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Abstract

In this work, we construct and study certain classes of infinite-dimensional Lie groups that
are modelled on weighted function spaces. In particular, we construct a Lie group Diffy, (X)
of diffeomorphisms, for each Banach space X and each set W of weights on X containing the
constant weights. We also construct certain types of “weighted mapping groups”. These are Lie
groups modelled on weighted function spaces of the form C&, (U, L(G)), where G is a given (finite-
or infinite-dimensional) Lie group. Both the weighted diffeomorphism groups and the weighted
mapping groups are shown to be regular Lie groups in Milnor’s sense.

We also discuss semidirect products of such groups. Moreover, we study the integrability of
Lie algebras of vector fields of the form Cyy (X, X) x L(G), where X is a Banach space and G a
Lie group acting smoothly on X.
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1. Introduction

Diffeomorphism groups of compact manifolds, as well as groups C*(K, G) of Lie group-
valued mappings on compact manifolds are among the most important and well-studied
examples of infinite-dimensional Lie groups (see for example [Les67], [Mil84], [Ham82],
[Omo97], [PS86] and [KM97]). While the diffeomorphism group Diff (K) of a compact
manifold is modelled on the Fréchet space C*°(K,TK) of smooth vector fields on K,
for a noncompact smooth manifold M, it is not possible to make Diff (M) a Lie group
modelled on the space of all smooth vector fields in a satisfactory way (see [Mil82]). We
mention that the LF-space C3° (M, TM) of compactly supported smooth vector fields can
be used as the modelling space for a Lie group structure on Diff (M). But the topology on
this Lie group is too fine for many purposes; the group Diff ,(M) of compactly supported
diffeomorphisms (which coincide with the identity map outside some compact set) is an
open subgroup (see [Mic80] and [Mil82]). Likewise, it is no problem to turn the groups
CF(M,G) of compactly supported Lie group-valued maps into Lie groups (cf. [Mil84],
[AHKM 93|, [GI602D]). However, only in special cases does there exist a Lie group struc-
ture on C*(M, G), equipped with its natural group topology, the smooth compact-open
topology (see [NWOS]).

In view of these limitations, it is natural to look for Lie groups of diffeomorphisms
which are larger than Diff .(M) and modelled on larger Lie algebras of vector fields than
C* (M, TM). In the same vein, one would like to find mapping groups modelled on larger
spaces than C* (M, L(Q)).

In this work, we construct such groups in the important case where the noncompact
manifold M is a vector space (or an open subset thereof, in the case of mapping groups).
For most of the results, the vector space is even allowed to be a Banach space X. The
groups we consider are modelled on spaces of weighted functions on X. For example, we
are able to construct a Lie group structure on the group Diff (R™) of diffeomorphisms
differing from idg~ by a rapidly decreasing R"-valued map. Considered as a topological
group, this group has been used in quantum physics ([Gol04]). For n = 1, another Lie
group structure (in the setting of convenient differential calculus) has been given by
P. Michor ([Mic06l §6.4]), and applied to the Burgers equation. The general case was
treated in the author’s unpublished diploma thesis [Wal06].

To explain our results, let X and Y be Banach spaces, U C X open and nonempty,
k € N := NU {co}, and W a set of functions f on U taking values in the extended
real line R := R U {00, —0o} called weights. As usual, we let C},(U,Y) be the set of all
k-times continuously Fréchet differentiable functions vy : U — Y such that f - [|DOy|,,
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1. Introduction 7

is bounded for all integers ¢ < k and all f € W. Then C{i\,(U, Y) is a locally convex
topological vector space in a natural way. We prove (see Theorems [4.2.17| and [4.3.11))

THEOREM. Let X be a Banach space and W C RX with 1x € W. Then Diff,,(X) :=
{¢ € Dff(X) : ¢ —idx, ¢~ —idx € C3(X,X)} is a regular Lie group modelled on
Cv(X, X).

Replacing C5(X, X) by the subspace of functions ~ such that f(z)-||D®~(z)|op — 0
as ||z|| — oo, we obtain a subgroup Diff,, (X)° of Diff,,(X) which is also a Lie group
(see [Proposition 4.2.19)).

As for mapping groups, we first consider mappings into Banach Lie groups. In
[tion 6.1] we show

THEOREM. Let X be a normed space, U C X an open nonempty subset, W C RY with
1y € W, k € N and G a Banach Lie group. Then there exists a connected Lie group
Ch, (U, G) € GY modelled on C%,(U,L(G)), and this Lie group is regular.

Using the natural action of diffeomorphisms on functions, we can form the semidirect
product Cyy (X, G) x Diff,,(X) and make it a Lie group.

In the case of finite-dimensional domains, we can even discuss mappings into arbitrary
Lie groups modelled on locally convex spaces. To this end, given a locally convex space
Y and an open subset U in a finite-dimensional vector space X we define a certain space
Ch,(UY)*® of C*-maps which decay together with their derivatives as we approach the

boundary of U (see [Definition 3.4.8| for details). We obtain the following result:

THEOREM. Let X be a finite-dimensional space, U C X an open nonempty subset, W C

RY with 1y € W, k € N and G a locally convex Lie group. Then there exists a connected
Lie group C&,(U,G)* C GY modelled on C},(U,L(G))®.

We also discuss certain larger subgroups of GV admitting Lie group structures that
make C,(U, G)® an open normal subgroup (see .

Finally, we consider Lie groups G acting smoothly on a Banach space X. We investi-
gate when the G-action leaves the identity component Diff,,,(X)o of Diff,,,(X) invariant
and whether Diff,,,(X)o X G can be made a Lie group in this case. In particular, we

show that Diff g(R™)o x GL(R™) is a Lie group for each n (Example 5.2.4). By contrast,
GL(R™) does not leave Diff(; ,}(R") invariant (Example 5.2.5).

We mention that certain weighted mapping groups on finite-dimensional spaces (con-
sisting of smooth mappings) have already been discussed in [BCR81l §4.2] assuming
additional hypotheses on the range group (cf. . Besides the added gen-
erality, we provide a more complete discussion of superposition operators on weighted
function spaces.

In the case where W = {1x}, our group Diff,,,(X) also has a counterpart in the
studies of Jurgen Eichhorn and collaborators ([Eic96], [ES96], [Eic07]), who investigated
certain diffeomorphism groups on noncompact manifolds with bounded geometry.

Semidirect products of diffeomorphism groups and function spaces on compact ma-
nifolds arise in ideal magnetohydrodynamics (see [KW09, I1.3.4]). Further, the group
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S(R™) xDiff g (R™) and its continuous unitary representations are encountered in quantum
physics (see [Gol04]; cf. also [Ism96) §34] and the references therein).

2. Preliminaries and notation

We give some notation and basic definitions. More details are provided in the appendix,
as is a list of symbols used in this work.

2.1. Notation. We write R := RU{—00,00}, N:= NU{oo} and N* := N\ {0}. Further
we denote norms by || - ||.
DEFINITION 2.1.1. Let A, B be subsets of the normed space X. As usual, the distance of
A and B is defined as
dist(A4, B) :=inf{|ja — || : a € A, b € B} € [0, o0].
Thus dist(A, B) = 0 iff A =0 or B = 0.
Further, for x € X and r € R we define
Bx(z,r):={ye X :|ly—z| <r}

Occasionally, we just write B,.(z) instead of Bx (z,r). For the closed ball, we write B,.(z)
and the like.
Further, we define
D := Bk(0,1),

where K € {R,C}. No confusion will arise from this abuse of notation.

2.2. Differential calculus of maps between locally convex spaces. We give basic
definitions for the differential calculus for maps between locally convex spaces that is

known as Keller’s C*-theory. More results can be found in [Section A.1

DEFINITION 2.2.1 (Directional derivatives). Let X and Y be locally convex spaces, U C
X an open nonempty set, u € U, x € X and f: U — Y a map. The derivative of f at u
in the direction x is defined as

L St ) — f()

t—0 t
teK”®

= (D:vf)(u) =: df(u7 $)>

whenever that limit exists.

DEFINITION 2.2.2. Let X and Y be locally convex spaces, U C X an open nonempty set,
and f:U — Y be a map.

We call f a Cj-map or just Cf: if f is continuous, the derivative df (u;z) exists for all
(u,z) € U x X and the map df : U x X — Y is continuous.

Inductively, for a k € N we call f a CE-map or just CE if f is a Ci-map and d' f :=
df :UxX —Yisa Cﬂlz_l-map. In this case, the kth iterated differential of f is defined
by

d¥f = dFNdf) U x X2 Sy

If fis a CE-map for each k € N, we call f a CZ°-map or just CZ° or smooth.
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Further, for each k € N we define
CRUY):={f:U—=Y:fisCk}.
Often, we shall simply write C*(U,Y), C* etc.

It is obvious from the definition of differentiability that iterated directional derivatives
exist and depend continuously on the directions. The converse of this assertion also holds.

PROPOSITION 2.2.3. Let f: U — Y be a continuous map and r € N. Then f € C"(U,Y)
iff for allu e U, k € N with k <r and x1,...,x, € X the iterated directional derivative

d(k{f(u;x17"'amk):::(l)fk"’l)z1f)(u)
exists and the map
Ux XF Y (u,zy,. .. xp) — dP flusz, ... x)

is continuous. We call d®) f the kth derivative of f.

2.3. Fréchet differentiability. We give basic definitions for Fréchet differentiability
for maps between normed spaces. More results can be found in

DEFINITION 2.3.1 (Fréchet differentiability). Let X and Y be normed spaces and U an
open nonempty subset of X. We call a map v : U — Y Fréchet differentiable or FC' if it
is a C'-map and the map

Dvy:U = L(X,Y):zw— dvy(z;-)

is continuous. Inductively, for k& € N* we call v a FC** ' -map if it is Fréchet differentiable
and D~ is an FC*-map. We denote the set of all k-times Fréchet differentiable maps from
U to Y with FC*(U,Y). Additionally, we define the smooth maps by

FCX(U,Y) = (] FC*U.Y)
keN*
and FC'(U,Y) := C°(U,Y). The map
D: FCH (U, Y) = FC*(U,L(X,Y)) : v — Dy
is called the derivative operator.
REMARK 2.3.2. Let X and Y be normed spaces, U an open nonempty subset of X,
k € N* and v € FC¥(U,Y). Then for each ¢ € N* with £ < k there exists a continuous

map
DY~ U = LYX,Y),

where L*(X,Y) denotes the space of (-linear maps X* — Y, endowed with the operator
topology. The map D~ can be described more explicitly. If v € ]—'Ck(U, Y'), then also
v € C*¥(U,Y), and for each = € U we have the relation

DWWy (z) = dMy(z;-).
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3. Weighted function spaces

In this chapter we give the definition of some locally convex vector spaces consisting of
weighted functions. The Lie groups that are constructed in this work will be modelled on
these spaces. We first discuss maps between normed spaces. In we will also
look at maps that take values in arbitrary locally convex spaces. The treatment of the
latter spaces requires some rather technical effort. Since these function spaces are only

needed in the reader may possibly skip this section.

3.1. Definition and examples

DEFINITION 3.1.1. Let X and Y be normed spaces and U C X an open nonempty set.
For k € N and a map f: U — R we define the quasinorm

I [lgk = FCHU,Y) = [0,00] : ¢ = sup{|f (2)| | DD ¢ () lop : € U}.

Furthermore, for any nonempty set YW of maps U — R and k& € N we define the vector
space
Cyy(U,Y) = {y e FCHU,Y) : (Vf e W,L €N, L <) ||y]l ¢ < o0}

and notice that the seminorms || - ||, induce a locally convex vector space topology on
Ch(U,Y).

We call the elements of W weights and C{fv(U, Y) a space of weighted maps or space
of weighted functions.

An important example is the space of bounded functions with bounded derivatives:
EXAMPLE 3.1.2. Let k € N. We define
BCH(U,Y) :=Cfy,,(UY).

REMARK 3.1.3. Let U and V be nonempty open subsets of a normed space X and U C V.
For a set W C RY, we define

Wy = {flv : f e W}
Further we write with an abuse of notation
Cy(U,Y) :=Cyy, (U, Y).
REMARK 3.1.4. As is clear, for any set 7' C 2"V with W = (J ., F we have
CHUY)= () CHUY).
FeT
EN, (<k
We define some subsets of C}j,(U,Y):

DEFINITION 3.1.5. Let X and Y be normed spaces, U C X and V' C Y open nonempty
sets and W C RV. For k € N we set

C(U V) :={yeCyU,Y):y(U) CV},
CoF(U V) = {y € C}y(U,V) : 3r > 0) v(U) + By (0,r) C V}.
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Obviously Ce\}k(U, V) CCy(U, V), and if 1y € W, then Ca}k(U, V) is open in C¥,(U,Y).
The symbol BC?* (U, V) is defined analogously.
If U C X is an open neighborhood of 0, we set

CllfV(Ua Y)o:={y€ Cile(Uv Y):~(0) = 0}.

Analogously, we define C&,(U, V)o, Cg\}k(U, V)o and BC°(U, V) as the corresponding sets
of functions vanishing at 0.
Furthermore, we define the set of decreasing weighted maps as

Crp(U,Y)° = {y € CH,(U,Y) : (Vf € W, L € N, < ke > 0)(Tr > 0) |[y|ons. o)l e < €}-

Note that we are primarily interested in the spaces C{fv(X ,Y)°, but for technical reasons
it is useful to have the spaces C},(U,Y)° available for U C X.

LEMMA 3.1.6. C§,(U,Y)° is a closed vector subspace of Cp,(U,Y).

Proof. 1t is obvious from the definition of C,(U,Y)° that it is a vector subspace. It
remains to show that it is closed. To this end, let (7;);e; be a net in C&,(U,Y)° that
converges to v € C¥,(U,Y) in the topology of C&,(U,Y). Let f € W, £ € N with £ < k
and € > 0. Then there exists an i, € I such that

i 2ie = Iy —villge <e/2.
Further there exists an r > 0 such that
Vil B, 0l 7.6 < €/2.
Hence
IVl B, ) l7.e < V0B, 0) — Vi lo\B,. ) | £, + 173 lo\B,. ()l £.0 < & ™

Ezamples involving finite-dimensional spaces. Let K € {R,C} and n € N. In the follow-
ing, let U be an open nonempty subset of K”. For a map f : U — R and a multiindex
a € N with |a] < k we define

I+l s CE(U.Y) = [0,00] = ¢ = sup{| f(2)] |0°(x)|| : @ € U}

We conclude from [identity (A.3.6.1)|in|[Proposition A.3.6{that for a set W of maps U — R
and k € N

C%((LY) = {qb € CHIE(Uv Y) : (Vf EW,ae Ng, |a| < k) ”(be,Oé < 00}7

and the topology defined by the seminorms || - || 7o coincides with the one defined above
using the seminorms || - || 7., This characterization of C},(U,Y") allows us to recover well-
known spaces as special cases:

o If W is the space CO(U,R™) of all continuous functions, then
Cyw(U,R™) = D(U,R™) = C*(U,R™)

where D(U,R™) denotes the space of compactly supported smooth functions from U
to R™; it should be noticed that Cg§ ; gm(U,R™) is not endowed with the ordinary
inductive limit topology hﬂ 1 Dx(U,R™), but instead the (coarser) topology making
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it the projective limit

lim (lim DY (U, B™)) = lim D" (U, R™),

peEN K peEN
where D} (U, R™) denotes the CP-maps with support in the compact set K, endowed
with the topology of uniform convergence of derivatives up to order p; and DP (U, R™)
the compactly supported CP-maps endowed with the inductive limit topology of the
sets DY (U, R™).

e The vector-valued Schwartz space S(R",R™). Here U =Y =R", k = co and W is the
set of polynomial functions on R™.

e The space BC*(U, K™) of all bounded C*-functions from U C K" to K™ whose partial
derivatives are bounded (for W = {1y }); see

o If W= {lx,00-1x\¢}, then the space Ch,(X,Y) consists of BC*(X,Y) functions that
are defined on X and vanish on the complement of U.

3.2. Topological and uniform structure. We analyze the topology of the weighted
function spaces defined above. In[Proposition 3.2.3| we shall provide a method that greatly
simplifies the treatment of these spaces; it will be used throughout this work. We will
also describe the spaces C{ﬁv(U, Y) as the projective limits of suitable larger spaces. In
particular, this will simplify the treatment of the spaces Cy5(U,Y). Further we give a
sufficient criterion on the set W which ensures that C,(U,Y) is complete.

3.2.1. Reduction to lower order. For ¢ > 1, it is hard to estimate the seminorms
| - || s.c because in most cases the higher order derivatives D). cannot be computed. We
develop a technique that allows us to avoid the computation.

First, we show that C,(U,Y) is endowed with the initial topology of the derivative
maps.

LEMMA 3.2.1. Let X and Y be normed spaces, U C X an open nonempty set, k € N,
W CRY and y € FC*(U,Y). Then
yelh(U,Y) e (WeNt<k) DOy e (UL(X,Y)),
and the map
Cw(U,Y) = [T (U LA, Y)) sy = (D7) e e
LeN
£<k

is a topological embedding.
Proof. Both assertions are clear from the definition of C§,(U,Y) and CY, (U, L¢(X,Y)). =

The next lemma states a relation between the higher order derivatives of v and those
of D~.

LEMMA 3.2.2. Let X andY be normed spaces, U C X an open nonempty set, k € N and
v E kaH(U,Y). Then

1D Dy (2)llop = D+ (@) op (3.2.2.1)
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for each x € U and ¢ < k. In particular, for each map f € RV, £ < k and subset V C U,
VIV Il e = DV 5,0 (3.2.2.2)
Proof. In the identity
D"y = &1 0 (DY Dr)

is proved, where &1 : L(X,LY(X,Y)) — L‘T(X,Y) is an isometric isomorphism (see

Lemma A.2.5). The asserted identities follow immediately. m

We can state the main tool for the treatment of weighted function spaces C{fv(U, Y)
with & > 1. It is useful because it allows induction arguments of the following kind:
Suppose we want to show that v € CJ,(U,Y). First, we have to show that v € C),(U,Y).
Then, we suppose v € Ch,(U,Y) and show that Dy in Ci,,(U,L(X,Y)) by expressing it
in terms of . This finishes the induction argument.

PROPOSITION 3.2.3 (Reduction to lower order). Let X and Y be normed spaces, U C X
an open nonempty set, W CRY, k € N and v € FC'(U,Y). Then

v ECHHUY) & (Dv,7) € Cyy(U,L(X,Y)) x C(U,Y).
Moreover, the map
O H(UY) = Cy (U, L(X,Y)) x Cpy(UY) =y v (D, 7)
is a topological embedding. In particular, the map
D:CEN(U,Y) — Chy (U, L(X,Y))
18 CONtInuous.

Proof. The first relation follows immediately from the definition of FC*-maps and

tity (3.2.2.2)} This identity, together with [Lemma 3.2.1} also implies that Cif (U, Y) is

endowed with the initial topology with respect to
D:CiN(U,Y) — Chy (U, L(X,Y))

and the inclusion map
CEFNUY) — CO,(U,Y).

This proves the second assertion. m
The same argument can be made for the vanishing weighted functions.

COROLLARY 3.2.4. Let X and Y be normed spaces, U C X an open nonempty set,
WCRY, k€N andy e FCH(U,Y). Then

v € CENU,Y)? & (Dv,7) € Chy(U,L(X,Y))° x Ch (U, Y)°.

Proof. This is also an immediate consequence of [Proposition 3.2.3[and (3.2.2.2). m

3.2.2. Projective limits and the topology of C;}(U,Y). Sometimes it is useful that
C{fv(U, Y) can be written as the projective limit of larger weighted functions spaces.

ProPOSITION 3.2.5. Let X and Y be normed spaces, U C X an open nonempty set,
k€N and W C RY a nonempty set. Further let (F;)icr be a directed family of nonempty
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subsets of W such that \J;,c; F; = W. Consider I x {£ € N:{ < k} as a directed set via
((i1,01) < (i2,02)) & i1 <o and by < lo.
Then Ck,(U,Y) is the projective limit of
{CL(UY):teN, (<kicl}

in the category of topological (vector) spaces, with the inclusion maps as morphisms.

Proof. Since

CyUY)= [ Cr(UY),

iel
LeN, 1<k

the set C{ﬁv(U, Y) is the desired projective limit as a set, and hence also as a vector
space. Moreover, it is well known that the initial topology with respect to the limit
maps Ciy, (U, Y) — Cffi(U, Y') makes C¥,(U,Y') the projective limit as a topological space,
and also as a topological vector space. But it is clear from the definition that the given
topology on Cf,(U,Y) coincides with this initial topology. =

COROLLARY 3.2.6. Let X and Y be normed spaces, U C X an open monempty set and
W C RY. The space Cy(U,Y) is endowed with the initial topology with respect to the
inclusion maps

Cy(UY) = C3(U,Y).
Moreover, C35(U,Y) is the projective limit of the spaces C&,(U,Y) with k € N, together
with the inclusion maps.

Proof. This is an immediate consequence of [Proposition 3.2.5| =

3.2.3. A completeness criterion. We describe a condition on W that ensures that
C’;V(U, Y) is complete, provided that Y is a Banach space. The proof uses
We start with the following observation concerning the continuity of evaluation
maps.

LEMMA 3.2.7. Let X andY be normed spaces, U C X an open nonempty set, k € N and
x € U. Suppose that W C RY contains a weight f, € W with f.(x) # 0. Then

evy 1 Chy(UY) = Y 1y ()
is a continuous linear map.
Proof. If there exists f € W with f(z) € {—00, 00}, then for each v € C};,(U,Y),
leva(MI =0 < [Vl 1.0-

Otherwise, for each f € W with f(z) # 0 and v € C§,(U,Y), we have

1
leva(M = [ (@) < m”ﬂ’”ﬂo'

In both cases, these estimates ensure the continuity of ev,. =

We examine when the image of Cl3 (U, Y) under the embedding described in
[sition 3.2.3lis closed.
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PROPOSITION 3.2.8. Let X and Y be normed spaces, U C X an open nonempty set and
k € N. Further let W C R such that for each compact line segment S C U there exists
fs € W with inf,ecs|fs(x)| > 0. Then the image of C{f\fl(U,Y) under the embedding
described in|Proposition 3.2.3| is closed.

Proof. Let (7i)ier be anet in Cif (U, Y) such that (v;);er converges to y in C,(U, Y) and
the net (Dv;);es converges to I' in C, (U, L(X,Y')). We have to show that v € C{f\j'l(U, Y)
with Dy =T.

To this end, consider x € U, h € X and t € R* such that the line segment S, ;5 =
{z + sth : s € [0,1]} is contained in U. Since evaluation maps and weak integration are
continuous (see Lemmas and respectively) and the hypothesis on W implies
that (Dv;)ier converges to I' uniformly on S, ; ,, we derive

v(x +th) — y(z) ~ lim Yi(w + th) —vi(z)

t iel t
1
D~;(x + sth) - (th)d 1
1€ 0

Since IT" is continuous, we can apply [Proposition A.1.8/and get

Jim 1) =7(@) _ /1 lim (T + sth) - h) ds = T'(x) - h.
0

t—0 t t—0

Because I' and the evaluation of linear maps are continuous (Lemma A.2.3)), v is a C!-
map with dvy(x;-) = I'(x), and another application of the continuity of I' shows that
v € FCY(U,Y) with Dy = I. Finally we conclude from [Proposition 3.2.3| that v €
C{f\j_ YU, Y). =

The last proposition allows us to deduce the completeness of C{i\,(U, Y) from that of
o, (U, Y).

COROLLARY 3.2.9. In the situation of Proposiion|3.2.8| assume that C§,,(U,Y) is complete
for each Banach space Y. Then also C{i\,(U, Y) is complete, for each k € N.

Proof. The proof for k < oo is by induction.

k = 0: This holds by our hypothesis.

k — k + 1: We conclude from [Proposition 3.2.§| that C{f\fl(U, Y') is isomorphic to a
closed vector subspace of Cii,(U,L(X,Y)) x C,(U,Y), which is complete by induction
hypothesis.

k = oo: This follows from [Corollary 3.2.6/and the fact that C},(U,Y) is complete for

all k& € N because projective limits of complete topological vector spaces are complete. m

We give a sufficient condition for the completeness of C§),(U,Y).

PRrOPOSITION 3.2.10. Let X be a normed space, U C X an open nonempty set and Y
a Banach space. Further let W C R such that for each compact set K C U there exists
fx €W with inf e k| frc ()] > 0. Then C3,,(U,Y) is complete.

Proof. Let (v;)ier be a Cauchy net in C§),(U,Y). The hypothesis on W implies that
the topology of CY,(U,Y) is finer than the topology of uniform convergence on compact
sets. Hence we deduce from the completeness of Y that there exists a map v: U — Y
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to which (7;)i;er converges uniformly on each compact subset of U; and since each ~;
is continuous, the restriction of 7 to each compact subset is continuous. Hence = is
sequentially continuous since the union of a convergent sequence with its limit is compact;
but U is first countable, so 7 is continuous.

It remains to show that v € C§,,(U,Y") and (v;);er converges to v in C§),(U,Y"). To see
this, let f € W and € > 0. Then there exists an ¢ € I such that

(Vi,j = 0) v —7illzo0 <e,
which is equivalent to
(Ve € Uyi, j 2 0) [f(@)] [|vi(x) = (2)]| < e

If we fix ¢ in this estimate and let y;(x) pass to its limit, then we get

(Vo e Ui 2 0) |f(2)] [7i(z) — ()] <. (%)
The triangle inequality now shows that

(Ve € U) |f(@) 7@ < &+ [f(@)] Ive(@)]| < &+ [17ell 5,0,

so v € C,,(U,Y). Finally we conclude from () that ||v; —||z,0 < & for all i > ¢, so (7;)ier
converges to v in CY,(U,Y). m

Finally, we state the derived criterion in a citable form.

COROLLARY 3.2.11. Let X be a normed space, U C X an open nonempty set, Y a Banach
space and k € N. Further let W C R such that for each compact set K C U there exists
fx € W with inf,ck|fr(z)| > 0. Then C{ﬁv(U, Y) is complete.

Proof. This is an immediate consequence of |Corollary 3.2.9| and |[Proposition 3.2.10, =

COROLLARY 3.2.12. Let X be a normed space, U C X an open nonempty set, Y a
Banach space and k € N. Further let W be a set of weights with 1y € W. Then C,(U,Y)
is complete; in particular, BC’“(U, Y) is complete.

3.2.3.1. An integrability criterion. The given completeness criterion entails a criterion
for the existence of the weak integral of a continuous curve to a space Cii,(U,Y) where
Y is not necessarily complete.

LEMMA 3.2.13. Let X and Y be normed spaces, U C X a nonempty open set, k € N,
W CRY, T:[a,b] = C}(U,Y) amap and R € C},(U,Y).

(a) Assume that T' is weakly integrable and that for each x € U there exists f, € W with
fo(z) #0. Then

/abF(S)dS:R & (Vrel) ev, </abF(s)d3) = R(x),

and for each x € U we have

vy (/abl"(s) ds) :/abevz(F(s))ds. (%)
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(b) Assume that for each compact set K C U, there exists a weight fxr € W with
inf,ex|fr(x)] > 0, that T is continuous and

b
/ evy(I'(s)) ds = evy(R) (xx)

for allx € U. Then I is weakly integrable with

/abf(s) ds = R.

Proof. (a) Since {ev, : € U} separates the points of C},(U,Y), the stated equivalence
is obvious. Further, we proved in that the condition on W implies that
{eve iz €U} C L(CE,(U,Y),Y), so () follows from

(b) Let Y be the completion of Y. Then C},(U,Y) C C},(U,Y), and we denote the
inclusion map by ¢. It is obvious that ¢ is a topological embedding. In the following, we
denote the evaluation of C¥, (U, Y) at z € U with év,.

Since we proved in that the condition on W ensures that Cjy, (U, Y)
is complete, ¢ oI is weakly integrable. Since €v, o1 = ev, for z € U, we conclude from (a)

(using and () that ,
/ (LoT)(s)ds = u(R).

This identity ensures the integrability of I': By the Hahn-Banach theorem, each A €
Ch,(U,Y)" extends to a A € Ciy,(U,Y)’, that is Ao = \. Hence

b b
/(AoF)(s)ds:/ (AoroT)(s)ds = A(L(R)) = A(R). m

3.3. Composition on weighted functions and superposition operators. In this
subsection we discuss the behaviour of weighted functions when they are composed with
certain functions. In particular, we show that a continuous multilinear or a suitable ana-
lytic map induce a superposition operator between weighted function spaces. Moreover,
we examine the composition between bounded functions and between bounded functions
mapping 0 to 0 and weighted functions.

3.3.1. Composition with a multilinear map. We prove that a continuous multilinear
map from a normed space Y7 X --- X Y, to a normed space Z induces a continuous
multilinear map from C%,(U, Y1) x - -+ x C},(U,Yy,) to Ch, (U, Z). As a preparation, we
calculate the differential of a composition of a multilinear map and other differentiable
maps. The following definition is quite useful to do that.

DEFINITION 3.3.1. Let Y7,...,Y,,, X and Z be normed spacesand b: Y} X--- XY, = Z
a continuous m-linear map. For each i € {1,...,m} we define the m-linear continuous
map
b Y x - X Vil X L(X,Y;) X Yigy X --- x Yy, = L(X, Z),
(yla s 7yi—1aTa Yit1s--- 7y7l’L) = (h = b<y13 s ?yi—laT . hyy’i-‘rl’ s ay’m))'

LEMMA 3.3.2. Let Yi,...,Y,, and Z be normed spaces, U be an open nonempty subset
of the normed space X and k € N. Further let b : Yy x --- x Yy, — Z be a continuous
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m-linear map and vy, € ]-'Ck(U, Yi),...yvm € ]-'Ck(U7 Yin). Then
bo(v,...,vm) € FCHU, 2)
with

m

D(bo (FY17 s 7’Ym)) = Zb(l) © (717 s a’Yi—l?DrYivfyi-‘rh s 7’Ym) (3321)

i=1

Proof. To calculate the derivative of bo (v1,...,vm), we apply the chain rule to get

Do (v, ,vm))(x) - h = Zb y(x), .-, vie1 (), Dyi(z) - hyvig1 (), .-, ym ()
Z )e s Yic1 (@), DY (), g1 (2)s - o Y (7)) - he m

We are ready to prove the result about the superposition.

ProproSITION 3.3.3. Let U be an open nonempty subset of the normed space X. Let
Y1,..., Yy be normed spaces, k € N and W, Wi, ..., W,, C RY nonempty sets such that

(VfeW) Bara € Wi, grm € W) IfI < lggal---95.ml-

Further let Z be another normed space and b : Yy X --- X Y,, = Z a continuous m-linear
map. Then

bo(vi,...,Ym) € Ci(U, Z)
Jor all y1 € C}, (U, Y1), ..., ym € C{ﬁvm(U, Yn). The map
My(b) : Gy, (U Y1) X == % Gy (U, Yin) = Cp(U, Z) = (-, ) += b0 (9,3 m)
is m-linear and continuous.

Proof. For k < oo, we proceed by induction on k.
k=0: For fe W,z €U and 1 € C{fvl(U, Yi),...yvm € C{jv (U,Yn) we compute

[F @)oo (v, ym) (@) < [bllop nglell% ) < IIbIIopH 1illg.:.05

sobo (Y1,...,%m) € Cy(U, Z). From this estimate we also conclude

m
1Mo(®) (31 -+ vm)ll 50 = 100 (vas - )l 20 < Wbllop T 1ill g0
i=1

so My (b) is continuous at 0. Since the m-linearity of My(b) is obvious, this implies the
continuity of My(b) (see [Bou87, Chapter I, §1, no. 6]).

k — k + 1: From [Proposition 3.2.3| (together with the induction base) we know that
for v; € CkH(U, Yi),..oyvm € C{j\j:(U, Yin),

bo (i, ¥m) €ECHNU,Z) < D(bo (v,...,¥m)) € Cly(U,L(X, Z))

and that Mjy1(b) is continuous if

Do Myy1(b) : Cyt (U Y1) % -+ x Cyf M (U, Yon) = Gy (U, L(X, 2))
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is. We know from (3.3.2.1)) in [Lemma 3.3.2| that

m
Do (1,---,7m)) = Zb(l) O (Y15 Wim1s DViy Vi1, - s Ym)-
i=1

By the inductive hypothesis,
b(l) o (’yl, ey Yi—1, .D")/Z‘,")/i+1, PN ,’}/m) € C%(U,L(X, Z))

and hence
D(bo (v1,...,7m)) € Cly(U,L(X, 2)).

Since
M6 1 Cy (U, Y1) x -+ x Chy (U, L(X,Y;)) % -+ x Cy, (U, Y) — Chy (U, L(X, Z))

is continuous by the inductive hypothesis, it follows that D o My11(b) is continuous as

(Do Myyr (D) (1,3 ¥m) = D M) (155 %51, DYis Vit -+ > Ym)-
=1

Furthermore, My 1(b) is obviously m-linear, so the induction step is finished.
k = oo: From the assertions already established, we derive the commutative diagram

|

(U, Z)

Cyy, (U, Y1) x - x Cyy (U, Yr)

I

Cy (U Y1) % -+ x Cy, (U, Vi) —2®

for each n € N, where the vertical arrows represent inclusion maps. Using
we easily deduce the continuity of M (b) from that of M, (b). =
We prove an analogous result for decreasing functions.

COROLLARY 3.3.4. Let Y1,...,Y,, be normed spaces, U an open nonempty subset of the
normed space X, k € N and W, Wy, ..., W,, € RY nonempty such that

(VFeW) Bara € Wi, gpm € W) IfI < lggal---195.ml-

Further let Z be another normed space, b : Y, X ---xY,, = Z a continuous m-linear map
and j € {1,...,m}. Then

bo(ryh"'afij"y’ym)ecl]j\/(U7Z)o (T)
for all ~; € €3, (U,Y;) (i # j) and v; € C3, (U, Y;)°. Moreover, the map
My (b) : Cpy, (U, Y1) X -+ x Cyyy (U, Y5)? X -+ x Cyyy (U, Vi) = (U, Z)°,
(’Yla---a’Yj7~-~»’Ym)’—>b°(717---7’Yja-~-7”Ym)7

is m-linear and continuous.

Proof. Using [Proposition 3.3.3 and [Lemma 3.1.6] we only have to prove that holds.
This is done by induction on k (which we may assume finite).
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k=0:For f € W,z €U and 71 € C%I(U,Yl),...,'yj € C)%j(U,Yj)O,...,Vm €
Cy, (U,Yn) we compute

[F@) oo (a5 -,Vm)( )l

< anoprf, sl < (1bll TT Iilor.c0) a7 @) 1)1
i#]
From this estimate we easily see that bo (y1,...,7j,...,Ym) € Cevj (U, Z)°.

k — k4 1: From [Corollary 3.2.4] (together with the induction base) we know that for
€CY UYL, o7 €y (U Y)Y € G (U, Yon)

b0 Y1y s %o+ vm) € Oy (U, 2)° & D(bo (1,555 - 7m)) € (U, L(X, Z))°.
We know from (3.3.2.1)) in [Lemma 3.3.2| that

D(bo (Y1, sYjs---3Ym)) Zb( (Vs ooy Yoo e o Yie1s DVis Vit 1, -+ -5 Ym)
1#]
+bW o (Vs %=1 DV Y1, - o) Ym)-
Because v; € C{fvj(U,Yj)o and Dv; € C{ﬁvj(U,L(X,Yj))O, we can apply the inductive

hypothesis to all b and the C*-maps 71,...,vm and Dyi,..., D7y, to see that this is
an element of C}, (U, L(X, Z))°. =

We list some applications of [Proposition 3.3.3| In the following corollaries, k € N,
U is an open nonempty subset of the normed space X and W C RY always contains the
constant map 1.

COROLLARY 3.3.5. Let A be a normed algebra with the continuous multiplication x. Then
Ch, (U, A) is an algebra with the continuous multiplication

M (%) : Cly (U, A) x Cy, (U, A) = Cy, (U, A),
M()(v,m)(x) = v(z) * n().
We shall often write * instead of M (x).
COROLLARY 3.3.6. If E, F and G are normed spaces, then the composition
L(F,G) x L(E,F) = L(E,G)
is bilinear and continuous and therefore induces the continuous bilinear maps
M(-) : Cpy(U,L(F, G)) x Cyy, (U, L(E, F)) = Cy,(U,L(E, G)),
M)y, m)(x) = ~(2) - n(z)
and
Mpc () : Chy (U, L(F, G)) x BC*(U,L(E, F)) = Cy,(U,L(E, G)),
Mpe () (v, m)(x) = () - n(z).
We shall often denote M(-) just by -.
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COROLLARY 3.3.7. Let E and F be normed spaces. Then the evaluation of linear maps
LE,F)XxE—F:(Tyw)—T- -w
is bilinear und continuous (see Lemma|A.2.3]) and hence induces the continuous bilinear
map
M(:) : Cyy(U,L(E, F)) x Cyy, (U, E) = Cyy, (U, F),
M )T, n)(x) =T(x) - n(x).
Instead of M(-) we will often write -.

3.3.2. Composition of weighted functions with bounded functions. We explore
the composition between spaces of bounded functions and spaces of weighted functions.
A case of particular interest is the composition between certain subsets of the spaces

BCk(U,Y).

3.3.2.1. Composition of bounded functions. We discuss under which conditions the com-
position is continuous or differentiable.

LEMMA 3.3.8. Let X, Y and Z be normed spaces, U C X and V C'Y open nonempty
subsets and k € N. Then for v € BC*™(V, Z) and n € BCO* (U, V),

yone BCHU,Z),
and the map
BCHH(V, Z) x BCM(U,V) — BC* (U, Z) : (v,m) = von (+)

15 continuous.

Proof. For k < oo this is proved by induction.
k = 0: Obviously

BCY(V, Z) o BCOO(U, V) C BC(U, Z),

so it remains to show that the composition is continuous. To this end, let v,vy €
BCY(V, Z), n,mo € BCP(U, V) with || — noll1,.0 < dist(no(U),dV) and & € U. Then

[(yon)(z) - (70 o 770)(33)”
= |lv(n(z)) — v(no(z)) +v(no(x)) = yo(no(z))]l

l/Dvm 1—wmmymw—mw»ﬂbWW—%wmmm
ollne) = @) + 1y = o) (mo(@)]l:

in this estimate we used || —no|l1,,0 < dist(no(U), V) to ensure that the line segment
between n(z) und ng(z) is contained in V. The estimate yields

< 1Dy,

v on =90 °m0ll1r,0 < Vllv,1lm = n0llie0 + 17 = 0ll10 05

whence the composition is continuous.
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k — k4 1: In the following, we denote the composition map with gi,z. We know
from [Proposition 3.2.3| (and the induction base) that

Gri1,2(BCT2(V, Z2) x BCOF (U, V) € BCF (U, 2)
& (Do gri1,2)(BCHT(V, Z) x BCOHH (U, V) € BEH (U, L(X, 2))

and gx1,z is continuous iff so is Dogy1,7, as a map to lS’Ck(U7 L(X,Z)). An application
of the chain rule gives

(D 0 gk41,2)(7:1) = gr,L(v,2)(Dv,m) - D (%)
for v € BC**2(V, Z) and n € BCP*+1(U, V), where - denotes composition of linear maps

(see |Corollary 3.3.6). Since Dy € BC* T (V,L(Y, Z)), we deduce from the inductive hy-

pothesis that
GkL(y,z)(Dv,n) € BCF(U,L(Y, 2)),

and using we get
(D o gi41,2)(v,m) € BCH(U,L(Y, Z)).

The continuity of D o gi41,7z follows with [identity (+%)| from the continuity of Ik, L(Y,2)
(by the inductive hypothesis), - (by [Corollary 3.3.6) and D (by [Proposition 3.2.3)).
k = oo: From the assertions already established, we derive the commutative diagram

BC¥(V, Z) x BCO™(U, V) — =2 BC™(U, Z)

I |

BC™Y(V, Z) x BCP™(U, V) — 21— BC™(U, Z)

for each n € N, where the vertical arrows represent inclusion maps. Using [Corollary 3.2.6]
we easily deduce the continuity of g,z from that of g,, 7. =

As a preparation for discussing the differentiable properties of composition, we prove
a nice identity for its differential quotient.

LEMMA 3.3.9. Let X, Y and Z be normed spaces and U C X, V CY be open subsets.
Further, let v € FCY(V,Z), 7 € C°(V,Z), i € BC*(U,Y) and n € C°(U,V) such that
dist(n(U),0V) > 0. Then, for allx € U and t € R* with

dist(n(U), V)

1 < S
17100 +1

)

we have the identity

<(v+t’y)0(n+tﬁ)70n
evy ;

1
) =evaGotut )+ [ e ((Dyo -+ sti) - s,
0
(3.3.9.1)
where ev, denotes the evaluation at x.

Proof. For t as above,

(y+ty)o(n+ti) —yon=ro(n+tq) +tyo(n+tj) —yon,
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and an application of the mean value theorem gives

1
evg(yo (n+ti) —yon) = / evy((Dy o (1 + sti)) - ti)) ds.
0
Division by t leads to the desired result. m
So we are ready to discuss when the composition is differentiable.

ProproOSITION 3.3.10. Let X, Y and Z be normed spaces, U C X and V CY open subsets
andk €N, (€ N*. Then the continuous map

gEest BTNV, Z) x BCPR(U, V) = BCH(U, Z) < (v,n) = yon
(cf. Lemma|3.3.8)) is a C¢-map with

dgi& 5 (V0,103 7 m) = 956 5" (1:110) + G vz (D05 0) - 7. (3.3.10.1)

Proof. For k < 0o, the proof is by induction on £ which we may assume finite because the
inclusion maps BC™(V, Z) — BCFTT1(V, Z) are continuous linear (and hence smooth).
¢ =1: Let v9,7 € BCFTH(V, Z), no € BC?*(U, V) and 5 € BC*(U,Y). From Lem-

mas [3.3.9) and [3.2.13| we conclude that for ¢ € K with [¢| < W, the integral
U

1
/ (Do o (no + stn)) - nds
0

exists in BCK (U, Z). Using [identity (3.3.9.1)| we derive
g

95 (o +tvmo +10) — 9565 (Yoem) ey

=3pc.z (Ym0 +1n)

t
Lo
+ /0 g@EL(Y,Z)(DVO, no + stn) - nds.
We use |Proposition A.1.8| and the continuity of ggg}l, g’gé?L(Y, 2) and - (cf. Lemmaw

and [Corollary 3.3.7]) to see that the right hand side above converges to

k+¢
glfgg}rl(% 770) + gBJaL(Kz) (D'YOv ) -1

in BCk (U,Z) as t — 0. Hence gggfgl is differentiable and its differential is given by
(3.3.10.1)) and thus continuous.
¢ —1 — ¢: The map g’gg}rl is C* if dggggl is C*~1. The latter follows easily from

(13.3.10.1)), since the inductive hypothesis ensures that g?gf}l and g’ggL(Y, 7) are ci—1;
and - and D are smooth.

If k = oo, then in view of |Corollary 3.2.6| and [Proposition A.1.12} gzw , is smooth
as a map to BC™(U, Z) iff it is smooth as a map to BC? (U, Z) for each j € N. This was
already proved in the case where k = j and { = oc0. =

3.3.2.2. Composition of weighted functions with bounded functions. Generally, we cannot
expect that the composition of a weighted function with a bounded function is a weighted
function for the same weights. As an example, the composition of the constant 1 function
and a Schwartz function is not a Schwartz function. However, if we compose a bounded
function mapping 0 to 0 with a weighted function, we get good results.
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LEMMA 3.3.11. Let X, Y and Z be normed spaces, U C X and V C Y open subsets
such that V is star-shaped with center 0, k € N and W C RY with 1y € W. Then for
v € BC*HN(V, Z)o and n € CF (U, V),

von € Cy(U, 2),
and the composition map
BCHY(V, Z)o x CRF (U, V) — C8,(U, Z) = (v,m) = v on (%)
15 continuous.

Proof. We distinguish the cases k < oo and k = oo:
k < oo: To prove that for v € BC*™(V, Z)y and 7 € Ce\}k(U, V') the composition yon
is in C},(U, Z), in view of [Proposition 3.2.3|it suffices to show that

yon € Ch(U,Z) and for k > 0 also D(yon) € Chy, (U, L(X, Z)).

Similarly the continuity of the composition , which is denoted by gi in the remainder
of this proof, is equivalent to the continuity of ¢y o gx and for £ > 0 also of D o g;, where
Lo : Chy(U, Z) — CY,(U, Z) denotes the inclusion map.

First we show vyon € C9,(U, Z). To this end, let f € W and « € U. Then

[f @) Iv(n(@)] = £ (@)] [Iv(n(z)) = (0]
/ D(tn(x)) - n(x)dt

here we used that the line segment from 0 to n(z) is contained in V. Hence

< ||Dry||1v70

vonllzo < vl alnllizo < oo

To check the continuity of ¢g o gk, let v,v € BCk‘H(V, Z)o and n,mo € Cg\;k(ﬁ V') such
that ||n — noll1,,0 < dist(no(U),0V), f € W and x € U. Then

[F@)HI (v o m) () = (vo 0 m0) ()|
= [f@)[lv(n ( ) = (o)) +~v(no(x)) = vo(mo ()]
< @) Ivm()) = vo(@)] + [ @) (v = v0) (no (@)

/ Dr(tn(e) + (1 - (@) - (n(a) — mo(a) dtH
@] IO = 0) (@) — (7 = 10)(O)]
1
< @) 1D sy ali(o) ~ m(@)l + 15| [ D6 =) tm(e) - mle) dtH

< |f @)Dy olln(z) = no(@) | + [F (@) 1Dy = v0)ll1vollmo(2)]-
Therefore

lvon—a00mllro < IVll1v,1llm—mnollr.0 + 117 = Y0ll1y 1 lm0ll 1.0,

from which the continuity of ¢ o gi in (70, 70) is easily concluded.
For k > 0, v € BC*(V,Z)o and n € Ce\}k(U, V) we apply the chain rule to get

(Dog)(y,m) = D(yon) = (Dyon) - D= ggery.z)(Dv.n) - Dn; (%)
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here we used that n € BC*(U,V) because 1y is in W. Since Dn € Ciy (U, L(X,Y))

and gfo 1y, (Dv.m) € BN (U,L(Y,Z)) (see [Lemma 3.3.8), (D o gi)(y,m) is in
CETHU,L(Y, Z)) (see [Corollary 3.3.6). Using that D, - and gllg’C,L(Y,Z) are continuous
(see [Proposition 3.2.3| |Corollary 3.3.6| and [Lemma 3.3.8] respectively), we deduce the
continuity of D o g from .

k = oo: From the assertions already established, we derive the commutative diagram

BC™(V, Z)o x CO°(U, V) —2=—— 5> (U, Z)

I |

BC"N(V, Z)o x COMU, V) ————— COM(U, 2)

for each n € N, where the vertical arrows represent inclusion maps. Using
we easily deduce the continuity of g, from that of g,,. m

PROPOSITION 3.3.12. Let X, Y and Z be normed spaces, U C X andV CY open subsets
such that V is star-shaped with center 0, k € N, £ € N" and W C RY with 1y e W. Then
the map

GHEEE BCMYL(V, Z)0 x COE(ULV) = Cly(U, Z) < (7,m) =5 v o1

whose ezistence was stated in Lemma|3.3.11| is a Ct-map with

dgyt 5™ (0, 10:7: 1) = 9y 7 (7 10) + 95 (v 2y (D05 00) - 1 (3:3.12.1)

Proof. For k < oo, the proof is by induction on ¢ which we may assume finite because the
inclusion maps BC™(V, Z)o — BC*™*+1(V, Z), are continuous linear (and hence smooth).
0 = 1: Let v9,y € BC*HTY(V, Z)0, no € Ce\’,k(U, V) and n € C¥,(U,Y). From Lem-

mas [3.3.9| and [3.2.13| we conclude that for ¢ € K with [¢| < W
U

, the integral

1
/ (Do o (o + stn)) - nds
0

exists in C§,(U, Z). Using [identity (3.3.9.1)| we derive

k041 k041
Gz (o +tyv.mo+1tn) — gy 7 (v0.70)
— — =g (o + tn)

1
+ /0 gfgé?L(Y,Z) (D’YOa No + 37577) “nds.

We use [Proposition A.1.8| and the continuity of g{j&f?‘l, gggéL(YZ) and - (cf. Lem-

mas|3.3.11[and[3.3.8] and|Corollary 3.3.7) to see that the right hand side above converges
to

QWZZ+1(77 o) + gg’-ic_fL(yz) (Dy0:m0) -

in C},(U,Z) as t — 0. Hence g{i\f, “Fl is differentiable and its differential is given by

(3.3.12.1)) and thus continuous.

¢ —1 — ¢: The map g{fvfzzﬂ is C* if dg{ii?r1 is C*~1. The latter follows easily from

(13.3.12.1)), since the inductive hypothesis and |Proposition 3.3.10| ensure that g{i\f, ZZH and

(W]
9IBC,L(Y,2)

are Ct~1; and - and D are smooth.
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If k = oo, then in view of [Corollary 3.2.6|and [Proposition A.1.12} gy} » is smooth as a

map to Cyp(U, Z) iff it is smooth as a map to Cj,, (U, Z) for each j € N. This was already
proved in the case where k = j and { = c0. =

3.3.3. Composition of weighted functions with an analytic map. We discuss
a sufficient criterion for an analytic map to operate on C%,k(U, V) through (covariant)
composition. First, we state a result about superposition of weighted functions that is a
direct consequence of |[Proposition 3.3.12] Then we have to treat real and complex analytic
functions separately. While the complex case is straightforward, in the real case we have
to deal with complexifications.

LEMMA 3.3.13. Let X, Y and Z be normed spaces, U C X andV CY open subsets such
that V is star-shaped with center 0, k € N, ¢ € N* and W C RY with 15 € W. Suppose
further that ® : V — Z is a map that satisfies

W open in V', bounded and star-shaped with center 0, dist(W,9V) > 0
= |y € BCHTYW, 2),.
Then ® o~ € CE,(U, Z) for all v € C3F (U, V), and the map
COFWU V) = Chy(U,Z) v > B oy
is C.
Proof. For r > 0 we define
M, :=1[0,1] - ({y € V : dist(y,0V) > r} N By,,(0)).

It is obvious that M, is open, bounded and star-shaped with center 0. Further, using
that V is star-shaped with center 0 and M, is bounded, we see that dist(M,.,dV) > 0.
Hence we know from [Proposition 3.3.12[that

Ce\}k(U, M,) — C{ﬁv(U, Z):y—~Dory
is defined and C* since ® € BCkH'H(MT, Z)o by our assumption. But

cofw vy = ek ),
r>0

and 1y € W implies that each C{?\’,k(U, M,) is open in Cs\}k(U, V), hence the assertion is
proved. m

LEMMA 3.3.14. LetY and Z be complex normed spaces, V C'Y an open nonempty subset
and ® : V — Z a complex analytic map that satisfies the following condition:

W CV, W open in V, dist(W,0V) >0 = ®|y € BCO(W, Z). (3.3.14.1)
Then @|w € BC™ (W, Z) for all open subsets W C V' with dist(W,0V) > 0.

Proof. Let W C V be an open subset of V' such that there exists r > 0 with 2r <
dist(W, 0V'). Then for each € W and h € Y with ||h|| <1 we get an analytic map

O, 5 0 Bc(0,2r) = Z : 2+ O(x + zh),
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by restricting ® (see [Theorem A.1.23). By applying the Cauchy estimates (stated in
[Corollary A.1.26|) to this map, for each k € N we get the estimate

k k!
12 (0)] < Gr e 12l By 0 o

From [Lemma A.1.25(and the chain rule we know that ® kz(O) = D®&(z)(h,...,h), so

1/‘1

we conclude with the Polarization Formula (Proposition A.1.20) that

(2k)*
WH [V4By 0,1 lloo;

and the assertion follows immediately since || ®|y 4B, (0,r)lloc < 00 by (3.3.14.1). =

3.3.3.1. On real analytic maps and good complexifications. The previous two lemmas

||D(k)q)(37)”op <

would allow us to state the desired result concerning covariant composition, but only for
complex analytic maps. There are examples of real analytic maps for which the assertion
of is false. We define a class of real analytic maps that is suited to our
needs. First, we state the following small result concerning complexifications.

LEMMA 3.3.15. Let X and Y be real normed spaces, U C X an open nonempty set, k € N
and W C RY. Further let o : Y — Y denote the canonical inclusion into Yg.

(a) C¥,(U,Yc) is the complezification of Ci,(U,Y), and the canonical inclusion map is
given by
CE(U,Y) — CE, (U, Ye) :y = 1on.

(b) Let V CY be an open nonempty set and V C Y¢ an open neighborhood of «(V') such

that
(VM C V) dist(M,Y \ V) > 0 = dist(u(M), Ye \ V) > 0. (3.3.15.1)
Then
Lo (UL V) C e (UL V).
Proof. (a) It is well known that Y«; ~2Y xY and L( ) = ( ) for each y € Y. Hence

by [Lemma 3.4.16| (and [Proposition 3.3.3)), and
Loy =(7,0) € Ch(U,Y) x Ci,(U,Y) = C, (U, Ye)

for v € C}, (U, Y).
(b) This is an immediate consequence of (a) and [condition (3.3.15.1)| m

DEFINITION 3.3.16. Let Y and Z be real normed spaces, V' C Y an open nonempty set,
and ® : V — Z a real analytic map. We say that ® has a good complezification if there
exists a complexification d:VC Ye — Zc of ® which satisfies and whose
domain satisfies . In this case, we call P a good complexification.

The following lemma states that good complexifications always exist at least locally.
It is not needed in the further discussion.
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LEMMA 3.3.17. Let Y and Z be real normed spaces, V- C'Y an open nonempty set and
DV — Z a real analytic map. Then for each x € V there exists an open neighborhood
W, CY of x such that ®|w, has a good complezification.

Proof. Let d:V C Yc — Z¢ be a complexification of ® and ¢ : V — V the canonical
inclusion. Then there exists an 7 > 0 such that By, (c(z),r) C V and ® is bounded on
By, (1(z),7). Then it is obvious that W, := ¢~ (By.(c(z),r)) = By (x,7) has the stated
property. m

Power series. We present a class of analytic maps which have good complexifications:
absolutely convergent power series in Banach algebras.

LEMMA 3.3.18. Let A be a Banach algebra and Zzo aez’ a power series with a; € K
and the radius of convergence R € ]0,00]. For x € A define

P,:Ba(z,R) - A:y— Zag(y — )b
=0
(a) The map P, is analytic.
(b) If K =C then P, satisfies (3.3.14.1)).
(¢) If K=R then P, has a good complezification.

Proof. The map P, is defined since Y_,2, a,(y — )¢ is absolutely convergent on Bg(z)
and A is complete.

(a) This is a special case of [Bou67, §3.2.9].

(b) If V. C Ba(z,R) is open and dist(V,0Ba(z, R)) > 0, there exists r € R with
0 < r < R such that V.C By(z,r). So for y € V,

o0 o0 o0
1> aety =) < Dlal ly = all* < D Jael* < oc.
£=0 £=0 £=0

(c) It is well known that the complexification of a Banach algebra is a Banach algebra
as well, and a complexification of P, is given by

o]
P,:Ba.(z,R) » A:y Zag(y —z)t .
£=0
3.3.3.2. Main result. Finally, we state the desired result for complex analytic maps and
real analytic maps with good complexifications.

ProrosiTION 3.3.19. Let X, Y and Z be normed spaces, U C X and V C Y open
nonempty sets such that V is star-shaped with center 0, k € N and W C RY with
1y € W. Further, let ® : V — Z with ®(0) = 0 be either a complex analytic map that
satisfies or a real analytic map that has a good complexification. Then for each
v e coFu,v),
Doy eCh(U, Z),
and the map
D, COFUV) = Ch(U,Z) iy s Bory

is analytic.
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Proof. If ® is complex analytic, this is an immediate consequence of [Lemma 3.3.13| and
[Lemma 3.3.741

If ® is real analytic, by our assumptions there exists a good complexification d:VC
Ye — Z. We know from the first part that ® induces a complex analytic map

S, : CRF (U V) = CRy(U, Ze) iy s Doy,

Since Ce\}k(U, V) C Ce\’,k(U, V) by [Lemma 3.3.15 and @, coincides with the restriction of

d, to Ce\}k(U, V), it follows that @, is real analytic. m

3.3.3.3. Quasi-inversion algebras of weighted functions. As an application, we see that
for a set W of weights with 1y € W and a Banach algebra A, the space C{fv(U, A) can
be turned into a topological algebra with continuous quasi-inversion. Details on algebras

with quasi-inversion can be found in [Chapter C

ProroOSITION 3.3.20. Let A be a Banach algebra, X a normed space, U C X an open
nonempty subset, k € N and W C RY with 1y € W. Then the locally conver space

C{jv(U, A) endowed with the multiplication described in|Corollary 3.3.5| becomes a complete

topological algebra with continuous quasi-inversion in the sense of Definition [C.2.1] For
each v € Ch, (U, A)4,

Qler w,4)(v) = QILa 07,
and

CF (U, Ba(0,1)) = {y € Cly(U, A) : [|ylliy0 < 1} € Chy (U, A)".

Proof. The relation QIC‘% (U,A) (7) = QI 407 is an immediate consequence of the definition

of the multiplication, so it only remains to show that C{ﬁv(U, A)? is open and QIC{;,(U,A)
is continuous. We proved in that it suffices to find a neighborhood of 0
that consists of quasi-invertible elements such that the restriction of Qlcx (17 a) to it is

continuous. We show that Ce\}k(U, B4(0,1)) is such a neighborhood. The map
G:Bl(O)%A:xHin
i=1

is given by a power series and maps 0 to 0, hence we know from and
[Proposition 3.3.19| that the map

COF(U, Ba(0,1)) = CE, (U, A) : v+ G oy

is defined and analytic. Since Goy = 372~ for each v € C9F (U, Ba(0,1)), we conclude
from that ~ is quasi-invertible with

Qler w4 (1) =—Gov =

EXAMPLE 3.3.21. Let Y be a Banach space, U C X an open nonempty subset, k € N
and W C RY with 1y € W. Then the locally convex space C},(U,L(Y)) endowed with

the multiplication described in becomes a complete topological algebra

with continuous quasi-inversion.
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3.4. Weighted maps into locally convex spaces. We define and examine weighted
functions with values in arbitrary locally convex spaces. In order to do this, we use tools
and definitions provided in The material of this section is only needed for later
discussions of weighted mapping groups with values in arbitrary locally convex Lie groups
in readers primarily interested in diffeomorphism groups may want to skip
this section.

3.4.1. Definition and topological structure. The definition of weighted function
with values in locally convex spaces relies on the one with values in normed spaces.

DEFINITION 3.4.1. Let X be a normed space, U C X an open nonempty set, Y a locally
convex space, k € N and W C RY. We define

C(U,Y) :=={y € CHU,Y) : (Yp e N(Y)) mp 0y € Cly(U, Yy)},
using notation as in [Definition A.1.28 For p € N (Y), f € W and £ € N with ¢ < k,

I llp.pe - C(U,Y) = Ry o [l 0 4l

is a seminorm on C},(U,Y). We endow C¥,(U,Y) with the locally convex vector space
topology generated by these seminorms.

We show that the structure of C}j,(U,Y) is already determined by {|| - ||,z : p € P,
and f, £ are as usual}, where P is just a generator of N'(Y). This can be useful in some
cases.

LEMMA 3.4.2. Let X be a normed space, U C X an open monempty set, Y a locally
convez space, k € N, W C RU and P C N(Y) a set that generates N'(Y). Then for
v eCHU.Y),

v E€CW(U,Y) & (VpeP)moy € Cy(U,Y,),
and the map

CUY) = [] Cw(U.Yp) 1 7+ (mp 0 7)perp ©)
peP

is a topological embedding.
Proof. Let ¢ € N(Y). Then there exist pq,...,p, € P and C > 0 such that
q< Ci:nll%).(,np%
Further we know that for each £ € Nwith { < kand x € U, hy,...,hp € X,
d(l)(ﬂ'q oy)(x;ha, ..., he) = (mg0 dOy)(z, hy, ... he),
so for y € U we get
149 (g 0 7) (3 s he) = d (g 0 9) (g s he) g
< Ny (@s b he) = dOy(ys b he)lg
< C max [[d Oy (koo he) = dOy (i b he)
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Since we assumed that mp, oy € ]-'Ck(U, Y,.), from this estimate we conclude, applying
[Proposition A.3.2, that 7, oy € FC*(U,Y,) with

10O g 1) @llop < max 1D (3, 0 9)(@)]lon

for all £ € N with ¢ < k and = € U. This implies that

[Vllg,r,e <C max |[|vp, 7.
i=1,...,n
for each f € W and ¢ € N with ¢ < k. Hence
Tg O € CllfV(U’ Yq)a

and || - ||q,7,¢ is continuous with respect to the initial topology induced by . Since q was
arbitrary, the proof is complete. m

An integrability criterion. We generalize the assertion of

LEMMA 3.4.3. Let X be a normed space, U C X a nonempty open set, Y a locally
convex space, k € N, W C RY such that for each compact set K C U, there exists an
[k € W with inf,ek| fr(x)] > 0. Further, let T : [a,b] — C},(U,Y) a continuous curve
and R € C},(U,Y). Assume that

b
/ ev,(T'(s))ds = ev,(R) (%)

for all x € U. Then T is weakly integrable with
b
/ I'(s)ds = R.
a

Proof. We derive from [Lemma 3.4.2| that the dual space of C{fv(U, Y') coincides with the
set of functionals {Aom, :p € N(Y), A € C,(U,Y,)'}. Hence I is weakly integrable

with the integral R iff
b
/ A(mp o) (s)ds = A(mp o R)

for all p € N(Y) and A € C};,,(U, Y,)’; this is clearly equivalent to the weak integrability of
mp oI’ with integral m, 0 R for all p € N'(Y'). But we derive this assertion from
and [Lemma 3.2.13 =

3.4.1.1. Reduction to lower order. We prove a generalization of [Proposition 3.2.3] To
this end, we need a locally convex topology on L(X,Y), where X is a normed and Y
a locally convex space. We define such a topology and show that it arises as the initial
topology with respect to the embedding L(X,Y) — HpEN(Y) L(X,Y,).

Topology on linear operators

DEFINITION 3.4.4 (Topology on linear operators). Let X be a normed space and Y a
locally convex space. For each p € N(Y) and T € L(X,Y), we set

T
I llop p = sup 122l
z#0 ||$H

= [Imp © Tlop-
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This obviously defines a seminorm on L(X,Y’), and henceforth we endow L(X,Y") with
the locally convex topology that is generated by these seminorms. Further we define
L(X,Y)opp :=L(X,Y)

lI-llop,» -

LEMMA 3.4.5. Let X be a normed space, Y a locally convez space and p € N(Y). Then
the map induced by

(mp)s« :L(X)Y) > L(X,Y,): T mpoT

that makes

(7p)«

(L(X7Y)7 || : ||0p,p) l—’(Xa Yp)
L(X,Y)op,p
a commutative diagram is an isometric isomorphism onto the image of (mp)«. The map
LX,Y) = J[ LX) : T (mp0T)peny)
PEN(Y)

is a topological embedding.

Proof. Since ||T||op,p = ||mpo T ||op for each T' € L(X,Y), the induced map is an isometry.
By the definition of the topology of L(X,Y),

LX,Y) = J] L Y)opp : T+ (Topp © T)peny)
peEN(Y)

is an embedding, so by the transitivity of initial topologies, the proof is finished. m

Weighted maps into spaces of linear operators and the main result. Before we can prove
the main result, we have to look at the structure of Ck, (U, L(X,Y)).

LEMMA 3.4.6. Let X be a normed space, Y a locally conver space, U C X an open
nonempty subset and k € N. Then for T' € C¥(U,L(X,Y)), £ € N with £ < k and f € RY,
TN toppote = 1(7p)5 0 Tl 1,0 (3.4.6.1)
Further for W C RV and k € N,
I'eCly(ULX,Y)) < (WpeN(®Y)) (m).ol € (U, L(X,Y,)),
and the map
CHULX,Y) = [] WULX,Y,)): T = (). 0)pep
PEN(Y)

s a topological embedding.

Proof. Note first that mgp pol is FCF iff (mp)sol is FC* as a consequence of [Lemma 3.4.5

and [Proposition A.3.2| Using|Lemma 3.4.5|it is easy to see that (3.4.6.1)) is satisfied. This
implies that for each p € N (Y') the equivalence

(mp)e ol € C’;V(U,L(X, Yy)) & moppol € C{fv(Ua L(X,Y)op.p)
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holds and that the isometry whose existence was stated in induces an
embedding

Coy (U, L(X, Y )op,p) = Coy(U, L(X, Yy)).
Further we proved in that
UL Y) =[] G0 LK Y)opp) 1T (Topp). © Dhyer
PEN(Y)
is an embedding, so we are done. =
PROPOSITION 3.4.7 (Reduction to lower order). Let X be a normed space, Y a locally

conver space, U C X an open nonempty set, W C RY and k € N. Let v € C*(U,Y).
Then

YECTUY) & (Dy,7) € Cy(UL(X,Y)) x C(U,Y).
Furthermore, the map
Gy H(U,Y) = Cy(U,L(X,Y)) x (U, Y) : v = (Dv,7)

is a topological embedding.

Proof. The definition of C{f\j' Y(U,Y), [Proposition 3.2.3| and [Lemma 3.4.6| give the equiv-
alences
yeCHUY) & (YpeNY)) mpoyeChpft(UY,)
& (e N(Y)) (D(my07),m,09) € Cy(U,L(X,Y,)) x Cyy(U, Yy)
& (D7,7) € Cu(UL(X,Y) x Cpy(U,Y).

Furthermore, we have the commutative diagram

Crt(U,Y) Chy(U,L(X,Y)) x C),(U,Y)

| I

[oenr) O (U, Yy [peny) O (U L(X, Yp)) % Gy (U, V)
and since the maps represented by the three lower arrows are embeddings, so is the map

at the top. =

3.4.2. Weighted decreasing maps. We give another definition for weighted maps that
decay at infinity. Here, the domain of the maps is contained in a finite-dimensional vector
space.

DEFINITION 3.4.8. Let Y be a normed space, U an open nonempty subset of the finite-
dimensional space X and W C RY. For k € N we define

Ch (U Y) = {yeCh(UY): (VfeW, LN, L <k)
(Ve > 0)(3K C U compact) ||v|on\k e <€}
For a locally convex space Y we set

C(U,Y)" = {y e CU,Y): (Wpe N(Y)) mpoy € Cly(U, )}
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For a subset V' C Y, we define
C(U,V)* = {y € C(U.Y)* :7(U) C V}.

As in|Lemma 3.1.6] we can prove that C},(U,Y)* is closed in C,(U,Y).

LEMMA 3.4.9. LetY be a locally convex space, U an open nonempty subset of the finite-
dimensional space X, W C RY and k € N. Then C{iv(U, Y)® is a closed vector subspace
of CE,(U,Y).

Proof. 1t is obvious from the definition of C’ﬁV(U,Y)' that it is a vector subspace. It
remains to show that it is closed. To this end, let (7;);c; be a net in C¥,(U,Y)* that
converges to v € C&,(U,Y) in the topology of Ck,(U,Y). Let p € N(Y), f e W, L € N
with ¢ < k and € > 0. Then there exists an 7. € I such that

i > = ||y = Yillp,se < /2.

Further there exists a compact set K such that

i [k llp,re < €/2.

Hence

Vi llp. g6 < IVovi = Yiclovk lp.g.e + i lonk llp,s.e < e,
soy€CE(UY)*. u
Further, we prove the following convexity criterion.

LEMMA 3.4.10. Let X be a finite-dimensional space, U C X an open monempty subset,
Y a locally convex space, W C RV with 1y e W, £ € N and V C Y convex. Then the set
Ciy(U,V)® is conver.

Proof. 1t is obvious that Cj,,(U, V)—whose definition is straightforward—is convex since
V is so. But then
Cw(U,V)* =Cp(U. V) N Cyy(U,Y)*

is convex as intersection of convex sets. m

As in |Corollary 3.2.41 we prove a reduction to lower order for C)Ij\jrl(U, Y)e.

PROPOSITION 3.4.11. Let X be a finite-dimensional space, Y a locally convex space,
U C X an open nonempty set, W CRY, k€ N and v € C*(U,Y). Then

YECH(UY)* & (Dy.y) € (U LIX,Y))* x Cl(U,Y)*,
and the map
Co (U, Y)* = (U L(X,Y))* x Cp(U,Y)* s v = (Dv,7)

is a topological embedding.

Proof. Tt is a consequence of [identity (3.2.2.2)] in [Lemma 3.2.2] that for each p € N(Y),
oy €CEH(UY,)® & (D(mpoy),mp07) € Ciy(U,L(X,Yp))® x Ciy(U, Yy)®.
Further it is a consequence of [identity (3.4.6.1)|in [Lemma 3.4.6| that
Dy € Cly(U,L(X,Y))* & (¥p € N(Y))D(r, 07) € Cly (U, L(X, Y;))",
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so the equivalence is proved. The assertion on the embedding is a consequence of

[sition 3.4.7 and [Lemma 3.4.9 =

3.4.3. Composition and superposition. As in we examine which kind of
maps induce superposition operators on Cfi, (U, Y) or C,(U, Y)*. We show that continuous
multilinear maps induce superposition operators on both function spaces. For C@V(U, Y)e,

we can prove a much stronger result: A smooth function mapping 0 on 0 induces a
superposition operator between these spaces.

3.4.3.1. Composition with a multilinear map. The following definition and lemma are
mostly the same as in [Section 3.3.1] but here Z denotes a locally convex space.

DEFINITION 3.4.12. Let X be a normed space, Yi,...,Y,, and Z locally convex spaces
and b: Yy x -+ xY,, = Z a continuous m-linear map. For each i € {1,...,m}, we define
the m-linear continuous map

b Yy X x Vieg x L(X,Y;) X Yigq X -+ x Yy, — L(X, Z),

(yla HER] ayi—laT7 Yi+1,--- 7ym) = (h — b(yla e ayi—17T . hvyi-‘rh e aym))
LEMMA 3.4.13. Let Yi,...,Y,, and Z be locally convex spaces, U be an open nonempty
subset of the normed space X and k € N. Further letb: Yy x---xY,, — Z be a continuous
m-linear map and 1 € C¥(U,Y1),...,Ym € C*(U,Y,,). Then

bo(vi,...,vm) € C*U, Z)
with

m

D(bo (’)/1, N ,’ym)) = Zb(z) o (’yl, . ,’yi_l,D’}/i,’}/i+1, ce ,’ym) (34131)
i=1

Proof. To calculate the derivative of bo (v1,...,vm), we apply the chain rule to get

d(bo (v, s vm)) (@ h) = D b(n(@), ... 7i-1(x), dvi(@; ), Yisr (@), Y (@)

i=1
Zb(z) (@), v (@), D), viga (2), - ym () - e

This implies (3.4.13.1). m

Now we can prove the results about multilinear superposition.

PROPOSITION 3.4.14. Let U be an open monempty subset of the normed space X. Let
Yi,..., Y., be locally convex spaces, k € N and W, Wi, ..., W,, CRY sets such that

(Vf €eW)(Fgra € Wiy, grm € Win) |fI < lgpal - 1gpml-

Further let Z be another locally convex space and b : Yy X --- X Y,, — Z a continuous
m-linear map. Then

bo(vi,..,Ym) € Ciy(U, Z)
for allv1 € C{fvl(U, Yi),...,vm € C{fvm(U, Yn). The map
b* C&VI(U’YI) Xoees xcl]f\/m(U’Ym) _)C{j\/(U7Z) : (717"'57m) = bO(’Y17.,,7’ym)

is m-linear and continuous.



36 3. Weighted function spaces
Proof. Let p be a continuous seminorm on Z. Then there exist g1 € N(Y1),...,qm €
N (Y,,) such that, for all y; € Y1, ..., ym € Vi,

16Cy1s -5 ym)llp < Nlyilla, -~ ymllgpn-

Hence there exists an m-linear map b that makes the diagram

b
Vix-xY, — bt g
Tqy X "“Xﬂ'qm %
Yig X X Ymg, —— 5 Z
1,q1 m,qm p

commutative. For vy, € C{f\,l (U, Y1),...,7¥m € C{ﬁvl (U,Y,,) we know from |Proposition 3.3.3|
that

bo (Tgy © Y1,y - - Mg, ©Vm) € C@V(U, Zp)
and the map 5* is continuous. Since
ba o ((gy ) X =+ X (7g,,)x) = (7p)« © b

and the left hand side is continuous, we conclude using[Lemma 3.4.2] that b, is well-defined
and continuous since p was arbitrary. m

COROLLARY 3.4.15. Let Yi,...,Yy, be locally convexr spaces, U be an open nonempty
subset of the finite-dimensional space X, k € N and W, Wi, ... . Wy, C RY such that

(VfeW)Egr1 €Wrre o grm € W) [fI < lgpal---97.ml-

Further let Z be another locally convez space, b: Y1 X --- XY, — Z a continuous m-linear
map, and j € {1,...,m}. Then

bo(71a"'77j7"'37m)EC&V(UaZ). (T)
for all v; € C}y, (UY;) (i # j) and v; € C{ivj (U,Y;)*. The map
Coy, (U, Y1) X -+ X Cyy (U, Y5)* x -+ x Cyyy (U, Yi) = Gy (U, 2)°,
(Vs Yooy Ym) = b0 (Y1, Yy o Ym)
is m-linear and continuous.

Proof. Using |Proposition 3.4.14] and [Lemma 3.4.9) we only have to prove that holds.
This is done by induction on k.
k =0: Let p € N(Z). Then there exist g1 € N (Y1),...,¢m € N(Y;,) such that

16Cy1s -5 ym)llp < Nlyalla -~ Nymllg.n

forall yy € Y1, ..., Ym € Yyp. Sofor f € W, 2z € U and v, € C)%I(U,Yl),...,'yj €
C%j(U,Yj)', o Ym € Gy, (U, Yy,) we compute

[F@)oo (s o750 ym) (@)l

m

< Hlosa@l it < (T

i=1 i#j
From this estimate we easily deduce that bo (y1,...,7;,...,7m) € Cgvj (U, Z)°.

0:9.00) 1953 @) 175 -
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k — k+ 1: From [Proposition 3.4.11| (together with the induction base) we know that
for y1 € CYf (U Y1), ,%5 € o M (UL Y5)®, oy i € G (U, Vi)

bo (e Voo s Tm) € O (U, 2)* & D(bo (71,75, 7m)) € Cy(U L(X, 2))*.
We know from (3.4.13.1)) in [Lemma 3.4.13| that

Do (v, Y- Ym)) Zb( (Vs ooy Yoo oo Yie1s DVis Vi1, -+ s Ym)
z#]
+09 0 (1, o, Y1 DV Vi 1s - s Vim)-
Noticing that ~; € C{fvj(U,Yj)‘ and Dy, € C{ﬁvj(U,L(X,Yj))'7 we can apply the in-
ductive hypothesis to all b” and the C¥-maps ~1,...,%m and Dvi,..., Dv,,. Hence
Do (Viy-eeyVjs-sYm)) € Chy(U,L(X, Z))*. =

As an application, we prove that the space of weighted functions into a product is
canonically isomorphic to the product of the weighted function spaces.

LEMMA 3.4.16. Let X be a normed space, U C X an open nonempty set, (Y;)icr a family
of locally convex spaces, k € N and W C RY. Then for each v € CW(U [I;c; Yi) and
Jel,
;o€ C’;V(U7 Yj)ﬂ

and the map

Cho(U.TT%) = TIeW.Yi) 17 = (i 0 )ier ()

iel iel
is an isomorphism of locally convex topological vector spaces.
The same statement holds for C5, (U, TT;c; Yi)®:

el (UI1%)" = TICh @Y -5 = (m 0 ier ()
i€l iel

is an isomorphism of locally convex topological vector spaces.
Proof. We proved in [Proposition 3.4.14| that for v € C}, (U, [[;; Y;) and j € I, mj 0y €
Ch,(U,Y;) and the map is linear and continuous. Since a function to a product is
determined by its components, the map is also injective. What remains to be shown
is the surjectivity, and the continuity of the inverse mapping. To this end, we notice that
for each j € I and p € N(Y;), the map

Pip: []Y: = R Widier = lysllp
el

is a continuous seminorm, and the set {P;,, : j € I,p € N(Y})} generates N'([[;c; Ys).
Now, for each i € I let v; € C},(U,Y;). We define the map

v:U — HYi s (1i(2))ier-
iel

Then 7 is a CF-map, and P;j, 0y = po~y;. We see with [Proposition A.3.2|that this implies
that mp;, ©7 is an ]-"Ck—map, and for each f € W and ¢ € N with ¢ < k we derive the
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identity

7P, 0Py pre = 7o 0 Villp. 10
We proved in that this identity implies that v € C},(U, [];c; Yi). Further it
also proves that the inverse map of is continuous using that it is linear.

The assertions about follow from |Corollary 3.4.15|and the assertions about . m

3.4.3.2. Superposition with differentiable functions on weighted decreasing maps. We
show that a smooth function mapping 0 to 0 induces a superposition operator on
C{ﬁv(U7 Y)®, provided that 1y € W. The proof uses that the image of decreasing maps is
(almost) compact, and so composition with a smooth map can be described in terms of
compositions with bounded maps taking values in normed spaces.

On the image of decreasing maps
LEMMA 3.4.17. Let U be an open nonempty subset of the finite-dimensional space X, Y
a locally convex space, k € N, W C RY with 1y € W, and v € Ciy,(U,Y)*. Then
v(U) U{o}
1s compact.

Proof. Since 1y € W, v € C%U}(U7 Y)*. By the definition of this space, v extends to a
continuous map v : U U {0} — Y defined on the Alexandroff compactification of U by

setting 7(o00) := 0. Hence (U U {o0}) = v(U) U {0} is compact. =

We give two easy consequences of the last lemma.
LEMMA 3.4.18. Let U be an open nonempty subset of the finite-dimensional space X, V
an open nonempty zero neighborhood of the normed space Y, W C RY with 1;; € W, and
k € N. Then C, (U, V)* C CRF(U, V).
Proof. This is an immediate consequence of "

LEMMA 3.4.19. Let U be an open nonempty subset of the finite-dimensional space X, Y
a normed space, V. C'Y an open zero neighborhood, k € N and W C RY with 1y € W.
Then C&,(U,V)* is open in Cpy,(U,Y)".

Proof. We proved in [Lemma 3.4.18[ that C,(U,V)* C Cf,)\’,k(U7 V). Hence C},(U,V)® =
COF(U, V)N Ch,(U,Y)* is open in Cy, (U, Y)*. m

Superposition with a bounded map. As a preparation, we prove a version of [Lemma 3.3.11
for decreasing functions. Further, we calculate the differentials of the superposition op-

erator.

LEMMA 3.4.20. Let U be an open nonempty subset of the finite-dimensional space X, Y
and Z normed spaces, V. .CY open and star-shaped with center 0, k,£ € N and W C RY
with 1y € W. Further let ¢ € BC*TT(V, Z) with ¢(0) = 0. Then

$oCy(U.V)* CCy(U, 2)*,

and
Cow(UV)® = Cu(U, Z)* :y > dpory

is a C'-map.
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Proof. We proved in [Lemma 3.4.18| that C,(U,V)* C Ce\}k(U, V). Hence we can apply

[Proposition 3.3.12| to see that

60 Cy(U,V)* € Cw (U, 2)
and the map
C(U V) = C(U, Z) iy dory
is C%; here we used that Cf, (U, V)* = Cg\}k(U, V)NCE,(U,Y)*. Because C¥, (U, Y)* is closed
in C},(U,Y) by [Lemma 3.4.9| it only remains to show that for each v € C&,(U,V)*, we
have ¢ o~y € Ci,(U, Z)®. This is done by induction on k:
k=0: Let f € W and z € U. Then

F@)] 6@ = 1£@)] [6(1(z)) — $(0)]
/ Dé(ty(x)) - 4(x) dt|| < D6 ]lopool £ )] (@)1

here we used that the line segment from 0 to y(x) is contained in V. From this estimate
we conclude that ¢ oy € C,(U, Z)®.
k — k + 1: By the chain rule

D(¢on) = (Do) - Dr.
Now D¢ oy € BCk+1(U L(Y,Z)) by [Lemma 3.3. 8|, since v € BC*Y(U,V). Further

Dy € C},(U,L(X,Y))®, so [Corollary 3.4.15| yields (D¢ o v) - Dy € C},(U,L(X, Z))*.
By |Proposition 3.4.11L the case k 4 1 follows from the inductive hypothesis. m

LEMMA 3.4.21. Let X, Y and Z be normed spaces, U C X andV CY open subsets such
that V is star-shaped with center 0, k € N, m € N*, ¢ € BC*™™ Y (V, Z)y and W C RY
with 1 € W. By Lemma [3.311],

e 1 (U V) = CH(U, Z) 1y = G0y
is defined and C™. For its (th differential, we have
d(z)(b*(’%’}/la cee 77@) = d(€)¢ o (r}/?q/la e 77@) (f S m)

Proof. Let x € U. Using the identity evZ o¢, = ¢ o ev) (with self-explanatory notation
for point evaluations), we calculate

(evZ0d ) (v;v1,- ..y ve) = dP(evZ 0g) (i, - ve) = dO (G oevy ) (vivi, ... )
= (d(é)¢ © <6V§)£+1)(7”717 e 77@) =€V, (d(E)¢ o (7?717 e 77@))1
here we used Lemmas |A.1.16l and [A.1.17l =

The main result. Before we can prove the main result, we need the following facts con-
cerning compact and star-shaped sets in topological vector spaces.

LEMMA 3.4.22. Let Z be a locally convex space and K C Z a compact set.

(a) The set [0,1] - K is compact and star-shaped with center 0.
(b) Let K be star-shaped and V' an open neighborhood of K. Then there exists an open
star-shaped set W such that K CW C V.
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Proof. (a) [0,1] - K is compact since it is the image of a compact set under a continuous
map.

(b) The set K x {0} is compact, hence using the continuity of the addition and the
Wallace lemma, we find an open 0-neighborhood U such that K +U C V. We may assume
that U is absolutely convex. Then K + U is open, star-shaped and contained in V. =

PROPOSITION 3.4.23. Let U be an open nonempty subset of the finite-dimensional space
X, Y and Z locally convex spaces, V- CY open and star-shaped with center 0, k,m € N

and W C RY with 1y € W. Let ¢ € C*™+2(V, Z) with $(0) = 0. Then for v €
(U, V)®,
¢poveCy(U,2)°,

and the map

b : (U V)" = C(U, 2)" iy = §oy
is C™ with

A9 (v, =d9¢o (v 1. ) for all £ <m.
Proof. Let 5 € C¥,(U,V)*. By Lemmas [3.4.17| and [3.4.22] the set
K:=[0,1]- (3(U) u{0})

is compact and star-shaped with center 0. Hence by [Lemma A.3.4] for each p € N(Z)
there exists a ¢ € N(Y) and an open set W 2 K with respect to g such that ¢ €

BCHT™ (W, Z,). In view of [Lemma 3.4.22] we may assume that W (and hence W) is
star-shaped with center 0. We know from [Lemma 3.4.19| that C%, (U, W,)* is a neighbor-
hood of g 0¥ in Cji, (U, Y,)®. In [Lemma 3.4.20| we stated that

b C’;V(U, Wy)* — C’;V(U, Zp)® iy o~

is C™. The diagram

Tax

Chy(UW)*
(Tpod)« D
S
Ciy(U, Zy)*

is commutative. This implies that (m,0¢), is C™ on C,(U, W)*® since it is the composition
of ¢, and the smooth map 74, (see [Corollary 3.4.15)). By Lemmas |A.1.17 and [3.4.21| we
can calculate its higher derivatives:

dO(my 0 @)ules s (i1 70) = dO(Somg)ules wowys (Vivas- -5 7e)
=dY¢.(mgov;mgom,...,mg07) =d Vo (rgoy,mgo1,...,mg0 )
=d9(¢omy)o(v,m,.-., %) =dO(mpod)o (v, 71, .-, %)
=mpo0dD¢o (v, m,...,7)
for / € N with £ < m.
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Since 7 and p were arbitrary, we conclude that the map

Cy(UV) > I GW(U.Z) 7= (mpodopenz)
PEN(2)
is C™. Since its image and all directional derivatives are contained in Cf,(U, Z)® (in the
sense of [Lemma 3.4.2)), we conclude that it is C™ as a map to Cy,(U, Z)®. =

4. Lie groups of weighted diffeomorphisms

In this chapter, we prove that for each Banach space X appropriate subgroups of the
diffeomorphism group Diff (X)) can be turned into Lie groups that are modelled on some
weighted function space described earlier. Further, we show that these Lie groups are
regular. Here

Diff (X) := {¢ € FC(X, X) : ¢ is bijective and ¢! € FC>(X, X)};

the chain rule ensures that Diff (X)) is actually a group with composition and inversion
as group operations.

4.1. Weighted diffeomorphisms and endomorphisms. In this section, we define

and examine sets of weighted endomorphisms Endyy (X) and weighted diffeornorphisms

Diff,,(X). We show that if 1x € W, then Endyy(X) is a smooth monoid and Diff,,,(X)

is its group of units that can be turned into a Lie group. Further, we discuss certain

subsets of these, the decreasing weighted diffeomorphisms respectively endomorphisms.
For nonempty W C R¥X, we define

Diffy,(X) := {¢ € Diff (X) : ¢ —idx, ¢! —idx € C35(X, X)},
Endy (X) :={y+idx : v € C3y(X, X)}.

The set Endyy (X) can be turned into a smooth manifold using the differentiable structure
generated by the bijective map

kw : Cp(X, X) = Endw(X) : vy — v+ idx . (4.1.0.1)
We clarify the relation between Endyy (X) and Diff,,(X). The following is obvious:
LEMMA 4.1.1. Let W C RX and ¢ € Diff(X). Then
¢ € Diff),(X) < ¢,¢ " € Endyy(X).
Furthermore, we have

LEMMA 4.1.2. Let W C R¥ such that Endw(X) is a monoid with respect to the compo-
sition of maps. Then the group of units is given by

Endyy (X)* = Diff,,(X);
in particular Diff,,(X) is a subgroup of Diff (X).
Proof. Obviously
# € Endyy(X)* < ¢ is bijective and ¢, ¢~ " € Endyy(X).
Since Endyy(X) consists of smooth maps, the assertion follows from .
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In the rest of this section, we prove that Endyy (X) is a smooth monoid if 1x € W; thus

Diff,,(X) is a group by [Lemma 4.1.2] Further, we define the set of weighted decreasing
endomorphisms and show that it is a closed submonoid of Endyy(X). The main part is

to show that the monoid multiplication
o : Endyy(X) x Endyy(X) — Endw (X)
is defined and smooth, so we elaborate on this.

4.1.1. Composition of weighted endomorphisms in charts. We study what com-
position looks like in the global chart n;vl (from (4.1.0.1)). For n,v € Cy5(X, X),

rw (7)o kw(n) = (v +idx) o (n +idx) =7 o (n+idx) +n+idx . (4.1.2.1)

Obviously kw () o kw(n) € Endyy (X) if and only if y o (n+idx) € Cyy(X, X); and the
smoothness of o is equivalent to that of

CR9(X, X) x G (X, X) = C5(X, X) : (3,m) = 7 0 (n + idx).
4.1.1.1. Important maps. For technical reasons we look at more general maps
gy :COW,Y) x C°(U, V) — CO(U,Y) : (7,m) = o (n+idx); (4.1.2.2)

here U, V,W C X are open nonempty subsets with V +U C W and Y is a normed space.
These maps play an important role in further discussions.

Continuity properties. We discuss when the restriction of gy to weighted function spaces
has values in a weighted function space and is continuous. We start with the following
lemma whose assertion is used as the base case for [Lemma 4.1.41

LEMMA 4.1.3. Let X andY be normed spaces, U, V,W C X open nonempty subsets such
that V. +U C W and V is balanced, and W C RW .

(a) For~ € Ch(W,Y)NBC' (W,Y), ne€Ch(U,V), fEW and x € U,
[f @) gy (s @) < 1F @)Uy 0000y 2 0@+ Iy (2)1)- (4.1.3.1)
In particular
gy (v,m) =70 (n+idx) € CRy(U,Y).
(b) Let v,v0 € Ch,(W,Y) N BC (W, Y) and n,m9 € C),(U, V) such that
{tn(z) + (1 = t)no(x) : t € [0,1],z €Uy C V.
Then for each f € W,

lgy (v;m) = gv (v0, m0) | 1.0 < IVll1w 21l = 10l 1.0
+ [Iv = olliw.allmollzo + 1y = yollpo- - (41.3.2)
In particular, if 1y € W then the map
gv.0 i Coy(W,Y) X CRY (U, V) = Cu(U,Y) = (7,m) = gy (7,m)

18 continuous.
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Proof. (a) For x € U, using the triangle inequality and the mean value theorem we derive
[f @) gy (v.m) (@) = [f(@)] Iy(n(z) + )]
<@ (@) +2) =y (@)l + [f(@)] Iy ()]
~ 1@ [ Prte+ onte) )| + @) @)
0

< |F@HIDY @y +n@) lop.colln(@) | + 1 (@) Iy ()]

and from this we easily deduce the assertion. We could apply the mean value theorem
because the line segment {z+tn(x) : ¢t € [0,1]} is contained in U+ V since V is balanced.
(b) For x € U we have

[f@)Hlgy.0(vm)() = gv.0(v0, m0) (@) = £ ()| 7 (n(z) + 2) = v0(n0(x) + )]
We add 0 = y(no(z) + z) — v(no(x) + x) and apply the triangle inequality to see that

[f (@) y(n(z) +2) = y(no(2) + ) + 7m0 (x) + 2) —70(n0(2) + )|
< [f@)Hv(n(x) + ) = (o (@) + )| + [f (@) (v = 70) (0 (2) + 2)]-

We discuss the two summands separately. For the first summand, we can apply the
mean value theorem (Proposition A.2.11)) because we assumed that the line segment
{tn(x) + (1 — t)no(x) : t € [0,1]} is contained in V, and get

@) (@) + ) — v(o(e) + 2)]
1
— (@) \ [ D) + (1= ) +.0)- (1) = (o) dtH

< @) 1w 2 lln(z) = no(=)]]-

By applying the mean value theorem, which is possible because V' is balanced, the second
summand becomes

£ @) HI(v = 70) (m0(z) + )|
= [F@)I(v =0)(mo(@) +2) = (v = 70)(2) + (v = 70)(@)]]

<t (| [ Dy~ 0)(tm0(x) + 2) - mo(a) ] +16 - o))

< 1@y = v0lliw allmo@)I + (v = v0) @)])-

Combining these two estimates gives (4.1.3.2]).
The continuity of gy, follows from this estimate: For each n € Ce\}O(U , V'), there exists

an r > 0 such that

and since 1y € W,
Fy = {71 € (U, X) : In = 7fll1w.0 < 7}

is a neighborhood of 7 in Cg\}O(U, V). The |estimate (4.1.3.2)|ensures that gy, is continuous
on Ch,(W.Y) x F,,. u
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LEMMA 4.1.4. Let X andY be normed spaces, U, V,W C X open nonempty subsets such
that V 4+ U C W and V is balanced, k € N and W C RWY with 1y € W. Then

gv (CW (W, Y) < Cy(U,V)) € Gy (U,Y),
and the map
gy : O (W Y) x Cf (U V) = Gy (U,Y) = (.m) = gy (v,m)
which arises by restricting gy is continuous.

Proof. The proof is by induction. The case k = 0 was treated in
k — k4 1: We use |Proposition 3.2.3| (and [Lemma 4.1.3)) to see that

gy (CRP2(W,Y) x CRf (U, V) C eyt (U, Y)

is equivalent to
(Do gy)(Ci (W, Y) x CRfH (U, V) € Gy (U, L(X, Y));

and that the continuity of gy x41 is equivalent to that of D o gy 1.
Applying the chain rule to gy shows that for v € CiI(W,Y) and 7 € C{fjl(U, V),

(Do gy)(v,n) = grx.y)k(Dv,n) - (Dn +id), (%)
where - denotes the composition of linear maps (see [Corollary 3.3.6)) and id denotes the

constant map x — idy. Since Dy € Cpif'(W,L(X,Y)), we derive from the induction
hypothesis that

grx,y)k(Dv,1m) € Ch (U L(X,Y)).
Hence we conclude from [Corollary 3.3.6|and Dn + id € BC*(U,L(X)) that
(Do gy)(v,m) € Cy(U, L(X,Y)).

The continuity of D o gy ;41 follows easily from : We use the inductive hypothesis to
conclude that gr,(x y), is continuous. Since D and

< CE(UL(X,Y)) x BCH(U,L(X)) — C&, (U, L(X,Y))

are smooth (see [Proposition 3.2.3|and [Corollary 3.3.6) as well as the translation with id
in BC*(U,L(X)), the continuity of gy 41 is proved. =

Restriction to decreasing functions. Finally, we study the restriction of gy to
decreasing functions.

LEMMA 4.1.5. Let X and Y be normed spaces, U, V,W C X open nonempty subsets such
that V4+U C W and V is balanced, k € N and W C RX with 1x € W. Then

gy k(G (W,Y)° x Cy(U, V) € Cy(U,Y)°.

Proof. The proof is by induction on k:
k = 0: We use [estimate (4.1.3.1)| in [Lemma 4.1.3| Let f € W, v € C},,(W,Y)° and
n € C,(U, V). Then for every ¢ > 0 there exists r > 0 such that

IVlwA B, )70 < €/2
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and (as 1x € W)

13
w8 @) 11w < s
\EHOTW L= 5l 0 + 1)

Since 1x € W, we have K := ||n]|1,,0 < 0. Let R € R such that R > r + K. Then for
each x € U \ Bg(0)
z + Dn(x) €W\ B (0),

so we conclude from [estimate (4.1.3.1)| that

e

Il + 3

[F @) gy (s m @< V1 ey sone 1 1llr0 + L @) (@) < m

for z € U \ Bg(0). Thus gyx(v,n) € Ch, (U, Y)°.
k — k 4 1: We calculate using the chain rule that
(Do gyk+1)(7:1) = gLx,v) (D, m) - (D +id).

Since Dy € Ciyf (W, L(X,Y))° (see |Corollary 3.2.4)),

gL(X,Y)JC(D’Yv 77) € Cl]jV(Ua L(Xa Y))O
by the inductive hypothesis. Further, Dy + id € BC*(U,L(X)), so we conclude from
that

(D o gY,k:+1)(,Ya 77) € CllfV(Ua L(Xa Y))O‘
From this (and the base case k = 0) we conclude by |Corollary 3.2.4] that

gykr1(y,m) € (U Y)°. m

Differentiability properties. We discuss whether restrictions of gy to certain weighted
function spaces are differentiable. First, we provide a nice identity for the differential
quotient of gy .

LEMMA 4.1.6. Let X and Y be normed spaces, U, VW C X open nonempty subsets
such that V. +U C W and V is balanced, W C RW with 1yy € W, v,71 € C?,V(I/V, Y),
ne€C(U V), m €Cy(U,X) and t € K*. Further, suppose that

{n+stn =5 €[0,1]} CCH(U, V).
Then for each x € U,

o (gY,l('V + ty1,n 4 ty) — gy,1(%?7)>
v t

1
=/ eva (gnix, vy, 1 (D(y + styi),n + stnn) - m + gya(y1,m + stny)) ds.
0

Proof. We first prove that the relevant weak integral exists. To this end, we take a closer
look at the integrand. Since {n+ stn; : s € [0,1]} C C,(U, V), we have

vy (9L(X,Y),1(D(’Y + sty1),n + stn) - m + gy, (1, + stm))
= Dy(n(z)+ st (z) +2)-n(2)+stDy(n(x) + st (@) +2) -1 (@) +71(n(x) + st (z) +).
The mean value theorem yields

[ Dron) + stz ) (@) s = VDM@ £ 230k +2)
0

t
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and

1
/0 (stDys (n(x) + sty (z) + ) - ma () + 1 (n(x) + sty (2) + 2)) ds

=mnn(z) + tm(z) + 2);
the latter identity follows from the fact that

%S%(n(x) + stm(z) + x) = stDyi(n(x) + stni(z) +x) - m(z) +y1(n(x) + sty (@) + ).

So the integral exists and has the value

V(n(x) +tm(z) + 2) —v(n(z) + )
t

+y1(n(x) +tm(x) + )

_ gva(y iy, n+tm) () — gva(y,n)(x)
t
PRrROPOSITION 4.1.7. Let X andY be normed spaces, U, V. W C X open nonempty subsets
such that V. +U C W and V is balanced, W C RY with 1w € W, k € N and ¢ € N*.
Then

gyt CEFFY W, Y) x CF (U V) — Co(U,Y) = (,m) = v o (n +idx)
is a C*-map with the directional derivative

dgy k,e(V, 71, M) = 9Lx,v)ke—1 (DY, 1) -+ gy ke(71,7). (4.1.7.1)
Proof. This is proved by induction.
¢ = 1: From Lemmas [4.1.6 and [3.2.13| we conclude that for v, €l T (W,Y),
n € C‘a,\’,k(U, V), m € Ck,(U,X) and for all t € R* in a suitable neighborhood of 0
we have the identity

gyke(y +ty1,m +tm) — gyre(v,n)
t

1
= / GL(X,Y) ke, t—1 (D(y + styr),n + stny) - ni ds
0

1
+/ gy k,e(y1,n + stny) ds.
0

The theorem about parameter dependent integrals (Proposition A.1.8) yields the asser-
tions if we let ¢ — 0 in the above expression.

¢ —1 — ¢: This follows easily from . Since D and - are smooth (see
|sition 3.2.3| and |Corollary 3.3.7[) and gr,(x,v),ke—1 reSP. gy,k,¢ are C*~! by the inductive
hypothesis, dgy k¢ is C*1 and hence gy ke 1S Ct.

COROLLARY 4.1.8. Let X and Y be normed spaces, U, V.W C X open nonempty subsets
such that V4+U C W and V is balanced, W C RW with 1y € W and k € N. Then the
map

9v,k,00 * C%(Wv Y) X CI;V(Uv V) - C{j\/(Uﬂ Y) : (’77 77) =0 (77 + idX)
(which is definable due to Lemma s smooth. In particular, gy,co ‘= gy,co,00 5
smooth.

Proof. For k < oo, this follows from [Proposition 4.1.7 since the inclusion maps

Cnv(W,Y) = Cji T (W,Y)
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are smooth. Now let £k = oco. From the assertions already established, we derive the
commutative diagram

Cy(W.Y) x C3(U. V) — = C5(U.Y)

I |

CR(WLY) x Cp (U, V) — 2 3, (U,Y)

for each n € N, where the vertical arrows represent the inclusion maps. Using
ary 3.2.6| we easily deduce the smoothness of gy o from the one of gy 5 oc. ®

Restriction to decreasing functions. We examine the restriction of gy ;o to de-
creasing functions. We show that it takes values in the decreasing functions and is also
smooth.

COROLLARY 4.1.9. Let X and Y be normed spaces, U, V.W C X open nonempty subsets
such that V+U CW and V is balanced, W C RY with 1yy € W and k € N. Then

9¥ koo (CV (W, Y)° x C, (U, V)°) € Cyy (U, Y)°,

Chy(U,Y)°

Cs(W,Y)oxck, (U, v)e 8 smooth.

and the restriction gy kool

Proof. We deduce this from[Lemma 4.1.5] the smoothness of the unrestricted map (Corol]
lary 4.1.8) and [Proposition A.1.12| that can be used because C’;V(U,Y)O is closed by
Lemma 3.1.6! =

4.1.2. Smooth monoids of weighted endomorphisms. We are able to prove that
Endyy(X) and the set Endyy (X )°—which is defined below—are smooth monoids, pro-
vided that 1x € W.

COROLLARY 4.1.10. For W C R¥ with 1x € W, Endy(X) is a smooth monoid with the
group of units
Endyy (X)* = Diff,,, (X).
Further, the set
Endw(X)° :={y+idx : v € Cp(X, X)°} (4.1.10.1)

is a closed submonoid of Endy (X) that is a smooth monoid.

Proof. We first show that Endyy(X) is a monoid. Since idx € Endy(X) is obviously
satisfied, it remains to show that it is closed under composition. Since every element of
Endyy (X) can uniquely be written as ¢ +idx with ¢ € C3§(X, X), we have to show that
for v,n € Cyp(X, X),

Kw(’y) o Iiw(n) —idyx € C%(X, X)

But we know from [identity (4.1.2.1)|that

kw (7)o kw(n) —idx = gx,00(7,1) + 1,
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so we see with [Corollary 4.1.8] that this assertion holds, hence Endy,(X) is a monoid.

Further, from this identity we easily deduce the smoothness of the composition from that

of gx,oc, which was also proved in |Proposition 4.1.7

Endyy(X)° is a closed subset of Endyy,(X) since kyy is a homeomorphism and by

Lemma 3.1.6, Cyy (X, X)° is a closed vector subspace of C53(X, X). We know from [Corol{
lary 4.1.9 and the fact that Cyy (X, X)° is a vector space that for v,n € Cyy (X, X)°,

kw(7) 0 kw(n) —idx = gx.00(7,m) + 1 € Cy(X, X)°,

o

and that this map is smooth, hence Endyy(X)®° is a smooth submonoid of Endy, (X).

The relation Endyy(X)* = Diff,,,(X) was proved in [Lemma 4.1.2| =

4.2. Lie group structures on weighted diffeomorphisms. In this section, we first

prove that Diff,,(X)—which was already proved to be a group in [Corollary 4.1.10—is

in fact a Lie group. Also we define and discuss the set of decreasing weighted diffeo-
morphisms, Diff,,,(X)°. We show that it is a normal subgroup of Diff,,(X) that can be
turned into a Lie group. Finally, we elaborate on when diffeomorphisms that are weighted
endomorphisms are weighted diffeomorphisms.

4.2.1. The Lie group structure of Diff,,,(X). We show that Diff,, (X) is an open
subset of Endyy(X) and the group inversion is smooth, whence Diff,,,(X) is a Lie group.
In order to do this, we have to examine the inversion map on Diff (X) N Endyy (X). First,
we give some basic definitions and state some easy results.

DEFINITION 4.2.1. Let X be a normed space and W C R¥. We set
Hy :={¢ € Cy5(X, X) : ¢+ idx € Diff (X)}

and
I:Hy — FCP(X,X): ¢ (¢ +idx) "t —idx. (4.2.1.1)

LEMMA 4.2.2. Let X be a normed space, W C RX and ¢ € Hyy. Then

(I(¢) +idx) o (¢ +idx) = (¢ +1idx) o (I(¢) +idx) = idx, (4.2.2.1)
I() o (¢ +idy) = —¢, (4.2.2.2)
¢o(I(¢)+idx) = —I(¢). (4.2.2.3)

Proof. This is obvious. =

In the following, it will be useful to define Bg(0) = 0 if R < 0. This will allow us to
avoid distinction of cases.

LEMMA 4.2.3. Let X be a normed space and R,r € R with r > 0. Then
(X \ Br(0)) + B,(0) € X \ Br—(0).
Proof. Let x € X \ Br(0) and y € B,.(0). We apply the triangle inequality:

lz+yll =zl = [lyl > R—r. =
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4.2.1.1. On the range of the inversion map. We discuss whether the range of I consists of
weighted functions. More precisely, for suitable functions ¢ € Hyy we provide an estimate
for || I(¢)|lr,0 and an identity for DI(¢). Further, for a decreasing map ¢ € Hyy, we want
to consider I(¢)] X\Br(0) for B> 0. To avoid case distinctions, in the following R mostly
denotes an arbitrary real number.

LEMMA 4.2.4. Let X be a normed space, W C RX with 1x € W and ¢ € Hyy. Then
I(¢) € BC(X, X).

Proof. This is an immediate consequence of [identity (4.2.2.3)| =

LEMMA 4.2.5. Let X be a Banach space, W C R with 1x € W, ¢ € Hyy and r a real
number such that [|p|l1, 5 1 = SuP,ex\B, (o) [PH(@)llop < 1. Let R € R be such that
R > 1+ |I(@)|1x,0 (note that || I(d)|l1x,0 < 0o by Lemma [4.2.4). Then for all f € W
and x € X \ Bg(0),

[f(@)] o)l

P

F@IT(@)@) < 7 (4.2.5.1)

Proof. We set 1 := I(¢). Then for f € W and x € X \ Bgr(0), by ,
[f@) @) = 1f (@) lo(¥(x) + z) — ¢(x) + ¢(z)||

1
< If(z)l( [ D6t + s - wta)las + ¢><x>||)

< 1Dl x\B, 011\ 5,0 0l @) 19 @) + [ (@) ¢(2)]];
here we used that {z + s (z) : s € [0,1]} is contained in X \ B,.(0) by the choice of R and

Lemma 4.2.3| From this we can derive the desired estimate since |[Dl[1, ; 0 <1. =

We now state a formula for DI(¢).

LEMMA 4.2.6. Let X be a Banach space, W C RX with 1x € W, ¢€Hy andz € X. If
| Dé(z)]lop < 1, then

D(I(¢))((¢ +idx)(x)) = Do(x) - QI(x)(—Dé(x)) — Do(x), (4.2.6.1)
where QI,(x) denotes the quasi-inversion (discussed in C’hapter.

Proof. We set ¢ := I(¢). From [identity (4.2.2.2)[and the chain rule, one gets

Dy((¢ +idx)(x)) - (Do(x) +idx) = —Dé(x). (%)
Since ||D¢(x)|lop < 1, the linear map D¢(z) + idx is bijective with

oo (oo}

(Dg(x) +idx) ™" =D (=Dp(2))* = > (=D(x))* +idx = —QI(x)(—Dé()) + idx;

k=0 k=1
(cf. [Lemma C.2.6)). Using this identity we can easily derive (4.2.6.1)) from . m

We show that for suitable maps ¢ € Hyy, at least the restriction of I(¢) to the
complement of a ball is a smooth weighted function.
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PROPOSITION 4.2.7. Let X be a Banach space, W C RX with 1x €W, ¢ € Hyy andr € R
such that sup, ¢ x\ 5, ( 0) |Do(z)|lop < 1. Then for each R € R with R > r + ||[I(¢)|l1x.0

(by Lemma[£.2.4], [ 1(¢)]l15,0 < 00),
1(®)x\B (o) € CW(X \ Br(0), X).
Proof. We prove by induction that ()| x\ 5, € O (X \ Br(0), X) for all k € N. In

this proof, we will identify maps with their restrictions; no confusion will arise.

k = 0: This case was treated in [Lemma 4.2.5
k — k + 1: Using |Proposition 3.2.3| (and the induction base), we see that

I(¢) € CiH(X \ Br(0),X) & DI(¢) € Chy(X \ Br(0),L(X));

the second condition will be verified now. Since ||¢||; 1 < 1, the map —D¢ is
quasi-invertible in C55(X \ B,(0), L(X)) with
QI(—D¢) = QI (x) ° (—D9),

by |Pr0position 3.3.20|, here QI := QIC%(X\ET(O),L(X))' From this, |identity (4.2.6.1)| and
the fact that ¢ + idy is a diffeomorphism with (¢ + idx)~! = I(¢) + idx (see [iden-
tity (4.2.2.1)]), we deduce that

D1(¢) = (D¢-QI(—D¢) — D¢) o (I(¢) +idx) (%)
on X \ Br(0). We use [Proposition 3.3.20|and [Corollary 3.3.6/ to see that

D¢ - QI(=D¢) € C3(X \ By (0), L(X)).

Choose s > || I(¢)]]1x,0 such that R > r + s. Then (X \ Bg(0)) + Bs(0) C X \ B

X\B,(0)’

(0), b

Lemma 4.2. 31 Since we know from the induction hypothesis that I(¢) € {iv( \Br(0),X )
we derive from [identity (x)|and |Corollary 4.1.8| (applied with U = X \ Br(0), V = B,(0)

and W = X \ B,.(0)) that
D I(¢) = gr(x),00,k(D¢ - QI(=D¢) — Do, 1()).
Hence DI(¢) € C,(X \ Br(0),L(X)). =
Finally, we examine I on decreasing maps.

COROLLARY 4.2.8. Let X be a Banach space, W C RX with 1x € W and ¢ € Hyy N
Cyy(X, X)°. Then there exists an R € R such that
()l x\Br(o) € CW(X \ Br(0), X)°.

Proof. Since ¢ € Cyy (X, X)°, there exists an r € R such that sup ¢\ 5, (o) [D9(2)/[op <1.
By |Proposition 4.2.7|7 there exists R € R such that I(¢)|X\§R(0) € Cy5(X \ Br(0), X).
Further, by (4.2.2.3),

I(¢)|X\1§R(o) =—¢o (I(¢)|X\}§R(o) + idx\ER(o)) = gX,oo(*¢vI(¢)|X\}§R(0)),
hence an application of finishes the proof. m

4.2.1.2. An open set of weighted diffeomorphisms. We describe an open neighborhood
of 0 in Cyy (X, X') whose image under xyy consists of diffeomorphisms.
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DEFINITION 4.2.9. Let X be a normed space and W C RX with 1x € W. We set
Uw :=={¢ € CH(X, X) : [[¢llix1 < 1}
Since 1x € W, Uyy is open.
The following fact shows that xy (Up) C Diff (X).

PROPOSITION 4.2.10. Let E and F be Banach spaces and ¢ € ]:CI(E,F) such that for
all x € E the linear map Do(x) € L(E, F) is invertible and there exists some K € R with
|Do(z) " |op < K for all x € E. Then ¢ is a surjective homeomorphism.

Proof. A proof can be found in [CH82, Chapter 2.3, Theorem 3.9]. m
COROLLARY 4.2.11. Let X be a Banach space and W C RX with 1x € W.
(a) kw(Uw) C Diff (X).
(b) I(Uw) C C3B(X, X).
(¢) kw(Uw) C Diffy,,(X).
Proof. Let ¢ € Upy.

(a) The map D¢(x) 4 idx is invertible for all z € X with

(Dé(x) +idx) ™" =Y _(~D(x))",
=0
and from this we get the estimate
1

I(D(¢ +idx) (@) Hlop < 1~ [[Dllop,oc

We conclude from |Proposition 4.2.10| that ¢ + idx is a bijection of X, and the clas-
sical inverse function theorem shows that (¢ + idx)~! is smooth. Hence ¢ + idy is a
diffeomorphism.

(b) From (a) we conclude that ¢ € Hyy, so we can apply [Proposition 4.2.7|with R < 0
and a sufficiently small negative real number  to see that I(¢) € Cy5(X, X).

(c) From the previous assertions we conclude that
¢ +idy, (¢ +idx)""' € Endyy(X) N Diff (X).
By [Lemma 4.1.1] this is equivalent to ky(¢) = ¢ +idx € Diff,,(X). m

Continuity of the inversion map. We show that the inversion is continuous on kyy (Upy).
Since this is an identity neighborhood, we deduce that Diff,,,(X) is a topological group.

PROPOSITION 4.2.12. Let X be a Banach space and W C RX with 1x € W. Then the
map
Uy — Cu (X, X) : ¢ I1(¢) = (¢ +idx) ! —idyx

(defined by Comllary 18 continuous.

Proof. By the above map is continuous iff so are the maps
I : Uy — Ciy(X, X)

for each ¢ € N. We shall verify this condition by induction on ¢.
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¢ = 0: For ¢,¢1 € Uy we set ¢ := I(¢) and ¢; := I(¢1). For z € X, using
the mean value theorem and by adding 0 = ¢1 (¢(x) + ) — 1 (¢(z) + )

we compute

() — 9(@) = 1 (W(@) + ) — b1 ($1(z) + 7) + B(b(x) + ) — 61 ((x) + )
/ Dén(th(x) + (1 — thn () + 2) - (1(x) — 1(2)) dt + gx.00 (6 — 61,80) (1),

Let f € W. For the integral above, we have

)] ’ /0 Doy (t(x) + (1 — )i (x) + ) - (Y(z) — Y1 (x)) dtH < Ndalligalle = 1l s.0,

whence

[41 — a1l = ¥1llr0 + [19x,00 (@ = ¢1,9) [ 1,0- (%)
We have to estimate the last summand in . Fix ¢ € Uy, and choose £ € R such that

loll1x,1 < €& < 1. Since gx o0 is continuous (Corollary 4.1.8) and gx,.(0,%) = 0, for each

€ > 0 there exists a neighborhood V of ¢ in Uy such that for all ¢ € V,

lgw.,0,x (¢ — ¢1,9)|l 10 <&
Shrinking V', we may assume that each ¢1 € V satisfies ||¢1] 1,1 < & We conclude from

that

€ €
1 =¥l < <
PO= T dillien ~ 1€
for ¢; € V, from which we infer that I is continuous in ¢.

¢ — ¢+ 1: Because of [Proposition 3.2.3| (and the induction base) I;11 is continuous
iff so is D o Ipy1 : Uyy — Ciy (X, L(X)). Using [identity (4.2.6.1)] we see that for ¢ € Uy,

(Do Ip1)(9) = gu(x),L,00(D¢ - QI(=D¢) = D¢, 11(9)),

where QI = QIC%(X,L(X)). Since gr,(x),¢,00, D, -; QI and I, are continuous (see
llary 4.1.8] |Proposition 3.2.3| |Corollary 3.3.6] [Proposition 3.3.20f and the inductive hy-
pothesis, respectively), we conclude that D o I ; is continuous. m

COROLLARY 4.2.13. Let X be a Banach space and W C RX with 1x € W. Then
Diff\,,(X) is an open submanifold of Endw (X). Further, the inversion map of Diff,,(X)
18 COntinuous.

Proof. We established in |Corollary 4.1.10| that Endyy,(X) is a topological monoid with
the unit group Diff,,,(X). To show that Diff,, (X) is open we just need to find an open
neighborhood of idx in Endyy(X) that is contained in Diff,,(X), and the inversion

is continuous if it is so on this neighborhood (see |[Lemma C.2.3). But we proved in
Corollary 4.2.11| that xy (Uywy) C Diff),,(X), and in [Proposition 4.2.12]that the inversion

map is continuous on kw (Uw); see the commutatwe diagram

Ky (Uyy) —— Diff(X)

HWT }W

Uy ——— fipt (Diffyy (X)) .
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Smoothness of inversion. Because of |Corollary 4.2.13] we can give
DEFINITION 4.2.14. Let X be a normed space and W C RX with 1x € W. We define

Iy : Ky (Diffy (X)) — Ky (Diffyy (X)) ¢ = Ky (i (6) 1) = (¢ +idx) ™! —idx .

It remains to show that this map is smooth. To this end, we calculate a nice identity
for the differential quotient of Iy .

LEMMA 4.2.15. Let X be a Banach space, W C RX with 1x € W, ¢ € k3, (Diff,,, (X)),

Y € C5(X, X) and t € K* such that ¢ + ty € k3, (Diffyy(X)). Then

Iy(¢+t) — T !
O =IO [ e 910 o DB (64 1), 6+ 510) - . Ty (6) s

0

Proof. The existence of the integral follows from [Lemma A.1.6|since gx oo, IL(X),005 D *

and Iy are continuous and Cyy (X, X) is complete (see |Corollary 4.1.8] [Proposition 3.2.3]

|Corollary 3.3.7, |Corollary 4.2.13| and |Corollary 3.2.12] respectively). To prove the stated

identity, we use evaluation maps (see |[Lemma 3.2.13)). Since ¢ + idx is a diffeomorphism,

all points of X can be represented as ¢(x) + x, where x € X. For any point of this form
we compute

1
Vo (x)+a < - ~/0 gX,oo(w + gL(X),oo(D(IW(¢ + tw))v ¢ + SW) : "/}, IW(¢)) dS)

= —/0 9x,00 (Y + L(x),00 (DI (¢ + 1)), & + stah) - b, Iw(4))(¢(x) + z) ds,

where we used [Lemma A.1.4] In view of the definition of gx  and replacing Iy (¢) with
(¢ +idx)~! —idy, the preceding integral equals

1
— [ 000+ 010 (DUl 1), 0+ st0)0) - () .
We factor out v(z), put in the definition of gr,(x),.c and multiply with 1 = % to obtain
1
= _/o (9L(x),00 (DU (@ + 1)), ¢ + stp)(x) +idx) - ¥ (x) ds
1
=1 [ Dbwlo+ )+ idx)(0la) + sti(o) +a) - (1)) ds

using that Didx(y) = idx for all y € X. The mean value theorem gives

_ Uw(@+t) +idx)(¢(x) +2) = (Iw(d + 1) +idx)(d(@) + ty(z) + 7).
t

We plug in the definition of Iy and obtain

(¢ +t +idx) M (P(z) + x) — (¢ + tY +idx) " (¢(x) + th(x) + x)
t
(¢ +t +idx) " (B(x) + x) — (¢ +idx) "' (¢(z) + 2)
: .
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This can be rewritten as

_ Iw(o + 1) (¢(2) +2) — Iw(9)(d(z) + @)
t )

so finally we get

I — T
— vy (O =D |

Having proved this identity, we easily show that the inversion is smooth and conclude
that Diff,, (X) is a Lie group.

PROPOSITION 4.2.16. Let X be a Banach space and W C RX with 1x € W. Then Iy is
a smooth map with

dIw (95 01) = —gx,00(A1 + gL(x),00 (DU (D)), @) - d1, I () (4.2.16.1)
using the notation of Corollary[£1.8]
Proof. We prove by induction that Iy is a C*-map for all k € N.

k =1: We just have to use|[Lemma 4.2.15| and [Proposition A.1.8[to obtain the differ-

entiability of I,y with the derivative (4.2.16.1]).
k — k+1: If I}y is C*, we conclude from (4.2.16.1]) and the fact that D, -, IL(X),00 and

gx,00 are smooth (see [Proposition 3.2.3| |Corollary 3.3.7| (together with [Example A.1.15])

and [Proposition 4.1.7} respectively) that dlyy is C*, so Iy is C**! by definition. m

THEOREM 4.2.17. Let X be a Banach space and W C RX such that 1x € W. Then
Diff\y,(X) s a Lie group.

Proof. In we showed that Diff,,,(X) is a group and that the composi-
tion of Endyy(X) is smooth. Since Diff,,(X) is an open subset of Endyy(X) by
the composition of Diff,,(X) is also smooth. Further, the group inversion of
Diff,, (X) is smooth by [Proposition 4.2.16|since for ¢ € Diff,,(X),

¢~ = (kwolwory)(p). m
4.2.2. On decreasing weighted diffeomorphisms and dense subgroups. We de-
fine the set Diffy,,(X)° of decreasing weighted diffeomorphisms and show that it is a

closed normal subgroup of Diff,,,(X) which can be turned into a Lie group. Further, we
give sufficient conditions on W ensuring that the group Diff ,(X) of compactly supported
diffeomorphisms is dense in Diff,,(X)°.

LEMMA 4.2.18. Let X be a Banach space and W C RX with 1x € W. Further, let
¢ € Endyy(X)° and ¢ € Dift,,(X). Then ¢ —1po ¢ € Cy5(X, X)°.

Proof. By |Lemma 3.2.13|and the mean value theorem,
1
v-voo= [ Dilids +1(o - idx)) - (6~ idx) .
0

Since Dy € BC™(X,L(X)), [Corollary 4.1.§ implies that Di(idx +t(¢ — idx)) €

BC™(X,L(X)). Since ¢ —idx € Cpy(X, X)?, the assertion follows from |Corollary 3.3.4
and the fact that Cyy (X, X) is closed in Cy5(X, X). =
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PROPOSITION 4.2.19. Let X be a Banach space and W C R with 1x € W. The set
Diff,,,(X)° := Diff,,,(X) NEndw (X)° = {¢ € Diff ,,(X) : ¢ —idx € Cy5(X, X)°}

is a closed normal Lie subgroup of Diff,, (X).

Proof. By |Corollary 4.1.10, Endyy(X)° is a smooth submonoid of Endy (X) that is
closed. Since Diff,,(X) is open in Endyy (X), we conclude that Diff,, (X)° is a smooth

submonoid of Diff,,, (X)) that is closed. Further, it is a direct consequence of|Corollary 4.2.8
that the inverse of an element of Diff,,(X)° is in Diff,,(X)°, whence using [Lemma B.1.6

we see that the latter is a closed Lie subgroup of Diffy,,(X).
It remains to show that Diff,,,(X)° is normal. To this end, let ¢ € Diff,,,(X)° and
¢ € Diff,,(X). Then

Yogop™ —idxy =thogoyp™ —hogp ooy = (h—pog ogoyt,
so we derive the assertion from Lemmas [£.2.18 and [4.1.5] =

LEMMA 4.2.20. Let X and Y be finite-dimensional normed spaces and U C X an open
nonempty set. Further, let W C RY be a set of weights such that

o W C C*(U, [0, 00]),
e (VxeU)3feW) f(x) >0
o (Vf1,. oy fn EW)VE1, ..., kn, e N)Bf e W,C > 0)
(Vz € U) ||D(k1)f1(x)||0p T ||D(k")fn(x)H0p < Cf(x).
Then C2°(U,Y') is dense in Cy,,(U,Y)°.
Proof. The proof can be found in [GDS73| §V, 19 b)]. =

(4.2.20.1)

LEMMA 4.2.21. Let X be a finite-dimensional normed space, W C RX such that 1x € W
and (4.2.20.1) is satisfied (where U = X). Then the set Diff (X)) of compactly supported
diffeomorphisms is dense in Diff,,(X)°.

Proof. The set My, = r;, (Diff), (X)) N C5(X, X)° = k5, (Diffy,,(X)°) is open in

Cyy(X,X)?, and hence M, := C*(X,X) N My, is dense in My, by [Lemma 4.2.20, But
M. = &y, (Diff (X)), from which the assertion follows. m

4.2.3. On diffeomorphisms that are weighted endomorphisms. It is obvious that
Diff,,,(X) C Endy (X) N Diff (X).

We give a sufficient criterion on WV that ensures that these two sets are identical, provided
that X is finite-dimensional. Further we show Diff; 3 (R) # End .y (R) N Diff (X).

PROPOSITION 4.2.22. Let X be a finite-dimensional Banach space and W C RX with
1x € W. If there exists f € W such that

(VR>0)(Fr>0) ||lz|| >r = |f(zx)|>R (4.2.22.1)
and if each function in W is bounded on bounded sets, then

Diff ,(X) = Endyy(X) N Diff (X).



56 4. Lie groups of weighted diffeomorphisms

Proof. It remains to show that
Endw (X) NDiff (X) C Diff,,(X).
So let ¢ be in Endyy(X) N Diff (X) and set ¢ := ¢ — idx € Hyy. Then
Y € Diff),(X) & ¢! € Endw(X) © ¢! —idx € Cy(X, X) & I(¢) € Co(X, X)
(see and the definition of I in (£.2.1.1))). The last statement clearly holds iff
(FRER, r>0) I(¢) € C3(X \ Br(0),X) and I(¢) € C3(Bra++(0), X),

and this will be proved now. Obviously I(¢) € Cyy(Br(0), X) for each R € R, because
each f € W is bounded on bounded sets, all the maps DT (¢) are continuous and each
closed bounded subset B of X is compact (as X is finite-dimensional); hence

itelglf(w)l I(DO1()(@)llop < o0

It remains to show that there exists an R € R such that I(¢) € C55(X \ Br(0), X). We
set Ky :=|¢[|7, < oo and conclude from (4.2.22.1)) that there exists an ry with

~

2l =2y = |f(z)] = K¢ + 1.
Since |f(a:)| |1Do(x)||op < Ky for each z € X, we conclude that

Ky

H¢|X\§%(O)Hlx,1 < K, +1 <1

But we stated in [Proposition 4.2.7 that this implies the existence of an R € R such that
I(¢) € Cy(X \ Br(0),X).

We give a positive example.

EXAMPLE 4.2.23. The space Diff g(R™) satisfies [condition (4.2.22.1)] We just have to set

-~

f(x1,...,2,) = 2% + -+ + 22 which is clearly a polynomial function on R".

As announced, we give a counterexample. As a preparation, we prove

LEMMA 4.2.24. Let v € C*°(R,R) be a bounded map that satisfies

(Vz € R) o/(z) > —1. (%)
Then ~ + idg € Diff (R).
Proof. We conclude from () that (y(z)+idg)’(z) > 0 for all z € R, so v+ idg is strictly

monotone and hence injective. Since 7 is bounded, 7y +idg is unbounded above and below
and hence surjective (by the mean value theorem). m

EXAMPLE 4.2.25. We give an example of a map v € BC*™ (R, R) with v + idg € Diff (R),
but (y+idg) ™! —idg & BC™ (R, R). To this end, let ¢ be an antiderivative of the function
z +— 2 arctan(z) with ¢(0) = 0. Then sino ¢ and coso ¢ are in BC*(R,R) by a simple

induction since cos, sin, arctan € BC* (R, R),

(sino ) () = = axctan(a)(cos 0 6) ), (+)
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and an analogous formula holds for (coso¢)’. We set v := sino¢. By , we have

v (z) > —1 for all z € R, so v+ idg € Diff (R) (see [Lemma 4.2.24]). But since
1
v +idg) "t —idg) (2) = ———— — 1
(674 i)™ = i) () = g
with y := (v +idg) ~!(z) and there exists a sequence (¥, )nen in R with
.2
nh—>120 - arctan(y, )(coso ¢)(yn) = —1,

((y +idg)~! —idgr)’ is clearly unbounded.

4.3. Regularity. We prove that the Lie groups Diff,, (X) and Diff,, (X)° are regular.
For the definition of regularity, see

4.3.1. The tangent group and the regularity differential equation of Diff,, (X).
We examine the general (right) regularity differential equation (stated in the
[problem (B.2.11.1)) and turn it into a differential equation on Cp}(X, X). To this end,
we first describe the group multiplication of the tangent group T Diff,, (X) and the right
action of Diff,,,(X) on T Diff,,(X) with respect to the chart Tk, .

LEMMA 4.3.1. Let X be a Banach space and W C RX with 1x € W. Denote the multi-
plication on Diff,,(X) with respect to the chart m;vl by mw . Note that the tangent group
T Diff,,(X) is canonically isomorphic to Cyy (X, X) x Diff,,, (X).

(a) The group multiplication Tmyy on T Diffy,,(X) (with respect to Tky,)) is given by
Tmw ((7,71), (1.m)) = (mw(7,m), Dy o (n+idx) - m + 71 0 (n +idx) +m).
(b) Let ¢ € Dift),(X). Then the right action Tpy of ¢ on T Diff,,(X) with respect to
T/-@;vl s given by
T(kyy 0 ps © bw) (1, m) = (mw (7, Ky (), 71 © 9).
Proof. (a) We have
mw(7,1) =70 (n+idx) +1
and the commutative diagram
Diff,,, (X) x Diffy, (X) ° Diff,, (X)
o o NI
1 I

rpl (Diffyy (X)) % 5y} (Diffy (X)) ————— k;,} (Diffy, (X))

The group multiplication on the tangent group is given by applying the tangent functor
T to the group multiplication on Diff,,,(X), and therefore we obtain the group multipli-
cation on T Diff,,(X) in charts by applying T to my, (up to a permutation). Since

Tmw (v, 7;71,m) = (mw(y,m), Dyo (n+idx) -+ 0 (n+idx) +m)
by (4.1.7.1)), the asserted identity holds.

(b) Obviously (k) © py © kw)(-) = mw (-, K3, (¢)), so we derive the assertion if we
apply the identity proved in (a) with n = £,/ (¢) and 71 = 0. =
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We aim to turn (B.2.11.1) into an ODE on a vector space. Before we can do this, a
definition is useful:

DEFINITION 4.3.2. Let X be a normed space, W C RX with 1x € W, k € N and F be
a subset of W with 1y € F. By the map
Frp:[0,1] x CE(X, X) x €>([0,1],C5 (X, X)) — Ch(X, X),
(t,7,p) = p(t) o (v +idx),

is well-defined and smooth (since the evaluation of curves is smooth by .
For each parameter curve p € C*°([0, 1], C;5 (X, X)), we consider the initial value problem

I'(t) = Fri(t,T(t),p), T(0)=0, (4.3.2.1)
where ¢ € [0, 1].
LEMMA 4.3.3. Let X be a Banach space and VWV C RX with 1x € W.
(a) Fory e C>=([0,1], Tiq, Diff\,,(X)), the initial value problem

n'(t) =~(t)-n(t), n0)=idx
has a smooth solution

EvolpDiHW(X)(’y) : [0, 1] — Diff,,,(X)
iff the initial value problem (4.3.2.1)) (in Definition |4.3.2) with F =W, k = oo and

p= dﬁ;\}l oy has a smooth solution
T, : [0,1] = Ky, (Diffyy (X)).

In this case,

EvolpDiﬁW(X)(’y) = Ky ol,.

(b) Let © C C*([0,1], Tia, Diff\,,(X)) be an open set such that for each v € Q there
exists a Tight evolution EvolpDiHW(X)('y). Then eVOlpDiHW(X)|Q is smooth iff so is the
map

(dkyy 0 Q) = Cp(X, X) : p > Ty(1).
As above, I'), denotes a solution to (4.3.2.1) with respect to p.

Proof. This is an easy computation involving the previous results. m

4.3.1.1. Solving the differential equation. We show that the regularity differential equa-
tion for Diff,,,(X) is solvable. In order to do this, we use that C;5(X, X) is a projective
limit of Banach spaces (see |Proposition 3.2.5)). We solve the differential equation on each
step of the projective limit, see that these solutions are compatible with the bonding
morphisms of the projective limit, and thus obtain a solution on the limit. Before we do
this, we state the following obvious lemma.

LEMMA 4.3.4. Let X be a Banach space and W C RX with 1x € W. Further, let F CW
with 1x € F and k € N, p € C>([0,1],C5(X, X)) and I' : I — C&(X, X) a solution to
corresponding to p. Then T solves (4.3.2.1)) also for all subsets G C F containing
1x and ¢ € N with ¢ < k.
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Proof. This is an easy calculation since the inclusion map C%(X,X) — Cé(X,X) is
continuous linear. m

Solving the differential equation on the steps. First, we solve (4.3.2.1]) on function spaces
that are Banach spaces. To this end, we need tools from the theory of ordinary differential
equations on Banach spaces. The required facts are described in The hard
part will be to show that the solutions are defined on the whole interval [0, 1].

The solution on C%(X, X). We start with the function space C%(X, X), where F C
W is finite and contains 1x. Then the initial value problem (4.3.2.1) satisfies a global
Lipschitz condition and hence is globally solvable.

LEMMA 4.3.5. Let X be a normed space, W C RX with 1x e W, F CW with 1x € F
and p € C>([0,1],C5(X, X)). Then there exists K > 0 such that for each f € F, all
t €[0,1] and v,v € C¥(X, X),

1FF0(t,7,p) = Frot,70,p) 5.0 < Kllv = 0ll1.0-
Proof. We have

Fro(t,v,p) = Fro(t,n0,p) = 9x(p(t),7) — 9x (p(t), 0),
and deduce from |estimate (4.1.3.2)|in [Lemma 4.1.3| that

1EF0(t;7:p) = Fr ot 0, )ll 1.0 < PO l1x 2ll7 =0l 70-
Since p([0,1]) is a compact (and therefore bounded) subset of Cyy (X, X),

K := sup ||p(t)|lix1 <oo. m
te0,1]
LEMMA 4.3.6. Let X be a Banach space, F,WW C R¥ with 1x € F CW and |F| < oo,
p € C>*([0,1],C3(X, X)) and k = 0. Then the initial value problem (4.3.2.1) correspond-
ing to p has a unique solution which is defined on the whole interval [0,1].

Proof. We deduce from [Lemma 4.3.5| that we can find a norm on C%(X, X) such that
Fro(-,-,p) satisfies a global Lipschitz condition with respect to the second argument.

Since C%(X, X) is a Banach space, there exists a unique solution I : [0,1] — C%(X, X) of

(4.3.2.1)) which is defined on the whole interval [0, 1]; see [Die60}, §10.6.1] or [Theorem A.4.
and [Cemma A 4T w

Solutions in spaces of differentiable functions. On the spaces C%(X, X) with k > 1,
it is harder to show that the maximal solution is defined on the whole of [0, 1]. To show
this, we first verify that the differential curve D o v of a solution v : I — C}(X, X) to
is itself a solution to a linear ODE. We start with the following definition.

DEFINITION 4.3.7. Let X be a Banach space and W C RX with 1x € W. Further, let
F be a subset of W with 1x € F, k € Nand I' : [0,1] — C%(X,X) and P : [0,1] —
Cyv(X,L(X)) be continuous curves. We define the continuous map

G [0,1] x CH(X, L(X)) — CE(X, L(X)),
(t,7) = (P(t) o (D(#) +idx)) - (7 +id),
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and consider the initial value problem
(1) = G (t,®(t), @(0) =0. (4.3.7.1)
LEMMA 4.3.8. Let X be a Banach space and VW C RX with 1x € W. Further, let F be a
finite subset of W with 1x € F, k € N and p € C>([0,1],Cyy (X, X)). If
Tp:[0,1] = CH(X,X) and Ty :1C[0,1] = CE(X, X)
are solutions to corresponding to p, then the curve DoTl'j4q : I — C?-(X7 L(X))
is a solution to the problem withT =T and P =D op.
Proof. We have (D oT'yy1)" = D oI, and therefore for t € I,
(DoTk41)'(t) = D Fr ppa(t, Trpa (), p)

= (Dp(t) o Tg41(t) +idx)) - (DTppa(t) +id).

= ((Dop)(t)o Tr+1(t) +idx)) - ((DoTky1)(t) +id)

= G277 (¢. (D o Tig) (1)),

where we used that I'y|; = Ty41 by [Lemma 4.3.4] since C%(X, X) is a Banach space.

Obviously (D oTk11)(0) = 0, so the assertion is proved. m

Now we use the embedding from [Proposition 3.2.3|to show that the maximal solution

to (4.3.2.1)) is defined on [0, 1].

LEMMA 4.3.9. Let X be a Banach space, W C RX with 1x € W, F C W finite with
1x € F, p € C=([0,1],Cy5(X, X)) and k € N. Then the initial value problem (4.3.2.1)
corresponding to p has a unique solution which is defined on the whole interval [0, 1].

Proof. This is proved by induction on k. The case k = 0 was treated in
k — k 4+ 1: We denote the solutions for £ and 0 with I'y;, and [y, respectively. Since
the function Fr ;41 is smooth and ij“l(X ,X) is a Banach space, there exists a unique

mazimal solution Ty : I — CE (X, X) to ([#3:2.1) (see [Proposition A.4.2). Using
Lemma 4.3.8] we conclude that D o I'y41 is a solution to (4.3.7.1), where I' = I'y, and

P = D o p; here we used that by the induction hypothesis, T'y is defined on [0, 1]. Since
the latter ODE is linear, there exists a unique solution
S:[0,1] = CE(X,L(X))
that is defined on the whole interval [0, 1] (see §10.6.3] or |[Theorem A.4.7)). Let
L CETH (X, X) — CH(X, X) x Ch(X,L(X))

be the embedding from [Proposition 3.2.3| By [Lemma 4.3.4} I';1 is a solution to (4.3.2.1)
for the right hand side Fir ¢, so I'y+1 = I'g|r since solutions to initial value problems in
Banach spaces are unique. Hence

Poa (1) € (To([0, 1)) x S([0, 1)).

Further, T'o([0, 1]) x S([0, 1]) is compact and the image of ¢ is a closed subset of C%(X, X ) x
CE(X,L(X)) (by [Proposition 3.2.8). Hence, because ¢ ™1 is a homeomorphism, the image
of T'x41 is contained in a compact set. Since I'y4 1 is maximal, this implies that 'y must

be defined on the whole of [0,1] (see|[Theorem A.4.7). m
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Smooth dependence on the parameter and taking the solution to the limit. We use the
constructed solutions on C% (X, X) and show that there exists a solution to ([£:3:2.1)) on
Cyy(X, X), depending smoothly on the parameter curve.

ProPOSITION 4.3.10. Let X be a Banach space and VW C RX with 1x € W. For each
p € C>([0,1],C3p(X, X)) there exists a solution T'y, to (4.3.2.1) defined on [0,1] which
corresponds to p, W and co. The map

[0,1] x €*([0, 1], Gy (X, X)) = C (X, X) = (¢, p) = Tp(t) (1)
is smooth.

Progf. For p € C>=([0,1],Cyp (X, X)), we denote by I', the solution [0,1] — Colx}(X,X)

to (4.3.2.1) corresponding to p, 0 and {1x}—which exists by [Lemma 4.3.9} By Lem-
ma {4.3.4] a solution T : [0,1] — C&(X, X) to (#3:2:1) corresponding to p, a finite set

F C W containing 1x and k£ € N—which exists by [Lemma 4.3.9—also solves (4.3.2.1]) for

p, 0 and {1x}. Hence, by the uniqueness of solutions to initial value problems for Banach

spaces, I', = I'. Since F and k were arbitrary, the image of T, is contained in Cyj(X, X),
and we easily calculate that I', is a solution to (4.3.2.1)) corresponding to p, YW and oo.
It remains to show that is smooth. Since Cyy (X, X) is the projective limit of
{CE(X,X):keN, FCW, |F| < o0, 1x € F}
by [Proposition 3.2.5| using the universal property of the projective limit (see

tion A.1.12)), we just have to show the map

[0,1] x C*°([0,1],C5(X, X)) — Ch(X, X) : (t,p) = Tp(t)
with a finite set F C W containing 1x and k£ € N is smooth. We deduce this from
|Corollary A.4.14] since the map C>°([0,1],C55(X, X)) — CH(X,X) : p — 0 is smooth.
Here, we used implicitly that the inclusion map C55(X, X) — C5(X, X) is smooth. m

4.3.2. Conclusion and calculation of one-parameter groups. We are ready to
prove the regularity of the Lie groups. As a regular Lie group, Diff,(X) has an expo-
nential function. We show that the corresponding one-parameter groups induce flows on
certain vector fields.

THEOREM 4.3.11. Let X be a Banach space and W C RX with 1x € W. Then the Lie
group Diff\,,(X) is regular.

Proof. We proved in [Proposition 4.3.10| that for each smooth curve p : [0,1] — Cy5(X, X)
the initial value problem (4.3.2.1) has a solution I', : [0, 1] = Cj§(X, X) and the map

2 [0,1] x C([0,1],C3(X, X)) — C33(X, X) : (t,p) — T,(t)

is smooth. Obviously, I' maps [0,1] x {0} to 0. Since 5, (Diff,y,(X)) is an open neigh-
borhood of 0 in Cy5(X, X) (see [Corollary 4.2.13) and I' is continuous, a compactness
argument gives a neighborhood U of 0 such that

I'([0,1] x U) C &5, (Diff,,(X)).

We recorded in [Lemma 4.3.3| that this is equivalent to the existence of an open neighbor-
hood V' of 0 € C*°(]0, 1], Cyp (X, X)) such that for each v € V, there exists a right evolution
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Evolf). (X) (7) and that evolpDiffW(X) |y is smooth. But we know from [Lemma B.2.10|that

this entails the regularity of Diff), (X). m

COROLLARY 4.3.12. Let X be a Banach space and VW C RX with 1x € W. Then
Diff,,(X)° is a regular Lie group.

Proof. Let v € C*([0, 1], Tiaq, Diff,,,(X)°). Since Tiq, Diff,,(X)° C Tiq, Diff,,(X) and
Diff,, (X ) is regular by [Theorem 4.3.11] there exists a right evolution Evol”(v) : [0,1] —
Diff,, (X). By [Lemma 4.3.3] the curve I' := kyy oEvol” ( ) is a solution to the initial value

problem (4.3.2.1), where F =W, k = oo and p = an o+. So for t € [0,1],
t t
r(t) = / I(s)ds = / p(s) o (I'(s) +idx) ds.
0 0
Hence and the fact that C3y (X, X) is closed in C3y (X, X) by

show that Evol”(y) takes its values in Diff,,(X) N Endy (X)° = Diff,,,(X)°. From this

and the smoothness of evolpDi we easily conclude that evol? is smooth. m

£, (X) Diff,,, (X)°

On one-parameter subgroups. We calculate the one-parameter subgroups of Diffy,,(X)
(and hence for Diff,,,(X)°). These arise as flows of vector fields.

LEMMA 4.3.13. Let X be a Banach space and W C RX with 1x € W. Then for v €
Cv(X, X), the associated flow of the one-parameter subgroup of Diff\,,(X) with the right
logarithmic derivative Torw () is the flow of v (as a vector field).

Proof. We proved in|Theorem 4.3.11|that Diff,,,(X) is regular, hence the one-parameter
subgroup P of Diff,,, (X) with 0,(P)(t) = Torw(7) for all t € R exists. We have to show
(

that for any = € X, the curve R — X : ¢t — P(t)(z) is the solution to the ODE

Ff)y=~(f@), £0)=
Obviously, P(0)(z) = idx(z) = . Further, P(t)(z) = (evr ok 0 Ky, o P)(t). Tt is an
easy computation to see that ev, okyy is C! with

d(evy okw)(7:71) = eva(m).
By our assumptions, for ¢t € R,
P'(t) = Torw(7) - P(t) = Tpp) (Torw(7)) = T(pp@) © kw)(0,7).
So by using this results and we get
(evy oP)'(t) = (d(evy okw) 0 Thyy ) (P'(1))
= d(evy orw) (k) (P(8)); 7 0 P(1)) = (P (t)(x)).
This proves that R — X : ¢ — P(t)(x) is the integral curve of v for the initial value z. m

5. Integration of certain Lie algebras of vector fields

The aim of this chapter is the integration of Lie algebras that arise as the semidirect
product of a weighted function space Cpy (X, X) and L(G), where G is a subgroup of
Diff (X') which is a Lie group with respect to composition and inversion of functions.
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The canonical candidate for this purpose is the semidirect product of Diffy,,(X)
and G—if it can be constructed. Hence we need criteria for

G x Diff,,(X) — Diff (X) : (T, ¢) > TogpoT ™!
to have image in Diff, (X) and be smooth.

5.1. On the smoothness of the conjugation action on Diff), (X),. We slightly
generalize our approach by allowing arbitrary Lie groups to act on Diff,,(X). We need
the following notation.

DEFINITION 5.1.1. Let G be a group and w : G X M — M an action of G on the set M.

(a) For g € G, we denote the partial map w(yg,-) : M — M by wy.
(b) Assume that G is a locally convex Lie group with the identity element e, M is a
smooth manifold and w is smooth. We define the linear map

w:L(G) = X(M) by w@)(m)=—-Tw(,m)(x).
Note that w takes its values in the smooth vector fields because w is smooth.

Now we can state a first criterion for smoothness of the conjugation action—however
only on the identity component Diff,, (X)o of Diff,,, (X).

LEMMA 5.1.2. Let X be a Banach space, W C RX with 1x € W, G a Lie group and
w:Gx X — X a smooth action. We define the map

a: G x Diff,,(X) = Diff (X) : (T, ¢) = wr o p owp-1.
Assume that there exists an open set ) € Ug(1) such that the maps
CH(X, X)xQ—=Ch(X,X): (7, T) = vyowr (5.1.2.1)

and
Cy(X, X)xQ—=Cyp(X,X): (7,T) — Dwr -y (5.1.2.2)

are well-defined and smooth.

a) For each open neighborhood Uy, C Di of the identity such that |p,idx| =
F h hborhood U Diff,,,(X) of the id h that [¢,id
{to + (1 —t)idx : t € [0,1]} C Diff,,(X) for each ¢ € Uy, the map

(N Q7Y x Uy — Endyw(X) : (T, ¢) = (T, ¢) (1)

is well-defined and smooth.
(b) Suppose that Q = G. Then the map

G x Diffy, (X))o — Diffy,(X)o : (T, ¢) — (T, ¢) (1)

is well-defined and smooth.

Proof. (a) Using [Corollary 4.1.8] [Theorem 4.2.17| and the smoothness of (5.1.2.1]) and
(5.1.2.2), for each t € [0,1], T € QN Q! and ¢ € Uyy we see that

VYe1.6 = (Dwr - ((¢—idx) o (to+ (1 —t)idx) 1)) o (to + (1 —t)idx) cwy' € Co(X, X),
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and ¢, 1,4 is a smooth map. Further, using that t¢ + (1 —¢)idx is a diffeomorphism for
each t € [0, 1], we calculate

(wrogowr)(z) —x

= (wrogowr')(z) — (wrowr')(x)

= [ Duroto+ (1= 0id)wr @) - (6= idx) w7 (@) d

1
= /0 (Dwr - (6 —idx) o (té + (1 — t)idx) ™)) o (té + (1 — ) idx ) (wy (z)) dt.

Hence wr o powp-1 —idxy = fol P10 dt € Cp(X, X) by |Proposition A.1.8L using that
we proved in that C3y (X, X) is complete.

Since ;1,4 is smooth as a function of ¢, T" and ¢, we can use [Proposition A.1.18|to
see that is defined and smooth.

(b) Since Diffy,,(X) is locally convex, we find a symmetric open Uy € U(idx) such
that [Uyy, idx] C Diff,,(X). Using the symmetry of Uyy and (a) we see that a(G xUyy) C
Diff,, (X)o. Since Uy generates Diff,,(X)o, we can applymto conclude that
a(G x Diff,,(X)o) C Diffy,,(X)o. Further is smooth by (a) and [Lemma B.2.14] =

So all we need are criteria for the smoothness of the maps (5.1.2.1) and (5.1.2.2]).
However, we will only elaborate on (5.1.2.1)) and prove the smoothness of (5.1.2.2) under
relatively strong assumptions on the group G. A more detailed examination of ([5.1.2.2])

can be found in [Wall0l §5.2].

DEFINITION 5.1.3. Let X be a normed space, U C X an open nonempty subset, and
W C RY a nonempty set of weights. We define w C RY as the set of functions f for
which || || .0 is a continuous seminorm on C3,(U, Y), for each normed space Y. Obviously
W C W and by [L | - |4, is a continuous seminorm on Cji,(U,Y’), provided
thathWandégk

5.1.1. Contravariant composition on weighted functions. Here we prove sufficient
conditions for to be smooth. Since the second factor of the domain of this map
in general is not contained in a vector space, we have to wrestle with certain techni-
cal difficulties, leading to the definition of a notion of logarithmically bounded identity
neighborhoods in Lie groups.

LEMMA 5.1.4. Let G be a Lie group and w : G x M — M a smooth action of G on the
smooth manifold M.

(a) For any g € G,
Tw = Twy o Two (TAyj-1 x idrar),

where Ag—1 : G — G denotes the left multiplication with g L.

In the following, let S, T € G and W : [0,1] = G be a smooth curve with W(0) = S and
w()=T.
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(b) Let N be another smooth manifold and ~y : M — N a C'-map. Then fort € [0,1] and
r e M,

T(yowo (W xidan))(t,1,04) = Ty o Tww ) (—w(8e(W)(1))())- (t)
(¢) Let X andY be normed spaces. Assume that M is an open nonempty subset of X.
Then for v,n € Cl(M,Y) and x € M,
(yowr)(z) — (nows)(z
= ((v=n) cwr)( / Dn(ww ) (x)) - Dww ¢ () - w(6(W)(1))(z) dt.  (5.1.4.1)
Proof. (a) For h€ G and m € M,
w(h,m) = w(gg~"h,m) = w(g,w(g™h,m)) = wy(w(Xg-1(h), m)).

Applying the tangent functor gives the assertion.
(b) We calculate

T(yowo (W xida))(t,1,0,) = Ty o Tw(W'(t),0,)
— Ty 0 Ty 0 Tw(W (1)1 - W/(1),0,) = Ty o Ty (— (W (£)~ 1TV (1)) ())-
Here we used (a)
(¢) By adding 0 = o wp — 1o wy, we get
(yowr)(z) = (nows)(z) = ((y —n) cwr)(x) + (nowr)(z) — (nows)(z)
We elaborate on the second summand (using (f)):
(0wr)(@) — (nows)(@) = n(w(W(1),2)) — 5(@(W(0), )

/ D(nowo (W x idy))(t,z) - (1,0) dt

/ Dn(ww @) (x)) - Dww ) () - w(0(W)(t))(z) dt. m

DEFINITION 5.1.5. Let G be a Lie group and U C G, V C L(G). We call a path
W e CH([0,1],G) V-logarithmically bounded if 6,(W)([0,1]) € V. The set U is called
V -logarithmically bounded if for all g,h € U there exists a V-logarithmically bounded
W e C>=([0,1],V) with W(0) = g and W(1) = h.

PROPOSITION 5.1.6. Let X andY be normed spaces, U C X an open nonempty set, k €N,
W C RY a nonempty set of weights, G a locally convex Lie group and w : G x U — U a
smooth action. Assume that there exists an open neighborhood Q2 of 1 in G such that

(Vf € W, T € Q)(3g € W)(Ve > 0)
(3V € Uy, (0), Q € Uo(T) V-logarithmically bounded)
(VS € Qv e V) |f||Dws - @(v)]| <elgows|.  (5.1.6.1)

Further assume that VW o w{ll - W, and that for all m € N with m < k and normed
spaces Z, the map

C(U,L(X, Z)) x Q — C(U,L(X, Z)) : (T,T) — T - Dwr (5.1.6.2)
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is defined and continuous.

(a) The map
Ct(UY) x Q= C(U,Y) : (,T) = yowr

is well-defined and continuous.
(b) Let ¢ € N*. Additionally assume that the maps

Cr (U L(X,Y)) x Q = Cy,(U,L(X,Y)) : (T, T) = T - Dwr (5.1.6.3)

and

Chy(U,L(X,Y)) x L(G) — CE&,(U,Y) : (T,v) = T - &(v) (5.1.6.4)
are well-defined and C*='. Then the map
¢ CRFNUY) x Q = CR(UY) 1 (7,T) = yowr
is C* with the derivative
de((7,8); (11, 51)) = —(Dyows) - Dws -w(S™" - 81) +m ows. ()
Proof. (a) For k < oo, this is proved by induction on k.
k= 0: Let v,n € Cl, (U, Y),~T € Qand f € W. Let g € W be as in (5.1.6.1)). Given
€ > 0, we find a neighborhood €2 of T" and V' € Uy,()(0) such that (5.1.6.1)) is satisfied.
Using fidentity (5.1.4.1) for S € Q, a V-logarithmically bounded path W : [0,1] —
connecting S and T, and = € U we calculate

@) (70 wr)(@) — (o ws)(@)]
< (@) (n(w ) own) (@)l + H [ Datwof@)) - D (&) - (6 0 o) dtH)

<Y =1l fowzt 0 +/O [f @) 1Dn(ww 1) (2)llop - | Dww @) () - (0 (W)()) ()| dt

1
<y =l fowzr 0+ 6[ (g o ww 1)) (@)] |1 Dnww 1) (2))llop d

<lv- 77||fow;1,0 +elnllg1-

The continuity at (y,n) follows from this estimate.

k — k+ 1: By |Proposition 3.2.3| and the inductive hypothesis, we just need to check
that the map

O 2(UY) x 2 = (U, L(X,Y)) : (4,T) = D(y o wr)
is well-defined and continuous. For v € Ciif?(U,Y) and T' € Q, we have
D(yowr) = (Dyouwr) - Dwr.

Hence by the inductive hypothesis and the continuity of ([5.1.6.2)), the induction is finished.
k = co: This is an easy consequence of the case k < oo and
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(b) We prove this by induction on £.
0 =1: Let v,7 € CEI™H(U,Y), S € Q and S; € TsQ. Further, let ' : ]—6,8] — Q
be a smooth curve with I'(0) = S and I''(0) = Sy. Then for sufficiently small ¢ # 0,

1 1
;((“H-t%) owp(y) —Yows) = ;(Vowr(t) — Y ows) + 71 0wr()-

Using [identity (5.1.4.1)| we elaborate on the first summand:

Tyoung —vows)(w) =~ / Dry(wr(eny () - Deor(any () - o(t80(T) (1)) (x) ds.

Hence

1 ! :
E("y ] wp(t) — Yo ws) = — / (D’y o wp(st)) . pr(st) . w(ég(F)(st)) ds;
0

note that the integral on the right hand side exists by [Lemma 3.2.13| since the curve
[07 1] - C{j\/(U7 Y) HE (D’Y o wF(st)) : Dwr‘(st) : w(éf(rl)(St))

is well-defined and continuous by (a) and the continuity of (5.1.6.3]) and (5.1.6.4)). Hence
by [Proposition A.1.8]

1 e
hm ((7 +ty1) owry) —yows) = —(Dyows) - Dws - w(S 1.81) + v ows,

so the dlrectlonal derivatives of ¢ exist, are of the form and depend continuously on
the directions by (a) and the continuity of (5.1.6.3)) and (5.1.6.4).

¢ — £+ 1: Since (5.1.6.3) and (5.1.6.4) are C* by assumption, we conclude from
and the inductive hypothesis that dc is C*, whence ¢ is C‘*1. m

5.2. Conclusion and examples. Finally, we prove a sufficient criterion for the smooth-
ness of the conjugation action of a Lie group G acting on X and Diff,,,(X)o.

THEOREM 5.2.1. Let X be a Banach space, G a Lie group, w : G x X — X a ir/nooth
action and W C RX with 1x € W. Assume that {fowr : f € W,T € G} CW (see
Definition , {Dwr : T € G} C BC™(X,L(X)), the maps

D:G— BC™(X,L(X)): T — Dwr )
and (5.1.6.4) are well-defined and smooth and (5.1.6.1)) is satisfied. Then the map

G x Diff ), (X)o — Diff ), (X)o : (T, ¢) = wr o pows'

is well-defined and smooth.
Proof. Since is well-defined and smooth, we can apply [Corollary 3.3.7| to see that

(5.1.2.2) is also well-defined and smooth. Similarly, using [Corollary 3.3.6) we see that
(5.1.6.2)) and (5.1.6.3) are well-defined and smooth. Hence [Proposition 5.1.6[ shows that

(5.1.2.1f) is smooth. The assertion follows from [Lemma 5.1.2| m

Finally, we give a positive and a negative example. The first example shows that we
can form the semidirect product Diff g(X ) x GL(X) with respect to conjugation.

LEMMA 5.2.2. Let X,Y and Z be normed spaces, U C X an open nonempty set, W C RY
nonempty such that for each f € W, f||-|| € W. Further, let k € N andb:Y x X — Z
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be a continuous bilinear map. Then

Co(UY) x L(X) = Cy(U, Z) : (v, T) = bo (7,T) (t)
is well-defined and smooth.
Proof. The assertion holds for k = oo if it holds for all k¥ € N. For k # oo, the proof is

by induction on k.

k = 0: Since ([f]) is bilinear, it is smooth iff it is continuous at 0. So we only prove
that. Let f e W, v € C@V(U,Y), T € L(X) and 2 € U. Then

[F@)HIoCy (@), T@) < {bllopl £ )2l Y@ T Top < I0llop Y1 #1110 1T llop-
We conclude that bo (v,T) € C{y,(U, Z) and that () is continuous at 0.
k — k+ 1: By |Lemma 3.3.2} for v € C};,(U,Y) and T € L(X) we have
D(bo (v,1)) = ) o (D, T) + b o (v, DT).
Since DT € BC™(X,L(X)), by [Proposition 3.3.3b?) o (v, DT) € Ciif* (U, L(X, Z)) and
the map (v, T) — b o(y, DT) is smooth (here we use that L(X) — BC®(X,L(X)) : T +

DT is smooth). By the induction hypothesis, the same holds for (v, T) — b1 o (Dv,T).
So using [Proposition 3.2.3] the proof is finished. =

LEMMA 5.2.3. Let X be a Banach space and G := GL(X). Define the action
w:GxX —=X:(g,2) — g(x)
and set W := {z — ||z|" : n € N}.

(a) The map (5.1.6.4)) is smooth.
(b) The condition (5.1.6.1)) is satisfied.

Proof. We easily see that w = —idy(x) (since L(G) = L(X)), and for each S € G and
z€ X, wg=5and DS(z) =S.

(a) Let Y be another normed space. Since for I' € C},(X,L(X,Y)) and S € L(G),
I'w(8) = evy(x,y) o(I', =9) and evy,(xy) is bilinear and continuous, this is a consequence
of

(b) Let f=|-||"eW, T € G and € > 0. There exists an open convex U € Ug(T)
such that for all S € U,

o [[S—Tlop <e,
b HS_1||op < 2HT_1||0107
o HSHop < 2||T||op,

Then the path W : [0,1] — G : t — tT + (1 — t)S has the left logarithmic derivative
Se(W)(t) =W ()" (T — S), hence U is Br,x)(0, 2||T||ope)-logarithmically bounded. We
calculate for z € X, S € U and A € By,x)(0,2[|T||ope) that
[f (@) [ Dws (@) - @(A) ()]l = 2] (S o A) (@) < IS llop | Allop )"+
< A|T3,ellSHS]|™* < 2B TIE T 55 | S

Since 2 — 2" T3 || T2 [T~ |2 || e W, we sec that |condition (5.1.6.1)|is satisfied. m
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EXAMPLE 5.2.4. Let X, G, w and W be as in For each S € G and = € X,
DS(z) = S. Hence the map

D:G— BC®(X,L(X)):5— DS

is smooth. By [Lemma 5.2.3| the assumptions of [Theorem 5.2.1| hold (since Wo G C w

is obviously true), hence the map
GL(X) x Diffy,,(X)o — Diffy,(X)o : (T,¢) = TogpoT*
is smooth. So using [Lemma B.2.15| we can form the semidirect product
Diff,,(X)o x GL(X)
with respect to the inner automorphisms on Diff,,,(X ) that are induced by GL(X).

Finally, we show that the conjugation of GL(R) on Diff; 4 (X)o, if defined, may not
be continuous.

EXAMPLE 5.2.5. For each n € N, sin((1 4 5= )nm) = £1, but sin(nm) = 0. Hence

|| sin(t,) —sin ||1,,0 > 1
for each n € N, where t,, := 1+ 5. By isine n{_llw}(Diff{lR}(R)), and
obviously r1,}(3 sin) € Diff 1,3 (X)o. If the conjugation of GL(R) on Diff; ,(X)o was
defined and continuous, then the map

R\ {0} x BC™(R,R) — BC®(R,R) : (t,7) — t~n(t)
would be continuous in (1, § sin). But it is not since for ¢ > 0 and = € R,
|t~ sin(tz) — sin(x)|| > t| sin(tz) — sin(z)|| — ||(¢~ — 1) sin(2)||

> ¢t sin(tz) — sin(z)| — [t~ - 1].

Hence we can calculate that for sufficiently large n,
1

1
H —t 1sin(t,-) — = sin

2" 2

1
1r,0 4

6. Lie group structures on weighted mapping groups

In this chapter we will use the weighted function spaces discussed in for the
construction of locally convex Lie groups, the weighted mapping groups. These groups
arise as subgroups of GY, where G is a suitable Lie group and U is an open nonempty
subset of a normed space. First, we give some definitions.

DEFINITION 6.0.1. Let U be a nonempty set and G be a group with the multiplication
map mg and the inversion map Ig. Then GU can be endowed with a group structure:
Multiplication is given by
((gu)uer; (hu)uev) = (MG (Gus hu))uev = MG © ((gu)uev, (hu)uer)
and inversion by
(9u)uev = (Ig(9u))uer = I © (gu)uev-
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Further we call a set A C G symmetric if
A=1g(4).
Inductively, for n € N with n > 1 we define
A" = mg(A™ x A),  where A' == A.

DEFINITION 6.0.2. Let G be a Lie group and ¢ : V — L(G) a chart. We call the pair
(¢, V') centered around 1 or just centered if V' C G is an open identity neighborhood and

#(1) = 0.

6.1. Weighted maps into Banach Lie groups. In this section, we discuss certain
subgroups of GV, where G is a Banach Lie group and U an open subset of a normed
space X. We construct a subgroup Cj, (U, G) consisting of weighted mappings that can
be turned into a (connected) Lie group. Its modelling space is Cj, (U, L(G)), where k € N
and W is a set of weights on U containing 1y. Later we prove that these groups are
regular Lie groups. Finally, we discuss the case when U = X. Then Diff,,,(X) acts on
Cyy(X,G), and thus we can turn the semidirect product of these groups into a Lie group.

6.1.1. Construction of the Lie group. We construct the Lie group from local data
usingm For a chart (¢, V) of G, we can endow the set ¢! oc%k(U, o(V)) C
GY with the manifold structure that turns the superposition operator ¢, into a chart. We
need to check whether the local multiplication and inversion on this set are smooth with
respect to this manifold structure. The group operations on GV arise as the composition
of the corresponding operations on G with the mappings (see . Since the
group operations of Banach Lie groups are analytic, we will use the results of
as our main tools. This allows us to construct Cii, (U, G) when G is an analytic Lie group
modelled on an arbitrary normed space.

REMARK 6.1.1. We call a Lie group G normed if L(G) is a normable space. A normed
analytic Lie group is a normed Lie group which is an analytic Lie group.

Local multiplication. The treatment of group multiplication is a simple application of
[Proposition 3.3.19}

LEMMA 6.1.2. Let X be a normed space, U C X an open nonempty subset, W C RY with
ly € W, £ € N, G a normed analytic Lie group with the group multiplication mg and
(¢, V) a centered chart of G. Then there exists an open identity neighborhood W C V
such that the map

Cyy (U, (W) x Cpy' (U, (W) = Cf (U, &(V) : (v,) = domgo (¢ 0,6 om) (1)
is defined and analytic.
Proof. By [Lemma 3.4.16] the map is defined and analytic iff there exists an open
identity neighborhood W C G such that

(domao (67" x ¢ Cf (U.6(W) x 6(W)) = Cpi/ (U 4(V))

is defined and analytic. There exists an open bounded zero neighborhood W, C L(G)
such that Wy, + Wy, C ¢(V). By the continuity of the multiplication m¢g there exists an
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open 1-neighborhood W with me(W x W) C ¢~1(Wy). We may assume that ¢(W) is
star-shaped with center 0. Then

(pomg o (@' x 67H))(BW) x §(W)) € Wr.
Further the restriction of ¢ omg o (¢7 x ¢~ 1) to ¢(W) x ¢(W) is analytic, takes (0,0)

to 0 and has bounded image, since ¢ is centered and Wy, is bounded. In the real case,

using [Lemma 3.3.17| we can choose ¢(W) sufficiently small such that the restriction
of pomgo (¢~ x ¢~ 1) to ¢(W) has a good complexification. Hence we can apply

[Proposition 3.3.19|to see that
(pomao (¢! x ) o C (U, ¢(W) x ¢(W)) € Cyy (U, W)
and that the map (¢ omg o (¢~! x ¢~ 1)), is analytic. But
Chy(U.WL) € ' (U 6(V)

by the definition of WZ, and this gives the assertion. m

Local inversion. The discussion of inversion is more delicate. For a short explanation,
let (¢, ‘7) be a chart for G, V C Va symmetric open identity neighborhood and I5 the
inversion of G. Then the superposition ¢ o I o ¢! described in [Proposition 3.3.19| does
not necessarily map Ce\’f(U,gb(V)) into itself; hence we have to construct symmetrical
open subsets.

LEMMA 6.1.3. Let G be a group, U C G a topological space and V. C U a symmetric
subset with 1 € V° such that the inversion I : V — V is continuous. Then

Veniag(Ve)
is a symmetric set that is open in U and contains 1.
Proof. Let W :=V°NIg(V°). Then 1 € W, and since
W =Ig(W) =Ig(V°NIg(V°)) = Ic(V°)NIg(Ig(V°®) = Ig(VO)NV° =W,

it is a symmetric set. Since I is a homeomorphism, I(V°) is an open subset of V.
Hence W = I(V°) N V? is an open subset of V° and hence of U. u

LEMMA 6.1.4. Let X be a normed space, U C X an open nonempty subset, W C RY

with 1y € W, £ € N, G a normed analytic Lie group with the group inversion Ig, and
(¢, V) a centered chart of G such that (V') is bounded and V is symmetric.

(a) The map
I =¢olgod™ : p(V) = ¢(V)

is an analytic bijective involution. Hence for any open and star-shaped set W C ¢(V)
with center 0, the map

CoHH(UW) = Cop(U, (V) 1y = I oy

is analytic, assuming in the real case that Ir|w has a good complezification.
(b) Let 2 C C{?\}Z(U, #(V)). Then ¢~ o (QN 1L 0Q) is a symmetric subset of GY.
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(¢c) For any open zero neighborhood 1% C ¢(V) there exists an open convex zero neigh-
borhood W C W such that

ColU, W) C CoHU,W) N I o CoF (U, W).

(d) There exists an open convex zero neighborhood W C ¢(V') and a zero neighborhood
ct, C N U, (V) such that

Oy (U W) C (Cly)° NI o (Cy)°,
¢ to Cﬁv is symmetric in GU, the map

CﬁV%C)K/V:’yr—)ILO’y

o

is continuous and its restriction to (Ci,)° is analytic. The set W can be chosen

independently of £ and W.

Proof. (a) The assertions concerning Iy, follow from the fact that V' is symmetric and G
is an analytic Lie group. The assertion on the superposition map of Iy is a consequence
of [Proposition 3.3.19|since W is star-shaped with center 0 and ¢(V') is bounded.

(b) This is an easy computation.

(c¢) By the continuity of addition, we find an open zero neighborhood H with H + H

C W Since Iy, is continuous at 0 there exists an open convex zero neighborhood W with
I, (W) C H and W C W. Then

.0 AL (11 7
Cyy (U W) CCyy (U W)
and by (a),
Iy 0 Cyyf (U,W) € Cyy(U, H) C Cyyf (U, ).
The fact that I7, o I, = idg(y) completes the argument.
(d) Let W5 C ¢(V) be an open convex zero neighborhood. Then by (c¢) we find open
convex zero neighborhoods Wy, Wy C ¢(V') such that
COLU,W;) C CoH (U Wigh) NI o Co (U, Wigs)
for i =1,2. So
Chy i= Coy (U, W3) N I o Cf (U, W)
is a zero neighborhood, and by (b), ¢—* OCf;V is symmetric. Hence the superposition of Iy,
maps CY,, into itself and is continuous on CY,, and analytic on (Cf,)° (see (a)). Further

(Cp)° NI o (Chy)° 2 Gy (U, Wa) N I 0 Cyf (U, Wa) 2 Cyyf (U, Wh),
whence (d) is established with W :=W;. n

Construction of the Lie group structure. After discussing the group operations locally,
we turn a subgroup of GV into a Lie group for each centered chart of G. We will also
show that the identity component of this group does not depend on the chosen chart.

LEMMA 6.1.5. Let X andY be normed spaces, U C X an open nonempty subset, W C RY
with 1y € W, £ € N and V C Y convex. Then the set Cg\}Z(U, V) is conve.

Proof. 1t is obvious that Cf,,(U, V) is convex since V is. The set Ce\}e(U, V) is the interior
of Cf,,(U, V) with respect to the norm || - [|1,, 0, hence it is convex. m
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PROPOSITION 6.1.6. Let X be a normed space, U C X an open nonempty subset, W C RY
with 1y € W, £ € N, G a normed analytic Lie group and (¢,V) a centered chart. There
exist a subgroup (G, (b)%’e of GY that can be turned into an analytic Lie group which is
modelled on Cf,,(U, L(G)), and an open 1-neighborhood W C 'V which is independent of
W and ¢ such that

Oy (U.6(W)) = (G, 0y : 7 67" 0y
is an analytic embedding onto an open set. Moreover, for any conver open zero neighbor-
hood W C d(W), the set g~ 1 OC%Z(U, W) generates the identity component of (G, ¢>1€V,Z
as a group.

Proof. Using [Lemma 6.1.2| we find an open 1-neighborhood W C V such that
Cyy' (U, 6(W)) x €3 (U, 6(W)) = Cy' (U, (V) = (3m) = gomg o (¢ 0,67 o)
is analytic. We may assume that W is symmetric. Using Lemmas d) and we
find an open zero neighborhood H C Cg\;Z(U, #(W)) such that ¢! o H is symmetric, the
map
H—H:y—Ipoxy

is analytic and Cg\}Z(U,(b(W)) C H for some open 1l-neighborhood W C V', which is
independent of W and ¢. We endow ¢! o H with the differential structure which turns

the bijection
o loH—>H:v—¢on
into an analytic diffeomorphism. Then we can apply [Lemma B.2.5|to construct an analytic

Lie group structure on the subgroup (G, ¢)€V , of GY which is generated by ¢! o H such
that ¢~! o H becomes an open subset of (G, (;5))%7@.

Since we may assume that ¢(WW) is convex, Ce\}g(U,qS(W)) is open and convex (see

, hence the set

o™ o Cyy (U, 6(W))
is connected and open by the construction of the differential structure of (G, (b)%’z.
Furthermore it obviously contains the unit element, whence it generates the identity
component. m

LEMMA 6.1.7. Let X be a normed space, U C X an open nonempty subset, W C RY with
1y € W, £ €N and G be a normed analytic Lie group. Then for centered charts (¢1, V1),
(¢2,V2), the identity component of (G,$1)}y, , coincides with the one of (GZ@)%J, and
the identity map between them is an analytié diffeomorphism.

Proof. We may assume that ¢1(V1) and ¢2(V2) are bounded. Using [Proposition 6.1.6}
we find open 1-neighborhoods W7 C Vi, Wy C V5 such that the identity component of
(G, (bi)%’é is generated by ¢; ' oce\}e(U, ¢;(W;)) for i € {1,2}. Since ¢, 0 ¢5 ' is analytic,
we find open zero neighborhoods Wi C ¢y (Wy) and W C ¢o(W2) such that

(6106, )(W5) CWI and W+ W C 6y(W1),

and W2L is convex. Then by |Pr0position 6.1.6[, the identity component of (G, ¢2)%7Z is
generated by

¢3! o OO (U, W),
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and in the real case we may assume that ¢; o ¢y 1|W . has a good complexification. By
2

[Proposition 3.3.19| the map
C (U W) = G (U, 61(W1)) s v dn 06t oy
is defined and analytic, and this implies that
93" 0 OO (U, W) C 677" 0 O (U, 61 (Wh)).

Hence the identity component of (G, ¢2)%, , is contained in the one of (G, gbl)%’z, and
the inclusion map of the former into the latter is analytic.
Exchanging the roles of ¢; and ¢ in the preceding argument, we get the assertion. m

DEFINITION 6.1.8. Let X be a normed space, U C X an open nonempty subset, WW C RY
with 1y € W, £ € N and G be a normed analytic Lie group. We write C,,(U, G) for the
connected Lie group constructed in [Proposition 6.1.6l There and in it was
proved that for any centered chart (¢,V) of G and W C V such that ¢(W) is convex,
the inverse of

COLU, p(W)) = Cop(U,G) 1y ¢~ Loy
is a chart.

6.1.2. Regularity. We show that for a Banach Lie group G, the Lie group C{QV(U, G) is
regular.

LEMMA 6.1.9. Let G, H be Lie groups and ¢ : G — H a Lie group morphism.

(a) For each g € G and v € TG, we have Ty ¢p(v) = ¢(g) "L(¢)(g~ ' -v).
(b) Let v € CL([0,1],G). Then 8(607) = L(3) o (7).

Proof. The proof of (a) being straightforward, we turn to (b). We calculate the derivative
of ¢ o using (a) and the fact that ¢ is a Lie group morphism:

(po7)(t) =T(po)(t 1) = Typyd(' (1) = d(3(1)) - L(¢)(v(t) " -~/ (1))
From this we derive
Se(¢o)(t) = (o))" - (007)(t) =L(@)(v(t) ™" -7 (1)) = L(9)(5:(7)(t)). =
The following is well known from the theory of Banach Lie groups.

LEMMA 6.1.10. Let G be a Banach Lie group and V € U(1). Then there exists a balanced
open W € Uy,)(0) such that

v eC’([0,1],W) = Evols(y) € C°([0,1], V). (6.1.10.1)
Furthermore, the map evols, : C°([0,1], W) — G is continuous.
We define some terminology needed for the proof.

DEFINITION 6.1.11. Let X be a normed space, U C X an open nonempty set, YW C RY
with 1y € W, k € N and G be a Banach Lie group. Further, let F;, F» C W be such that
1y € F1 € Fo and /4,45 € N such that ¢; < £ < k. We denote the inclusion

CZ (U, L(Q)) = CZ (U, L(G)).
by L(L]_-2 02),(F1 1) and the inclusion

C2 (U,G) — C% (U,G)
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G L L G G

by LCFs 1) (Fron)" Further, we define VFy 0y "= W) (Fuul) and LE 0 T W) (Fre)
Then for a suitable centered chart (¢, V') of G, the diagram

ot (U, (Vv ek,

% (U, 0(V)) ———C£ (U, G)

L ‘ G ‘

L(Fg.e2),(F1,01) H(Fa,t2),(F1,01)

¢71

Cr (U, 6(V)) ————— CZ, (U, G)
commutes. Hence we derive the identity

L(u(r, ), (7r.0) = Todi " © Tot(r, 1,710 © T10s-
Let x € U. Consider the maps
evl C?—_’fl(U, G) = G:vyey(x), evk: C_‘;’lel(U,L(G)) = L(G) : v = y(x).
Obviously, the diagram

$1

CHMN (U, (V) ————C (U, )
I .
L]
o(V) : G

commutes, so we derive the identity
L(evl) = Toop~ ' 0 Toevh oTy 6.

REMARK 6.1.12. In the following, if F is a locally convex vector space, we shall frequently
identify ToF = {0} x E with E in the obvious way. Then for a Banach Lie group G and
a centered chart (¢, V) of G such that do|pc) = idr(e), we can identify C},(U,L(G))
with L(Ck, (U, Q)) via Top; ! and Ti¢., respectively.

LEMMA 6.1.13. Let X be a normed space, U C X an open nonempty set, W C RY with
1y € W, k € N, G a Banach Lie group and (¢,V) a centered chart for G such that
dé|Lic) = idr(g). Further, let z € U and T : [0,1] = C},(U,L(G)) be a smooth curve
whose left evolution exists. Then evS oEvol’(Top; ! oT) is the left evolution of evE ol.

Proof. We set n := Evol‘(To¢;! o ') and calculate using [Lemma 6.1.9) and [Defini-|
[tion 6.1T.11] that

Se(ev8on) = L(ev9) 0 64(n) = Top L o Toevl oT1¢, 0 Topp, Lol =eviol. m

PROPOSITION 6.1.14. Let X be a normed space, U C X an open nonempty set, W C RY
with 1y € W, k € N and G a Banach Lie group.

(a) Cy(U,G), endowed with the Lie group structure described in Definition 18 reg-
ular.

(b) The ezponential function of C&,(U,G) is given by
Cy(U,L(G)) = Cy(U, G) = 7 + expg 07,
where we identify Ci, (U, L(G)) with L(CE, (U, Q)).



76 6. Lie group structures on weighted mapping groups

Proof. (a) Let (¢, 17) be a centered chart of G such that d¢|g) = idyg). We set
F={FCW:1ly € F, |F| < =}
After shrinking V, we may assume that the inverse map of
CPHUV) = CL(U,G):T = ¢ Lol

is a chart around the identity for F € F and £ € N with £ < k (see .
Let V C V be an open 1l-neighborhood such that ¢(V) + ¢(V) C ¢(V). We choose
an open zero neighborhood W C ¢>(‘7) such that the implication holds. Let
r:,1] — Cs\’,k(U, W) be a smooth curve. Then I'z := Lf{-’l oI' is smooth, and since
Cff(U, @) is a Banach Lie group, the curve Top ! o 'z has a smooth left evolution
nre:[0,1] = C%(U,G). Then, for each z € U, ev{ onz 4 is the left evolution of evE o'z,
by Since we assumed that holds, we conclude that for each
t € [0,1], the image of nr ¢(t) is contained in V.
Further, for Fi, 5 € F such that 71 C F5 and /1, /5 € N such that /1 </ <k,

5Z(L(Gf2,£2),(]:1,£1) O NFyly) = L(L(sz,ez,),(fl,el)) 0 6¢(NFy,0)
= TOQS;I © TOL(L]"2,Z2)»(.7:1,€1) 0Ty 0 55(77.7:2752) = T0¢>I1 ol'F 0 = 52(77f1,f1)'

Hence nr, ¢, = L%27e2)7(f1)£1) ONEy. L5+ S0 the family (¢« o nr o) Fer o<k is compatible with
the inclusion maps, hence using |Pr8position 3.2.5| and |[Proposition A.1.12] we derive a
smooth curve 77 : [0,1] — Ce\}k(U, ¢(V)) such that for all F € F and ¢ € N with £ < k, we

have L_j;‘_—7£ o7 = ¢ onxe. Weset n:= ¢, orn. Then

To¢, 0Ttk j0T16.06,(n) = L(tE ;)0de(n) = 6¢(nr.e) = Tops 'oTx ¢ = Too; otz yol,

and since F and ¢ were arbitrary, we conclude (using [Proposition 3.2.5) that Tj¢, o
d¢(n) =T and thus

S¢(n) = Top; toT.

It remains to show that the left evolution is smooth. To this end, we denote the left
evolution of C%(U, G) with evolr, and the one of Cfi, (U, G) with evol. From our results
above and [Definition 6.1.11] we derive the commutative diagram

evoloT()(z):l

([0, 1], Cyy" (U, W) ¢, o Ot (U, 6(V))

P l o

LF.e LFe

\La ) evol}-ﬁgngqB*_l 1 9.0 ~
C>([0,1],Cx" (U, W)) ¢, o Cx (U, (V)

Since the three lower arrows represent smooth maps, the map

Py 0 Lg’e oevolo Top, ! = Lﬁ-)e o ¢, oevol o Ty, *

is smooth on C>°([0, 1]7C§\}k(U, W)). Using [Proposition A.1.12|and [Section 3.2.2, we con-
clude that ¢, o evol o Top; ! is smooth, and since ¢, and To¢; ! are diffeomorphisms,
using |[Lemma B.2.10| we deduce that evol is smooth.

(b) Let (¢,V) be a centered chart of G' such that d¢|y(e) = idyg). We denote the
exponential function of C}, (U, G) by expyy. Let « € U and v € C}, (U, L(G)). We denote




6.1. Weighted maps into Banach Lie groups 7

the constant, y-valued curve from [0, 1] to C¥, (U, L(G)) by I'. We proved in |Lemma 6.1.13

that evC oEvol’(¢;! o I') is the left evolution of evEol. On the other hand, since T'
is constant, the left evolution of evl ol' is the restriction of the one-parameter group
R — G : t > expg(tevE(y)). Hence

expg(evy (7)) = (ev§ oBvol’ (¢! oT))(1) = evg oevol’(¢, " o T) = vy oexpyy(y (7).

Thus expyy (65 1(7))(z) = expg(7(z)), from which we deduce the assertion since x € U
was arbitrary. m

6.1.3. Semidirect products with weighted diffeomorphisms. In this subsection
we discuss an action of the diffeomorphism group Diff,,,(X) on the Lie group Cp3 (X, G),
where G is a Banach Lie group. This action can be used to construct the semidirect
product Cy5(X, G) x Diffy),(X) and turn it into a Lie group. For technical reasons, we
first discuss the following action of Diff,,(X) on GX.

DEFINITION 6.1.15. Let X be a Banach space, G a Banach Lie group and W C R¥ with
1x € W. We define the map

@ : Diffy,(X) x GX = G¥ 1 (¢,7) = yoop .

It is easy to see that w is in fact a group action, and moreover that it is a group
morphism in its second argument:

LEMMA 6.1.16.
(a) @ is a group action of Diffy,,(X) on G*.
(b) For each ¢ € Diff,,,(X) the partial map &(¢,-) is a group homomorphism.

Proof. These are easy computations. m

We show that this action leaves Cyy (X, G) invariant. Since we proved in|Lemma 6.1.16

that @ is a group morphism in its second argument, it suffices to show that it maps a
generating set of Cy5(X, G) into this space.

LEI\{MA 6.1.17. Let X be a Banach space, G a Banach Lie group, W C RX with 1x € W,
(¢, V) a centered chart of G and V an open identity neighborhood such that ¢(V') is
convezx. Then

B(Diffy (X) x (671 0 ™ (X, 6(V)))) € 61 0 C™ (X, 6(V)),
and the map
Diffy, (X) x Cpi° (X, 6(V)) = Cpi° (X, (V) : (#,7) > ¢ o B(v, 67" 07)
is smooth. Moreover,
5(Diff,, (X) x C3(X, G)) C C(X, G).
Proof. Let 1 € Diffyy,(X) and v € €9 (X, $(V)). Then
G, ¢ o) =9 o (yoyph),
and using[Corollary 4.1.8| this proves the first and—together with [Proposition 4.2.16}—the

second assertion.
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The final assertion follows immediately from the first assertion since we proved in
Lemma 6.1.16] that @ is a group morphism in its second argument, and according to
Definition 6.1.8, Cyy (X, G) is generated by ¢! o Cg\;k(X, d(V)). m

So by restricting w to Diffy,,(X) x Cy5(X, G), we get a group action of Diff,,(X) on
Cx(X,G).

DEFINITION 6.1.18. We define

W= c~‘J|DiffW(X)xc;;g(x,(;) : Diffy, (X) x CR(X, G) = CH(X,G) : (,7) = yog .

Finally, we are able to turn the semidirect product C;§ (X, G) x,, Diff,,(X) into a Lie
group.

THEOREM 6.1.19. Let X be a Banach space, G a Banach Lie group and W C RX with

1x € W. Then Cy(X,G) #, Diffy,(X) can be turned into a Lie group modelled on
Cy(X,L(G)) x Cp(X, X).

Proof. We proved in [Lemma 6.1.17| that w is smooth on a neighborhood of (idx, 1), and
since this neighborhood is the product of generators of Diff,,,(X) resp. C;5(X, G), we can

use to see that w is smooth. Hence we can apply [Lemma B.2.15| and are

done. m

6.2. Weighted maps into locally convex Lie groups. In this section, we discuss cer-
tain subgroups of GV, where G is a Lie group and U an open subset of a finite-dimensional
space X. We construct a subgroup Cl’fv(U ,G)* consisting of weighted decreasing mappings
that can be turned into a (connected) Lie group. Next, we extend this group to a Lie
group C¥,(U,G)e, which contains C¥,(U,G)* as an open normal subgroup, and discuss
its relation to “rapidly decreasing mappings”.

The modelling space of these groups is C, (U, L(G))®, where k € N and W is a set of
weights on U containing 1;7. These spaces were introduced in

6.2.1. Construction of the Lie group. We construct the Lie group from local data
using [Lemma B.2.5| For a chart (¢, V) of G, we can endow the set ¢~ o Chi,(U, ¢(V))® C
GY with the manifold structure that turns the superposition operator ¢, into a chart.
We then need to check whether multiplication and inversion on GY are smooth with
respect to this manifold structure. The group operations on GU arise as the composition

of the corresponding group operations on G' with mappings in GU (see [Definition 6.0.1)).

The main tool used in this subsection is the superposition with smooth maps that we

discussed in [Proposition 3.4.23|

Local group operations. We first discuss local multiplication.

LEMMA 6.2.1. Let X be a finite-dimensional space, U C X an open nonempty subset,
W CRY with 1y € W, £ €N, G a locally convex Lie group with the group multiplication
mqg and ($,V) a centered chart of G. Then there exists an open identity neighborhood
W CV such that the map

Co (U, 6(W)* x Coy (U, 6(W))* = Cop (U, 6(V))* = (v,m) =+ gomgo(¢~ oy, ¢~ on) (1)

is defined and smooth.
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Proof. By [Lemma 3.4.16 the map is defined and smooth iff there exists an open
neighborhood W C G such that

(pomao (@ x ¢71))s : Cu(U, 6(W) x (W))* = Cpy (U, ¢(V)*
is defined and smooth. By the continuity of m¢g there exists an open subset W C V such
that mg(W x W) C V. We may assume that ¢(WW) is star-shaped with center 0. Since

pomgo (¢t x ¢~1) is smooth and maps (0,0) to 0, we can apply [Proposition 3.4.23| to
see that

(¢omao (67! x 671) 0 C(U, (W) x 6(W))* C Coy(U, ¢(V))*
and that the map (¢ omgo (¢~! x ¢~ 1)), is smooth. =
Now, we turn to local inversion.

LEMMA 6.2.2. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y e W, L €N, G a locally convex Lie group with the group inversion Ig
and (¢, V') a centered chart such that V is symmetric. Further let W C'V be a symmetric
open 1-neighborhood such that there exists an open star-shaped set Wy, with center 0 and
d(W) C W, C (V). Then for each v € Ciy, (U, p(W))®,
(polgog ") oy eCy(UW)®,

and the map

Cw(U,6(W))* = Co(U.6(W))* sy (polgogp ') oy
s smooth.

Proof. Since I, :== ¢olgo¢p™t: ¢(V) — ¢(V) is smooth and I1(0) = 0, we conclude
from |Proposition 3.4.23| that

Co(UWL)* = C(U.¢(V))* =y = I oy
is smooth. Since we proved in [Lemma 3.4.19| that Ci,, (U, #(W))® is an open subset of

Cf,v(U, W1)®, the restriction of this map is also smooth, and since W is symmetric, it
takes values in this set. m

Conclusion. We put everything together to obtain a Lie group for each centered chart
of G. We show that the identity component does not depend on the chart used.

LEMMA 6.2.3. Let X be a finite-dimensional space, U C X an open nonempty subset,
W CRY with 1y € W, £ €N, G a locally convex Lie group and (¢,V) a centered chart.
Then there exists a subgroup (Gﬂ(b)%fv’e of GY that can be turned into a Lie group. It is
modelled on Ci, (U, L(G))® in such a way that there exists an open 1-neighborhood W C 'V
such that

Ch(U, 6(W))* = (G, &)y 7= 671 0

becomes a smooth embedding and its image is open. Further, for any subset 1% C W such
that (W) is an open convex zero neighborhood,

¢~1 o Chy(U, p(W))*

generates the identity component of (G, qi))%,]v’f.
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Proof. Using we find an open 1-neighborhood W C V such that
Co (U, ¢(W)* x Cpy (U, ¢(W)* = Coy (U, 6(V))* = (v,1) = pomg o (67" 0y, " o)
is smooth. We may assume that W is symmetric and that there exists an open convex
set H such that ¢(W) C H C ¢(V)). We know from [Lemma 6.2.2] that the set
¢! o Cy(U, ¢(W))* € GY
is symmetric and
Cw(U,6(W)" = Coy(U,¢(W))* : 7 = ¢olgog™" o
is smooth. We endow ¢! 0C4,,(U, ¢(W))* with the differential structure which turns the
bijection
671 0 Cpy (U, 6(W))* = (U, 6(W))* 17> oy
into a smooth diffeomorphism. Then we can apply to construct a Lie group

structure on the subgroup (G, (b)%l of GY which is generated by ¢~1 o Cf,,(U, p(W))*,
such that ¢ =1 o Ci,, (U, (W))® becomes an open subset.

Moreover, for each open 1-neighborhood W C W such that ¢(W) is convex, the set
Ciy (U, B(W))*® is convex . Hence ¢! oCy,, (U, G(W))* is connected, and it
is open by the construction of the differential structure of (G, ¢)% ;- Further it obviously
contains the unit element, hence it generates the identity component. m

LEMMA 6.2.4. Let X be a finite-dimensional space, U C X an open nonempty subset,
W C RY with 1y € W, £ € N and G a locally convex Lie group. Then for centered
charts (¢1,V1) and (¢2,V2), the identity component of (G, (;51)%7[ coincides with the one
of (G, (,252)%’6, and the identity map between them is a smooth diffeomorphism.

Proof. Using we find open 1-neighborhoods W7 C Vi, Wy C V5 such that
the identity component of (G, qSi)%’e is generated by ¢; ' o Ci,, (U, ¢:(W;))® for i € {1,2}.

Since ¢ 0 ¢, ! is smooth, we find an open convex zero neighborhood W C ¢ (W1 NW5).
By [Proposition 3.4.23] the map

Coy (U, WE)® = Cy(U, ¢1(Wh))® : v = dro gy oy

is defined and smooth. This implies that
93" 0 Co(U.W5)* € o1 0 Cly (U, 61 (Wh))".
Hence the identity component of (G, ¢2)%,€ is contained in the one of (G, ‘751)%,0 and

the inclusion map of the former into the latter is smooth.
Exchanging the roles of ¢; and ¢ in the preceding argument, we get the assertion. m

DEFINITION 6.2.5. Let X be a finite-dimensional space, U C X an open nonempty
subset, W C RY with 1y € W, £ € N and G a locally convex Lie group. Henceforth, we
write Ciy, (U, G)* for the connected Lie group constructed in [Lemma 6.2.3] There and in

Lemma 6.2.4] it was proved that for any centered chart (¢, V) of G there exists an open
1-neighborhood W such that the inverse of

Coy (U, ¢(W))* = Coy(U,G) : v+ ¢~ 1oy
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is a chart, and that for any convex zero neighborhood W C ¢(W), the set
¢~ o Chy (U, W)
generates Cfy, (U, G)®.

6.2.2. A larger Lie group of weighted mappings. We extend the Lie group described
in Generally, it is possible using to extend a Lie group G
that is a subgroup of a larger group H by looking at its “smooth normalizer”, that is,
all h € H that normalize G and for which the inner automorphism, restricted to suitable
1-neighborhoods, is smooth. This approach has the disadvantage that we do not really
know which maps are contained in the smooth normalizer. So in the following, we will
define a subset of GU and show that it is a group contained in the smooth normalizer of
CH (U, G)*.

Further, we show that this bigger group contains certain groups of rapidly decreasing
mappings constructed in [BCRS&I] as open subgroups.

6.2.2.1. A group of mappings. We define a set of mappings.

DEFINITION 6.2.6. Let G be a locally convex Lie group, X a finite-dimensional vector
space, U C X a nonempty open subset, W C RY nonempty and & € N. Then for any
centered chart (¢,V,) of G, compact set K C U and h € C°(U,R) with h = 1y on a
neighborhood of K we define M ((¢, V), K, h) as the set

{yeC"U,G):v(U\K) CVyand (1y — h) - (¢o7)link € Cy(U \ K,L(G))*}.
Further we define

CyUGe= | M4, Vy), K h).
(¢7V¢)7K7h

In the following, we show that C{ﬁv(U, Q)2 is a subgroup of GY. In order to do this,

we provide some technical tools. First, we show that we can use a cutoff technique to
shrink the domain of a decreasing function.

LEMMA 6.2.7. Let X be a finite-dimensional space, U C X an open nonempty subset, Y
a locally convex space and W C RY nonempty. Let k € N and v € CK(U,Y).

(a) Suppose that~y € Ciy,(U,Y)*. Let A C U be a closed nonempty set such that y[gna =0
and V C U an open neighborhood of A. Then |y € Ciy,(V,Y)*.

(b) Let K1 € Ky C U be closed sets such that v|p\x, € C{ﬁv(U \ K1,Y)* and h €
BC> (U,R) such that h =1 on a neighborhood of Ko. Then

(lv = h) Yok, € C(U\ K2, V)"
Proof. (a) It is obvious that 7|y € Ci,(V,Y). Let f € W and ¢ € N with ¢ < k. For
e > 0and p € N(Y) there exists a compact set K C U such that |||\ k|lp,se < €.
The set K := K N A is compact and contained in V. Further ||’}/|V\I“€||p$f’g < ¢ since
DO a =0.
(b) Let V 2 K be open in U such that h|y = 1. Then by [Corollary 3.4.15

(1u = h) - Alv\k, € Cop(U\ K1,Y)°.
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Further (1y — h) - |\ (\v) = 0. Since U \ K3 is an open neighborhood of U \ V, an
application of (a) finishes the proof. m

Now we examine C{iv(U ,G)e,.. We show that for a mapping in this set, we can change
the chart of GG, shrink the 1-neighborhood and enlarge the compact set.

LEMMA 6.2.8. Let X be a finite-dimensional vector space, U C X an open nonempty
subset, G a locally convex Lie group, W C RY with 1y € W and k € N. Further, let
v € M((¢,Vy), K, h).

(a) For each 1-neighborhood V. C Vy, there exists a compact set Ky C U such that
for each map hy € C(U,R) with hy = 1 on a neighborhood of Ky, we have v €
M((¢lv,V), Kv, hy).

(b) Let (v, Vi) be a centered chart. Then there exists a compact set Ky C U such that
v € M((¥,Vy), Ky, hy) for each hy € C°(U,R) with hy = 1 on a neighborhood
Of qu.

(¢c) Let n € M((¢,V¢),I?,i~1). There exists a compact set L such that for each g €
C*(U,R) with g =1 on a neighborhood of L, we have v,n € M((¢,Vy), L, g).

Proof. (a) Since (1y — h) - (¢ o 7)|\k € Ciy(U \ K,L(G))* and 1y € W, there exists a
compact set K C U such that

(v = k) - (o N((U\K)\ K) C $(V).
We define the compact set Ky := K Usupp(h) and choose hy € C2°(U,R) with hy = 1

on a neighborhood of Ky . By and the fact that h =0 on U \ Ky, we see
that

(v = hv) - (o Nk, = v = hv)(lv = h) - (9 oY)k, € Cp(U \ Kv,L(G))*.
Further we calculate using again that h =0 on U \ Ky:
(@eN(U\Ky)=1v—h)-(¢e7)((U\K)\ Ky) C (V).

(b) There exists an open 1-neighborhood V' C Vi NV, such that ¢(V) is star-shaped
with center 0. We know from (a) that there exist a compact set K C U and a map
h € C*(U,[0,1]) with h =1 on a neighborhood of K such that

v € M((¢lv,V), K h).
We conclude from [Proposition 3.4.23| that
(og ) o ((ly—h)- (6o €Cy(U\ K, L(G))".
Let hy € C°(U,R) be such that hy = 1 on a neighborhood of Ky, where Ky :=
K Usupp(h). We conclude from that
(ly =hy) - (Wo o) o (lu = h) - (doNlunk, €Cy(U\ Ky, L(G))*.

Since 1y — h = 1y on U \ Ky, the proof is finished.

(c) We set L := supp(h) Usupp(h). Then
VWUNL) SH(U\K) C Vs,
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and for g € C°(U,R) with g = 1 on a neighborhood of L, |[Lemma 6.2.7 implies that
(v =9) - (@oNlne =1 —g) - (v —h) - (6ol € Cy(U \ L, L(G))*.
Since the argument for 7 is the same, we are done. m
Now we are ready to show that C,(U, G)2, is a group.

LEMMA 6.2.9. Let X be a finite-dimensional vector space, U C X an open nonempty
subset, G a locally convex Lie group, W C RY with 1y € W and k € N. Then the set
Chy (U, G2y is a subgroup of GY.

ex

Proof. Let (¢, V) be a centered chart for G and V' C Vy an open neighborhood of 1 such
that ma(V x I(V)) €V, and ¢(V) is star-shaped. We define the map

Hg :VxV = Vy:(2,y) = ma(x, Ig(y)).

Let v,n € C&,(U,G)2,. Using [Lemma 6.2.8 we find a compact set K C U and a map

h e C*(U,[0,1]) with h = 1y on K such that
Y,N € M((¢|Vav)aK7h)

We define Hy := ¢oHgo (o=t x <P~ Y|y xy and want to show that there exists a compact
set K and h € C°(U,R) with h = 1 on a neighborhood of K such that Hg o (v,7) €
M((¢,Vy), K, h) It is obvious that

(Hg o (v,m)(U\ K) Cma(V x Ig(V)) C V.
Since we know from [Lemma 3.4.16] that
(ly =h) (o, ¢on) = ((ly —h)- (o), (ly —h) - ($on)) € Cy(U\ K, L(G) x L(G))*,
we conclude using [Proposition 3.4.23| that
Hyo((ly —h)- (9o, ¢om)) € Cly(U\ K, L(G))*.
Further, K := K Usupp(h) is a compact set, so by
(ly —h) - Hy o (ly —h) - (6 07,6 0m) € Cy(U\ K. L(G))"

for any heC®(U,R) withh=1o0na neighborhood of K. Since (1y —h)=0on U \ K,
(v = h) - (¢o Hg o (v,m)l i & € Cfy(U\ K, L(G))* and hence

Hgo (7) 77) € M((¢7V¢)akaﬁ) u

6.2.2.2. Inclusion in the smooth normalizer. We show that C%,(U,G)2, is contained in
the smooth normalizer of C,(U, G)*. To this end, we show that each v € C¥, (U, G)2,
can be written as a product of a compactly supported C*-map and a C*-map that takes
values in a chosen chart domain. Next, we show that these two classes of mappings are
contained in the smooth normalizer of C}y, (U, G)*.

We start with the following technical lemma about extending decreasing functions.

LEMMA 6.2.10. Let X be a finite-dimensional space, U C X an open monempty subset,
A C U a closed subset, Y a locally convex space, W C RY with 1y € W, k € N and
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v € CE(U\ A, Y)*. Then the map
v(z) ifzeU\A,

Y:U—=Y :z—
0 otherwise

is in Ck,(U,Y)*.

Proof. Obviously, the assertion holds on U \ A and A°, since ¥ and its derivatives vanish
on A°. We show that 7 is C¥ on A and 7 and its derivatives also vanish there. Since
this is true iff for each p € N(Y), the map m, 07 is C*¥ on JA and it and its derivatives
vanish there, and the identity m, oy = 7?,;\0/7 holds, we may assume that Y is normable.

Since 17 € W, for each £ € N with £ < k, the map D)+ is continuous and hence
DWWy € Y, (U, LY(X,Y))".

Using [Lemma 3.2.1, it remains to show that 7 is C* with D5 = D@~ for all £ € N

with ¢ < k. We show this by induction on £.

¢ =1: Let x € A and h € X. If there exists § > 0 such that x +]—4,0lh C A or
z +1[0,6]h C A, then Dy75(z) = 0 = Dy(z)h.

Otherwise, there exists a null sequence (¢, )nen in |—00,0[ or ]0, oo[ such that for each
n €N, xz+t,h € U\ A. Replacing h by —h if necessary, we may assume that all ¢,, are
positive. Since 1y € W, bvfy is continuous and bvfy(:c) =0, given € > 0 we find § > 0 such
that for all s € |—4, J],

157 + 5h)op < <.
We find an n € N such that ¢,, € |-, d[. Then we define
=inf{r > 0:|7,t,] CU\ A} > 0.
We calculate for 7 € ¢, ,[:
Hﬁ(w—i—tnh) y¥(x + Th) H H ¥(x + tyh) — (x-i-Th)H

tn — T

ln

/0 Dy(x + (st + (1 — s)7)h) - (t, — T)hds|| < g]||h]|.

tn -7
But ¥(x 4+ 7h) — 0 as 7 — t, and hence

’ﬁ(x +tph) —F(x)

tn

N

| <.

Since ¢ was arbitrary, we conclude that D,5(z) = 0 = Dv(z)h.
é — ¢+41: Using the inductive hypothesis, we conclude that D'y is FC*, and D(Z)DW =
(Z)D'y Hence 7 is FC*1, so by DD = D(“‘l)v n
PrROPOSITION 6.2.11. Let X be a finite-dimensional space, U C X an open nonempty
subset, G a locally conver Lie group, W C RY with 1y € W, k € N, (9,Vs) a centered
chart of G and v € C},(U,G)2,. Then there exist maps n € M((¢,Vy),0,0r) and x €

CF(U,G) such that
T=nX-
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Proof. Using [Lemma 6.2.8] we find a compact set K and h € C°(U,[0,1]) such that
v € M((¢,Vy), K, h). Using [Lemma 6.2.10| we see that

—~—

ni=¢""o(ly—h) (do7)|rx € M((¢,Vy),0,00),
and it is obvious that 1|y\supp(h) = Y|v\supp(n)- Hence
x:=n""-yeCU,Q),
and obviously y=17"-x. n

We now show that the weighted maps that take values in a suitable chart domain are
contained in the smooth normalizer.

LEMMA 6.2.12. Let X be a finite-dimensional space, U C X an open monempty subset,
G a locally convex Lie group, W C RY with 1y € W, k € N and (¢, Vy) a centered chart
of G. Further let Wy C V,, be an open 1-neighborhood such that

Wy - Wy - W, CV
and ¢(Wy) is star-shaped with center 0. Then for each n € M((¢, Wy),0,01), the map
Cop(U, 6(Wy))* = Cop(U, &(Vy))® sy s po (n- (6~ o) - ")

is smooth.

Proof. As a consequence of [Proposition 3.4.23] and [Lemma 3.4.16] the map
Cyp (U, 6(W))* x Coyy (U, 6(Wy))* x Cyp(U, 9(Wy))* = Cop (U, 6(V))*,
(71,72,78) = @0 (07 o) - (67 o) - (97 os)7h),

is smooth. Hence we easily deduce the desired assertion. m

Normalization with compactly supported mappings. While the treatment of C*-maps with
values in a suitable chart domain was straightforward, we need to develop other tools to
deal with compactly supported mappings. The main problem is that a compactly sup-
ported map may not take values in any chart domain. To get around this problem, we need
more technical machinery. As a motivation for the following, let y € C¥(U, @) and (¢, Vy)
be a centered chart of G. Using that x(U) is compact, we can find a symmetrical neigh-
borhood O of x(U) and an open 1-neighborhood Wy C V; such that O - Wy - O~ C V.
Then we can define the “normalization map in charts”

N:Oxp(Wy) = 6(Vy) : (9,9) = dlg- & (y) - 97).
We can calculate that for v € ¢(Wy)Y, we have the identity
¢po(x-v-x"") =No(xxidgw,)) o (idv, 7).
In the following two lemmas, we will examine the properties of maps of the form NV o

(x x idgew, ¢)) and whether they induce a kind of superposition operator for decreasing
weighted functions.

LEMMA 6.2.13. Let X, Y and Z be locally convex spaces, U C X,V CY and W C Z
open nonempty subsets, M a locally convex manifold and k € N. Let T' € C°(M x V, W)
and n € C¥(U, M). Then the map

E=Tonxidy):UxV - W
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has the following properties:
(a) The second partial derivative of E is
do= = (my 0 Tol') o (n X idy xy)
and if k > 1, the first partial derivative of = is
d1Z = (my 0 TI) o (T x idy) 0 S,
where mo denotes the projection W x Z — Z on the second component, and S :
UxVxX—->UxXxXxV:(x,yh)— (x,h,y) denotes the swap map.
(b) For all x € U, the partial map Z(x,-) : V. — W is smooth, and for all £ € N the map
dPZ U xV x Yt W isch.
(c) Assume that X has finite dimension. Then for
A1 UXxV = L(X,Z): (x,y) = (h— diE(z,y; h))
(which is only defined if k > 1) and
Ay :UxVXLX)Y)=L(X,Z): (2,y,T) = (h = d2Z(x,y; T - h)),
all partial maps Ai(x,-) and As(x,-) are smooth and all partial derivatives dgé)Al
and dég)Ag are C*~1, respectively C*.

Proof. (a) We calculate for x € U, y € V and h € Y that

4 t—0 t t—0 t

= (71-2 © TQF) (77(93)7 Y, h)
This shows the desired identity for do=. If £ > 0, we find using the chain rule that
dZoP =m30TE0P =m0TIo(Ty xidTV),

where P : U X X xV xY = U xV x X xY permutes the middle arguments. Since
d1E((x,y); he) = dE((x, y); (hs, 0)), we get the assertion for dq E.

(b) It is obvious that the partial maps are smooth. We prove the second assertion by
induction on 4.

¢ = 0: This is obvious.

¢ — ¢+ 1: In (a) we proved that doZ is of the same form as E. By the inductive
hypothesis,

d(E) UxV xY x (Y xY)! oW
is a C*-map. But
dS VB, yi b ha, - heyt) = dy) (d22) (3, has (5, 0), ., (hega, 0)),

S0 d;“l)E is CF.

(c) The partial maps A;(x,-) and As(x, ) are smooth and the maps dée)Al and d(QE)Ag
are C*~! respective C* iff for each h € X, the maps A;(z,-) - h and As(x,-) - h have the
corresponding properties. By (a),

Ai(z,y) - h = d1E(z,y; h) = (m2 0 T1T) o (T x idy ) o S(x,y, h)
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and
Ag(@,y,T) - h=dsZ(x,y; T - h) = (w2 0 Tol') o (n x idy vy ) (@,y, T - h)
= (mg0Tol'0 S1) o (n x evy, X idy ) o Sa(z,y,T).
Here S; and S denote the swap maps
MxYxV->MxVxY, UxVxLX)Y)—-UxLX,)Y)xV
respectively. Since S, S7 and Sy are restrictions of continuous linear maps, (b) applies to
both Ai(z,-)-h and As(x,-)-h. =
LEMMA 6.2.14. Let X be a finite-dimensional space, U C X an open monempty subset,
Y and Z locally convez spaces, M a locally convex manifold, V CY an open zero neigh-
borhood that is star-shaped with center 0, W C RY with 1y € W and k € N. Further, let
IeC®(M xV,Z), and 0 € C¥(U, M) such that the map
E=To@xidy):UxV —=Z
satisfies
e Z(U x {0}) = {0}.
e There exists a compact set K C U such that Z2((U \ K) x V) = {0}.
Then for any ~ € Cin, (U, V)®,

Eo (idu,7) € Oy (U, 2)°, (t)
and the map
2. CE(U V) = C (U, 2) -y = Eo (idy, )
is smooth.

Proof. We first prove the continuity of =, by induction on k:
k = 0: Let v, € Ch,(U,V)*® such that the line segment {ty + (1 —t)n : t € [0,1]}
C Ck,(U,V)*. We easily prove using |[Lemma 3.4.17| that the set
K = {ty(z)+ (1 —t)n(z): t € [0,1], z € U}

is relatively compact in V. Since doZ is continuous by [Lemma 6.2.13(b) and satisfies
daZ2(U x V x {0}) = {0}, we conclude using the Wallace Lemma that for each p € N (2),

there exists ¢ € N (Y') such that
dyZ(K x K x B,(0,1)) C B,(0,1).
This relation implies that
(VteK,ye K,heY) ld2Z(z, y; h)|lp < ||Bllg-

For each x € U, we calculate

1
E(z,7(x)) — E(z,n(x)) = /0 d2Z(z, ty(x) + (1 = t)n(x); y(x) — n(x)) dt.
Hence for each f € W, we have
[f(@)E(@,v(x)) — E(@,n(@)llp < [f(@)] [|7(z) = n(2)llq-
Taking n = 0, this estimate implies (f). Further, since we proved in that

Ch, (U, V)* is open, v has a convex neighborhood in Cj,(U, V)*; hence the estimate also
implies the continuity of =, in 7.
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k—k+1: Foreachx € U, he X and v € C{fjl(U, V)*, we calculate
d(Eo (idy,7))(z; h) = d=(x,y(z); h, Dy(x) - h)
= diZ(z,v(2); h) + d2E(z,v(2); Dy(x) - h).
Recall the maps A; and As defined in [Lemma 6.2.13(6.2.13). We get the identity
D(Eo (idy,v))(z) = (A1 o (idy, 7)) (z) + (A2 o (idy, v, D)) (z).
We prove that A; and A, satisfy the same properties as = does: Forz e U,y € V, h € X,
E(z + th,0) — E(z,0)

Aq(z,0) - h = d1E(x,0; h) = lim =0,
t—0 t
whence A;(x,0) =0. Let 2 € U \ K. Then
=2 th,y) — 2
Ar(2) - h = dyZ(a, g h) = lim SEF Y ZE@Y)

t—0 t
since U \ K is open, hence Ay (z,y) = 0.
As to Ay, forx € U,y € V and h € X we calculate
As(z,y,0) - h = doZ(z,y;0- h) =0,
whence Az(z,y,0) =0. Let x € U\ K and T € L(X,Y"). Then

= T-h)—E
_ fipg 2@y TR —Ezy)
t—0 t

A2(xay7T) -h = d2E<x7y7T : h’)

hence As(z,y,T) =0.
So we can apply the inductive hypothesis to A; and A, and conclude that

Ay o (idx,7), Az o (idx, 7, Dv) € Cpy (U, L(X, 2))*
and the maps Ciyf (U, V)* — Chi, (U, L(X, Z))*,
v+ Aro(idx,y) and v~ Azo (idx,v, Dv),

are continuous. In view of [Proposition 3.4.11] the continuity of =, is established.

We pass on to prove the smoothness of =,. To do this, we have to examine dy=. By
a), do= =m0 Tol' o (0 x idy xy ), and we easily see that
d2Z2(U x {0} x {0}) = doE((U\ K) x V xY) = {0}.
Hence by the results already established, the map
(doZ)s : Chy(U,V x Y)® = Ciy(U, Z2)* : (7) = daZ o (idy, )

is defined and continuous. Now let v € Ci, (U, V)*® and v, € C},(U,Y)®. Since C¥, (U, V)*
is open, there exists an 7 > 0 such that {y + sy1 : s € Bg(0,r)} C Ck,(U,V)*. We
calculate for z € U and t € Bg(0,7) \ {0} (using [Lemma 3.4.16| implicitly) that

v+ tm)(@) - E()(@) _ E@,n (@) +in(x) - E(z,1(2))

t t

- / = (7 (x) + sty ()); 11 (x)) ds = / (d2Z). (7 + stys, ) () ds.
0 0




6.2. Weighted maps into locally convex Lie groups 89

Hence by [Lemma 3.4.3| and [Proposition A.1.8] =, is C! with d=.(v;71) = (d2Z)« (7, 71)-
Using an easy induction argument we conclude from this identity that =, is C* for each
¢ € N and hence smooth. m

Now we are ready to deal with the inner automorphism induced by a compactly
supported map.

LEMMA 6.2.15. Let X be a finite-dimensional space, U C X an open nonempty subset,
G a locally convex Lie group, W C RY with 1y € W, k € N and (¢, Vy) a centered chart
for G. Let x € CF(U,G). Then there exists an open 1-neighborhood Wg C Vi such that
the map

Oy (U, (Wy))* = Cp(UL(G))* v = do (x - (97 o) - x ) (f)
is defined and smooth.

Proof. Since x(U) is compact, we can find an open 1-neighborhood W, C V4 and an
open symmetrical neighborhood O of x(U) such that

O'W¢'071QV¢;
we may assume that ¢(WWy) is star-shaped with center 0. We define the smooth map
N:Ox¢(Wy) = L(G): (g,y) = dlg- ¢~ (y)-97") — v
Then it is easy to see that
No (X X id¢(W¢)) U x ¢(W¢) — L(G)
satisfies the assumptions of [Lemma 6.2.14] and that for v € C}, (U, ¢(Wy))®,
(N o (x x idyqw,))) o (idu,7) = do (x- (6™ o) - x71) — 7.
Hence the map
Cov (U, (Wy))® = Cyp(U,L(G))* 1y = po(x- (¢ o) X)) =
is smooth. Since the vector space addition is smooth, is defined and smooth. =

Conclusion and the Lie group structure. Finally, we put everything together and show
that C}, (U, G)2, is contained in the smooth normalizer of C}y, (U, G)*®. As mentioned above,
this allows the construction of a Lie group structure on Cj, (U, G)2,.

LEMMA 6.2.16. Let X be a finite-dimensional space, U C X an open monempty subset,
G a locally convex Lie group, W C RY with 1y € W, k € N and (¢, Vy) a centered chart
for G. Let 0 € C},(U, G)2,. Then there exists an open 1-neighborhood Wy C Vi, such that
the map

O (U, o(Wy))* — Cp(U, ¢(Ve))® :y s g0 (8- (¢ o) -677) (t)
is defined and smooth.

Proof. Let f/; C V4 be an open 1-neighborhood such that

~ ~ ~-1
Vo -Vo- Vo CVo

and qb(E) is star-shaped with center 0. According to |Pr0position 6.2.11| there exist n €
M((¢,Vy),0,0r) and x € C¥(U,G) such that § = n-x. By [Lemma 6.2.15| there exists an
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open 1-neighborhood Wy C V4 such that

Cy(U.6(Wy))* = Cy(U.6(Ve))" 7 = do (x - (97 0m) - X7
is smooth, and by [Lemma 6.2.12| the map

Cw(U,0(Vy))® = Co(U,(Ve))® :y = do(n- (¢ o) -n )
is also smooth. Composing these two maps, we obtain the assertion. m

THEOREM 6.2.17. Let X be a finite-dimensional space, U C X an open monempty
subset, G a locally convex Lie group, W C RY with 1y € W and k € N. Then
Chy (U, G)2 can be made into a Lie group that contains Cp,(U,G)® as an open normal

ex

subgroup.
Proof. We showed in [Definition 6.2.5|that Cji,(U, G)*® can be turned into a Lie group such
that there exists a centered chart (¢, V;) for which
Cw(U,6(Vp)* = Cy(U,G)* sy 1> 971 oy

is an embedding and its image generates C{?V(U, G)*. Further, we proved in Lem-
mas and [6.2.16| that C}, (U, G)2, is a subgroup of GY and for each 0 € C}, (U, G)2,
there exists an open 1-neighborhood Wy C V4 such that the conjugation operation

Cop (U, 6(Wy))* = Cp(U, (V)" :y > po (8- (97 0r) - 671
is smooth. Hence [Lemma B.2.5| gives the assertion. m

6.2.2.3. Comparison with groups of rapidly decreasing mappings. In the book [BCRS81],
Section 4.2.1, pages 111-117], for weights that satisfy conditions described below in
certain I'-rapidly decreasing functions with values in locally convex spaces
are defined and used to construct I'-rapidly decreasing mappings that take values in Lie
groups. We compare these function spaces with our weighted decreasing functions and
will see that they coincide. Further, we will show that the I'-rapidly decreasing mappings
are open subgroups of a certain C¥, (U, G)2,.

W-rapidly decreasing functions

DEFINITION 6.2.18 (BCR-weights). Let X be a finite-dimensional vector space and W C
[1,00]% such that

(W1) for all f,g € W, the sets f~1(c0) and g1 (c0) =: My, coincide,
(W2) W is upwards directed and contains a smallest element f,i, defined by

Fainl@) = {; L
(W3) for each fi € W there exists fo € W such that
(Ve > 0)(Fn e N) [[z|| = nor fi(z) = n= fi(z) < efa(z).
Furthermore each f € W has to be continuous on the complement of M.

DEFINITION 6.2.19 (W-rapidly decreasing functions). Let W be a set of weights as in
[Definition 6.2.18) U C R™ open and nonempty and Y a locally convex space. A smooth
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function v : U — Y is called W-rapidly decreasing if for each f € W and f € N™ we
have 0°v|yna., = 0, and the function

[Py U—=Y
is continuous and bounded, where co - 0 = 0. The set
S(U,Y; W) :={y e C®(U,Y) : v is W-rapidly decreasing}
endowed with the seminorms
75 = sup{g(f - 0°1(x)) : w € U, 5| < k}
(where g e N(Y), k € N and f € W) becomes a locally convex space.

Comparison of S(U,Y; W) and Cy5(U,Y). We now show that these function spaces co-
incide as topological vector spaces. To this end, we need the following technical lemma.

LEMMA 6.2.20. Let W be a set of weights as in Definition [6.2.18), U C R™ open and
nonempty, F a locally convex space, v : U — F a smooth function and 8 € N™. Suppose
that 0°v|una., =0 and that for each f € W the function
f-8%y:U—F

is bounded. Then for each f € W, the function f - 0%~ is continuous.
Proof. Let f € Wand x € U. If 2 € M. NU, f- 0%y is continuous on a suitable
neighborhood of z since f is so.

Otherwise, 3%y(x) = 0 because 97y is continuous. If there exists V € U(z) such that

f is bounded on V' \ M., the map f - 9%y is continuous on V because for y € V' \ M,
and ¢ € N(F),

1£ )07 (y) — f(@)8v(@)llg = 1 F )%l < 1 vaare 87 W) g,

and this estimate is valid for y € M.
Otherwise, we choose g € W such that (W3) holds. Let € > 0. There exists an n € N

such that
5

(Wel) fly) 2n=fly) < —z—9ly
||’Y||q,g+1

For g € N(F) there exists V € U(x) such that for y € V,

1877 (W)llq < e/n.
Let y € V. If f(y) > n, we calculate

1F WP W)la = FOPvW)]lg < ——

—————a)[|0°v(y)|l4 < e
Iylliy + 1

Otherwise
1f )"y (W)llg < 0P y(W)llg < e

So the assertion holds in all cases. =

LEMMA 6.2.21. Let W be a set of weights as in Definition [6.2.18, U C R™ open and
nonempty and F a locally convex space. Then Cyy(U,Y) = S(U,Y; W) as a topological
vector space.
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Proof. We first prove that C;3(U,Y) = S(U,Y; W) as sets. To this end, let v € Cy5(U, Y),
f €W and 8 € N™. We set k := |3|. We know that for p € N(Y'), the map D(k)(ﬂ'p 07)
vanishes on M, and

f-DW¥(r,07): U — LFR™Y,)

is bounded. Since the evaluation L*¥(R™,Y,) — Y, at a fixed point is continuous linear,
the map f-9°(mp07) = mpo(f-0%7) : U — Y, is also bounded. Hence f 97y is bounded,
so an application of gives v € S(U,Y; W).

On the other hand, let v € S(U,Y; W) and k € N. For each p € N(Y), we get, by
[identity (A.3.6.1)L

D()ﬂ' o) Z Se - 0%(mp0y) = Z Se - (mp 0 0%y).

aeN™ aeN™
|a|=k |a|=k
Hence for f € W,
[Vllp,re < Iy I;,f Z [Sallop < oo (f)
aeN™
lo|=k

So v € Cyp(U,Y).

We see from () that for each p € N(Y), f € W and k € N the seminorm || - ||, 1k
is continuous on S(U,Y;W). Since the seminorms || - ||’; ; are obviously continuous on
Cv(U,Y), the spaces coincide as topological vector spaces. m

REMARK 6.2.22. Let W be a set of weights as in |[Definition 6.2.18] Then 1y € W &
= (). But obviously C,(U,Y) = C{fw{lu}(U, Y) and C},(U,Y)* CWu{ly}(U’ Y)*
as topological vector spaces.

Rapidly decreasing mappings. In [BCR81l Section 4.2.1, p. 117-118], the set of I'-rapidly
decreasing mappings is defined. We will show that these mappings form an open subgroup
of Ciy(R™, G)e,.

DEFINITION 6.2.23 (W-rapidly decreasing mappings). Let m € N, G a locally convex Lie
group and W a set of weights as in [Definition 6.2.18] We define S(R™, G; W) as the set
of smooth functions v : R™ — G such that

o y(z) =1 for each x € My, and y(z) — 1 if ||z|| = oo.

e For any centered chart (¢,V) of G and each open 1-neighborhood V with V' C v,
poly-1vy € S(YHV),L(G) W).

In the next lemmas, we provide some tools needed for the further discussion. First,
we show that for weights as in [Definition 6.2.18] the product of a weighted function with
a suitable cutoff function is a weighted decreasing function. We use this result to prove a
superposition lemma for the spaces C¥,(U,Y).

LEMMA 6.2.24. Let K be a compact subset of the finite-dimensional vector space X, Y
a locally convex space, k € N, W a set of weights as in Definition |6.2.18), ~ € C{fv(U, Y)
(where U := X\ K) and h € C3°(X,R) such that h =1 on a neighborhood V' of K. Then

(L=h)v -~ €U, Y)".
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Proof. We prove this by induction on k.

k=0: Let feW,peN(Y) and € > 0. We use (W3) to see that there exists n € N

such that
€

_ ) << —m8 .
||’Y|U\Bn(o)‘|p,f»0 1+ 1 — Al

Further, the set

A= {x e X:|(1-h)z)> M”MOH} N B, (0)

is compact and contained in U since (1 — h) = 0 on V. Using these two estimates, we
easily calculate that |[(1 —h) - v allp,r0 < €.
k — k+1: We have

D((1—=h)lv -v) = (L =h)[y - Dy = Dhly - 7.

By the inductive hypothesis, (1 — h)|y - Dy € Ch,(U,L(X,Y))*, and since Dh|y €
C*(U,L(X,R)), we use |Corollary 3.4.15| and |Proposition 3.4.11|to finish the proof. =

LEMMA 6.2.25. Let m € N, k € N, W a set of weights as in Definition Y and Z
locally convex spaces, 2 CY open and balanced, ¢ : Q — Z a smooth map with $(0) =0
and U C R™ open and nonempty such that R™ \ U is compact and My, C U. Further,
let v € CX,(U,Y) be such that v(U) C Q. Then there exists an open set V. C U such that
R™\ V is compact, Mo CV and ¢ ov|v € C},(V, Z).

Proof. By our assumptions, there exists h € C°(R™,[0,1]) with A = 1 on a neigh-

borhood of R™ \ U and h = 0 on a neighborhood of M. Using [Lemma 6.2.24] and

[Proposition 3.4.23| we see that
9o ((1-h)-v) €Cy(U,2)",

so ¢poqly € CE,(V,Z), where V := R™ \ supp(h). Further, R™ \ V is compact and
My, €V, so the proof is finished. =

To complete our preparations, we prove a kind of extension lemma for weighted func-
tions.

LEMMA 6.2.26. Letm € N, k € N, W a set of weights as in Deﬁmtion Y a locally
convezx space, V. C U open and nonempty subsets of R™ such that R™\ 'V is compact and
My, C V. Further, let v € C¥(U,Y) be such that v|y € Ck,(V,Y). Then for any open set
W with W C U, the map ~|w is in Ck,(W,Y).

Proof. Obviously W\ V C W N (R™\ V), hence W \ V is compact and does not meet
M. So for each f € W and ¢ € N with ¢ < k, the map f - D is bounded on W \ V
since f is continuous on this set. But f- D)~ is bounded on V by our assumption. Hence
f - DWW+ is bounded on all of W and the proof is finished. m

Now we are able to prove the main results.

PROPOSITION 6.2.27. Let m € N, G a locally convex Lie group and W a set of weights

as in Definition [6.2.18|
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(a) S(R™, G;W) is a group.
(b) C5(R™.G)* € S(R™, G:W).
(c) SR™,G;W) C CR(R™, G)e,

Proof. (a) Let 71,72 € S(R™,G;W). We set v := 71 - 75 *. Then for x € M., we have
v(z) = 71(1E) 75 1(x) = 1, and it is easy to see that y(x) — 1 if ||z| — oco.

Let (¢, V) be a centered chart of G and V' C V an open 1- nelghborhood with V C V.
There exist centered charts (¢1, V1) and (g2, V2) such that ¢; 0y, € S(vy; L V), L(G); W),
where i € {1,2}; we may assume that V; - V2_1 CV, Vo, CV and ¢1(V1) and ¢2(Va) are
balanced. We define W := ;¢4 5 7, (V;). Then by Lemmas |3.4.16| and |6.2.21|7

(¢1 0mlw, d2 0 elw) € Cp(W, ¢1(V1) X ¢2(V2)).
Further R™ \ W is compact, and since there exist closed A; € Ug(1) with A; C V;

(i € {1,2}), we have Mo € (Nicy.017% (Ai) C W. We now apply [Lemma 6.2.25 to

(¢1 0 71lw, @2 0 y2|w) and the map

pomgo (¢! x ¢3') 1 ¢1(V1) X ¢2(V2) — L(G)
(where mg denotes the map G x G — G : (g, h) — g-h~!) and find an open set W' C W
such that Mo, C W', R™\ W’ is compact and ¢ o y|lw+ € Cy5(W', L(G)). Applying
Lemma 6.2.26{ with the open sets W/ C v~1(V) and v~1(V) C v~1(V), we obtain

¢ o1y € CHOTHV),L(G)) = S(vH(V), L(G); W).

(b) Since we proved that S(R™, G; W) is a group, we just have to show that it contains
a generating set of Cy5(R™,G)*. We know from that CyH(R™,G)® is
generated by ¢t o Cy5(R™, W)*, where (¢, /V[v/) is a centered chart of G and W C ¢(W)
is an open convex zero neighborhood. Let v € Cyy(R™,W)*®. Then ~|a;.. = 0, hence
¢~ Loy|p., = 1. Further, since 1gm € W, y(z) — 0if ||z|| — oo, and thus (¢~ Lov)(z) — 1
if ||| — co. Now let (16, V) be a centered chart of G and V C V an open 1-neighborhood
with V' C V. There exists an open balanced set  C W such that ¢ Q) C V. We set
U :=~71(Q). Then v|y € C55(U,L(G)), R™\ U is compact, and M, C v~ 1({0}) C U.
Hence we can apply [Lemma 6.2.25 to |y and v o ¢~ !|q to see that ¢ o ¢~ o fy\U €
Cv(U,L(G)) Applying [Lemma 6.2.26| with the open sets U C (¢ o ¢~ ' o)~ L(V) and
(Popto) L (V) C (¥od tor) I(V), we obtain

Y09~ 0N (gog10m)-1(v) € Cy((0d ™ 07) TH(V), L(G)) = S((og™ 'oy) "H(V), L(G); W).

(c) Let v € S(R™, Gy W), (¢, V) be a centered chart of G and V an open 1-neighbor-
hood with V' C V. Then K := R™ \ v~}(V) is closed and bounded, hence compact,
and

poylrm\x € S(R™\ K,L(G); W) = Cyy(R™ \ K,L(GQ));
the last identity is by Let h € C°(R™, R) such that h =1 on a neighbor-

hood of K. Then by
(1gm —h) - ¢ oy
Hence v € C3(R™,G)2,. =

prk € C(R™\ K, L(G))*.
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We characterize when Cpy(R™, G)?2, consists entirely of W-rapidly decreasing map-
pings.

LEMMA 6.2.28. Let m € N, G a locally convex Lie group and W a set of weights as in
Definition [6.2.18, Then

CR(R™, Q)% = S(R™, G5 W) & My = 0.

ex

Proof. Suppose that My, = 0. Let v € C3o(R™, G)?,., (¢,‘7) a centered chart of G and
V a 1-neighborhood with V' C V. By there exist a compact set K C R™
and h € C°(R™ R) with h = 1 on a neighborhood of K such that y(R™ \ K) C V
and (1 —h)- (¢ oy)|lrm\x € Cyp(R™ \ K,L(G))*®. Since 1gm € W and K and supp(h)
are compact, (¢ o y)(xz) — 0 if ||z|| — oo, hence y(z) — 1 if ||z|| — oo. Further 4 o

YIrRm\supp(h) € Cyy(R™ \ supp(h), L(G)), so we apply [Lemma 6.2.26| with the open sets
R™\supp(h) €y~ (V) and v~ (V) €y~ (V) and get o], -1(vy € G5 (v~ (V), L(G)).
Hence v € S(R™, G; W), so in view of [Proposition 6.2.27] the implication holds.

Now let My # 0. By definition, C°(R™,G) C Cy5(R™, G)2y.,

Cyu(R™, G2, such that v # 1 on M. Then v € S(R™,G;W). =

so there exists a v €

REMARK 6.2.29. In the book [BCR&I], the groups S(R™, G; W) are only defined if G is
a so-called LE-Lie group. Since we do not need this concept, we do not discuss it further.
In [Proposition 6.2.27| we proved that S(R™,G; W) is an open subgroup of Cy5(R™, G)2,
and hence a Lie group. Further, for a set W of weights as in Definition [6.2.18] obviously
Cov(R™ L(G))* = Cyy(R™, L(G)), whence the results derived by [BCR8I] concerning the
Lie group structure of S(R™, G; W) are special cases of our more general construction.
It should be noted that the proof of [BCR81 Lemma 4.2.1.9] (whose assertion resem-
bles [Proposition 3.4.23) is not really complete: The boundedness of v - 3%(g o f), where
|8| > 0, is hardly discussed. In the finite-dimensional case, compactness arguments sim-
ilar to the one in and the Faa di Bruno formula should save the day, but

the infinite-dimensional case requires more work.

A. Differential calculus

In this chapter, we present the tools of Michal-Bastiani and Fréchet differential calculus
used in this work. For proofs, we refer the reader to [Mil84], [Ham82], or [Mic80]. Further,
we state some facts about ordinary differential equations.

In the following, X, Y and Z denote locally convex topological vector spaces over the

same field K € {R,C}.
A.1. Differential calculus of maps between locally convex spaces
A.1.1. Curves and integrals

DEFINITION A.1.1 (Curves). A continuous map 7 : I — X that is defined on a proper
interval I C R is called a C%curve. A C-curve v : I — X is called a C!'-curve if the
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limit
7(1) (8) ‘— lim ’7(8 + t) — ’7(8)
t—0 t

exists for all s € I and the map v(!) : I — X is a C%-curve.

Inductively, for k € N amap v : I — X is called a C*-curve if it is a C'-curve and the
map 71 is a CF~1-curve. We then define v(*¥) := (y(1))(==1),

If v is a C*-curve for each k € N, we call v a C*°- or smooth curve.

DEFINITION A.1.2 (Weak integral). Let v : [a,b] — X be a map. If there exists z € X
such that

b
Az) = / (Aovy)(t)dt forall X € X',

we call v weakly integrable with the weak integral x and write

/abv(t) it = a.

DEFINITION A.1.3 (Line integral). Let v : [a,b] — X be a Cl-curve and f : v([a,b]) = YV
a continuous map. We define the line integral of f on v by

b
[1©dc= [ a2 Dwa
¥ a
if the weak integral on the right hand side exists.
We record some properties of weak integrals.

LEMMA A.1.4. Let v : [a,b] — X be a weakly integrable curve and A : X — Y a
continuous linear map. Then the map A o~y is weakly integrable with the integral

/ab(Aofy)(t)dt:A(/abv(t)dt).

PROPOSITION A.1.5 (Fundamental theorem of calculus). Let~ : [a,b] — X be a C!-curve.
Then vV is weakly integrable with the integral

LEMMA A.1.6. If X is sequentially complete, each continuous curve in X is weakly inte-
grable.

LEMMA A.1.7. Endow the set of weakly integrable continuous curves from [a,b] to X with
the topology of uniform convergence. The weak integral defines a continuous linear map
from this space to X. In particular, for each continuous seminorm p : X — R and each
weakly integrable continuous curve v : [a,b] — X,

H/;W) d ) < /ablv(t)llpdn

where we define || - ||, :== p(-).
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PROPOSITION A.1.8 (Continuity of parameter-dependent integrals). Let P be a topologi-
cal space, I C R a proper interval and a,b € I. Further, let f : PxI — X be a continuous
map such that the weak integral

b
/ f(p,t)dt =: g(p)

exists for all p € P. Then the map g : P — X is continuous.

Evaluation of curves. We prove that the (simultaneous) evaluation of smooth curves is
smooth.

LEMMA A.1.9. Let Y be a locally convex topological vector space and m € N. Then the
evaluation function

ev:C™([0,1],Y) x [0,1] = Y : (T',t) — T'(¢)
is a C™-map. For m > 1, we have

dev((T,t); (T1,5)) = s-ev(lV,t) + ev(l'y,t) )
(using the same symbol, ev, for the evaluation of C™ -curves).

Proof. The proof is by induction.

m=0: Let I € C°([0,1],Y) and t € [0, 1]. For a continuous seminorm || - || on Y and
e > 0 let U be a neighborhood of " in C°([0,1],Y") such that for all ® € U,
[@ =Tl <&/2,

where || - || is defined by
Co([0,1],Y) 5 R: ® — sup [|(t)].
t€l0,1]
By the continuity of T, there exists 6 > 0 such that for all s € [0, 1] with |s —¢| < & we
have
IT(s) = T(B) <e/2.

Then
[ev(L,t) —ev(®,s)|| < [T'(t) = L(s)|| + [[T(s) — 2(s)]| <e,

whence ev is continuous in (T, t).
m=1: Let I',T'; €C*([0,1],Y), t€]0,1[, h € R* and s € R be such that t+hs € [0, 1].
Then
ev((T',t) + h(T'1,s)) —ev(I',t) T(t+hs)—T(t)

W = A +ev(l'y,t+ hs),

and because I is differentiable and ev is continuous, this term converges to

s-ev(IV,t) +ev(Ty,t)

for h — 0. Since this term has an obvious continuous extension to C*([0,1],Y) x [0,1] x
C([0,1],Y) xR, ev is differentiable with the directional derivative (f]), which is continuous.
m — m + 1: The map

C™H([0,1],Y) — C™([0,1],Y) : T T’
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is continuous linear and thus smooth. Using the inductive hypothesis, we therefore deduce
from that dev is C™. Hence ev is C™1!. m

A.1.2. Differentiable maps. We give a short introduction to differential calculus for
maps between locally convex spaces. It was first developed by A. Bastiani [Bas64] and is
also known as Keller’s C*-theory.

Recall the definitions given in In the following, let X and Y be locally
convex spaces and U C X an open nonempty set.

PROPOSITION A.1.10 (Mean value theorem). Let f € CY(U,Y) and v,u € U be such that
the line segment {tu+ (1 —t)v : t € [0,1]} is contained in U. Then

1
£0) = £ = [ dpas tto = wio =y

PROPOSITION A.1.11 (Chain rule). Let k € N, f € C¥(U,Y) and g € C*(V, Z) be such
that f(U) C V. Then the composition go f : U — Z is a C*-map with

d(go f)(u;z) = dg(f(u);df(u;z))  for all (u,z) € U x X.

ProrPOSITION A.1.12. Let X and Y be locally convexr spaces, U C X be open and
nonempty and k € N.

(a) A map
f=ier: U =]V
iel
to a direct product of locally convex spaces is C* iff each component f; is C*.
(b) A map f: U — Y with values in a closed vector subspace Z is C* iff f|? : U — Z
is CF.
(¢) If' Y is the projective limit of locally convex spaces {Y; : i € I} with limit maps
7Y =Y, thenamap f:U =Y isCFiffmiof :U —Y; isCF for allic I.

Characterization of differentiability of higher order. In|Proposition 2.2.3] we stated that
a map is C* iff all iterated directional derivatives up to order k exist and depend con-
tinuously on the directions. Here, we present some facts about the iterated directional
derivatives.

REMARK A.1.13. We give a more explicit formula for the kth derivative. Obviously,
dY f(u;21) = df (u; 1) and

(k=1) . _ k=1 £y,
d(k)f(u7$1,,l’k):thn(1)d f(u+txk7xl,“';xk—1t) d f(uamla"'axk—l)).
—

The Schwarz theorem extends to the present situation:

PROPOSITION A.1.14 (Schwarz’ theorem). Let r € N, f € Cx(U,Y), k € N with k < r
and uw € U. The map

d(k)f(u;-) XS Y (2, k) — d(k)f(u;xl,...,xk)

is continuous, symmetric and k-linear (over the field K).



A.1. Differential calculus of maps between locally convex spaces 99
Examples. We give some examples of C*¥-maps and calculate the higher-order differentials
of some maps.
ExAMPLE A.1.15.

(a) Amapy:I— X is a CF-curve iff it is a Ck-map, and dy(z;h) = h - 7(1)(30).
(b) A continuous linear map A : X — Y is smooth with dA( sh)y=A-
(¢) More generally, a k-linear continuous map b: X; X -+ x X — Y is 5m00th with

db(l‘l,...7$k;h1,...,hk) = Zb(xlw-~7$i717hi7$i+17-~-7xk)-

LEMMA A.1.16. Let X, Y and Z be locally convex topological vector spaces, U C X
an open nonempty set, k € N and A : Y — Z a continuous linear map. Then for

vecHUY),
Aoy eCMU, Z).
Moreover, for each £ € N with £ < k,

d® (Aoy)=Ao d(f)v. (1)

Proof. This is proved by induction on ¢. The chain rule (Proposition A.1.11)) ensures
Ao~y eCkU, Z) and

d(Ao~)(z;h) = dA(y(x); dy(z; h)) = A(dy(z; h))

for x € U and h € X, hence is satisfied for £ = 1.
If we assume that ([{]) holds for an ¢ € N, we conclude for x € U and hq, ..., h¢, hyt1 € X,

d<e+1)(A07)(x7 h17 .. 'ahfa hf+1)
dO(Ao)( + thesrsh, ..o hy) = dO(Aoy)(wiha, ... he)

= lim

t—0 t
. A(dOy(z + thesrshy, ... he)) — A(dO~(x; hy, ... he))
T 50 t
— al dO~(z 4 they1;ha, ... he) — dOy(as by, ..., hy)
B t—0 t

= (A © d(£+1)7)(mv hla sy hf) hZJrl)v
SO holds for / + 1 as well. m

LEMMA A.1.17. Let X, Y and Z be locally convex topological vector spaces, k € N and
A: X =Y a continuous linear map. Then for v € C*(Y, Z),

yoAeCHX,Z).
Moreover, for each £ € N with ¢ < k,

41
d(f)(fy o A) = d(e)fy o H A. (T)

j=1
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Proof. This is proved by induction on ¢. The chain rule (Proposition A.1.11)) ensures
yo A€ Ck(U, Z) and

d(yo A)(x;h) = dy(A(z); dA(z; b)) = dy(A(z); A(h))
for x € X and h € X, hence is satisfied for £ = 1.

If we assume that holds for an arbitrary ¢ € N, we conclude that for x € X and
hi,....he,hepr € X,

A (y o A) (@i ha, .y hey heyr)
i PO 0 A (@ theihn, - he) = dO (e A)ash, - he)
t—0 t
i TOVA@ 4 thea); A by, Ache) = dOy(A(@); A by, ARy
t—0 t

1 1
= lim = AV (A(z) + stA(hgp1); A-ha,y ..., A by tA-hgyq)ds
- 0
= dVy(A(z);A-hy, ..., A-hy, A-heyq)

SO holds for / +1 as well. m

We give a specialization of [Proposition A.1.8|

ProrosITION A.1.18 (Differentiability of parameter-dependent integrals). Let P be an
open subset of a locally convex space, I C R a proper interval, a,b € I and k € N. Further,
let f: P xI— X be aCF-map such that the weak integral

b
/ f(p,t)dt =: g(p)

exists for all p € P. Then the map g : P — X is C*.

A.1.2.1. Analytic maps. Complex analytic maps will be defined as maps which can be
locally approximated by polynomials. Real analytic maps are maps that have a complez-
ification.

Polynomials and symmetric multilinear maps. For the definition of complex analytic
maps we need to define polynomials.

DEFINITION A.1.19. Let k € N. A homogeneous polynomial of degree k from X to Y is a
map for which there exists a k-linear map 8 : X* — Y such that

p(z) =B(z,...,x)
——
k
for all x € X. In particular, a homogeneous polynomial of degree 0 is a constant map.
A polynomial of degree < k is a sum of homogeneous polynomials of degree < k.

There is a bijection between the set of homogeneous polynomials and that of symmet-
ric multilinear maps. In this article, we just need that one can reconstruct a symmetric
multilinear map from its homogeneous polynomial.
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PROPOSITION A.1.20 (Polarization formula). Let 3 : X¥ — Y be a symmetric k-linear

map, p: X =Y :x— f(x,...,x) its homogeneous polynomial and xg € X. Then
1 1
Bz1,..., o) = T Z (—1)F et p(ag 4 ey + - 4 epay)

forallxzy,... x, € X.
Complez analytic maps. Now we can define complex analytic maps.

DEFINITION A.1.21 (Complex analytic maps). Let X, Y be complex locally convex topo-
logical vector spaces and U C X an open nonempty set. A map f : U — Y is called
complez analytic if it is continuous and, for each = € U there exists a sequence (pg)ren
of continuous homogeneous polynomials pi : X — Y of degree k such that

fa+o) =3 pilv)
k=0

for all v in some zero neighborhood V such that x +V C U.

DEFINITION A.1.22. Let X, Y be complex locally convex topological vector spaces and
U C X an open nonempty set. A map f : U — Y is called Gateaux analytic if its
restriction to each affine line is complex analytic; that is, for each x € U and v € X the
map

Z =Yz f(x+2v)

which is defined on the open set Z := {z € C: x + zv € U} is complex analytic.

THEOREM A.1.23. Let X, Y be complex locally convex topological vector spaces and U C
X an open nonempty set. Then for a map f : U — Y the following assertions are
equivalent:

(a) fisC.
(b) f is complex analytic.
(¢) f is continuous and Gateaux analytic.

We state a few results concerning analytic curves. These share many properties with

holomorphic functions. Using we see that some of these properties carry
over to general analytic functions.

DEFINITION A.1.24. Let Y be a complex locally convex topological vector space and
U C C an open nonempty set. A continuous map f : U — Y is called a C2-curve.
A Cl-curve f: U — Y is called a Ci-curve if for all z € U the limit
FU() = Tim flz+w) = f(z)
w—0 w

exists and the curve f(1) : U — X is a C2-curve.

Inductively, for k£ € N a curve f is called a C(’é—curve if it is a Cl-curve and f M is a
Céfl—curve. In this case, we define f*) := (f(1))(k=1),

If f is a CE-curve for all k € N, f is called a CZ-curve.
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LEMMA A.1.25 (Cauchy integral formula). Let Y be a complex locally convex topological
vector space, U C C an open nonempty set and f: U — Y a map. Then

fis a Ch-curve & f e CE(UY)

and furthermore
d®) f(z;hy, . b)) =hy - hy - ) ().

A C&-curve is complex analytic, and for each x € U, k € Ny and r > 0 with B,(z) CU
the Cauchy integral formula

kL £(Q)

2mi [(—z|=r (C - Z)k+1

FP(z) = dg

holds, where z € By(x).
The Cauchy integral formula implies the Cauchy estimates.

COROLLARY A.1.26. Let Y be a complex locally convex topological vector space, U C C
an open nonempty set, f : U — Y a complex analytic map, x € U, v > 0 such that
B, (z) CU and p a continuous seminorm on'Y . Then for each z € B,jao(x) and k € N,

1B < (3’;'2)' sup 17Oy

(—x|=r
Real analytic maps

DEFINITION A.1.27 (Real analytic maps). Let X, Y be real locally convex topological
vector spaces and U C X an open nonempty set. Let X¢ resp. Yr denote the complexi-
fications of X resp. Y. A map f: U — Y is called real analytic if there is an extension
f: V — Yt of f to an open neighborhood V of U in X¢ that is complex analytic. Such
a map fwill be referred to as a complexification of f.

A.1.2.2. Lipschitz continuous maps. We discuss Lipschitz continuous maps between lo-
cally convex spaces.

DEFINITION A.1.28. Let X be a locally convex space and p : X — R a continuous
seminorm. We denote the Hausdorff space X/p~1(0) by X, and the quotient map by
7p : X — X,. More generally, for any subset A C X we set A, := m,(A4).

Further, we let N (X) denote the set of continuous seminorms on X.

Let p € N(X). We call U C X open with respect to p if for each x € U there exists
r > 0 such that {y € X : |ly — x|/, <r} CU.

REMARK A.1.29. For any locally convex space X and each p € N(X), the norm induced
by p on X,, will also be denoted by p. Note that this leads to the identity p = 7, o p, in
particular p is a norm and generates the topology on X,. No confusion will arise.

LEMMA A.1.30. Let X, Y and Z be locally convex spaces, V- CY an open nonempty set,
keN,v:V = Z amap and A € L(X,Y) surjective such that

voAecHU,2),
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where U := A=Y(V'). Then all directional derivatives of v up to order k exist and satisfy
241
d o [[A=d"(yoA) forall £ €N with ¢ <k.
i=1
Proof. This is proved by induction on /.
¢ = 0: This is obvious.
{ —¢+1:Let y € Vand hy,...,hg, her1 € Y. By the surjectivity of A there exist
xeUandvy,...,v, 0041 € X with A-z=yand A-v;=h; fori=1,...,0,{+ 1. Then
for all suitable ¢ # 0,

dOy(y + thepis hay ... he) — dOy(ys ha, ..., he)

lim
t—0 t
— lim dOy(A(z +tvgs1); A vy, Aoy —dOy(A-2;A vy, A vyp)
T 50 t
_ im (d©~ o Hf:i A)(z + tvgyr,v1, ... ,0) — (dOyo0 Hf:ll A)(z,v1,...,v0)
t—0 t

=d V) (yo A)(x;v1, ..., 00 0041),
and this completes the proof. m

LEMMA A.1.31. Let X,Y be locally convex spaces, U C X an open nonempty set, k € N,
v € CHYU,Y) and £ € N with £ < k. Then for each p € N(Y) and zo € U there exist
a seminorm q € N(X) and a convez neighborhood Uy, C U of x with respect to q such
that for all x,y € Uy, and hy,...,hy € X,

¢
1d Oy (y; b, he) = dOy(@s o, bl < Hly = 2llg [T IRl (A.1.31.1)
i=1
and
¢
14Oy @ b, he)llp < T il (A.1.31.2)
i=1
Proof. Since d)y and d“*+1)~ are continuous at (z¢,0,...,0) and multilinear in their

last £ resp. £ + 1 arguments, for each p € N (Y) there exist a seminorm g € N (X) and
an open ball Uy, := By(z,r) C U such that

L2 sup{[|d“ Dy (ys b, - )l -y € Blwo, ), g, - hesllg < 13

and
1> sup{[ldy(y; by, ..., he)lp = y € By(wo,7), [Ballg, .- [1hellq < 1}

This implies that for each y € By(xo,r) and hq,...,h, € X,

Hd(”)fy(y;hl,...,hn)up < 1'H||hi||qv (1)
=1

where n € {¢, ¢+ 1}; this proves (A.1.31.2).
To prove (A.1.31.1), we see that for z,y € By(xo,7) and hq,...,he11 € X,

1
d(Z)’Y(ya h17 ceey hf) - d(g)’)/(xa h’17 ceey hg) = / d<e+1)7(ty + (1 - t)l’, h’17 R} héay - I) dt.
0
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We apply to the right hand side and get, using withn =/¢+1,
14O (y; b, he) = dOy(@s by he)llp < lallg - hellg - ly — g m
DEFINITION A.1.32. Let X and Y be locally convex spaces, U C X an open nonempty
set, k€N, p € N(Y) and q € N(X). We call v : U — Y Lipschitz up to order k with
respect to p and q if v € C*(U,Y) and estimates (A.1.31.1)) and (A.1.31.2) are satisfied
forall / € Nwith ¢/ <k, z,y € U and hy,...,hy € X. We write LCZVP(U, Y') for the set of

maps that are Lipschitz up to order k with respect to p and q.

LEMMA A.1.33. Let X and Y be locally convex spaces, U C X an open nonempty
set, keN, p € N(Y), ¢ € N(X) and v € LCE (UY). Then there exists a map
v € EC’;,p(Uq,Yp) that makes the diagram

U——Y
i
Ug——Y,
commutative (using the notation of Definition ,
Proof. Let ¢ € N with £ < k. Since v € ECpr(U, Y'), the map
Tp © d©~ (U,q) x (X,q)" = Y,

is continuous. Hence by the universal property of the separation there exists a continuous
map 7 such that the diagram

d(l),Y

~<

U x Xt

T

41

7"1;[1 Tq (Ua q) X (X7 q)e [
Uq % Xf e \ Yp

commutes, where we denote 7|y by m,. The diagram for ¢ = 0 implies that ¥ o7, =

mp 07 € CF(U,Y,), where 4 := 7y. We proved in [Lemma A.1.30|that the ¢th directional

derivative of 7 exists and satisfies the identity

{41 o
d(é),? o H 7Tq — d(z) (5/ o 7Tq) — d(e) (7Tp o) ’y) = 7Tp o d(e)'Y = ’72 o H Tr‘]'
el =1

Since Hfii T4 is surjective, this implies that d3 = 3,, so the former is continuous. From

this we conclude that 4 € C¥(U,,Y,) and that the estimates (A-1.31.1)) and (A.1.31.2)
are satisfied by 7. m

A.2. Fréchet differentiability. For maps between normed spaces, there is the classical
notion of Fréchet differentiability. This concept relies on the existence of a well-behaved
topology on the space of (k-)linear maps between normed spaces.
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Spaces of multilinear maps between normed spaces. We provide the details about the
norm topology of multilinear operators.

DEFINITION A.2.1. Let X, Y be normed spaces. For each k € N* we define
L*(X,Y):={Z2: X* — Y : 2 is k-linear and continuous}.
For k =1 we define
L(X,Y):=LYX,Y) and L(X):=LYX,X),
and furthermore L°(X,Y) := Y.
The set of multilinear continuous maps can be turned into a normed vector space:

PROPOSITION A.2.2. Let X, Y be normed spaces and k € N*. A k-linear map = : XF —Y
is continuous iff

[Ellop = sup{[[E(vr, ., ve) = lvalls- - [lox]l < 1} < oo

|IZ|op s called the operator norm of Z. ||-|lop s @ norm on L¥(X,Y). The space L*(X,Y),
endowed with this norm, is complete if Y 1is.

Proof. The (elementary) proof can be found in [Die60, Chapter V, §7]. m

LEMMA A.2.3. Let X, Y be normed spaces and k € N*. Then the evaluation map
LE(X,Y) x XF:(Z2,01,...,06) = E(v1,...,01)

is (k + 1)-linear and continuous.

Proof. This is trivial. m

LEMMA A.2.4. Let X and Y be normed spaces, k € N*, = € L¥(X,Y) and hy,..., hs,
V1,...,0; € X. Then

k
||E(h1, .. ,hn) — E(Ul, e ,Uk;)” S Z ||E(1}1, ey Vi1, hz — vi7hi+1; . ,hk)”
1=1

Proof. This estimate is derived by an iterated application of the triangle inequality. m

The following lemma helps to deal with higher derivatives of Fréchet differentiable
maps.

LEMMA A.2.5. Let X, Y be normed spaces and n,k € N*. Then the map
Erm  LF(X,LM(X,Y)) — LFM(X,Y),

Ekn(E) (b1, hn,v1,. o vg) = E(v1, e ) (B, oo, By,

is an isometric isomorphism. In some cases, we will denote &, by 513/77

Proof. Obviously & 5, is linear and injective. Furthermore

||5k,n(5)(h1a . .,hn,vl, e 7Uk:)|| = ||E(’U1, e 7Uk)(h1, . ,hn)”

n k n
<[E@1,- o) lop [T IRl < (1= llop [T Hlvall TT 1721,
i=1 i=1 i=1

and hence
1€k, (E)llop < 12 ]lop-
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On the other hand, for ||v1]l,..., ||vkll, |h1lls- -, [|Pn]l < 1 we have
[E(vr, - on) (R s ) [ < 1€k (B [lop-

Hence
1E(v1, -+ vk)lop < [1€k,n (E)lop,
which leads to
1Ellop < 1€k,n (E)llops
so & is an isometry. It remains to show that &, is surjective. To this end, for a
M € LF(XY) we define the map M € L¥(X,L"(X,Y)) by
M(vi, ..y vp)(hay ey h) = M(hy, ..o vt .., Ug).

Clearly, Sk)n(]\?) = M. Since M was arbitrary, & ., is surjective. m
LEMMA A.2.6. Let X, Y and Z be normed spaces and k € N. Then the map

L*X,Y x Z) = L*(X,Y) x L*(X,Z2) : 2= (ny 0 E,m5 0 Z), (A.2.6.1)

where Ty and 7z denote the canonical projections from'Y X Z to'Y respectively Z, is an
isomorphism of topological vector spaces.

Proof. The map in is linear since its component =Z +— my o = and = +— w5 0 =
are. The injectivity of (A.2.6.1]) is clear, and the surjectivity can also be shown by an
easy computation.

To see that is an isomorphism we denote it by i and compute, for x1,...,xx
e X,

((ka(Xy) o) (E)(z1,...,zk), (7TL’“(X,Z) oi)(E)(z1,. .. ,xk))
= ((ﬂ'y o E)(x1,...,xk), (mz 0 E)(21,. .. ,xk)) =Z(z1,...,2).

From this one can easily derive that i and its inverse are continuous since depending on
the norm we chose on the products, i is an isometry. =

The calculus. In the following, let X, Y and Z denote normed spaces and U be an
open nonempty subset of X. Recall the definition of Fréchet differentiability given in

[Definition 2.3.11

We give some examples of Fréchet differentiable maps.
ExXAMPLE A.2.7.

(a) A continuous linear map A : X — Y is smooth with DA(x) = A.
(b) More generally, a continuous k-linear map b: X7 x -+ x X3 — Y is smooth with,

k
Db(ml, . ,.’L‘k)(hl, .. .,hk) = Zb(l‘l, .. .,mi,l,hi,le, . ,xk).
=1

We prove the chain rule and the mean value theorem for Fréchet differentiable maps.
Beforehand, we need the following

LEMMA A.2.8. Let X, Y and Z be normed spaces, U C X an open nonempty set, k € N
and A:Y — Z a continuous linear map. Then for v € FC*(U,Y),

Aoy e FCHU, Z).
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Proof. We prove this by induction over k. The assertion is obviously true for £ = 0. If
k =1, then Ao+ is C! by [Proposition A.1.11| with

d(Aovy)(z;-) = dA(y(z); ) - dy(x;-) = Aody(x;-).

Since the composition of linear maps is continuous, we conclude that A o~ is FC' with
D(Ao~)= Ao Dn.

k — k + 1: The map D~ is FC*, hence by the induction hypothesis, so is A o Dy =
D(Ao~). Hence Ao~y is FCF. u

LEMMA A.2.9. Let k€ N, n € FC*(U,Y) and v € FC*(U, Z). Then the map
(o) :U =Y x Z:x e (y(2),n(z))
is contained in FC*(U,Y x Z).

Proof. For k = 0 the assertion is obviously true. If k = 1, we easily calculate that (vy,7)
is C! with

d(y,m)(x; h) = (dvy(x; h), dn(z; h)).
Hence

d(y,m)(z;-) =17 (dy(xs-), dn(zs ),
where i denotes the isomorphism from We conclude that (y,7)
is FC.

For k > 1, the assertion is proved by an easy induction using "
PROPOSITION A.2.10 (Chain Rule). Let k € N, n € FC¥(U,Y) and v € FC*(V, Z) such
that n(U) C V. Then yon e FC¥(U, Z) and

D(vyon)(u) = (Dyon)(u) - Dn(u) (%)
forallueU.
Proof. The proof is by induction on k.

k = 1: We apply the chain rule for C'-maps (Proposition A.1.11) to see that v o n

is C1, and for (u,z) € U x X we have

d(y o n)(us x) = dy(n(u); dn(u; ).
From this identity we conclude that () holds. Finally we obtain the continuity of D(yon)
from that of -, Dy, Dn and 7.

k — k +1: By the inductive hypothesis, the maps D~ and Dn are FC*. We already
proved in the case k = 1 that holds. By the inductive hypothesis, Dy on € FCF.

Since - is smooth (see[Example A.2.7)), we conclude using|[Lemma A.2.9|and the inductive

hypothesis that D(v on) is FC*. Hence yon is FC*. u
PROPOSITION A.2.11 (Mean Value Theorem). Let f € FC'(U,Y). Then
1
£0) = Jw) = [ Di(ut tlo ) - (0~ w)ds
0

for all v,u € U such that the line segment {tu + (1 —t)v : ¢t € [0,1]} is contained in U.
In particular

[f(v) = f(w)] < sup [[Df(u+tv—u)llopllv—ul.
te[o,1]
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Proof. The identity is a reformulation of [Proposition A.1.10] hence the estimate is a

direct consequence of m

The isomorphisms provided by can be used to characterize Fréchet
differentiability of higher order.

REMARK A.2.12. We define inductively
Ly =Y and LY} =L(X Lky).

DEFINITION A.2.13 (Higher derivatives). Let n € N. For each k € N with k¥ < n we
define a linear map

DW) . FC™(U,Y) — FC" (U, L*F(X,Y))
by DO :=idzcn(py) for k=0, DV := D for k=1 and for 1 < k < n by

kaii Lk‘—Z
DW= 513—1,1 o0& 0& 1Y o(Do -0 D)(v).
k times
Here we used the notation introduced in [Remark A.2.12, Note that the image of D) is
Lk—3 Lk—2
contained in FC"*(U,L¥(X,Y)) because 5,3:1’1, ooy &1, & are continuous linear

maps and hence smooth (see [Example A.2.7)); so the chain rule (Proposition A.2.10)) gives

the result.
We call D) the kth derivative operator.

The (k + 1)st derivative of a map = is closely related to the kth derivative of D~:
LEMMA A.2.14. Letne N, v € FC™(U,Y) and k € N with k < n. Then
D+ — g o (DU (Dy)).
Proof. This follows directly from the definition of D*+1~.

A.3. Relation between the differential calculi. We show that the two calculi pre-
sented are closely related. First we prove that each ]-'Ck—map is a C*-map and that the
higher differentials are closely related.

LEMMA A.3.1. Let k € N* and v € FC*(U,Y). Then ~ is a C*-map (in the sense of
Section [A.1)), and for each v € U we have

DWWy (z) = dWy(z;-).

Proof. We prove this by induction.

k =1: It follows directly from that v is a C! map and
DWr(z) = Dy(2) = dy(z;-) = dVy(z;).
k—k+1: Let z € U and hy, ..., hyy1 € X. We know from [Lemma A-2.14] that
(DEFIYN @) (R, - hir) = (Exp 0 (DM DY) (@) (ha, - B
= (D® Dy (z)(ha, ..., his1)) - ha.
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The inductive hypothesis shows this equals

(d® Dy(z; hy, ... hit1)) - by

. d* (D) (x4 thei; ha, ... hy) — dF=D(Dy)(x; ho, . . ., hy)
- (tm ;
—

Another application of the inductive hypothesis, together with the continuity of the
evaluation of linear maps (Lemma A.2.3|) and [Lemma A.2.14] gives

D(k_l)(D'y)(x + th]g_;,_l)(hg, ey hk) . hl — D(k_l)(D’y)(.’L‘)(h27 ey hk) . hl

= lim
t—0 t
iy G110 DEV DY) @+ thsa) (b, - i) = (Eg1,10DE V(DY) (@) (- )
T 50 t
i PP i) (s k) = DOy(@) (b )
t—0 t ’

Another application of the inductive hypothesis finally gives
d®) (@ + thygrihay o he) = d®y(asha, o hy)

= lim .
t—0 t

Hence d*t1D~ exists and satisfies the identity
d* (@b, b)) = DY y(@) (b, ).
Since D*+1)~ and the evalution of multilinear maps are continuous (see |Lemma A.2.3)),

so is d**1~. [Proposition 2.2.3 shows that this (and the inductive hypothesis) ensures
that v is a C*T'-map. =

The preceding can be used to give a characterization of Fréchet differentiable maps.

PROPOSITION A.3.2. Letv:U — Y be a continuous map. Then v € FC*(U,Y) iff ~ is
a C*-map and the map
U—=LYX,Y): 2 d9y(;) (*k)

is continuous for each £ € N with £ < k.

Proof. For v € FC*(U,Y) we stated in [Lemma A.3.1|that v € C¥(U,Y) and
d0(z;1) = DO(x)

for each z € U and £ € N with £ < k. Since D®)+ is continuous by its definition ,
is satisfied.

We have to prove the other direction. This is done by induction on k.

k = 1: This follows directly from the definition of FC'(U,Y).

k — k+1: We have to show that v € FC*T(U,Y), and this is clearly the case if D~y €
FC®(U,L(X,Y)). By the inductive hypothesis this is the case if Dy € CF(U,L(X,Y))
and it satisfies (). Since v € FC®(U,Y) by the inductive hypothesis and hence D~y €
FC" Y (U,L(X,Y)), we just have to show that D~ is C* and

U — LF(X,L(X,Y)) s & — d*) (Dy)(x; )
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is continuous. To this end, let x € U, h,v,...,vx_1,vx € X and t € K be such that

{z + stvg, : s € [0,1]} C U. We calculate using [Lemma A.2.14] the mean value theorem
and [Lemma A.3.T¢

(d(kl)(D’y)(:ﬂ +top;vr, .., vpe1) — dFTD (DY) (2 0q, ,’Uk1)) b

t
dBy(z+tog by, vp—1) — dBEy(zsh, vy, o)
B t

1
= / d(kﬂ)fy(:c + stog; h,v1, ..., V1, Vk) ds.
0

Since x — d(kH)'y(x; -) is continuous by hypothesis, the left hand side converges as t — 0
in the topology of uniform convergence on bounded sets to the linear map

h — d(k+1)7(m7 ha V1yew s Vg1, Uk)'
Hence Dy is C* with
d®(Dy) (@01, ... vp_1,08) = Sgi(d(kﬂ)w(x; N1,y o, Vk—1,0k),

and since z — d*+tDy(z;-) and Sk_} are continuous (by hypothesis resp. [Lemma A.2.5),
sois x — d® (Dy)(z;-). m

LEMMA A.3.3. Let f: U —Y be a C*t! map. Then f € FC*(U,Y).

Proof. We stated in [Proposition A.3.2] that f is in FC*(U,Y) iff for each ¢ € N with
{ < k the map

U—LYX,Y):z— dOf(z;)
is continuous; but this is a direct consequence of "

LEMMA A.3.4. Let X and Y be locally convex spaces, U C X an open nmonempty set,
keN,vyeC*YUY), pe NY) and K a compact subset of U. Then there exists a
seminorm q € N(X) and an open set V with respect to q such that K CV C U and

5 € BC*(V,,Y,). (For the definition of 7 see [Lemma A.1.33])

Proof. Using [Lemma A.1.31| and standard compactness arguments, we find g € N(X)

and a neighborhood V Wit~h respect to ¢ of K in U such that estimates (A.1.31.1) and
(A.1.31.2) hold for v on V and all £ € N with ¢ < k. We proved in [Lemma A.1.33

that this implies that ¥ € £C§7P(%,Y;), and using |Pr0p0sition A.3.2| we can conclude
that ¥ € .FC’“(f/q,Yp). Further, since D()5(K,) is compact for all ¢ < k, there exists a
neighborhood V; of K, such that ¥ and all its derivatives up to degree k are bounded
onV, =

Differential calculus on finite-dimensional spaces. We show that the three definitions of
differentiability for maps that are defined on a finite-dimensional space (Fréchet differen-
tiability, Keller’'s C¥ theory and continuous partial differentiability) are equivalent.

DEFINITION A.3.5. Let n,k € N* and o € Njj a multiindex with |a| = k. We set
Iy = {(ir,. .. i) €{1,...,n}F o (Ve {1,....n}) ag = |{j :i; = £}|}
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and use this set to define the continuous k-linear map

Sat (KM 5 K:(hy,oshi) = > higy i,

(i1yenyit) Ela

where h; = (hj1,...,hjn) for j=1,... k.
ProrosITION A.3.6. Let U C K™ be open and nonempty and v : U — Y a map. Then
the following conditions are equivalent:
(a) v e FCHU,Y).
(b) v €CFU,Y).
(c) v is k-times continuously partially differentiable.

If one of these conditions is satisfied, then

D®y(z)(hy, ..., hi) = D Salha, ..., h) - 0%y() (A.3.6.1)
aeNy
|| =k

forallz € U and hy,..., h € K™
Proof. The assertion (a)=-(b) is a consequence of |[Lemma A.3.1} and since

Ok~
m(l‘) = d(k)’}/(ma Cigsevvs eil)
and d®)+ is continuous (Proposition 2.2.3), the implication (b)=-(c) also holds.
It remains to show that (c)=-(a). It is well known from calculus that Dpy =
> hig—;. Hence d5(z; hy,. .., hy) exists and is given by

d(f)(.h hy) = - h....h..akify
v(x;he,. .., he) = Z 1,01 G T o
i1=1,...,ip=1 (31 ir
- > ( Py heiy ) - 0°(@) = D Salhn, .o he) - 9°y(@).
Q€N (i1,ie) €l aENy
lo|=¢ oo =£

From this identity we derive the continuity of = — d(e)fy(x; -), and we can conclude using
[Proposition A.3.2that v € FC¥(U,Y) and (A.3.6.1) is satisfied. m

A.4. Some facts concerning ordinary differential equations. We state some facts
about the global solvability of initial value problems and the dependence of solution on
parameters.

A.4.1. Maximal solutions of ODEs. In the following, we let J C R be a nondegen-
erate interval and U an open subset of a Banach space X. For a continuous function
f:JIxU— X, xz9 €U and tg € J we consider the initial value problem

YV (t) = F(EAD), ko) = 0. (A4.02)
We state the famous theorem of Picard and Lindelof:

THEOREM A.4.1. Let f satisfy a local Lipschitz condition with respect to the second
argument, that is, for each (tog,xo) € J x U there exist a neighborhood W of (tg,zq) in
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J xU and a K € R such that for all (t,z), (t,z) € W,
[f(t,2) = f(t, D) < K|z —2|.

Then for each (tg,zo) € J x U there exists a neighborhood I of to in J such that the
initial value problem (A.4.0.2) corresponding to ty and xg has a unique solution that is
defined on I.

It is well-known that the local theorem of Picard and Lindeldf can be used to ensure
that there exists a maximal solution.

PROPOSITION A.4.2. Let f satisfy a local Lipschitz condition with respect to the second

argument and let (tg,zo) € J x U. Then there exists an interval I C J and a function
¢ : I = U that is a mazimal solution to (A.4.0.2); that is, if v: D(v) — U is a solution
to (A.4.0.2) defined on a connected set, then D(y) C I and v = ¢|p(4)-

A.4.1.1. A criterion of global solvability

Linearly bounded vector fields. One class of ODEs that can be globally solved is that
of linear vector fields. This solvability property can be generalized to linearly bounded
vector fields.

DEFINITION A.4.3. We call f linearly bounded if there exist continuous functions a,b :
J — R such that

f (¢t )] <at)|z]|+0bt) forall (t,z) e JxU.

To prove that this condition on f ensures globally defined solutions, we need some
lemmas.

LEMMA A.4.4. Let f be a linearly bounded map that satisfies a local Lipschitz condition
with respect to the second argument. Let ¢ : I — U be an integral curve of f.

(a) If ¢ is bounded, I C J and I is compact, then f is bounded on the graph of ¢.
(b) If B := supI # supJ, then ¢ is bounded on [to, 8| for each ty € J. The analogous
result for inf I also holds.

Proof. (a) Let t € I. Then
1F (& o) < a®)ll¢(@)]] + b(?)

since f is linearly bounded. Because a and b are continuous and defined on I, they are
clearly bounded on I.
(b) For each t € [to, 5] we have

o(t) = ¢(to) + ) f(s,0(s)) ds,

and from this we deduce, using that f is linearly bounded,

/f ) ds|| < lo(to) ||+\/ o)) + b(s) ds

< ||a|[m,m||oo} / 16(s) ds

The assertion is proved by an application of Gronwall’s lemma. =

161 < lotto)] +\

+ @)l + l1bllos, t0,6118 — tol-
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LEMMA A.4.5. Assume that f satisfies a global Lipschitz condition with respect to the
second argument. Then f is linearly bounded.
Proof. Let (t,x) € J x U and zg € U. Then

1F (& @)l < (1f (8 @) = f(E zo) | + £ (E o)
< Lz = @oll + [[f(t; xo)ll < Lllzll + Lljzoll + [Lf (Z, o).

Defining a(t) := L and b(t) := L||zo|| + || f (¢, z0)]|| gives the assertion. m

The criterion. We give a sufficient condition for an integral curve to be uniformly con-
tinuous. This can be used to extend solutions to larger domains of definition.

LEMMA A.4.6. Let f satisfy a local Lipschitz condition with respect to the second argu-
ment and let ¢ : I — U be an integral curve of f such that f is bounded on the graph
of ¢. Then ¢ is Lipschitz continuous and hence uniformly continuous.

Proof. Let t1,ts € I. Then

Jote2) - o)l = | / #(s) ds

where K = sup,c; ||/ (s 6(s))]| < oc. m

S K|t2 _t1|a

-| / F(s,0(5)) ds

THEOREM A.4.7. Assume that f satisfies a local Lipschitz condition with respect to the
second argument. Let ¢ : I — U be a mazimal integral curve of f. Assume further that

(a) the image of ¢ is contained in a compact subset of U or
(b) f is linearly bounded.

Then ¢ is a global solution, that is, I = J.

Proof. Assume for contradiction that e.g. 8 := sup I # sup J. We choose tg € I. In both
cases, f is bounded on the graph of ¢l g: If the image of ¢ is contained in a compact
set, we easily see that the graph of ¢[[, [ is contained in a compact subset. If f is linearly
bounded, we use

We apply to see that ¢y, [ is uniformly continuous, and thus has a
continuous extension ¢ to [tg, 5]. We easily calculate that ¢7 is a solution to
using the integral represention of an ODE. Since (E extends ¢, we get a contradiction to
the maximality of ¢. m

A.4.2. Flows and dependence on parameters and initial values. For the sake of
full generality, we need a definition.

DEFINITION A.4.8. Let X be a locally convex space. We call P C X a locally convex
subset with dense interior if for each x € P, there exists a convex neighborhood U C P
of z and if P C P°.

In the following, we let J C R be a nondegenerate interval, U an open subset of a
Banach space X, P a locally convex subset with dense interior of a locally convex space
and k € N with k& > 1. Further, let f be in C*(J x U x P, X). We consider the initial
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value problem
Y'(t) = f(t,v(t),p),  ~(to) = o, (A.4.8.1)
fortg € J, zg € U and p € P.

DEFINITION A.4.9. Let Q C J x J x U x P. We call a map ¢ : Q2 — U a flow for f if for
all tg € J, x9p € U and p € P the set

Qg wo.p = {t € J : (to,t,z0,p) € Q}
is connected and the partial map
¢(t07 ',330,])) : QtO,IO;P —U

is a solution to (A.4.8.1) corresponding to the initial values tg, x¢ and p.
A flow is called mazimal if any other flow is a restriction of it.

REMARK A.4.10. In [GI606, Theorem 10.3] it was shown that for each ty € J, 29 € U
and pg € P there exist neighborhoods Jy of tg, Uy of g and Py of pg such that for every
s € Jo, x € Uy and p € Py the corresponding initial value problem has a unique
solution I'y ; , : Jo — U and the map

I:JoxJoxUyxPy—=U:(s,t,x,p)—Ls.p(t)
is C*. Therefore C*-flows exist.
The following lemma shows that two related flows can be glued together:

LEMMA A.4.11. Let I C J be a connected set with nonempty interior and v : I — U a
solution to (A.4.8.1)) corresponding to t, € J, x, € U and p, € P. Further let

¢o:JoxIpxUgx Py—=U and ¢1: 11 xI1 xU x P —-U
be C*-flows for f such that Uy is open in X and
I=IyUL,IoNIL #0,py € PyN Py, (ty,24) € Jo x Uy and v(I1) C Up.
Then there exist neighborhoods J., of t, U, of x,, Py of p, and a C*-flow
¢:JyxIxU,xP,—=U

for f.

Proof. We choose t; € Iy N I. Since ¢ is continuous in (t,t1, 2, p,) and
G0 (ty, t1, 2y, py) = y(t1) € Uy,

there exist neighborhoods J, of ¢, in Jy, Uy of x, in Uy and P, C PyN P, of p, such that
do(Jy x {t1} x U, x P,) C Us.

Then the map

do(to,t, o, p) if ¢ € I,

¢1(t1,t, do(to, t1,w0,p),p) ift €Iy,

is well defined since the curves ¢o(to, -, zo,p) and ¢1(t1, -, do(to,t1,x0,p),p) are both so-
lutions to the ODE (A.4.8.1) that coincide in ¢; and hence on Iy N I;. Since both ¢y and
¢, are C*-flows for f, so is ¢. m

(;5:J7><I><U7><PA,—>U:(tO,x07p,t)»—>{
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LEMMA A.4.12. Let I C J be a connected set with nonempty interior, t1 € I and v : I —
U a solution to corresponding to ty € J, vy € U and p, € P. Then there exist
neighborhoods J., of t,, Uy of x, Py of py, an interval I C I with ty,t1 € I such that T
is a neighborhood of ty in I, and a C*-flow

¢:Jy x IxU, x P, = U
for f.

Proof. We use [Gl606, Theorem 10.3] to see that for each s € I there exist neighborhoods
Js of sin J, Uy of y(s) in U, Py of pg in P and a C*-flow

Os:Js X Jg xUs x Ps = U

for f; we may assume that v(Js) C U, since 7 is continuous and that J is open in I.
Since I is connected and {Js}ser is an open cover of I, there exist finitely many sets
Js1y...yJs, such that ¢, € Jg,, t1 € Js, and J,,, NJs, # 0 < |m — €] < 1. Applying
to ¢s, and ¢, we find neighborhoods I; of t,, Vi of z, P, of py and a
Ck-flow

¢1: 11 X (Jg, Uds,) x Vi x Pp = U

for f. Likewise, ¢1 and ¢, lead to ¢, and iterating the argument, we find a C*-flow
(j)n*l : Infl X U Jsk X anl X Pnfl —U
k=1

for f. m
Concerning maximal flows, we can state the following
THEOREM A.4.13. For each ODE there exists a mazimal flow
¢: I xJIxUxP2OQ—U.
Q is an open subset of J x J x U x P and ¢ is a C*-map.

Proof. The existence of a maximal flow is a direct consequence of the existence of maximal
solutions to ODEs without parameters (see [Proposition A.4.2). Now let (to,%,zo,p) €
and v : I C J — U the maximal solution corresponding to ¢y, ¢ and p. Then ¢y,t € I,

and according to [Lemma A.4.12] there exists a C*-flow

F:JWX,[VXUVXPW%U

for f that is defined on a neighborhood of (tg,t, zg, p). Since ¢ is maximal,
Ty xIxUyx P, cQ and ¢, g p =T
This gives the assertion. m

We examine the situation where the initial time is fixed and the initial values depend
on the parameters.

COROLLARY A.4.14. Let o : P — U be a C*-map. Further, let I C J be a nonempty
interval and tog € I such that for every p € P there exists a solution v, : I — U to the
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initial value problem (A.4.8.1) corresponding to p, to and the initial value a(p). Then the
map
IF':IxP—=U:(tp) — vt

is CF.
Proof. We consider a maximal flow ¢ : Q — U for f. Since ¢ is maximal,

{to} x I x{(a(p),p) :p€ P} S,
and for each p € P,
d(to, - a(p),p) = Yp-
Hence I is the composition of ¢ and the C*-map
IXP—JxIxUXxP:(tp)— (to,t,a(p),p),

and this gives the assertion. m

B. Locally convex Lie groups

The goal of this appendix is mainly to fix our conventions and notation concerning man-
ifolds and Lie groups modelled on locally convex spaces. For further information see
[Mil84], [Nee06] and [BGNO4].

B.1. Locally convex manifolds. Locally convex manifolds are essentially like finite-
dimensional ones, replacing the finite-dimensional modelling space by a locally convex
space.

DEeFINITION B.1.1 (Locally convex manifolds). Let M be a Hausdorfl topological space,
k € N and X a locally convex space. A C*-atlas for M is a set A of homeomorphisms
¢ : U — V from an open subset U C M onto an open set V' C X whose domains cover M
and which are C*-compatible in the sense that ¢ o¢~! is C* for all ¢, € A. A maximal
Ck-atlas A on M is called a differentiable structure of class C*. In this case, the pair
(M, A) is called a (locally convex) Ck-manifold modelled on X.

Direct products of locally convex C*-manifolds are defined as expected.

DEFINITION B.1.2 (Tangent space and tangent bundle). Let (M,.A) be a C*-manifold
modelled on X, where & > 1. Given z € M, let A, be the set of all charts around z
(i.e. whose domain contains x). A tangent vector of M at x is a family y = (y4)sca, of
vectors y, € X such that yy = d(v o ¢~ 1) (d(2);ys) for all ¢, € A,.

The tangent space of M at x is the set T, M of all tangent vectors of M at x. It
has a unique structure of locally convex space such that the map dy|t, a : T.M — X :
(Yp)peA, F Yy is an isomorphism of topological vector spaces for any ¢ € A,.

The tangent bundle TM of M is the union of the (disjoint) tangent spaces T, M for
all z € M. It admits a unique structure of a C*~'-manifold modelled on X x X such that
T¢ := (¢, do) is chart for each ¢ € A. We let mps : TM — M be the map taking tangent
vectors at = to x for any x € M.
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DEFINITION B.1.3. A continuous map f : M — N between C*-manifolds is called C* if
the map o f o ¢~ ! is C* for all charts ¥ of N and ¢ of M.
If £ > 1, then we define the tangent map of f as the C*~'-map Tf : TM — TN
determined by dio Tf o (T¢)~t =d(vpo f o¢™!) for all charts ¥» of N and ¢ of M.
Given € M, we define Ty f := T f|r,ar : ToM — Ty, N.

DEFINITION B.1.4. Let kK > 0, M, N and P be C*-manifolds, and f : M x N — P a
CF-map. We define

Tif:TM x N — TP : (v,n) — TI'(v,0,)

and
Tyf : M x TN — TP : (m,v) — TT'(0,,,v).

DEFINITION B.1.5 (Submanifolds). Let M be a C*-manifold modelled on the locally
convex space X and Y C X be a sequentially closed vector subspace. A submanifold of
M modelled on Y is a subset N C M such that for each x € N, there exists a chart
¢ : U — V around z such that ¢(UNN) =V NY. It is easy to see that a submanifold is
also a C*-manifold.

The following lemma states that submanifolds are initial:

LEMMA B.1.6. Let M be a C*-manifold and N a submanifold of M. Then the inclusion
t: N — M is C*. Moreover, a map f : P — N from a C*-manifold is C* iff the map
tof:P— M isCF.

DEFINITION B.1.7 (Vector fields). A wvector field on a smooth manifold M is a smooth
map £ : M — TM such that mp; o & = idy;. We denote the set of vector fields on M
by X(M).

A vector field € is determined by its local representations &, :=dpofogp™! : V — X
for each chart ¢ : U — V of M. Given vector fields £ and n on M, there is a unique
vector field [, 7] on M such that [£,n]s = dng o (idy,&s) — déy o (idy, ng) for all charts
¢o:U—Vof M.

REMARK B.1.8 (Analytic manifolds). The definition of analytic manifolds and analytic
maps between them is literally the same as above, except that “C*” has to be replaced
by “analytic”.

B.2. Lie groups

DEFINITION B.2.1 (Lie groups). A (locally convex) Lie group is a group G equipped with
a smooth manifold structure turning the group operations into smooth maps.

An analytic Lie group is a group G equipped with an analytic manifold structure
turning the group operations into analytic maps.

LEMMA B.2.2 (Tangent group, action of G group on TG). Let G be a Lie group with
the group multiplication m and the inversion i. Then TG is a Lie group with the group
multiplication

Tm: T(G x G) 2 TG x TG - TG
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and the inversion Ti. Identifying G with the zero section of TG, we obtain a smooth right
action
TG x G — TG : (v,g9) = v.g := Tm(v,04)

and a smooth left action
G x TG — TG : (g,v) = g.v :="Tm(04,v).

DEFINITION B.2.3 (Left invariant vector fields). A vector field V on a Lie group G is
called left invariant if g.V(h) = V(gh) for all g,h € G. The set X(G); of left invariant
vector fields is a Lie algebra under the bracket of vector fields defined above.

DEeFINITION B.2.4 (Lie algebra functor). Let G and H be Lie groups. Using the iso-
morphism X(G), — T1G : V — V(1) we transport the Lie algebra structure on
X(G); to L(G) := T1G. If ¢ : G — H is a smooth homomorphism, then the map
L(¢) : L(G) — L(H) defined as T¢|y) is a Lie algebra homomorphism.

B.2.1. Generation of Lie groups. We need the following result concerning the con-
struction of Lie groups from local data (compare [Bou89, Chapter III, §1.9, Proposition
18] for the case of Banach Lie groups; the general proof follows the same pattern).

LEMMA B.2.5 (Local description of Lie groups). Let G be a group, U C G a subset which
1s equipped with a smooth manifold structure, and V- C U an open symmetric subset such
that 1 € V and V -V C U. Consider the conditions:

(a) The group inversion restricts to a smooth self-map of V.

(b) The group multiplication restricts to a smooth map V xV — U.

(c) For each g € G, there exists an open 1-neighborhood W C U such that g-W-g~! C U,
and the map

WoU:w—g-w-g !

s smooth.
If (a)—(c) hold, then there exists a unique smooth manifold structure on G which makes
G a Lie group such that V is an open submanifold of G. If (a) and (b) hold, then there

exists a unique smooth manifold structure on (V') which makes (V) a Lie group such that
V' is an open submanifold of (V).

B.2.2. Regularity. We recall the notion of regularity (see [Mil84] for further informa-
tion). To this end, we define left evolutions of smooth curves. As a tool, we use the group
multiplication on the tangent bundle TG of a Lie group G.

DEFINITION B.2.6 (Left logarithmic derivative). Let G be a Lie group, k¥ € N and 7 :
[0,1] = G a C**1l-curve. We define the left logarithmic derivative of n as

8e(n)  [0,1] = L(G) : t = (&) ™"/ ().
The curve &,(n) is obviously C*.
DEFINITION B.2.7 (Left evolutions). Let G be a Lie group and v : [0,1] — L(G) a
smooth curve. A smooth curve 1 : [0,1] — G is called a left evolution of v and denoted

by Evols(v) if 6¢(n) = v and 1(0) = 1. One can show that if a left evolution exists, it is
uniquely determined.
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The existence of a left evolution is equivalent to the existence of a solution to a certain
initial value problem:

LEMMA B.2.8. Let G be a Lie group and v : [0,1] = L(G) a smooth curve. Then there
exists a left evolution Evol®(Q)y : [0,1] = G iff the initial value problem

() =n(t)-y(t), n(0)=1, (B:28.1)
has a solution 1. In this case, 71 = Evols(y).
Now we give the definition of regularity:
DEFINITION B.2.9 (Regularity). A Lie group G is called regular if for each smooth curve
v :[0,1] = L(G) there exists a left evolution and the map
evols, : €*°([0,1], L(GQ)) = G : v = Evol5()(1)
is smooth.

LEMMA B.2.10. Let G be a Lie group. Suppose there exists a zero neighborhood  C
C>=([0,1],L(G)) such that for each ~v € Q the left evolution Evols () exists and the map

Q— Gy Evols()(1)
is smooth. Then G is reqular.

REMARK B.2.11. We can define right logarithmic derivatives and right evolutions in the
analogous way. We denote the right logarithmic derivative by d,, the right evolution map
by Evol” and the endpoint of the right evolution by evol’. One can show that a Lie

group is left-regular iff it is right-regular. Also the equivalent of holds. In
particular, the [initial value problem (B.2.8.1)[ becomes

n'(t) =~(t) -n(t), n0)=1. (B.2.11.1)
DEFINITION B.2.12. Let G be a Lie group. A smooth map exps : L(G) — G is called an

exponential map for G if Tgexpg = idy(g) and expg((s +t)v) = expg(sv) - expg(tv) for
all s,t € R and v € L(G).

B.2.3. Group actions

LEMMA B.2.13. Let G and H be groups and o : G x H — H a group action that is a
group morphism in its second argument. Further, let H be a subgroup of H generated
by U. Then

o(GxH)CH & a(GxU)CH.

Proof. By our assumption, H = | (U UU"1)". So we calculate

neN
a(GxH)=aGx [JUUU™)") = |G x (UUUT)
neN neN
=JalG@x@Wuu ™))"= J(@GxU)Ua(GxU) ™ )"CH. =
neN neN

LEMMA B.2.14. Let G and H be Lie groups and o : G X H — H a group action that is

a group morphism in its second argument. Then « is smooth iff the following assertions
hold:
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(a) It is smooth on U x V', where U and V are open neighborhoods of the respective units.

(b) For each h € H, there exists an open unit neighborhood W such that the map
a(,h) : W — H is smooth.

(¢) For each g € G the map a(g,-) : H — H is smooth.

If U generates G, (b) follows from (a). If V generates H, (c) follows from (a).

Proof. We first show that by our assumptions, « is smooth. To this end, let (g, h) € Gx H.
Choose W as in (b). Then U’ := UNW € Ug(1). We show that a|gu/ v is smooth.
Since the map U’ x V' — gU’ x Vh : (u,v) — (gu,vh) is a smooth diffeomorphism, we
only need to show that the map
U' xV — H: (u,v) = algu, hv)
is smooth. But
a(gu, hv) = ag(alu, vh)) = ag(au,v)a(u, h)) = ag(a(u, v)a® (u)),

where we denote a(-, h) by o’ and a(g,-) by ay. Since the right hand side is obviously
smooth, we are done.

Now we prove the other two assertions. We suppose that (a) holds. We let S C H be
the set of all & € H such that (b) holds. Then V C S; and since o/ (¢g) = a/(g)~! and
o (g) = a(g)a’ (g) for all g € G and h,h' € H, we easily see that S is a subgroup

of H. Since V is a generator, S = H.
Since U generates G, for each g € G we find g1,...,g, € UUU™! such that

O‘g:agno"'oagr

Further, for ¢ € G and h € H, ay-1(h) = ay(h)™!, so each ag, is smooth by our
assumption. Hence oy is smooth. m

LEmMMA B.2.15. Let G and H be Lie groups and w : G x H — H a smooth group action
that is a group morphism in its second argument. Then the semidirect product H %, G
can be turned into a Lie group that is modelled on L(H) x L(G).

Proof. The semidirect product H %, G is endowed with the multiplication
(H xG)x (HxG) = HxG:((h1,91), (h2,92)) = (h1-w(g1, h2), 91 - g2)
and the inversion
HxG— HxG:(hg) v (w(g r ), g7,

so the smoothness of the group operations follows from that of w. =

C. Quasi-inversion in algebras

We give a short introduction to the concept of quasi-inversion. It is a useful tool for the
treatment of algebras without a unit, where it serves as a replacement for the ordinary
inversion. Many of the algebras we treat are without a unit. Unless the contrary is stated,
all algebras are assumed associative.
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C.1. Definition

DEFINITION C.1.1 (Quasi-inversion). Let A denote a K-algebra with the multiplication .
An x € A is called quasi-invertible if there exists a y € A such that
r4+y—zxy=y+rx—y*xx=0.

In this case, we call QI4(x) := y the quasi-inverse of x. The set of all quasi-invertible
elements of A is denoted by A9. The map A? — A? : z — QIa(x) is called the quasi-
inversion of A. Often we will denote Q14 just by QI.

An interesting characterization of quasi-inversion is

LEMMA C.1.2. Let A be a K-algebra with multiplication x. Then A, endowed with the
operation
AxA—A: (z,y)—»axoy:=x+y—x*y,

is a monoid with the unit 0 and the unit group A4. The inversion map is given by QI 4.
Proof. This is shown by an easy computation. m
In unital algebras there is a close relationship between inversion and quasi-inversion.

LEMMA C.1.3. Let A be an algebra with multiplication x and unit e. Then x € A is
quasi-invertible iff x — e is invertible. In this case

QIa(z)=(z—e) " +e.
Proof. One easily computes that
(A,0) = (A,%) iz —~e—=

is an isomorphism of monoids (¢ was introduced in[Lemma C.1.2)), and from this we easily
deduce the assertion. m

C.2. Topological monoids and algebras with continuous quasi-inversion. In this
section, we examine algebras that are endowed with a topology. For technical reasons we
also examine monoids.

DEFINITION C.2.1. An algebra A is called a topological algebra if it is a topological vector
space and the multiplication is continuous.

A topological algebra A is called an algebra with continuous quasi-inversion if the set
A7 is open and the quasi-inversion QI is continuous.

A monoid, endowed with a topology, is called a topological monoid if the monoid
multiplication is continuous.

A monoid, endowed with a differential structure, is called a smooth monoid if the
monoid multiplication is smooth.

REMARK C.2.2. If A is an algebra with continuous quasi-inversion, then QI is not only
continuous, but automatically analytic (see [Gl602a]).

In topological monoids the unit group is open and the inversion continuous if they
are so near the unit element:
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LeEmMA C.2.3. Let M be a topological monoid with unit e and multiplication *. Then
the unit group M* is open iff there exists a neighborhood of e that consists of invertible
elements. The inversion map

I:M* Mz a!
is continuous iff it is so at e.
Proof. Let U be a neighborhood of e that consists of invertible elements and m € M*.
Since the map
bpp : M — M :x+— mxx
is a homeomorphism, ¢,,(U) is open; and it is clear that £,,(U) C M*. Hence M* =
Umenrrx €m(U) is open.
Let I be continuous at e. We show it is so at @ € M *. For m € M*, we have

- b= ('75_1 * m)_l xal = (pe-1 01 0ly-1)(m), (1)

1

Im)=m=" =m™" xx*xz~

where p, -1 denotes right multiplication by 2. Since I is continuous in e and £, -1 (z) = e,
we can derive the continuity of I at x from . n

For algebras with continuous multiplication we can deduce

LEMMA C.2.4. Let A be an algebra with continuous multiplication x. Then A? is open if
there exists a neighborhood of 0 that consists of invertible elements. The quasi-inversion
QI 4 is continuous if it is so at 0.

Proof. Since the map
AXA—=A: (z,y)—»ax+y—x*y

is continuous, we derive the assertions from Lemmas [C.1.2] and [C:2.3] m

A criterion for quasi-invertibility. We give a criterion that ensures that an element of an
algebra is quasi-invertible. It turns out to be quite useful in Banach algebras.

LeEmMMA C.2.5. Let A be a topological algebra and x € A. If >0 a' exists, then x is
quasi-invertible with

QI4(x) =— Z:z:l
i=1

Proof. We just compute that x is quasi-invertible:

T+ (—izl) — % (—izl) :—ixi—kixi = 0.
i=1 i=1 i=2 i=2

The identity (— Y oo, ) + 2 — (= > i, ") xx = 0 is computed in the same way. So the
quasi-invertibility of z follows directly from the definition. m

Quasi-inversion in Banach algebras

LEMMA C.2.6. Let A be a Banach algebra. Then B1(0) C A?. Moreover, for x € B1(0),

QIs(x)=— Zz’
i=1
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Proof. For x € B1(0) the series Y ;- 2 exists since it is absolutely convergent and A is
complete. So the assertion follows from n

LEMMA C.2.7. Let A be a Banach algebra. Then A? is open in A and the quasi-inversion
QI 4 is continuous.

Proof. This is an immediate consequence of Lemmas and since

oo
T E z*
i=1

is analytic (see [Bou67) §3.2.9]) and hence continuous. m
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Notation

The following list contains the symbols that are used on several occasions, together with a short
explanation of their meaning and the page number where the respective symbol is defined. For
better overview, the entries are arranged into several categories.

Basic notation

Bx(z,r), Br(x) Open ball with radius r around z in X B
B.(x) Closed ball with radius r around x B
crHU,Y) The set of all k times differentiable functions from U to YV
FCHU,Y) The set of all k times Fréchet differentiable functions from U to Y [0
d““)f(u; Z1,...,Zk) kth iterated derivative of f at u in the directions z1,...,zx
D"~ kth Fréchet derivative of ~y 8]
D The closed unit disk in R or C Rl
dist(A, B) Distance between A and B 5]
K R or C 1]
N NU{oo} = {00,0,1,...} B
N N\ {0} g
R R U {—o00, 00} R

Spaces of weighted functions

BCF(U,Y) k-times differentiable functions from U to Y with bounded deriva-

tives Ia
BC2* (U, V) functions v € BC*(U, V) such that dist(y(U),dV) > 0 i
BC*(U,Y)o functions in BC*(U,Y) mapping 0 to 0 i)
DU, V), CZ(U,V) compactly supported smooth functions from U to V' I
Chy(U,Y) k-times differentiable functions from U to Y with WW-bounded

derivatives [I0 3O
Ch (U, V) functions in C%,(U,Y) with image in V inil
cokw,v) functions v € Cpy, (U, V) such that dist(y(U),dV) > 0 I
(U, Y)° functions in Cy, (U, Y) whose seminorms decay outside of bounded

sets I
(U, V)® Functions in Ciy, (U, Y)® with values in V/ R2i]
Ch (U, Y)® Functions in C},(U, Y") whose seminorms decay outside of compact

sets B3
Lie groups and manifolds
Evol Left evolution 1138
evols Endpoint of the left evolution
Evol?, Right evolution I
evolf, Endpoint of the right evolution
eXPg Exponential function of the Lie group G 119
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w For a group action w, a “derivation” at the unital element
L() Lie algebra functor I
Oe(+) Left logarithmic derivative I
0p(+) Right logarithmic derivative
™™ Tangent bundle of M
Tf Tangent map 017
Ty f Restriction of Tf to ToM and Ty, N 17
T f, Tof Partial tangent maps 17
T, M Tangent space at x € M 110
X(M) The set of vector fields of the manifold M 17
Groups and monoids of functions
Ew Inverse of the canonical chart for Endy (X) and Diffy,, (X) 91|
CfV(U, QG) Lie group of weighted mappings with values in a Banach Lie group [74]
CfV(U, G)* Lie group of decaying weighted mappings with values in a Lie group [B0]
(U, G2, Lie group normalizing Cjy, (U, G)*® BT
Diff (X) Diffeomorphisms of the Banach space X %51
Diff .(M) Diffeomorphisms of M that are the identity outside some compact
set
Diff 5(R™) Diffeomorphisms of R" differing from idg» by a rapidly decreasing
R"™-valued map
Diffy,, (X) Weighted diffeomorphisms of the Banach space X for weights W [HI]
Diff,, (X)° Diff,,, (X) N Endw (X)°
Diffyy, (X )o Identity component of Diff,, (X) 63
Endyy (X) Weighted endomorphisms of the Banach space X for weights W  HI]
Endy (X)° Functions ¢ € Endyw (X) with ¢ —idx € Cyp (X, X)° @
Further notation
L’“(X7 Y) k-linear maps between normed spaces, endowed with the operator
topology
N(X) Continuous seminorms on X
X, X/p~(0) for X and p € N(X), 107
Tp Quotient map X — X,
Il 17,5 Supremum of the operator norm of the kth Fréchet derivative mul-
tiplied with f [Ial
YL, 7.5 7o © Yl 1.
I lop Operator norm
1T |op,p Operator norm with respect to p € N (Y)
Qla Quasi-inversion map of the algebra A @21
A1 Quasi-invertible elements of the algebra A 121



analytic maps, [T00]
superposition, see superposition with an
analytic map

bounded maps,
composition of,

centered chart, @
compactly supported diffeomorphisms, [f]
density in Diff,, (X)°,
complexification
good,
of maps, [T02]
of power series,
composition
of bounded maps, see bounded maps,
composition of
of bounded maps and weighted maps,
of weighted maps und certain subsets of

Lie groups, [66]

diffeomorphisms, [41]
compactly supported, see compactly
supported diffeomorphisms
groups of, [6]
semidirect product with, see semidi-
rect product
weighted, see weighted diffeomorphisms

good complexification, see complexification,
good

mapping groups
with values in a Banach Lie group, [74]

Index

with values in a locally convex Lie

group, P4
quasi-inversion, [T20]

regularity, [L19
of C, (U, G),
of Diffyy, (X),
of Diffy, (X)°,

semidirect product,
of Cyy (X, G) and Diff,,, (X),
of Diffy,,(X)o and a Lie group acting on
X367
smooth monoid,
smooth normalizer,
superposition
with a bounded map, 23] 25|
with a differentiable map, [40]

with a multilinear map, [I8] [I9} [35]

with an analytic map, 2§

weighted diffeomorphisms, [T
decreasing, [55]
easier description, [55]
weighted maps
decreasing, [IT] [33]
into Banach Lie groups, [74]
into locally convex Lie groups, [80] [8T}
into locally convex spaces, [30]
into normed spaces, [I0]
weights,
condition for completeness,
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