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Abstract

Always when a numerical method gives exact results an interesting functional equation arises.
And, since no regularity is assumed, some unexpected solutions may appear. Here we deal with
equations constructed in this spirit. The vast majority of this paper is devoted to the equation

l∑
i=0

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] = 0 (1)

and its particular cases.
We use Sablik’s lemma to prove that all solutions of (1) are polynomial functions. Since a

continuous polynomial function is an ordinary polynomial, the crucial problem throughout the
whole paper will be the continuity of solutions of (1).

The first of the particular forms of (1) which we consider is

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] (2)

and is motivated by the quadrature formulas of numerical integration. Quadrature rules give
exact results for polynomials, and therefore the following problem becomes interesting: do equa-
tions of the type (2) characterize polynomials? We present new results concerning this equation,
in particular, we obtain a general solution of (2) in the case of rational αi, βi, i = 1, . . . , n, and
we show that if (2) has discontinuous solutions then the equation

a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny) = 0

has nontrivial solutions. This result allows us to solve functional equations motivated by all
classical quadrature rules such as the rule of Simpson (this equation was already solved earlier),
Radau, Lobatto and Gauss.

Further we also consider the following equation:

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] + (y − x)2[g(y)− g(x)], (3)

which is connected with Hermite quadrature formulas where on the right-hand side derivatives
of f are used;

F (y)− F (x) = (y − x)[a1f(x) + b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny) + a1f(y)] (4)

+ (y − x)3[c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny)],

which stems from Birkhoff quadrature rules where f ′′ is involved; and

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny), (5)

which is motivated by formulas used in numerical differentiation. Results concerning (5) are used
to obtain new facts about the well known equation

f [x1, . . . , xn] = g(x1 + · · ·+ xn)

(f [x1, . . . , xn] is the nth divided difference of f).
We also present a direct method which may be used to show that solutions of (2) must be

polynomial functions and, motivated by this method, we obtain a generalization of the Aczél

[4]
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equation

F (y)− F (x) = (y − x)g

(
x+ y

2

)
.

At the end of the paper we present a list of open problems.
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1. Introduction

1.1. The origin of the problem. This paper is devoted mainly to the functional
equation

l∑
i=0

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] = 0 (1)

and to its diverse particular cases.
We shall deal with this equation for functions defined on R and taking values in R. It

is possible to prove numerous results on integral domains but then the assumptions (on
the domain) would expand and the results would become unclear. Therefore, for the sake
of simplicity, we restrict ourselves to the real case.

The idea to study this equation was motivated by the growing number of equations
of this form stemming from numerical analysis. The first of them is the equation

F (y)− F (x) = (y − x)[f1(α1x+ β1y) + · · ·+ fn(αnx+ βny)], (1.1)

which is connected with the classical quadrature rules used in numerical integration.
Particular cases of this equation were already studied by several authors.

The first author to be mentioned here is J. Aczél [1] who observed that the function
F (x) = x2 satisfies the equation

F (x)− F (y) = (y − x)F ′
(
x+ y

2

)
.

Then he introduced the functional equation

F (y)− F (x) = (y − x)f

(
x+ y

2

)
(1.2)

with two unknown functions f and F. In [1] it was proved that functions f, F satisfy
this equation if and only if f(x) = ax + b and F is its antiderivative (which was quite
surprising because no regularity of functions f and F was assumed). The problem of
continuity of solutions of equations which we consider will play a crucial role throughout
this paper. Aczél’s equation (1.2) was then generalized by W. Rudin [32] who asked for
the solutions of the equation

F (y)− F (x) = (y − x)f(sx+ ty), (1.3)

which was solved by M. S. Jacobson, Pl. Kannappan and P. K. Sahoo [13].
The next equation of the form (1.1), considered by Sh. Haruki [12], has the form

F (y)− F (x) = (y − x)[f(x) + f(y)]. (1.4)

[6]



Functional equations stemming from numerical analysis 7

Although Aczél and Haruki were not motivated by quadrature rules, we easily see
that equations (1.2), (1.3) and (1.4) are of the form (1.1).

Now we would like to give some examples of quadrature rules and construct the
related functional equations in the spirit of Aczél. His idea was to replace the derivative
by some unknown function and to find the solutions of the resulting functional equation.
As a consequence, he obtained a functional equation which may be considered without
assuming any regularity of the functions involved, and the continuity of solutions is a
consequence of the equation itself.

Quadrature rules are used in numerical analysis to approximate the definite integral
in the following way:∫ y

x

f(t) dt ≈ (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)]. (1.5)

Therefore we shall consider functional equations (1.1) and the equation

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)], (2)

which is a simplified (depexiderized) version of (1.1). We want to find the solutions of
these equations, which means that we want to determine for which functions the equations
connected with quadrature rules are exact. It will be shown that (2) is much more general
than (1.2) and it does not imply the continuity of f, in general.

It is worth noticing that the error we make when we calculate the integral using for-
mula (1.5) is just the derivative of certain order (calculated at some point) multiplied by
a constant. For this reason (1.5) is exact for polynomials of the degree which depends
on the number n, on the form of nodes αix + βiy and coefficients ai and, consequently,
equation (2) is satisfied by polynomials. Thus polynomials may be called “model solu-
tions”, and clearly we are interested in answering the question in which case functional
equations of the form (1.1) or (2) may have solutions other than polynomials.

The first quadrature rule which was studied from the point of view of functional
equations was the Simpson quadrature rule∫ y

x

f(t) dt ≈ (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
. (1.6)

Then the equation

F (y)− F (x) = (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
(1.7)

and its pexiderized version

F (y)− F (x) = (y − x)
[
f(x) + g(x+ y) + h(y)

]
(1.8)

were considered in [16], [31], [10], [19] and others.
The next example is given by the Simpson 3/8 rule∫ y

x

f(t) dt ≈ (y − x)

[
1

8
f(x) +

3

8
f

(
1

3
x+

2

3
y

)
+

3

8
f

(
2

3
x+

1

3
y

)
+

1

8
f(y)

]
.

T. Riedel and P. K. Sahoo [31] asked about solutions of the related functional equation

F (y)− F (x) = (y − x)[f(x) + g(x+ 2y) + g(2x+ y) + f(y)],
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which was then treated by Sahoo [35], [36]. Further M. Sablik and A. Lisak solved a
pexiderized version of [26] and a result on an integral domain with some properties was
obtained in [23].

Now we would like to consider more general quadrature rules. The most important
examples of quadrature rules are those of Gauss, Lobatto and Radau. In the Gaussian
quadrature rule all (suitably chosen) nodes lie in the interior of the interval [x, y], and this
rule is exact for polynomials of degree at most 2n− 1. For example if n = 2 then we get∫ y

x

f(t) dt ≈ (y − x)

[
f

(
3−
√

3

6
x+

3 +
√

3

6
y

)
+ f

(
3 +
√

3

6
x+

3−
√

3

6
y

)]
.

The functional equation connected with this quadrature rule is

F (y)− F (x) = (y − x)[f(αx+ βy) + f(βx+ αy)]

and was treated in [20]. This was the first paper where nodes with irrational coefficients
were admitted.

For the exact values of the node weights occurring in Gauss quadrature rules for n > 2

see e.g. [30, 45].
In the quadrature rules of Lobatto and Radau two (resp. one) of the endpoints are

used as nodes. Then of course the degree of polynomials for which the formula fits exactly
will get smaller. For example the two-node Radau rule∫ y

x

f(t) dt ≈ (y − x)

[
f(x) + f

(
1

3
x+

2

3
y

)]
is exact for polynomials of degree at most 2. For further details see [30, 46, 47].

The most general result (until now) concerning equations of the form (2) was proved
in [21] where it was shown (under some assumptions) that F must be continuous and if
αi + βi = 1, a1 + · · ·+ an 6= 0 then f must also be continuous.

Another formula used in numerical analysis to approximate the definite integral is
provided by the Hermite quadrature rule (we assume here that x < y)∫ y

x

f(t) dt ≈ y − x
n

[
f(x) + f(y)

2
+ f

(
x+

y − x
n

)
+ · · ·+ f

(
x+ (n− 1)

y − x
n

)]
+

(y − x)2

12
[f ′(x)− f ′(y)]. (1.9)

As we can see, in this case not only values of the function are used but also values of its
derivative. Thus this quadrature rule is exact for polynomials of higher degree than for
quadrature rules of the form (1.5) (if we use the same number of nodes). A functional
equation stemming from this quadrature rule (with n = 2)

F (y)− F (x) = (y − x)[f(x) + af(αx+ βy) + f(y)] + (y − x)2[g(y)− g(x)]

was solved in [22]. There are no results concerning solutions of the equation connected
with (1.9) in its full generality.

Moreover, sometimes also higher order derivatives are used to approximate the definite
integral. For example the Birkhoff quadrature rule∫ y

x

f(t) dt ≈ (y − x)

[
1

10
f(x) +

4

5
f

(
x+ y

2

)
1

10
f(y)

]
+

(y − x)3

60
f ′′
(
x+ y

2

)
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is exact for polynomials of degree at most 5. However, functional equations of the form

F (y)− F (x) =

l∑
i=1

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] (1.10)

with l > 2 have not been studied yet.
Observe that if we deal with functional equations stemming from quadrature rules,

it is enough to consider the functional equation (1.10). The reason that we deal with
(1) is that we want to cover the case of functional equations connected with numerical
differentiation. Thus we shall now write a few words about numerical differentiation. The
simplest way of approximating the derivative is by the formula

f ′(x) ≈ 1

2h
[f(x− h)− f(x+ h)],

which is exact for polynomials of degree at most 2. The related functional equation

g

(
x+ y

2

)
(y − x) = f(x)− f(y)

is still of the form (1.10). However, to obtain equations satisfied by polynomials of higher
degrees, more complicated formulas must be used, for example

f ′(x) ≈ 1

12h
[−f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)]

or

f ′′(x) ≈ 1

12h2
[−f(x+ 2h) + 16f(x+ h)− 30f(x) + 16f(x− h)− f(x− 2h)].

The corresponding functional equations are

3f

(
x+ y

2

)
(y − x) = F (x)− 8F

(
3x+ y

4

)
+ 8F

(
x+ 3y

4

)
− F (y)

and
3

4
f

(
x+ y

2

)
(y− x)2 = −F (x) + 16F

(
3x+ y

4

)
− 30F

(
x+ y

2

)
+ 16F

(
x+ 3y

4

)
−F (y).

Note that here h = y−x and the constants on the left-hand sides are introduced to ensure
that F ′ = f (in the case of regular solutions). Thus now we shall work with equations of
the form

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny), (5)

which are not of the form (1.10). To cover this case we introduce a more general equa-
tion (1). We shall prove that functions satisfying equations of this kind are polynomial
functions. However (as is easily seen) low order summands of f will not have to be con-
tinuous.

1.2. Known methods. We speak here about equations (2) and (1.1) only, because
equation (1) is introduced in the current paper and has not been studied yet.

There are several ways of solving functional equations of the type (2) and (1.1). The
first of them may be called “direct”. In this method no tools are required and solutions
are obtained by substitutions and other simple operations.
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Another method was used in [28], where the following theorem can be found.

Theorem 1.1. Let I ⊂ R be an open interval and let Ω ⊂ I × I be an open subset
containing the diagonal D(I) := {(x, x) : x ∈ I} of I. Then every continuous solution of∫ 1

0

f(x+ t(y − x)) dµ(t) = 0, (x, y) ∈ Ω, (1.11)

is a polynomial of degree at most n− 1 where n is the smallest nonnegative integer such
that

µn :=

∫ 1

0

tn dµ(t) 6= 0.

To see that from this theorem we can obtain solutions of functional equations of the
type (2) let us consider the equation

k + 1

y − x

∫ y

x

f(t) dt =
f(x) + f(y)

2
+ kf

(
x+ y

2

)
,

which may be rewritten in the form

f(x) + f(y)

2
+ kf

(
x+ y

2

)
− (k + 1)

∫ 1

0

f(t) dt = 0.

Now it suffices to consider the measure

µ :=
δ0 + δ1

2
+ kδ1/2 − (k + 1)λ,

where δt is the Dirac measure concentrated at t and λ stands for the Lebesgue measure.
Then we obtain an equation of the type (1.11), and after some further calculations it is
easy to show that f must be a polynomial of degree at most 3. For further details see [28]

However, this method works only if functions occurring in (1.1) are continuous.
The third method is based on a lemma proved by M. Sablik [33]. First, using this

lemma, we show that functions fi and F satisfying these equations must be polynomial
functions (continuous or not). In the next step we show that if some polynomial functions
satisfy our equation then their monomial summands are also solutions, and then we work
with these monomial functions. This method was used in [20], [21] in the case of equations
of the form (2). In the current paper we shall also use this method.

Remark 1.2. In general it is impossible to use Sablik’s lemma in order to show that
the F occurring in (1.1) and in (1.10) is a polynomial function. However, if we know that
other functions occurring in this equation are polynomial then it is easy to find the exact
form of F by taking x = 0 in this equation.

The diversity of sets of solutions in particular cases of equation (1) is so vast that it
is impossible to completely describe the set of its solutions. However, if we know that
solutions of some particular case of (1) are continuous then these functions must be
polynomials.

Therefore the continuity of solutions plays a crucial role here.

1.3. A short description of new results. In the first part of the paper we prove that
all solutions of (1) must be polynomial functions. This is a generalization of the result



Functional equations stemming from numerical analysis 11

from [23] where the same assertion was proved for (1.1). If we know that solutions of this
equation are polynomial functions then the problem we face is their continuity.

In [21] it was proved (under some assumptions) that if f and F satisfy (2) then
F must be continuous, and if αi, βi, ai satisfy some additional assumptions then f is
also continuous. In the current paper we extend results of this kind, i.e. we shall prove
the continuity of F for the much more general equation (1.10). As a consequence, we
shall answer a question posed by M. Sablik. More precisely, it will be proved that if the
functional equation (1.1) has a discontinuous solution then the equation

a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny) = 0

has a nontrivial solution. We shall even prove a more general result which may be called
a monomial version of the conjecture of Sablik. It is worth noticing that the main result
of [21] may be easily obtained from this theorem. Moreover, using this theorem, we shall
obtain a complete solution of (2) with rational αi, βi.

Further the result that F satisfying (1.10) (with some fj,i) must be continuous will
be used to deal with equations

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] + (y − x)2[g(y)− g(x)],

motivated by the Hermite quadrature rule, and

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)]

+ (y − x)3[a1g(α1x+ β1y) + · · ·+ ang(αnx+ βny)],

connected with the Birkhoff quadrature rules. In both cases we shall be able to prove the
continuity of the functions involved (under some reasonable assumptions).

Then we consider equations stemming from numerical differentiation, i.e. (5). This
equation seems more difficult to deal with than the previous ones. Obviously (5) is a
particular case of (1) but it is harder to obtain a continuity result similar to those which
are valid in the case of (1.10). We shall prove a result of this kind but the assumptions
needed will be much stronger than in the case of (1.1). Then we shall apply the result
obtained to get the solutions of the equation

g(x1 + · · ·+ xn) = f [x1, . . . , xn]

assuming that x1, . . . , xn belong to some subset of Rn (f [x1, . . . , xn] is the nth divided
difference of f). This means that the result we obtain is, in fact, stronger than known
results concerning this equation. We shall also present a new and simple way to prove
that functions fi satisfying (1.1) must be polynomial functions (without use of Sablik’s
lemma). Surprisingly, this method also works if the equation considered is satisfied on an
interval. Then (motivated by this method) we shall present a far-reaching generalization
of equation (1.2).

As discussed in the last part of the paper, this method can also be used to prove the
superstability of equation (1.2) (which was done in [40]) and of the equation considered
by Sh. Haruki,

F (y)− F (x) = (y − x)[f(x) + f(y)]. (1.4)
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2. Preliminaries

2.1. Polynomial functions. First we shall introduce a notion of polynomial functions
which will play an important role throughout. Our approach is based on [25] where also
further details may be found. Let I ⊂ R be an interval, let f : I → R be an arbitrary
function and let x, h ∈ R be such that x, x+ h ∈ I. The difference operator with span h
is given by

∆hf(x) = f(x+ h)− f(x).

The iterates ∆n
h are defined recursively,

∆0
hf := f, ∆n+1

h f := ∆h(∆n
hf), n = 1, 2, . . . .

Using this operator, we define polynomial functions in the following way:

Definition 2.1. A function f : R→ R is called a polynomial function of order n if

∆n+1
h f(x) = 0 for all x ∈ R.

The shape of solutions of this equation was obtained in [27]. To present this result we
shall need the notion of multiadditive functions. A function f : Rn → R is n-additive if
for every i ∈ {1, . . . , n} and all x1, . . . , xn, yi ∈ R we have

f(x1, . . . , xi−1, xi + yi, xi+1, . . . , xn)

= f(x1, . . . , xi−1, xi, xi+1, . . . , xn) + f(x1, . . . , xi−1, yi, xi+1, . . . , xn).

Further, having a function F : Rn → R, by the diagonalization of F we mean the function
f defined by

f(x) := F (x, . . . , x).

Now we can present the characterization of polynomial functions.

Theorem 2.2. Let f : R → R be a polynomial function of order n. Then there exist
unique k-additive functions Fk : Rk → R, k = 1, . . . , n, and a constant a0 such that

f(x) = a0 + f1(x) + · · ·+ fn(x), (2.1)

where fk is the diagonalization of Fk. Conversely, every function of the shape (2.1) is a
polynomial function of order n.

One should also mention a result of L. Székelyhidi [39, Theorem 9.5]:

Theorem 2.3. Let G be an Abelian semigroup, S an Abelian group, n a nonnegative
integer, ϕi, ψi additive functions from G to G and let ϕi(G) ⊂ ψi(G), i = 1, . . . , n. If
functions f, fi : G→ S satisfy the equation

f(x) +

n∑
i=1

fi(ϕi(x) + ψi(y)) = 0 (2.2)

then ∆h1,...,hnf(x) = 0.
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2.2. Sablik’s lemma. If we want to solve the functional equation (1.1) then one of the
main steps in the proof is to show that functions satisfying this equation are polynomial
functions. In [23], [20] this was done using a lemma proved in [33]. To quote this profound
generalization of Theorem 2.3 we introduce some notation.

Let G,H be Abelian groups and SA0(G,H) := H, SA1(G,H) := Hom(G,H) (i.e.
the group of all homomorphisms from G into H), and for i ∈ N, i ≥ 2, let SAi(G,H) be
the group of all i-additive and symmetric mappings from Gi into H. Furthermore, let

P := {(α, β) ∈ Hom(G,G)2 : α(G) ⊂ β(G)}.

Finally, for x ∈ G let x〈i〉 = (x, . . . , x)︸ ︷︷ ︸
i

, i ∈ N.

Lemma 2.4. Fix N ∈ N ∪ {0} and let I0, . . . , IN be finite subsets of P. Suppose that H
is uniquely divisible by N ! and that ϕi : G → SAi(G,H) and ψi,(α,β) : G → SAi(G,H)

((α, β) ∈ Ii, i = 0, . . . , N) satisfy

ϕN (x)(y〈N〉) +

N−1∑
i=0

ϕi(x)(y〈i〉) =

N∑
i=0

∑
(α,β)∈Ii

ψi,(α,β)
(
α(x) + β(y)

)
(y〈i〉) (2.3)

for all x, y ∈ G. Then ϕN is a polynomial function of order at most k − 1, where

k =

N∑
i=0

card
( N⋃
s=i

Is

)
.

In Sablik’s original result the order of ϕN was not greater than k, while I. Pawlikowska
[29] noticed that it can be lowered by 1.

Using this lemma, it can be proved (under some mild assumptions) that all solutions
fi of (1.1) must be polynomial functions (see [23]).

Now we shall prove a much more general result concerning the equation
l∑
i=0

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] = 0. (1)

To do this we shall need a generalized version of Lemma 2.4 which can be found in [26].

Lemma 2.5. Let N,M,K ∈ N∪{0} and let I0, . . . , IM+K be finite subsets of P. Suppose
further that H is uniquely divisible by N ! and that functions ϕi : G → SAi(G;H),

i = 0, . . . , N , and functions ψi,(α,β) : G → SAi(G;H) ((α, β) ∈ Ii, i = 0, . . . ,M + K)

satisfy

ϕN (x)(y〈N〉) +

N−1∑
i=0

ϕi(x)(y〈i〉) =

M∑
i=0

∑
(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(y〈i〉)

+

M+K∑
i=M+1

∑
(α,β)∈Ii

ψi,(α,β)(α(x) + β(y))(x〈i〉) (2.4)

for all x, y ∈ G. Then ϕn is a polynomial function of order not greater than
M+K∑
i=0

card
(M+K⋃

s=i

Is

)
− 1.
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Using this lemma, we shall prove that functions fj,i satisfying (1) are polynomial.

Theorem 2.6. Let l and ki, i = 0, . . . , l, be positive integers and let

α1,i, . . . , αki,i, β1,i, . . . , βki,i ∈ R (2.5)

for i ∈ {0, . . . , l}. Assume that functions fj,i : R → R, i = 0, . . . , l, j = 1, . . . , ki, fulfill
for any x, y ∈ R the functional equation

l∑
i=0

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] = 0. (1)

Let i0 ∈ {0, . . . , l} and j0 ∈ {1, . . . , ki0} be such that

αj0,i0 + βj0,i0 6= 0, (2.6)

and set
Ji :=

{
(αj,i, βj,i) : j ∈ {1, . . . , ki},

∣∣αj0,i0
βj0,i0

αj,i βj,i

∣∣ = 0
}
.

If
Ji0 = {(αj0,i0 , βj0,i0)} and Ji = ∅ for all i ∈ {i0 + 1, . . . , l} (2.7)

then fj0,i0 is a polynomial function of order at most

l∑
i=0

card
( l⋃
s=i

(
{(α1,s, β1,s), . . . , (αks,s, βks,s)} \ Js

))
− 1.

Proof. First we take x̃ =
x−βj0,i0

y

αj0,i0+βj0,i0
, ỹ =

x+αj0,i0
y

αj0,i0+βj0,i0
in place of x and y in (1). We

obtain ỹ − x̃ = y. Thus (1) turns into

l∑
i=0

yi
[
f1,i

(
α1,i + β1,i

αj0,i0 + βj0,i0
x+

αj0,i0β1,i − α1,iβj0,i0
αj0,i0 + βj0,i0

y

)
+ · · ·+ fki,i

(
αki,i + βki,i
αj0,i0 + βj0,i0

x+
αj0,i0βki,i − αki,iβj0,i0

αj0,i0 + βj0,i0
y

)]
= 0. (2.8)

Now we denote

γj,i :=
αj,i + βj,i

αj0,i0 + βj0,i0
and δj,i :=

αj0,i0βj,i − αj,iβj0,i0
αj0,i0 + βj0,i0

which, in view of (2.8), gives

l∑
i=0

yi[f1,i(γ1,ix+ δ1,iy) + · · ·+ fki,i(γki,ix+ δki,iy)] = 0.

However,
γj0,i0 = 1 and δj0,i0 = 0,

thus,
fj0,i0(γj0,i0x+ δj0,i0y) = fj0,i0(x),
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i.e.

−yi0fj0,i0(x) =
∑

i∈{0,...,l}\{i0}

yi[f1,i(γ1,ix+ δ1.iy) + · · ·+ fki,i(γki,ix+ δki,iy)]

+ yi0
[
f1,i0(γ1,i0x+ δ1,i0y) + · · ·+ fj0−1,i0(γj0−1,i0x+ δj0−1,i0y)

+ fj0+1,i0(γj0+1,i0x+ δj0+1,i0y) + · · ·+ fki0 ,i0(γki0 ,i0x+ δki0 ,i0y)
]
. (2.9)

Observe that for (j, i) such that (αj,i, βj,i) ∈ Ji we have δj,i = 0, which means that

fj,i(γj,ix+ δj,iy) = fj,i(γj,ix) if (αj,i, βj,i) ∈ Ji.

Using this equality in (2.9), we arrive at

− yi0fj0,i0(x)−
i0−1∑
i=0

yi
∑

j∈{1,...,ki}∩{Ji}

fj,i(γj,ix)

=

l∑
i=0

yi
∑

j∈{1,...,ki}\{Ji}

fj,i(γj,ix+ δj,iy). (2.10)

Note that, in view of (2.7), no summand on the left-hand side contains yi with i > i0.

Moreover, all the δj,i on the right-hand side are different from zero. This means that
(2.10) is of the form (2.4) with

N = i0, M = l, K = 0,

ϕN = −fj0,i0 , ϕi(x) = −
∑

j∈{1,...,ki}∩{Ji}

fj,i(γj,ix),

Ii = {(α1,i, β1,i), . . . , (αki,i, βki,i)} \ Ji

(we identify the number α with the mapping x 7→ αx) and

ψi,(αj,i,βj,i) = fj,i.

This means that all assumptions of Lemma 2.5 are satisfied, so fj0,i0 is a polynomial
function of the desired order.

Now we shall present some simple examples showing how this theorem may be used
in concrete situations.

Proposition 2.7. If functions F and f satisfy the equation

F (y)− F (x) = (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
(1.7)

then f is a polynomial function of degree at most 3.

Proof. We write (1.7) in the form

F (y)− F (x)− (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
= 0
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and we take l = 1,

k0 = 2, f1,0 = F, f2,0 = −F, (α1,0, β1,0) = (0, 1), (α2,0, β2,0) = (1, 0),

k1 = 3, f11 = −1

6
f, f12 = −2

3
f, f13 = −1

6
f,

(α1,1, β1,1) = (1, 0), (α2,1, β2,1) =

(
1

2
,

1

2

)
, (α3,1, β3,1) = (0, 1).

Further we take i0 = 1, j0 = 2; it is easy to see that all assumptions of Theorem 2.6
are satisfied, thus 2

3f = fj0,i0 is a polynomial function of order at most

card
(
{(α1,0, β1,0), (α2,0, β2,0)} ∪ {(α1,1, β1,1), (α3,1, β3,1)}

)
+ card{(α1,1, β1,1), (α3,1, β3,1)} − 1 = 3.

Remark 2.8. To give one more example of applications of Theorem 2.6 note that, as in
Proposition 2.7, it may be proved that if functions F and f satisfy

F (y)− F (x) = (y − x)

[
1

8
f(x) +

3

8
f

(
3x+ y

4

)
+

3

8
f

(
x+ 3y

4

)
+

1

8
f(y)

]
(2.11)

then f is a polynomial function of degree at most

card

({
(1, 0),

(
1

4
,

3

4

)
, (0, 1)

}
∪ {(1, 0), (0, 1)}

)
+ card

{
(1, 0),

(
1

4
,

3

4

)
, (0, 1)

}
− 1 = 5.

Remark 2.9. Notice that we could choose 1
6f as fj0,i0 in the proof of Proposition 2.7,

but it is impossible to use Theorem 2.6 to show that F satisfying (1.7) is a polynomial.
Indeed, if fj0,i0 = F then assumption (2.7) is not satisfied. A similar situation occurs for
the equation

F (y)− F (x) = (y − x)[f(x) + f(y)] + (y − x)2[g(x)− g(y)]

(see [22]) where it is impossible to use Theorem 2.6 to show that f is a polynomial.

The following example will show that assumption (2.7) of Theorem 2.6 is essential.

Example 2.10. The functional equation

F (y)− F (x) = (y − x)[f(x+ y) + g(2x+ 2y)]

is satisfied by F (x) = const and g(x) = −f(x/2) where f is any function. This means
that assumption (2.7) of Theorem 2.6 is essential.

2.3. A new method. Now we shall present a simple and direct method which may be
used to prove that solutions of functional equations of quadrature type are polynomial
functions. This method is not as universal as Theorem 2.6 but there are several rea-
sons to present it. First of all, this method will later bring us an idea of an interesting
generalization of (1.2). Further, in some cases we shall prove that functions satisfying
particular versions of equations of the type (1.1) are polynomial of lower order than it
would be possible with the use of Theorem 2.6 and, moreover, this method may be used
on an interval. Finally this method (after a suitable modification) may be used to obtain
stability results.

We shall prove
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Proposition 2.11. If functions f, F satisfy the equation

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] (2)

then f satisfies the equation

a1f((α1 + β1)x+ β1h) + · · ·+ anf((αn + βn)x+ βnh)

+ a1f((α1 + β1)x+ (α1 + 2β1)h) + · · ·+ anf((αn + βn)x+ (αn + 2βn)h)

= 2[a1f((α1 + β1)x+ 2β1h) + · · ·+ anf((αn + βn)x+ 2βnh)] (2.12)

for all x, h ∈ R.

Proof. Substituting x+ h in place of y in (2), we get

F (x+ h)− F (x) = h[a1f((α1 + β1)x+ β1h) + · · ·+ anf((αn + βn)x+ βnh)].

Taking x+ h instead of x and x+ 2h in place of y, we obtain

F (x+ 2h)− F (x+ h)

= h
[
a1f((α1 + β1)x+ (α1 + 2β1)h) + · · ·+ anf((αn + βn)x+ (αn + 2βn)h)

]
;

adding these two equations, we arrive at

F (x+ 2h)− F (x) = h
[
a1f((α1 + β1)x+ β1h) + · · ·+ anf((αn + βn)x+ βnh)

+ a1f((α1 + β1)x+ (α1 + 2β1h) + · · ·+ anf((αn + βn)x+ (αn + 2βnh)
]
. (2.13)

But, on the other hand, taking y = x+ 2h in (2), we get

F (x+ 2h)− F (x) = 2h[a1f((α1 + β1)x+ 2β1h) + · · ·+ anf((αn + βn)x+ 2βnh)],

which together with (2.13) yields (2.12).

Remark 2.12. Using this proposition, we can show that if f, F satisfy (1.2) then f must
be an affine function (additive plus a constant). Indeed, in this case, α = β = 1/2 and
from (2.12) we get

f

(
x+

h

2

)
+ f

(
x+

3h

2

)
= 2f(x+ h),

which after substituting x+ h in place of x and 2h instead of h, yields ∆2
hf(x) = 0, thus

f(x) = a(x) + b for some additive a : R→ R.

Remark 2.13. In view of Theorem 2.3, functions satisfying (1.1) are polynomial of order
at most 3n− 2.

Note that, in general, the order obtained in Remark 2.13 is higher than the one
provided by Sablik’s result but in some concrete situations we obtain the same or even
better estimate of this order. First we prove the following proposition.

Proposition 2.14. Let functions f, F : R→ R satisfy the equation

F (y)−F (x) = (y−x)

[
a1f(x)+a2f

(
x+

y − x
n− 1

)
+a3f

(
x+2

y − x
n− 1

)
+· · ·+anf(y)

]
(2.14)

for some n ∈ N \ {1} and ai ∈ R, i = 1, . . . , n. Then f is a polynomial function of order
at most 2n− 3.
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Proof. Equation (2.14) is of the form (2) with

αi = 1− i− 1

n− 1
and βi =

i− 1

n− 1
, i = 1, . . . , n. (2.15)

Therefore, we know from Proposition 2.11 that (2.12) is satisfied. Now, using (2.15) in
(2.12), we get

a1f(x) + a2f

(
x+

h

n− 1

)
+ · · ·+ anf

(
x+ (n− 1)

h

n− 1

)
+ a1f(x+ h) + a2f

(
x+

nh

n− 1

)
+ · · ·+ anf(x+ 2h)

= 2

[
a1f(x) + a2f

(
x+ 2

h

n− 1

)
+ · · ·+ anf(x+ 2h)

]
. (2.16)

Observe that each point occurring on the right-hand side is also present on the left-hand
side. Moreover, the last summand of the first sum involves the same point as the first
summand of the second sum. This means that there are only 2n − 1 distinct points in
this equation, and in view of Theorem 2.3 we conclude that f is a polynomial function
of order at most 2n− 1− 2 = 2n− 3.

Remark 2.15. The above proposition may be used for the equations

F (y)− F (x) = (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
, (1.7)

F (y)− F (x) = (y − x)

[
1

8
f(x) +

3

8
f

(
3x+ y

4

)
+

3

8
f

(
x+ 3y

4

)
+

1

8
f(y)

]
(2.11)

and all other equations stemming from quadrature rules with equidistant nodes.

Remark 2.16. In some papers (see for example [10] and [29]) the case of x, y lying in
an interval is considered. It is worth noticing that the method presented here is based on
Székelyhidi’s result, and since there are versions of the Székelyhidi lemma on an interval
(see [38]), we may also use this method for functions defined on an interval. However, we
shall not go into the details.

3. Continuity of functions satisfying (1.1)

3.1. Introduction. The first functional equation stemming directly from a quadrature
rule which may be found in papers devoted to functional equations is the equation

F (y)− F (x) = (y − x)

[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
(1.7)

connected with (1.6). Results concerning this equation may be found in [31] in the case
of functions acting on R, in [19] for functions acting on an integral domain and in [10]
on the interval. The situation here is similar to that of equation (1.2), i.e. all solutions
of (1.7) are continuous. More precisely, if f and F satisfy (1.7) then f is a polynomial of
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degree at most 3 and F is a primitive function of f. However if we consider the (partially)
pexiderized version of (1.7)

F (y)− F (x) = (y − x)

[
f(x) + g

(
x+ y

2

)
+ h(y)

]
(3.1)

then the situation becomes different. Let us quote [31, Theorem 3.8, p. 106]:

Theorem 3.1. The functions f, g, h, k : R→ R satisfy the functional equation

f(x)− g(y) = (x− y)[h(x+ y) + k(x) + k(y)] (3.2)

for all x, y ∈ R if and only if

f(x) = 3ax4 + 2bx3 + cx2 + dx+ s,

g(x) = 3ax4 + 2bx3 + cx2 + dx+ s,

h(x) = ax3 + bx2 +A(x) + d− 2t,

k(x) = 2ax3 + bx2 + cx−A(x) + t,

where A : R→ R is an additive function and a, b, c, d, s, t ∈ R are arbitrary constants.

In this theorem the left-hand side of (3.1) is slightly generalized but, since the sub-
stitution x = y yields f = g, it does not make a big difference. In [31] a similar result is
proved in the case where instead of two occurrences of k two different functions are used
but this (more general) equation can easily be solved with the use of Theorem 3.1.

There are three interesting properties of solutions of (3.1) to observe here:

(i) f and g are continuous (although no regularity is assumed),
(ii) possibly discontinuous parts of h and k vanish at the right-hand side,
(iii) there are no discontinuous monomial summands of orders 2 and 3.

All these interesting properties of solutions of (3.2) will be explained by the main
result of the current section.

Before we proceed to this result let us notice that one more problem occurs when
we deal with equations of the form (1.1). As we can see, the set of solutions of (3.2) is
already quite rich (it depends on six constants and one additive function). The situation
becomes more complicated if we increase the length of the right-hand side of (1.1). Let
us for example consider the equation

g(y)− f(x) = (y − x)[h(x) + k(sx+ ty) + k(tx+ sy) + h(y)], (3.3)

which was solved (under some regularity assumptions) by P. K. Sahoo [36] and then
a general solution was obtained by A. Lisak and M. Sablik [26] for rational s, t (the
particular case g = f , s = 2, t = 1 for functions acting on an integral domain was treated
in [24]). A pexiderized version of (3.3)

f1(y)− g1(x) = (y − x)[f2(x) + f3(sx+ ty) + f4(tx+ sy) + f5(y)] (3.4)

was also solved in [26], and in this case solutions depend on six arbitrary constants, two
additive functions and one biadditive and symmetric function. Moreover, it should be
emphasized that only one of the four points occurring on the right-hand side of (3.4) is
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arbitrary (two points are chosen as the endpoints of the interval [x, y] and the fourth one
is symmetric to the first).

Therefore it is not possible to present a full set of solutions of (1.1), however if we
prove that all solutions of (1.1) (in some case) are continuous then, in view of Lemma 2.6,
we can see that these solutions are ordinary polynomials. This means that the continuity
of solutions plays a crucial role here.

3.2. Main result. First notice that, using Theorem 2.6, it is possible to show that
functions satisfying equation (1.1) are polynomial. Now we shall prove that it is possible
to work with their monomial summands.

Lemma 3.2. Let m, k ∈ N, α1, . . . , αk, β1, . . . , βk ∈ R be some constants, let functions
F, fi : R→ R be of the form

fi(x) := fm,i(x) + · · ·+ f1,i(x) + t0,i, i = 1, . . . , n, (3.5)

and
F (x) := Fm+1(x) + · · ·+ F1(x) + T0, (3.6)

where T0, t0,i ∈ R are some constants and functions Fj , fj,i, i = 1, . . . , n, satisfy

Fj(2x) = 2jFj(x), x ∈ R, j = 1, . . . ,m+ 1, (3.7)

fj,i(2x) = 2jfj,i(x), x ∈ R, i = 1, . . . , n, j = 1, . . . ,m. (3.8)

If the functions fi, i = 1, . . . , n, and F satisfy the equation

F (y)− F (x) = (y − x)[f1(α1x+ β1y) + · · ·+ fn(αnx+ βny)] (1.1)

then for each j ∈ {1, . . . ,m} the functions Fj+1, fj,i, i = 1, . . . , n, satisfy (1.1).

Proof. Denote F0(x) := T0, f0,i(x) := t0,i, x ∈ R, i = 1, . . . , k. Then we may write (1.1)
in the form

m+1∑
j=0

Fj(x)−
m+1∑
j=0

Fj(y) = (y − x)

n∑
i=1

m∑
j=0

fj,i(αix+ βiy). (3.9)

Then, substituting in (1.1) 2x in place of x and 2y in place of y, we may write
m+1∑
j=1

2jFj(x)−
m+1∑
j=1

2jFj(y) = 2(y − x)

n∑
i=1

m∑
j=0

2jfj,i(αix+ βiy) (3.10)

(sums on the left-hand side begin with j = 1 since T0 vanishes). Multiplying (3.9) by 2

and subtracting the resulting equation from (3.10), we get
m+1∑
j=2

(2j − 2)Fj(x)−
m+1∑
j=2

(2j − 2)Fj(y) = 2(y − x)

n∑
i=1

m∑
j=1

(2j − 1)fj,i(αix+ βiy),

i.e.
m+1∑
j=2

(2j−2)Fj(x)−
m+1∑
j=2

(2j−2)Fj(y) = (y−x)

n∑
i=1

m∑
j=1

(2j+1−2)fj,i(αix+βiy). (3.11)
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This means that we have eliminated F1 and fi,0, i = 1, . . . , n. Now we substitute 2x and
2y in place of x and y, respectively, in (3.11), to get

m+1∑
j=2

2j(2j − 2)Fj(x)−
m+1∑
j=2

2j(2j − 2)Fj(y)

= 2(y − x)

n∑
i=1

m∑
j=1

2j(2j+1 − 2)fj,i(αix+ βiy). (3.12)

Further we multiply (3.11) by 4 and we subtract the result from (3.12). The functions F2

and f1,i, i = 1, . . . , n, will not occur in the equation obtained. Repeating this procedure
m times, we obtain a sequence of equations. The last of them is

bFm+1(y)− bFm+1(x) = b(y − x)[fm,1(α1x+ β1y) + · · ·+ fm,n(αnx+ βny)], (3.13)

where b 6= 0 is some real constant. This means that Fm+1, f1,m, . . . , fn,m satisfy (1.1).
However, the last but one equation reads

[cFm+1(y) + dFm(y)]− [cFm+1(x) + dFm(x)]

= c(y − x)[fm,1(α1x+ β1y) + · · ·+ fm,n(αnx+ βny)]

+ d(y − x)[fm−1,1(α1x+ β1y) + · · ·+ fm−1,n(αnx+ βny)].

Together with (3.13) this means that Fm, fm−1,1, . . . , fm−1,n satisfy (1.1). Proceeding
further in the same manner we obtain our assertion.

Remark 3.3. For the sake of simplicity in Lemma 3.2 we proved a result concerning
equation (1.1). It is clear that the analogous assertion is true in the case of (1), however
the proof in this case would become unnecessarily complicated.

In [21] continuity results concerning equation (2) were obtained in the following way:
after substituting x = 0 a formula expressing F was obtained. Then this formula was
used in (2). After some further observations, continuity of F was proved. Our approach
will be different. We shall act in a more direct way, and our result will be both simpler
and valid for a very broad class of functional equations. First we shall prove the following
simple but useful lemma.

Lemma 3.4. Let k be a positive integer, let F : R → R be a monomial function of
order k, let c, d be constants and let ϕi : R → R be monomial functions of order i for
i = 1, . . . , k − 1. If these functions satisfy the equation

F (y)− c = (y − 1)[d+ ϕ1(y) + · · ·+ ϕk−1(y)] (3.14)

then the functions ϕi, i = 1, . . . , k − 1, and F are continuous, and moreover

ϕ1(y) = dy,

ϕ2(y) = dy2,

...

ϕk−1(y) = dyk−1,

F (y) = dyk.
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Proof. It is enough to equate terms of equal orders occurring in (3.14). Indeed, equating
terms of order 1 we obtain dy = ϕ1(y), which means that ϕ1 is continuous. But equating
terms of order 2 we get yϕ1(y) = ϕ2(y), i.e.

ϕ2(y) = dy2.

Continuing, we obtain continuity of all functions ϕi. Finally equating functions of order
k we get

F (y) = yϕk−1(y) = dyk.

We are ready to state the most important result of this section. We shall prove it
for an equation which may be called a depexiderized version of (1.10) and which is more
general than (2).

Theorem 3.5. Let l and ki, i = 0, . . . , l, be given positive integers and let

α1,i, . . . , αki,i, β1,i, . . . , βki,i ∈ R, ai ∈ R \ {0} (3.15)

for i ∈ {0, . . . , l}. Assume that fj,i : R→ R fulfill for any x, y ∈ R the functional equation

F (y)− F (x) =

l∑
i=1

(y − x)i[a1,ifi(α1,ix+ β1,iy) + · · ·+ aki,ifi(αki,ix+ βki,iy)]. (3.16)

Suppose that for all i ∈ {1, . . . , l} there exists j ∈ {1, . . . , ki} such that αj,i +βj,i 6= 0 and∣∣∣∣ αj,i βj,i
αm,n βm,n

∣∣∣∣ 6= 0 (3.17)

for all n ∈ {i + 1, . . . , l}, m ∈ {1, . . . , kn} and for all pairs (m, i) with m 6= j. Then
f1, . . . , fl are polynomial functions and F is a polynomial.

Proof. It is easy to see that all assumptions of Theorem 2.6 are satisfied, which means
that all functions fi are polynomial. Let us write

fi(x) = A0 +A1,i(x) +A2,i(x, x) + · · ·+Ani,i(x,
(ni). . . , x),

where (x, (n). . ., x) denotes (x, . . . , x) (n times), A0 is a constant and Am,i : Rm → R is m-
additive and symmetric. This means that fi are of the form (3.5) where diagonalizations
of Aj,i satisfy (3.8). Taking x = 0, we obtain

F (y) =

l∑
i=1

(y)i[a1,ifi(β1,iy) + · · ·+ aki,ifi(βki,iy)],

which means that F is also of the form (3.6) where Fi satisfy (3.7), and therefore we
may use Lemma 3.2. This lemma was stated for a simpler equation (1.1) but, as was
mentioned in Remark 3.3, this result is also valid in our case.

Thus, from now on we shall work with monomial functions, i.e. we shall assume that
F is a monomial function of order m and that

fi(x) = Am−i(x,
(m−i). . . , x), x ∈ R, (3.18)

where Aj is j-additive and symmetric for j = 1, . . . ,m− 1.
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Now we take x = 1 in (3.16) to get

F (y)− F (1) =

l∑
i=1

(y − 1)i[a1,ifi(α1,i + β1,iy) + · · ·+ aki,ifi(αki,i + βki,iy)]. (3.19)

Using (3.18), we may write, for any constants α, β ∈ R,

fi(α+ βy) = Am−i(α,
(m−i). . . , α) + (m− i)Am−i(α, (m−i−1). . . , α, βy)

+ · · ·+ (m− i)Am−i(α, βy, (m−i−1). . . , βy) +A(βy, (m−i). . . , βy). (3.20)

Now, let i ∈ {1, . . . , l} and let gi be defined by the formula

gi(y) := (y − 1)i−1[a1,ifi(α1,i + β1,iy) + · · ·+ aki,ifi(αki,i + βki,iy)]. (3.21)

Then from (3.19) we get

F (y)− F (1) = (y − 1)[g1(y) + · · ·+ gl(y)]. (3.22)

Now, using (3.20), it is easy to see that

gi(y) = gm−1,i(y) + · · ·+ g1,i(y) + g0,i, (3.23)

where gj,i for j = 1, . . . ,m− 1 are monomial functions of order j and g0,i is a constant.
Indeed, let g0,i be the sum of all constants occurring in (3.21), further let g1,i contain all
functions of order 1 occurring in (3.21), and so on. Using (3.23) in (3.22), we arrive at

F (y)− F (1) = (y − 1)

(m−1∑
j=0

gj,1 + · · ·+
m−1∑
j=0

gj,l

)
.

Now we define ϕj(y) :=
∑l
i=1 gj,i(y) to get

F (y)− F (1) = (y − 1)

m−1∑
j=0

ϕj(y),

which, in view of Lemma 3.4, means that F is a monomial of degree m.
We have proved that each monomial summand of F is an ordinary monomial. Thus

F is a polynomial.

Remark 3.6. For simplicity we proved the above theorem for equation (3.16); it is clear
that the continuity of F may also be obtained in the case of the more general equation
(1.10).

3.3. Applications. Using Theorem 3.5, we shall answer a question asked by M. Sablik,
we shall prove a result which was obtained in [21] and we shall show how these results
may be used to solve some concrete equations. First we need a technical lemma.

Lemma 3.7. If f : R→ R is a monomial function, α, β, x, y ∈ R and qn is a sequence of
rational numbers that tends to 1 then

lim
n→∞

f(αqnx+ βy) = f(αx+ βy).
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Proof. Let f be a monomial function of order k. Then f(x) = A(x, (k). . ., x), and conse-
quently

f(αqnx+ βy)

= f(qnαx) + kA(qnαx,
(k−1). . . , qnαx, βy) + · · ·+ kA(qnαx, qnαx,

(k−1). . . , qnαx) + f(βy)

= qknf(αx) + qk−1n kA(αx, (k−1). . . , αx, βy) + · · ·+ qnkA(αx, βy, (k−1). . . , βy) + f(βy).

Now, since qn → 1, we obtain our assertion.

Theorem 3.8. Let f1, . . . , fn : R → R be monomial functions of order k and let F be
a monomial function of order k + 1. If f1, . . . , fn, F satisfy (1.1) with some αi, βi ∈ R,
i = 1, . . . , n, and there exists i0 ∈ {1, . . . , n} such that fi0 is discontinuous then there
exist monomial functions g1, . . . , gn : R→ R of order k, not all zero, satisfying

g1(α1x+ β1y) + · · ·+ gn(αnx+ βny) = 0. (3.24)

Proof. Assume that fi0 is discontinuous. Then there exists a ∈ R such that

fi0(ax) 6= akfi0(x). (3.25)

Using this a, we define

gi(x) := akfi(x)− fi(akx), k = 1, . . . , n. (3.26)

We have

F (y)− F (x) = (y − x)[f1(α1x+ β1y) + · · ·+ fn(αnx+ βny)], (1.1)

but also

F (ay)− F (ax) = a(y − x)[f1(a(α1x+ β1y)) + · · ·+ fn(a(αnx+ βny))]. (3.27)

Now, since from Theorem 3.5 (or more precisely from Remark 3.6) we know that F is
continuous, we deduce from (3.27) the equation

ak[F (y)− F (x)] = (y − x)[f1(a(α1x+ β1y)) + · · ·+ fn(a(αnx+ βny))]. (3.28)

On the other hand, multiplying (1.1) by ak, we obtain

ak[F (y)− F (x)] = ak(y − x)[f1(α1x+ β1y) + · · ·+ fn(αnx+ βny)]. (3.29)

Subtracting (3.28) and (3.29) we arrive at

0 =
[
f1(a(α1x+ β1y))− akf1(α1x+ β1y) + · · ·+ fn(a(αnx+ βny))− akfn(αnx+ βny)

]
for all x, y ∈ R, x 6= y. To show that gi, i = 1, . . . , n, satisfy (3.24) for all x, y ∈ R we take
a sequence of rational numbers qn 6= 1 tending to 1 and we substitute x = qny in (3.24).
Using Lemma 3.7, we obtain (3.24) for x = y.

This means that gi, i = 1, . . . , n, satisfy (3.24), and from (3.25) we have gi0 6= 0.

The first result obtained from Theorem 3.8 will be a positive answer to a question
asked by M. Sablik.

Corollary 3.9. Let functions F , fi, i = 1, . . . , n, satisfy (1.1) with some αi, βi, i =

1, . . . , n, such that
αi + βi 6= 0, i = 1, . . . , n,
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and ∣∣∣∣αi βi
αj βj

∣∣∣∣ 6= 0 for i 6= j.

If at least one fi is discontinuous then equation (3.24) has a discontinuous solution.

Proof. From Theorem 2.6 we know that the fi are polynomial functions. Let fi0 be
discontinuous. Then fi0 must have a discontinuous summand of order j0. From Lemma
3.2 we know that all summands of fi of order j0 together with the summand of F of
order j0 + 1 satisfy equation (2). Thus we may use Theorem 3.8 which states that (3.24)
has a discontinuous solution.

The main result of [21] states that under some assumptions all solutions of (1.1) must
be polynomials. We shall show how this result may be obtained from Theorem 3.8.

Theorem 3.10. Let f, F : R → R satisfy (2) with some a1, . . . , an, λ1, . . . , λn ∈ R such
that

n∑
i=1

ai 6= 0, αi + βi = 1, i = 1, . . . , n,

and ∣∣∣∣αi βi
αj βj

∣∣∣∣ 6= 0 for i 6= j.

Then f is a polynomial of degree at most 2n − 1 and F is a polynomial of degree at
most 2n. Moreover, F is differentiable and F ′ = (

∑n
i=1 ai)f.

Proof. We know from Theorem 2.6 that f is a polynomial function,

f(x) = fm(x) + · · ·+ f1(x) + c,

where fi is a monomial function of order i. We shall show that all fi are continuous.
Assume that there exists i such that fi is discontinuous. Then, by Theorem 3.8, the
equation

a1g(α1x+ β1y) + · · ·+ ang(αnx+ βny) = 0

has a nontrivial solution g of order i. However taking x = y we obtain

(a1 + · · ·+ an)g(x) = 0,

which means that g = 0, a contradiction which shows that in this case all solutions of
(2) must be continuous. Using the continuity of f, it is easy to show the differentiability
of F.

Note that it is possible to use Theorem 3.8 to work also with equations which have
discontinuous solutions. To give an example we shall solve an equation which has been
solved in [31] but we shall provide a much shorter proof.

Theorem 3.11. The functions f, g, h, k : R→ R satisfy the functional equation

f(x)− g(y) = (x− y)[h(x+ y) + k(x) + k(y)] (3.2)
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for all x, y ∈ R if and only if

f(x) = 3ax4 + 2bx3 + cx2 + 2dx+ s,

g(x) = 3ax4 + 2bx3 + cx2 + 2dx+ s,

h(x) = ax3 + bx2 +A(x) + d− 2t,

k(x) = 2ax3 + bx2 + cx−A(x) + t,

(3.30)

where a, b, c, d, s, t ∈ R are constants and A : R→ R is an additive function.

Proof. First we set x = y in (3.2) to see that f = g. Using Theorem 2.6, we can see that
h and k are polynomial functions of order at most 3. It is easy to see that the equation

k(x) + h(x+ y) + k(y) = 0

has no monomial solutions of order higher than 1. In view of Theorem 3.8, this means
that the monomial summands of h and k of orders 2 and 3 are continuous. Thus

h(x) = ahx
3 + bhx

2 +Ah(x) + dh,

k(x) = akx
3 + bkx

2 +Ak(x) + dk;

substituting y = 0 in (3.2) and taking s := f(0), we get

f(x) = x[ahx
3 + bhx

2 +Ah(x) + dh + akx
3 + bkx

2 +Ak(x) + dk + dk] + s.

Now it suffices to use Lemma 3.2 to obtain all connections between the constants occurring
in f, h and k. For example the functions f4(x) := (ah + ak)x4, h3(x) = ahx

3 and
k3(x) = akx

3 satisfy (3.2), thus

(ah + ak)x4 − (ah + ak)y4 = (x− y)[ah(x+ y)3 + akx
3 + aky

3],

i.e.
(ah + ak)[x3 + x2y + xy2 + y2] = ah(x+ y)3 + akx

3 + aky
3;

taking here y = 1, we obtain

(ah + ak)[x3 + x2 + x+ 1] = ah(x+ 1)3 + akx
3 + ak.

Now equating terms of degree 2, we may write

ah + ak = 3ah,

which means that f4, h3 and k3 have the desired forms.
Now we shall obtain the exact forms of f2, h1 and k1. We know that f is continuous,

so f(x) = cx2 for some c ∈ R; on the other hand from the form of f we get

f2(x) = x(Ah(x) +Ak(x)).

This means that Ah(x) +Ak(x) = cx, and therefore we may write Ah = A and Ak(x) =

c−A(x) as claimed. Equating terms of the remaining orders, we obtain all other equalities
from (3.30).

Clearly, the functions given by (3.30) satisfy (3.2).

Remark 3.12. The above theorem shows that Theorem 3.5 (together with Remark 3.6)
may be used to solve some concrete equations of the shape (1.1). Note that in the proof
of Theorem 3.11 we also used the Sablik conjecture. Moreover, we used it in a stronger
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“monomial” form which is given by Theorem 3.8. Thus this example justifies our effort
to state it in this setting.

Remark 3.13. A careful inspection of the proof of Theorem 3.11 shows that the pro-
cedure of solving particular cases of (1.1) becomes now automated. Thus it is probably
possible to write a computer program which will solve such kind of equations, just as it
was done in [11] for the equation

n+1∑
i=1

fi(pix+ qiy) = 0.

3.4. Solution of equation (2) with rational coefficients. In [23] it has been shown
that if the weights αi, βi occurring in (2) satisfy some equalities then monomial solutions
of (2) of a certain order must be continuous. Let us quote the simplest result of this kind
contained in [23].

Lemma 3.14. Let P be an integral domain and let a1 : P → P be an additive function
satisfying equation (2) for all x, y ∈ P and some b1, . . . , bn, α1, . . . , αn, β1, . . . , βn ∈ P

such that for all i = 1, . . . , n and x ∈ P we have

a1(αix) = αia1(x), a1(βix) = βia1(x).

If γ, δ ∈ P are defined by

γ := b1α1 + · · ·+ bnαn, δ := b1β1 + · · ·+ bnβn, (3.31)

then

(i) if γ 6= δ then a1 = 0;

(ii) if γ = δ 6= 0 then a1(x) = ax for some a ∈ P and all x ∈ P.
(iii) if γ = δ = 0 then a1 may be any function.

Conversely, in each of the above cases the function a1 with

F (x) = x[b1a1(α1x) + · · ·+ bna1(αnx)] + c, (3.32)

where c ∈ P is some constant, is a solution of (2).

However, results of this kind obtained in [23] were valid only for additive, biadditive
and 3-additive functions. This means that these theorems may only be used to solve very
simple equations connected with quadrature rules. Now, using Theorem 3.8, we shall
prove a result valid for monomial functions of any order.

Recall that in the whole paper we work with functions acting on R, so this result
cannot be called a generalization of results obtained in [23].

In this theorem we use the convention that 00 = 1.

Theorem 3.15. Let f, F : R→ R be monomial functions of orders k, k+ 1, respectively,
satisfying

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)]. (2)

Denote
f(x) = A(x, . . . , x)



28 T. Szostok

for some k-additive and symmetric function A : R→ R, and let αi, βi satisfy

A(αix1, x2, . . . , xk) = αiA(x1, . . . , xk), A(βix1, x2, . . . , xk) = βiA(x1, . . . , xk)

(3.33)
for i = 1, . . . , n. If f is discontinuous then

n∑
i=1

aiα
k
i =

n∑
i=1

aiα
k−1
i βi = · · · =

n∑
i=1

aiβ
k
i = 0. (3.34)

On the other hand, if (3.34) is satisfied then every monomial function f of order k is a
solution of (2) (with F = const). If f is continuous and f 6= 0 then for all l,m ∈ {0, . . . , k}
we have (

n

l

) n∑
i=1

aiα
k−l
i βli =

(
n

m

) n∑
i=1

aiα
k−m
i βmi . (3.35)

Conversely, if (3.35) is satisfied then every monomial f of degree k with F given by

F (x) = x[a1f(α1x) + · · ·+ anf(αnx)] + c, (3.36)

where c ∈ R is some constant, is a solution of (2).

Proof. Let A : R→ R be a k-additive and symmetric function, and let

f(x) = A(x, (k). . ., x)

be a discontinuous solution of (2). We shall show that all expressions from (3.34) are zero.
From Theorem 3.8 we know that the equation

a1g(α1x+ β1y) + · · ·+ ang(αnx+ βny) = 0

has a nontrivial solution g which is a monomial function of order k. Write

g(x) = B(x, (k). . ., x).

Then we may write

n∑
i=1

aig(αix) + k

n∑
i=1

aiB(αix, . . . , αix, βiy) + · · ·

+ k

n∑
i=1

aiB(αix, βiy, . . . , βiy) +

n∑
i=1

aig(βix) = 0.

Since each of the sums occurring in the above expression has a different order with respect
to x, it is clear that all these sums must be zero, and thus we obtain

n∑
i=1

aig(αix) = 0,

n∑
i=1

aiB(αix, . . . , αix, βiy) = 0,

...
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n∑
i=1

aiB(αix, βiy, . . . , βiy) = 0,

n∑
i=1

aig(αix) = 0.

Note that g may be obtained from (3.26) and we have (3.33). Thus
n∑
i=1

aiα
k
i g(x) = 0,

n∑
i=1

aiα
k−1
i βiB(x, x, . . . , y) = 0,

...
n∑
i=1

aiαiβ
k−1
i B(x, y, . . . , y) = 0,

n∑
i=1

aiβ
k
i g(y) = 0.

Now, since g 6= 0, all sums from (3.34) must be zero.
It is easy to see that if (3.34) is satisfied and f is a monomial function then the

right-hand side of (2) vanishes, thus f is a solution of (2) with constant F (as claimed).
Suppose that f(x) = xk. Then, taking x = 0 in (2), we obtain

F (y) =

n∑
i=1

aiα
k
i y
k+1.

On the other hand, taking y = 0 in (2), we get

F (x) =

n∑
i=1

aiβ
k
i x

k+1.

Using the forms of f and F in (2), we get
n∑
i=1

aiα
k
i y
k+1 −

n∑
i=1

aiβ
k
i x

k+1 = (y − x)

n∑
i=1

ai(αix+ βiy)k.

Canceling the same expressions on both sides, we arrive at

x

n∑
i=1

aiα
k
i y
k − y

n∑
i=1

aiβ
k
i x

k

= (y − x)

n∑
i=1

ai

[(
n

1

)
αk−1i βix

k−1y + · · ·+ αiβ
k−1
i xyk−1

(
n

n− 1

)]
. (3.37)

Now we equate the coefficients of equal powers of x. We begin with xk:
n∑
i=1

aiβ
k
i =

(
n

1

) n∑
i=1

aiα
k−1
i βi,
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which may be written in the form(
n

0

) n∑
i=1

aiα
k
i β

0
i =

(
n

1

) n∑
i=1

aiα
k−1
i βi.

Next, equating the coefficients of xk−1, we get(
n

1

) n∑
i=1

aiα
k−1
i βi =

(
n

2

) n∑
i=1

aiα
k−2
i β2

i .

In this way we obtain all equalities from (3.35).
On the other hand, if (3.35) is satisfied then we clearly have (3.37), which means that

the functions f(x) = xk and F given by (3.36) satisfy (2).

The next corollary will show how this theorem may be used to solve come concrete
equations.

Corollary 3.16. Functions f, F : R→ R satisfy the equation

F (y)− F (x) = (y − x)

[
1

8
f(x) +

3

8
f

(
2x+ y

3

)
+

3

8
f

(
x+ 2y

3

)
+

1

8
f(y)

]
(2.11)

if and only if f is a polynomial of degree at most 3 and F ′ = f.

Proof. From Remark 2.8 we know that f is a polynomial function of order at most 5.

Since all constants occurring in this equation are positive, (3.34) cannot be satisfied. Thus
monomial summands of f are continuous. This means that f is a polynomial of degree
at most 5. However, for k = 5, (3.35) is not satisfied. Indeed,(

5

1

)
·
[

1

8
· 14 · 01 +

3

8
·
(

2

4

)4

·
(

1

3

)1

+
3

8
·
(

1

3

)4

·
(

2

3

)1

+
1

8
· 04 · 11

]
6=
(

5

2

)
·
[

1

8
· 13 · 02 +

3

8
·
(

2

3

)3

·
(

1

3

)2

+
3

8
·
(

1

3

)3

·
(

2

3

)2

+
1

8
· 03 · 02

]
,

which means that f is a polynomial of degree at most 4. Further if we consider k = 4,

the situation is similar. Now let us check that for k = 3, (3.35) will be satisfied. We recall
that here 00 = 1. We clearly have(

3

1

)
·
[

1

8
· 12 · 01 +

3

8
·
(

2

3

)2

·
(

1

3

)1

+
3

8
·
(

1

3

)2

·
(

2

3

)1

+
1

8
· 02 · 11

]
=

(
3

2

)
·
[

1

8
· 11 · 02 +

3

8
·
(

2

3

)1

·
(

1

3

)2

+
3

8
·
(

1

3

)1

·
(

2

3

)2

+
1

8
· 01 · 12

]
=

(
3

0

)
·
[

1

8
· 13 · 00 +

3

8
·
(

2

3

)3

·
(

1

3

)0

+
3

8
·
(

1

3

)3

·
(

2

3

)0

+
1

8
· 03 · 10

]
=

(
3

3

)
·
[

1

8
· 10 · 03 +

3

8
·
(

2

3

)0

·
(

1

3

)3

+
3

8
·
(

1

3

)0

·
(

2

3

)3

+
1

8
· 00 · 13

]
,

thus the function f(x) = x3 satisfies our equation (with F given by (3.36)). Similarly one
can show that the monomials of degrees 2 and 1 satisfy this equation.

Remark 3.17. As was shown in the proof of Corollary 3.16, solutions of concrete exam-
ples of equation (2) with rational αi and βi may be obtained by checking if some equalities
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are satisfied. This means that Theorem 3.15 provides, in fact, a general solution of the
functional equation (2) in this case.

It is clear that Theorem 3.15 may also be used in the opposite direction, i.e. we may
assume that equation (2) is satisfied by monomials (or monomial functions) of some
degree (order) and then, using equalities (3.34) or (3.35), we can find (using a computer
algebra system) coefficients ai, αi and βi which admit such solutions.

Example 3.18. If the functional equation

F (y)− F (x) = (y − x)
f(αx+ (1− α)y) + f(γx+ (1− γ)y)

2
, (3.38)

where α, γ ∈ R, is satisfied by polynomials f of the second degree (with some F ) then(
α =

3 +
√

3

6
and γ =

3−
√

3

6

)
or

(
γ =

3 +
√

3

6
and α =

3−
√

3

6

)
. (3.39)

Conversely, each polynomial f of degree not greater than 3 with its primitive function F
satisfies equation (3.38) if α and γ are given by (3.39).

Proof. In view of Theorem 3.15, it is enough to solve the following system of equations:
1
2 [α+ γ] = 1

2 [(1− α) + (1− γ)],

which ensures that f(x) = x satisfies (3.38), and
1
2 [α2 + γ2] = 1

2 [(1− α)2 + (1− γ)2],
1
2 [α2 + γ2] = 2 · 12 [α(1− α) + γ(1− γ)],

which are satisfied since f(x) = x2 satisfies our equation. This gives γ = 1− α and

6α2 − 6α+ 1 = 0,

i.e. α and γ satisfy (3.39).

The next example will show how a functional equation having discontinuous solutions
may be solved.

Example 3.19. If the functional equation

F (y)− F (x) = (y − x)[f(x) + af(αx+ βy) + f(y)], (3.40)

where a, α, γ ∈ Q, is satisfied by a nonzero discontinuous additive function f and some
F then we have

α = β and a = −1/α (3.41)

and F is constant. Conversely if a, α and β satisfy (3.41) then every additive function f
with constant F satisfies (3.40).

Proof. Theorem 3.15 gives us 1 + aα = 0 and 1 + aβ = 0, which yields (3.41). All other
assertions are obvious.

Remark 3.20. Equation (3.38) contains weights with possibly irrational coefficients, but
it may be solved with the use of Theorem 3.15. Indeed, we use Theorem 2.6 to see that
f is a polynomial function of degree at most 3. Now, from Theorem 3.10 we know that f
is continuous. This allows us to use Theorem 3.15 (equalities (3.33) are satisfied).
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3.5. Functional equations connected with Hermite quadrature rules. In this
part of the paper we shall deal with functional equations connected with Hermite quadra-
ture rules. In this kind of quadrature rules, not only values of a given function f are used
but also values of its derivative. Thus the integral is approximated in the following way:∫ y

x

f(t) dt ≈ (y − x)

[
f(x) + f(y)

2
+ f(α1x+ β1y) + · · ·+ f(αnx+ βny)

]
+ (y − x)2[f ′(x)− f ′(y)], (3.42)

where the nodes αix+ βiy are equally distributed in the interval [x, y].

Therefore, we shall now work with the equation

F (y)−F (x) = (y−x)
[
a1f(α1x+β1y)+ · · ·+anf(αnx+βny)

]
+(y−x)2[g(y)−g(x)]. (3)

Equation (3) was solved in [22] in a particular case

F (y)− F (x) = (y − x)
[
f(x) + af(x+ y) + f(y)

]
+ (y − x)2[g(y)− g(x)]; (3.43)

now we shall deal with it in full generality and (under some assumptions) we shall show
that functions satisfying this equation are polynomials.

Using Theorem 2.6, it is easy to show that both f and g are polynomial functions.
We need the following notation.

Definition 3.21. We say that numbers a1, . . . , an and (α1, β1), . . . , (αn, βn) satisfy the
SH-condition if there exists i0 ∈ {1, . . . , n} such that ai0 6= 0, αi0 + βi0 6= 0,

αi0 , βi0 6= 0 (3.44)

and ∣∣∣∣ αi βi
αi0 βi0

∣∣∣∣ 6= 0, i ∈ {1, . . . , n}, i 6= i0. (3.45)

Lemma 3.22. Let n ∈ N. If functions f, g, F satisfy (3) with some ai, αi, βi ∈ R, i =

1, . . . , n, then:

(i) g is a polynomial function of order at most 2n+ 2.

(ii) If a1, . . . , an and (α1, β1), . . . , (αn, βn) satisfy the SH-condition then f is a polyno-
mial function of order at most 2n+ 3.

Proof. First we shall prove (ii). To this end observe that equation (3) is clearly of the
form (1) with l = 2, k0 = 2, k1 = n, k2 = 2 and

f1,0 = F, f2,0 = −F, α1,0 = 0, β1,0 = 1, α2,0 = 1, β2,0 = 1,

f1,1 = a1f, . . . , fn,1 = anf, α1,1 = α1, β1,1 = β1, . . . , αn,1 = αn, βn,1 = βn,

f1,2 = g, f2,2 = −g, α1,2 = 1, β1,2 = 0, α2,2 = 0, β2,2 = 1.

Using (3.44) and (3.45), we can see that (2.7) is satisfied. Thus, using Theorem 2.6, we
infer that ai0f is a polynomial function of order at most

(2 + (n− 1)) + (2 + (n− 1)) + 2− 1 = 2n+ 3,

as claimed.
Similarly one can show that g is a polynomial function of order at most

(n+ 1) + (n+ 1) + 1− 1 = 2n+ 2.
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Remark 3.23. If equation (3) takes the form

F (y)− F (x) = (y − x)[a1f(x) + a2f(α2x+ β2y) + · · ·+ an−1f(αnx+ βny) + anf(y)]

+ (y − x)2[g(y)− g(x)] (3.46)

(in which the endpoints of the interval appear on the right-hand side) then J1 6= ∅, and
consequently the order of g is lower than what was proved in Lemma 3.22, namely this
order is not greater than (n− 1) + (n− 1) + 1− 1 = 2n− 2.

Remark 3.24. Equation (3.43) was solved in [21] in full generality. Observe that since
we have to assume (3.44), Lemma 3.22 does not cover equation (3.43) in case a = 0.

Remark 3.25. If f , g and F are polynomial functions satisfying (3) then, just as in
Lemma 3.2, it can be proved that their monomial summands of respective orders k, k−1

and k + 1 also satisfy (3).

We have proved that f and g are polynomial functions. However it is easy to obtain
the exact form of F by taking x = 0 in (3).

As a direct consequence of Theorem 3.5 we obtain the following theorem.

Theorem 3.26. Let f, g, F : R→ R satisfy (3), where ai, αi, βi, i = 1, . . . , n, satisfy the
SH-condition. Then F is a polynomial.

In the next theorem we shall also show (under some assumptions) the continuity of f
and g.

Theorem 3.27. Let functions f, g, F satisfy (3). If numbers αi, βi, ai ∈ R satisfying
SH-condition are such that αi + βi = 1 and a1 + · · ·+ an 6= 0 then functions f, g, F are
polynomials.

Proof. In view of Lemma 3.22 and Remark 3.25, we may assume that F, f, g are monomial
functions of orders k, k − 1, k − 2, respectively. Moreover, from Theorem 3.26 we know
that F is continuous. This means that g and f satisfy the equation

dyk − dxk = (y − x)
[
a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)

]
+ (y − x)2[g(y)− g(x)].

Canceling y − x on both sides of this equation, we arrive at

d(yk−1 + yk−2x+ · · ·+ xk−1)

= a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny) + (y − x)[g(y)− g(x)] (3.47)

for all x, y ∈ R such that x 6= y. We would like to show that this equation is satisfied also
for x = y. To this end take qn as a sequence of rational numbers such that qn 6= 1 and
qn → 1. We put qny instead of x in (3.47) and obtain

d(qk−1n yk−1 + qk−2n yk−1 + · · ·+ yk−1)

= a1f(qnα1y + β1y) + · · ·+ anf(qnαny + βny) + y(1− qn)[(1− qk−1n )g(y)]. (3.48)

Letting n→∞, since f is a monomial function from Lemma 3.7, we get

dkyk−1 = (a1 + · · ·+ an)f(y).
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Now it suffices to divide this equation by a1 + · · · + an to obtain the continuity of f. It
remains to show the continuity of g. To this end we substitute y = 0 in (3), which gives

F (x) = x[a1f(α1x) + · · ·+ anf(αnx)] + x2g(x).

Using the continuity of f and F, we easily get the continuity of g.

Remark 3.28. Now it is easy to obtain a solution of the equation stemming directly
from the Hermite quadrature rule

F (y)− F (x) =
y − x
n

[
f(x) + f(y)

2
+ f

(
(n− 1)x+ y

n

)
+ · · ·+ f

(
x+ (n− 1)y

n

)]
+ (y − x)2[g(x)− g(y)]. (3.49)

Namely, we know that F , f and g are polynomials.
If we divide (3.49) by y − x and let x tend to y, we obtain F ′ = f.

Taking x = 0 in (3.49), we arrive at

F (y)− F (0) =
y

n

[
f(0) + f(y)

2
+

n−1∑
i=1

f

(
iy

n

)]
+ y2[g(y)− g(0)]. (3.50)

From Remark 3.25 we know that the monomial summands of F , f and g also satisfy
this equation. Thus let F (x) = axk, f(x) = kaxk−1 and g(x) = bxk−2. From numerical
analysis we know that (3.49) is satisfied by every polynomial f of degree at most 2n− 1,

its derivative g and its primitive function F. However from (3.50) we see that for given f
and F there is only one g satisfying (3.49). This means that b = (k − 1)ka.

Remark 3.29. From Remark 3.28 we can see that, as in previous sections, the crucial
question is that of continuity of the functions involved. Once we know that all functions
occurring in the equation considered are continuous, the solutions may be obtained using
known facts from numerical analysis.

3.6. Functional equations connected with Birkhoff quadrature rules. In this
section we shall deal with equations motivated by a quadrature rule in which the second
derivative is involved. Such quadrature rules were studied in [43] and [44]. Namely, let
Pn−1 denote the Legendre polynomial of degree n− 1 and let

1 = x1,n > x2,n > · · · > xn−1,n > xn,n = −1

be the zeros of the polynomial (1− x2)P ′n−1(x). Then the quadrature formula∫ 1

−1
f(x) dx ≈ 3

n(2n− 1)
[f(1) + f(−1)]

+
2(2n− 3)

n(n− 2)(2n− 1)

n−1∑
k=2

f(xk,n)

(Pn−1(xk,n))2

+
1

n(n− 1)(n− 2)(2n− 1)

n−1∑
k=2

f ′′(xk,n)

(Pn−1(xk,n))2
(3.51)

is exact for polynomials of degree at most 2n− 1 (see [44]).
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Proceeding as previously, we obtain the functional equation

F (y)− F (x) = (y − x)[a1f(x) + b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny) + a1f(y)]

+ (y − x)3[c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny)], (4)

where a1, bi, ci, αi, βi are obtained from (3.51) taking into account that we are now on
the interval [x, y] instead of [−1, 1]. For example for n = 3 we get the equation

F (y)− F (x) = (y − x)

[
1

10
f(x) +

4

5
f

(
x+ y

2

)
+

1

10
f(y)

]
+

(y − x)3

60
g

(
x+ y

2

)
, (3.52)

which is satisfied by any polynomial function f of degree at most 5, its primitive function
F and its second derivative g.

As in previous cases, we shall first prove that functions satisfying equations of this
kind are polynomial.

Proposition 3.30. If functions F, f, g satisfy (4) with a1, bi, ci, αi, βi ∈ R, i = 1, . . . , n,
such that a1 6= 0, βi 6= 0, i = 1, . . . , n, and there exists ĩ ∈ {1, . . . , n} for which αĩ+βĩ 6= 0

and cĩ 6= 0 then F, f, g are polynomial functions of orders at most 4n+ 2, 4n+ 1, 4n− 1,

respectively.

Proof. First we shall use Theorem 2.6 to prove that f is a polynomial function. To this
end we take j0 = 1 and fj0,i0 = a1f. Since βj 6= 0, we get (2.7). Thus from Theorem 2.6
we deduce that a1f (and also f) is a polynomial function of order at most

[(n+ 1) + (n+ 1) + n+ n]− 1 = 4n+ 1.

Similarly, it can be shown that g is a polynomial function of order at most

[(n+ 1) + (n+ 1) + (n− 1) + (n− 1)]− 1 = 4n− 1.

Taking x = 0 in (4), we get a formula for F which means that F is also a polynomial
function of the desired order.

Remark 3.31. From the above proof it is clear that the assumptions on the constants
occurring in (4) split in two parts: the first part implies that f is a polynomial and the
second guarantees the polynomiality of g. For simplicity we have not done it.

Remark 3.32. Observe that the order obtained in Proposition 3.30 is higher than we
could have expected, knowing that the quadrature rule (3.51) is exact for polynomials
of degree at most 2n − 1. There may be two reasons for this: the nodes occurring in
the Birkhoff quadrature formula are not optimal, or our procedure used to prove the
polynomiality of F , f and g is not optimal.

Remark 3.33. As in Lemma 3.2, it may be shown that it is possible to work with
monomial summands of F , f and g of orders, respectively, k, k− 1 and k− 3 separately.

Now we shall show (under some assumptions) that functions F, f, g satisfying (4) must
be continuous.

Theorem 3.34. If monomial functions F , f and g of orders k + 1, k and k − 2, respec-
tively, satisfy (4) with some a1, bi, ci, αi, βi ∈ R, i = 1, . . . , n, then F is continuous.
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Moreover, if

αi + βi = 1, i = 1, . . . , n, and 2a1 + b1 + · · ·+ bn 6= 0

then f is continuous, and if additionally

c1 + · · ·+ cn 6= 0 (3.53)

then g is continuous.

Proof. Observe that the continuity of F is a consequence of Theorem 3.5.
To prove the second assertion we shall use the form of F in (4) to get

dyk+1 − dxk+1 = (y − x)[a1f(x) + b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny) + a1f(y)]

+ (y − x)3[c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny)]. (3.54)

Now we divide (3.54) by y − x arriving at

d(yk + yk−1x+ · · ·+ yxk−1 + xk)

= a1f(x) + b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny) + a1f(y)

+ (y − x)2[c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny)] (3.55)

for x, y ∈ R, x 6= y.

To show that the above equation is also satisfied for x = y, we use the same method
as in the case of the equation stemming from the Hermite quadrature rule. Namely, we
take a sequence of rational numbers qn such that qn 6= 1 and qn → 1. We put qny instead
of x in (3.55), and then letting n→∞ and using Lemma 3.7, we obtain (3.55) for x = y.

This means that now we are able to write

dkxk = a1f(x) + b1f(α1x+ β1x) + · · ·+ bnf(αnx+ βnx) + a1f(x) (3.56)

and, since αi + βi = 1 and 2a1 + b1 + · · ·+ bn 6= 0, we obtain the continuity of f.
To prove that g is continuous we use the continuity of f in (3.55). We get

(y − x)2[c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny)] = p(x, y),

where p is some polynomial. However, this means that

c1g(α1x+ β1y) + · · ·+ cng(αnx+ βny) = p1(x, y), (3.57)

where p1(x, y) = p(x, y)/(y − x)2 is also a polynomial. As before, this equality is true for
x 6= y, but it is easy to show that it remains true for x = y. Thus we take x = y in (3.57)
and since αi +βi = 1, i = 1, . . . , n, we find that (c1 + · · ·+ cn)g(x) is continuous. In view
of (3.53), this means that g is continuous.

Using this theorem, it is easy to obtain a complete solution of equations of the form (4).
Let us for example prove the following result.

Theorem 3.35. Functions F, f, g : R→ R satisfy (3.52) if and only if f is a polynomial
of degree at most 5, F is its antiderivative and g = f ′′.

Proof. From Theorem 3.30 we know that F , f and g are polynomial functions of orders at
most 6, 5 and 3, respectively. From Remark 3.33 we know that their monomial summands
of appropriate orders also satisfy (3.52). Using Theorem 3.34, we obtain the continuity
of these summands, and hence of F, f, g. In the next step we divide (3.52) by y − x and
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let y → x to get F ′ = f. Finally, we use Remark 3.33 once more and we take F (x) = xp,

f(x) = pxp−1 and g(x) = dxp−3. These monomials satisfy (3.52), and thus we easily
obtain the desired form of d.

4. Functional equations connected with numerical differentiation

4.1. Introduction. In this section we shall work with functional equations motivated
by the formulas used to approximate the derivatives of a given function. This is done in
the following way:

f (k)(αx+ βy)(y − x)k ≈ a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny), (4.1)

and therefore we consider the functional equation

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny). (5)

As in the case of quadrature rules, (4.1) is exact for polynomials of some degree
depending on the concrete form of (4.1).

4.2. Polynomiality of functions satisfying (5). The next lemma shows that f and
g satisfying (5) must be polynomial functions.

Lemma 4.1. Let f, g : R → R satisfy equation (5) with some α, β, αi, βi, ai ∈ R, i =

1, . . . , n. If there exists i0 ∈ {1, . . . , n} such that αi0 + βi0 6= 0 and∣∣∣∣ α β

αi0 βi0

∣∣∣∣ 6= 0 (4.2)

then f is a polynomial function of order at most n+ k.

Further, if α+ β 6= 0 then g is a polynomial function of order at most n.

Proof. Let i0 ∈ {1, . . . , n} be such that ai0 6= 0, αi0 + βi0 6= 0 and (4.2) is satisfied.
In view of Theorem 2.6, f is a polynomial function of order at most

n+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
k

−1 = n+ k.

Similarly, Theorem 2.6 implies that g is a polynomial function of order at most n.

Remark 4.2. If (α, β) = (αi, βi) for some i ∈ {1, . . . , n} then the orders occurring in
Lemma 4.1 may be replaced by n+ k − 2 and n− 2, respectively.

Just as for equations stemming from quadrature rules, one can prove

Lemma 4.3. Let f, g : R → R be polynomial functions satisfying equation (5). Then
their monomial summands gi and fi+k of orders respectively i and i+ k also satisfy this
equation.

In the next remark we shall obtain some simple connections between f and g.

Remark 4.4. Let f, g : R→ R satisfy equation (5) with constants αi, βi, i = 1, . . . , n. If
we take y = 0 in (5), we get

g(αx)(−x)k = a1f(α1x) + · · ·+ anf(αnx). (4.3)
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On the other hand, taking x = 0 we get

g(βy)(y)k = a1f(β1y) + · · ·+ anf(βny). (4.4)

Now, let p be a positive integer, g be a monomial function of order p, and f be a monomial
function of order p + k. If the constants α, β, αi, βi, i = 1, . . . , n, are rational then from
(4.3) we get

(−1)kαpg(x)xk = [a1α
p+k
1 + · · ·+ anα

p+k
n ]f(x) (4.5)

and from (4.4) we obtain

βpg(x)xk = [a1β
p+k
1 + · · ·+ anβ

p+k
n ]f(x). (4.6)

Remark 4.5. From the last remark we can see that if f, g : R → R satisfy (5), p is a
positive integer, g is a monomial function of order p, f is a monomial function of order
p+ k, at least one of α, β ∈ Q is different from zero, and ai ∈ R, αi, βi ∈ Q, i = 1, . . . , n,
satisfy

a1α
p+k
1 + · · ·+ anα

p+k
n = 0, a1β

p+k
1 + · · ·+ anβ

p+k
n = 0

then g = 0.

4.3. Continuity. As we can see from the previous section, functions satisfying (5) must
be polynomial. Thus the main issue now will be the continuity of f and g. However, as
we shall see, the results will not be as simple as in the case of equations stemming from
quadrature rules.

Theorem 4.6. Let f, g : R → R satisfy equation (5), let p be a positive integer, g be a
monomial function of order p, f be a monomial function of order p+ k and let α, β ∈ Q
and αi, βi ∈ Q, i = 1, . . . , n, and ai ∈ R, i = 1, . . . , n, satisfy

a1α
p+k
1 + · · ·+ anα

p+k
n 6= 0, a1β

p+k
1 + · · ·+ anβ

p+k
n 6= 0. (4.7)

If exactly one of α, β is zero then f and g are zero.
If α, β 6= 0 then

(−1)kαp

a1α
p+k
1 + · · ·+ anα

p+k
n

=
βp

a1β
p+k
1 + · · ·+ anβ

p+k
n

. (4.8)

Set

ap :=
(−1)kαp

a1α
p+k
1 + · · ·+ anα

p+k
n

. (4.9)

If

ap[a1α1β
p+k−1
1 + · · ·+ anαnβ

p+k−1
n ] 6= αβp−1,

ap[a1α
2
1β

p+k−2
1 + · · ·+ anα

2
nβ

p+k−2
n ] 6= α2βp−2,

...

ap[a1α
p−1
1 βk+1

1 + · · ·+ a1α
p−1
n βk+1

n ] 6= αp−1β,

ap[a1α
p
1β

k
1 + · · ·+ anα

p
nβ

k
n] 6= αp,

(4.10)

then f and g are continuous.
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Proof. Let g be a monomial function of order p. Then

g(x) = A(x, (p). . ., x) (4.11)

for some p-additive and symmetric function A : Rn → R. From (4.5) and (4.6) we know
that if α or β is zero then, in view of (4.7), f(x) = 0, and hence also g(x) = 0.

Thus we shall assume that α, β 6= 0. Now let ap be defined by (4.9). Then from (4.6)
and (4.5) we obtain

ap =
(−1)kαp

a1α
p+k
1 + · · ·+ anα

p+k
n

=
βp

a1β
p+k
1 + · · ·+ anβ

p+k
n

,

i.e. (4.8) is satisfied.
Further from (4.6) we get

f(x) = apg(x)xk, (4.12)

and, using this form of f on the right-hand side of (5), we obtain

a1f(α1x+ β1y) + · · ·+ anf(α1x+ βny)

= ap[a1g(α1x+ β1y)(α1x+ β1y)k + · · ·+ ang(αnx+ βny)(αnx+ βny)k]

= ap

n∑
i=1

ai

[
αpi g(x) +

(
p

1

)
αp−1i βiA(x, . . . , x, y) + · · ·

+

(
p

p− 1

)
αiβ

p−1
i A(x, y, . . . , y) + βpi g(y)

]
(αix+ βiy)k. (4.13)

On the other hand, in view of (4.11), the left-hand side of (5) takes the form

g(αx+ βy)(y − x)k =

[
αpg(x) +

(
p

1

)
αp−1βA(x, . . . , x, y) + · · ·

+

(
p

p− 1

)
αβp−1A(x, y, . . . , y) + βpg(y)

]
(y − x)k. (4.14)

Using (4.14) and (4.13) in (5), we arrive at[
αpg(x)+

(
p

1

)
αp−1βA(x, . . . , x, y)+ · · ·+

(
p

p− 1

)
αβp−1A(x, y, . . . , y)+βpg(y)

]
(y−x)k

= ap

n∑
i=1

ai

[
αpi g(x) +

(
p

1

)
αp−1i βiA(x, . . . , x, y) + · · ·

+

(
p

p− 1

)
αiβ

p−1
i A(x, y, . . . , y) + βpi g(y)

]
(αix+ βiy)k. (4.15)

Let k ≥ p. Putting y = 1 in (4.15) and equating terms of order p, we get

αpg(x)+

(
p

1

)
αp−1βA(x, . . . , x, 1)

(
k

1

)
(−x)+

(
p

2

)
αp−2β2A(x, . . . , x, 1, 1)

(
k

2

)
(−x)2 + · · ·

+

(
p

p− 1

)
αβp−1A(x, 1, . . . , 1, 1)

(
k

p− 1

)
(−x)p−1 +

(
k

p

)
βpg(1)(−x)p
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= ap

n∑
i=1

ai

[
αpi β

k
i g(x) +

(
p

1

)(
k

1

)
αp−1i βk+1

i A(x, (p−1). . . , x, 1)x+ · · ·

+ αk+1
i βp−1i

(
p

p− 1

)(
k

p− 1

)
A(x, 1, (p−1). . . , 1)xp−1 + βpi α

k
i g(1)xk

]
. (4.16)

The coefficient of g(x) is equal to

αp − ap

n∑
i=1

aiα
p
i β

k
i

and, as we know from (4.10), it is different from zero. Thus to prove the continuity of g
we have to show that all functions of the form

x 7→ A(x, (p−i). . . , x, 1, (i). . ., 1), i = 1, . . . , p− 1, (4.17)

are continuous. In case k < p, equation (4.16) looks somewhat different but the above
reasoning remains unchanged.

To this end we put again y = 1 in (4.15) and we compare terms of all orders smaller
than p ending at order 1 where we obtain

pαβp−1A(x, 1, (p−1). . . , 1) + kβpg(1)(−x)

= ap

(
p

n∑
i=1

aiαiβ
p+k−1
i A(x, 1, (p−1). . . , 1) + k

n∑
i=1

aiαiβ
p+k−1
i pg(1)x

)
,

i.e. (
αβp−1 − ap

n∑
i=1

aiαiβ
p+k−1
i

)
A(x, 1, (p−1). . . , 1) =

kg(1)

p

( n∑
i=1

aiαiβ
p+k−1
i + βp

)
x.

However, from (4.10) we know that

αβp−1 − ap

n∑
i=1

aiαiβ
p+k−1
i 6= 0,

which means that
A(x, 1, . . . , 1) = b1x

for some b1 ∈ R. Now we shall use this formula in the equation which contains terms of
order 2. Let us write this equation:(

p

2

)
α2βp−2A(x, x, 1, (p−2). . . , 1) + pkαβp−1A(x, 1, (p−1). . . , 1)(−x) +

(
k

2

)
g(1)βpx2

= ap

((
p

2

) n∑
i=1

aiα
2
iβ

p+k−2
i A(x, x, 1, (p−2). . . , 1)

+ pk

n∑
i=1

aiαiβ
p+k−1
i A(x, 1, (p−1). . . , 1)x+

(
k

2

) n∑
i=1

aiβ
p+k
i g(1)x2

)
.

Again, using (4.10), we get

ap
(
a1α

2
1β

p+k−2
1 + · · ·+ anα

2
nβ

p+k−2
n

)
6= α2βp−2,
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which, together with the continuity of x 7→ A(x, 1, . . . , 1), yields

A(x, x, 1, . . . , 1) = b2x
2

for some b2 ∈ R.
Proceeding further in the same manner we obtain the continuity of all functions of the

form (4.17), and hence the continuity of g. Continuity of f is a consequence of (4.12).

Now we shall show how this theorem may be used to solve some equation connected
with formulas used in numerical analysis to approximate differentiation.

Corollary 4.7. Functions f, g : R→ R satisfy the equation

3g

(
x+ y

2

)
(y − x) = f(x)− 8f

(
3x+ y

4

)
+ 8f

(
x+ 3y

4

)
− f(y)

if and only if

f(x) = ax3 + bx2 + cx+ d, g(x) = 3ax2 + 2bx+ c.

Proof. Denote h := 3g. From Lemma 4.1 we know that f is a polynomial function of order
at most 5, and h is a polynomial function of order at most 4. Moreover, from Lemma 4.3
we know that monomial summands of h and f of orders i and i + 1 also satisfy this
equation. We are going to show that these monomial functions must be continuous. To
this end we have to check that (4.7) and (4.10) are satisfied. Let for example f be a
monomial function of order 2, and h be a monomial function of order 1. Then p and k
from Theorem 4.6 are equal to 1. Thus (4.7) becomes

12 − 8 ·
(

3

4

)2

+ 8 ·
(

1

4

)2

− 02 = −3 6= 0.

This means that

a1 =
− 1

2

−3
=

1

6
.

Next we check (4.10). In this case (4.10) contains only one condition,

a1(a1α1β1 + a2α2β2 + a3α3β3 + a4α4β4) 6= α,

i.e.
1

6
·
(

1 · 1 · 0− 8 · 3

4
· 1

4
+ 8 · 1

4
· 3

4
− 1 · 0 · 1

)
6= 1

2
,

and is obviously satisfied. In the same way we check that all other monomial summands
of f and h are continuous. Once we have obtained the continuity of f and 3g, we use
(4.6) to get the connections between their coefficients.

Remark 4.8. Theorem 4.6 may be used to solve many other equations stemming from
rules of numerical differentiation such as

1

4
g

(
x+ y

2

)
(y − x)2 = f(x)− 2f

(
x+ y

2

)
+ f(y), (4.18)

which is connected with a well known method of numerical calculation of the second
derivative of f , or
3

4
g

(
x+ y

2

)
(y − x)2 = −f(x) + 16f

(
3x+ y

4

)
− 30f

(
x+ y

2

)
+ 16f

(
x+ 3y

4

)
− f(y).
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However, sometimes Theorem 4.6 cannot be used to prove the continuity of solutions of
equations of the form (5).

Example 4.9. In the case of the equation

g(x)(y − x) = −3f(x) + 4f

(
x+ y

2

)
− f(y), (4.19)

Theorem 4.6 cannot be applied to show that monomial functions f and g of orders,
respectively, 2 and 1 are continuous. Indeed, in this case

a1β
2
1 + a2β

2
2 + a3β

2
3 = 0,

and so conditions (4.7) are not satisfied. Notice that if we take y = 0 in (4.19) then we
obtain the formula

f(x) = xg(x)/2,

which, used in (4.19), yields the continuity of g (and f). However, the version of Theorem
4.6 which would cover this case is more complicated than the original one and we shall
not present it here.

Remark 4.10. It is easy to see that equation (4.18) has discontinuous solutions. This
means that assumption (4.7) in Theorem 4.6 is essential. It remains an open problem
whether assumptions (4.10) are essential or not.

4.4. Functional equations connected with divided differences. Surprisingly, our
results inspired by numerical analysis may be used to obtain solutions of a well known
class of functional equations. To present this application we shall need the notion of
divided difference f [x1, . . . , xn] (x1, . . . , xn are pairwise distinct numbers) which will be
defined by recurrence. Let

f [x1] := f(x1), f [x1, . . . , xp] :=
f [x2, . . . , xp]− f [x1, . . . , xp−1]

x1 − xn
.

Clearly,

f [x1, x2] =
f(x2)− f(x1)

x2 − x1
,

f [x1, x2, x3] =
(x3 − x2)f(x1) + (x1 − x3)f(x2) + (x2 − x1)f(x3)

(x1 − x2)(x2 − x3)(x3 − x1)
.

We shall also need the following formula for the nth divided difference (see for example
[31]).

Theorem 4.11. For all positive integers n, the n-point divided difference can be expressed
in the form

f [x1, . . . , xn] =

n∑
j=1

f(xj)∏n
k=1, k 6=j(xj − xk)

.

The following fact may be found for example in [25].

Lemma 4.12. Let x1, . . . , xn ∈ R be of the form

xi = x1 + (i− 1)d, i = 1, . . . , n,
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for some d ∈ R. Then

f [x1, . . . , xn] =
∆n−1
d f(x1)

(n− 1)!dn−1
. (4.20)

Using this notion, Aczél’s equation (1.2) may be written as

g(x+ y) = f [x, y]. (4.21)

Therefore, as a natural generalization of (4.21), Bailey [4] considered the equation

g(x+ y + z) = f [x, y, z],

which he solved under the assumption that g is differentiable. Then he asked about regular
solutions of a more general equation

g(x1 + · · ·+ xn) = f [x1, . . . , xn]. (4.22)

Notice that there is a well known mean value theorem for divided differences (see for
example [31]).

Theorem 4.13. Let f : [a, b]→ R be a real valued function with continuous nth derivative
and x1, . . . , xn ∈ [a, b]. Then there exists a point η in the interval

[min{x1, . . . , xn},max{x1, . . . , xn}]

such that

f [x1, . . . , xn] =
f (n−1)(η)

(n− 1)!
.

In the same monograph one can find the following result.

Theorem 4.14. Suppose that f(x) = xl for some nonnegative integer l. Then for all
positive integers n,

f [x1, . . . , xn] =


0 for l < n− 1,

1 for l = n− 1,

x1 + · · ·+ xn for l = n.

Remark 4.15. Theorem 4.13 states that f [x1, . . . , xn] is the value of the (n−1)th deriva-
tive of f at some point. Further, from Theorem 4.14 we know that for monomials this
point is the arithmetic mean of x1, . . . , xn. Thus (4.22) has nontrivial solutions and it is
reasonable to ask if there are solutions of (4.22) other than polynomials.

Equation (4.22) was solved by Kannappan and Sahoo [17]. Then several authors dealt
with (4.22) on more general structures than R. In [37] and [7] this equation was solved
in a field of characteristic different from 2, and in [8] the case of integral domains was
treated. Let us also mention that in the paper of Kannappan [14] the pexiderized version
of (4.22) was solved in a field of characteristic different from 2 containing sufficiently
many distinct points. We shall cite here a result valid on R.

Theorem 4.16 ([31, Theorem 2.8]). Let f, g : R → R satisfy the functional equation
(4.22) for pairwise different x1, . . . , xn ∈ R. Then g is a polynomial of degree at most n
and f is a polynomial of first degree.
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We shall prove a more general result but first we shall solve an equation which is
strictly connected with (4.22). In numerical analysis the second derivative is often calcu-
lated with the use of the formula

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
− 1

12
h2f (4)(ξ),

which is a motivation for the functional equation

g(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
.

We substitute here (x+ y)/2 in place of x, and y − x in place of h. We get

g

(
x+ y

2

)
(y − x)2 = f(x)− 2f

(
x+ y

2

)
+ f(y).

This is clearly a functional equation of the form (5). Moreover, from Remark 4.2 we know
that if f and g satisfy this equation then f is a polynomial function of order at most 3

and g is a polynomial function of order at most 1 (i.e. an affine function). Later on we
shall solve this equation, but first we observe that it may be written in the following way:

g(x+ y)(y − x)2 = ∆2
(y−x)/2f(x); (4.23)

for simplicity we have replaced here g(x+y2 ) by g(x+y). This equation may be generalized
to

g(x+ y)(y − x)n = ∆n
(y−x)/nf(x). (4.24)

Equation (4.24) is not only a natural generalization of (4.23) but is also strictly connected
with (4.22).

Proposition 4.17. If f, g : R→ R satisfy equation (4.22) then they also satisfy

(n− 1)!

(n− 1)n−1
g

(
n(x+ y)

2

)
(y − x)n−1 = ∆n−1

y−x
n−1

f(x). (4.25)

Proof. Assume that f and g satisfy (4.22) and take

xi := x+ (i− 1)
y − x
n− 1

, i = 1, . . . , n.

Then, in view of Lemma 4.12,

f [x1, . . . , xn] =
∆n−1

y−x
n−1

f(x)

(n− 1)!
(
y−x
n−1

)n−1 .
On the other hand,

x1 + · · ·+ xn = x+ x+
y − x
n− 1

+ · · ·+ x+ (n− 1)
y − x
n− 1

=
n(x+ y)

2
,

which yields (4.25).

Remark 4.18. In the next theorem we shall obtain a solution of equation (4.25). Knowing
solutions of (4.25), it is easy to get solutions of (4.24).

We need the following lemma.
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Lemma 4.19. Let p be a positive integer, let g 6= 0 be a monomial function of order p
and let f be a monomial function of order p + k. If g, f satisfy (5) with some ai ∈ R,
α, β, αi, βi ∈ Q, i = 1, . . . , n, and g is not equal to zero then

a1α
p+k
1 + · · ·+ anα

p+k
n 6= 0,

and the functions

x 7→ xp and x 7→ (−1)k

a1α
p+k
1 + · · ·+ anα

p+k
n

xp+k

also satisfy (5).

Proof. From Remark 4.4 we know that

(−1)kαpg(x)xk = [a1α
p+k
1 + · · ·+ anα

p+k
n ]f(x).

If g is not equal to zero then a1α
p+k
1 + · · ·+ anα

p+k
n 6= 0, thus

f(x) = apg(x)xk where ap =
(−1)k

a1α
p+k
1 + · · ·+ anα

p+k
n

.

Using this in (5), we obtain

g(αx+ βy)(y − x)k

= ap[a1g(α1x+ β1y)p(α1x+ β1y)k + · · ·+ ang(αnx+ βny)p(αnx+ βny)k]. (4.26)

Now, let t ∈ R be such that g(t) 6= 0. Taking x, y ∈ Q and putting xt, yt instead of x, y
in (4.26), we get

(αx+ βy)pg(t)(y − x)k

= apg(t)[a1(α1x+ β1y)p(α1x+ β1y)k + · · ·+ an(αnx+ βny)p(αnx+ βny)k].

Thus equation (5) is satisfied by the functions x 7→ xp and x 7→ (−1)k

a1α
p+k
1 +···+anαp+k

n
xp+k

for all rational x and y. However both these functions are continuous and Q2 is dense
in R2, which means that they satisfy (5) for all x, y ∈ R.

Now we are ready to prove the main result of this section.

Theorem 4.20. Functions f, g : R→ R satisfy equation (4.25) if and only if

f(x) = axn + bxn−1 + fn−2(x) + · · ·+ f1(x) + c, g(x) = ax+ b,

where fi, i = 1, . . . , n − 2, are monomial functions of order i and a, b, c ∈ R are some
constants.

Proof. First we write (4.25) in the form

g

(
n(x+ y)

2

)
(y − x)n−1 =

(n− 1)n−1

(n− 1)!
∆n−1

y−x
n−1

f(x) (4.27)

to see that (4.25) is of the form (5). So, let constants α, β, αi, βi, i = 1, . . . , n, be such
that (5) with these constants takes the form (4.27). From Lemma 4.1 and Remark 4.2
we know that f is a polynomial function of order at most 2n − 1 and g is a polynomial
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function of order at most n− 2. In fact (Remark 4.2) for odd n these orders are smaller.
Let us write

f(x) = f2n−1(x) + · · ·+ f1(x) + c, g(x) = gn(x) + · · ·+ g1(x) + d,

where fi, i = 1, . . . , 2n−1, and gj , j = 1, . . . , n, are monomial functions of orders i and j,
respectively. Further, from Lemma 4.3 we know that the pairs

(f1, 0), . . . , (fn−2, 0), (fn−1, c), (fn, g1), . . . , (f2n−1, gn)

also satisfy (4.25). We have to show that fn, fn−1 and g1 are continuous and that fi+n, gi
vanish for i > 1.

First we show that fn and g1 are continuous. To this end we shall apply Theorem 4.6.
It is easy to see that

a1α
n
1 + · · ·+ anα

n
n 6= 0. (4.28)

Indeed, from Theorem 4.14 we know that (4.22) is satisfied by the pair ϕ(x) = xn and
ψ(x) = x, and, in view of Proposition 4.17, this means that this pair satisfies (4.25). In
view of Remark 4.5, this yields (4.28).

Thus we only have to check that

a1[a1α1β
n−1
1 + · · ·+ anαnβ

n−1
n ] 6= α. (4.29)

To this end we recall that (xn, x) satisfies (4.25); in particular, all terms containing xyn−1

vanish. This means that

αxyn−1 − (n− 1)βyxyn−2

=
(
a1[a1α1β

n
1 + · · ·+ anαnβ

n
n ] + (n− 1)a1[a1α1β

n
1 + · · ·+ anαnβ

n
n ]
)
xyn−1,

and so a1[a1α1β
n
1 + · · ·+anαnβ

n
n ] and α cannot have the same sign, which implies (4.29).

Now we show that fn−1 is also continuous. We may assume that f 6= 0. As before,
(4.25) is satisfied by (xn−1, 1). In view of Remark 4.5, this means that

a1α
n−1
1 + · · ·+ anα

n−1
n 6= 0.

Since g is constant, Remark 4.4 again yields the continuity of f.
Now we shall show that gi = 0 for i > 1. Suppose that gi 6= 0 for some i ∈ {2, . . . , n}.

Then, using Lemma 4.19, we find that (4.25) is satisfied by (γxi+n−1, xi) for some γ ∈ R,
γ 6= 0. On the other hand M. Floater [9] proved that

∆n−1
h f(x̄)

hn−1
− f (n−1)(x) =

n− 1

24
f (n+1)(ξ)

where x̄ = x + nh/2 and ξ ∈ [x, x + nh] is some point. This means that the functions
γxi+n−1, xi cannot satisfy (4.25) (the error on the right-hand side is different from zero).

It remains to show that fi = 0 for i ∈ {n + 1, . . . , 2n − 1}. We already know that in
this case gi−n+1 = 0, thus

∆n−1
y−x
n−1

fi(x) = 0;

but this means that fi is a polynomial function of order at most n− 2, so fi = 0.

Now, we are able to prove a result which is, in fact, stronger than Theorem 4.16.
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Theorem 4.21. If f, g : R → R satisfy equation (4.22) for all x1, . . . , xn such that
xi+1 − xi is constant with respect to i and for all x1, . . . , xn of the form c1, . . . , cn−1, x

where ci, i = 1, . . . , n, are some pairwise different constants then

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, g(x) = anx+ an−1

for some ai ∈ R, i = 0, . . . , n.

Conversely, functions given by the above formulas satisfy (4.22) for all x1, . . . , xn ∈ R.

Proof. Using Proposition 4.17 and Theorem 4.20, we can see that

f(x) = an+1x
n+1 + anx

n + fn−1(x) + · · ·+ f1(x) + a0

for some monomial functions fi, i = 1, . . . , n− 1, and

g(x) = an+1x+ an.

Thus we only have to show that fn−1, . . . , f1 are continuous. As before, these functions
satisfy (4.22) with g = 0. Thus we shall prove that every monomial function h satisfying

h[x1, . . . , xn] = 0

must be continuous. Theorem 4.11 yields
n∑
j=1

h(xj)∏n
k=1, k 6=j(xj − xk)

= 0. (4.30)

Now we fix any distinct constants c1, . . . , cn−1 and we put

x1 := c1, . . . , xn−1 = cn−1, xn := x

in (4.30) to obtain

n−1∑
j=1

h(cj)

(cj − x)
∏n−1
k=1, k 6=j(cj − ck)

+
h(x)∏n

k=1, k 6=j(x− ck)
= 0.

This means that

h(x) = −
n−1∑
j=1

∏n
k=1, k 6=j(x− ck)h(cj)

(cj − x)
∏n−1
k=1, k 6=j(cj − ck)

,

which finishes the proof.

Remark 4.22. Note that one of the steps of the proof of Theorem 4.20 was based on the
following procedure. We assume that the relevant equation has some nonzero solutions,
and then we use Lemma 4.19 to show that it is also satisfied by some monomials. This
allows us to use a result from numerical analysis (because monomials are highly regular).
We often struggle to show that some solutions of all kinds of equations must vanish.
Therefore this procedure looks promising.
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5. Generalizations of quadrature type functional equations

5.1. A generalization of the Aczél equation. As mentioned in the Introduction, the
equation

F (x)− F (y) = (x− y)f

(
x+ y

2

)
(1.2)

may be viewed as the starting point for all equations which we consider in this dissertation.
Therefore, trying to generalize our equations, we shall have a closer look at this equation.
It was proved in [1] that all solutions of this equation are given by

F (x) = ax2 + bx+ c, f(x) = 2ax+ b

for some a, b, c ∈ R. For some more general results see [31]. Further in [2] the arithmetic
mean occurring in (1.2) is replaced by the geometric or harmonic mean, i.e. among others
the following equation is considered:

F (x)− F (y) = (x− y)f(
√
xy),

and it is proved that solutions of this equation are of the form

F (x) = a
1

x
+ b+ cx, f(x) = c− a

x2
.

We now present a different approach in order to replace the arithmetic mean by other
means. Namely, in the case of the geometric mean we consider the equation of the form

F (x)− F (y) = (log x− log y)f(xy).

As will be shown, if f satisfies this equation (with some F ) then f(x) = a log x+ b, which
is similar to (1.2) but with the identity replaced by log which is a function that generates
the geometric mean. We also present some other equations constructed in the same spirit.
The main result of this section is

Theorem 5.1. Let (S, ∗), (G, ◦), (H,+) be semigroups such that ∗ is commutative and
let F : S → G, f : S → G, ϕ : S → H, T : G×H → G be functions such that

ϕ(x ∗ y) = ϕ(x) + ϕ(y) (5.1)

and all values of F,ϕ are invertible with respect to ◦ and +, respectively.
If the equation

F (x) ◦ F (y)−1 = T (f(x ∗ y), ϕ(y)− ϕ(x)) (5.2)

is satisfied then f , ϕ and T satisfy

T (f(x2 ∗ h2, 2ϕ(h))2 = T (f(x2 ∗ h, ϕ(h)) ◦ T (x2 ∗ h3, ϕ(h)).

Proof. Putting x ∗ h in place of y in (5.2), we obtain

F (x) ◦ F (x ∗ h)−1 = T (f(x2 ∗ h), ϕ(x ∗ h)− ϕ(x)),

which, in view of (5.1), means that

F (x) ◦ F (x ∗ h)−1 = T (f(x2 ∗ h), ϕ(h)). (5.3)

Now, putting x ∗ h in place of x and x ∗ h2 in place of y, we get

F (x ∗ h) ◦ F (x ∗ h2)−1 = T (f(x2 ∗ h3), ϕ(h)). (5.4)
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From (5.3) and (5.4) we get

F (x) ◦ F (x ∗ h2)−1 = T (f(x2 ∗ h), ϕ(h)) ◦ T (f(x2 ∗ h3), ϕ(h)). (5.5)

On the other hand, taking in (5.2) x ∗ h2 in place of y, we arrive at

F (x) ◦ F (x ∗ h2)−1 = T (f(x2 ∗ h2), 2ϕ(h)),

which, together with (5.5), means that we have obtained the equation desired.

Now we give a short proof of Aczél’s celebrated theorem with the use of Theorem 5.1.

Corollary 5.2. Functions f, F : R→ R satisfy the equation

F (x)− F (y) = (x− y)f(x+ y) (5.6)

if and only if f(x) = ax+ b and F (x) = ax2 + bx+ c for some a, b, c ∈ R.

Proof. From Theorem 5.1 we know that f satisfies the equation

2hf(2x+ 2h) = hf(2x+ h) + hf(2x+ 3h).

After suitable substitutions this means that f(x) = A(x) + b for some additive function
A and some constant b. On the other hand, taking y = 0 in (5.6) we get

F (x) = xf(x) + c, (5.7)

where c = F (0). Inserting the forms of f and F in (5.6), we get

y[A(y) + b]− x[A(x) + b] = (y − x)[A(x+ y) + b],

which gives
yA(x) = xA(y),

thus A(x) = xA(1) = ax, which means that f(x) = ax + b, and in view of (5.7) also
F (x) = ax2 + bx+ c.

Corollary 5.3. Functions f, F : (0,∞)→ R satisfy the equation

F (x)− F (y) = (log x− log y)f(xy) (5.8)

if and only if f(x) = a log x+ b and F (x) = a(log x)2 + b log x+ c for some a, b, c ∈ R.

Proof. From Theorem 5.1 we get

2 log hf(x2h2) = log hf(x2h) + log hf(x2h3)

and, after some substitutions,

2f(xh) = f(x) + f(xh2), x ∈ (0,∞),

which means that f(x) = A(log x)+ b for some additive function A. As before, from (5.8)
we obtain

F (x) = log xf(x) + c,

where c = F (1). Substituting these forms of f and F into (5.8), we get

log y[A(log y) + b]− log x[A(log x) + b] = (log y − log x)[A(log xy) + b],

i.e.
log yA(log x) = log xA(log y).
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Finally, taking y = e, we obtain

A(log x) = log xA(1),

which, in view of the form of f, means that f(x) = a log x + b and F (x) = a(log x)2 +

b log x+ c.

Corollary 5.4. Functions f, F : R→ (0,∞) satisfy the equation

F (x)

F (y)
= f(x+ y)x−y (5.9)

if and only if f(x) = b exp ax and F (x) = c(b exp ax)x for some a, b, c ∈ R.

Proof. From Theorem 5.1 we infer that f satisfies

f(2x+ 2h)2h = f(2x+ h)hf(2x+ 3h)h,

i.e.
f(2x+ 2h)2 = f(2x+ h)f(2x+ 3h),

which means that f(x) = b expA(x) for some additive function A and constant b.
Taking y = 0 in (5.9), we get F (x) = cf(x)x where c = F (0), and using the forms of

f and F in (5.9), we obtain

(b expA(x))x

(b expA(y))y
= (b expA(x+ y))x−y,

which gives
(expA(x))x

(expA(y))y
=

(expA(x) expA(y))x

(expA(x) expA(y)y
,

and consequently
expA(y)x = expA(x)y,

which means that A(x) = ax for some constant a ∈ R.

Remark 5.5. As we can see, if f and F satisfy the Aczél equation then Theorem 5.1
shows that f(x) = A(x) + b where A satisfies the Cauchy equation

A(x+ y) = A(x) +A(y).

However, there are three more versions of the Cauchy equation: exponential, logarithmic
and multiplicative, which are given by

A(x+ y) = A(x)A(y), A(xy) = A(x) +A(y), A(xy) = A(x)A(y).

Thus equations (5.8) and (5.9) may be called, respectively, the logarithmic and the expo-
nential Aczél equation. The only missing case is the multiplicative version which is given
by

F (x)

F (y)
= f(xy)log x−log y.
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5.2. A generalization of equation (1). In fact, this section could be transfered to
the “open problems” section but, since we consider here an equation which is not of the
(very general) form (1), we decided to keep it here.

Recently, a functional equation of the form

F (x+ y)− F (x)− F (y) = xf(y) + yf(x) (5.10)

was considered by W. Fechner and E. Gselmann. In [34] solutions of this equation (and
also of some more general equations) were obtained using similar methods to those used
in Section 3. Observe that this equation is not a particular case of (1) but it is easy to see
that solutions of (5.10) must be polynomial functions. Indeed, (5.10) is of the form (2.4),
which allows us to use Lemma 2.5. However if we try to generalize (5.10), we cannot use
this lemma any more. Observe that on the right-hand side of (2.4) in all occurrences of
xi the exponent i is greater than in terms containing yi. Therefore it would be impossible
to work with the equation

F (x+ y)− F (x)− F (y) = x[a1f(α1x+ β1y) + a2f(α1x+ β2y)]

+ y[b1f(γ2x+ δ2y) + b2f(α2x+ β2y)], (5.11)

which is only a slightly generalized version of (5.10). Therefore we formulate the following
problem.

Problem 5.6. Check if Lemma 2.5 may be generalized to cover the case of the equation
m∑
i=0

xi[a1,ifi(α1,ix+ β1,iy) + · · ·+ aki,ifi(αki,ix+ βki,iy)]

=

m∑
i=0

yi[b1,igi(γ1,ix+ δ1,iy) + · · ·+ bji,igi(γji,ix+ δji,iy)].

6. Some open problems

6.1. A common generalization of (1.1) and (5). Observe that the equations

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] (2)

and
g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny) (5)

may be viewed as generalizations of

F (y)− F (x) = (y − x)f

(
x+ y

2

)
. (1.2)

Indeed, in (2) the right-hand side of (1.2) is replaced by a more general expression,
while in (5) the right-hand side of (1.2) is only slightly changed but the left-hand side is
substantially generalized. This observation leads us to the functional equation

[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)](y − x)k

= b1g(γ1x+ δ1y) + · · ·+ bmg(γmx+ δmy). (6.1)
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Remark 6.1. The functional equation (6.1) is of the form (1). Thus if we assume that
there exists an i0 ∈ {1, . . . , n} such that αi0 + βi0 6= 0 and there is j0 ∈ {1, . . . ,m} such
that γj0 + δj0 6= 0 and ∣∣∣∣αi βi

γj0 δj0

∣∣∣∣ 6= 0

for all i ∈ {1, . . . , n} then Theorem 2.6 implies that g and f are polynomial functions.
We omit the proof of this fact because it is similar to the cases considered previously.

Let us give a reasonable example of a particular case of (6.1):[
1

6
f(x) +

2

3
f

(
x+ y

2

)
+

1

6
f(y)

]
y2 = g(x)− 2g

(
x+ y

2

)
+ g(y). (6.2)

Knowing that f and g are polynomial functions, we may proceed as in the case of equa-
tions stemming from differentiation formulas. Namely, one can work with monomial func-
tions of orders p, p+k. Then we take y = 0 to obtain a relation between f and g. Finally,
we substitute the resulting formula to (6.2) and we get the continuity of g (for p ≥ 2).
However this procedure must be executed for each equation separately. Therefore the
following problem arises.

Problem 6.2. Find general conditions under which solutions of (6.1)must be continuous.

6.2. A complete solution of equation (2). Note that we have obtained a general
solution of

F (y)− F (x) = (y − x)[a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)] (2)

in the case of rational coefficients αi, βi. Further, we have proved (Theorem 3.10) that if
αi + βi = 1, i = 1, . . . , n, and a1 + · · · + an 6= 0 then f must be continuous. In the case
a1 + · · ·+ an = 0 we may reduce (2) to the much simpler equation

a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny) = 0. (6.3)

Remark 6.3. If monomial functions F and f of orders respectively p and p + 1 satisfy
(2) where a1, αi, βi are such that

αi + βi = 1, i = 1, . . . , n, a1 + · · ·+ an = 0 (6.4)

then F = 0 and f satisfies (6.3). Indeed, from Theorem 3.5 we get F (x) = cxp+1 for some
c ∈ R. Using this form of F in (2), we obtain

c(yp−1x+ · · ·+ xyp−1) = [a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny)].

Taking here x = y and using the assumption a1 + · · ·+ an = 0, we get c = 0. This means
that f satisfies (6.3).

Since there are known results concerning equation (6.3) in the case of (6.4) (see for
example [42], [18], [41]), equation (2) may be considered to be solved in the case

αi + βi = 1, i = 1, . . . , n.

Nevertheless, we may formulate the following problem.

Problem 6.4. Find the general solutions of (2) in the case of irrational αi, βi without
the assumption that all sums αi + βi are equal to 1.
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6.3. A generalization of the conjecture of Sablik. Let us recall Sablik’s conjecture,
which turned out to be true: as stated in Theorem 3.5, if functions f1, . . . , fn and F

satisfy (1.1) then F must be continuous. This means that the discontinuous parts of
f1, . . . , fn vanish on the right-hand side of (1.1). Moreover, in all particular cases of (5)
we have considered, the same situation was true, namely in each case g turned out to be
continuous and discontinuous parts of f vanished on the right-hand side.

Therefore, as a possible generalization, we state the following conjecture.

Problem 6.5. Let p ∈ N and let fj,i : R→ R be monomial functions of order p+ i which
fulfill for all x, y ∈ R the functional equation

l∑
i=0

(y − x)i[f1,i(α1,ix+ β1,iy) + · · ·+ fki,i(αki,ix+ βki,iy)] = 0. (1)

Prove that if there exist i0 ∈ {0, . . . , l} and j0 ∈ {1, . . . , ki0} such that fj0,i0 is discontin-
uous then the equation

g1(α1,i0x+ β1,i0y) + · · ·+ gki0 (αki0 ,i0x+ βki0 ,i0y) = 0

has a nonzero solution which is a monomial function of order p+ i0.

Solution of this problem would help obtain solutions of equations of the type (1).

6.4. Equation (5). Note that for equation (5), in all cases we have considered the
function g appeared to be continuous. Therefore we formulate the following problem.

Problem 6.6. Let p, k ∈ N and let g, f : R → R be monomial functions of orders,
respectively, p, p+ k which fulfill for all x, y ∈ R the functional equation

g(αx+ βy)(y − x)k = a1f(α1x+ β1y) + · · ·+ anf(αnx+ βny). (5)

Check if the assumptions (4.10) of Theorem 4.6 are essential.

An affirmative solution of this problem would help solve equations of the type (5).

6.5. Equations stemming from Runge–Kutta methods. The next interesting class
of functional equations is motivated by methods used in numerical solutions of differential
equations. For example the Euler method yields the equation

F (y)− F (x) = (y − x)f(x, F (x)), (6.5)

which may easily be solved.
However, if we consider more complicated methods, then more complicated equations

appear. For example the midpoint method gives

F (y)− F (x) = (y − x)f

(
x+ y

2
, F (x) +

y − x
2

f(x, F (x))

)
, (6.6)

and from the Runge–Kutta method we get the equation

F (y)− F (x) = (y − x)

[
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

]
, (6.7)
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where

k1 = f(x, F (x)),

k2 = f

(
x+ y

2
, F (x) + k1

y − x
2

)
,

k3 = f

(
x+ y

2
, F (x) + k2

y − x
2

)
,

k4 = f

(
y, F (x) + k3

y − x
2

)
.

Observe that if f is constant with respect to the second variable then (6.6) takes the
form (1.2), and from (6.7) we get (1.7).

However, in general, (6.7) is much more complicated than all equations we have con-
sidered. Nevertheless, it would be interesting to find out for which functions the Runge–
Kutta and other numerical methods give exact results.

Problem 6.7. Find solutions of equations of the type (6.6), (6.7).

6.6. Stability of (1.2) and (1.4). Here we shall say a few words concerning the stability
properties of equations of the type (1.1). Thus we shall consider the inequality∣∣F (y)− F (x)− (y − x)[f1(α1x+ β1y) + · · ·+ fn(αnx+ βny)]

∣∣ ≤ ε. (6.8)

In [40] it was proved that the equation

F (y)− F (x) = (y − x)f

(
x+ y

2

)
(1.2)

is superstable. However, using the method from Section 2.3, it is possible to eliminate F
from (6.8). Namely, we can prove the following proposition.

Proposition 6.8. If F, f : R→ R satisfy (6.8) then f satisfies∣∣h[f1((α1 + β1)x+ β1h) + · · ·+ fn((αn + βn)x+ βnh)

+ f1((α1 + β1)x+ (α1 + 2β1)h) + · · ·+ fn((αn + βn)x+ (αn + 2βn)h)

− 2[f1((α1 + β1)x+ 2β1h) + · · ·+ fn((αn + βn)x+ 2βnh)]
]∣∣ ≤ ε. (6.9)

Proof. We take x+ h in place of y in (6.8). We get∣∣F (x+ h)− F (x)− h
[
fi((α1 + β1)x+ β1h) + · · ·+ fn((αn + βn)x+ βnh)

]∣∣ ≤ ε.
Then we take x+ 2h in place of y and x+ h in place of x in (6.8), which gives∣∣F (x+ 2h)− F (x+ h)

− h[f1((α1 + β1)x+ (α1 + 2β1)h) + · · ·+ fn((αn + βn)x+ (αn + 2βn)h)]
∣∣ ≤ ε.

From these two inequalities we obtain∣∣F (x+2h)−F (x)−h
[
f1((α1 +β1)x+2β1h)+ · · ·+fn((αn+βn)x+2βnh)

]∣∣ ≤ ε. (6.10)
On the other hand, taking x+ 2h instead of y in (6.8), we obtain∣∣F (x+ 2h)− F (x)− 2h

[
f1((α1 + β1)x+ 2β1h) + · · ·+ fn((αn + βn)x+ 2βnh)

]∣∣ ≤ ε.
This equation together with (6.10) yields (6.9).
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In view of this proposition, the question of stability of equation (1.1) may be reduced
to the stability of the equation

h
[
f1((α1 + β1)x+ β1h) + · · ·+ fn((αn + βn)x+ βnh)

+ f1((α1 + β1)x+ (α1 + 2β1)h) + · · ·+ fn((αn + βn)x+ (αn + 2βn)h)

= 2[f1((α1 + β1)x+ 2β1h) + · · ·+ fn((αn + βn)x+ 2βnh)]
]

= 0,

and although this equation looks complicated, in concrete situation it is much simpler.
In particular, if we consider (1.2) then from Proposition 6.8 (after suitable substitutions)
we get

|h∆2
hf(x)| ≤ ε (6.11)

(see [40]). Also in [40] it was proved that for every η > 0 the following implication holds:

|∆2
hf(x)| ≤ ε for h ≥ η ⇒ |∆2

hf(x)| ≤ 2ε for all h > 0.

This result allowed to obtain the stability of (6.11) and, consequently of (1.2).

Remark 6.9. Using Proposition 6.8, from∣∣F (y)− F (x)− (y − x)[f(x) + f(y)]
∣∣ ≤ ε

we get (6.11). This means that it is easy to prove the superstability of (1.4).

Therefore we formulate the following problem.

Problem 6.10. Is it true that for every n ∈ N there exists k > 0 such that for all η > 0,

|∆n
hf(x)| ≤ ε for h ≥ η ⇒ |∆n

hf(x)| ≤ kε for all h > 0?

The (affirmative) answer to this question would result in the superstability of many
equations stemming from quadrature rules.
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