidian metric on R3 \ B(0, 1) entail that Xa, Y a, Za can be
assumed to have the regularity (A.4).

We then define the Newman–Penrose tetrad as follows:

la =
1

2
T a +

1√
2
Xa, na =

1

2
T a − 1√

2
Xa, ma =

1√
2
Y a +

i√
2
Za.
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All these vectors belong to C∞(Rτ ; C∞b (Σ)). We choose the spin-frame (oA, ιA) by requir-
ing (A.1). It is adapted to the foliation {Στ}τ∈R since

T a = la + na = oAoA
′

+ ιAιA
′

.

A.2. The timelike connection terms. We introduce the directional covariant

derivatives along the tetrad vectors

D := la∇a, D′ := na∇a, δ := ma∇a, δ′ := ma∇a.
We consider the Dirac equation onM written in terms of two-component spinors as an
evolution system (see (3.31))

(A.5)

{
∇T φA = 2DABφB +

√
2mTAB′ χ

B′ ,

∇TχA
′

= −2DA′B′χB
′ −
√
2mTBA

′

φB.

The timelike connection terms are those coming from the timelike covariant derivatives

∇TφA and ∇TχA
′

:

∇TφA = (D +D′)φA = (oBoB
′

+ ιBιB
′

)∇BB′φA,
∇T χA

′

= (D +D′)χA
′

= (oBoB
′

+ ιBιB
′

)∇BB′χA
′

.

Using the Newman–Penrose formalism, we calculate the components of∇TφA and∇TχA
′

with respect to the spin-frame {oA, ιA} (see [53], Vol. 1, paragraph 4.5)




ε0
A∇T φA = T a∂aφ0 − (ε+ γ)φ0 + (κ+ τ̃ )φ1,

ε1
A∇TφA = T a∂aφ1 − (π + ν)φ0 + (ε+ γ)φ1,

εA′
0′∇TχA

′

= T a∂aχ
0′ + (ε+ γ)χ0

′

+ (π + ν)χ1
′

,

εA′
1′∇TχA

′

= T a∂aχ
1′ − (κ+ τ̃ )χ0′ − (ε+ γ)χ1′ ,

where the spin-coefficients ε, γ, κ, τ̃ , π and ν (we have chosen to denote by τ̃ the spin-

coefficient usually denoted by τ in order to avoid confusion with the time variable τ ) are

defined by

ε =
1

2
(naDla +m

aDma), γ =
1

2
(naD′la +m

aD′ma), κ = maDla,

τ̃ = maD′la, π = −maDna, ν = −maD′na.
We have

T a∂a =
2

N

∂

∂τ

and therefore, the system (A.5) written in terms of spinor components in the spin-frame

{oA, ιA} has the form
∂φ

∂τ
= NDφ+

mN√
2
χ+

N

2

(
ε+ γ −(κ+ τ̃)
π + ν −(ε+ γ)

)
φ,

∂χ

∂τ
= ND̂χ− mN√

2
φ+

N

2

(−(ε+ γ) −(π + ν)
κ+ τ̃ ε+ γ

)
χ,

where the operators D and D̂ were defined in (3.32) as

D : φA 7→ DABφB, D̂ : χA
′ 7→ −DA′B′χB

′

.
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They are the restrictions of the operator −(1/
√
2)e0.DW to SA and SA

′

. In terms of Dirac

spinors, putting Ψ = φA ⊕ χA
′

, the system above takes the familiar form

∂Ψ

∂τ
= − N√

2
γ0DWΨ −

imN√
2
γ0Ψ − N√

2
BΨ

and the matrix B containing the timelike connection coefficients is given by (for our

choice of a spin-frame)

B =
1√
2




−(ε+ γ) κ+ τ̃ 0 0

−(π + ν) ε+ γ 0 0

0 0 ε+ γ π + ν

0 0 −(κ+ τ̃) −(ε+ γ)


 .

In order to study the behaviour of NB, we need to study the quantities N(ε+γ), N(κ+τ̃)

and N(π + ν):

ε+ γ =
1

2
(na(D +D′)la +m

a(D +D′)ma) =
1

2
(na∇T la +ma∇Tma),

κ+ τ̃ = ma(D +D′)la = m
a∇T la, π + ν = −ma(D +D′)na = −ma∇Tna.

All the vectors of the Newman–Penrose tetrad belong to C∞(Rτ ; C∞b (Σ)). Moreover

N∇T = NT a∇a and NT a∂a = 2
∂

∂τ
∈ C∞(Rτ ; C∞b (Σ)).

Therefore, we conclude that

N(ε+ γ), N(κ+ τ̃), N(π + ν) ∈ C∞(Rτ ; C∞b (Σ)).

This establishes the regularity of the matrix B:

B ∈ C∞(Rτ ; C∞b (Σ;M4(C))).

A.3. Explicit expressions in the Schwarzschild case. Outside the Schwarzschild

black hole, we consider the Newman–Penrose tetrad described in Schwarzschild coordi-

nates as

la∂a =
1√
2

(
F−1/2

∂

∂t
+ F 1/2

∂

∂r

)
, na∂a =

1√
2

(
F−1/2

∂

∂t
− F 1/2 ∂

∂r

)
,

ma∂a =
1

r
√
2

(
∂

∂θ
+

i

sin θ

∂

∂ϕ

)
.

The coordinate basis is singular for θ = 0 and θ = π and so is the vector ma. The tetrad,

however, is adapted to the foliation and the spacelike part of la and na is

F 1/2
∂

∂r
=

∂

∂u
∈ C∞b (Σ).

This tetrad in fact gives a smooth matrix B. The spin-coefficients for this choice of null

tetrad were calculated in [48]; in particular, we have

ε = γ =
F ′F−1/2

4
√
2

, κ = τ = π = ν = 0



80 J.-P. Nicolas

(we return to the standard notation τ for the spin coefficient since there is no risk of

confusion with the time variable). Hence, the matrix B has the form

B =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



F ′F−1/2

4

and we see immediately that

N√
2
B = F 1/2B ∈ C∞b (Σ).

Appendix B

An expression of the Dirac equation outside a Kerr black hole

In the framework of the Newman–Penrose formalism, Dirac’s equation




∇AA′φA =
m√
2
χA

′

,

∇AA′χA′ =
m√
2
φA,

takes the form (see for example [7])

(B.1)





na∂aφ0 −ma∂a φ1 + (µ− γ)φ0 + (τ − β)φ1 =
m√
2
χ1′ ,

la∂aφ1 −ma∂aφ0 + (α− π)φ0 + (ε− ̺)φ1 = −
m√
2
χ0′ ,

na∂a χ0′ −ma∂aχ1′ + (µ− γ)χ0′ + (τ − β)χ1′ =
m√
2
φ1,

la∂aχ1′ −ma∂aχ0′ + (α− π)χ0′ + (ε− ̺)χ1′ = −
m√
2
φ0,

where {la, na,ma,ma} is a Newman–Penrose tetrad such that
lan
a = 1, mam

a = −1, lama = nama = 0
and the spin-coefficients involved in equation (B.1) are defined by

ε =
1

2
(naDla +m

aDma), α =
1

2
(naδ′la +m

aδ′ma), β =
1

2
(naδla +m

aδma),

γ =
1

2
(naD′la +m

aD′ma), ̺ = maδ′la, τ = m
aD′la, π = −maDna, µ = −maδna.

In block I of a slow Kerr space-time described in Boyer–Lindquist coordinates, we consider

the Newman–Penrose tetrad used in [7]

la∂a =
1

∆

(
(r2 + a2)

∂

∂t
+∆

∂

∂r
+ a

∂

∂ϕ

)
,

na∂a =
1

2̺2

(
(r2 + a2)

∂

∂t
−∆ ∂

∂r
+ a

∂

∂ϕ

)
,

ma∂a =
1

p
√
2

(
ia sin θ

∂

∂t
+

∂

∂θ
+

i

sin θ

∂

∂ϕ

)
,
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where p = r+ia cos θ. The corresponding spin-coefficients, likewise described by S. Chan-

drasekhar in [7], are

κ = σ = λ = ν = ε = 0, ˜̺= −1
p
, β =

1

2p
√
2
cot θ, π =

ia sin θ

p2
√
2
,

τ = − ia sin θ
̺2
√
2
, µ = − ∆

2̺2p
, γ = µ+

r −M
2̺2

, α = π − β,

where we have denoted by ˜̺ the spin-coefficient in order to avoid confusion with ̺2 =
pp = r2+a2 cos2 θ. Thus, we obtain the following expression of the Dirac equation outside

the black hole:

(B.2)
r2 + a2

2̺2
∂φ0
∂t
− ia sin θ

p
√
2

∂φ1
∂t
− ∆

2̺2
∂φ0
∂r
− 1

p
√
2

∂φ1
∂θ
+

a

2̺2
∂φ0
∂ϕ
− i

p
√
2 sin θ

∂φ1
∂ϕ

− r −M
2̺2

φ0 −
(
ia sin θ

̺2
√
2
+
cot θ

2p
√
2

)
φ1 =

m√
2
χ1′ ,

(B.3)
r2 + a2

∆

∂φ1
∂t
+
ia sin θ

p
√
2

∂φ0
∂t
+
∂φ1
∂r
− 1

p
√
2

∂φ0
∂θ
+
a

∆

∂φ1
∂ϕ
+

i

p
√
2 sin θ

∂φ0
∂ϕ

− cot θ
2p
√
2
φ0 +

1

p
φ1 = −

m√
2
χ0′ ,

(B.4)
r2 + a2

2̺2
∂χ0′

∂t
+
ia sin θ

p
√
2

∂χ1′

∂t
− ∆

2̺2
∂χ0′

∂r
− 1

p
√
2

∂χ1′

∂θ
+

a

2̺2
∂χ0′

∂ϕ
+

i

p
√
2 sin θ

∂χ1′

∂ϕ

− r −M
2̺2

χ0′ −
(
− ia sin θ

̺2
√
2
+
cot θ

2p
√
2

)
χ1′ =

m√
2
φ1,

(B.5)
r2 + a2

∆

∂χ1′

∂t
− ia sin θ

p
√
2

∂χ0′

∂t
+
∂χ1′

∂r
− 1

p
√
2

∂χ0′

∂θ
+
a

∆

∂χ1′

∂ϕ
− i

p
√
2 sin θ

∂χ0′

∂ϕ

− cot θ
2p
√
2
χ0′ +

1

p
χ1′ = −

m√
2
φ0.

We can express this system as an evolution equation; we do this for the Weyl anti-neutrino

equation, i.e. for equations (B.2), (B.3) with m = 0. This gives also the evolution form

for the Weyl neutrino equation (equations (B.4), (B.5) with m = 0) and for the complete

Dirac equation with a modification of the mass term which we mention below. We write

the Weyl anti-neutrino equation in the following manner:

(B.6)

(
1 b1(r, θ)

b2(r, θ) 1

)
∂φ

∂t
+

(−1 0
0 1

)
∆

r2 + a2
∂φ

∂r

+

(
0 c1(r, θ)

c2(r, θ) 0

)
∂φ

∂θ
+

(
a

r2+a2 d1(r, θ)

d2(r, θ)
a

r2+a2

)
∂φ

∂ϕ
+ V (r, θ)φ = 0,

where

b1(r, θ) = −
2̺2

r2 + a2
ia sin θ√

2(r + ia cos θ)
, b2(r, θ) =

∆

r2 + a2
ia sin θ√
2(r − ia cos θ)

,

c1(r, θ) = −
2̺2

r2 + a2
1√

2(r + ia cos θ)
, c2(r, θ) = −

∆

r2 + a2
1√

2(r − ia cos θ)
,
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d1(r, θ) = −
2̺2

r2 + a2
i√

2 sin θ(r + ia cos θ)
, d2(r, θ) =

∆

r2 + a2
i√

2 sin θ(r − ia cos θ)
and V (r, θ) is the matrix of all the potential terms in equations (B.2), (B.3) with m = 0.

The matrix in front of the time derivative is invertible since

det

(
1 b1(r, θ)

b2(r, θ) 1

)
= 1− ∆a2 sin2 θ

(r2 + a2)2

is positive (and even uniformly bounded away from zero and bounded) in block I. There-

fore, putting

B(r, θ) =

(
1 b1(r, θ)

b2(r, θ) 1

)−1(−1 0
0 1

)
∆

r2 + a2
,

C(r, θ) =

(
1 b1(r, θ)

b2(r, θ) 1

)−1(
0 c1(r, θ)

c2(r, θ) 0

)
,

D(r, θ) =

(
1 b1(r, θ)

b2(r, θ) 1

)−1( a
r2+a2 d1(r, θ)

d2(r, θ)
a

r2+a2

)
,

P (r, θ) =

(
1 b1(r, θ)

b2(r, θ) 1

)−1
V (r, θ),

we can write equation (B.6) as the evolution equation

(B.7)
∂φ

∂t
+ B(r, θ)

∂φ

∂r
+ C(r, θ)

∂φ

∂θ
+D(r, θ)

∂φ

∂ϕ
+ P (r, θ)φ = 0.

For the full Dirac equation, we obtain the following evolution system:

(B.8)
∂φ

∂t
+B(r, θ)

∂φ

∂r
+ C(r, θ)

∂φ

∂θ
+D(r, θ)

∂φ

∂ϕ
+ P (r, θ)φ

=

(
1 b1(r, θ)

b2(r, θ) 1

)−1
m√

2(r2 + a2)

(
0 2̺2

−∆ 0

)
χ,

(B.9)
∂χ

∂t
+B(r, θ)

∂χ

∂r
+ C(r, θ)

∂χ

∂θ
+D(r, θ)

∂χ

∂ϕ
+ P (r, θ)χ

=

(
1 b1(r, θ)

b2(r, θ) 1

)−1
m√

2(r2 + a2)

(
0 2̺2

−∆ 0

)
φ.
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