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Abstract

We define an integral, the distributional integral of functions of one real variable, that is more
general than the Lebesgue and the Denjoy–Perron–Henstock–Kurzweil integrals, and which al-
lows the integration of functions with distributional values everywhere or nearly everywhere.

Our integral has the property that if f is locally distributionally integrable over the real line
and ψ ∈ D(R) is a test function, then fψ is distributionally integrable, and the formula

〈f, ψ〉 = (dist)

Z ∞
−∞

f(x)ψ(x) dx,

defines a distribution f ∈ D′(R) that has distributional point values almost everywhere and
actually f(x) = f(x) almost everywhere.

The indefinite distributional integral F (x) = (dist)
R x

a
f(t) dt corresponds to a distribution

with point values everywhere and whose distributional derivative has point values almost every-
where equal to f(x).

The distributional integral is more general than the standard integrals, but it still has many
of the useful properties of those standard ones, including integration by parts formulas, sub-
stitution formulas, even for infinite intervals (in the Cesàro sense), mean value theorems, and
convergence theorems. The distributional integral satisfies a version of Hake’s theorem. Unlike
general distributions, locally distributionally integrable functions can be restricted to closed sets
and can be multiplied by power functions with real positive exponents.

Acknowledgements. R. Estrada gratefully acknowledges support from NSF, through grant num-
ber 0968448. J. Vindas gratefully acknowledges support by a Postdoctoral Fellowship of the
Research Foundation–Flanders (FWO, Belgium).

2010 Mathematics Subject Classification: Primary 26A39, 46F10; Secondary 26A24, 26A36.
Key words and phrases: distributions, Łojasiewicz point values, distributional integration, general

integral, non-absolute integrals.
Received 22.12.2010; revised version 25.7.2011.

[4]



1. Introduction

In this article we construct and study the properties of a general integration operator
that can be applied to functions of one variable, f : [a, b] → R = R ∪ {−∞,∞}. We
denote this integral as

(dist)
∫ b

a

f(x) dx, (1.1)

and call it the distributional integral of f. The space of distributionally integrable func-
tions is a vector space and the operator (1.1) is a linear functional in this space.

The construction gives an integral with the following properties:

1. Any Denjoy–Perron–Henstock–Kurzweil integrable function is also distributionally in-
tegrable and the integrals coincide. In particular any Lebesgue integrable function is
distributionally integrable and the integrals coincide. If the Denjoy–Perron–Henstock–
Kurzweil integral can be assigned the value +∞ (or −∞) then the distributional
integral can also be assigned the value +∞ (or −∞).

2. If a distribution f ∈ D′(R) has distributional point values (as defined in Subsection
2.2) at all points of [a, b] and if f(x) = f(x) is the function given by those point values,
then f is distributionally integrable over [a, b].

3. If f : R→ R is a function that is distributionally integrable over any compact interval,
and if ψ ∈ D(R) is a test function, then the formula

〈f(x), ψ(x)〉 = (dist)
∫ ∞
−∞

f(x)ψ(x) dx, (1.2)

where the integral on the right is meant as the distributional integral on any com-
pact interval that contains the support of ψ, defines a distribution f ∈ D′(R). This
distribution f has distributional point values almost everywhere and

f(x) = f(x) a.e. (1.3)

If we start with a distribution f0 ∈ D′(R) that has values everywhere, then construct
the function f given by those values, and then define a distribution f ∈ D′(R) by
formula (1.2), then we recover the initial distribution: f = f0.

We call the integral a general integral because of property 1, which says that it is
more general than the standard integrals. We call it the distributional integral because
of 2 and 3, since these properties say that functions integrable in this sense are related
to corresponding distributions in a very precise fashion.
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6 R. Estrada and J. Vindas

In the same way that locally Lebesgue integrable functions f give rise to associ-
ated “regular” distributions f, f ↔ f, locally distributionally integrable functions have
associated “locally integrable distributions”. Actually Denjoy–Perron–Henstock–Kurzweil
integrable functions also have canonically associated distributions [32]. Observe, however,
that for the purposes of this article is better to say that f and f are associated and employ
different notations for the function and the distribution, instead of the standard practice
of saying that f “is” f. The question of whether a distribution can be associated to a func-
tion or not was considered in the lecture [17]; understanding that distributions, in general,
are regularizations of functions, and usually not uniquely determined [19] allows one to
avoid common misunderstandings in the formulas used in mathematical physics [25].

Our construction of the integral is based upon a characterization of positive measures
in terms of the properties of the φ-transform [51, 24, 11, 37], introduced in Section 3.
Indeed, in Theorems 3.4, 3.5, and 3.7 we give conditions on the pointwise extreme values
of a distribution that guarantee that it is a positive measure, and this allows us to consider
the notions of major and minor distributional pairs and then, in Definition 4.4, define the
distributional integral. In Section 4 we also show that the integral is a linear functional,
that distributionally integrable functions are finite almost everywhere and measurable,
and that the integrals of functions that are equal a.e. coincide.

In Section 5 we study the indefinite integral

F (x) = (dist)
∫ x

a

f(t) dt, (1.4)

of a distributionally integrable function f. We prove that F is a Łojasiewicz function
(Definition 2.2), that is, it has point values everywhere. In general, F will not be con-
tinuous but it will be “continuous in an average sense”. Other integration processes have
discontinuous indefinite integrals [28, Sections 479–482], but they are not even linear op-
erations. Any Łojasiewicz function has an associated unique distribution F, F ↔ F, and
thus we may consider its derivative, f = F′. We show that F′ has distributional values
almost everywhere and that actually F′(x) = f(x) a.e. This is a precise statement of the
idea that f is the derivative of F almost everywhere. Later on, in Section 7, we are able
to show that f = F′ is the same distribution given by (1.2).

In Section 6 we show that our integral is more general than the Lebesgue integral
and than the Denjoy–Perron–Henstock–Kurzweil integral. In fact, more generally, our
integral is capable of recovering a function from its higher order differential quotients, a
problem originally considered by Denjoy in [9]. We also show that Łojasiewicz functions
and distributionally regulated functions [48] are distributionally integrable, as are the
distributional derivatives of Łojasiewicz distributions whose point values exist nearly
everywhere. The relationship between locally distributionally integrable functions and
distributions is studied in Section 7, not only in the space D′(R), but in other spaces
such as E ′(R), S ′(R), or K′(R) as well.

According to Hake’s theorem [27], there are no improper Denjoy–Perron–Henstock–
Kurzweil integrals over finite intervals, since such integrals are actually ordinary Denjoy–
Perron–Henstock–Kurzweil integrals. We prove a corresponding result, namely, if f is
distributionally integrable over [a, x] for any x < b, and if (dist)

∫ x
a
f(t) dt has a distribu-
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tional limit L as x→ b, then f is integrable over [a, b] and the integral is equal to L. We
apply this result to show that if f is distributionally integrable over [a, b] then so are the
functions (x− a)α(b− x)βf(x) for any real numbers α > 0 and β > 0.

We prove a bounded convergence theorem, a monotone convergence theorem, and a
version of Fatou’s lemma in Section 9. We examine changes of variables in Section 10,
showing, in particular, that distributional integrals become Cesàro type integrals when
the change sends a finite interval to an infinite one. The three mean value theorems of
integral calculus are proved in Section 11.

In the final Section 12 we provide several examples that illustrate our ideas. We
give examples of functions that are distributionally integrable but not Denjoy–Perron–
Henstock–Kurzweil integrable, examples of distributionally integrable functions that are
not Łojasiewicz functions, and examples of Łojasiewicz functions which are not indefinite
integrals. We consider the boundary values of the Poisson integral of a distributionally
integrable function. Moreover, we consider the Fourier series of periodic locally distri-
butionally integrable functions and the Fourier transform of tempered locally distribu-
tionally integrable functions. We also explain why the Cauchy representation formula

F (z) =
1

2πi
(dist)

∫ ∞
−∞

f(ξ)
ξ − z

dξ (1.5)

holds for certain functions F analytic in Im z > 0 whose boundary values on R come from
locally integrable distributions (as f(ξ) = ξ−1e−i/ξ, for instance), and why such a for-
mula does not hold, even in the principal value sense, for non-distributionally-integrable
functions (as f(ξ) = ξ−1, for instance).

There have been several studies that involve distributions and integration. Let us
emphasize that our integral is a method to find the integral of functions as are, let us say,
the Riemann or the Denjoy integrals. A completely different question is the integration
of distributions. Indeed, observe, first of all, that the fact that any distribution f ∈ D′(R)
has a primitive F ∈ D′(R), F′ = f, is trivial. If F has values at x = a and at x = b then
we say that f is integrable over [a, b] and write ([7])∫ b

a

f(x) dx = F(b)− F(a). (1.6)

Hence
∫ b
a

f(x) dx is a number. This notion is due to the Polish school [2, 30] and has
several applications, as in the theory of sampling theorems [58]. On the other hand, Silva
and Sikorski, independently, used their definitions of the integral of distributions to write
Fourier transforms and convolutions of distributions as integrals [41, 42]. Moreover, sev-
eral authors [4, 44] have considered the class of continuously integrable distributions,
that is, those distributions with a continuous primitive; observe, however, that continu-
ously integrable distributions may not have values at any point, and thus are not really
functions, in general.

We should point out that one can devise a simple procedure for the construction of
primitives of functions by using the fact that distributions are known to have primitives.
Indeed, start with a function f, associate to it a distribution f, construct the distributional
primitive F, that is, F′ = f, and then construct the function F associated to F. Then F
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would be a primitive of f. Unfortunately, this procedure fails, in general, because there is
no unique way to assign a distribution f to a given function f, as follows from Theorem 7.1.
Interestingly, however, it does work sometimes, as we show, for instance, for Łojasiewicz
functions, because in this case all the associations are unique [30].

2. Preliminaries

In this section we have collected several important ideas that will play a role in our
construction of a general distributional integral.

2.1. Spaces. We use the term smooth function to mean a C∞ function. The Schwartz
spaces of test functions D, E , and S and the corresponding spaces of distributions are
well known [2, 29, 40, 43, 55]. Recall that E consists of all smooth functions, while D
and S stand, respectively, for the spaces of smooth compactly supported and rapidly
decreasing test functions. In general [61], we call a topological vector space A a space of
test functions if D ⊆ A ⊆ E , where the inclusions are continuous and dense, and if d

dx

is a continuous operator on A. A useful space, particularly in the study of distributional
asymptotic expansions [21, 22, 36, 56] is K′(R), the dual of K(R). The test function space
K(R) is given by K(R) =

⋃
α∈RKα(R), the union having topological meaning, where each

Kα(R) consists of those smooth functions φ that satisfy

φ(m)(t) = O(|t|α−m) as |t| → ∞ ∀m ∈ N, (2.1)

and is provided with the topology generated by the family of seminorms

max
{

sup
|t|≤1

|φ(m)(t)|, sup
|t|≥1

|t|m−α|φ(m)(t)|}. (2.2)

The space K′(R) plays a fundamental role in the theory of summability of distributional
evaluations [13].

We shall use the notation f, g, F, etc. to denote distributions, while f, g, F, etc. will
denote functions. If f is a locally Lebesgue integrable function and f is the corresponding
regular distribution, given by 〈f, φ〉 =

∫∞
−∞ f(x)φ(x) dx for φ ∈ D(R), then we shall

use the notation f ↔ f; naturally f is not really a function but an equivalence class of
functions equal almost everywhere.

2.2. Point values. In [30, 31] Łojasiewicz defined the value of a distribution f ∈ D′(R)
at the point x0 as the limit

f(x0) = lim
ε→0

f(x0 + εx), (2.3)

if the limit exists in D′(R), that is, if

lim
ε→0
〈f(x0 + εx), φ(x)〉 = f(x0)

∫ ∞
−∞

φ(x) dx (2.4)

for each φ ∈ D(R). It was shown by Łojasiewicz that the existence of the distributional
point value f(x0) = γ is equivalent to the existence of n ∈ N and a primitive of order
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n of f, that is, F(n) = f, which corresponds, near x0, to a continuous function F that
satisfies

lim
x→x0

n!F (x)
(x− x0)n

= γ. (2.5)

One can also define point values by using the operator

∂x0(f) = ((x− x0)f(x))′, (2.6)

since f1(x0) = γ if and only if f(x0) = γ, where f = ∂x0(f1). Therefore ([7]), f has a
distributional value equal to γ at x = x0 if and only if there exists n ∈ N and a function
fn, continuous at x = x0, with fn(x0) = γ, such that f = ∂nx0

(fn) near x0, where fn ↔ fn.

Suppose that f ∈ S ′(R) has the Łojasiewicz point value f(x0) = γ. Initially, (2.4) is
only supposed to hold for φ ∈ D(R); however, it is shown in [15, 54] that (2.4) will remain
true for all φ ∈ S(R). Actually using the notion of the Cesàro behavior of a distribution
at infinity [13] explained below, (2.4) will hold [15, 46, 51, 52] if f(x) = O(|x|β) (C) as
|x| → ∞, φ(x) = O(|x|α) strongly as |x| → ∞ and α < −1, α+ β < −1. An asymptotic
estimate is strong if it remains valid after differentiation of any order, that is, if (2.1) is
satisfied.

The notion of distributional point value introduced by Łojasiewicz has been shown to
be of fundamental importance in analysis [7, 12, 33, 35, 48, 49, 57, 59, 60]. It seems to
have originated in the idea of generalized differentials studied by Denjoy in [9]. There are
other notions of distributional point values, as that of Campos Ferreira [7, 8], who also
introduced the very useful concept of bounded distributions (see also [62]). A distribution
f is said to be distributionally bounded at x0 if f(x0 + εx) = O(1) as ε→ 0 in D′(R), i.e.,
for each test function φ, 〈f(x0 + εx), φ(x)〉 = O(1). Distributional boundedness admits a
characterization [47] similar to that of Łojasiewicz point values, but this time one replaces
(2.5) by F (x) = O(|x− x0|n).

The distributional limit limx→x0 f(x) exists and equals L if

lim
ε→0
〈f(x0 + εx), φ(x)〉 = L

∫ ∞
−∞

φ(x) dx (2.7)

for all test functions φ with support contained in R \ {0}. If the point value f(x0) exists
distributionally then the distributional limit limx→x0 f(x) exists and equals f(x0). On the
other hand, if limx→x0 f(x) = L distributionally then there exist constants a0, . . . , an such
that f(x) = f0(x)+

∑n
j=0 ajδ

(j)(x−x0), where the distributional point value f0(x0) exists
and equals L. Notice that the distributional limit limx→x0 f(x) can actually be defined
for distributions f ∈ D′(R \ {x0}).

We may also consider lateral limits. We say that the distributional lateral value f(x+
0 )

exists if f(x+
0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x+
0 )
∫ ∞

0

φ(x) dx, φ ∈ D(0,∞). (2.8)

Similar definitions apply to f(x−0 ). Notice that the distributional limit limx→x0 f(x) exists
if and only if the distributional lateral limits f(x−0 ) and f(x+

0 ) exist and coincide.
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2.3. The Cesàro behavior of distributions at infinity. The Cesàro behavior [13, 22]
of a distribution at infinity is studied by using the order symbols O(xα) and o(xα) in
the Cesàro sense. If f ∈ D′(R) and α ∈ R\{−1,−2,−3, . . .}, we say that f(x) = O(xα) as
x→∞ in the Cesàro sense, and write

f(x) = O(xα) (C) as x→∞, (2.9)

if there exists N ∈ N such that every primitive F of order N , i.e., F(N) = f, corresponds
for large arguments to a locally integrable function, F ↔ F , that satisfies the ordinary
order relation

F (x) = p(x) +O(xα+N ) as x→∞ (2.10)

for a suitable polynomial p of degree at most N − 1. Note that if α > −1, then the
polynomial p is irrelevant. If we want to specify the value N , we write (C, N) instead of
just (C). A similar definition applies to the little o symbol. The definitions when x→ −∞
are clear.

The elements of S ′(R) can be characterized by their Cesàro behavior at ±∞; in fact,
f ∈ S ′(R) if and only if there exists α ∈ R such that f(x) = O(xα) (C) as x → ∞, and
f(x) = O(|x|α) (C) as x→ −∞. On the other hand, this is true for all α ∈ R if and only
if f ∈ K′(R).

Using these ideas, one can define the limit of a distribution at ∞ in the Cesàro sense.
We say that f ∈ D′(R) has a limit L at infinity in the Cesàro sense, and write

lim
x→∞

f(x) = L (C), (2.11)

if f(x) = L+ o(1) (C) as x→∞.
The Cesàro behavior of a distribution f at infinity is related to the parametric behavior

of f(λx) as λ→∞. In fact, one can show [22, 45, 47] that if α > −1, then f(x) = O(xα) (C)
as x→∞ and f(x) = O(|x|α) (C) as x→ −∞ if and only if

f(λx) = O(λα) as λ→∞, (2.12)

where the last relation holds weakly in D′(R), i.e., for all φ ∈ D(R) fixed, 〈f(λx), φ(x)〉 =
O(λα), λ→∞. A distribution f belongs to the space K′(R) if and only if it satisfies the
moment asymptotic expansion [21, 22]

f(λx) ∼
∞∑
n=0

(−1)nµnδ(n)(x)
n!λn+1

as λ→∞, (2.13)

where the µn = 〈f(x), xn〉 are the moments of f.

2.4. Evaluations. Let f ∈ D′(R) with support bounded on the left. If φ ∈ E(R) then the
evaluation 〈f(x), φ(x)〉 will not be defined, in general. We say that the evaluation exists
in the Cesàro sense and equals L, written as

〈f(x), φ(x)〉 = L (C), (2.14)

if g(x) = L + o(1) (C) as x → ∞, where g is the primitive of fφ with support bounded
on the left. A similar definition applies if supp f is bounded on the right. Observe that if
f corresponds to a locally integrable function f with supp f ⊂ [a,∞) then (2.14) means



A general integral 11

that ∫ ∞
a

f(x)φ(x) dx = L (C). (2.15)

Naturally, this will hold for any integration method we use. If f(x) =
∑∞
n=0 anδ(x − n)

then (2.14) tells us that
∞∑
n=0

anφ(n) = L (C). (2.16)

In the general case when the support of f extends to both −∞ and +∞, there are
various different but related notions of evaluations in the Cesàro sense (or in any other
summability sense, in fact). If f admits a representation of the form f = f1+f2, with supp f1
bounded on the left and supp f2 bounded on the right, such that 〈fj(x), φ(x)〉 = Lj (C)
exist, then we say that the (C) evaluation 〈f(x), φ(x)〉 (C) exists and equals L = L1 +L2.

This is clearly independent of the decomposition. The notation (2.14) is used in this
situation as well.

It happens many times that 〈f(x), φ(x)〉 (C) does not exist, but the symmetric limit,
limx→∞{g(x)− g(−x)} = L, where g is any primitive of fφ, exists in the (C) sense. Then
we say that the evaluation 〈f(x), φ(x)〉 exists in the principal value Cesàro sense [22, 53],
and write

p.v.〈f(x), φ(x)〉 = L (C). (2.17)

Observe that p.v.
∑∞
n=−∞ anφ(n) = L (C) if and only if

∑N
−N anφ(n)→ L (C) asN →∞

while p.v.
∫∞
−∞ f(x)φ(x) dx = L (C) if and only if

∫ A
−A f(x)φ(x) dx→ L (C) as A→∞.

A very useful intermediate notion is the following [48, 49, 53]. If there exists k such
that

lim
x→∞

{g(ax)− g(−x)} = L (C, k) ∀a > 0, (2.18)

we say that the distributional evaluation exists in the e.v. Cesàro sense and write

e.v.〈f(x), φ(x)〉 = L (C, k), (2.19)

or just e.v.〈f(x), φ(x)〉 = L (C) if there is no need to emphasize the value of k.

2.5. Łojasiewicz distributions. There is a class of distributions that correspond to
ordinary functions, the class of Łojasiewicz distributions. In general, Łojasiewicz distri-
butions are not regular distributions, that is, they correspond to ordinary functions that
are not locally Lebesgue integrable functions.

The simplest class of distributions that correspond to functions are those that come
from continuous functions. If f ↔ f and f is continuous then it is an ordinary function:
we can always say what f(x0) is for any x0. The function f is not just defined almost
everywhere but it is actually defined everywhere.

Definition 2.1. A distribution f is a Łojasiewicz distribution if the distributional point
value f(x0) exists for every x0 ∈ R.
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Definition 2.2. A function f defined in R is called a Łojasiewicz function if there exists
a Łojasiewicz distribution f such that

f(x) = f(x) ∀x ∈ R. (2.20)

The correspondence f ↔ f is clearly and uniquely defined in the case of Łojasiewicz
functions and distributions [30]. The Łojasiewicz functions can be considered as a dis-
tributional generalization of continuous functions. They are defined at all points, and
furthermore the value at each given point is not arbitrary but the (distributional) limit
of the function as one approaches the given point. The Łojasiewicz functions and distri-
butions were introduced in [30].

If f is a Łojasiewicz distribution, and F is a primitive, F′ = f, then F is also a Ło-
jasiewicz distribution. If f is a Łojasiewicz distribution and ψ is a smooth function, then
ψf is a Łojasiewicz distribution and

(ψf)(x) = ψ(x)f(x). (2.21)

If f is a Łojasiewicz function, f ↔ f, then we can define its definite integral [2, 30] as∫ b

a

f(x) dx = F(b)− F(a), (2.22)

where F′ = f. The evaluation of f on a test function φ, 〈f, φ〉, can actually be given as an
integral, namely,

〈f, φ〉 =
∫ ∞
−∞

f(x)φ(x) dx =
∫ b

a

f(x)φ(x) dx, φ ∈ D(R), (2.23)

where suppφ ⊂ [a, b]. We will give a rather constructive procedure below (Sections 4
and 6) to calculate (2.22).

If f0 is a Łojasiewicz function, f0 ↔ f0, defined for x < a, and f1 is a Łojasiewicz
function, f1 ↔ f1, defined for x > a, and if the distributional lateral limits f0(a− 0) and
f1(a + 0) exist and coincide, then there is a Łojasiewicz function f whose restriction to
(−∞, a) is f0 and whose restriction to (a,∞) is f1.

A typical example of a Łojasiewicz function is

sα,β(x) =

{
|x|α sin |x|−β , x 6= 0,
0, x = 0,

(2.24)

for α ∈ C and β > 0. If H is the Heaviside function, then the functions H(±x)sα,β(x) and
their linear combinations are also Łojasiewicz functions. It is not hard to see that this
implies that derivatives of arbitrary order of sα,β , where sα,β ↔ sα,β , are also Łojasiewicz
distributions. These are rapidly oscillating functions. However, not all fast oscillating
functions are Łojasiewicz functions. Curiously, the regular distribution sin(ln |x|) is not
a Łojasiewicz distribution since the distributional value at x = 0 does not exist in the
Łojasiewicz sense, even though it exists and equals 0 in the Campos Ferreira sense [7].

2.6. Distributionally regulated functions. Another case when a distribution corre-
sponds to a function is the case of regulated distributions, introduced and studied in [48].
They are generalizations of the ordinary regulated functions [10], which are functions
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whose lateral limits exist at all points, although they may be different. They are related
to the recently introduced “thick” points [20].

Definition 2.3. A distribution f is called a regulated distribution if the distributional
lateral limits

f(x+
0 ) and f(x−0 ) (2.25)

exist for all x0 ∈ R, and there are no delta functions at any point.

The statement that “there are no delta functions” at any point explicitly means that
for each φ ∈ D(R) and any x0 ∈ R,

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x−0 )
∫ 0

−∞
φ(x) dx+ f(x+

0 )
∫ ∞

0

φ(x) dx. (2.26)

The relation (2.26) is known as (pointwise) distributional jump behavior and has inter-
esting applications in the theory of Fourier series [23, 50, 53].

If f(x+
0 ) = f(x−0 ) then f(x0) exists, since these distributions do not have delta func-

tions, and therefore we can define the function

f(x0) = f(x0) (2.27)

for these x0. Then f is called a distributionally regulated function. The function f is
defined in the set R \S, where S is the set of points x0 where f(x+

0 ) 6= f(x−0 ). The set S

has measure zero since in fact it is countable at the most [48]. One can actually define

f(x0) =
f(x+

0 ) + f(x−0 )
2

, (2.28)

and this is defined everywhere.
The basic properties of the distributionally regulated functions and the corresponding

regulated distributions are the following. If f is a regulated distribution, and F is a prim-
itive, F′ = f, then F is a Łojasiewicz distribution. If f is a regulated distribution and ψ is
a smooth function, then ψf is a regulated distribution, too. If f is a regulated function,
f ↔ f, then we can define its definite integral as∫ b

a

f(x) dx = F(b)− F(a), (2.29)

where F′ = f. Then
〈f, φ〉 =

∫ ∞
−∞

f(x)φ(x) dx, φ ∈ D(R). (2.30)

As in the case of Łojasiewicz functions, the integral that we will define in Section 4
coincides with (2.29) for distributionally regulated functions (Theorem 6.6).

2.7. Romanovski’s lemma. We shall apply the following useful result [38], Romanov-
ski’s lemma, in some of our proofs. See [26] for many interesting applications of this result,
and [24] for generalizations to several variables.

Theorem 2.4 (Romanovski’s lemma). Let F be a family of open intervals in (a, b) with
the following four properties:

I. If (α, β) ∈ F and (β, γ) ∈ F, then (α, γ) ∈ F.
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II. If (α, β) ∈ F and (γ, δ) ⊂ (α, β) then (γ, δ) ∈ F.

III. If (α, β) ∈ F for all [α, β] ⊂ (c, d) then (c, d) ∈ F.

IV. If all the intervals contiguous to a perfect closed set K ⊂ [a, b] belong to F then
there exists an interval I ∈ F with I ∩K 6= ∅.

Then (a, b) ∈ F.

Observe that if we take K = [a, b] in IV we obtain F 6= {∅} , but it may be easier to
show this separately.

2.8. Measures. We shall use the following nomenclature. A (Radon) measure would
mean a positive functional on the space of compactly supported continuous functions,
which would be denoted by integral notation such as dµ, or by distributional notation,
f = fµ, so that

〈f, φ〉 =
∫

R
φ(x) dµ(x), (2.31)

and 〈f, φ〉 ≥ 0 if φ ≥ 0. A signed measure is a real bounded functional on the space of
compactly supported continuous functions, denoted as dν, say, or as g = gν . Observe that
any signed measure can be written as ν = ν+ − ν−, where ν± are measures concentrated
on disjoint sets. We shall also use the Lebesgue decomposition, according to which any
signed measure ν can be written as ν = νabs + νsig, where νabs is absolutely continuous
with respect to the Lebesgue measure, so that it corresponds to a regular distribution,
while νsig is a signed measure concentrated on a set of Lebesgue measure zero. We shall
also need to consider the measures (νsig)± = (ν±)sig, the positive and negative singular
parts of ν.

3. The φ-transform

A very important tool in our definition of a general distributional integral is the φ-trans-
form. The φ-transform [11, 37, 48, 51] in one variable is defined as follows. Let φ ∈ D(R)
be a fixed normalized test function, that is, one that satisfies∫ ∞

−∞
φ(x) dx = 1. (3.1)

If f ∈ D′(R) we introduce the function of two variables F = Fφ {f} by the formula

F (x, t) = 〈f(x+ ty), φ(y)〉, (3.2)

where (x, t) ∈ H, the half-plane R × (0,∞). Naturally the evaluation in (3.2) is with
respect to the variable y. We call F the φ-transform of f. Whenever we consider φ-trans-
forms we assume that φ satisfies (3.1).

The φ-transform converges to the distribution as t → 0+ ([51, 52]): If φ ∈ D(R) and
f ∈ D′(R) then

lim
t→0+

F (x, t) = f(x) (3.3)
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distributionally in the space D′(R), that is, if ρ ∈ D(R) then

lim
t→0+

〈F (x, t), ρ(x)〉 = 〈f(x), ρ(x)〉. (3.4)

The definition of the φ-transform tells us that if the distributional point value [30]
f(x0) exists and equals γ then F (x0, t) → γ as t → 0+, but actually F (x, t) → γ as
(x, t)→ (x0, 0) in an angular or non-tangential fashion, that is, if |x−x0| ≤Mt for some
M > 0 (just replace φ(y) by the compact set {φ(y + τ) : |τ | ≤M}).

The angular behavior of the φ-transform at a point (x0, 0) gives us important infor-
mation [11, 37, 51] about the nature of the distribution at x = x0, even if the angular
limit does not exist.

If x0 ∈ R we shall denote by Cx0,θ the cone in H starting at x0 and of angle θ,

Cx0,θ = {(x, t) ∈ H : |x− x0| ≤ (tan θ)t}. (3.5)

If f ∈ D′(R) and x0 ∈ R then we consider the upper and lower angular values of its
φ-transform,

f+φ,θ(x0) = lim sup
(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t), (3.6)

f−φ,θ(x0) = lim inf
(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t). (3.7)

The quantities f±φ,θ(x0) are well defined at all points x0, but, of course, they could be
infinite. For θ = 0, we obtain the upper and lower radial limits of the φ-transform.

The following simple result would be useful.

Lemma 3.1. Let f ∈ D′(R) and x0 ∈ R. If

f+φ,0(x0) = f−φ,0(x0) = γ (3.8)

for all normalized positive test functions φ ∈ D(R), then the distributional point value
f(x0) exists and equals γ.

Proof. Indeed, (3.8) implies that limε→0〈f(x0 + εx), φ(x)〉 exists and equals γ for any
positive normalized test function. If we multiply by a constant, we see that the limit
exists and equals γ

∫∞
−∞ φ(x) dx for any positive test function. The result now follows

because any test function is the difference of two positive test functions. Indeed, given an
arbitrary test function φ ∈ D(R), let M = maxx∈R |φ(x)|. Find a positive ϕ ∈ D(R) so
that ϕ(x) = 1 for x ∈ suppφ. Then φ1 = Mϕ and φ2 = φ+φ1 are positive test functions
with φ = φ2 − φ1.

We shall need several characterizations of positive measures in terms of the extreme
values f±φ,θ(x) of a distribution f. The following result was proved in [51].

Theorem 3.2. Let f ∈ D′(R). Let U be an open set. Then f is a measure in U if and only
if its φ-transform F = Fφ{f} with respect to a given normalized, positive test function
φ ∈ D(R) satisfies

f−φ,θ(x) ≥ 0 ∀x ∈ U, (3.9)
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for all angles θ. Moreover, if the support of φ is contained in [−R,R] and if (3.9) holds
for a single value of θ > arctanR, then f is a measure in U.

We should also point out that if there exists a constantM > 0 such that f−φ,θ(x) ≥ −M
for all x ∈ U, where θ > arctanR, then f is a signed measure in U whose singular part is
positive [51]. It is easy to see that these results are not true if we use radial limits instead
of angular ones. An example is provided by taking f(x) = −δ′(x) and φ ∈ D(R) with
φ′(0) > 0. Actually this example shows that if (3.9) holds for a value of θ < arctanR,
then f might not be a measure.

Using Romanovski’s lemma we were able to prove the ensuing stronger result in [24].

Theorem 3.3. Let f ∈ D′(R). Let U be an open set. Suppose its φ-transform F = Fφ{f}
with respect to a given normalized, positive test function φ ∈ D(R) with suppφ ⊂ [−R,R]
satisfies

f+φ,0(x) ≥ 0 almost everywhere in U, (3.10)

while for each x ∈ U there is a constant Mx > 0 such that

f−φ,θ(x) ≥ −Mx, (3.11)

where θ > arctanR. Then f is a measure in U.

Furthermore, one needs the inequality (3.11) to be true at all points of U, as the
example f(x) = −δ(x − a), where a ∈ U, shows. However, in our construction of the
general distributional integral we shall need to consider the case when f−φ,θ(x) = −∞ for
x ∈ E where E is a small set in the sense that |E| ≤ ℵ0. We have a corresponding result
in this case if we ask that any primitive of f be a Łojasiewicz distribution.

Theorem 3.4. Let f ∈ D′(R). Suppose that f = F′, where F is a Łojasiewicz distribu-
tion. Let U be an open set. Suppose the φ-transform F = Fφ {f} with respect to a given
normalized, positive test function φ ∈ D(R) with suppφ ⊂ [−R,R] satisfies

f+φ,0(x) ≥ 0 almost everywhere in U, (3.12)

while there exist a countable set E such that for each x ∈ U \E there is a constantMx > 0
such that

f−φ,θ(x) ≥ −Mx, x ∈ U \ E, (3.13)

where θ > arctanR. Then f is a measure in U.

Proof. Suppose that U is an open interval. Let U be the family of open subintervals V
of U such that the restriction f|V is a measure. We shall use Theorem 2.4 to prove that
U ∈ U. Let us first show that U 6= {∅}. Suppose that E ⊆ {xn : 1 ≤ n <∞}. Let t0 ≥ 1
be fixed and put

gn(x) = min{F (y, t) : |y − x| ≤ (tan θ)t, n−1 ≤ t ≤ t0}. (3.14)

The functions gn are continuous and, because of (3.13), for each x ∈ U \ E there exists
a constant M ′x > 0 such that gn(x) ≥ −M ′x for all n. Hence if

Wk = {x ∈ U : gn(x) ≥ −k ∀n ∈ N} ∪ {x1, . . . , xk}, (3.15)
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then U =
⋃∞
k=1Wk. If we now employ the Baire theorem, we obtain the existence of

k ∈ N such that Wk has non-empty interior, and thus the interior of the set

{x ∈ U : gn(x) ≥ −k ∀n ∈ N} (3.16)

is also non-empty. Hence there is a non-empty open interval V ⊂ U and a constant
M > 0 such that F (x, t) ≥ −M for all (y, t) ∈ Cx,θ with x ∈ V and 0 < t ≤ t0, and
hence f−φ,θ(x) ≥ −M for x ∈ V. Theorem 3.3 then implies that f|V is a measure. Therefore
V ∈ U, and so U 6= {∅} .

Condition I of Theorem 2.4 follows from the fact that if f|(α,β) and f|(β,γ) are measures,
then F|(α,β) and F|(β,γ) are distributions corresponding to increasing continuous functions,
and since F is a Łojasiewicz distribution it follows that F, F ↔ F, must also be continuous
at x = β, so that F is a continuous increasing function in (α, γ) and consequently f|(α,γ)
is a measure.

It is clear that II and III are satisfied.
In order to prove IV, let K ⊂ U be a perfect closed set such that all the intervals

contiguous to K belong to U. Then by the Baire theorem again, there exists an open
interval V ⊂ U and a constant M > 0 such that f−φ,θ(x) ≥ −M for all x ∈ K ∩ V 6= ∅.
But f is a measure in V \K, and thus f−φ,θ(x) ≥ 0 for x ∈ V \K. Theorem 3.3 allows us
to conclude that f|V is a measure, and thus V ∈ U; this proves IV.

Observe that if the hypotheses of Theorem 3.4 are satisfied then f is a measure in U,
and thus f−φ,θ(x) ≥ 0 at all points of U and for all angles, not just radially almost every-
where, and similarly the set E where f−φ,θ(x) = −∞ is actually empty.

We shall also employ characterizations merely in terms of radial limits of the φ-trans-
form. The following is such a result for the lower radial limits of a harmonic function.

Theorem 3.5. Let H(x, y) be a harmonic function defined in the upper half-plane H.
Suppose that lim(x,y)→∞H(x, y) = 0. Also suppose that the distributional limit of H(x, y)
as y → 0+ exists and equals f ∈ E ′(R); suppose that f = F′, where F is a Łojasiewicz
distribution. If

lim sup
y→0+

H(x, y) ≥ 0 almost everywhere in R, (3.17)

and there exists a countable set E and constants Mx <∞ for x ∈ R \ E such that

lim inf
y→0+

H(x, y) ≥ −Mx, x ∈ R \ E, (3.18)

then f is a measure and H(x, y) ≥ 0 for all (x, y) ∈ H.

Proof. We shall employ Romanovski’s lemma (Theorem 2.4) to prove that f is a measure
in R. Let (a, b) be an open interval with supp f ⊂ (a, b). Let U be the family of open
subintervals of (a, b) where the restriction of f is a measure; clearly U contains non-
empty intervals. Observe that if (c, d) ∈ U, then F is an increasing continuous function
in [c, d], where F ↔ F; condition I follows from this observation. Conditions II and III
are easy. For condition IV, suppose that K is a perfect compact subset of (a, b) such
that (a, b) \K =

⋃∞
n=1(an, bn), with (an, bn) ∈ U. Let m = minx∈R H(x, 1). By the Baire

theorem, there exists a constant M, with M > 0 and M > −m, and an open interval I
such that I ∩K 6= ∅ and H(x, y) ≥ −M for x ∈ I ∩K and for 0 < y ≤ 1. If (an, bn) ⊂ I,
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then the harmonic function H is bounded below by −M in the boundary of the rectangle
(an, bn)×(0, 1) ⊂ H, except perhaps at the corners an and bn, but since f is the derivative
of a Łojasiewicz distribution we obtain the bound H(x, y) = o(((x − x0)2 + y2)−1/2) as
(x, y) → x0, for any x0 ∈ R, and this allows us to conclude that H is bounded below
by −M in the rectangle [an, bn] × (0, 1]. Actually if H were not bounded below in the
rectangle then at one of the corners, x0 = an or x0 = bn, H would grow at least as fast
as ((x − x0)2 + y2)−1, as follows from the results of [15, Section 4] when applied to the
harmonic function H̃(ξ) = H(

√
ξ − x0). Therefore H(x, y) ≥ −M for all x ∈ I and all

0 < y ≤ 1, and we conclude that I ∈ U.

It is convenient to define some classes of test functions.

Definition 3.6. The class T0 consists of all positive normalized functions φ ∈ E(R) that
satisfy the following condition:

∃α < −1 such that φ(x) = O(|x|α) strongly as |x| → ∞. (3.19)

The class T1 is the subclass of T0 consisting of those functions that also satisfy

xφ′(x) ≤ 0 for all x ∈ R. (3.20)

Observe that the φ-transform is well defined when f ∈ E ′(R) and φ ∈ T0. Since the
Poisson kernel ϕ(x) = π−1(1+x2)−1 belongs to T1 and the φ-transform H = Fϕ {f} with
respect to this function ϕ is the harmonic function H(x, y) defined for (x, y) ∈ H, that
vanishes at infinity, and that satisfies H(x, 0+) = f(x) distributionally, we arrive at the
following result, corollary of Theorem 3.5.

Theorem 3.7. Let f ∈ E ′(R). Suppose that f = F′, where F is a Łojasiewicz distribution.
Suppose that the φ-transform F = Fφ{f} with respect to any φ ∈ T1 satisfies

f+φ,0(x) ≥ 0 almost everywhere in R, (3.21)

f−φ,0(x) ≥ −Mx > −∞, x ∈ R \ E, (3.22)

where E is a countable set. Then f is a measure in R.

4. The definite integral

Let f be a function defined in [a, b] with values in R = R ∪ {−∞,∞}. We now proceed
to define its integral. We start with the concepts of major and minor pairs.

Definition 4.1. A pair (u,U) is called a major distributional pair for the function f if:

(1) u ∈ E ′[a, b], U ∈ D′(R), and
U′ = u. (4.1)

(2) U is a Łojasiewicz distribution with U(a) = 0.
(3) There exists a set E with |E| ≤ ℵ0 and a set Z of null Lebesgue measure,m(Z)=0,

such that for all x ∈ [a, b] \ Z and all φ ∈ T0 we have

(u)−φ,0(x) ≥ f(x), (4.2)
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while for x ∈ [a, b] \ E and all φ ∈ T1,

(u)−φ,0(x) > −∞. (4.3)

The definition of a minor distributional pair is similar.

Definition 4.2. A pair (v,V) is called a minor distributional pair for the function f if:

(1) v ∈ E ′[a, b], V ∈ D′(R), and
V′ = v. (4.4)

(2) V is a Łojasiewicz distribution with V(a) = 0.
(3) There exists a set E with |E| ≤ ℵ0 and a set Z of null Lebesgue measure,m(Z)=0,

such that for all x ∈ [a, b] \ Z and all φ ∈ T0 we have

(v)+φ,0(x) ≤ f(x), (4.5)

while for x ∈ [a, b] \ E and all φ ∈ T1,

(v)+φ,0(x) <∞. (4.6)

Naturally, we may always assume in Definitions 4.1 and 4.2 that the countable set
satisfies E ⊂ Z.

Employing the results of Theorem 3.7, we immediately obtain the following useful
result.

Lemma 4.3. If (u,U) is a major distributional pair and (v,V) is a minor distributional
pair for f, then u−v is a positive measure and U−V is a continuous increasing function,
where U ↔ U and V ↔ V.

If (u,U) is a major distributional pair and (v,V) is a minor distributional pair for f,
then U and V are constant in the interval [b,∞), and V(b) ≤ U(b).

Definition 4.4. A function f : [a, b] → R is called distributionally integrable if it has
both major and minor distributional pairs and if

sup
(v,V) minor pair

V(b) = inf
(u,U) major pair

U(b). (4.7)

When this is the case, this common value is the integral of f over [a, b] and is denoted as

(dist)
∫ b

a

f(x) dx, (4.8)

or just as
∫ b
a
f(x) dx if there is no risk of confusion.

We shall show in Section 6 that any Lebesgue integrable function and, more generally,
any Denjoy–Perron–Henstock–Kurzweil integrable function is distributionally integrable,
and the integrals are the same. Therefore the symbol

∫ b
a
f(x) dx will have only one possible

meaning if the function f is Denjoy–Perron–Henstock–Kurzweil integrable or Lebesgue
integrable. In some cases we shall, however, use the notation (dist)

∫ b
a
f(x) dx to emphasize

that we are dealing with the integral defined in this article. Occasionally, we shall also
use the notation (DPHK)

∫ b
a
f(x) dx for a Denjoy–Perron–Henstock–Kurzweil integral

and (Leb)
∫ b
a
f(x) dx for a Lebesgue integral.
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Observe that the function f is distributionally integrable over [a, b] if and only if for
each ε > 0 there are minor and major pairs, (v,V) and (u,U), such that

U(b)− V(b) < ε. (4.9)

We shall first show that the distributional integral has the standard properties of an
integral.

Proposition 4.5. If f is distributionally integrable over [a, b] then it is distributionally
integrable over any subinterval [c, d] ⊂ [a, b].

Proof. Let ε > 0, and choose minor and major pairs for f over [a, b], (v,V) and (u,U),
such that U(b)− V(b) < ε. Let U ↔ U and V ↔ V. Let now Ũ and Ṽ be the Łojasiewicz
distributions corresponding to the Łojasiewicz functions Ũ and Ṽ given by

Ũ(x) =


0, x < c,
U(x)− U(c), c ≤ x ≤ d,
U(d)− U(c), x > d,

(4.10)

Ṽ (x) =


0, x < c,
V (x)− V (c), c ≤ x ≤ d,
V (d)− V (c), x > d.

(4.11)

Then (Ṽ′, Ṽ) and (Ũ′, Ũ) are minor and major pairs for f over [c, d], and Ũ(d)−Ṽ(d) < ε.

We now consider the integrals of functions that are equal almost everywhere. As is
the case with other integrals, the integral can actually be defined as a functional on the
space of equivalence classes of functions equal a.e., and each class has elements that are
finite everywhere.

Proposition 4.6. If f is distributionally integrable over [a, b] then it is finite almost
everywhere.

Proof. Let A be the set of points where |f(x)| = ∞. Let (v,V) and (u,U) be minor
and major pairs for f over [a, b], and let E be the denumerable set outside of which
(u)−φ,0(x) > −∞ and (v)+φ,0(x) < ∞ for all φ ∈ T1. Consider the increasing continuous
function ρ(x) = U(x) − V(x). Using (4.3) and (4.6) we deduce that if x ∈ A \ E then
ρ′(x) =∞; but the set of points where the derivative of an increasing continuous function
is infinite has measure 0.

The ensuing result allows us to consider distributional integration of functions that
are defined almost everywhere.

Proposition 4.7. If f is distributionally integrable over [a, b] and g(x) = f(x) a.e. then
g is also distributionally integrable over [a, b] and∫ b

a

g(x) dx =
∫ b

a

f(x) dx. (4.12)

Proof. Indeed, any major or minor pair for f is also a major or a minor pair for g, and
conversely.
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The integral has the expected linear properties.

Proposition 4.8. If f1 and f2 are distributionally integrable over [a, b] then so is f1 +f2
and ∫ b

a

(f1(x) + f2(x)) dx =
∫ b

a

f1(x) dx+
∫ b

a

f2(x) dx. (4.13)

Proof. From Propositions 4.6 and 4.7 it follows that we may assume that both f1 and f2
are finite everywhere, so that their sum is also defined everywhere. Then we just observe
that the sum of major pairs for f1 and f2 is a major pair for f1 + f2, and similarly for
the sum of minor pairs.

Proposition 4.9. If f is distributionally integrable over [a, b] then so is kf for any
constant k and ∫ b

a

kf(x) dx = k

∫ b

a

f(x) dx. (4.14)

Proof. This is a consequence of the following observations. If k > 0 then multiplying a
major pair for f with k gives a major pair for kf, and similarly for minor pairs. If k < 0
then multiplication with k transforms major pairs for f into minor pairs for kf and minor
pairs for f into major pairs for kf.

It follows from the previous results that the set of distributionally integrable functions
over [a, b] is a linear space and that the integral is a linear functional.

We also have the following easy result.

Proposition 4.10. Suppose a < c < b. A function f defined in [a, b] is distributionally
integrable there if and only if it is distributionally integrable over [a, c] and [c, b], and
when this is the case, ∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx. (4.15)

If A ⊂ [a, b] then we say that f is distributionally integrable over A if χAf, where χA
is the characteristic function of A, is distributionally integrable, and we use the notation

(dist)
∫
A

f(x) dx. (4.16)

As with any non-absolute integral, f will not be integrable over all measurable subsets
of [a, b], but if A has measure 0 then the distributional integral exists and equals 0.
Also, according to Proposition 4.5, if f is distributionally integrable over [a, b] then it is
integrable over any of its subintervals.

5. The indefinite integral

We shall now study the indefinite integral function

F (x) = (dist)
∫ x

a

f(t) dt (5.1)
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of a function f that is distributionally integrable over [a, b]. We are interested in the case
when a ≤ x ≤ b, but sometimes it would be convenient to extend the domain of F by
putting F (x) = 0 for x < a and F (x) = F (b) for x > b.

The indefinite integral of a Lebesgue integrable function is absolutely continuous,
while that of a Denjoy–Perron–Henstock–Kurzweil integrable function is continuous. We
shall show that (5.1) defines a Łojasiewicz function, with associated Łojasiewicz distri-
bution F, F ↔ F. We shall also show that the derivative f = F′ is a distribution that has
Łojasiewicz distributional point values almost everywhere and actually f(x) = f(x) a.e.

We start with some useful results.

Lemma 5.1. Let (v,V) and (u,U) be minor and major pairs for a distributionally inte-
grable function f over [a, b]. Let U ↔ U and V ↔ V. Then U − F and F − V are both
continuous increasing functions that vanish at x = a.

Proof. Observe that if a ≤ c < d ≤ b then (4.10) gives a major pair (Ũ′, Ũ) for f over
[c, d] with Ũ(t) = U(t)− U(c) for c ≤ x ≤ d. Thus

F (d)− F (c) =
∫ d

c

f(x) dx ≤ Ũ(d) = U(d)− U(c),

and so
U(c)− F (c) ≤ U(d)− F (d). (5.2)

Similarly one shows that F − V is increasing.
Observe now that U − V = (U − F ) + (F − V ) is a continuous increasing function

(Lemma 4.3) written as the sum of two increasing functions: we conclude that both U−F
and F − V are continuous.

Using the lemma we see that F = (F − V ) + V is the sum of a continuous function
and a Łojasiewicz function and thus it is a Łojasiewicz function.

Theorem 5.2. Let f be a distributionally integrable function over [a, b], with indefinite
integral F. Then F is a Łojasiewicz function.

Observe that one may consider f as an equivalence class of functions defined almost
everywhere, and thus the value f(x) for a particular x may or may not have a useful
meaning. However, F is a Łojasiewicz function, and this implies that the value F (x) has
a clear interpretation for all numbers x.

Since F is a Łojasiewicz function, it has an associated Łojasiewicz distribution F.

The distributional derivative f = F′ is a well defined distribution with supp f ⊂ [a, b]. The
relationship between f and f is as follows.

Theorem 5.3. Let f be a distributionally integrable function over [a, b], with indefinite
integral F, let F ↔ F, and let f = F′. Then f has point values almost everywhere and

f(x) = f(x) a.e. (5.3)

Proof. Let ε, η > 0. Let (u,U) be a major pair for f over [a, b] with

U(b)− F (b) < εη, (5.4)

where U ↔ U. Let ρ = U − F, an increasing continuous function.
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Consider the set A = {x ∈ [a, b] : ρ′(x) ≥ ε}. Since

εm(A) ≤
∫ b

a

ρ′(x) dx ≤ ρ(b) < εη,

it follows that m(A) < η, where m(A) is the Lebesgue measure.
Notice now that if x ∈ [a, b] \ (A ∪ Z), where Z is the null set outside of which

(u)−φ,0(x) ≥ f(x) > −∞ for all φ ∈ T0, then

(f)−φ,0(x) = (u)−φ,0(x)− ρ
′(x) > f(x)− ε.

Hence
m({x ∈ [a, b] : (f)−φ,0(x) ≤ f(x)− ε ∀φ ∈ T0}) < η. (5.5)

But η is arbitrary, and thus the set where (f)−φ,0(x) ≤ f(x)− ε has measure 0, and since
ε is also arbitrary we see that (f)−φ,0(x) ≥ f(x) a.e.

Using a similar analysis involving minor pairs one likewise deduces that (f)+φ,0(x) ≤
f(x) a.e. If we now use Lemma 3.1 then (5.3) follows.

The following consequence of the preceding theorem is worth mentioning.

Corollary 5.4. If f is distributionally integrable over [a, b] then it is measurable.

Proof. Let φ ∈ D(R) be a normalized test function. Then the sequence of continuous
functions

fn(x) = 〈f(x+ y/n), φ(y)〉 (5.6)

converges to f almost everywhere, namely where (5.3) holds, and the measurability of f
is thus obtained.

If we now use Theorem 5.3, combined with Lemma 5.1, we obtain more information
on the nature of major and minor pairs.

Proposition 5.5. Let (v,V) and (u,U) be minor and major pairs for a distributionally
integrable function f over [a, b]. Then the distributional point values v(t) and u(t) exist
almost everywhere in [a, b]. If ṽ is a function given by the point values of v, that is,
ṽ(t) = v(t) when the value exists, extended in any way to a function over [a, b], then ṽ is
distributionally integrable over [a, b]. Similarly the function ũ(t) = u(t), when the value
exists, is distributionally integrable over [a, b]. Furthermore,

V(d)− V(c) ≤
∫ d

c

ṽ(x) dx ≤
∫ d

c

f(x) dx, (5.7)∫ d

c

f(x) dx ≤
∫ d

c

ũ(x) dx ≤ U(d)− U(c). (5.8)

Proof. Let U ↔ U, V ↔ V, and F ↔ F. Since F −V is an increasing continuous function,
it follows that (F − V)′ = f − v is a positive measure, and thus it has distributional val-
ues almost everywhere, and since f has a.e. distributional values (equal to f), it follows
that likewise v has distributional values a.e. The function ṽ is distributionally integrable
because ṽ(t) = f(t)− h(t) a.e., where h is the Lebesgue integrable function which corre-
sponds to the absolutely continuous part of f − v (see Theorem 6.1 below). The inequality
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(5.7) is obtained from the fact that

0 ≤
∫ d

c

(f(x)− ṽ(x)) dx ≤ (F(d)− V(d))− (F(c)− V(c)). (5.9)

The results for the major pair are obtained in a similar fashion.

This proposition suggests an alternative approach to the distributional integral. Call a
pair (u,U) a major pair v.2 (version 2) if it satisfies all the conditions of Definition 4.1 plus
the extra requirement that u(x) exists almost everywhere in [a, b]. Define, analogously,
minor pairs v.2 and an integral in terms of major and minor pairs v.2. Then this integral
would be identical to the distributional integral we have been considering, because any
major or minor pair in the original sense is actually a pair in the v.2 sense. However, the
use of the v.2 definition allows one to obtain some proofs, as those of Theorems 5.2 and
5.3, in a rather simple way.

Proposition 5.5 also has the following consequence on the major and minor distribu-
tional pairs.

Corollary 5.6. Let (v,V) and (u,U) be minor and major pairs for a distributionally
integrable function f over [a, b]. Then there exists a set of null Lebesgue measure Z such
that for all x ∈ [a, b] \ Z, all φ ∈ T0, and all angles θ we have

(u)−φ,θ(x) ≥ f(x), (5.10)

(v)+φ,θ(x) ≤ f(x). (5.11)

Proof. Let Z be the complement in [a, b] of the set on which the distributional point
values of u, v, and f exist. Then Z has null Lebesgue measure and (5.10) and (5.11) are
both valid on [a, b] \ Z.

Corollary 5.6 implicitly suggests a third variant yet for the definition of the distri-
butional integral. Let us say that (u,U) is a major pair v.3 (version 3) if it satisfies the
conditions of Definition 4.1 and additionally we replace the radial condition (4.3) by the
stronger requirement (5.10), assumed to hold for all x ∈ [a, b] \ Z, m(Z) = 0, all φ ∈ T0,
and all angles θ. Likewise, one defines minor pairs v.3. If we define an integral in terms
of major and minor pairs v.3, then we obtain nothing new, because in view of Corollary
5.6 this integral coincides with the distributional integral defined in Section 4.

6. Comparison with other integrals

We shall now consider the relationship of the distributional integral to the Lebesgue inte-
gral, to the Denjoy–Perron–Henstock–Kurzweil integral, and to the Łojasiewicz method
(see (2.22)). We also give a constructive solution to Denjoy’s problem on the reconstruc-
tion of functions from their higher order differential quotients [9].

Let us start with Lebesgue integration.

Theorem 6.1. Any Lebesgue integrable function over [a, b] is also distributionally inte-
grable over [a, b] and the integrals coincide.
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Proof. Let ε > 0. If f is a Lebesgue integrable function over [a, b], we can apply the
Vitali–Carathéodory theorem [39, III, (7.6)] to find a lower semicontinuous function u

with u(x) ≥ f(x) for all x, and with

(Leb)
∫ b

a

(u(x)− f(x)) dx <
ε

2
. (6.1)

If U(x) =
∫ x
a
u(x) dx, then the pair (U′,U), where U ↔ U, is a distributional major pair

for f with

U(b) < (Leb)
∫ b

a

f(x) dx+
ε

2
. (6.2)

Similarly, employing minor functions and upper semicontinuous functions, we can find a
minor distributional major pair (V′,V) for f with

V (b) > (Leb)
∫ b

a

f(x) dx− ε

2
. (6.3)

The distributional integrability of f and the fact that

(dist)
∫ b

a

f(x) dx = (Leb)
∫ b

a

f(x) dx (6.4)

then follow.

The Perron method of integration uses major and minor functions [26, 34, 39]. We
shall show that these functions give major and minor distributional pairs in a natural
way.

Theorem 6.2. Any Denjoy–Perron–Henstock–Kurzweil integrable function over [a, b] is
also distributionally integrable over [a, b] and the integrals coincide.

Proof. Let U be a continuous major function for a Denjoy–Perron–Henstock–Kurzweil
integrable function f over [a, b]. Then the pair (U′,U), where U ↔ U, is a distributional
major pair for f. Indeed, the derivative U ′(x) exists a.e. in [a, b], and at those points
the distributional value U′(x) exists, and thus (U′)−φ,0(x) = U′(x) = U ′(x) ≥ f(x) for all
φ ∈ T0.

Furthermore, for any x ∈ [a, b],

lim inf
y→x

U(y)− U(x)
y − x

> −∞. (6.5)

But if (y−x)−1(U(y)−U(x)) ≥M for |x−y| < c, then we can write U = U1 +U2, where
U1(y) = χ(x−c,x+c)(y)U1(y). Let φ ∈ T1. Since U2(y) = 0 in a neighborhood of y = x, it
follows that 〈U′2(x+ εy), φ(y)〉 → 0. Also,

lim inf
ε→0+

〈U′1(x+ εy), φ(y)〉 = − lim inf
ε→0+

1
ε
〈U1(x+ εy)− U1(x), φ′(y)〉

≥ −M
∫ ∞
−∞

yφ′(y) dy = M.

Hence (U′)−φ,0(x) ≥M > −∞.
Similarly, if V is a continuous minor function for f, then (V′,V), where V ↔ V, is a

distributional minor pair for f. The fact that f is distributionally integrable over [a, b]
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and that the distributional and the Denjoy–Perron–Henstock–Kurzweil integrals coincide
is now clear.

On the other hand, one does not need to go beyond the Lebesgue integral when
considering positive functions.

Theorem 6.3. Let f be distributionally integrable over [a, b]. If f(x) ≥ 0 for all x ∈ [a, b]
then f is Lebesgue integrable over [a, b].

Suppose that f1 and f2 are distributionally integrable over [a, b] and f1(x) ≥ f2(x)
for all x ∈ [a, b]. Then f1 is Lebesgue integrable over [a, b] if and only if f2 is Lebesgue
integrable over [a, b]. Similarly, f1 is Denjoy–Perron–Henstock–Kurzweil integrable over
[a, b] if and only if f2 is Denjoy–Perron–Henstock–Kurzweil integrable over [a, b].

Proof. Let (u,U) be a major pair for f. Then because f(x) ≥ 0 for all x it follows that
(0, 0) is a minor pair for f. Therefore, u is a positive measure, the point values ũ(x) = u(x)
exist almost everywhere, and satisfy ũ(x) ≥ f(x) almost everywhere. Since (5.8) yields∫ b
a
ũ(x) dx <∞ we deduce by comparison that f is Lebesgue integrable over [a, b].
The second part follows by writing f1 = f2 + (f1 − f2) and observing that f1 − f2 is

Lebesgue integrable over [a, b].

From this theorem it follows that if f is distributionally integrable over [a, b] and
f(x) ≥ 0 for all x ∈ [a, b] then actually the distribution f = F′ is a positive measure
(indeed, a regular distribution).

We also have the following results, natural for non-absolute integrals.

Theorem 6.4. If f is distributionally integrable over any measurable subset of [a, b] then
f is Lebesgue integrable over [a, b].

If f is measurable and |f | is distributionally integrable over [a, b] then f is Lebesgue
integrable over [a, b].

Proof. Indeed, in the first case both f+ = fχA+ = (f + |f |)/2 and f− = fχA− =
(|f | − f)/2, where A± is the set where ±f(t) > 0, are distributionally integrable, and
since they are positive they must be Lebesgue integrable. Then f = f+ − f− would be
Lebesgue integrable.

If now |f | is distributionally integrable over [a, b] then it is Lebesgue integrable over
[a, b]. Since 0 ≤ f± ≤ |f |, it follows that both f± are Lebesgue integrable, and so is
f = f+ − f−.

Our next task is to consider Łojasiewicz functions.

Theorem 6.5. Let G be a Łojasiewicz function, with associated distribution G. Let
g = G′, and suppose the distributional point values

g(x) = g(x) (6.6)

exist for all x ∈ [a, b] \E, where |E| ≤ ℵ0. Then g is distributionally integrable over [a, b]
and

(dist)
∫ d

c

g(x) dx = G(d)−G(c) (6.7)

for [c, d] ⊂ [a, b].
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Proof. Let H be the Łojasiewicz distribution equal to 0 in (−∞, a), equal to G− G(a)
in (a, b), and equal to the constant G(b)−G(a) in (b,∞). Then the pair (H′,H) is both a
major and a minor pair for g.

This theorem applies to Łojasiewicz functions, and more generally, to distributionally
regulated functions.

Theorem 6.6. Any Łojasiewicz function is distributionally integrable. Any distribution-
ally regulated function is distributionally integrable.

Observe that the integral of a Łojasiewicz function, obtained from Definition 4.4, is
equal to (2.22), the definition given in [30]. Similarly the integral of a distributionally
regulated function reduces to the definition (2.29).

We can generalize Theorem 6.5 by considering a Łojasiewicz distribution whose deriva-
tive has values almost everywhere if we assume distributional boundedness at the other
points.

Theorem 6.7. Let G be a Łojasiewicz function, with associated distribution G. Let
g = G′, and suppose the distributional point values

g(x) = g(x) (6.8)

exist almost everywhere in [a, b], while g is distributionally bounded at all x ∈ [a, b] \ E,
where |E| ≤ ℵ0. Then g is distributionally integrable over [a, b] and

(dist)
∫ d

c

g(x) dx = G(d)−G(c) (6.9)

for [c, d] ⊆ [a, b].

Proof. Let g be an extension of the function g(t), defined in the set of full measure where
the values exist, to [a, b]. If, as before, H is the Łojasiewicz distribution equal to 0 in
(−∞, a), equal to G− G(a) in (a, b), and equal to the constant G(b)−G(a) in (b,∞), then
the pair (H′,H) is both a major and a minor pair for g because of the distributional
boundedness of g on [a, b] \ E.

We now apply the ideas of this section to reconstruct functions from their higher order
Peano generalized derivatives. Let f be continuous on [a, b]. We say that f has a Peano
nth derivative at x ∈ (a, b) if there are n numbers f1(x), . . . , fn(x) such that

f(x+ h) = f(x) + f1(x)h+ · · ·+ fn(x)
hn

n!
+ o(hn) as h→ 0. (6.10)

We call each fj(x) its Peano jth derivative at x. The same notion makes sense at x = a

or x = b if we only ask (6.10) to hold as h→ 0+ or h→ 0−, respectively. Notice that the
ordinary first order derivative of f must exist at x, and actually f ′(x) = f1(x). We set
f0(x) = f(x).

Suppose that (6.10) holds everywhere in [a, b]. Naturally, the everywhere existence
of the Peano nth derivative does not even imply that f is C1. On the other hand,
if the distribution f corresponds to f , where f has been extended to R as f(x) =∑n
j=0(fj(a)/j!)(x− a)j for x ≤ a and f(x) =

∑n
j=0(fj(b)/j!)(x− b)j for b ≤ x, then the
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f(j) are Łojasiewicz distributions for all 0 ≤ j ≤ n and, indeed, f(j)(x) = fj(x) for all
x ∈ [a, b]. Thus, the functions fj are distributionally integrable over [a, b] and

fj−1(x) = fj−1(a) + (dist)
∫ x

a

fj(x) dx, j = n, . . . , 1. (6.11)

The relations (6.11) allow us to reconstruct f from fn as an n-times iterated integral.
Furthermore, we obtain the ensuing stronger result if we employ Theorem 6.7.

Theorem 6.8. Let f be continuous on [a, b]. Suppose that f has the Peano (n − 1)th
derivative at every point of [a, b]. Furthermore, assume that there is a denumerable set E
such that for all x ∈ [a, b] \ E,

f(x+ h) = f(x) + f1(x)h+ · · ·+ fn−1(x)
hn−1

(n− 1)!
+O(hn) as h→ 0. (6.12)

If the Peano nth derivative fn(x) of f exists almost everywhere in [a, b], then fn is distri-
butionally integrable over [a, b] and

f(x) =
n−1∑
j=0

fj(a)
j!

(x− a)j + (dist)
∫ x

a

∫ tn−1

a

. . .

∫ t2

a

fn(t1) dt1 · · · dtn−1 dtn. (6.13)

In particular, if fn(x) = 0 a.e., then f is a polynomial of degree at most n− 1.

Remark 6.9. The last integration step in (6.13) may be made with the Denjoy–Perron–
Henstock–Kurzweil integral; however, in general, the previous integrals do not have to
exist in the sense of Denjoy–Perron–Henstock–Kurzweil.

7. Distributions and integration

If f is a distributionally integrable function over [a, b], with indefinite integral F, which
in turn has an associated distribution F, F ↔ F, then we proved in Theorem 5.3 that
the distribution f = F′ has distributional point values almost everywhere and actually
f(x) = f(x) almost everywhere in [a, b]. Our aim is to show that the association f ↔ f

is a natural one, in the same way that Lebesgue integrable functions are associated to
regular distributions, by showing that

〈f, ψ〉 = (dist)
∫ b

a

f(x)ψ(x) dx (7.1)

for all test functions ψ ∈ D(R).
Observe, first of all, that if a distribution f has point values everywhere then there is a

well defined association between f, the function given by those values, and f. That (7.1)
is satisfied in this case was proved by Łojasiewicz [30]. However, when we extend this
idea to values that exist almost everywhere, we need to proceed with care. For instance,
the Dirac delta function δ(x) has distributional values almost everywhere equal to 0, but
is not the zero distribution, or the distributional derivative of the Cantor function is a
measure concentrated on the Cantor set, and thus it has values a.e. equal to 0 without
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being the null distribution. Unless (7.1) is satisfied one cannot associate a distribution
to the function given by its point values, even if those values exist almost everywhere.

Actually the almost everywhere values of a distribution tell us very little about the
nature of the distribution.

Theorem 7.1. Let f be any finite measurable function defined in [a, b]. Then there are in-
finitely many distributions g that have distributional values almost everywhere and satisfy

g(x) = f(x) a.e. (7.2)

Proof. Existence follows at once from Luzin’s theorem [39, Section VII.2], which says
that if f is any finite measurable function defined in [a, b] then there exists a continuous
function F such that F ′(x) = f(x) almost everywhere. We then consider the distribution
g0= F′, where F ↔ F. If g1 is any distribution whose support has measure 0 then g =
g0 + g1 satisfies (7.2).

We now proceed to the proof of the formula (7.1) when f is distributionally integrable
over [a, b]. First we prove that fψ is distributionally integrable whenever ψ is C∞ on [a, b].
Since any smooth function defined in [a, b] can be extended to the whole real line, and
since the integral of fψ over [a, b] does not depend on how we do the extension, it is
convenient to assume that ψ is actually smooth in R.

Theorem 7.2. Let f be distributionally integrable over [a, b] and let ψ be any smooth
function defined in R. Then fψ is distributionally integrable over [a, b] and

(dist)
∫ b

a

f(x)ψ(x) dx = F (b)ψ(b)− (dist)
∫ b

a

F (x)ψ′(x) dx, (7.3)

where F is the indefinite integral F (x) = (dist)
∫ x
a
f(t) dt.

Proof. Observe, first, that F is a Łojasiewicz function, and hence so is Fψ′. Thus Fψ′

is distributionally integrable over [a, b] and consequently the right side of the equation
(7.3) is well defined.

We start with the case when ψ(x) > 0 for all x ∈ [a, b]. Let (u,U) be major pair for
f in [a, b]. Let H+ be the Łojasiewicz distribution that satisfies H′+ = ψ′U in (a, b), equal
to 0 in (−∞, a), and constant in (b,∞). Then the pair (ψu, ψU−H+) is a distributional
major pair for ψf. Indeed, conditions (1) and (2) of Definition 4.1 are clear, while for (3)
we observe for a fixed x

U(x+ ty) = U(x) + o(1) as t→ 0+ in D′(R), (7.4)

and thus
u(x+ ty) = o(1/t) as t→ 0+ in D′(R). (7.5)

Hence

ψ(x+ ty)u(x+ ty) = (ψ(x) +O(t))u(x+ ty)

= ψ(x)u(x+ ty) + o(1) in D′(R). (7.6)

Since ψ(x) > 0 we deduce that if u−φ,0(x) > −∞, φ ∈ T1, then

(ψu)−φ,0(x) > −∞, (7.7)
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while if u−φ,0(x) ≥ f(x), φ ∈ T0, then

(ψu)−φ,0(x) ≥ ψ(x)f(x). (7.8)

Similarly, if (v,V) is a minor pair for f in [a, b], then (ψv, ψV − H−) is a minor pair for
ψf, where H− is the Łojasiewicz distribution that satisfies H′− = ψ′V in (a, b), equal to 0
in (−∞, a), and constant in (b,∞).

Let ε > 0, and choose the major and minor pairs (u,U) and (v,V) in such a way that

U(b)− V(b) < ε

(
ψ(b) +

∫ b

a

|ψ′(x)|dx
)−1

. (7.9)

Then the major and minor pairs (ψu, ψU− H+) and (ψv, ψV − H−) for ψf satisfy

(ψ(b)U(b)− H+(b))− (ψ(b)V(b)− H−(b)) < ε, (7.10)

where we have used Lemma 4.3. This proves the distributional integrability of ψf .
If we take the infimum of ψ(b)U(b) − H+(b), or the supremum of ψ(b)V(b) − H−(b),

we arrive at ψ(b)F (b)−
∫ b
a
ψ′(x)F (x) dx, and this yields the integration by parts formula

(7.3).
For a general function ψ ∈ C∞(R) we can find a constant k > 0 such that k+ψ(x) > 0

for all x ∈ [a, b]. The distributional integrability of ψf = (k + ψ)f − kf follows, while
formula (7.3) is obtained because it holds for both (k + ψ)f and kf.

We can now prove that the association f ↔ f is a natural one.

Theorem 7.3. Let f be distributionally integrable function over [a, b], its indefinite in-
tegral be F, with associated distribution F, F ↔ F, and let f = F′ ∈ E ′(R), so that
f(x) = f(x) almost everywhere in [a, b]. Then for any ψ ∈ E(R),

〈f, ψ〉 = (dist)
∫ b

a

f(x)ψ(x) dx. (7.11)

Proof. Let χ be the characteristic function of [a, b]. Then χF is distributionally regulated,
with a jump of magnitude −F (b) at x = b. Thus

(χ(x)F(x))′ = f(x)− F (b)δ(x− b), (7.12)

and this yields

〈f, ψ〉 = 〈(χF)′ + F (b)δ(x− b), ψ〉 = F (b)ψ(b)− 〈χF,ψ′〉

= F (b)ψ(b)− (dist)
∫ b

a

F (x)ψ′(x) dx = (dist)
∫ b

a

f(x)ψ(x) dx,

as required.

Remark 7.4. Theorem 7.2 actually shows that the integration by parts formula

(dist)
∫ b

a

f(x)ψ(x) dx = G(x)ψ(x)
∣∣x=b
x=a
−(dist)

∫ b

a

G(x)ψ′(x) dx (7.13)

holds for any Łojasiewicz function G, G↔ G, with f = G′, and ψ smooth.

We say that a function f defined in R is locally distributionally integrable if f is
integrable over any compact interval of R. For such a function we define the improper
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integral

(dist)
∫ ∞
−∞

f(x) dx = lim
a→−∞
b→∞

(dist)
∫ b

a

f(x) dx, (7.14)

if the limit exists.
The previous theorem treats the case of E ′(R); for D′(R) we have a corresponding

result.

Theorem 7.5. Let f be locally distributionally integrable over R. Then the formula

ψ  (dist)
∫ ∞
−∞

f(x)ψ(x) dx, (7.15)

for ψ ∈ D(R), defines a distribution f ∈ D′(R). Actually for any fixed a ∈ R, we have
f = F′, where F ↔ F, and F (x) = (dist)

∫ x
a
f(t) dt.

Furthermore, f(x) = f(x) almost everywhere in R.

Proof. This follows at once from Theorem 7.3. Observe that for any ψ the integral in
(7.15) is not really an improper integral, but actually an integral over a compact inter-
val.

We can now extend the notion of association between a function and a distribution.
From our results, we can associate to any locally distributionally integrable function
over R a unique distribution. We shall call those distributions locally integrable distribu-
tions. The association

f ↔ f (7.16)

between locally distributionally integrable functions and locally integrable distributions
is characterized by the equation

〈f, ψ〉 = (dist)
∫ ∞
−∞

f(x)ψ(x) dx, ψ ∈ D(R). (7.17)

This association generalizes the association between locally Lebesgue integrable functions
and regular distributions as well as the association between Łojasiewicz functions and
Łojasiewicz distributions.

We also have similar integral representation results for other spaces of distributions. In
fact, since all evaluations in S ′(R) and K′(R) are Cesàro evaluations [52] we immediately
obtain the following.

Theorem 7.6. Let f be a locally integrable distribution, f ↔ f. If f ∈ S ′(R) then there
exists k ∈ N such that for all φ ∈ S(R),

〈f, φ〉 = (dist)
∫ ∞
−∞

f(x)φ(x) dx (C, k). (7.18)

If f ∈ K′(R) and φ ∈ K(R), then (7.18) holds for some k ∈ N that depends on φ.

Using the results of [13, 18] (see [22, Chap. 6]), we also obtain the ensuing useful
characterization.
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Theorem 7.7. Let f be a locally integrable distribution, f ↔ f. Then f ∈ K′(R) if and
only if the integrals

(dist)
∫ ∞
−∞

f(x)xn dx (C) (7.19)

exist in the Cesàro sense for all n ∈ N.

At this point we present a useful local bound for locally integrable distributions.

Proposition 7.8. Let f be a locally integrable distribution. Then for any x ∈ R,

f(x+ εy) = o(1/ε), ε→ 0+, (7.20)

in the space D′(R), that is, if ψ ∈ D(R), then

〈f(x+ εy), ψ(y)〉 = o(1/ε), ε→ 0+. (7.21)

Proof. Indeed, if F is a primitive for f, F′ = f, then F is a Łojasiewicz distribution, and
thus the point value F(x) exists. Hence in D′(R),

F(x+ εy) = F(x) + o(1) as ε→ 0+. (7.22)

Differentiation of (7.22) yields (7.20).

Suppose that f is a locally integrable distribution with compact support contained
in [a, b]. Then while (7.21) is valid at the endpoints x = a and x = b if ψ ∈ D(R), it
is enough to consider the distributional limits f(a + εy) as ε → 0+, only for y > 0, and
f(b + εy) as ε → 0+, only for y < 0. This means that if x = a, it suffices to require
(7.21) to hold if ψ ∈ D(R) satisfies suppψ ⊂ (0,∞), or, when needed, if suppψ ⊂ [0,∞).
Similarly at x = b one just needs to consider test functions with suppψ ⊂ (−∞, 0) or
suppψ ⊂ (−∞, 0].

8. Improper integrals

It is well known that if f is Lebesgue integrable over [a, c] for any c < b, then the improper
integral ∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx (8.1)

may exist even when f is not Lebesgue integrable over [a, b].
On the other hand, according to Hake’s theorem [27] (see [3], [26], or [39]), if f

is Denjoy–Perron–Henstock–Kurzweil integrable over [a, c] for any c < b, and the im-
proper integral (8.1) exists, then f must be Denjoy–Perron–Henstock–Kurzweil integrable
over [a, b]. In other words, there is no such thing as improper Denjoy–Perron–Henstock–
Kurzweil integrals over a finite interval.

For the distributional integral we have the following result.

Theorem 8.1. Let f be distributionally integrable over [a, c] for any c < b. Let F (x) =
(dist)

∫ x
a
f(t) dt, x < b, be its indefinite integral, and let F be the corresponding Łojasiewicz

distribution defined for x < b, F ↔ F. Suppose that the distributional limit

lim
c→b−

F(c) = L (8.2)



A general integral 33

exists. Then f is distributionally integrable over [a, b] and

(dist)
∫ b

a

f(x) dx = L. (8.3)

Proof. Let ε > 0. Let {cn}∞n=1 be a strictly increasing sequence with c1 = a and cn ↗ b.

For each n let (un,Un) and (vn,Vn) be major and minor pairs for f over [cn, cn+1] that
satisfy Un(cn+1)− Vn(cn+1) < ε/2n. The two series

Ũ =
∞∑
n=1

Un, Ṽ =
∞∑
n=1

Vn (8.4)

converge distributionally in the interval (−∞, b), since in any interval of the form (−∞, c)
for c < b the series become finite sums. The distributions Ũ and Ṽ are Łojasiewicz
distributions for x < b, and for each c < b they yield major and minor pairs (U′(c),U(c))
and (V′(c),V(c)) for f over [a, c] by taking U(c) and V(c) to be Łojasiewicz distributions

over R that equal Ũ and Ṽ, respectively, over (−∞, c) and constant over (c,∞). Also,
Ũ(c)− Ṽ(c) < ε for c < b.

Observe now that Ũ − F and F − Ṽ are both Łojasiewicz distributions over (−∞, b),
corresponding to continuous increasing functions. Since F has a distributional limit from
the left at x = b, the same is true of both Ũ and Ṽ, and thus one can extend them as
Łojasiewicz distributions over R by asking the extensions, say U and V, to be constant
over (b,∞). Then (U′,U) and (V′,V) are major and minor pairs for f over [a, b] with
U(b)−V(b) ≤ ε, and the distributional integrability of f over [a, b] follows. Furthermore,
we also obtain the bounds

L− ε ≤ V(b) ≤ U(b) ≤ L+ ε,

which immediately yield (8.3).

One can rephrase the previous theorem by simply saying that the distributional
integral (dist)

∫ b
a
f(x) dx exists, and is finite, if and only if the distributional limit of

(dist)
∫ c
a
f(x) dx as c → b− exists. We may also reformulate Theorem 8.1 if we use local

Cesàro limits. Let g be distributionally integrable over [a, c] for any c < b. Define its
sequence of n-primitives {g(−n)

a }∞n=0 on [a, b) recursively as

g(0)
a (x) = g(x), g(−n−1)

a (x) = (dist)
∫ x

a

g(−n)
a (t) dt, x ∈ [a, b). (8.5)

We say that g has a Cesàro limit as c→ b−, and write

lim
c→b−

g(c) = L (C), (8.6)

if there exist d ∈ [a, b), n ∈ N, and a polynomial p of degree at most n − 1 such that
g
(−n)
a is continuous on (d, b) and

lim
c→b−

g
(−n)
a (c)− p(c)

(c− b)n
=
L

n!
. (8.7)

Let g ↔ g ∈ E ′[a, b]. Because of Łojasiewicz’s characterization of distributional limits
[30, 47, 54], we know that (8.6) is equivalent to the distributional lateral limit limc→b− g(c)
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= L. This yields immediately the following version of Theorem 8.1 in which we replace
(8.2) by a Cesàro limit.

Theorem 8.2. Let f be distributionally integrable over [a, c] for any c < b. Then f is
distributionally integrable over [a, b] if and only if the following Cesàro limit exists and is
finite:

lim
c→b−

(dist)
∫ c

a

f(x) dx = L (C). (8.8)

In this case (8.3) holds.

Theorem 8.2 therefore tells us that improper Cesàro distributional integrals are always
definite integrals, and conversely, any definite integral may be computed by the Cesàro
limit (8.8). Thus, we have the following analogy with the Denjoy–Perron–Henstock–
Kurzweil integral: there are no improper Cesàro distributional integrals over finite in-
tervals.

If the integrability of f in [a, c] for all c < b is known, then we may determine the
integrability of f over [a, b] from the behavior of f, where f ↔ f, near x = b. One result
in this direction is the following.

Theorem 8.3. Let f be distributionally integrable over [a, c] for any c < b. Let f ↔ f,

where f is a distribution in D′(−∞, b). Suppose that

f(b+ εx) = O(εα), ε→ 0+, (8.9)

for some α > −1 in the space D′((−∞, 0)), that is, for ψ ∈ D(R),

〈f(b+ εy), ψ(y)〉 = O(εα), ε→ 0+, whenever suppψ ⊂ (−∞, 0). (8.10)

Then f is distributionally integrable over [a, b].

Proof. Let F (x) = (dist)
∫ x
a
f(t) dt, x < b, be the indefinite integral of f, and let F be

the corresponding Łojasiewicz distribution defined for x < b, F ↔ F. We need to show
that L, the distributional limit of F(c) as c→ b−, exists, that is,

lim
ε→0+

〈F(b+ εy), ψ(y)〉 = L

∫ ∞
−∞

ψ(x) dx (8.11)

whenever suppψ ⊂ (−∞, 0).
Observe first that if

∫∞
−∞ ψ(x) dx = 0 then ψ = ϕ′, where ϕ ∈ D(R), suppϕ ⊂

(−∞, 0). Thus
〈F(b+ εy), ψ(y)〉 = ε〈f(b+ εy), ϕ(y)〉 = O(εα+1)

as ε→ 0+, so that (8.11) holds with any L if the integral of ψ vanishes.
Let ψ0 be a fixed test function in D(R), with suppψ0 ⊂ (−∞, 0), that satisfies∫ ∞

−∞
ψ0(x) dx = 1. (8.12)

If ψ ∈ D(R), suppψ ⊂ (−∞, 0), we can write ψ = cψ0 +ψ1, where c =
∫∞
−∞ ψ(x) dx, and

where
∫∞
−∞ ψ1(x) dx = 0. Therefore,

〈F(b+ εy), ψ(y)〉 = ρ(ε)
∫ ∞
−∞

ψ(x) dx+O(εα+1) (8.13)
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as ε→ 0+, where
ρ(ε) = 〈F(b+ εy), ψ0(y)〉. (8.14)

If a > 0 then
ρ(aε) = ρ(ε) +O(εα+1), (8.15)

since

ρ(aε) = 〈F(b+ aεy), ψ0(y)〉 =
1
a
〈F(b+ εy), ψ0(y/a)〉

=
ρ(ε)
a

∫ ∞
−∞

ψ0(x/a) dx+O(εα+1) = ρ(ε) +O(εα+1).

The asymptotic identity (8.15) is actually valid uniformly in a if a ∈ [A,B] and 0 < A <

B < ∞ because weak convergence yields strong convergence in spaces of distributions
and thus (8.10) holds uniformly on ψ if ψ belongs to a compact subset of D(R). Hence L,
the limit of ρ(ε) as ε → 0+, exists (and actually ρ(ε) = L + O(εα+1)). The required
formula (8.11) then follows from (8.13).

It is interesting to observe that the condition f(b + εx) = o(1/ε) as ε → 0+ is not
enough to give integrability of f over [a, b]. Take f(x) = ((b− x) ln(b− x))−1, x < b, for
instance. The preceding proof does not work because (8.15) becomes ρ(aε) = ρ(ε)+ o(1),
so that ρ is asymptotically homogeneous of degree 0 [22, 46, 54], and some asymptotically
homogeneous functions may tend to infinity as ε→ 0+.

Using Theorem 8.3 it is possible to give a clear meaning to some irregular operations
involving integrable distributions. If f ∈ D′(R) and χ is the characteristic function of an
interval [c, d] then in general there is no canonical way of defining a distribution χf in
the space D′(R) [14]; however, if f is a locally integrable distribution then Proposition 4.5
says that χf is defined in a natural way. The following result gives another such natural
definition, namely, that of (b− x)βf(x) if f ∈ E ′[a, b] is integrable and β > 0.

Proposition 8.4. Let f be distributionally integrable over [a, b]. If β > 0 then the func-
tion

fβ(x) = (b− x)βf(x)

is distributionally integrable over [a, b]. Similarly, (x − a)βf(x) is also distributionally
integrable over [a, b].

Proof. This follows at once from Theorem 8.3, since using Proposition 7.8 we see that
(8.9) holds for fβ with α = β − 1.

9. Convergence theorems

We shall now show that the usual convergence theorems, namely, the bounded conver-
gence theorem, the monotone convergence theorem, and Fatou’s lemma are valid for the
distributional integral.



36 R. Estrada and J. Vindas

It is convenient to first introduce the notation for integrals that have an infinite value.
If f is measurable in [a, b], f(x) ≥ 0 almost everywhere, and f is not integrable, we put

(dist)
∫ b

a

f(x) dx =∞. (9.1)

More generally, we use (9.1) if f = f1 + f2, where f1 is distributionally integrable and f2
is positive a.e. but not integrable. The notation (dist)

∫ b
a
g(x) dx = −∞ is interpreted in

a corresponding fashion.
Given a measurable function f defined in [a, b], there are three possibilities, namely,

f may be distributionally integrable, in which case (dist)
∫ b
a
f(x) dx is a real number,

or (dist)
∫ b
a
f(x) dx = ±∞, or the distributional integral is undefined. This is also the

case for other integrals, such as the Lebesgue integral or the Denjoy–Perron–Henstock–
Kurzweil integral. If f is distributionally integrable but not Denjoy–Perron–Henstock–
Kurzweil integrable then the symbol (DPHK)

∫ b
a
f(x) dx is undefined, but even more, if f

is decomposed as f = f1 + f2 and the symbols (DPHK)
∫ b
a
fj(x) dx are defined for j = 1

or 2, then one of them is +∞ and the other is −∞. Similarly, if the Lebesgue integral
of f is undefined, but f is Denjoy–Perron–Henstock–Kurzweil integrable then whenever
f = f1 + f2 and the symbols (Leb)

∫ b
a
fj(x) dx are defined for j = 1 or 2, one of them

must be +∞ and the other −∞. In a sense, going to a more general integral means that
a method to solve some indefinite forms +∞−∞ has been included in the definition of
the more general and refined integral.

We now consider the following comparison results.

Proposition 9.1. Let f and g be measurable on [a, b] and suppose that f(x) ≥ g(x)
almost everywhere. If g is distributionally integrable, then f is also distributionally inte-
grable or

∫ b
a
f(x) dx =∞. Similarly, if f is distributionally integrable, then either so is g,

or
∫ b
a
g(x) dx = −∞.

Observe that the proposition implies that if g is distributionally integrable and f ≥ g,
then (dist)

∫ b
a
f(x) dx will always be defined, as a number in R ∪ {∞} . If f is just a

measurable function, without such an inequality, however, then (dist)
∫ b
a
f(x) dx would

in general be meaningless.

Proposition 9.2. Let f, g and h be measurable on [a, b] and suppose that

f(x) ≥ g(x) ≥ h(x) a.e. (9.2)

Suppose f and h are distributionally integrable. Then so is g.
If, in addition, one of the functions is Lebesgue integrable, then so are the other two.

Similarly if one of the functions is Denjoy–Perron–Henstock–Kurzweil integrable then the
other two are as well.

Proof. If f and h are distributionally integrable, then so is f − h, which being positive,
must be Lebesgue integrable. By comparison, g−h is also Lebesgue integrable. It follows
that g = h + (g − h) is distributionally integrable. The second part is obtained directly
from Theorem 6.3.

We now give the bounded convergence theorem.
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Theorem 9.3. Let f and h be distributionally integrable on [a, b] and suppose that
{gn}∞n=1 is a sequence of distributionally integrable functions that satisfies

f(x) ≥ gn(x) ≥ h(x) a.e. (9.3)

If gn → g almost everywhere then g is distributionally integrable and

lim
n→∞

(dist)
∫ b

a

gn(x) dx = (dist)
∫ b

a

g(x) dx. (9.4)

Proof. Observe that g also satisfies f(x) ≥ g(x) ≥ h(x) almost everywhere, and thus the
comparison result in Proposition 9.2 shows that g is distributionally integrable. Notice
now that |g(x)−gn(x)| ≤ f(x)−h(x) almost everywhere, f−h is Lebesgue integrable, and
|g − gn| → 0 almost everywhere. We conclude from the Lebesgue bounded convergence
theorem that

∫ b
a
|g(x)−gn(x)|dx→ 0, that is, {g−gn}∞n=1 converges to 0 in L1[a, b], and

in particular, that (9.4) holds.

We also have a monotone convergence theorem.

Theorem 9.4. Let h be distributionally integrable on [a, b] and let {gn}∞n=1 be a monotone
sequence of measurable functions that satisfies

gn+1(x) ≥ gn(x) ≥ h(x) a.e. (9.5)

Let g(x) = limn→∞ gn(x). Then g is distributionally integrable if and only if

lim
n→∞

(dist)
∫ b

a

gn(x) dx <∞, (9.6)

and if that is the case then (dist)
∫ b
a
gn(x) dx→ (dist)

∫ b
a
g(x) dx as n→∞.

Proof. Suppose first that g is distributionally integrable. Then g(x) ≥ gn(x) ≥ h(x) al-
most everywhere, and from the bounded convergence theorem, Theorem 9.3, we conclude
that the increasing numerical sequence {

∫ b
a
gn(x) dx}∞n=1 converges to

∫ b
a
g(x) dx, and

(9.6) follows.
Conversely, if (9.6) holds, then {gn − h}∞n=1 is a Cauchy sequence in the space L1[a, b],

because

lim
n,m→∞
n≥m

∫ b

a

|(gn(x)− h(x))− (gm(x)− h(x))|dx

= lim
n,m→∞
n≥m

∫ b

a

(gn(x)− gm(x)) dx = lim
n,m→∞
n≥m

(∫ b

a

gn(x) dx−
∫ b

a

gm(x) dx
)

= 0.

Since {gn − h}∞n=1 converges a.e. to g − h, it must also converge to g − h in L1[a, b]; we
also obtain the convergence of

∫ b
a
(gn(x)−h(x)) dx to

∫ b
a
(g(x)−h(x)) dx. Thus

∫ b
a
(g(x)−

h(x)) dx < ∞, and so g = (g − h) + h is distributionally integrable. The convergence of∫ b
a
gn(x) dx to

∫ b
a
g(x) dx is now clear.

Observe that the monotone convergence theorem also says that if g is not distribu-
tionally integrable, so that (dist)

∫ b
a
g(x) dx =∞, then (dist)

∫ b
a
gn(x) dx↗∞.

Fatou’s lemma takes the following form.
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Theorem 9.5. Let h be distributionally integrable on [a, b] and let {gn}∞n=1 be a sequence
of measurable functions that satisfies

gn(x) ≥ h(x) a.e. (9.7)

Suppose that

lim inf
n→∞

(dist)
∫ b

a

gn(x) dx <∞. (9.8)

Then the function defined by g∗(x) = lim infn→∞ gn(x) is distributionally integrable and

(dist)
∫ b

a

g∗(x) dx ≤ lim inf
n→∞

(dist)
∫ b

a

gn(x) dx. (9.9)

Proof. Let hn(x) = inf{gj(x) : n ≤ j <∞}. Then h ≤ hn ≤ gj for n ≤ j, and since (9.8)
implies that for each n there are indices j with n ≤ j such that gj is distributionally
integrable, it follows that hn is distributionally integrable for all n. Notice also that the
sequence {hn} is increasing. Since

∫ b
a
hn(x) dx ≤

∫ b
a
gn(x) dx we obtain

lim
n→∞

∫ b

a

hn(x) dx ≤ lim inf
n→∞

∫ b

a

gn(x) dx <∞.

If we now use the fact that g∗(x) = limn→∞ hn(x) and Theorem 9.4, we find that g∗ is
distributionally integrable and∫ b

a

g∗(x) dx = lim
n→∞

∫ b

a

hn(x) dx ≤ lim inf
n→∞

∫ b

a

gn(x) dx,

as required.

It is interesting to observe that if a sequence {fn}∞n=1 of integrable distributions in
the space E ′[a, b] converges distributionally to f, and f is integrable, then trivially

lim
n→∞

(dist)
∫ b

a

fn(x) dx = (dist)
∫ b

a

f(x) dx, (9.10)

where f ↔ f, fn ↔ fn, since 〈fn, ψ〉 → 〈f, ψ〉 for all test functions ψ. However, in general,
if {fn}∞n=1 converges distributionally to f, then f does not have to be integrable. Actually,
{fn}∞n=1 could even converge a.e. to a function f, but f and f cannot be associated if f is
not integrable; (9.10) may or may not hold in such a case. For example, if In = [1/n, 2/n],
and fn = nχIn , then {fn}

∞
n=1 converges distributionally to δ(x), but {fn}∞n=1 converges

everywhere to f = 0. Naturally (9.10) does not hold if a < 0 < b.

10. Change of variables

We now consider changes of variables in the integral. Let us start with a function

ρ : [c, d]→ [a, b] (10.1)

that is of class C∞, even at the endpoints, and satisfies |ρ′(t)| > 0 for all t ∈ [c, d]. Then
ρ induces an isomorphism

Tρ : E ′[a, b]→ E ′[c, d], (10.2)
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given by Tρ {f} (t) = f(ρ(t)) for f ∈ E ′[a, b]. Observe that T−1
ρ = Tρ−1 . In this case we say

that ρ is a change of variables of type I.
For changes of type I it is easy to see [7, 30] that the distributional point value f(x)

exists at x = x0 if and only if the distributional point value f(ρ(t)) exists at t = t0,

where x0 = ρ(t0), and when both values exist they coincide. Also, if f is a function
defined in [a, b], ρ′ > 0, and (u,U) is a major distributional pair for f in [a, b], then
(u(ρ(t))ρ′(t),U(ρ(t))) is a major pair for f(ρ(t))ρ′(t) in [c, d], and similarly for minor
pairs. Thus, we immediately obtain the following result.

Proposition 10.1. Let ρ : [c, d] → [a, b] be a change of variables of type I. A function
f is distributionally integrable over [a, b] if and only if f(ρ(t))ρ′(t) is distributionally
integrable over [c, d] and if a = ρ(c), b = ρ(d),

(dist)
∫ b

a

f(x) dx = (dist)
∫ d

c

f(ρ(t))ρ′(t) dt. (10.3)

The change of variables formula (10.3) remains valid under more general conditions
on the function ρ. It holds for ρ(t) = tα in [0, d], if α > 0; this change of variables is not
of type I.

Lemma 10.2. Let f ∈ D′(0, b) and let α > 0. Then the distributional limit of f from the
right at x = 0 exists and equals γ if and only if the distributional limit of f(tα) from the
right at t = 0 exists and equals γ.

A function f is distributionally integrable over [0, d] if and only if f(tα)tα−1 is distri-
butionally integrable over [0, d1/α] and

(dist)
∫ d

0

f(x) dx = (dist)
∫ d1/α

0

αf(tα)tα−1 dt. (10.4)

Proof. The distributional limit of f from the right at x = 0 exists and equals γ if and
only if

lim
ε→0+

〈f(εx), ψ(x)〉 = γ

∫ ∞
0

ψ(x) dx (10.5)

for all ψ ∈ D(0,∞). But if (10.5) holds then

lim
ε→0+

〈f((εt)α), ψ(t)〉 =
1
α

lim
ε→0+

〈f(εαx), ψ(x1/α)x1/α−1〉 =
γ

α

∫ ∞
0

ψ(x1/α)x1/α−1 dx

= γ

∫ ∞
0

ψ(t) dt,

and it follows that the distributional limit of f(tα) from the right at t = 0 exists and
equals γ.

Suppose now that f is distributionally integrable over [0, d]. Using Proposition 10.1
we deduce that f(tα)tα−1 is distributionally integrable over [c, d1/α] for any c > 0, and
if F (c) = (dist)

∫ d
c
f(x) dx is the indefinite integral of f, then the indefinite integral of

αf(tα)tα−1 is F (cα) = (dist)
∫ d1/α
c

αf(tα)tα−1 dt. Now F(c), where F↔ F, has a distribu-

tional limit from the right at c = 0, equal to (dist)
∫ d1/α
0

f(x) dx, and it follows that the

distributional limit of F(cα), which corresponds to the function (dist)
∫ d1/α
c

αf(tα)tα−1 dt,
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as c → 0+ also exists and equals (dist)
∫ d
0
f(x) dx. The integrability of αf(tα)tα−1 over

[0, d1/α] and formula (10.4) then follow from Theorem 8.1.

Introduce the changes of variables of type II as those continuous functions ρ from
[c, d] to [a, b] that are of type I in [c1, d1] whenever c < c1 < d1 < d, and are such that at
the endpoints there exist α > 0 and β > 0 for which |ρ(x) − ρ(c)|α is of type I in [c, d1]
and |ρ(x)− ρ(d)|β is of type I in [c1, d]. Then using Lemma 10.2 we find that Proposition
10.1 also holds for changes of variables of type II.

Actually Proposition 10.1 remains valid for changes of variables of type III, which are
those continuous functions ρ from [c, d] to R for which there are numbers {cj}nj=0 with
c = c0 < c1 < · · · < cn−1 < cn = d such that ρ is of type II in each of the subintervals
[cj , cj+1] for 0 ≤ j < n.

Proposition 10.3. Let ρ : [c, d] → R be a change of variables of type III. A function
f is distributionally integrable over ρ([c, d]) if and only if f(ρ(t))ρ′(t) is distributionally
integrable over [c, d] and

(dist)
∫ ρ(d)

ρ(c)

f(x) dx = (dist)
∫ d

c

f(ρ(t))ρ′(t) dt. (10.6)

Let us now consider changes of variables with an infinite range or domain.

Lemma 10.4. Let f ∈ D′(0, 1). Then the distributional limit of f from the right at x = 0
exists and equals γ if and only if the Cesàro limit of f(1/t) as t→∞ exists and equals γ.

A function f is distributionally integrable over [0, 1] if and only if f(t−1)t−2 is distri-
butionally Cesàro integrable over [1,∞) and

(dist)
∫ 1

0

f(x) dx = (dist)
∫ ∞

1

f(t−1)t−2 dt (C). (10.7)

Proof. The first part follows from the results of [22, Chap. 6]. The second part is ob-
tained because by Proposition 10.1, f is distributionally integrable over [c, 1] if and only
if f(t−1)t−2 is distributionally integrable over [1, 1/c], and if F (c) = (dist)

∫ 1

c
f(x) dx

then F (1/c) = (dist)
∫ 1/c

1
f(t−1)t−2 dt. But the distribution corresponding to F (c) has

a distributional lateral limit from the right at c = 0 if and only if the distribution
corresponding to F (1/c) has a Cesàro limit at infinity, and the limits coincide; in the
first case the integral (dist)

∫ 1

0
f(x) dx exists, while in the second the Cesàro integral

(dist)
∫∞
1
f(t−1)t−2 dt (C) exists.

Let us say that a function ρ : [c, d) → [a,∞) with limx→d− ρ(x) = ∞ is a change of
variables of type IV if whenever c < x < d then ρ is of type II in [c, x] and 1/ρ is of
type II in [x, d]. Our previous results immediately yield the ensuing change of variables
formula.

Proposition 10.5. Let ρ : [c, d)→ [a,∞) be a change of variables of type IV. A function
f is Cesàro distributionally integrable over [a,∞) if and only if f(ρ(t))ρ′(t) is distribu-
tionally integrable over [c, d] and

(dist)
∫ ∞
ρ(c)

f(x) dx = (dist)
∫ d

c

f(ρ(t))ρ′(t) dt (C). (10.8)
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11. Mean value theorems

In this section we shall show how the usual three mean value theorems of integral calculus
have versions for the distributional integral.

Proposition 11.1. Let f be a Łojasiewicz function on [a, b] and let ψ be smooth and
positive in [a, b]. Then there exists ξ ∈ (a, b) such that

(dist)
∫ b

a

f(x)ψ(x) dx = f(ξ)
∫ b

a

ψ(x) dx. (11.1)

Proof. Observe that since ψ is C∞ it follows that fψ is also a Łojasiewicz function, and
thus integrable. Since ψ ≥ 0, we get

m

∫ b

a

ψ(x) dx ≤ (dist)
∫ b

a

f(x)ψ(x) dx ≤M
∫ b

a

ψ(x) dx, (11.2)

where m = inf {f(x) : x ∈ [a, b]} , M = sup {f(x) : x ∈ [a, b]} . Naturally m and M do
not have to be real numbers in this case, −∞ ≤ m ≤ M ≤ ∞. Notice now [30]
that any Łojasiewicz function has the Darboux or intermediate value property, that is,
[f(c), f(d)] ⊂ f([c, d]) for any subinterval [c, d] of [a, b]. Hence there exists ξ ∈ (a, b) such
that f(ξ) = (

∫ b
a
f(x)ψ(x) dx)/(

∫ b
a
ψ(x) dx).

We also have the following second mean value theorem.

Proposition 11.2. Let f be distributionally integrable over [a, b] and let ψ be smooth
and monotonic. Then there exists ξ ∈ (a, b) such that∫ b

a

f(x)ψ(x) dx = ψ(a)
∫ ξ

a

f(x) dx+ ψ(b)
∫ b

ξ

f(x) dx. (11.3)

Proof. Let F (x) = (dist)
∫ x
a
f(t) dt be the indefinite integral of f. Then applying Propo-

sition 11.1 to
∫ b
a
F (x)ψ′(x) dx we obtain the existence of ξ ∈ (a, b) such that∫ b

a

f(x)ψ(x) dx = F (b)ψ(b)−
∫ b

a

F (x)ψ′(x) dx = F (b)ψ(b)− F (ξ)
∫ b

a

ψ′(x) dx

= ψ(b)(F (b)− F (ξ)) + ψ(a)F (ξ),

as required.

The Bonnet form of the mean value theorem is as follows.

Proposition 11.3. Let f be distributionally integrable over [a, b] and let ψ be smooth,
positive, and increasing. Then there exists ξ ∈ (a, b) such that

(dist)
∫ b

a

f(x)ψ(x) dx = ψ(b) (dist)
∫ b

ξ

f(x) dx. (11.4)

Proof. Let a′ < a, and extend f and ψ to [a′, b] as follows. Put f(x) = 0 for a′ ≤ x < a,

and let ψ be an extension that is smooth, positive, increasing, and with ψ(a′) = 0. Then
employing Proposition 11.2 for the integral (dist)

∫ b
a′
f(x)ψ(x) dx we obtain (11.4).

We also have the other form of the Bonnet mean value theorem, namely, if f is
distributionally integrable over [a, b] and ψ is smooth, positive, and decreasing, then
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there exists ω ∈ (a, b) such that

(dist)
∫ b

a

f(x)ψ(x) dx = ψ(a) (dist)
∫ ω

a

f(x) dx. (11.5)

We now give an example that shows how several standard arguments can still be used
with the distributional integral.

Example 11.4. Let a > 0, and let f be a locally distributionally integrable function
defined in [a,∞). Suppose that the indefinite integral F (x) = (dist)

∫ x
a
f(t) dt of f is a

bounded function in [a,∞). Let now ψ be a C∞ function defined in [a,∞) that decreases
to 0, limx→∞ ψ(x) = 0. Then the improper distributional integral

(dist)
∫ ∞
a

f(x)ψ(x) dx = lim
b→∞

∫ b

a

f(x)ψ(x) dx (11.6)

converges.
Naturally, this is a well known result for locally Lebesgue integrable functions, but

our aim is to show that the usual ideas also work for the distributional integral. Indeed,
let

G(b) = (dist)
∫ b

a

f(x)ψ(x) dx. (11.7)

Then if a ≤ b < b′ there exists ξ ∈ (b, b′) such that

G(b′)−G(b) = ψ(b)(F (ξ)− F (b)) + ψ(b′)(F (b′)− F (ξ)),

and since F is bounded and ψ tends to 0, we conclude that G(b′)−G(b)→ 0 as b, b′ →∞,
that is, G satisfies the Cauchy criterion at∞. Thus G has a limit at infinity, as we wanted
to show.

12. Examples

We shall now give several examples of functions that are or are not distributionally
integrable. We shall also consider several illustrations of our ideas.

Example 12.1. Observe, first of all, that for positive functions distributional integration
is equivalent to Lebesgue integration, and thus nothing new arises in this case. Let α ∈ R.
The positive function |x|α is distributionally integrable over R if and only if α > −1; the
same is true for the function xαH(x). There is a well defined and well known distribu-
tion, xα+, whenever α 6= −1,−2,−3, . . . ; the distribution xα+ is a regularization of the
function xαH(x), but the association xαH(x)↔ xα+ between an integrable function and
the corresponding distribution holds only for α > −1.

Functions that are distributionally integrable but not Lebesgue integrable need to be
oscillatory.

Example 12.2. Let us now consider the distribution sα(x) that corresponds to the func-
tion |x|α sin(1/x) for α ∈ C. If <e α > −1 then the function |x|α sin(1/x) is locally
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Lebesgue integrable and thus it yields a regular distribution given by

〈sα(x), ψ(x)〉 =
∫ ∞
−∞
|x|α sin(1/x)ψ(x) dx, ψ ∈ D(R). (12.1)

It is easy to show that sα admits an analytic continuation from the right side half-plane
<e α > −1 to the whole complex plane. If −1 ≥ <e α > −2 then the function |x|α sin(1/x)
is not Lebesgue integrable near x = 0 but it is Denjoy–Perron–Henstock–Kurzweil in-
tegrable. The function |x|α sin(1/x) is locally distributionally integrable for all α ∈ C,
since actually it is a Łojasiewicz function because (see [30]) the distributional value sα(0)
exists and equals 0 for all α. The association |x|α sin(1/x)↔ sα(x) holds for all α ∈ C.

Similarly, |x|α cos(1/x) is locally distributionally integrable for all α ∈ C and it thus
defines a distribution cα(x) given by

〈cα(x), ψ(x)〉 = (dist)
∫ ∞
−∞
|x|α cos(1/x)ψ(x) dx, ψ ∈ D(R). (12.2)

The generalized function cα is an entire function of α.

Example 12.3. Making a change of variables, we find that the functions |x|α sin |x|−β and
|x|α cos |x|−β are locally distributionally integrable for all α ∈ C and for all β > 0.We can
multiply locally distributionally integrable functions by the characteristic functions of in-
tervals and still obtain locally distributionally integrable functions. Thus xαH(x) sin |x|−β
and xαH(x) cos |x|−β , as well as |x|α sgnx sin |x|−β and |x|α sgnx cos |x|−β , are also lo-
cally distributionally integrable functions for all α ∈ C and for all β > 0.

Example 12.4. Let g be a locally distributionally integrable function, g ↔ g, where
g ∈ K′(R). Then a change of variables shows that for each a ∈ R the function f(x) =
g((x− a)−1) is likewise locally distributionally integrable over R, even at x = a.

Functions like H(x−a)(x−a)αJν((x−a)−β) will be locally distributionally integrable
over R for all α ∈ C, β > 0, and ν ∈ R.

In particular, if h is a locally distributionally integrable function, periodic, and with
zero mean, then h ∈ K′(R), where h ↔ h. Thus functions like |x − a|αh(|x − a|−β) are
locally distributionally integrable over R for all α ∈ C and β > 0. If h(x) is sinx or cosx
we recover the previous examples; another example is |x|α(

{
|x|−β

}
− 1/2), where {x} is

the fractional part of x.

Example 12.5. Let {cn}∞n=1 be a numerical sequence, and define the function

f(x) =

{
0 if x ≤ 0 or x ≥ 1,
cn if 1

n+1 ≤ x <
1
n .

(12.3)

Let an = cn( 1
n −

1
n+1 ). Then f is Lebesgue integrable at x = 0 if and only if the

series
∑∞
n=1 an is absolutely convergent, while f is Denjoy–Perron–Henstock–Kurzweil

integrable if and only if the series is convergent [3]. We now see that f is distributionally
integrable at x = 0 if and only if

∑∞
n=1 an is Cesàro summable, and in that case

(dist)
∫ 1

0

f(x) dx =
∞∑
n=1

an (C). (12.4)

In particular, if cn = (−1)nn(n+ 1), we obtain (dist)
∫ 1

0
f(x) dx = −1/2.
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Example 12.6. In general the sum of a Lebesgue integrable function and a Łojasiewicz
function is neither Lebesgue integrable nor a Łojasiewicz function, but it is certainly dis-
tributionally integrable. For instance, if F is a closed set with empty interior and positive
Lebesgue measure in [a, b] then χF (x) + Jν((x2 − (a+ b)x+ ab)−1) is a distributionally
integrable function that is neither Lebesgue integrable nor a distributionally regulated
function in [a, b]. It is worth pointing out that decompositions of distributions as sums of
terms involving a Łojasiewicz distribution have shown to be of great importance in the
study of distributional composition operations [1].

Example 12.7. If a < b, denote by fa,b the function

fa,b(x) = [χ[a,b](x) sin((x2 − (a+ b)x+ ab)−1)]′. (12.5)

Let {(an, bn)}∞n=1 be a sequence of mutually disjoint open intervals and let
∑∞
n=1Mn be

an absolutely convergent series. Let

f =
∞∑
n=1

Mnfan,bn .

Then f is a locally distributionally integrable function and

(dist)
∫ d

c

f(x) dx = F (d)− F (c), (12.6)

where F (x) = Mn sin((x2 − (an + bn)x + anbn)−1) if x ∈ (an, bn), while F (x) = 0 if
x /∈

⋃∞
n=1(an, bn).

Example 12.8. It is well known that there are continuous functions whose derivatives
do not exist at any point. Actually, one can show in many cases that the distributional
derivative does not have values at any point. For instance [49] if {an}n∈Z is a lacunary
sequence such that an 6= o(1) but an = O(1), |n| → ∞, then

G(x) =
∞∑

n=−∞

an
n
einx (12.7)

is continuous, but if G ↔ G, then g = G′ does not have distributional point values at
any point. It follows that G is not the indefinite integral of a distributionally integrable
function in any interval.

Example 12.9. The Heaviside function H(x) does not have a value at the origin, of
course, and thus it is not the indefinite integral of a distributionally integrable function.
Naturally, if H ↔ H, then H′(x) = δ(x) is not a function. Similarly, the continuous
increasing Cantor function defined in [0, 1] is not the indefinite integral of a distribution-
ally integrable function in any interval that meets the Cantor set, since its distributional
derivative is not a function but rather a measure concentrated on the Cantor set.

Example 12.10. Let f be a locally distributionally integrable function such that if f ↔ f,

then f ∈ D′(R) satisfies

f(x) = O(|x|β) (C), |x| → ∞, (12.8)
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for some β < 1. Let

F (x, y) =
y

π
(dist)

∫ ∞
−∞

f(ξ) dξ
(x− ξ)2 + y2

(C), (12.9)

for x ∈ R and y > 0. The function F is the φ-transform of f with respect to the function

φ(x) =
1

π(x2 + 1)
. (12.10)

Naturally, F (x, y) is the Poisson integral of f, which is the harmonic function with
F (x, 0+) = f(x) that satisfies F (x, y) = O(|x|β) (C), |x| → ∞, for each fixed y > 0.

The boundary behavior of F is as follows: F (x, y) → f(w) as (x, y) → (w, 0) in any
sector y ≥ m|x− w| for m > 0, almost everywhere with respect to w ∈ R; this holds for
all w ∈ R whenever f is a Łojasiewicz function.

Example 12.11. Let us now consider the Fourier transform of tempered locally integrable
distributions. The characterization of the Fourier series of those periodic distributions
that have a distributional point value was given in [12]: If f(θ) =

∑∞
n=−∞ ane

inθ in the
space D′(R) then

f(θ0) = γ distributionally (12.11)

if and only if there exists k such that

lim
x→∞

∑
−x≤n≤ax

ane
inθ0 = γ (C, k) ∀a > 0. (12.12)

Therefore, if f is a periodic locally distributionally integrable function, of period 2π, then
the coefficients

an =
1
2π

(dist)
∫ 2π

0

f(θ)e−inθ dθ (12.13)

are well defined for all n ∈ Z, and

lim
x→∞

∑
−x≤n≤ax

ane
inθ = f(θ) (C, k) ∀a > 0, (12.14)

almost everywhere with respect to θ. If f is a Łojasiewicz function then (12.14) holds for
all θ ∈ R.

The characterization of the values of general Fourier transforms [48, 49] is as follows:
Let f ∈ S ′(R), and let x0 ∈ R; then

f(x0) = γ distributionally (12.15)

if and only if
e.v. 〈̂f(u), e−iux0〉 = 2πγ (C). (12.16)

We have chosen the constants in the Fourier transform in such a way that

f̂(u) =
∫ ∞
−∞

f(x)eixu dx, (12.17)

if the integral makes sense. In case f̂ is locally distributionally integrable this means that

e.v. (dist)
∫ ∞
−∞

f̂(u)e−iux0 du = 2πγ (C). (12.18)
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Suppose now that f is a locally integrable tempered distribution, f ↔ f. Then

e.v. 〈̂f(u), e−iux0〉 = 2πf(x0) (C), (12.19)

almost everywhere with respect to x0, and actually everywhere if f is a Łojasiewicz
function. When f̂ is also locally integrable, f̂ ↔ f̂, then (12.19) becomes

e.v. (dist)
∫ ∞
−∞

f̂(u)e−iux0 du = 2πf(x0) (C).

Example 12.12. Let f be a distribution defined in the complement of the origin, f ∈
D′(R \ {0}). There may or may not be a distribution g0 ∈ D′(R) whose restriction to
R \ {0} is f, which we call a regularization of f, but if one regularization exists then
there are infinitely many regularizations, since g(x) = g0(x) +

∑m
j=0 ajδ

(j)(x) is also a
regularization for any constants a0, . . . , am. It is known [14] that there is no continuous
way to choose the regularization g. Suppose now that f corresponds to a function f, locally
distributionally integrable in R \ {0} ; if f is distributionally integrable at x = 0 then it
has an associated distribution g0 ∈ D′(R), and then g0 is the canonical regularization of
the distribution f.

Example 12.13. Consider now an analytic function F (z) defined in the upper half-
plane =mz > 0, which we assume to vanish at ∞, F (z) → 0 as z → ∞ angularly in
the half-plane. Suppose that the distributional limit g(x) = F (x + i0) exists in D′(R)
([5, 6]), and let f be its restriction to R\{0} , which we assume to correspond to a locally
distributionally integrable function f in R \ {0} . If f is not distributionally integrable at
x = 0 then it does not define a canonical distribution in the whole real line, but f will
have at least a regularization g0. However, if f is also distributionally integrable at x = 0
then a corresponding distribution g0 ∈ D′(R) is defined by the association f ↔ g0. Both g

and g0 are regularizations of f; in general they do not coincide, but if f is distributionally
integrable at x = 0 then the results of [16] immediately yield g = g0, so that, if the
integral converges at infinity, we have the Cauchy representation

F (z) =
1

2πi
(dist)

∫ ∞
−∞

f(ξ)
ξ − z

dξ, =mz > 0. (12.20)

Take F (z) = 1/z. In this case f(x) = 1/x is not distributionally integrable at x = 0.
The standard regularization of f ∈ D′(R \ {0}), 1/x ↔ f, is g0 = (ln |x|)′ = p.v.(1/x).
However, g is another regularization, namely, g(x) = (x+i0)−1 = g0(x)−πiδ(x). Formula
(12.20) does not even make sense in this case.

On the other hand, if F (z) = e−i/z/z, then f(x) = e−i/x/x is actually distributionally
integrable at x = 0, and thus has an associated distribution g0 ∈ D′(R). In this case
g = g0, and (12.20) becomes

e−i/z

z
=

1
2πi

(dist)
∫ ∞
−∞

e−i/ξ

ξ(ξ − z)
dξ (12.21)

in the half-plane =mz > 0.
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