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Abstract

The multilinear Calderón–Zygmund theory is developed in the setting of RD-spaces which are
spaces of homogeneous type equipped with measures satisfying a reverse doubling condition.
The multiple-weight multilinear Calderón–Zygmund theory in this context is also developed in
this work. The bilinear T1-theorems for Besov and Triebel–Lizorkin spaces in the full range of
exponents are among the main results obtained. Multilinear vector-valued T1 type theorems
on Lebesgue spaces, Besov spaces, and Triebel–Lizorkin spaces are also proved. Applications
include the boundedness of paraproducts and bilinear multiplier operators on products of Besov
and Triebel–Lizorkin spaces.
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1. Introduction

In this work we develop the theory of multilinear analysis related to the Calderón–Zygmund
program within the framework of metric spaces. The impetus created by the recent devel-
opments in the theory of multilinear operators has naturally led us to consider its extension
to the setting of metric spaces. Since the techniques involved in the proofs transcend the al-
gebraic and differential structures of the underlying spaces, it is appropriate to undertake
this study in a unified way. This setting is quite general and it includes graphs, frac-
tals, Riemannian manifolds, Carnot–Carathéodory groups, anisotropic structures in Rn,
Ahlfors spaces, etc. As a consequence of this work, previously disconnected topics con-
cerning multilinear operators are integrated and streamlined. These topics include bilinear
Calderón–Zygmund operators, vector-valued bilinear operators (e.g., square-function-like
operators), paraproducts, and Coifman–Meyer multipliers on Lebesgue spaces, Besov
spaces, and Triebel–Lizorkin function spaces.

One of the first examples of multilinear operators in Euclidean harmonic analysis are
the commutators of Calderón which appear in a series representation of the Cauchy integral
along Lipschitz curves. The sharpest possible (endpoint) results for the m-commutators
of Calderón were obtained by Calderón himself [15] when m = 1, Coifman and Meyer [19]
whenm ∈ {1, 2} and Duong, Grafakos, and Yan [29] form ≥ 3. In particular, the article of
Coifman and Meyer [19] not only established delicate estimates for the commutators but
also set a solid foundation for a comprehensive study of general multilinear operators; this
work, together with [20, 21], has been both fundamental and pioneering in this subject
and certainly inspiring in our own work. Another important example of a bilinear operator
is the paraproduct of Bony [12], which has been studied extensively and has experienced
remarkable development in recent years, in view of its important connections with partial
differential equations. Section 8 below is devoted to paraproducts and its introduction
contains recent advances in the theory.

Among the main motivations for the multilinear analysis in this work, we mention the
m-linear versions of the fractional Leibniz-type rules, that is, inequalities of the type∥∥∥Dα

( m∏
j=1

fj

)∥∥∥
Lp(Rn)

≤ C
m∑
j=1

‖Dα(fj)‖Lpj (Rn)

m∏
k=1
k 6=j

‖fk‖Lpk (Rn), (1.1)

where C is a positive constant independent of {fj}mj=1, the indices obey the Hölder scaling
1/p = 1/p1 + · · ·+1/pm < 1 with each pj in [1,∞). Indeed, inequalities like (1.1) are based
on mapping properties of bilinear Coifman–Meyer multipliers, which in turn follow from
paraproduct decompositions and mapping properties for such paraproducts. In [5], Bényi,
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6 1. Introduction

Maldonado, Nahmod, and Torres proved that paraproducts can be realized as bilinear
singular integrals of Calderón–Zygmund type. Consequently, inequalities (1.1) are now
best understood via the use of the powerful multilinear Calderón–Zygmund theory that
was systematically developed by Grafakos and Torres [53] (see, for example, Grafakos [42]
for a survey of these techniques).

In addition, it turns out that there is a rich weighted-norm theory for multilinear
operators. In particular, multilinear Calderón–Zygmund operators obey vector-valued
and weighted estimates, with respect to certain classes of weights. Very natural classes of
multilinear weights surfaced in the work of Lerner, Ombrosi, Pérez, Torres, and Trujillo–
González [72]. These weights are intrinsically multilinear and they have brought into
fruition a richweighted theory formultilinear operators analogous to that of the classicalAp
weighted theory for linear operators in Euclidean spaces. The metric-space implementation
of this class of weights is carried out in the present work.

Besov spaces were originally introduced by Besov [10, 11] as the trace spaces of Sobolev
spaces, and were later generalized by Taibleson [96, 97, 98]. These spaces also arise as the
real interpolation intermediate spaces of Sobolev spaces. Around 1970, Triebel [100] and
Lizorkin [73, 74] started to investigate the scale F sp,q, nowadays known as the Triebel–
Lizorkin spaces. The scales of Besov and Triebel–Lizorkin spaces include fundamental func-
tion spaces such as Lebesgue spaces, Sobolev spaces, Hardy spaces, and the space BMO of
functions with bounded mean oscillation. We refer to Frazier and Jawerth [33] for a survey
of the theory of Besov and Triebel–Lizorkin spaces and to Triebel’s books [101, 102, 103]
for a more comprehensive study. Over the last few decades, Besov and Triebel–Lizorkin
spaces have consistently appeared in prominent parts of the literature and their usefulness
has been exposed in different areas of mathematics and physics, such as partial differen-
tial equations, potential theory, approximation theory, and fluid dynamics. The complete
framework of the classical Besov and Triebel–Lizorkin theory was extended to the context
of RD-spaces by Han, Müller and Yang [60, 84]. In this work, we establish the bilinear T1-
theorems for Besov and Triebel–Lizorkin spaces, in the full range of indices. Moreover, we
obtain multilinear vector-valued T1 type theorems on Lebesgue spaces, Besov spaces, and
Triebel–Lizorkin spaces. As an application, we deduce the boundedness of paraproducts
and bilinear multiplier operators on products of Besov and Triebel–Lizorkin spaces.

Some of our results, for example those contained in Sections 6, 7, 9 and Subsection 8.4,
are new even in the Euclidean case. In particular, in Section 6 we establish T1 theorems
for bilinear Calderón–Zygmund operators on Triebel–Lizorkin spaces Ḟ sp,q(X ) and Besov
spaces Ḃsp,q(X ) for the full admissible range of s, p, q, successfully answering an open
problem posed by Grafakos and Torres [55, p. 85]. Appropriate contextual descriptions as
well as references are included at the beginning of each section.

As a whole, our results complement, from the Littlewood–Paley and real-analysis side,
the recent advances in analysis on metric spaces related to first-order calculus (e.g. Sobolev
functions, see Hajłasz and Koskela [56], Koskela and Saksman [69], Shanmugalingam [93]
and the references therein), and the (weighted and unweighted) multilinear theory of
potential operators in Grafakos and Kalton [43], Kenig and Stein [68], Moen [83], and the
references therein.
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Notation. Let N := {1, 2, . . . }, Z+ := N ∪ {0} and R+ := [0,∞).
For any p ∈ [1,∞], we denote by p′ the conjugate index, that is, 1/p + 1/p′ = 1; if

p = 1, then p′ =∞ and, if p =∞, then p′ = 1.
For any a, b ∈ R, let a ∧ b := min{a, b} and a ∨ b := max{a, b}.
For any ball B ⊂ X and κ > 0, denote by κB the ball contained in X with the same

center as B but radius dilated by the factor κ.
Let Cb(X ) be the set of all continuous functions on X with bounded support (that is,

contained in a ball of (X , d)).
Let L∞b (X ) be the set of all bounded functions on X with bounded support.
We useL1

loc(X ) to represent the collection of all locally integrable functions on (X , d, µ).
Moreover, for q ∈ (0,∞),

Lqloc(X ) := {f : |f |q ∈ L1
loc(X )}.

Let
p(s, ε) := max{n/(n+ ε), n/(n+ s+ ε)},

where n ∈ N, ε > 0 and s ∈ R.
For any set E of X , we define

d(x,E) := inf{d(x, y) : y ∈ E}.
We use ‖T‖X→Y to denote the operator norm of T : X → Y.
Denote by C a positive constant independent of main parameters involved; it may

vary at different occurrences. Constants with subscripts do not change through the whole
paper. Occasionally we use Cα,β,... or C(α, β, . . . ) to indicate that the positive constant
C depends only on parameters α, β, . . . . Denote f ≤ Cg and f ≥ Cg by f . g and f & g,
respectively. If f . g . f , we then write f ∼ g.



2. Real analysis on spaces of homogeneous type

Spaces of homogeneous type provide a general framework where the real-variable approach
in the study of singular integrals of Calderón and Zygmund can be carried out. It turns
out that classical analysis topics such as the Littlewood–Paley theory and function spaces
can be introduced and developed in this context without resorting to the differential or
algebraic structure of the underlying space.

This section provides necessary notions and results related to the spaces of homogeneous
type and the so-calledRD-spaces; see [22, 23, 75, 76, 27, 64, 61, 59, 60, 65] and the references
therein. The readers who are familiar with this basic knowledge can directly proceed to
the next section.

2.1. Spaces of homogeneous type and RD-spaces. Let X be a set. A function
d : X × X → R+ is called a quasi-metric if

(i) d(x, y) = d(y, x) for all x, y ∈ X ;
(ii) d(x, y) = 0 if and only if x = y; and
(iii) there exists a constant K ∈ [1,∞) such that d(x, y) ≤ K[d(x, z) + d(z, y)] for all

x, y, z ∈ X .

In this case we call (X , d) a quasi-metric space. In particular, when K = 1, we call d a
metric and (X , d) a metric space. For all x ∈ X and r > 0, set

B(x, r) := {y ∈ X : d(x, y) < r}.

Next we recall the notions of spaces of homogeneous type in the sense of Coifman and
Weiss [22, 23] and of RD-spaces introduced in [59, 60].

Definition 2.1. Let (X , d) be a metric space and let the balls {B(x, r) : r > 0} form
a basis of open neighborhoods of the point x ∈ X . Suppose that µ is a regular Borel
measure defined on a σ-algebra which contains all Borel sets induced by the open balls
{B(x, r) : x ∈ X , r > 0}, and that 0 < µ(B(x, r)) <∞ for all x ∈ X and r > 0. The triple
(X , d, µ) is called a space of homogeneous type if there exists a constant C1 ∈ [1,∞) such
that, for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ C1µ(B(x, r)) (doubling condition). (2.1)

The triple (X , d, µ) is called an RD-space if it is a space of homogeneous type and there
exist constants κ ∈ (0,∞) and C2 ∈ (0, 1] such that, for all x ∈ X , 0 < r < 2 diam(X )

and 1 ≤ λ < 2 diam(X )/r,

C2λ
κµ(B(x, r)) ≤ µ(B(x, λr)); (2.2)

[8]



2.1. Spaces of homogeneous type and RD-spaces 9

here and in what follows,
diam(X ) := sup

x,y∈X
d(x, y).

RD-spaces have become the underlying context in numerous areas of analysis and
PDEs; we refer the reader to [22, 23, 59, 60, 84, 70, 71, 39, 104, 106, 105] and references
therein.

Remark 2.2. (i) For a space X of homogeneous type, by (2.1), there exist C3 ∈ [1,∞)

and n ∈ (0,∞) such that, for all x ∈ X , r > 0 and λ ≥ 1,

µ(B(x, λr)) ≤ C3λ
nµ(B(x, r)).

Indeed,we can chooseC3 := C1 andn := log2 C1. In some sense,nmeasures the “dimension”
of X . When X is an RD-space, we obviously have n ∈ [κ,∞).

(ii) For a space (X , d, µ) of homogeneous type, if µ(X ) <∞, then there exists a positive
constant R0 such that X = B(x,R0) for all x ∈ X ; see Nakai and Yabuta [86, Lemma 5.1].
It follows that µ(X ) <∞ if and only if diam(X ) <∞.

(iii)X is anRD-space if and only ifX is a space of homogeneous type with the additional
property that there is a constant a0 > 1 such that for all x ∈ X and 0 < r < diam(X )/a0,
B(x, a0r) \ B(x, r) 6= ∅; see, for instance, [60, Remark 1.1], [104] and [86]. Consequently,
any connected space of homogeneous type is an RD-space.

(iv) For any space (X , d, µ) of homogeneous type, the set

Atom(X , d, µ) := {x ∈ X : µ({x}) > 0}

is countable and, for every x ∈ Atom(X , d, µ), there exists r > 0 such that B(x, r) = {x};
see Macías and Segovia [75, Theorem 1]. From (iii) or (2.2), it follows that any RD-space
(X , d, µ) is non-atomic, i.e., µ({x}) = 0 for all x ∈ X .

(v) Throughout this paper, we always assume that (X , d, µ) is an RD-space and
µ(X ) =∞, unless it is clearly stated that (X , d, µ) is a space of homogeneous type.

Remark 2.3. For any quasi-metric space (X , d), Macías and Segovia [75, Theorem 2]
proved that there exists an equivalent quasi-metric ρ such that all balls corresponding to
ρ are open in the topology induced by ρ, and there exist constants C > 0 and θ ∈ (0, 1)

such that, for all x, y, z ∈ X ,

|ρ(x, z)− ρ(y, z)| ≤ C[ρ(x, y)]θ[ρ(x, z) + ρ(y, z)]1−θ.

If the metric d in Definition 2.1 is replaced by ρ, then all results in this paper have
corresponding analogues on (X , ρ, µ). In order to simplify the presentation, in this work
we always assume that d is a metric and the balls corresponding to d are open sets in the
topology induced by d.

Set
Vδ(x) := µ(B(x, δ)) and V (x, y) := µ(B(x, d(x, y)))

for all x, y ∈ X and δ > 0. It follows from (2.1) that V (x, y) ∼ V (y, x). Here we present
some estimates regarding spaces of homogeneous type; see, for example, [60, Lemma 2.1]
or [59].
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Lemma 2.4. Let (X , d, µ) be a space of homogeneous type, r > 0, δ > 0, α > 0, η ≥ 0 and
γ ∈ (0, 1).

(a) For all x, y ∈ X ,

µ(B(x, r + d(x, y))) ∼ µ(B(y, r + d(x, y))) ∼ Vr(x) + V (x, y)

∼ Vr(y) + V (x, y) ∼ Vr(x) + Vr(y) + V (x, y),

with implicit constants depending only on C1.
(b) If x, x′, x1 ∈ X satisfy d(x, x′) ≤ γ(r + d(x, x1)), then

r + d(x, x1) ∼ r + d(x′, x1) and µ(B(x, r + d(x, x1))) ∼ µ(B(x′, r + d(x′, x1))),

with implicit constants depending only on γ and C1.
(c) There exists a positive constant C, depending only on C1 and α, such that, for all

x ∈ X ,∫
d(x,y)≤δ

d(x, y)α

V (x, y)
dµ(y) ≤ Cδα and

∫
d(x,y)≥δ

1

V (x, y)

δα

d(x, y)α
dµ(y) ≤ C.

(d) If α > η ≥ 0, then there exists a positive constant C, depending only on C1, α and η,
such that, for all x ∈ X ,∫

X

1

Vδ(x) + V (x, y)

[
δ

δ + d(x, y)

]α
d(x, y)η dµ(y) ≤ Cδη.

2.2. Dyadic cubes, covering lemmas, and the Calderón–Zygmund decomposi-
tion. Throughout this subsection we always assume that (X , d, µ) is a space of homoge-
neous type.

Recall that in Rn the dyadic cubes are defined, for all k ∈ Z and ` = (`1, . . . , `n) ∈ Zn,
as

Qk,` := {x = (x1, . . . , xn) ∈ Rn : 2−k`i ≤ xi < 2−k(`i + 1), ∀i ∈ {1, . . . , n}}.

Most of their properties are retained in the case of abstract spaces of homogeneous type.
Indeed, a construction due to Christ (see [16]) allows the following version of the Euclidean
dyadic cubes in a general spaceX of homogeneous type. It should be remarked that recently
Hytönen et. al. [1, 66, 67] constructed a randomized dyadic structure by only assuming
that the underlying metric space is geometrically doubling.

Lemma 2.5. Let X be a space of homogeneous type. Then there exists a collection Q =

{Qkα ⊂ X : k ∈ Z, α ∈ Ik} of open subsets, where Ik is some index set, and constants
δ ∈ (0, 1) and C5, C6 > 0 such that

(i) for each fixed k ∈ Z, µ(X \
⋃
αQ

k
α) = 0 and Qkα ∩Qkβ = ∅ if α 6= β;

(ii) for any α, β, k, ` with ` ≥ k, either Q`β ⊂ Qkα or Q`β ∩Qkα = ∅;
(iii) for each (k, α) and each ` < k, there is a unique β such that Qkα ⊂ Q`β;
(iv) diam(Qkα) ≤ C5δ

k and each Qkα contains some ball B(zkα, C6δ
k), where zkα ∈ X .

One can think of Qkα as being a dyadic cube centered at zkα with diameter roughly δk.
In what follows, for simplicity, we always assume that δ = 1/2; see, for example, Han and
Sawyer [61, pp. 96–98] on how to remove this restriction.
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Regarding covering lemmas, we begin with the so-called basic covering lemma (see, for
instance, Heinonen [64, p. 2]) on metric spaces, which is particularly useful.

Lemma 2.6. Every familyF of balls of uniformly bounded diameter in a metric space (X , d)

contains a subfamily G of pairwise disjoint balls such that⋃
B∈F

B ⊂
⋃
B∈G

5B.

Moreover, every ball B from F meets a ball from G with radius at least half that of B.

Two geometric facts about spaces of homogeneous type, theVitali–Wiener type covering
lemma and Whitney type covering lemma, play fundamental roles in establishing the
Calderón–Zygmund theory on (X , d, µ); see [22, 23] as well as [76].

Lemma 2.7 (Vitali–Wiener type covering lemma). Let E ⊂ X be a bounded set (that is,
contained in a ball). Consider any covering of E of the form {B(x, rx) : x ∈ E}. Then
there exists a sequence of points xj ∈ E such that {B(xj , rxj )}j are pairwise disjoint and
{B(xj , C0rxj )}j is a covering ofE. Here C0 depends only on the doubling and quasi-triangle
constants.

We remark that, when Ω is an open bounded set, the following Lemma 2.8 was proved
in [22, pp. 70–71] and [23, Theorem 3.2]. The current version was claimed in [22, p. 70]
without a proof; see also [76, p. 277] for another variant, namely that Ω is assumed to be
an open set of finite measure strictly contained in X . In fact, a detailed proof of Lemma 2.8
can be given by borrowing some ideas from [94, pp. 15–16]; see also [47].

Lemma 2.8 (Whitney type covering lemma). Let Ω be an open proper subset of X . For
x ∈ X define d(x) := dist(x,Ω{). For any given c ≥ 1, let r(x) := d(x)/(2c). Then there
exist a positive number M , which depends only on c and C1 but not on Ω, and a sequence
{xk}k such that, if we denote r(xk) by rk, then

(i) {B(xk, rk/4)}k are pairwise disjoint and
⋃
k B(xk, rk) = Ω;

(ii) for every given k, B(xk, crk) ⊂ Ω;
(iii) for every given k, x ∈ B(xk, crk) implies that crk < d(x) < 3crk;
(iv) for every given k, there exists a yk /∈ Ω such that d(xk, yk) < 3crk;
(v) for every given k, the number of balls B(xi, cri) intersecting the ball B(xk, crk) is at

most M .

For any f ∈ L1
loc(X ), the Hardy–Littlewood maximal functionMf is defined by

Mf(x) := sup
B3x

1

µ(B)

∫
B

|f(y)| dµ(y), ∀x ∈ X , (2.3)

where the supremum is taken over all balls B ⊂ X containing x. It is easy to see that
the function Mf is lower semi-continuous (hence µ-measurable) for every f ∈ L1

loc(X ).
Using the Vitali–Wiener type covering lemma, Coifman and Weiss [22] proved that M
is bounded from L1(X ) to L1,∞(X ) and bounded on Lp(X ) for all p ∈ (1,∞]. Also, by
an argument similar to Grafakos [40, Exercise 2.1.13], we know that M is bounded on
Lp,∞(X ) for p ∈ (1,∞). The operator norms
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‖M‖L1(X )→L1,∞(X ), ‖M‖Lp(X )→Lp(X ) and ‖M‖Lp,∞(X )→Lp,∞(X )

all depend only on C1 and p.
Denote by Cb(X ) the space of all continuous functions on X with bounded supports

(that is, contained in a ball of (X , d)). As in Definition 2.1 we are assuming that µ is
a regular Borel measure on the metric space (X , d), which means that µ has the outer
and inner regularity (see Heinonen [64]), so Cb(X ) is dense in Lp(X ) for all p ∈ [1,∞).
This, combined with the weak type (1, 1) boundedness of M and a standard argument
(see, for instance, [64, pp. 12–13]), implies the differentiation theorem for integrals: for all
f ∈ L1

loc(X ) and almost every x ∈ X ,

lim
B3x, µ(B)→0

1

µ(B)

∫
B

f(y) dµ(y) = f(x)

and
lim

B3x, µ(B)→0

1

µ(B)

∫
B

|f(y)− f(x)| dµ(y) = 0.

A consequence of the current Whitney covering lemma and the differentiation theorem
for integrals on (X , d, µ) as well as the weak-(1, 1) boundedness of M is the celebrated
Calderón–Zygmund decomposition process for integrable functions; see Coifman andWeiss
[22, 23].

Lemma 2.9. Let f ∈ L1(X ). Then, for every λ > ‖f‖L1(X )/µ(X ), there exists a sequence
of balls, {Bk}k∈I , where I is some index set, such that

(i) { 1
4Bk}k∈I are pairwise disjoint;

(ii) |f(x)| ≤ Cλ for almost every x ∈ X \
⋃
k∈I Bk;

(iii) for any k ∈ I,
1

µ(Bk)

∫
Bk

|f | dµ > Cλ;

(iv)
∑
k∈I

µ(Bk) ≤ C‖f‖L1(X )/λ,

where the positive constant C depends only on C1.

Lemma 2.10. Let f ∈ L1(X ). For every λ > ‖f‖L1(X )/µ(X ), let {Bk}k∈I be the sequence
of balls provided by Lemma 2.9. Then there exist functions g and {bk}k∈I such that

(i) f = g +
∑
k∈I bk;

(ii) ‖g‖L∞(X ) ≤ Cλ;
(iii) for every k ∈ I, ∫

X
bk dµ = 0;

(iv) for every k ∈ I we have supp bk ⊂ Bk;
(v) ‖g‖L1(X ) ≤ C‖f‖L1(X ) and

∑
k∈I ‖bk‖L1(X ) ≤ C‖f‖L1(X ), where C is a positive

constant depending only on C1.

For any η ∈ (0, 1], let Cη(X ) be the set of all functions f : X → C such that

‖f‖Ċη(X ) := sup
x 6=y

|f(x)− f(y)|
d(x, y)η

<∞.
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Denote by supp f the closure of the set {x ∈ X : f(x) 6= 0} in X . Define

Cηb (X ) := {f ∈ Cη(X ) : f has bounded support}.
Then Cηb (X ) ⊂ L∞(X ) and the norm on Cηb (X ) is given by

‖f‖Cη(X ) := ‖f‖L∞(X ) + ‖f‖Ċη(X ).

In what follows, we endow Cηb (X ) with the strict inductive limit topology (see [76, p. 273])
arising from the sequence of spaces (Cηb (Bn), ‖ · ‖Cη(X )), where {Bn}n∈Z is any given
increasing sequence of balls with the same center such that X =

⋃
n∈NBn and

Cηb (Bn) := {f ∈ Cηb (X ) : supp f ⊂ Bn}.
Denote by (Cηb (X ))′ the dual space of Cηb (X ), that is, the collection of all continuous linear
functionals on Cηb (X ). The space (Cηb (X ))′ is endowed with the weak∗-topology.

For functions in Cηb (X ), we have a more elaborate version of the Calderón–Zygmund
decomposition lemma when µ(X ) =∞.

Lemma 2.11. Let µ(X ) = ∞, η ∈ (0, 1] and f ∈ Cηb (X ). For any λ > 0, f has the
decomposition

f = g +
∑
k∈I

bk,

where g, {bk}k∈I and
∑
k∈I bk are functions in Cηb (X ) satisfying (i)–(v) of Lemma 2.10.

Proof. Suppose that f ∈ Cηb (X ) with η ∈ (0, 1] and λ > 0. Consider the level set

Ω := {x ∈ X :Mf(x) > λ}.
Without loss of generality, we may assume that supp f ⊂ B(y0, R), where y0 ∈ X and
R > 0. Moreover, since µ(X ) = ∞, we can choose R sufficiently large so that f , λ and
B(y0, R) satisfy the assumptions of [23, p. 625, Lemma (3.9)]. From this, we deduce that Ω

is contained in some ball. Then we cover Ω by using balls {Bk}k∈I := {B(xk, rk)}k∈I which
satisfy (i)–(v) of Lemma 2.8. Take a radial function h ∈ C∞c (R) such that 0 ≤ h ≤ 1,
h(t) = 1 when |t| ≤ 1, and h(t) = 0 when |t| ≥ 2. For every Bk, define

φk(x) := h

(
d(x, xk)

rk

)
, ∀x ∈ X .

It is easy to show that every φk is in C1
b (X ) and φk(x) = 1 when x ∈ Bk. Moreover, if

we take the constant c in Lemma 2.8 sufficiently large (for example, c > 2), then we have
suppφk ⊂ 2Bk ⊂ Ω and {2Bk}k∈I has the bounded overlapping property. If we let

Φk :=
φk∑
j φj

, k ∈ I,

then {Φk}k∈I forms a partition of unity of Ω with every Φk in C1
b (X ). Now let

bk := fΦk −
∫
X fΦk dµ∫
X Φk dµ

Φk, k ∈ I,

and
g := f −

∑
k∈I

bk.

Then it is a standard procedure to show that g and {bk}k∈I satisfy (i)–(v) of Lemma 2.10.
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As f,Φk ∈ Cηb (X ), we see that every bk is in Cηb (X ) and supp bk ⊂ 2Bk. Since supp f

and Ω are both bounded sets,
∑
k∈I bk and g have bounded supports. The finite overlap

property of {2Bk}k∈I implies that
∑
k∈I bk(x) has only finitely many terms for any fixed

x ∈ X . From this and the fact that each bk is in Cηb (X ), it follows that
∑
k∈I bk is in

Cηb (X ), hence so is g.

2.3. Space of test functions. We recall the notion of the space of test functions on the
RD-space (X , d, µ) used in [59, 60].

Definition 2.12. Let x1 ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞). A function ϕ on X
is called a test function of type (x1, r, β, γ) if there exists a positive constant C such that

(i) for all x ∈ X ,

|ϕ(x)| ≤ C 1

Vr(x1) + Vr(x) + V (x1, x)

[
r

r + d(x1, x)

]γ
;

(ii) for all x, y ∈ X satisfying d(x, y) ≤ [r + d(x1, x)]/2,

|ϕ(x)− ϕ(y)| ≤ C
[

d(x, y)

r + d(x1, x)

]β
1

Vr(x1) + Vr(x) + V (x1, x)

[
r

r + d(x1, x)

]γ
.

Denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈ G(x1, r, β, γ),
its norm is defined by

‖ϕ‖G(x1,r,β,γ) := inf{C : (i) and (ii) hold}.

The space G(x1, r, β, γ) is called the space of test functions. Set

G̊(x1, r, β, γ) :=

{
ϕ ∈ G(x1, r, β, γ) :

∫
X
ϕ(x) dµ(x) = 0

}
.

The space G̊(x1, r, β, γ) is called the space of test functions with mean zero.

It should be remarked that the prototype of such test functions on Rn first appeared
in the work of Meyer [80], where our Definition 2.12(ii) is replaced by

|ϕ(x)− ϕ(y)| ≤ C
(
|x− x′|

r

)β[(
r

r + |x− x1|

)γ
+

(
r

r + |y − x1|

)γ]
. (2.4)

Instead of imposing the condition that (2.4) holds for all x, y ∈ Rn, Han [57] only required
(2.4) for the points x, y satisfying |x − y| ≤ (r + |x − x1|)/2. The above definitions of
G(x1, r, β, γ) and G̊(x1, r, β, γ) for general RD-spaces were first introduced in [59, 60].

Following [60], fix x1 ∈ X and let

G(β, γ) := G(x1, 1, β, γ).

It is easy to see that, for any x2 ∈ X and r > 0, we have G(x2, r, β, γ) = G(β, γ) with
equivalent norms (but with constants depending on x1, x2 and r). The space G(β, γ) is a
Banach space.

For any given ε ∈ (0, 1], letGε0(β, γ) be the completion of the spaceG(ε, ε) inG(β, γ)when
β, γ ∈ (0, ε]. Then ϕ ∈ Gε0(β, γ) if and only if ϕ ∈ G(β, γ) and there exists {φj}j∈N ⊂ G(ε, ε)

such that limj→∞ ‖ϕ− φj‖G(β,γ) = 0. If ϕ ∈ Gε0(β, γ), we define

‖ϕ‖Gε0(β,γ) := ‖ϕ‖G(β,γ).
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For the above chosen {φj}j∈N, we have

‖ϕ‖Gε0(β,γ) = lim
j→∞

‖φj‖G(β,γ).

Similarly, the space G̊ε0(β, γ) is defined to be the completion of G̊(ε, ε) in G̊(β, γ) when
β, γ ∈ (0, ε] and, for any ϕ ∈ G̊ε0(β, γ), we define ‖ϕ‖G̊ε0(β,γ) := ‖ϕ‖G(β,γ). Both Gε0(β, γ)

and G̊ε0(β, γ) are Banach spaces.
Denote by (Gε0(β, γ))′ and (G̊εb,0(β, γ))′, respectively, the sets of all bounded linear

functionals on Gε0(β, γ) and G̊εb,0(β, γ). Define 〈f, ϕ〉 to be the natural pairing of elements
f ∈ (Gε0(β, γ))′ and ϕ ∈ Gε0(β, γ), or f ∈ (G̊ε0(β, γ))′ and ϕ ∈ G̊ε0(β, γ). The space Gε0(β, γ)

plays the same role as the Schwartz class S(Rn) and the space of all infinitely differentiable
compactly supported functions on Rn.

Obviously, any function f ∈ Cηb (X ) with η ∈ (0, 1] is a test function of type (x0, r, η, γ)

for all x0 ∈ X , r > 0 and γ > 0; moreover, there exists a positive constant C, depending
only on C1, supp f , x1, β and γ, such that

‖f‖G(x0,r,η,γ) ≤ C‖f‖Cη(X ).

Conversely, if f ∈ G(x1, 1, β, γ) for some β ∈ (0, 1] and γ > 0, then f ∈ Cβ(X ). Moreover,
by the size condition on f (see Definition 2.12(i)), we see that

‖f‖L∞(X ) ≤
1

V1(x1)
‖f‖G(x1,1,β,γ)

and, by Definition 2.12(ii) when d(x, y) ≤ 1/2 and Definition 2.12(i) when d(x, y) > 1/2,

‖f‖Ċβ(X ) = max

{
sup

x 6=y, d(x,y)≤1/2

|f(x)− f(y)|
d(x, y)β

, sup
x 6=y, d(x,y)>1/2

|f(x)− f(y)|
d(x, y)β

}
≤ 2β+1

V1(x1)
‖f‖G(x1,1,β,γ).

2.4. Approximations of the identity. Approximations of the identity on Ahlfors 1-
regular metric measure spaces (X , d, µ) satisfying µ(X ) = ∞ and µ({x}) = 0 for all
x ∈ X first appeared in David, Journé and Semmes [26, Lemma 2.2] and Han [58] (see
also [57, 61]). Also based on the ideas in [26], the corresponding versions in the context of
RD-spaces were proved in [60, Definition 2.2]. The following definition is from [59, 60].

Definition 2.13. Let ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0. A sequence {Sk}k∈Z of bounded
linear integral operators on L2(X ) is called an approximation of the identity of order
(ε1, ε2, ε3) (for short, (ε1, ε2, ε3)-ATI) if there exists a positive constant C such that, for
all k ∈ Z and x, x′, y, y′ ∈ X , the integral kernel Sk(x, y) of Sk is a measurable function,
from X × X into C, satisfying

(i) |Sk(x, y)| ≤ C 1
V
2−k (x)+V

2−k (y)+V (x,y)
2−kε2

[2−k+d(x,y)]ε2
;

(ii) for all d(x, x′) ≤ [2−k + d(x, y)]/2,

|Sk(x, y)− Sk(x′, y)|

≤ C d(x, x′)ε1

[2−k + d(x, y)]ε1
1

V2−k(x) + V2−k(y) + V (x, y)

2−kε2

[2−k + d(x, y)]ε2
;
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(iii) Sk satisfies (ii) with x and y interchanged;
(iv) for d(x, x′) ≤ [2−k + d(x, y)]/3 and d(y, y′) ≤ [2−k + d(x, y)]/3,

|[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C d(x, x′)ε1

[2−k + d(x, y)]ε1
d(y, y′)ε1

[2−k + d(x, y)]ε1

× 1

V2−k(x) + V2−k(y) + V (x, y)

2−kε3

[2−k + d(x, y)]ε3
;

(v)
∫
X Sk(x,w) dµ(w) = 1 =

∫
X Sk(w, y) dµ(w).

Remark 2.14. (i) If {Sk}k∈Z is an (ε1, ε2, ε3)-ATI with bounded support, that is, there
exists a positive constantC such that Sk(x, y) = 0 whenever d(x, y) ≥ C2−k, then {Sk}k∈Z
is an (ε1, ε

′
2, ε
′
3)-ATI for all ε′2 > 0 and ε′3 > 0. Such a sequence of operators, {Sk}k∈Z, is

called an approximation of the identity of order ε1 with bounded support (for short, ε1-ATI

with bounded support). The existence of 1-ATI with bounded support was shown in [60,
Theorem 2.6] by using the ideas of David, Journé and Semmes [26].

(ii) Let {Sk}k∈Z be an ε1-ATI with bounded support. For any η ∈ (0, ε1], there exists
a positive constant C such that, for all x, x′, y ∈ X and all k ∈ Z,

|Sk(x, y)− Sk(x′, y)| ≤ C
[
d(x, x′)

2−k

]η
1

V2−k(y)
. (2.5)

Indeed, (2.5) follows from the regular condition of Sk if d(x, x′) ≤ 2−k−1 and the size
condition of Sk if d(x, x′) > 2−k−1. Combining (2.5) and the size condition of Sk, we see
that Sk(·, y) ∈ Cηb (X ) for all k ∈ Z and y ∈ X . The same holds true for Sk(y, ·).

Classical examples of operators satisfying Definition 2.13 for the special case X = Rn
can be built as follows. Let Fbass (F stands for filter) be the collection of non-negative
radial functions ϕ ∈ S(Rn) such that supp ϕ̂ ⊂ {ξ ∈ Rn : |ξ| ≤ 2} and ϕ̂(ξ) = 1 if |ξ| ≤ 1,
where ϕ̂ represents the Fourier transform of ϕ. Let Fband be the collection of non-negative
radial functions ψ ∈ S(Rn) such that supp ψ̂ ⊂ {ξ ∈ Rn : 1/2 ≤ |ξ| ≤ 4} and ψ̂(ξ) = 1 if
1 ≤ |ξ| ≤ 2. Given ϕ ∈ Fbass, define Sj by

Sj(f)(x) :=

∫
Rn
Sj(x, y)f(y) dy, ∀f ∈ S(Rn) and x ∈ Rn,

where j ∈ Z and Sj(x, y) := 2jnϕ(2j(x− y)). Thus, Sj(f)(x) = ϕj ∗ f(x), where we used
the following convention: Given a function g and j ∈ Z, we define the dilations gj as
gj(x) := 2jng(2jx). Also, set Dj(x, y) := ψj(x− y), where ψj := ϕj+1 − ϕj and ψ is such
that

ψ̂(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ), ∀ξ ∈ Rn.

Notice that ψ ∈ Fband. The operators Sj and Dj are the basic tools to develop the
Littlewood–Paley theory.

Finally, we summarize some properties concerning the size condition of such approxi-
mations of the identity as follows (see [60, p. 16, Proposition 2.7]).
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Lemma 2.15. Suppose that a sequence {Sk}k∈Z of functions defined on X ×X and taking
values in C satisfies Definition 2.13. Then:

(i) there exists a positive constant C such that, for all k ∈ Z and x, y ∈ X ,∫
X
|Sk(x, z)| dµ(z) ≤ C and

∫
X
|Sk(z, y)| dµ(z) ≤ C;

(ii) for all p ∈ [1,∞], there exists a positive constant Cp such that, for all f ∈ Lp(X ),

‖Sk(f)‖Lp(X ) ≤ Cp‖f‖Lp(X );

(iii) for all p ∈ [1,∞) and f ∈ Lp(X ),

lim
k→∞

‖Skf − f‖Lp(X ) = 0;

(iv) there exists a positive constant C such that, for all k ∈ Z, f ∈ L1
loc(X ) and x ∈ X ,

|Sk(f)(x)| ≤ CMf(x).

2.5. Singular integrals on spaces of homogeneous type. In this subsection we follow
the pioneer work of Coifman and Weiss [22, 23], and more recent results provided by Han,
Müller and Yang [59, 60], to present the analogs of the boundedness for singular integrals
on some classical function spaces on Rn for spaces of homogeneous type. The following
theorem is due to Coifman–Weiss [22, Theorem 2.4].

Lemma 2.16. Let T : Cηb (X ) → (Cηb (X ))′ be a continuous linear operator such that, for
all f ∈ Cηb (X ) and x ∈ X away from supp f ,

T (f)(x) =

∫
X
K(x, y)f(y) dµ(y),

where the kernel K satisfies Hörmander’s condition

sup
y,y′∈X

∫
d(y,y′)≤d(x,y)/2

[|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)|] dµ(x) ≤ CK <∞

for some positive constant CK . If T is bounded on Lp(X ) for some p ∈ (1,∞), then

(i) T can be extended to a bounded linear operator on Lq(X ) for all q ∈ (1,∞);
(ii) T can be extended to a bounded linear operator from L1(X ) to L1,∞(X ).

The norm of T in (i) or (ii) is at most a positive constant multiple of

CK + ‖T‖Lp(X )→Lp(X ).

The T1-theorem gives necessary and sufficient conditions for the continuity of singular
integral operators in L2(X ). The first instance of such a theorem, in the Euclidean setting,
was proved by David and Journé [25]. The theorem also extends to RD-spaces [59, 60].

Definition 2.17. Let δ ∈ (0, 1]. A continuous complex-valued function K(x, y) on

Ω := {(x, y) ∈ X × X : x 6= y}

is called a Calderón–Zygmund kernel of type δ if there is a positive constant CK such that,
for all (x, y), (x′, y) ∈ Ω,

|K(x, y)| ≤ CK
V (x, y)
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and, when d(x, x′) ≤ d(x, y)/2,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ CK
[
d(x, x′)

d(x, y)

]δ
1

V (x, y)
.

In this case, write K ∈ Ker(CK , δ).

Definition 2.18. Let η ∈ (0, 1]. A Calderón–Zygmund singular integral operator is a
continuous operator T : Cηb (X )→ (Cηb (X ))′ such that, for all f ∈ Cηb (X ) and x /∈ supp f ,

T (f)(x) =

∫
X
K(x, y)f(y) dµ(y),

where the kernel K ∈ Ker(CK , δ) for some CK > 0 and δ ∈ (0, 1]. The transpose T ∗ of T
is defined by

〈T ∗f, g〉 = 〈Tg, f〉

for all f, g ∈ Cηb (X ). The kernel K∗ of T ∗ is related to the one of T by K∗(x, y) = K(y, x)

for all x, y ∈ X .

Definition 2.19. Given η ∈ (0, 1], x ∈ X and r > 0, a function ϕ on X is called a
normalized bump function for the ball B(x, r) if

(i) ϕ ∈ Cηb (X ) and suppϕ ⊂ B(x, r);
(ii) ‖ϕ‖L∞(X ) ≤ 1;
(iii) |ϕ(z)− ϕ(y)| ≤ r−ηd(z, y)η for all z, y ∈ X .

Denote by T (η, x, r) the collection of all normalized bump functions for the ball B(x, r).

Definition 2.20. Let 0 < η ≤ θ. A singular operator T : Cηb (X ) → (Cηb (X ))′ is said to
have the weak boundedness property (for short, WBP(η)) if there exists a positive constant
C such that, for all x ∈ X , r > 0 and ϕ,ψ ∈ T (η, x, r),

|〈Tϕ, ψ〉| ≤ Cµ(B(x, r)). (2.6)

The smallest possible constant C in (2.6) is denoted by ‖T‖WBP(η).

The following BMO-type spaces on spaces of homogeneous type (X , d, µ) were intro-
duced by Coifman and Weiss [23].

Definition 2.21. Let q ∈ [1,∞). A function f ∈ Lqloc(X ) is said to be in the space
BMOq(X ) if

‖f‖BMOq(X ) :=

{
sup
B⊂X

1

µ(B)

∫
B

|f(x)− fB |q dµ(x)

}1/q

<∞,

where
fB :=

1

µ(B)

∫
B

f(y) dµ(y).

Remark 2.22. (i) If f1, f2 ∈ BMOq(X ) and f1−f2 is a constant, then we regard f1 and f2

as the same element in BMOq(X ).
(ii) If q = 1, we write BMO(X ) instead of BMO1(X ) for simplicity.
(iii) For any given q ∈ (1,∞), the two spaces BMOq(X ) and BMO(X ) coincide with

equivalent norms; see [23, pp. 593–594].
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In the following T1-theorem on spaces of homogeneous type, “(i)⇔(ii)” is due to [60,
Theorem 5.56], and the proof of [60, Theorem 5.57] implies that “(i)⇒(iii)⇒(iv)⇒(ii)”.

Theorem 2.23. Let ε ∈ (0, 1], η ∈ (0, ε) and T be a continuous linear operator from
Cηb (X ) to (Cηb (X ))′ as in Definition 2.18 associated with a kernelK ∈ Ker(CK , ε) for some
CK > 0. Then the following statements are equivalent:

(i) T extends to a bounded linear operator on L2(X );
(ii) T (1) ∈ BMO(X ), T ∗(1) ∈ BMO(X ) and T ∈WBP(η);
(iii) there exists a positive constant C such that, for all x ∈ X , R > 0 and φ ∈ T (η, x,R),

‖T (φ)‖L2(X ) + ‖T ∗(φ)‖L2(X ) < Cµ(B(x,R));

(iv) for all x ∈ X , R > 0 and φ ∈ T (η, x,R),

‖T (φ)‖BMO(X ) + ‖T ∗(φ)‖BMO(X ) <∞.



3. Multilinear Calderón–Zygmund theory

This section is entirely devoted to the extension of the multilinear Calderón–Zygmund
theory in the Euclidean case, as developed by Grafakos and Torres in [53], to the context of
RD-spaces (X , d, µ). This theory stems from the work of Coifman andMeyer [19, 20, 21, 82];
see also Kenig and Stein [68].

3.1. Multilinear Calderón–Zygmund operators. Motivated by [53] we study the
following multilinear singular integrals on (X , d, µ).

Definition 3.1. Given m ∈ N, set

Ωm := Xm+1 \ {(y0, y1, . . . , ym) : y0 = y1 = · · · = ym}.

Suppose that K : Ωm → C is locally integrable. The function K is called a Calderón–
Zygmund kernel if there exist constants CK ∈ (0,∞) and δ ∈ (0, 1] such that, for all
(y0, y1, . . . , ym) ∈ Ωm,

|K(y0, y1, . . . , ym)| ≤ CK
1

[
∑m
k=1 V (y0, yk)]m

(3.1)

and that, for all k ∈ {0, 1, . . . ,m},

|K(y0, y1, . . . , yk, . . . , ym)−K(y0, y1, . . . , y
′
k, . . . ym)|

≤ CK
[

d(yk, y
′
k)

max0≤k≤m d(y0, yk)

]δ
1

[
∑m
k=1 V (y0, yk)]m

(3.2)

whenever d(yk, y
′
k) ≤ max0≤k≤m d(y0, yk)/2. In this case, write K ∈ Ker(m,CK , δ).

Definition 3.2. Let η ∈ (0, 1]. An m-linear Calderón–Zygmund operator is a continuous
operator

T :

m times︷ ︸︸ ︷
Cηb (X )× · · · × Cηb (X )→ (Cηb (X ))′

such that, for all f1, . . . , fm ∈ Cηb (X ) and x /∈
⋂m
i=1 supp fi,

T (f1, . . . , fm)(x) =

∫
Xm

K(x, y1, . . . , ym)

m∏
i=1

fi(yi) dµ(y1) · · · dµ(ym), (3.3)

where the kernel K is in Ker(m,CK , δ) for some CK > 0 and δ ∈ (0, 1]. As an m-linear
operator, T has m formal transposes. The jth transpose T ∗j of T is defined by

〈T ∗j(f1, . . . , fm), g〉 = 〈T (f1, . . . , fj−1, g, fj+1, . . . , fm), fj〉

[20]
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for all f1, . . . , fm, g in Cηb (X ). The kernel K∗j of T ∗j is related to the one of T by

K∗j(x, y1, . . . , yj−1, yj , yj+1, . . . , ym) = K(yj , y1, . . . , yj−1, x, yj+1, . . . , ym).

To maintain uniform notation, we may occasionally denote T by T ∗0 and K by K∗0.

3.2.Multilinear weak-type estimates. We use the Calderón–Zygmund decomposition
to obtain the endpoint weak-type boundedness for multilinear operators; see [53] when
(X , d, µ) is the Euclidean space.

Theorem 3.3. Let T be an m-linear Calderón–Zygmund operator associated with a kernel
K ∈ Ker(m,CK , δ). Assume that, for some 1 ≤ q1, q2, . . . , qm ≤ ∞ and some 0 < q < ∞
with

∑m
j=1 1/qj = 1/q, T maps Lq1(X )×· · ·×Lqm(X )→ Lq,∞(X ). Then T can be extended

to a boundedm-linear operator from them-fold product L1(X )×· · ·×L1(X ) to L1/m,∞(X )

and

‖T‖L1(X )×···×L1(X )→L1/m,∞(X ) ≤ C[CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq,∞(X )]

for some positive constant C that depends only on C1, C2, δ and m.

To show Theorem 3.3, we first establish the following lemma.

Lemma 3.4. For any δ > 0, there exists positive constant C, depending only on C1, δ and
m, such that, for all i ∈ {1, . . . ,m} and all x, yk ∈ X with k 6= i,∫

X

[
1

max1≤k≤m d(x, yk)

]δ
1∑m

k=1 V (x, yk)
dµ(yi) ≤ C

[
1

max1≤k≤m, k 6=i d(x, yk)

]δ
.

Proof. Let
a := max

1≤k≤m, k 6=i
d(x, yk).

By (a) and (b) of Lemma 2.4 and (2.1), we see that, when d(x, yi) < 2a,
m∑
k=1

V (x, yk) ∼ µ(B(x, a)),

which further implies that∫
d(x,yi)<2a

[
1

max1≤k≤m d(x, yk)

]δ
1∑m

k=1 V (x, yk)
dµ(yi)

.

[
1

max1≤k≤m, k 6=i d(x, yk)

]δ
µ(B(x, 2a))

µ(B(x, a))

.

[
1

max1≤k≤m, k 6=i d(x, yk)

]δ
.

On the other hand, when d(x, yi) ≥ 2a, we have

max
1≤k≤m

d(x, yk) = d(x, yi) and
m∑
k=1

V (x, yk) ∼ V (x, yi);

consequently, again using (2.1) implies that
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∫
d(x,yi)≥2a

[
1

max1≤k≤m d(x, yk)

]δ
1∑m

k=1 V (x, yk)
dµ(yi)

∼
∞∑
`=1

∫
2`a≤d(x,yi)<2`+1a

[
1

d(x, yi)

]δ
1

V (x, yi)
dµ(ym)

.
∞∑
`=1

(
1

2`a

)δ
µ(B(x, 2`+1a))

µ(B(x, 2`a))

.

[
1

max1≤k≤m, k 6=i d(x, yk)

]δ
.

Applying Lemmas 2.11 and 3.4, we now show Theorem 3.3.

Proof of Theorem 3.3. Let

A := ‖T‖Lq1 (X )×···×Lqm (X )→Lq,∞(X ).

Since the spaceCηb (X ) is dense in L1(X ) for any η ∈ (0, 1] (see [60, p. 22, Corollary 2.11]), it
suffices to prove the theorem for functions {fj}mj=1 ⊂ C

η
b (X ). Fix α > 0. By homogeneity,

without loss of generality, we may assume that ‖fj‖L1(X ) = 1. For any α ∈ (0,∞), let

Eα := {x ∈ X : |T (f1, . . . , fm)(x)| > α}.

We only need to show that

µ(Eα) . (CK +A)1/mα−1/m.

Let γ > 0 be a constant to be determined later. For all j ∈ {1, . . . ,m}, apply the
Calderón–Zygmund decomposition (Lemma 2.11) to fj at height (αγ)1/m to obtain good
and bad functions gj and bj and families of balls, {Bj,k}k∈Ij ,j∈{1,...,m} with {Ij}1≤j≤m
being index sets, such that fj = gj + bj , where bj =

∑
k∈Ij bj,k satisfying, for all k ∈ Ij

and s ∈ [1,∞],

(i) supp bj,k ⊂ Bj,k and
∫
X bj,k(y) dµ(y) = 0;

(ii) ‖bj,k‖L1(X ) . (αγ)1/mµ(Bj,k);

(iii)
∑
k∈Ij µ(Bj,k) . (αγ)−1/m;

(iv) ‖gj‖Ls(X ) . (αγ)(1−1/s)/m and ‖bj‖L1(X ) ≤
∑
k∈Ij ‖bj,k‖L1(X ) . 1.

Also, notice that gj and bj as above are functions in Cηb (X ) by Lemma 2.11.
Now let

E1 = {x : |T (g1, g2, . . . , gm)(x)| > α/2m},
E2 = {x : |T (b1, g2, . . . , gm)(x)| > α/2m},
E3 = {x : |T (g1, b2, . . . , gm)(x)| > α/2m},

...

E2m = {x : |T (b1, b2, . . . , bm)(x)| > α/2m}.
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Since

µ({x : |T (f1, . . . , fm)(x)| > α}) ≤
2m∑
r=1

µ(Er),

we only need to prove that, for all r ∈ {1, . . . , 2m},

µ(Er) . (CK +A)1/mα−1/m. (3.4)

Chebyshev’s inequality and the Lq1(X )×· · ·×Lqm(X )→ Lq,∞(X ) boundedness of T give

µ(E1) ≤
(

2mA

α

)q
‖g1‖qLq1 (X ) · · · ‖gm‖

q
Lqm (X )

.

(
A

α

)q m∏
j=1

(αγ)q/(mq
′
j) ∼

(
A

α

)q
(αγ)(m−1/q)q/m ∼ Aqα−1/mγq−1/m.

Consider a set Er as above with 2 ≤ r ≤ 2m. Suppose that, for some 1 ≤ ` ≤ m, we have
exactly ` bad functions appearing in T (h1, . . . , hm), where hj ∈ {bj , gj} and assume that
the bad functions occur at the entries j1, . . . , j`. The next step is to show that

µ(Er) = µ({x : |T (h1, . . . , hm)(x)| > α/2m})
. α−1/m[γ−1/m + γ−1/m(γCK)1/`]. (3.5)

Let rj,k and cj,k be the radius and the center of the ball Bj,k, respectively. Set

(Bj,k)∗∗ := B(cj,k, 5rj,k).

Since

µ
( m⋃
j=1

⋃
k∈Ij

(Bj,k)∗∗
)
. (αγ)−1/m,

(3.5) is a consequence of

µ
({
x /∈

m⋃
j=1

⋃
k∈Ij

(Bj,k)∗∗ : |T (h1, . . . , hm)(x)| > α/2m
})

. (αγ)−1/m(γCK)1/`. (3.6)

Fix x /∈
⋃m
j=1

⋃
k∈Ij (Bj,k)∗∗. Then

|T (h1, . . . , hm)(x)| ≤
∑
k1∈Ij1

· · ·
∑
k`∈Ij`

∣∣∣∣ ∫
Xm

K(x, y1, . . . , ym)

×
∏

i/∈{j1,...,j`}

gi(yi)
∏̀
i=1

bji,ki(yji) dµ(y1) · · · dµ(ym)

∣∣∣∣
=:

∑
k1∈Ij1

· · ·
∑
k`∈Ij`

Hk1,...,k` .

Fix, for the moment, the ballsB∗j1,k1 , . . . , B
∗
j`,k`

; without loss of generality, we may suppose
that B∗j1,k1 has the smallest radius among them. Notice that
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B∗j1,k1

K(x, y1, . . . , ym)bj1,k1(yj1) dµ(yj1)

∣∣∣∣
=

∣∣∣∣ ∫
B∗j1,k1

[K(x, y1, . . . , yj1 , . . . , ym)−K(x, y1, . . . , cj1,k1 , . . . , ym)] bj1,k1(yj1) dµ(yj1)

∣∣∣∣
≤ CK

∫
B∗j1,k1

[
d(yj1 , cj1,k1)

max1≤k≤m d(x, yk)

]δ
1

[
∑m
k=1 V (x, yk)]m

|bj1,k1(yj1)| dµ(yj1).

Integrating with respect to every yi with i /∈ {j1, . . . , j`} and using Lemma 3.4m−` times,
we obtain∫
Xm−`

∣∣∣∣ ∫
B∗j1,k1

K(x, y1, . . . , ym)bj1,k1(yj1) dµ(yj1)

∣∣∣∣ ∏
i/∈{j1,...,j`}

dµ(yi)

≤ CK
∫
B∗j1,k1

|bj1,k1(yj1)|

×
{∫
Xm−`

[
d(yj1 , cj1,k1)

max1≤k≤m d(x, yk)

]δ
1

[
∑m
k=1 V (x, yk)]m

∏
i/∈{j1,...,j`}

dµ(yi)

}
dµ(yj1)

. CK

∫
B∗j1,k1

|bj1,k1(yj1)|
[

d(yj1 , cj1,k1)

max1≤i≤` d(x, yji)

]δ
1

[
∑`
i=1 V (x, yji)]

`
dµ(yj1)

. CK

[
rj1,k1

max1≤i≤` d(x, cji,ki)

]δ ‖bj1,k1‖L1(X )

[
∑`
i=1 V (x, cji,ki)]

`
,

where, in the last step, we used the fact that yji ∈ Bji,ki and x /∈
⋃m
j=1

⋃
k∈Ij (Bj,k)∗∗

imply that
d(x, yji) ∼ d(x, cji,ki) and V (x, yji) ∼ V (x, cji,ki).

By the arithmetic-geometric mean inequality and since we are assuming that rj1,k1 is the
smallest among {rji,ki}`i=1, we have[

rj1,k1
max1≤i≤` d(x, cji,ki)

]δ
1

[
∑`
i=1 V (x, cji,ki)]

`
≤
∏̀
i=1

[
rji,ki

d(x, cji,ki)

]δ/`
1

V (x, cji,ki)
.

Then, by the fact that, for all i ∈ {1, . . . ,m},
‖gi‖L∞(X ) . (αγ)1/m,

we have

Hk1,...,k` ≤
∫
Xm−1

∣∣∣∣ ∫
B∗j1,k1

K(x, y1, . . . , ym)bj1,k1(yj1) dµ(yj1)

∣∣∣∣
×

∏
i/∈{j1,...,j`}

|gi(yi)|
∏̀
i=2

|bji,ki(yji)|
∏

i∈{1,...,m}
i 6=j1

dµ(yi)

. CK(αγ)
m−`
m ‖bj1,k1‖L1(X )

∫
X `−1

∏̀
i=2

|bji,ki(yji)|

×
∏̀
i=1

[
rji,ki

d(x, cji,ki)

]δ/`
1

V (x, cji,ki)
dµ(yj2) dµ(yj3) · · · dµ(yj`)
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. CK(αγ)
m−`
m

∏̀
i=1

[
rji,ki

d(x, cji,ki)

]δ/` ‖bji,ki‖L1(X )

V (x, cji,ki)

. CK(αγ)
m−`
m

∏̀
i=1

[
rji,ki

d(x, cji,ki)

]δ/`
(αγ)1/mµ(Bji,ki)

V (x, cji,ki)
.

We now bound |T (h1, . . . , hm)(x)| as follows: for any x /∈
⋃m
j=1

⋃
k∈Ij (Bj,k)∗∗,

|T (h1, . . . , hm)(x)| . CK(αγ)
m−`
m

∑
k1∈Ij1

. . .
∑
k`∈Ij`

∏̀
i=1

[
rji,ki

d(x, cji,ki)

]δ/`
(αγ)1/mµ(Bji,ki)

V (x, cji,ki)

. CKαγ
∏̀
i=1

( ∑
ki∈Iji

[
rji,ki

d(x, cji,ki)

]δ/`
µ(Bji,ki)

V (x, cji,ki)

)

. CKαγ
∏̀
i=1

∑
ki∈Iji

[M(χBji,ki )(x)]1+δ/(n`),

where, in the last step, the doubling condition (2.1) and x /∈ (Bji,ki)
∗∗ imply that[

rji,ki
d(x, cji,ki)

]δ/`
µ(Bji,ki)

V (x, cji,ki)
∼
[

rji,ki
d(x, cji,ki) + rji,ki

]δ/`
µ(Bji,ki)

µ(B(x, d(x, cji,ki) + rji,ki))

.

[
µ(Bji,ki)

µ(B(x, d(x, cji,ki) + rji,ki))

]1+δ/(n`)

. [M(χBji,ki )(x)]1+δ/(n`).

By this, the L1+δ/(n`)(X )-boundedness ofM and Hölder’s inequality, we conclude that

µ
({
x /∈

m⋃
j=1

⋃
k∈Ij

(Bj,k)∗∗ : |T (h1, . . . , hm)(x)| > α/2m
})

. α−1/`

∫
X\

⋃m
j=1

⋃
k∈Ij

(Bj,k)∗∗
|T (h1, . . . , hm)(x)|1/` dµ(x)

. (CKγ)1/`

∫
X

{∏̀
i=1

∑
ki∈Iji

[M(χBji,ki )(x)]1+δ/(n`)
}1/`

dµ(x)

. (CKγ)1/`
∏̀
i=1

{ ∑
ki∈Iji

∫
X

[M(χBji,ki )(x)]1+δ/(n`) dµ(x)

}1/`

. (CKγ)1/`
∏̀
i=1

{ ∑
ki∈Iji

µ(Bji,ki)
}1/`

. (CKγ)1/`(αγ)−1/m.

This proves (3.6). Selecting γ = (CK + A)−1, we see that all the sets Er satisfy (3.4),
which completes the proof of Theorem 3.3.



4. Weighted multilinear Calderón–Zygmund theory

Weighted estimates for multilinear Calderón–Zygmund operators first appear in the article
of Grafakos and Torres [53]. Weighted estimates for multilinear commutators via the sharp
maximal function were subsequently obtained by Pérez and Torres [91]. One of the main
motivations for the results in this section comes from the article by Lerner, Ombrosi, Pérez,
Torres, and Trujillo–González [72] where a very natural multiple-weight theory adapted to
the multilinear Calderón–Zygmund theory was developed. One should mention the recent
work by Bui and Duong [13], in which multiple weighted norm inequalities for multilinear
Calderón–Zygmund operators on Rn were studied, but with kernels satisfying some mild
regularity condition which is weaker than the usual Hölder continuity.

If a measure ρ is absolutely continuous with respect to the measure µ, that is, there is
a non-negative locally integrable function w such that dρ(x) = w(x)dµ(x) for all x ∈ X ,
then ρ is called a weighted measure with respect to µ and w is called a weight. A weight w
is said to belong to the Muckenhoupt class Ap for p ∈ (1,∞) if

[w]Ap := sup
B

[
1

µ(B)

∫
B

w(y) dµ(y)

][
1

µ(B)

∫
B

w(y)1−p′ dµ(y)

]p−1

<∞,

where the supremum is taken over all balls B contained in X . When p = 1, a weight w is
said to belong to the Muckenhoupt class A1 if

[w]A1 := sup
B

[
1

µ(B)

∫
B

w(y) dµ(y)

][
inf
B
w(x)

]−1

<∞.

Set
A∞ :=

⋃
1≤p<∞

Ap.

For more details on Ap weights on spaces of homogeneous type, see for instance [95]; for
the Muckenhoupt class on Rn, see for example [41, 36].

As part of results in this section we extend the multiple-weight Calderón–Zygmund the-
ory of [72] to the context of spaces of homogeneous type. Multiple-weight norm inequalities
for maximal truncated operators of multilinear singular integrals are also obtained.

4.1. Multiple weights. In the context of RD-spaces, motivated by [72], we consider the
following multiple weights.

Definition 4.1. For m exponents p1, . . . , pm, write p for the exponent defined by
1

p
=

1

p1
+ · · ·+ 1

pm

and ~P := (p1, . . . , pm).

[26]
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Definition 4.2. Let 1 ≤ p1, . . . , pm <∞ and p ∈ (0,∞) be such that 1/p =
∑m
j=1 1/pj .

Suppose that ν is a weight and ~w := (w1, . . . , wm) with every wj a weight. We say that
(ν; ~w) satisfies the A~P condition if

sup
B balls

[
1

µ(B)

∫
B

ν(x) dµ(x)

]1/p m∏
j=1

[
1

µ(B)

∫
B

wj(x)1−p′j dµ(x)

]1/p′j

<∞, (4.1)

where, when pj = 1, [
1

µ(B)

∫
B

wj(x)1−p′j dµ(x)

]1/p′j

is understood as (infB wj)
−1. The expression on the left-hand side of (4.1) is referred to

as the A~P constant of (ν; ~w) and denoted by [(ν; ~w)]A~P .
In particular, if ν is taken to be the weight

ν~w :=

m∏
j=1

w
p/pj
j , (4.2)

then (ν~w; ~w) and [(ν~w; ~w)]A~P are respectively denoted by ~w and [~w]A~P .

Proposition 4.3. Let 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1+· · ·+1/pm and ~P = (p1, . . . , pm).
For any given weights ~w := (w1, . . . , wm) and ν~w as in (4.2), the following hold true:

(i) If every wj is in Apj , then ~w ∈ A~P and

[~w]A~P ≤
m∏
j=1

[wj ]
1/pj
Apj

.

(ii) If ~w ∈ A~P , then ν~w ∈ Amp and w
1−p′j
j ∈ Amp′j for all j ∈ {1, . . . ,m}, where the

condition w
1−p′j
j ∈ Amp′j in the case pj = 1 is understood as w1/m

j ∈ A1. Moreover,
[ν~w]Amp ≤ [~w]A~P and

[w
1−p′j
j ]Amp′

j
≤ [~w]

p′j
A~P

if pj > 1 or [w
1/m
j ]A1

≤ [~w]
1/m
A~P

if pj = 1.

(iii) If ν~w ∈ Amp and w
1−p′j
j ∈ Amp′j for all j ∈ {1, . . . ,m}, then ~w ∈ A~P and

[~w]A~P ≤ [ν~w]Amp

{ ∏
1≤j≤m, pj>1

[w
−p′j/pj
j ]

1/p′j
Amp′

j

}{ ∏
1≤j≤m, pj=1

[w
1/m
j ]A1

}
,

where the condition w
1−p′j
j ∈ Amp′j in the case pj = 1 is understood as w1/m

j ∈ A1.

Proof. To see (i), if each wj is in Apj , then from 1/p =
∑m
j=1 1/pj and Hölder’s inequality,

we have

[~w]A~P = sup
B

[
1

µ(B)

∫
B

ν~w(x) dµ(x)

]1/p m∏
j=1

[
1

µ(B)

∫
B

wj(x)1−p′j dµ(x)

]1/p′j

≤ sup
B

m∏
j=1

[
1

µ(B)

∫
B

wj(x) dµ(x)

]1/pj[ 1

µ(B)

∫
B

wj(x)1−p′j dµ(x)

]1/p′j

≤
m∏
j=1

[wj ]
1/pj
Apj

.
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The proofs for (ii) and (iii) were indeed given in [72, Theorem 3.6], so we omit the details
here.

4.2. Weighted estimates for the multi-sublinear maximal function. Given ~f =

(f1, . . . , fm) with every fi being a locally integrable function on X , we define the maximal
operator M by

M(~f )(x) := sup
B3x

m∏
i=1

1

µ(B)

∫
B

|fi(yi)| dµ(yi), ∀x ∈ Rn,

where the supremum is taken over all balls B ⊂ X containing x.
We use the following notation. For p ∈ (0,∞] and weight w ∈ A∞, denote by Lp(w)

the collection of all functions f satisfying

‖f‖Lp(w) :=

[ ∫
X
|f(y)|pw(y) dµ(y)

]1/p

<∞.

Analogously, we denote by Lp,∞(w) the weak space with norm

‖f‖Lp,∞(w) := sup
t>0

t[w({x ∈ X : |f(x)| > t})]1/p,

where
w(E) :=

∫
E

w(x) dµ(x)

for all sets E contained in X .

Theorem 4.4. Let 1 ≤ p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm. Suppose that ν and
all wj, j ∈ {1, . . . ,m}, are weights. Then (ν; ~w) ∈ A~P if and only if the inequality

‖M(~f )‖Lp,∞(ν) ≤ C
m∏
j=1

‖fj‖Lpj (wj) (4.3)

holds true for all ~f = (f1, . . . , fm) ∈ Lp1(w1)× · · · × Lpm(wm).

Proof. Suppose that (4.3) holds. Let

‖M‖ := ‖M‖Lp1 (w1)×···×Lpm (wm)→Lp,∞(ν).

Then, for any ~f ∈ Lp1(w1)× · · · × Lpm(wm), by the differentiation theorem for integrals
on (X , d, µ), we see that, for all ε ∈ (0, 1),[ ∫

B

ν(x) dµ(x)

]1/p m∏
j=1

|fj |B

≤
{
ν
(
x ∈ B :M(f1χB , . . . , fmχB)(x) > ε

m∏
j=1

|fj |B
)}1/p m∏

j=1

|fj |B

≤ 1

ε
‖M‖

m∏
j=1

‖fjχB‖Lpj (wj), (4.4)

where
|fj |B :=

1

µ(B)

∫
B

|fj(y)| dµ(y)
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for all j ∈ {1, . . . ,m}, and ν denotes the measure given by

ν(E) :=

∫
E

ν(z) dµ(z)

for all sets E ⊂ X .
For j ∈ {1, . . . ,m}, we set fj := w

1−p′j
j if pj > 1 and fj := χSj,η if pj = 1, where

Sj,η :=
{
x ∈ B : wj(x) < η + inf

B
wj

}
,

η is a positive sufficiently small constant, and inf is the essential infimum. Then, by (4.4),
we see that[ ∫

B

ν(x) dµ(x)

]1/p ∏
{j: pj=1}

µ(Sj,η)

µ(B)

∏
{j: pj>1}

1

µ(B)

∫
B

wj(x)1−p′j dµ(x)

≤ 1

ε
‖M‖

∏
{j: pj=1}

∫
Sj,η

wj(x) dµ(x)
∏

{j: pj>1}

[ ∫
B

wj(x)1−p′j dµ(x)

]1/pj

≤ 1

ε
‖M‖

∏
{j: pj=1}

µ(Sj,η)
(
η + inf

B
wj

) ∏
{j: pj>1}

[ ∫
B

wj(x)1−p′j dµ(x)

]1/pj

.

Letting ε→ 1 and η → 0, we then conclude that (ν; ~w) ∈ A~P and

[(ν; ~w)]A~P ≤ ‖M‖.

Now assume that (ν; ~w) ∈ A~P , that is, (ν; ~w) satisfies (4.1). Applying Hölder’s inequal-
ity, we obtain

M(~f )(x) ≤ sup
B3x

m∏
j=1

[
1

µ(B)

∫
B

|fj(y)|pjwj(y) dµ(y)

]1/pj[ 1

µ(B)

∫
B

wj(y)−p
′
j/pj dµ(y)

]1/p′j

≤ [(ν; ~w)]A~P

m∏
j=1

[Mν(|fj |pjwj/ν)(x)]1/pj .

Here we remark that, when pj = 1, to obtain the second inequality, we just need to replace[
1

µ(B)

∫
B

wj(y)−p
′
j/pj dµ(y)

]1/p′j

by (infB wj)
−1. Denote byMν the weighted Hardy–Littlewood maximal function,

Mν(f)(x) := sup
B3x

1∫
B
ν(y) dµ(y)

∫
B

|f(y)|ν(y) dµ(y), ∀x ∈ X ,

where the supremum is taken over all balls B of X containing x. Since ν is an A∞ weight,
it follows that ν(x)dµ(x) is a doubling measure (see [95, p. 8, Lemma 12]) and Mν is
bounded from L1(ν) to L1,∞(ν). From this and Hölder’s inequality for weak spaces (see
[40, p. 10, Exercise 1.1.2]), we deduce that

‖M(~f )‖Lp,∞(ν) ≤ [(ν; ~w)]A~P p
−1/p

m∏
j=1

p
1/pj
j ‖Mν(|fj |pjwj/ν)1/pj‖Lpj,∞(ν)
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= [(ν; ~w)]A~P p
−1/p

m∏
j=1

p
1/pj
j ‖Mν(|fj |pjwj/ν)‖1/pjL1,∞(ν)

≤ [(ν; ~w)]A~P ‖Mν‖L1(ν)→L1,∞(ν)p
−1/p

m∏
j=1

p
1/pj
j ‖fj‖Lpj (wj).

This concludes the proof of Theorem 4.4.

The following theorem shows that the hypothesis (ν; ~w) ∈ A~P is not strong enough
to imply the boundedness of M from

∏m
j=1 L

pj (wj) to Lp(ν). The proof here is partly
motivated by the work of Pérez [88].

Theorem 4.5. For 1 < p1, . . . , pm < ∞ and 0 < p < ∞ such that 1/p =
∑m
j=1 1/pj, the

assumption (ν, ~w) ∈ A~P does not imply thatM is bounded from Lp1(w1)× · · · ×Lpm(wm)

to Lp(ν).

Proof. We prove the conclusion by contradiction. Assume that, for all weights ν and
{wj}mj=1 satisfying

sup
B⊂X

{
1

µ(B)

∫
B

ν(x) dµ(x)

}1/p m∏
j=1

{
1

µ(B)

∫
B

wj(x)−p
′
j/pj dµ(x)

}1/p′j

=: K <∞, (4.5)

and for all fj ∈ Lpj (wj) with j ∈ {1, . . . ,m}, we have∫
X

[M(~f)(x)]pν(x) dµ(x) .
m∏
j=1

{∫
X
|fj(x)|pjwj(x) dµ(x)

}p/pj
. (4.6)

Fix x0 ∈ X . For any 1 ≤ j ≤ m and N ∈ N, set

wNj := χB(x0,1) +NχRn\B(x0,1) and νN :=

m∏
j=1

[M((wNj )−p
′
j/pj )]−p/p

′
j .

Obviously, all νN and wNj are weights, and (νN ; ~wN ) with ~wN := (wN1 , . . . , w
N
m) satisfies

(4.5) with constant K = 1. If we now choose fj := χB(x0,1), then (4.6) becomes∫
X

[M(χB(x0,1))(x)]mp∏m
j=1 supB⊂X ,B3x

{
1

µ(B)

∫
R
wNj (y)−p

′
j/pj dµ(y)

}p/p′j dµ(x) . µ(B(x0, 1)). (4.7)

Obviously, the left side of (4.7) is not less than∫
X

[M(χB(x0,1))(x)]mp

M(χB(x0,1))(x)
∑m
j=1 p/p

′
j

dµ(x) =

∫
X
M(χB(x0,1))(x) dµ(x)

≥
∫
d(x,x0)≥10

sup
B⊂X , B3x

µ(B ∩B(x0, 1))

µ(B)
dµ(x)

≥
∫
d(x,x0)≥10

µ(B(x0, 1))

µ(B(x0, 2d(x, x0)))
dµ(x)

=∞;

but the right-hand side of (4.7) is finite. This contradiction completes the proof.
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To obtain the strong boundedness ofM, we assume that (ν; ~w) satisfies some power
bump conditions as in (4.8) below. For m = 1 and X = Rn, this type of power bump
conditions appears for the first time in the work of Neugebauer [87] but with an extra
power bump in the weight ν. Pérez [88] then removed the power from the weight ν and
replaced the power bump in w by a logarithmic bump or a more general type of bump
(see also [89, 90] and the book [24]). In [45], it was proved that, if (ν, ~w) satisfies a
certain power bump condition, which is defined by replacing balls with rectangles of Rn
in (4.8), then the multilinear strong maximal function satisfies the corresponding strong
type mutiple weighted estimates. Also, Moen [83] used such bump conditions to study
weighted inequalities for multilinear fractional integral operators.

Theorem 4.6. Let 1 < p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm. Suppose that ν and
all wj, j ∈ {1, . . . ,m}, are weights. If, for some r ∈ (1,∞),

[(ν; ~w)]A~P,r := sup
balls B⊂X

[
1

µ(B)

∫
B

ν dµ

]1/p m∏
j=1

[
1

µ(B)

∫
B

w
−rp′j/pj
j dµ

]1/(rp′j)

(4.8)

is finite, then there exists a positive constant C such that, for all ~f with each fj ∈ Lpj (wj),

‖M(~f )‖Lp(ν) ≤ C[(ν; ~w)]A~P,r

m∏
j=1

‖fj‖Lpj (wj). (4.9)

Proof. For any N ∈ N and x ∈ X , set

MN (~f )(x) := sup
B3x, rB≤N

m∏
j=1

1

µ(B)

∫
B

|fj(y)| dµ(y),

where, for any ball B of X , we use rB to denote the radius of B. It suffices to show
that there exists a positive constant C, independent of N , such that, for all ~f with each
fj ∈ Lpj (wj),

‖MN (~f )‖Lp(ν) . [(ν; ~w)]A~P,r

m∏
j=1

‖fj‖Lpj (wj), (4.10)

since once (4.10) holds then (4.9) follows by letting N → ∞ and applying the monotone
convergence lemma.Moreover, by the density ofL∞b (X ) inLpj (wj) for each j ∈ {1, . . . ,m},
it suffices to show that (4.10) holds true under the assumption that each fj ∈ L∞b (X ).

To this end, we assume that every fj ∈ L∞b (X ). Fix N ∈ N. For any k ∈ Z, we set

Ωk := {x ∈ X :MN (~f )(x) > 2k}.

If x ∈ Ωk \ Ωk+1, then there exists a ball Bx ⊂ X satisfying rBx ≤ N , Bx 3 x and

2k+1 ≥
m∏
j=1

1

µ(Bx)

∫
Bx

|fj(y)| dµ(y) > 2k.

This implies that Bx ⊂ Ωk \ Ωk+1, and hence

Ωk \ Ωk+1 =
⋃

x∈Ωk\Ωk+1

Bx.
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Applying the basic covering lemma (see Lemma 2.6) to the family of balls

{Bx : x ∈ Ωk \ Ωk+1},
we obtain the existence of a sequence {Bkα}α∈Ik of pairwise disjoint balls contained in
Ωk \ Ωk+1 such that

Ωk \ Ωk+1 ⊂
⋃
α∈Ik

5Bkα

and

2k+1 ≥
m∏
j=1

1

µ(Bkα)

∫
Bkα

|fj(y)| dµ(y) > 2k.

Notice that balls in {Bkα : k ∈ Z, α ∈ Ik} are pairwise disjoint. Therefore,

‖MN (~f )‖pLp(ν) =
∑
k∈Z

∫
Ωk\Ωk+1

[M(~f )(x)]pν(x) dµ(x)

≤
∑
k∈Z

2p(k+1)ν(Ωk \ Ωk+1)

≤ 2p
∑
k∈Z

∑
α∈Ik

ν(5Bkα)

[ m∏
j=1

1

µ(Bkα)

∫
Bkα

|fj(y)| dµ(y)

]p
. (4.11)

By the bump condition of (ν; ~w), Hölder’s inequality and the doubling property of µ, we
see that

ν(5Bkα)

[ m∏
j=1

1

µ(Bkα)

∫
Bkα

|fj(y)| dµ(y)

]p

≤ ν(5Bkα)

m∏
j=1

[
1

µ(Bkα)

∫
Bkα

|fj(y)|(rp
′
j)
′
[wj(y)](rp

′
j)
′/pj dµ(y)

]p/(rp′j)′

×
[

1

µ(Bkα)

∫
Bkα

[wj(y)]−rp
′
j/pj dµ(y)

]p/(rp′j)
. [(ν; ~w)]pA~P,r

µ(Bkα) inf
x∈Bkα

m∏
j=1

[M(|fj |(rp
′
j)
′
w

(rp′j)
′/pj

j )(x)]p/(rp
′
j)
′
.

Inserting this into (4.11) andusing the disjointness of {Bkα}k∈Z, α∈Ik andHölder’s inequality,
we obtain

‖MN (~f )‖pLp(ν) . [(ν; ~w)]pA~P,r

∑
k∈Z

∑
α∈Ik

∫
Bkα

m∏
j=1

[M(|fj |(rp
′
j)
′
w

(rp′j)
′/pj

j )(y)]p/(rp
′
j)
′
dµ(y)

. [(ν; ~w)]pA~P,r

∫
X

m∏
j=1

[M(|fj |(rp
′
j)
′
w

(rp′j)
′/pj

j )(y)]p/(rp
′
j)
′
dµ(y)

. [(ν; ~w)]pA~P,r

m∏
j=1

{∫
X

[M(|fj |(rp
′
j)
′
w

(rp′j)
′/pj

j )(y)]pj/(rp
′
j)
′
dµ(y)

}p/pj
. [(ν; ~w)]pA~P,r

m∏
j=1

‖fj‖pLpj (wj)
,
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where, in the last step, we used pj/(rp′j)′ > 1 and the fact thatM is bounded on Lq(X )

for all q ∈ (1,∞]. This proves (4.10) and finishes the proof of (4.9).

As a corollary of Theorem 4.6 and Proposition 4.3(ii) the following conclusion holds.

Theorem 4.7. Let ~P := (p1, . . . , pm) with 1 < p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · +
1/pm. Then ~w := (w1, . . . wm) ∈ A~P if and only if there exists a positive constant C such
that, for all ~f := (f1, . . . , fm) with each fj ∈ L1

loc(X ),

‖M(~f )‖Lp(ν~w) ≤ C
m∏
j=1

‖fj‖Lpj (wj). (4.12)

Proof. Necessity follows from Theorem 4.4, so it remains to prove sufficiency. Assume that
~w ∈ A~P . By Proposition 4.3(ii), each w

−p′j/pj
j is in the Muckenhoupt class Amp′j , we thus

apply the reverse Hölder inequality, that is, there exists rj > 1 such that, for all r ∈ [1, rj ]

and all balls B,[
1

µ(B)

∫
B

wj(x)−rp
′
j/pj dµ(x)

]1/r

.
1

µ(B)

∫
B

wj(x)−p
′
j/pj dµ(x).

This implies that (ν~w, ~w) satisfies the bump condition (4.8) with respect to r. Therefore,
(4.12) is a consequence of Theorem 4.6.

We conclude this subsection by showing that
∏m
j=1M(fj) satisfies weighted weak-

type estimates by means of mixed weak-type inequalities. By the Calderón–Zygmund
decomposition and the Marcinkiewicz interpolation, we proceed as the classical arguments
(see [28, p. 37]) and conclude that, for any non-negative measurable function w and
p ∈ (1,∞), there exists a positive constant C, depending only on p and the doubling
constant C1, such that, for all f ∈ Lp(M(w), dµ),∫

X
M(f)(x)p dµ(x) ≤ C

∫
X
|f(x)|pM(w)(x) dµ(x) (4.13)

and, for all f ∈ L1(w, dµ),∫
{x∈X :M(f)(x)>λ}

w(x) dµ(x) ≤ C

λ

∫
X
|f(x)|M(w)(x) dµ(x), ∀λ > 0.

Applying (4.13) and Hölder’s inequality, we see that, for 1 < p1, . . . , pm < ∞ and 1/p =

1/p1 + · · ·+ 1/pm, there exists a positive constant C such that, for all ~f = (f1, . . . , fm) in
the m-fold product Lp1(M(w1), dµ)× · · · × Lpm(M(wm), dµ),∥∥∥ m∏

j=1

M(fj)
∥∥∥
Lp(ν~w)

≤ C
m∏
j=1

‖M(fj)‖Lpj (wj) ≤ C
m∏
j=1

‖fj‖Lpj (M(wj),dµ),

where ν~w :=
∏m
j=1 w

p/pj
j . If there exists some pj = 1, we have the following weak-type

conclusion for the operatorM by means of Theorem 4.4.

Corollary 4.8. Let 1 ≤ p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+1/pm. Then there exists a
constant C > 0 such that, for all (f1, . . . , fm) ∈ Lp1(M(w1), dµ)×· · ·×Lpm(M(wm), dµ),∥∥∥ m∏

j=1

M(fj)
∥∥∥
Lp,∞(ν~w)

≤ C
m∏
j=1

‖fj‖Lpj (M(wj),dµ),

where ν~w :=
∏m
j=1 w

p/pj
j .
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Proof. By Hölder’s inequality, we have

sup
B

[
1

µ(B)

∫
B

ν~w(x) dµ(x)

]1/p m∏
j=1

[
1

µ(B)

∫
B

M(wj)(x)1−p′j dµ(x)

]1/p′j

≤
m∏
j=1

[
1

µ(B)

∫
B

wj(x) dµ(x)

]1/pj[ 1

µ(B)

∫
B

M(wj)(x)1−p′j dµ(x)

]1/p′j

≤
m∏
j=1

[
inf
x∈B
M(wj)(x)

]1/pj[
sup
x∈B
M(wj)(x)1−p′j

]1/p′j
≤ 1

with the usual modification if pj = 1. This, together with Theorem 4.4, implies the desired
conclusion.

4.3. Weighted estimates for multilinear Calderón–Zygmund operators. In this
subsection and the following two subsections, we assume that T is anm-linear operator with
a kernel K ∈ Ker(m,CK , δ) for some CK > 0 and δ ∈ (0, 1), and that T maps Lq1(X )×
· · · ×Lqm(X ) to Lq(X ) with norm ‖T‖Lq1 (X )×···Lqm (X )→Lq(X ), where 1 ≤ q1, . . . , qm <∞
and 1/q = 1/q1 + · · ·+1/qm. Based on Theorem 3.3, T is bounded from them-fold product
space L1(X )× · · · × L1(X ) to L1/m,∞(X ).

Our main goal in this subsection is to prove the multiple-weight boundedness of
the multilinear Calderón–Zygmund operator T . This indeed follows from a Cotlar-type
inequality (see Theorem 4.12 below) and the Fefferman–Stein type inequalities related to
sharp maximal functions (see Lemma 4.11 below).

Definition 4.9. For any given locally integrable function f on (X , d, µ) and for all x ∈ X ,
the sharp maximal function M]f(x) is defined by

M]f(x) := sup
B⊂X ,B3x

1

µ(B)

∫
B

|f(y)− fB | dµ(y);

here and in what follows,

fB =
1

µ(B)

∫
B

f(y) dµ(y).

Moreover, for any δ ∈ (0,∞), set

M]
δf(x) = {M](fδ)(x)}1/δ, x ∈ X .

Remark 4.10. Observe that, for δ ∈ (0,∞), by the inequality

min{1, 2δ−1}(aδ + bδ) ≤ (a+ b)δ ≤ max{1, 2δ−1}(aδ + bδ), a > 0, b > 0,

we have

M]
δf(x) ∼ sup

B3x
inf
c∈C

[
1

µ(B)

∫
B

∣∣|f(y)|δ − |c|δ
∣∣ dµ(y)

]1/δ

.

The following lemma serves as an analog of the classical Fefferman–Stein inequalities in
[31, 18]. It should be remarked that, in the setting of spaces of homogeneous type, Martell
[79, Corollary 4.3] proved a kind of Fefferman–Stein inequality for another sharp maximal
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function defined via certain approximations of the identity of Duong and McIntosh [30].
Our proof here invokes some ideas from [79].

Lemma 4.11. Let 0 < p0 ≤ p < ∞ and w ∈ A∞. Then there exists a positive constant
C := C([w]A∞ , C1, p) such that, for all f ∈ L1

loc(X ) satisfyingMf ∈ Lp0,∞(w),

(i) if p0 < p and µ(X ) =∞, then

‖Mf‖Lp(w) ≤ C‖M]f‖Lp(w);

(ii) if p0 ≤ p and µ(X ) =∞, then

‖Mf‖Lp,∞(w) ≤ C‖M]f‖Lp,∞(w);

(iii) if p0 < p and µ(X ) <∞, then

‖Mf‖Lp(w) ≤ C[‖f‖L1(X ) + ‖M]f‖Lp(w)];

(iv) if p0 ≤ p and µ(X ) <∞, then

‖Mf‖Lp,∞(w) ≤ C[‖f‖L1(X ) + ‖M]f‖Lp,∞(w)].

Proof. Using the Calderón–Zygmund decomposition, we obtain the “good-λ” inequality:
for any given γ > 0, there exist positive constants θ0 and C̃, depending only on C1, γ and
w, such that, for all f ∈ L1(X ) and λ > ‖f‖L1(X )/µ(X ),

w({x ∈ X :Mf(x) > 2C3
1λ,M]f(x) ≤ γλ})

≤ C̃γθ0w({x ∈ X :Mf(x) > λ}), (4.14)

where we recall that w(E) =
∫
E
w(x) dµ(x) for any set E ⊂ X .

To prove (4.14), for every f ∈ L1(X ) and λ > ‖f‖L1(X )/µ(X ), we set

Ωλ := {x ∈ X :Mf(x) > λ}.

Then Ωλ is an open proper set of X with finite measure. Applying Lemma 2.8 with
Ω = Ωλ and the constant c therein equal to 10, we obtain sequences {xk}k ⊂ X and
{rk}k := {dist(xk,Ω

{)/20}k such that

Ωλ :=
⋃
k

B(xk, rk),

{B(xk, rk/4)}k are pairwise disjoint, B(xk, 30rk)∩Ωλ 6= ∅ and {B(xk, rk)}k has the finite
overlap property. This implies that the proof for (4.14) can be reduced to the following
estimate:

w({x ∈ B(xk, rk) :Mf(x) > 2C3
1λ,M]f(x) ≤ γλ}) . γθ0w(B(xk, rk)), ∀k.

To prove this, it suffices to show that, for all k,

µ({x ∈ B(xk, rk) :Mf(x) > 2C3
1λ,M]f(x) ≤ γλ}) . γµ(B(xk, rk)). (4.15)

Indeed, the hypothesis w ∈ A∞ implies the existence of constants C0 ≥ 1 and θ0 > 0 such
that

w(E)

w(B)
≤ C0

[
µ(E)

µ(B)

]θ0
for every ball B and every measurable set E ⊂ B.
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Set Bk := B(xk, rk). We may assume that there exists x0 ∈ Bk such that

M]f(x0) ≤ γλ;

otherwise, (4.15) trivially holds true. We may assume that B(xk, 30rk)∩Ωλ 6= ∅ contains
a certain point yk; then

|f |30Bk ≤Mf(yk) < λ

and hence
M(|f |32Bkχ32Bk) ≤ |f |32Bk < λ.

For every x ∈ Bk satisfyingMf(x) > 2C3
1λ, there exists a ball B 3 x with radius rB such

that

2C3
1λ <

1

µ(B)

∫
B

|f(y)| dµ(y) ≤ C2
1

1

µ(B(x, 2rB))

∫
B(x,2rB)

|f(y)| dµ(y),

which, combined with Mf(yk) < λ, gives that yk /∈ B(x, 2rB). Thus, 2rB < 31rk and
therefore B(x, 2rB) ⊂ 32Bk; moreover,M(|f |χ32Bk)(x) > 2C1λ and

M((|f | − |f |32Bk)χ32Bk)(x) ≥M(|f |χ32Bk)(x)−M(|f |32Bkχ32Bk)(x) > C1λ.

Summarizing all these we conclude that the left hand side of (4.15) is bounded by

µ({x ∈ B(xk, rk) :M((|f | − |f |32Bk)χ32Bk)(x) > C1λ})

≤
‖M‖L1(X )→L1,∞(X )

C1λ

∫
32Bk

∣∣|f(y)| − |f |32Bk

∣∣ dµ(y) . µ(32Bk)M]f(x0) . µ(Bk)γ.

This proves (4.15) and hence (4.14).
Let A := 2C3

1 . To prove (i), for each N ∈ N, we set

HN := 2p
∫ AN

0

pλp−1w({x ∈ X :Mf(x) > 2λ}) dλ.

Fix x0 ∈ X and R > 0. Write f = gR +hR, where gR := fχB(x0,R) and hR := fχB(x0,R){ .
Then

HN ≤ 2p
∫ AN

0

pλp−1w({x ∈ X :MgR(x) > λ}) dλ

+ 2p
∫ AN

0

pλp−1w({x ∈ X :MhR(x) > λ}) dλ

:= HN,R + H̃N,R.

We claim that
lim
R→∞

H̃N,R = 0. (4.16)

Assume for the moment that (4.16) holds true. Since p > p0 and Mf ∈ Lp0,∞(w), it
follows thatMgR ∈ Lp0,∞(w) and hence

HN,R ≤ 2p
∫ AN

0

pλp−1λ−p0‖MgR‖p0Lp0,∞(w) dλ <∞.
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By this fact and (4.16), one finds that HN is finite for large R. Since gR ∈ L1(X ) and it
has bounded support, we apply (4.14) to obtain

HN,R = (2A)p
∫ N

0

pλp−1w({x ∈ X :MgR(x) > Aλ}) dλ

≤ (2A)p
∫ N

0

pλp−1w({x ∈ X :MgR(x) > Aλ,M]gR(x) ≤ γλ}) dλ

+ (2A)p
∫ N

0

pλp−1w({x ∈ X :M]gR(x) > γλ}) dλ

≤ C̃(2A)pγθ0
∫ N

0

pλp−1w({x ∈ X :MgR(x) > λ}) dλ+ (2A)p‖M]f‖pLp(w)

≤ C̃(2A)pγθ0HN + (2A)p‖M]f‖pLp(w). (4.17)

Notice that (4.16) implies thatHN = limR→∞HN,R. Thus, in (4.17), by lettingR→∞ and
choosing γ small enough such that C̃(2A)pγθ0 < 1/2 we conclude that HN . ‖M]f‖pLp(w).
Then letting N →∞ we obtain (i).

Now it remains to prove (4.16). Since MhR(x) ≤ Mf(x) for all x ∈ X , p > p0 and
M(f) ∈ Lp0,∞(w), we have∫ AN

0

pλp−1w({x ∈ X :MhR(x) > λ}) dλ <∞.

Thus, (4.16) follows from the dominated convergence theorem and the fact that

lim
R→∞

MhR(x) = 0, ∀x ∈ X . (4.18)

To see that (4.18) holds true, observe that, for any fixed x ∈ X ,MhR(x) is decreasing as
R→∞. Assume that (4.18) fails, that is, there exists x1 ∈ X such that

lim
R→∞

MhR(x1) = c0 > 0.

For x ∈ X , set
Rx := max{d(x1, x0), d(x, x0)}+ 1.

Then x, x1 ∈ B(x0, Rx). For all x ∈ X and R > 4Rx,

c0 ≤MhR(x1) = sup
B3x1

1

µ(B)

∫
B\B(x0,R)

|f(y)| dµ(y)

≤ C2
1 sup
r>0

1

µ(B(x1, r))

∫
B(x1,r)\B(x0,R)

|f(y)| dµ(y)

= C2
1 sup
r>3Rx

1

µ(B(x1, r))

∫
B(x1,r)\B(x0,R)

|f(y)| dµ(y)

≤ C2
1Mf(x).

Thus, with λ0 := c0C
−2
1 /2, we have

‖Mf‖p0Lp0,∞(w) ≥ λ
p0
0 w({x ∈ X :Mf(x) > λ0})

≥ lim
R→∞

λp00 w({x ∈ X : R > 4Rx})
=∞.

This contradiction implies (4.18). Thus, (4.16) holds and we complete the proof of (i).
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To prove (ii), for every N ∈ N, set A := 2C3
1 and

JN := sup
0<λ<AN

2pλpwµ({x ∈ X :Mf(x) > 2λ}).

Then we argue as in the proof of (i) but using JN instead of HN , the details being omitted.
The proofs for (iii) and (iv) are similar to those of (i) and (ii), the presence of an extra

term ‖f‖L1(X ) is due to the fact that (4.14) holds only for λ > ‖f‖L1(X )/µ(X ), the details
being omitted.

Theorem 4.12. Let γ ∈ (0, 1/m). Then there exists a constant C := C(γ,m, δ, C1) > 0

such that, for all ~f ∈ Lp1(X )× · · · × Lpm(X ) with 1 ≤ p1, . . . , pm <∞,

M]
γ(T (~f ))(x) ≤ C(CK +W )M~f(x), (4.19)

where
W := ‖T‖L1(X )×···×L1(X )→L1/m,∞(X ).

Proof. Let γ ∈ (0, 1/m). Fix a point x ∈ X . To obtain (4.19), by Definition 4.9 and
Remark 4.10, it suffices to prove that, for any ball B containing x, there exists cB ∈ C
such that [

1

µ(B)

∫
B

|T (~f )(z)− cB |γ dµ(z)

]1/γ

. (CK +W )M~f(x). (4.20)

Let zB and rB be the center and radius of B, respectively. For j ∈ {1, . . . ,m}, we set
f0
j := fjχB∗ and f∞j := fj − f0

j , where B∗ := B(zB , 5rB). Then
m∏
j=1

fj(yj) =

m∏
j=1

[f0
j (yj) + f∞j (yj)] =

∏
α1,...,αm∈{0,∞}

fα1
1 (y1) · · · fαmm (ym)

=

m∏
j=1

f0
j (yj) +

∑′
fα1

1 (y1) · · · fαmm (ym),

where each term of
∑′ contains at least one αj 6= 0. Write ~f0 := (f0

1 , . . . , f
0
m) and

T (~f ) = T ( ~f0) +
∑′

T (fα1
1 · · · fαmm ). (4.21)

Set

A :=

m∏
j=1

1

µ(B)
‖f0
j ‖L1(X ).

Since T is bounded from L1(X )× · · · × L1(X ) to L1/m,∞(X ) with norm W , we obtain[
1

µ(B)

∫
B

|T ( ~f0)(z)|γ dµ(z)

]1/γ

=

[
1

µ(B)

∫ WA

0

γtγ−1µ({x ∈ B : |T ( ~f0)(z)| > t}) dt

+
1

µ(B)

∫ ∞
WA

γtγ−1µ({x ∈ B : |T ( ~f0)(z)| > t}) dt
]1/γ

≤
[
(WA)γ +W 1/mA1/m

∫ ∞
WA

γtγ−1−1/m dt

]1/γ

.WA

.WM(~f )(x).
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Without loss of generality, we may assume that αj1 = · · · = αj` = 0 for some
{j1, . . . , j`} ⊂ {1, . . . ,m} and 0 ≤ ` < m. By convention the set {j1, . . . , j`} is empty if
` = 0. Recall that x ∈ B. Then for any z ∈ B, by the regularity condition (3.2), we have

|T (fα1
1 · · · fαmm )(z)− T (fα1

1 · · · fαmm )(x)|

≤ CK
∫
Xm

[
d(z, x)

max1≤k≤m d(z, yk)

]δ ∏m
j=1 |f

αj
j (yj)|

[
∑m
k=1 V (z, yk)]m

dµ(y1) · · · dµ(ym)

≤ CK
∫

(B∗)`
|f0
j1(yj1) · · · f0

j`
(yj`)|

×
∫

(X\B∗)m−`

[
2rB

max1≤k≤m d(z, yk)

]δ∏
j /∈{j1,...,j`} |fj(yj)|

[
∑m
k=1 V (z, yk)]m

dµ(y1) · · · dµ(ym)

≤ CK
∞∑
k=1

∫
(B∗)`

|f0
j1(yj1) · · · f0

j`
(yj`)|

∫
(3kB∗)m−`\(3k−1B∗)m−`

×
[

2rB
max1≤k≤m d(z, yk)

]δ∏
j /∈{j1,...,j`} |fj(yj)|

[
∑m
k=1 V (z, yk)]m

dµ(y1) · · · dµ(ym)

. CK

∞∑
k=1

3−kδ
∫

(B∗)`
|f0
j1(yj1) · · · f0

j`
(yj`)|

×
∫

(3kB∗)m−`

∏
j /∈{j1,...,j`} |fj(yj)|

[µ(B(z, 3krB))]m
dµ(y1) · · · dµ(ym)

. CK

∞∑
k=1

3−kδ
m∏
j=1

1

µ(3kB∗)

∫
3kB∗

|fj(yj)| dµ(yj)

. CKM(~f )(x).

Define cB in (4.20) to be cB :=
∑′

T (fα1
1 · · · fαmm )(x). Then from (4.21) it follows that

the left hand side of (4.20) is bounded by

21/γ−1

[
1

µ(B)

∫
B

|T (~f0)(z)| dµ(z)

]1/γ

+ 21/γ−1

[
1

µ(B)

∫
B

∑
′ |T (fα1

1 · · · fαmm )(z)− T (fα1
1 · · · fαmm )(x)| dµ(z)

]1/γ

. (W + CK)M(~f )(x),

which completes the proof.

Proposition 4.13. Let w be an A∞ weight and p ∈ [1/m,∞). Then there exists C > 0

such that, for all bounded functions ~f with compact support, if p > 1/m, then

‖T (~f )‖Lp(w) ≤ C‖M(~f )‖Lp(w), (4.22)

and if p ≥ 1/m, then

‖T (~f )‖Lp,∞(w) ≤ C‖M(~f )‖Lp,∞(w). (4.23)
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Proof. We only prove (4.22) since similar arguments give the weak-type estimate (4.23).
For every N ∈ N, set w

N
:= min{w,N}. Then w

N
∈ A∞, and Fatou’s lemma implies that

‖T (~f )‖Lp(w) ≤ lim inf
j→∞

‖T (~f )‖Lp(w
N

).

Since each function fj is in L∞b (X ), by assumption,

T : Lq1(X )× · · · × Lqm(X )→ Lq,∞(X )

for some indices 1 ≤ q1, . . . , qm < ∞ and 0 < q < ∞ satisfying 1/q = 1/q1 + · · ·+ 1/qm,
we know that T (~f ) ∈ Lq,∞(X ), and hence |T (~f )|γ ∈ L1

loc(X ) for all γ ∈ (0, 1/m). Then,
using Lemma 4.11(i) and (4.19) we see that, for any fixed γ ∈ (0, 1/m),

‖T (~f)‖Lp(w
N

) ≤ ‖[M(|T (~f )|γ)]1/γ‖Lp(w
N

)

. ‖M]
γ(T (~f ))‖Lp(w

N
)

. (CK +W )‖M(~f )‖Lp(w
N

)

. (CK +W )‖M(~f )‖Lp(w),

which gives (4.22) by lettingN →∞, provided that we can show that, for some p0 ∈ (0, p),

‖[M(|T (~f )|γ)]1/γ‖Lp0,∞(w
N

) <∞. (4.24)

To see (4.24), we choose p0 = 1/m. Then, applying γ < 1/m < p, ‖w
N
‖L∞(X ) ≤ N

and the factM is bounded on Lr,∞(X ) for all r ∈ (1,∞) (see [40, Exercise 2.1.13]), we
obtain

‖[M(|T (~f )|γ)]1/γ‖L1/m,∞(w
N

) ≤ N‖M(|T (~f )|γ)‖1/γ
L1/(mγ),∞(X )

≤ N‖M‖1/γ
L1/(mγ),∞(X )→L1/(mγ),∞(X )

‖|T (~f )|γ‖1/γ
L1/(mγ),∞(X )

= N‖M‖1/γ
L1/(mγ),∞(X )→L1/(mγ),∞(X )

‖T (~f )‖L1/m,∞(X ),

which is finite since T : L1(X )× · · · × L1(X )→ L1/m,∞(X ). Hence, (4.24) holds.

Consequently, this proposition, together with Theorems 4.4 and 4.6, implies the fol-
lowing weighted estimate for multilinear Calderón–Zygmund operators.

Corollary 4.14. Let 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1+· · ·+1/pm and ~P := (p1, . . . , pm).
Suppose that ν ∈ A∞ and {wj}mj=1 are weights. Let ~w := (w1, . . . , wm). Then:

(i) if pj ≥ 1 for all j ∈ {1, . . . ,m} and (ν; ~w) satisfies (4.1), then T can be extended to a
bounded m-linear operator from Lp1(w1)× · · · × Lpm(wm) to Lp,∞(ν);

(ii) if pj > 1 for all j ∈ {1, . . . ,m} and (ν; ~w) satisfies the bump weight condition (4.8) for
some r > 1, then T can be extended to a bounded m-linear operator from Lp1(w1) ×
· · · × Lpm(wm) to Lp(ν).

In either case, the norm of T is bounded by C(CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq(X )), where
C is a positive constant depending on m, δ, C1 and [(ν; ~w)]A~P (or [(ν; ~w)]A~P,r ).

Likewise, Proposition 4.13, together with Theorems 4.4 and 4.7, implies the following
weighted estimate for multilinear Calderón–Zygmund operators.
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Corollary 4.15. Let 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1 + · · ·+ 1/pm, ~P := (p1, . . . , pm),
and ~w := (w1, . . . , wm) ∈ A~P . Then:

(i) T can be extended to a bounded m-linear operator from Lp1(w1) × · · · × Lpm(wm) to
Lp(ν~w) if all the exponents pj are greater than 1;

(ii) T can be extended to a bounded m-linear operator from Lp1(w1) × · · · × Lpm(wm) to
Lp,∞(ν~w) if some of the exponents pj are equal to 1.

In either case, the norm of T is bounded by C(CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq(X )), where
C is a positive constant depending on m, δ, C1 and [w]A~P .

4.4. Weighted estimates for maximal multilinear singular integrals. Let T be as
in the previous subsection. Define the maximal truncated operator by

T ∗(~f )(x) := sup
α>0
|Tα(f1, . . . , fm)(x)|, ∀x ∈ X ,

where, using the notation ~y := (y1, . . . , ym) and dµ(~y) := dµ(y1) · · · dµ(ym), we set

Tα(f1, . . . , fm)(x) :=

∫
∑m
j=1 d(x,yj)≥α

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(~y).

Such maximal truncated operators for multilinear integrals on (Rn)m were first introduced
in [54]. In the Euclidean setting, it was proved in [54] that if multilinear Calderón–Zygmund
operators are bounded at one point, say T : Lq1(Rn)× · · · ×Lqm(Rn)→ Lq(Rn) for some
1 ≤ q1, . . . , qm <∞ and 1/q = 1/q1 + · · ·+ 1/qm, then

T ∗ : Lp1(w)× · · · × Lpm(w)→ Lp(w)

for all 1 < p1, . . . , pm <∞ where 1/p = 1/p1 + · · ·+ 1/pm, provided w ∈
⋂

1≤j≤mApj .
Notice that the size condition ofK implies that T ∗(f1, . . . , fm) is pointwise well-defined

when fj ∈ Lqj (X ) with qj ∈ [1,∞]; see [53, p. 1263]. The goal of this subsection is to
obtain the following multiple weight norm estimates for T ∗.

Theorem 4.16. Let 1 ≤ p1, . . . , pm < ∞, 1/p = 1/p1 + · · · + 1/pm, ~P := (p1, . . . , pm),
and ~w := (w1, . . . , wm) ∈ A~P . Then:

(i) T ∗ can be extended to a bounded operator from Lp1(w1)× · · · ×Lpm(wm) to Lp(ν~w) if
all the exponents pj are greater than 1;

(ii) T ∗ can be extended to a bounded operator from Lp1(w1)× · · · ×Lpm(wm) to Lp,∞(ν~w)

if some exponent pj is equal to 1.

In either case, the norm of T ∗ is bounded by C(CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq(X )), where
C is a positive constant depending on m, δ, C1 and [w]A~P .

Consequently, this result, along with Theorems 4.4 and 4.6, implies the following
weighted estimate for multilinear Calderón–Zygmund operators.

Theorem 4.17. Let 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1 + · · ·+ 1/pm and ~P := (p1, . . . , pm).
Let ν ∈ A∞ and {wj}mj=1 be weights. Let ~w := (w1, . . . , wm). Then:

(i) if pj ≥ 1 for all j ∈ {1, . . . ,m} and (ν; ~w) satisfies (4.1), then T ∗ can be extended to a
bounded operator from Lp1(w1)× · · · × Lpm(wm) to Lp,∞(ν);
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(ii) if pj > 1 for all j ∈ {1, . . . ,m} and (ν; ~w) satisfies the condition (4.8) for some r > 1,
then T ∗ can be extended to a bounded operator from Lp1(w1)×· · ·×Lpm(wm) to Lp(ν).

In either case, the norm of T is bounded by C(CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq(X )), where
C is a positive constant depending on m, δ, C1 and [(ν; ~w)]A~P (or [(ν; ~w)]A~P,r).

We only prove Theorem 4.16 since the proof for Theorem 4.17 similar. We need the
following Cotlar-type inequality.

Proposition 4.18. For all γ > 0, there exists a positive constant C := C(m,C1, δ, γ) such
that, for all ~f := (f1, . . . , fm) with every fj ∈ L∞b (X ) and x ∈ X ,

T ∗(~f )(x) ≤ C{[M(|T (~f )|γ)(x)]1/γ + (CK +W )M(~f )(x)}, (4.25)

where
W := ‖T‖L1(X )×···×L1(X )→L1/m,∞(X ).

Proof. By Hölder’s inequality, it suffices to show that (4.25) holds for γ ∈ (0, 1/m). Fix
γ ∈ (0, 1/m) and x ∈ X . Set

Sα(x) :=
{
~y ∈ Xm : sup

1≤j≤m
d(x, yj) < α

}
,

Uα(x) :=
{
~y ∈ Sα(x) :

m∑
j=1

d(x, yj) ≥ α
}
.

For any ~y ∈ Uα(x), there exists yj0 such that d(x, yj0) ≥ α/m. From this and the doubling
property of µ, it follows that

µ(B(x, α)) ≤ C(m,C1)

m∑
j=1

V (x, yj).

Thus,

sup
α>0

∣∣∣∣ ∫
Uα(x)

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(~y)

∣∣∣∣
≤ sup
α>0

∫
Uα(x)

CK |f1(y1) · · · fm(ym)|
[
∑m
k=1 V (x, yk)]m

dµ(~y)

. CK sup
α>0

∫
Uα(x)

|f1(y1) · · · fm(ym)|
[µ(B(x, α))]m

dµ(~y)

. CKM(~f )(x).

Therefore, it is enough to prove that (4.25) holds with T ∗(~f ) replaced by

T̃ ∗(~f )(x) := sup
α>0
|T̃α(f1, . . . , fm)(x)|,

where

T̃α(f1, . . . , fm)(x) :=

∫
~y/∈Sα(x)

K(x, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(~y).

Fix α > 0 and let B(x, α/2) be the ball centered at x and of radius α/2. From
every fj ∈ L∞b (X ), together with the boundedness of T from L1(X ) × · · · × L1(X ) to
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L1/m,∞(X ) (see Theorem 3.3), it follows that T (~f ) ∈ L1/m,∞(X ), and hence it is finite
almost everywhere. For α > 0, x ∈ X and z ∈ B(x, α/2), we set

Gα(~f )(x, z) :=

∫
~y/∈Sα(x)

K(z, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(~y).

Observe that, for all z ∈ B(x, α/2),
|T̃α(~f )(x)| ≤ |T̃α(~f )(x)−Gα(~f )(x, z)|+ |T (~f )(z)− T (~f0)(z)|, (4.26)

where ~f0 := (f1χB(x,α), . . . , fmχB(x,α)).
Applying the regularity condition (3.2), we obtain

|T̃α(~f )(x)−Gα(~f )(x, z)|

≤ CK
∫
~y/∈Sα(x)

[
d(x, z)

max1≤k≤m d(x, yk)

]δ ∏m
j=1 |fj(yj)|

[
∑m
k=1 V (x, yk)]m

dµ(~y). (4.27)

Notice that the right hand side of (4.27) can be written as a sum of integrals over sets
Rj1,...,j` for some {j1, . . . , j`} ( {1, . . . ,m} so that, for ~y := (y1, . . . , ym) ∈ Rj1,...,j` , we
have d(x, yj) < α if and only if j ∈ {j1, . . . , j`}. Set

{k1, . . . , km−`} := {1, . . . ,m} \ {j1, . . . , j`}.
Then m− ` ≥ 1 and∫
~y∈Rj1,...,j`

[
d(x, z)

max1≤k≤m d(x, yk)

]δ ∏m
j=1 |fj(yj)|

[
∑m
k=1 V (x, yk)]m

dµ(~y)

≤ αδ
∏

j∈{j1,...,j`}

∫
d(x,yj)<α

|fj(yj)| dµ(yj)

×
∫

(X\B(x,α))m−`

[
1

max1≤k≤m d(x, yk)

]δ ∏m−`
i=1 |fki(yki)|

[
∑m
k=1 V (x, yk)]m

dµ(yk1) · · · dµ(ykm−`).

Since∫
(X\B(x,α))m−`

[
1

max1≤k≤m d(x, yk)

]δ ∏m−`
i=1 |fki(yki)|

[
∑m
k=1 V (x, yk)]m

dµ(yk1) · · · dµ(ykm−`)

.
∫
{~y:

∑m−`
i=1 d(x,yki )≥α}

∏m−`
i=1 |fki(yki)|

[
∑m−`
i=1 d(x, yki)]

δ[
∑m−`
i=1 V (x, yki)]

m
dµ(yk1) · · · dµ(ykm−`)

∼
∞∑
s=0

∫
2sα≤

∑m−`
i=1 d(x,yki )<2s+1α

· · ·

.
∞∑
s=0

1

(2sα)δ(µ(B(x, 2s+1α)))m

m−`∏
i=1

∫
B(x,2s+1α)

|fki(yki)| dµ(yki),

we have∫
~y∈Rj1,...,j`

[
d(x, z)

max1≤k≤m d(x, yk)

]δ ∏m
j=1 |fj(yj)|

[
∑m
k=1 V (x, yk)]m

dµ(~y)

.
∞∑
s=0

1

(2s)δ[µ(B(x, 2s+1α))]m

m∏
j=1

∫
B(x,2s+1α)

|fj(yj)| dµ(yj)

.M(~f )(x).
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Combining this with (4.27) and (4.26), we see that for all z ∈ B(x, α/2),

|T̃α(~f )(x)| . CKM(~f )(x) + |T (~f )(z)|+ |T (~f0)(z)|. (4.28)

Raising (4.28) to the power γ, taking integral average over the ball B := B(x, α/2) with
respect to the variable z, we obtain

|T̃α(~f )(x)|γ . [CKM(~f )(x)]γ +M(|T (~f )|γ)(x) +
1

|B|

∫
B

|T (~f0)(z)|γ dµ(z). (4.29)

Since∫
B

|T (~f0)(z)|γ dµ(z) = mγ

∫ ∞
0

λmγ−1µ({z ∈ B : |T (~f0)(z)|1/m > λ}) dλ

≤ mγ
∫ ∞

0

λmγ−1 min

{
µ(B), λ−1W 1/m

m∏
j=1

‖fjχB(x,α)‖
1/m
L1(X )

}
dλ

. µ(B)1−mγW γ
m∏
j=1

‖fjχB(x,α)‖γL1(X ),

we then conclude that{
1

|B|

∫
B

|T (~f0)(z)|γ dµ(z)

}1/γ

.W

m∏
j=1

‖fjχB(x,α)‖L1(X )

|B|
.WM(~f )(x).

Combining this with (4.29), we obtain (4.25).

Proof of Theorem 4.16. To prove (i), we apply Proposition 4.18 to obtain

‖T ∗(~f )‖Lp(ν~w) . ‖[M(|T (~f )|γ)]1/γ‖Lp(ν~w) + (CK +W )‖M(~f )‖Lp(ν~w).

Theorem 4.7 implies that ‖M(~f )‖Lp(ν~w) .
∏m
j=1 ‖fj‖Lpj (wj). By Proposition 4.3(ii) and

~w ∈ A~P , we have ν~w ∈ Apm. If we choose 0 < γ < 1/m, then ν~w ∈ Ap/γ and

‖[M(|T (~f )|γ)]1/γ‖Lp(ν~w) ≤ ‖M‖
1/γ

Lp/γ(ν~w)→Lp/γ(ν~w)
‖T (~f )‖Lp(ν~w) .

m∏
j=1

‖fj‖Lpj (wj),

where, in the last inequality, we used Corollary 4.15(i). This finishes the proof of Theorem
4.16(i).

Using Proposition 4.18, Theorem 4.4 and Corollary 4.15(ii), together with an argument
similar to the proof of (i), we obtain (ii), the further details being omitted.



5. A multilinear T1-theorem on Lebesgue spaces

The linear T1-theorem was obtained by David and Journé [25]. Multilinear T1-theorems
have been obtained by Christ and Journé [17] and Grafakos and Torres [53]. In this section
we extend the latter to the context of RD-spaces. The multilinear T1-theorem provides a
criterion for the boundedness of an m-linear Calderón–Zygmund operator on products of
Lebesgue spaces.

5.1. Some lemmas on multilinear Calderón–Zygmund operators. The following
lemmas for the case X = Rn were proved in [53]. The proof of Lemma 5.1 is similar to
that of [53, Lemma 1], the details being omitted.

Lemma 5.1. Fix x0 ∈ X and η ∈ (0, 1]. Assume that ψ ∈ C∞(R) is such that 0 ≤ ψ ≤ 1,
ψ(t) = 1 when |t| < 1, and ψ(t) = 0 when |t| ≥ 2. Define

ψk(x) := ψ(2−kd(x, x0))

for all x ∈ X and k ∈ Z. Every m-linear Calderón–Zygmund operator T with a kernel
K ∈ Ker(m,CK , δ) for some CK > 0 and δ ∈ (0, 1] as in Definition 3.2 can be extended
to the m-fold product space (Cη(X )∩L∞(X ))× · · · × (Cη(X )∩L∞(X )) as an element of
(Cηb (X ))′ via

T (f1, . . . , fm)(x) := lim
k→∞

[T (ψkf1, . . . , ψkfm)(x) +G(ψkf1, . . . , ψkfm)] (5.1)

for all x ∈ X , where

G(ψkf1, . . . , ψkfm)

:= −
∫

min1≤j≤m{d(yj ,x0)}≥1

K(x0, y1, . . . , ym)(ψkf1)(y1) · · · (ψkfm)(ym) dµ(y1) · · · dµ(ym),

and the limit is taken in the weak∗-topology of (Cηb (X ))′.

Remark 5.2. For all f1, . . . , fm ∈ Cηb (X ) and x /∈
⋂m
j=1 supp fj , since there exists k1 ∈ Z

such that supp fj ⊂ B(x0, 2
k1) for all j ∈ {1, . . . ,m}, we see that, when k ≥ k1,

ψk(yj)fj(yj) = ψ(2−kd(yj , x0))fj(yj) = fj(yj)

for all j ∈ {1, . . . ,m} and yj ∈ X , which implies that the value of T (f1, . . . , fm)(x) as
defined in (5.1) differs from that in Definition 3.2 by the constant

−
∫

min1≤j≤m{d(yj ,x0)}≥1

K(x0, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(y1) · · · dµ(ym).

[45]
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However, this causes no difference when T (f1, . . . , fm) is considered as a function in
BMO(X ).

Lemma 5.3. Let K ∈ Ker(m,Ck, δ) and fm ∈ L∞(X ). Let Ωm−1 be as in Definition 3.1.
For (x, y1, . . . , ym−1) ∈ Ωm−1 define

Kfm(x, y1, . . . , ym−1) :=

∫
X
K(x, y1, . . . , ym−1, ym)fm(ym) dµ(ym). (5.2)

Then there exists a positive constant C̃, depending on X and m, such that

Kfm ∈ Ker(m− 1, C̃CK‖fm‖L∞(X ), δ).

Proof. Fix (x, y1, . . . , ym−1) ∈ Ωm−1. Without loss of generality, we may assume that

d(x, y1) = max
1≤j≤m−1

d(x, yj).

Then

V (x, y1) ≤
m−1∑
k=1

V (x, yk) ≤ (m− 1)V (x, y1). (5.3)

First we consider the size estimate of Kfm . Using (3.1) and (5.3), we obtain

|Kfm(x, y1, . . . , ym−1)|

≤ CK‖fm‖L∞(X )

∫
X

1

[
∑m
k=1 V (x, yk)]m

dµ(ym)

. CK‖fm‖L∞(X )

∫
X

1

[V (x, y1) + V (x, ym)]m
dµ(ym)

∼ CK‖fm‖L∞(X )

∞∑
`=0

∫
d(ym,x)∼2`d(x,y1)

1

[V (x, y1) + V (x, ym)]m
dµ(ym),

where the notation d(ym, x) ∼ 2`d(x, y1) means that d(ym, x) < 2`d(x, y1) for ` = 0 and
2`−1d(x, y1) ≤ d(ym, x) < 2`d(x, y1) for ` ≥ 1. Obviously, when ` = 0,∫

d(ym,x)<d(x,y1)

1

[V (x, y1) + V (x, ym)]m
dµ(ym) ≤ 1

[V (x, y1)]m−1
.

For each fixed ` ≥ 1, using (2.2), we see that∫
d(ym,x)∼2`d(x,y1)

1

[V (x, y1) + V (x, ym)]m
dµ(ym)

≤
∫
d(ym,x)∼2`d(x,y1)

1

[V (x, y1) + µ(B(x, 2`−1d(x, y1)))]m
dµ(ym)

.
2−`κ(m−1)

[V (x, y1)]m−1
.

Combining the last two formulae and summing over `, we obtain

|Kfm(x, y1, . . . , ym−1)| .
CK‖fm‖L∞(X )

[V (x, y1)]m−1
≤

C̃CK‖fm‖L∞(X )

[
∑m−1
k=1 V (x, yk)]m−1

, (5.4)

where we used (5.3) in the second inequality. Here and in the remainder of this proof,
C̃ denotes a positive constant depending on X and m.



5.1. Some lemmas on multilinear Calderón–Zygmund operators 47

Set y0 := x. Suppose that 0 ≤ j ≤ m− 1 and

d(yj , y
′
j) ≤ max

1≤k≤m−1
d(x, yk)/2.

Then d(yj , y
′
j) ≤ max1≤k≤m d(x, yk)/2. Consequently, applying (3.2) we obtain

|Kfm(y0, y1, . . . , yj , . . . , ym−1)−Kfm(y0, y1, . . . , y
′
j , . . . , ym−1)|

≤ CK‖fm‖L∞(X )

[
d(yj , y

′
j)

max0≤k≤m−1 d(y0, yk)

]δ ∫
X

1

[
∑m
k=1 V (y0, yk)]m

dµ(ym).

Finally, as we proved before,∫
X

1

[
∑m
k=1 V (y0, yk)]m

dµ(ym) .
1

[V (x, y1)]m−1
≤ C̃

[
∑m−1
k=1 V (x, yk)]m−1

,

which implies that Kfm has the desired smoothness estimate. From this and (5.4), we
deduce that

Kfm ∈ Ker(m− 1, C̃CK‖fm‖L∞(X ), δ).

Remark 5.4. By symmetry, Lemma 5.3 is true if we use any other variable in K instead
of ym. Given an m-linear operator T and a fixed function fj ∈ Cηb (X ) for some j ∈
{0, . . . ,m}, we define the (m− 1)-linear operator Tfj as

Tfj (f1, . . . , fj−1, fj+1, . . . , fm) := T (f1, . . . , fj−1, fj , fj+1, . . . , fm).

The transposes of Tfj satisfy

(Tfj )
∗k = (T ∗k)fj , k ∈ {1, . . . , j − 1}, (5.5)

(Tfj )
∗k = (T ∗(k+1))fj , k ∈ {j, . . . ,m− 1}. (5.6)

Denote by L∞b (X ) the set of all bounded functions on X with bounded support.

Lemma 5.5. Let T be a multilinear operator with kernel K ∈ Ker(m,CK , δ) which can
be extended to a bounded operator T : Lp1(X )× · · · × Lpm(X ) → Lp(X ) for some indices
1 ≤ p, p1, . . . , pm <∞ and 1/p = 1/p1 + · · ·+ 1/pm. Given fm ∈ L∞b (X ), let Tfm be as in
(5.4). Then Tfm is an (m − 1)-linear Calderón–Zygmund operator with kernel Kfm given
by (5.2).

Proof. Let f1, . . . , fm−1 ∈ Cηb (X ) and fm ∈ L∞b (X ). By Lemma 5.3 and Definition 3.2, it
is enough to show that, for every x /∈

⋂m−1
`=1 supp f`,

Tfm(f1, . . . , fm−1)(x) =

∫
Xm−1

Kfm(x, y1, . . . , ym−1)

m−1∏
`=1

f`(y`) dµ(y`). (5.7)

To this end, take h ∈ Cηb (X ) such that

supph ∩
m−1⋂
`=1

supp f` = ∅. (5.8)

By duality and the hypotheses, we obtain

〈T (f1, . . . , fm−1, fm), h〉 = 〈T ∗m(f1, . . . , fm−1, h), fm〉,
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where T ∗m(f1, . . . , fm−1, h) is well defined and belongs to Lp
′
m(X ) (with the convention

1′ = ∞ and ∞′ = 1). Also, (5.8) implies that T ∗m(f1, . . . , fm−1, h) is given by the
absolutely convergent integral

z 7→
∫
Xm

K(x, y1, . . . , ym−1, z)h(x) dµ(x)

m−1∏
`=1

f`(y`) dµ(y`).

By this and (5.8), we know that 〈T (f1, . . . , fm−1, fm), h〉 is given by the absolutely con-
vergent integral∫

X

[ ∫
Xm−1

Kfm(x, y1, . . . , ym−1)

m−1∏
`=1

f`(y`) dµ(y`)

]
h(x) dµ(x),

which implies (5.7).

5.2. BMO-boundedness of multilinear singular integrals

Theorem 5.6. Let T be an m-linear operator with a kernel K ∈ Ker(m,CK , δ) for some
CK > 0 and δ ∈ (0, 1), and T bounded from Lq1(X ) × · · · × Lqm(X ) to Lq(X ), where
1 < q, q1, . . . , qm <∞ and 1/q = 1/q1 + · · ·+ 1/qm. Then T extends to a bounded operator
from the m-fold product L∞b (X )× · · · × L∞b (X ) to BMO(X ) with norm at most a positive
constant multiple of CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq,∞(X ).

Proof. Set
W := ‖T‖Lq1 (X )×···×Lqm (X )→Lq,∞(X ).

We prove the assertion of Theorem 5.6 by induction overm. In the casem = 1 the assertion
is a known result of linear Calderón–Zygmund theory; see [94, 40]. Next, we assume that
the theorem is true for (m− 1)-linear Calderón–Zygmund operators, and prove that it is
valid for the m-linear operators.

To achieve this, we fix a function fm ∈ L∞b (X ) and define the (m− 1)-linear operator

Tfm(f1, . . . , fm−1) := T (f1, . . . , fm).

By Lemmas 5.3 and 5.5, Tfm is an (m−1)-linear Calderón–Zygmund operator with a kernel
Kfm ∈ CZK(m−1, C̃CK‖fm‖L∞(X ), δ) as given by (2.17). Notice that themth transpose
T ∗m of T is a Calderón–Zygmund operator with the following boundedness property:

T ∗m : Lq1(X )× · · · × Lqm−1(X )× Lq
′
(X )→ Lq

′
m(X )

with normW . Since Corollary 4.15 holds when the multiple weight is w1 = · · · = wm = 1,
we know that

T ∗m : Lm(X )× · · · × Lm(X )→ L1(X )

with norm C(CK +W ) and C as in Corollary 4.15. By duality,

T : Lm(X )× Lm(X )× · · · × L∞(X )→ Lm
′
(X )

with norm C(CK +W ). It follows that Tfm is bounded from the (m−1)-fold product space
Lm(X )× · · · ×Lm(X ) to Lm

′
(X ) with operator norm C(CK +W )‖fm‖L∞(X ). Therefore,

the induction hypothesis implies that Tfm is bounded from the (m−1)-fold product space
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L∞b (X )×· · ·×L∞b (X ) to BMO(X ) with operator norm C(CK +W )‖fm‖L∞(X ). Since fm
is an arbitrary L∞b (X ) function, the conclusion of the theorem follows.

Corollary 5.7. Let T be as in Theorem 5.6. Then T extends to a bounded operator from
them-fold product L∞(X )×· · ·×L∞(X ) to BMO(X ) with norm at most a positive constant
multiple of CK + ‖T‖Lq1 (X )×···×Lqm (X )→Lq,∞(X ).

Proof. Fix x0 ∈ X and consider a function h : R → R such that supph ⊂ (−2, 2),
0 ≤ h ≤ 1, and h(t) = 1 if 0 ≤ |t| ≤ 1. For k ∈ Z and x ∈ X , define

ψk(x) := h(2−kd(x, x0)).

For any k ∈ Z, since T maps the m-fold product space L2m(X )× · · · ×L2m(X ) to L2(X ),
we know that T (ψkf1, . . . , ψkfm) ∈ L2(X ) whenever f1, . . . , fm ∈ L∞(X ). Hence, for any
given f1, . . . , fm ∈ L∞(X ), we define

G(ψkf1, . . . , ψkfm) := −
∫

min1≤j≤m d(yj ,x0)>1

K(x0, y1, . . . , ym)

m∏
j=1

ψk(yj)fj(yj) dµ(yj).

Then, by Lemma 5.1, T extends to the m-fold product L∞(X )× · · · × L∞(X ) via
T (f1, . . . , fm) = lim

k→∞
[T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm)], (5.9)

where the limit exists almost everywhere and defines a locally integrable function. Now,
by (5.9) and Theorem 5.6, we have
‖T (f1, . . . , fm)‖BMO(X ) ≤ lim sup

k→∞
‖T (ψkf1, . . . , ψkfm) +G(ψkf1, . . . , ψkfm)‖BMO(X )

= lim sup
k→∞

‖T (ψkf1, . . . , ψkfm)‖BMO(X )

. (CK +B) lim
k→∞

m∏
j=1

‖ψkfj‖L∞(X )

. (CK +B)

m∏
j=1

‖fj‖L∞(X ).

5.3. A multilinear T1-theorem

Definition 5.8. Let A > 0. We say that an m-linear Calderón–Zygmund operator T
is BMO-restrictively bounded with bound A if there exists η ∈ (0, 1] such that, for all
x1, . . . , xm ∈ X , R1, . . . , Rm ∈ (0,∞), φi ∈ T (η, xi, Ri) and j ∈ {0, . . . ,m},

‖T ∗j(φ1, . . . , φm)‖BMO(X ) ≤ A.

Obviously, any m-linear Calderón–Zygmund operator T as in Theorem 5.6 is BMO-
restrictively bounded. Conversely, we have the following multilinear T1-type theorem.

Theorem 5.9. Let T be anm-linear Calderón–Zygmund operator with a kernelK belonging
to Ker(m,CK , δ) for some CK > 0 and δ ∈ (0, 1]. Suppose that T is BMO-restrictively
bounded for some positive constant A. Then there exist 1 < q, q1, . . . , qm < ∞ such that∑m
j=1 1/qj = 1/q and T has a bounded extension from Lq1(X ) × · · · × Lqm(X ) to Lq(X ).

Moreover,
‖T‖Lq1 (X )×···×Lqm (X )→Lq(X ) ≤ C(A+ CK),

where C depends only on C1, C2, m and δ.
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Proof. We use induction on m. By Theorem 2.23, the assertion is true if m = 1. Suppose
that the result is valid for (m − 1)-linear operators. Let T be an m-linear operator, fix
φm ∈ T (η, xm, Rm), and consider the (m− 1)-linear operator

Tφm(f1, . . . , fm−1) := T (f1, . . . , fm−1, φm).

By (5.5) and (5.6), together with Definition 5.8, we see that Tφm is also BMO-restrictively
bounded with constant A. By the induction hypothesis, we know that there exist 1 <

q, q1, . . . , qm−1 <∞ satisfying
∑m−1
j=1 1/qj = 1/q such that

Tφm : Lq1(X )× · · · × Lqm−1(X )→ Lq(X )

with norm at most a positive constant multiple of CK +A.
Next, by Lemma 5.5 and the fact that φm ∈ T (η, xm, Rm) ⊂ L∞(X ), we conclude that

Tφm has a Calderón–Zygmund kernel in Ker(m − 1, CK , δ). Thus, from Theorem 5.6, it
follows that

Tφm :

m−1 times︷ ︸︸ ︷
L∞b (X )× · · · × L∞b (X )→ BMO(X )

with norm less than a positive constant multiple of CK +A. Consequently,

‖T (g, φ2, . . . , φm)‖BMO(X ) . (CK +A)‖g‖L∞(X ) for all g ∈ L∞b (X ). (5.10)

Notice that we could repeat this argument when the function g appears in any other entry
2 ≤ j ≤ m. Next, for 1 ≤ j ≤ m and gj ∈ L∞b (X ), consider the operators Tgj given by

Tgj (f1, . . . , fm−1) := T (f1, . . . , fj−1, gj , fj+1, . . . , fm−1).

By (5.10), Tg1 satisfies the (m − 1)-linear BMO-restrictive boundedness with a constant
of the form C̃1 := C(CK + A)‖g1‖L∞(X ), where C depends only on C1, C2, m, and δ.
Analogous conclusions hold for all Tgj , 2 ≤ j ≤ m. Therefore, by the inductive hypothesis
we conclude that, for 1 ≤ j ≤ m, the operator Tgj satisfies

Lq1(X )× · · · × Lqj−1(X )× Lqj+1(X ) · · · × Lqm(X )→ Lq(X )

for some 1 < qk := qk(j), q := q(j) <∞ satisfying
∑

1≤k≤m, k 6=j 1/qk = 1/q, with bound
at most a positive constant multiple of C̃j := C(CK + A)‖gj‖L∞(X ). In other words, T
maps

Lq1(X )× · · · × Lqj−1(X )× L∞b (X )× Lqj+1(X ) · · · × Lqm(X )→ Lq(X ),

with norm bounded by at most a positive constant multiple of CK + A. Now notice
that each point of the form (1/q1, 1/q2, . . . , 1/qm), with 1 < q1, . . . , qm < ∞ and
1/q1 + · · ·+ 1/qm < 1, lies in the open convex hull of points of the form

(1/q1, . . . , 1/qj−1,

jth entry︷︸︸︷
0 , 1/qj+1, . . . , 1/qm), 1 ≤ j ≤ m.

Based on [43, Theorem 4.6] (see also [50]), T is of strong type for any point in this convex
hull with a bound controlled by a positive constant multiple of CK +A, which completes
the proof of Theorem 5.9.
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A powerful method to prove the boundedness of operators on Triebel–Lizorkin or Besov
spaces is to show that they map appropriate atoms into molecules. This method goes back
to Y. Meyer [81] and it was used by Frazier, Han, Jawerth and Weiss [32] and by Frazier,
Torres and Weiss [35] to prove the T1-theorem for linear Calderón–Zygmund operators
on Triebel–Lizorkin spaces; see also the work of Torres [99]. A systematic treatment of
bilinear operators through the use of wavelet decompositions was developed by Grafakos
and Torres [51]. Bényi [3] applied such decomposition techniques to obtain a T1-theorem
for bilinear operators on the space Ḟ 0

p,q(Rn) for 1 ≤ p <∞ and 1 ≤ q ≤ ∞. Bényi [2] also
studied more singular pseudodifferential operators with forbidden symbols on Lipschitz
and Besov spaces.

Motivated by these pioneering works, in this section, we prove T1-theorems for bilin-
ear Calderón–Zygmund operators on Triebel–Lizorkin spaces Ḟ sp,q(X ) and Besov spaces
Ḃsp,q(X ) for full admissible ranges of s, p, q; see Theorems 6.14 and 6.15. This successfully
addresses an open problem posed by Grafakos and Torres [55, p. 85].

6.1. Bilinear weak boundedness property. Let Q denote the collection of Christ’s
dyadic cubes as in Lemma 2.5. For any k ∈ Z, let

Qk := {Qkα : α ∈ Ik}.

Denote by cQ the center of a cube Q ∈ Q.

Definition 6.1. Let η ∈ (0, 1]. A continuous bilinear operator

T : Cηb (X )× Cηb (X )→ (Cηb (X ))′

is said to satisfy the bilinear weak boundedness property (for short, T ∈ BWBP(η)) if
there exists a positive constant C such that, for all f, g, h ∈ T (η, x, r) and i ∈ {1, 2},

|〈T ∗,i(f, g), h〉| ≤ Cµ(B(x, r)). (6.1)

Denote by ‖T‖BWBP(η) the smallest C satisfying (6.1).

If T ∈ BWBP(η) and K is the distribution kernel of T as defined in (3.3), then (6.1)
is equivalent to the following:

|〈K, f ⊗ g ⊗ h〉| ≤ Cµ(B(x, r)), ∀f, g, h ∈ T (η, x, r); (6.2)

here and in what follows,

(f ⊗ g ⊗ h)(x, y, z) = f(x)g(y)h(z), ∀x, y, z ∈ X .

[51]
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However, unlike in the Euclidean case, we do not know whether (6.2) holds for general
“bump functions” on X 3 or not. In other words, we do not know whether or not (6.2)
implies that

|〈K,F 〉| ≤ Cµ(B(x, r))

whenever F : X 3 → C satisfies, for all x0, x1, x2 ∈ X ,

(i) suppF ⊂ B(x, r)×B(x, r)×B(x, r) for some x ∈ X and r > 0;
(ii) ‖F‖L∞(X×X×X ) ≤ 1;
(iii) ‖F (·, x1, x2)‖Ċη(X ) ≤ r−η, ‖F (x0, ·, x2)‖Ċη(X ) ≤ r−η and ‖F (x0, x1, ·)‖Ċη(X ) ≤ r−η.

The following lemma, usually referred to as Meyer’s lemma (see Meyer [81], also
Torres [99] for its linear version), was proved by Bényi [3] for bilinear Calderón–Zygmund
operators on Rn. This bilinear Meyer’s lemma is crucial for the proof of T mapping atoms
into bilinear molecules. We mention that the proof for RD-spaces is much more subtle
than that in Rn.

Lemma 6.2. Let η ∈ (0, 1] and

D{ := X 3 \ {(x, x, x) : x ∈ X}.
Suppose that T ∈ BWBP(η) and its kernel K satisfies, for all (x0, x1, x2) ∈ D{,

|K(x0, x1, x2)| ≤ CK
1

[V (x0, x1) + V (x0, x2)]2
.

If f, g, h ∈ Cηb (X ) and f ⊗ g ⊗ h vanishes on the diagonal {(x, x, x) : x ∈ X}, then

〈T (f, g), h〉 =

∫
D{

K(x0, x1, x2)f(x1)g(x2)h(x0) dx0 dx1 dx2, (6.3)

and the integral is absolutely convergent.

Before we prove Lemma 6.2, we first establish the following auxiliary estimate.

Lemma 6.3. Let α ∈ (0,∞), x0 ∈ X and R ∈ (0,∞). Then∫
B(x0,R)

∫
B(x0,R)

∫
B(x0,R)

d(x, x1)α + d(x, x2)α

[V (x, x1) + V (x, x2)]2
dµ(x1) dµ(x2) dµ(x) <∞.

Proof. Observe that, when x1, x2, x ∈ B(x0, R), we have

d(x, x1) < 2R and d(x, x2) < 2R.

With this observation, we may assume that α < κ; otherwise we may bound

d(x, x1)α + d(x, x2)α

by (2R)α−ε[d(x, x1)ε + d(x, x2)ε] for some ε ∈ (0, κ).
Now assume that α < κ. In this case it suffices to prove that there exists a positive

constant C such that, for all x ∈ B(x0, R),∫
B(x0,R)

∫
B(x0,R)

d(x, x1)α + d(x, x2)α

[V (x, x1) + V (x, x2)]2
dµ(x1) dµ(x2) ≤ C.

To this end, by symmetry, we see that it is enough to show that∫
B(x0,R)

∫
d(x,x2)≥d(x,x1)

d(x, x1)α + d(x, x2)α

[V (x, x1) + V (x, x2)]2
dµ(x2) dµ(x1) ≤ C (6.4)
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for some positive constant C independent of x ∈ B(x0, R). To prove (6.4), we observe that∫
d(x,x2)≥d(x,x1)

d(x, x1)α + d(x, x2)α

[V (x, x1) + V (x, x2)]2
dµ(x2) ∼

∫
d(x,x2)≥d(x,x1)

d(x, x2)α

[V (x, x2)]2
dµ(x2),

where the right hand side can be estimated as follows:∫
d(x,x2)≥d(x,x1)

d(x, x2)α

[V (x, x2)]2
dµ(x2)

=

∞∑
j=1

∫
2j−1d(x,x1)≤d(x,x2)<2jd(x,x1)

d(x, x2)α

[V (x, x2)]2
dµ(x2)

∼
∞∑
j=1

∫
2j−1d(x,x1)≤d(x,x2)<2jd(x,x1)

[2jd(x, x1)]α

[µ(B(x, 2jd(x, x1)))]2
dµ(x2)

.
∞∑
j=1

[2jd(x, x1)]α

µ(B(x, 2jd(x, x1)))
.

Furthermore, from the reverse doubling condition (2.2) and the assumption α < κ, it
follows that

∞∑
j=1

[2jd(x, x1)]α

µ(B(x, 2jd(x, x1)))
.
∞∑
j=1

[2jd(x, x1)]α

2jκµ(B(x, d(x, x1)))
.

d(x, x1)α

µ(B(x, d(x, x1)))
.

Thus, we have∫
d(x,x2)≥d(x,x1)

d(x, x1)α + d(x, x2)α

[V (x, x1) + V (x, x2)]2
dµ(x2) .

d(x, x1)α

µ(B(x, d(x, x1)))
.

Integrating both sides on the ball B(x0, R) with respect to x1 and then using Lemma
2.4(c), we see that the right hand side of (6.4) is bounded by a positive constant multiple
of ∫

B(x0,R)

d(x, x1)α

µ(B(x, d(x, x1)))
dµ(x1) . Rα,

which proves (6.4), and hence completes the proof of Lemma 6.3.

Proof of Lemma 6.2. Let {Sk}k∈Z be a 1-ATIwith bounded support andwith the additional
properties that every Sk(x, y) is non-negative and

Sk(x, y) = Sk(y, x)

for all x, y ∈ X and all k ∈ Z. Without loss of generality, we may as well assume that
Sk(x, y) = 0 when d(x, y) ≥ 2−k. Let ψ ∈ C∞c (R) be a non-negative radial function such
that 0 ≤ ψ ≤ 1, ψ(ξ) = 1 if |ξ| ≤ 2, and ψ(ξ) = 0 if |ξ| > 4. Define

λk(x, y) :=

∫
X
Sk(x, z)ψ(2kd(z, y)) dµ(z), ∀k ∈ Z and x, y ∈ X .

It is easy to see that the functions {λk}k∈Z enjoy the following properties:

(i) λk ∈ Cηb (X );
(ii) 0 ≤ λk(x, x) ≤ 1 for all x ∈ X ;
(iii) λk(x, y) = 0 when d(x, y) ≥ 2−k+3;
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(iv) λk(x, y) = 1 when d(x, y) < 2−k;
(v) λk(x, y) = λk(y, x) for all x, y ∈ X .

Observe that, if f, g ∈ Cηb (X ), then fg ∈ Cηb (X ). So we can write

〈T (f, g), h〉 = 〈T (f(·)λk(·, x), g(·)λk(·, x)), h(x)〉
+ 〈T (f(·)λk(·, x), g(·)[1− λk(·, x)])(x), h(x)〉
+ 〈T (f(·)[1− λk(·, x)], g(·))(x), h(x)〉. (6.5)

First we consider the second term of (6.5). Since

x /∈ supp(f(·)λk(·, x)) ∩ supp(g(·)[1− λk(·, x)]),

by (3.3), we obtain

T (f(·)λk(·, x), g(·)[1− λk(·, x)])(x)

=

∫
X 2

K(x, x1, x2)f(x1)λk(x1, x)g(x2)[1− λk(x2, x)] dµ(x1) dµ(x2).

Without loss of generality, we may assume that f, g, h are supported on some ballB(x0, R)

with x0 ∈ X and R ∈ (0,∞). Hence,

〈T (f(·)λk(·, x), g(·)[1− λk(·, x)]), h(x)〉

=

∫
B(x0,R)3

K(x, x1, x2)λk(x1, x)[1− λk(x2, x)]

× f(x1)g(x2)h(x) dµ(x1) dµ(x2) dµ(x)

=

∫
B(x0,R)3

K(x, x1, x2)λk(x1, x)[1− λk(x2, x)]

× [f(x1)g(x2)− f(x)g(x)]h(x) dµ(x1) dµ(x2) dµ(x), (6.6)

where we used the fact f(x)g(x)h(x) = 0 for all x ∈ X . Since f, g ∈ Cηb (X ), we have

|f(x1)g(x2)− f(x)g(x)| ≤ |f(x1)| |g(x2)− g(x)|+ |f(x1)− f(x)| |g(x)|
≤ ‖f‖L∞(X )‖g‖Ċη(X )d(x2, x)η + ‖g‖L∞(X )‖f‖Ċη(X )d(x1, x)η,

so the last integrand in (6.6) is bounded by

CK [‖f‖L∞(X )‖g‖Ċη(X ) + ‖g‖L∞(X )‖f‖Ċη(X )]‖h‖L∞(X )
d(x1, x)η + d(x2, x)η

[V (x, x1) + V (x, x2)]2
,

which is integrable on the product domain B(x0, R)3 in view of Lemma 6.3. From this and
the Lebesgue dominated convergence theorem, it follows that

lim
k→∞

〈T (f(·)λk(·, x), g(·)[1− λk(·, x)]), h(x)〉

=

∫
B(x0,R)3

lim
k→∞

λk(x1, x)[1− λk(x2, x)]K(x, x1, x2)

× [f(x1)g(x2)− f(x)g(x)]h(x) dµ(x1) dµ(x2) dµ(x) = 0.

For the third term of (6.5), an argument similar to the above implies that
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lim
k→∞

〈T (f(·)[1− λk(·, x)], g(·))(x), h(x)〉

=

∫
X 3

lim
k→∞

[1− λk(x2, x)]K(x, x1, x2)[f(x1)g(x2)− f(x)g(x)]h(x) dµ(x1) dµ(x2) dµ(x)

=

∫
D{

K(x, x1, x2)f(x1)g(x2)h(x) dµ(x1) dµ(x2) dµ(x).

Therefore, to obtain (6.3), it suffices to prove that

lim
k→∞

〈T (f(·)λk(·, x), g(·)λk(·, x))(x), h(x)〉 = 0. (6.7)

To this end, we claim that, for any k ∈ Z and x ∈ X ,

λk(·, x) = lim
J→∞

∑
Q∈QJ

µ(Q)Sk(·, cQ)ψ(2kd(cQ, x)) (6.8)

in Cηb (X ). Indeed, (6.8) was proved in [60, p. 31, (2.85)]; moreover, for each fixed large
number J and x, y ∈ X , say J ≥ k + 10, the sum∑

Q∈QJ

µ(Q)Sk(·, cQ)ψ(2kd(cQ, x))

has only finitely many non-zero terms.
For notational convenience, for any Q ∈ Q and k ∈ Z, set

Ψk,Q(·) := ψ(2kd(cQ, ·)) and Sk,Q(·) := Sk(·, cQ).

By (6.8), we write

〈T (f(·)λk(·, x), g(·)λk(·, x))(x), h(x)〉

= lim
J→∞

∑
Q∈QJ

∑
P∈QJ

µ(Q)µ(P )〈T (fΨk,Q, gΨk,P ), Sk,QSk,Ph〉. (6.9)

Taking into account the support condition on Sk,QSk,Ph, we see that the sums in (6.9)
are over all Q,P ∈ QJ satisfying Q ∩ supph 6= ∅, P ∩ supph 6= ∅ and d(cQ, cP ) ≤ 2−k+1.
Observe that

〈T (fΨk,Q, gΨk,P ), Sk,QSk,Ph〉
= 〈T ([f − f(cQ)]Ψk,Q, [g − g(cP )]Ψk,P ), Sk,QSk,P [h− h(cQ)]〉

+ h(cQ)〈T ([f − f(cQ)]Ψk,Q, [g − g(cP )]Ψk,P ), Sk,QSk,P 〉
+ g(cP )〈T ([f − f(cQ)]Ψk,Q,Ψk,P ), Sk,QSk,Ph〉
+ f(cQ)〈T (Ψk,Q, gΨk,P ), Sk,QSk,Ph〉

=: Z1 + Z2 + Z3 + Z4.

To estimate Z1 through Z4, we apply the hypothesis T ∈ BWBP(η). Notice that

supp([f − f(cQ)]Ψk,Q) ⊂ B(cQ, 2
−k+2)

and, for any x ∈ X ,

|[f(x)− f(cQ)]Ψk,Q(x)| ≤ ‖f‖Ċη(X )d(x, cQ)ηψ(2kd(x, cQ))

≤ 2(−k+2)η‖f‖Ċη(X ). (6.10)
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Now we show that, for all x, x′ ∈ X ,

|[f(x)− f(cQ)]Ψk,Q(x)− [f(x′)− f(cQ)]Ψk,Q(x′)| . d(x, x′)η. (6.11)

To this end, by the support condition of Ψk,Q, we may as well assume that

d(x, cQ) ≤ 2−k+2 or d(x′, cQ) ≤ 2−k+2;

otherwise the left hand side of (6.11) is equal to 0 and (6.11) holds automatically. By
symmetry, it suffices to consider the case d(x′, cQ) ≤ 2−k+2. Then, for all x, x′ ∈ X ,

|[f(x)− f(cQ)]Ψk,Q(x)− [f(x′)− f(cQ)]Ψk,Q(x′)|
≤ |f(x)− f(x′)| |Ψk,Q(x)|+ |f(x′)− f(cQ)| |Ψk,Q(x)−Ψk,Q(x′)|
. ‖f‖Ċη(X )d(x, x′)η + ‖f‖Ċη(X )d(x′, cQ)η[2kd(x, x′)]η

. d(x, x′)η,

which proves (6.11). From (6.10) and (6.11), it follows that there exists a positive constant
C such that, for all k ∈ Z, J ≥ k + 10 and Q ∈ QJ ,

C2kη[f − f(cQ)]Ψk,Q ∈ T (η, cQ, 2
−k+2).

As we are considering the cubesQ and P such that d(cQ, cP ) ≤ 2−k+1, an argument similar
to that used in the proofs of (6.10) and (6.11) also implies that there exists a positive
constant C such that, for all k ∈ Z, J ≥ k + 10 and Q,P ∈ QJ ,

C2kη[g − g(cP )]Ψk,P ∈ T (η, cQ, 2
−k+2),

CV2−k(cQ)V2−k(cP )Sk,QSk,P ∈ T (η, cQ, 2
−k+2),

C2kηV2−k(cQ)V2−k(cP )Sk,QSk,P [h− h(cQ)] ∈ T (η, cQ, 2
−k+2).

From these and the hypothesis T ∈ BWBP(η), we obtain

|Z1| . 2−3kηµ(B(cQ, 2
−k+2))

1

V2−k(cQ)V2−k(cP )
,

|Z2| . 2−2kηµ(B(cQ, 2
−k+2))

1

V2−k(cQ)V2−k(cP )

and

|Z3| ≤ |g(cP )〈T ([f − f(cQ)]Ψk,Q,Ψk,P ), Sk,QSk,P [h− h(cQ)]〉|
+ |g(cP )h(cQ)〈T ([f − f(cQ)]Ψk,Q,Ψk,P ), Sk,QSk,P 〉|

. 2−kη
µ(B(cQ, 2

−k+2))

V2−k(cQ)V2−k(cP )
.

Using the assumption f(x)g(x)h(x) = 0 for all x ∈ X , we write

Z4 = f(cQ)〈T (Ψk,Q, [g − g(cP )]Ψk,P ), Sk,QSk,P [h− h(cQ)]〉
+ f(cQ)g(cP )〈T (Ψk,Q,Ψk,P ), Sk,QSk,P [h− h(cQ)]〉
+ f(cQ)h(cQ)〈T (Ψk,Q, [g − g(cP )]Ψk,P ), Sk,QSk,P 〉
+ f(cQ)h(cQ)[g(cP )− g(cQ)]〈T (Ψk,Q,Ψk,P ), Sk,QSk,P 〉

=: Z4,1 + Z4,2 + Z4,3 + Z4,4.
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As in the estimates of Z1 through Z3, applying the hypothesis T ∈ BWBP(η) gives

|Z4,1|+ |Z4,2|+ |Z4,3| . 2−kηµ(B(cQ, 2
−k+2))

1

V2−k(cQ)V2−k(cP )
.

From d(cQ, cP ) ≤ 2−k+1, g ∈ Cηb (X ), T ∈ BWBP(η) and the facts

CΨk,P , CΨk,Q, CV2−k(cQ)V2−k(cP )Sk,QSk,P ∈ T (η, cQ, 2
−k+2),

where C is a positive constant, we also obtain

|Z4,4| . 2−kηµ(B(cQ, 2
−k+2))

1

V2−k(cQ)V2−k(cP )
.

Combining the estimates of Z1 through Z4, we conclude that

〈T (fΨk,Q, gΨk,P ), Sk,QSk,Ph〉 . 2−kη
1

V2−k(cP )
. 2−kη

1

V2−k(cQ)
.

Now we insert this into (6.9) and see that, for all J ≥ k + 10,

|〈T (fλk(·, x), gλk(·, x))(x), h(x)〉|

. 2−kη lim
J→∞

∑
Q∈QJ

Q∩supph 6=∅

∑
P∈QJ

d(cP ,cQ)<2−k+1

µ(Q)µ(P )
1

V2−k(cQ)

. 2−kη.

Letting k →∞ we obtain (6.7). This concludes the proof of Lemma 6.2.

6.2. Bilinear molecules. Now we elaborate on the concept of bilinear molecules, as
introduced by Grafakos and Torres in [51], and stress the importance of mapping properties
from atoms to molecules in the boundedness of bilinear operators on Besov and Triebel–
Lizorkin spaces. The whole section stems from the seminal work in the linear case by
Y. Meyer [81] and David, Journé and Semmes [25, 26].

Definition 6.4. Let β ∈ (0, 1]. If Q ∈ Qk for some k ∈ Z, then a function aQ is called a
β-atom associated with Q if the following hold:

(i) supp aQ ⊂ Q and, for all x ∈ X ,

|aQ(x)| ≤ µ(Q)−1/2;

(ii) for all x, x′ ∈ X such that d(x, x′) ≤ 2−k−1,

|aQ(x)− aQ(x′)| ≤ µ(Q)−1/2[2kd(x, x′)]β ;

(iii)
∫
X aQ(y) dµ(y) = 0.

Obviously, any β-atom is an element of

{f ∈ G̊(β, γ) : f has bounded support}

for all γ ∈ (0,∞). The converse is also true modulo a positive constant.
Bilinear molecules on Rn were first introduced by Grafakos and Torres [51]; these

molecules as well as their derivatives decay rapidly at infinity. Here we introduce bilinear
molecules on RD-spaces with no requirements on their smoothness.
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Definition 6.5. Let γ ∈ (0,∞) and σ ∈ (0,∞). If Q ∈ Qk and P ∈ Qj for some k, j ∈ Z,
a function MQ,P is called a bilinear (γ, σ)-molecule associated with Q and P if, for almost
every x ∈ X ,

|MQ,P (x)| ≤ 2−|k−j|σµ(Q)1/2µ(P )1/2K(2−k; γ, x, cQ)K(2−j ; γ, x, cP )

and ∫
X
MQ,P (x) dµ(x) = 0,

where, for any given ε ∈ (0,∞), t > 0 and all x, y ∈ X ,

K(t; ε, x, y) :=
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]ε
.

Theorem 6.6. Let η ∈ (0, 1], β ∈ (0, 1], T ∈ BWBP(η) with a kernel K ∈ Ker(2, CK , δ)

for some CK > 0 and δ > 0. Assume that, for all g ∈ Cηb (X ),

T (g, 1) = T ∗,1(1, g) = 0 in (Cηb (X ))′.

If aQ is a β-atom associated with Q ∈ Qk for some k ∈ Z, and aP a β-atom associated
with P ∈ Qj for some integer j ≤ k, then, for any given

γ ∈ (0, δ/2] and σ ∈ (0,min{δ − γ, β, κ}],

T (aQ, aP ) is a constant multiple of a bilinear (γ, σ)-molecule associated with Q and P .

Proof. Without loss of generality, we may as well assume that β ≤ κ, where κ is the reverse
doubling exponent in (2.2), since any β-atom is a β′-atom whenever β′ ∈ (0, β].

We first estimate |T (aQ, aP )(x)| for all x ∈ X by considering the following four cases:

Case 1: d(x, cQ) ≥ C52−k+10 and d(x, cP ) ≥ C52−j+10. In this case, by (3.3) and∫
X
aQ(y) dµ(y) = 0,

we write

|T (aQ, aP )(x)| =
∣∣∣∣ ∫
X 2

K(x, y1, y2)aQ(y1)aP (y2) dµ(y1) dµ(y2)

∣∣∣∣
=

∣∣∣∣ ∫
X 2

[K(x, y1, y2)−K(x, cQ, y2)]aQ(y1)aP (y2) dµ(y1) dµ(y2)

∣∣∣∣.
Since supp aQ ⊂ Q and supp aP ⊂ P , it follows that, if the integrand is non-zero, then

d(x, y1) ∼ d(x, cQ), d(x, y2) ∼ d(x, cP ) and d(y1, cQ) ≤ C52−k ≤ d(x, y1)/2.

Applying the regularity condition onK and the size conditions on aQ and aP , we conclude
that

|T (aQ, aP )(x)| .
∫
Q

∫
P

[
d(y1, cQ)

max{d(x, y1), d(x, y2)}

]δ
µ(Q)−1/2µ(P )−1/2

[V (x, y1) + V (x, y2)]2
dµ(y1) dµ(y2)

.

[
2−k

max{d(x, cP ), d(x, cQ)}

]δ
µ(Q)1/2µ(P )1/2

[µ(B(x, d(x, cQ))) + µ(B(x, d(x, cP )))]2

. 2(j−k)(δ−γ)µ(Q)1/2µ(P )1/2K(2−k; γ, x, cQ)K(2−j ; γ, x, cP ).
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Case 2: d(x, cQ) < C52−k+10 and d(x, cP ) ≥ C52−j+10. In this case, again by (3.3) and∫
X
aQ(y) dµ(y) = 0,

we write

|T (aQ, aP )(x)| =
∣∣∣∣ ∫
X 2

[K(x, y1, y2)−K(x, cQ, y2)]aQ(y1)aP (y2) dµ(y1) dµ(y2)

∣∣∣∣.
Notice that, for all y1 ∈ Q and y2 ∈ P ,

d(x, y2) ∼ d(x, cP ) and d(y1, cQ) ≤ C52−k ≤ C52−j ≤ d(x, y2)/2.

Applying the regularity condition on K as well as the size conditions on aQ and aP yields

|T (aQ, aP )(x)| .
∫
Q

∫
P

[
d(y1, cQ)

max{d(x, y1), d(x, y2)}

]δ
µ(Q)−1/2µ(P )−1/2

[V (x, y1) + V (x, y2)]2
dµ(y1) dµ(y2)

. 2(j−k)δ

[
2−j

d(x, cP )

]δ
µ(Q)1/2µ(P )1/2

[µ(B(x, d(x, cP )))]2

. 2(j−k)δµ(Q)1/2µ(P )1/2K(2−k; γ, x, cQ)K(2−j ; δ, x, cP ),

where we used the estimates 2−kd(x, cQ) . 1, j ≤ k and

V2−k(x) + V (x, cQ) . µ(B(x, 2−k)) . µ(B(x, 2−j)) . µ(B(x, d(x, cP ))).

Case 3: d(x, cQ) ≥ C52−k+10 and d(x, cP ) < C52−j+10. As in the previous two cases,

|T (aQ, aP )(x)| =
∣∣∣∣ ∫
X 2

[K(x, y1, y2)−K(x, cQ, y2)]aQ(y1)aP (y2) dµ(y1) dµ(y2)

∣∣∣∣.
Notice that, for all y1 ∈ Q and y2 ∈ P ,

d(x, y1) ∼ d(x, cQ) and d(y1, cQ) ≤ C52−k ≤ d(x, y1)/2.

By the regularity condition on K and the size conditions on aQ and aP , we know that

|T (aQ, aP )(x)| .
∫
Q

∫
P

[
d(y1, cQ)

max{d(x, y1), d(x, y2)}

]δ
µ(Q)−1/2µ(P )−1/2

[V (x, y1) + V (x, y2)]2
dµ(y1) dµ(y2)

. 2(j−k)(δ−γ)

[
2−k

d(x, cQ)

]γ
µ(Q)1/2µ(P )−1/2

µ(B(x, d(x, cQ)))

×
∫
P

[
2−j

max{d(x, cQ), d(x, y2)}

]δ−γ
1

V (x, y2) + V (x, cQ)
dµ(y2)

. 2(j−k)(δ−γ)µ(Q)1/2µ(P )1/2K(2−k; γ, x, cQ)K(2−j ; γ, x, cP ),

where the last inequality is due to the following three estimates:
1

µ(P )
. K(2−j ; γ, x, cP ) when d(x, cP ) ≤ C52−j+10,[

2−k

d(x, cQ)

]γ
1

µ(B(x, d(x, cQ)))
. K(2−k; γ, x, cQ) when d(x, cQ) > C52−j+10,

and
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∫
P

[
2−j

max{d(x, cQ), d(x, y2)}

]δ−γ
1

V (x, y2) + V (x, cQ)
dµ(y2)

=

∞∑
`=0

∫
d(x,y2)∼2`−k

[
2−j

max{d(x, cQ), d(x, y2)}

]δ−γ
1

V (x, y2) + V (x, cQ)
dµ(y2)

.
∞∑
`=0

∫
d(x,y2)∼2`−k

2−`(δ−γ) 1

µ(B(x, 2`−k)
dµ(y2)

. 1,

where the notation d(x, y2) ∼ 2`−k means that 2`−k ≤ d(x, y2) < 2`−k+1 when ` ∈ N, and
d(x, y2) < 2−k when ` = 0.

Case 4: d(x, cQ) < C52−k+10 and d(x, cP ) < C52−j+10. In this case, it suffices to show
that

‖T (aQ, aP )χB(cQ, C52−k+10)∩B(cP , C52−j+10)‖L∞(X ) . 2(j−k)βµ(Q)−1/2µ(P )−1/2. (6.12)

Since (X , d, µ) is assumed to be an RD-space, it follows that Cγb (X ) is dense in L1(X ) (see
[60, Corollary 2.11]). Thus, the proof of (6.12) would follow from the estimate

|〈T (aQ, aP ), h〉| . 2(j−k)βµ(Q)−1/2µ(P )−1/2 (6.13)

for all functions h ∈ Cηb (X ) with ‖h‖L1(X ) = 1 and

supph ⊂ B(cQ, C52−k+10) ∩B(cP , C52−j+10).

To prove (6.13), by the assumption T (g, 1) = 0 in (Cηb (X ))′ for all g ∈ Cηb (X ), we have

〈T (aQ, 1), haP 〉 = 0

and hence

〈T (aQ, aP ), h〉 = 〈T (aQ, [aP − aP (x)])(x), h(x)〉.

Applying Lemma 6.2 and using the size and regularity conditions on aP , we see that

|〈T (aQ, [aP − aP (x)])(x), h(x)〉|

=

∣∣∣∣ ∫
D{

K(x, y1, y2)aQ(y1)[aP (y2)− aP (x)]h(x) dµ(y1) dµ(y2) dµ(x)

∣∣∣∣
.
∫

(x,y1,y2)∈D{

y1∈Q

µ(Q)−1/2µ(P )−1/2

[V (x, y1) + V (x, y2)]2
min

{[
d(x, y2)

2−j

]β
, 1

}
|h(x)| dµ(y1) dµ(y2) dµ(x).

By the doubling and reverse doubling conditions on µ, we obtain∫
Q

∫
X

min

{[
d(x, y2)

2−j

]β
, 1

}
1

[V (x, y1) + V (x, y2)]2
dµ(y2) dµ(y1)

≤
∞∑
s=0

∑
t∈Z

∫
d(x,y1)∼C2−k−s

d(x,y2)∼C2−j−t

min

{[
d(x, y2)

2−j

]β
, 1

}
1

[V (x, y1) + V (x, y2)]2
dµ(y2) dµ(y1)



6.2. Bilinear molecules 61

.
∞∑
s=0

∑
t∈Z

min{2−tβ , 1} µ(B(x, 2−s−k))µ(B(x, 2−t−j))

[µ(B(x, 2−s−k)) + µ(B(x, 2−t−j))]2

.
∞∑
s=0

∑
t+j>s+k

2−tβ
µ(B(x, 2−t−j))

µ(B(x, 2−s−k))
+

∞∑
s=0

∑
t≤s+k−j

min{2−tβ , 1}µ(B(x, 2−s−k))

µ(B(x, 2−t−j))

.
∞∑
s=0

∑
t+j>s+k

2−tβ
(

2−t−j

2−s−k

)κ
+

∞∑
s=0

s+k−j∑
t=0

2−tβ
(

2−s−k

2−t−j

)κ
+

∞∑
s=0

−1∑
t=−∞

(
2−s−k

2−t−j

)κ
. 2−(k−j)β

(here we used β ≤ κ), therefore,

|〈T (aQ, aP ), h〉| . 2−(k−j)βµ(Q)−1/2µ(P )−1/2

∫
X
|h(x)| dµ(x)

. 2−(k−j)βµ(Q)−1/2µ(P )−1/2,

which proves (6.13) and hence (6.12).

Putting all estimates in the four cases above together, we finally conclude thatT (aQ, aP )

satisfies the size condition of a bilinear (γ, σ)-molecule associated with Q and P modulo
a positive constant. Moreover, it is easy to see that∫

X
T (aQ, aP )(x) dµ(x) = 〈T (aQ, aP ), 1〉 = 〈T ∗,1(1, aP ), aQ〉 = 0,

which completes the proof of Theorem 6.6.

The following bilinear almost diagonal estimate is a variation of the one in [51, Propo-
sition 3] but it is in the context of RD-spaces; see also [46, Proposition 3.2] and the related
work of Bényi and Tzirakis [6].

Theorem 6.7. Let `, k, j be integers such that j ≤ ` ≤ k, R ∈ Q`, Q ∈ Qk and P ∈ Qj.
Then, for all γ ∈ (0,∞), γ′ ∈ (0, γ) and γ′′ ∈ (0, γ),

J :=
1

µ(R)

∫
B(cR, C52−`)

1

V2−k(x) + V (x, cQ)

[
1

1 + 2kd(x, cQ)

]γ
× 1

V2−j (x) + V (x, cP )

[
1

1 + 2jd(x, cP )

]γ
dµ(x)

≤ CK(2−`; γ′, cR, cQ)K(2−j ; γ′′, cR, cP ), (6.14)

where C5 is the constant appearing in Lemma 2.5, and C is a positive constant independent
of P , Q, R.

Proof. Let

A0 := {x ∈ X : d(x, cP ) < 2t−j},
At := {x ∈ X : 2t−1−j ≤ d(x, cP ) < 2t−j}, ∀t ∈ N.

Let also

W0 := {x ∈ X : d(x, cQ) < 2t−j},
Ws := {x ∈ X : 2s−1−k ≤ d(x, cQ) < 2s−k}, ∀s ∈ N.
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Then

J .
∞∑
t=0

∞∑
s=0

2−tγ2−sγ
1

µ(R)

1

µ(B(cQ, 2s−k))

1

µ(B(cP , 2t−j))

∫
B(cR,C52−`)∩At∩Ws

dµ(x).

If B(cR, C52−`) ∩At ∩Ws 6= ∅, then, by j ≤ ` ≤ k, we have

d(cR, cQ) ≤ C52−` + 2s−k . max{2−`, 2s−k} and d(cR, cP ) ≤ C52−` + 2t−j . 2t−j ,

which implies that, for all s ≥ 0 and γ′ ∈ (0, γ),

1

µ(B(cQ, 2s−k))
.
µ
(
B(cQ, 2

−` + d(cR, cQ))
)

µ(B(cQ, 2s−k))

[
2−` + d(cR, cQ)

2−`

]γ′
K(2−`; γ′, cR, cQ)

. 2sγ
′ µ(B(cQ, 2

−` + 2s−k))

µ(B(cQ, 2s−k))
K(2−`; γ′, cR, cQ) (6.15)

and, for all t ≥ 0 and γ′′ ∈ (0, γ),

1

µ(B(cP , 2t−j))
.
µ
(
B(cP , 2

−j + d(cR, cP ))
)

µ(B(cP , 2t−j))

[
2−j + d(cR, cP )

2−j

]γ′′
K(2−j ; γ′′, cR, cR)

. 2tγ
′′
K(2−`; γ′′, cR, cP ). (6.16)

By (6.15), (6.16), together with the facts

µ(B(cQ, 2
−` + 2s−k)) ∼ µ(B(cR, 2

−` + 2s−k))

and
µ(B(cR, C52−`) ∩At ∩Ws) . min{µ(R), µ(B(cQ, 2

s−k))},

we obtain

J .
∞∑
t=0

∞∑
s=0

2−t(γ−γ
′)2−s(γ−γ

′′)µ(B(cQ, 2
−` + 2s−k)) min{µ(R), µ(B(cQ, 2

s−k))}
µ(B(cQ, 2s−k))µ(R)

×K(2−`; γ′, cR, cQ)K(2−j ; γ′′, cR, cP )

. K(2−`; γ′, cR, cQ)K(2−j ; γ′′, cR, cP ).

Inserting the estimate of J into (6.17) implies the desired inequality (6.14). This concludes
the proof of Theorem 6.7.

As an application of Theorems 6.6 and 6.7, we easily obtain the following conclusion.

Theorem 6.8. Let η ∈ (0, 1], β ∈ (0, 1], T ∈ BWBP(η) with a kernel K ∈ Ker(2, CK , δ)

for some CK > 0 and δ > 0. Assume that, for all g ∈ Cηb (X ),

T (1, g) = T (g, 1) = T ∗,1(1, g) = 0 in (Cηb (X ))′.

Suppose that `, j and k are integers such that aP , aQ and aR are β-atoms associated with
cubes P ∈ Qj, Q ∈ Qk, and R ∈ Q`, respectively. Then, for any given

γ ∈ (0, δ/2] and σ ∈ (0,min{δ − γ, β, κ}],

the following hold: for any given γ′, γ′′ ∈ (0, γ),
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(i) when j ≤ ` ≤ k,

|〈aR, T (aP , aQ)〉|

≤ C2−|k−j|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−`; γ′, cR, cQ)K(2−j ; γ′′, cR, cP );

(ii) when k ≤ ` ≤ j,

|〈aR, T (aP , aQ)〉|

≤ C2−|k−j|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−k; γ′, cR, cQ)K(2−`; γ′′, cR, cP );

(iii) when j ≤ k ≤ `,

|〈aR, T (aP , aQ)〉|

≤ C2−|`−j|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−k; γ′, cQ, cR)K(2−j ; γ′′, cQ, cP );

(iv) when k ≤ j ≤ `,

|〈aR, T (aP , aQ)〉|

≤ C2−|`−k|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−j ; γ′, cP , cR)K(2−k; γ′′, cP , cQ);

(v) when ` ≤ k ≤ j,

|〈aR, T (aP , aQ)〉|

≤ C2−|`−j|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−`; γ′, cQ, cR)K(2−k; γ′′, cQ, cP );

(vi) when ` ≤ j ≤ k,

|〈aR, T (aP , aQ)〉|

≤ C2−|`−k|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−`; γ′, cP , cR)K(2−j ; γ′′, cP , cQ);

here C is a positive constant independent of P , Q and R.

Proof. Since T (g, 1) = T ∗,1(1, g) = 0 in (Cηb (X ))′, by Theorems 6.6 and 6.7, we see that,
when j ≤ ` ≤ k,∣∣∣∣ ∫

X
aR(x)T (aP , aQ)(x) dµ(x)

∣∣∣∣
. 2−|k−j|σµ(R)1/2µ(Q)1/2µ(P )1/2 1

µ(R)

∫
B(cR, C52−`)

1

V2−k(x) + V (x, cQ)

×
[

1

1 + 2kd(x, cQ)

]γ
1

V2−j (x) + V (x, cP )

[
1

1 + 2jd(x, cP )

]γ
dµ(x)

. 2−|k−j|σµ(R)1/2µ(Q)1/2µ(P )1/2K(2−`; γ′, cR, cQ)K(2−j ; γ′′, cR, cP ), (6.17)

which proves (i).
By symmetry, (ii) holds true.
To prove (iii) and (iv), we write

〈aR, T (aP , aQ)〉 = 〈aQ, T ∗,2(aP , aR)〉.
Since j ≤ k ≤ ` and the operator S := T ∗,2 satisfies

S(g, 1) = S∗,1(1, g) = 0 in (Cηb (X ))′,

we apply (i) and (ii), respectively, to deduce the estimates (iii) and (iv).
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Finally, (v) and (vi) hold true for similar reasons, the details being omitted. This
finishes the proof of Theorem 6.8.

6.3. Bilinear T1-theorem on Triebel–Lizorkin spaces. Homogeneous Besov and
Triebel–Lizorkin spaces on Ahlfors 1-regular metric spaces were first introduced by Han
and Sawyer [61] via applying the Calderón reproducing formulae, but only for exponents
p, q ∈ (1,∞) (for Triebel–Lizorkin spaces p, q ∈ [1,∞)). An extension to the range of p, q
smaller than 1 and near 1 was obtained by Han [57]. For a systematic treatment of the
theory of (in)homogeneous Besov and Triebel–Lizorkin spaces on RD-spaces, we refer the
reader to the work of Han, Müller and Yang [60]. We recall their definitions.

Definition 6.9. Let (X , d, µ) be an RD-space and µ(X ) = ∞. Let ε1 ∈ (0, 1], ε2 > 0,
ε3 > 0, ε ∈ (0, ε1 ∧ ε2), |s| < ε, and {Sk}k∈Z be an (ε1, ε2, ε3)-ATI. For k ∈ Z, let
Dk := Sk − Sk−1. Set also

p(s, ε) := max{n/(n+ ε), n/(n+ ε+ s)}.

(i) Let p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞. The space Ḃsp,q(X ) is defined to be the set of all
f ∈ (G̊ε0(β, γ))′, for some β, γ satisfying

max{s, 0,−s+ n(1/p− 1)+} < β < ε,

max{s− κ/p, n(1/p− 1)+,−s+ n(1/p− 1)+ − κ(1− 1/p)+} < γ < ε,
(6.18)

such that

‖f‖Ḃsp,q(X ) :=
[ ∞∑
k=−∞

2ksq‖Dk(f)‖qLp(X )

]1/q
<∞

with the usual modifications when p =∞ or q =∞.
(ii) Let p(s, ε) < p < ∞ and p(s, ε) < q ≤ ∞. The space Ḟ sp,q(X ) is defined to be the set

of all f ∈ (G̊ε0(β, γ))′, for some β, γ satisfying (6.18), such that

‖f‖Ḟ sp,q(X ) :=
∥∥∥[ ∞∑

k=−∞

2ksq|Dk(f)|q
]1/q∥∥∥

Lp(X )
<∞,

with the usual modification when q = ∞. When p = ∞ and p(s, ε) < q ≤ ∞, the
space Ḟ s∞,q(X ) is defined to be the set of all f ∈ (G̊ε0(β, γ))′, for some β, γ satisfying

|s| < β < ε, max{s, 0, −s− κ} < γ < ε,

such that

‖f‖Ḟ s∞,q(X ) := sup
`∈Z

sup
α∈I`

[
1

µ(Q`α)

∫
Q`α

∞∑
k=`

2ksq|Dk(f)(x)|q dµ(x)

]1/q

<∞,

where the supremum is taken over all dyadic cubes as in Lemma 2.5 with the usual
modification when q =∞.

Let
Q := {Qkα ⊂ X : k ∈ Z, α ∈ Ik}

be the collection of all Christ’s dyadic cubes as in Lemma 2.5. For k ∈ Z and τ ∈ Ik, we
denote by

{Qk,ντ : ν ∈ {1, . . . , N(k, τ)}}
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the set of all cubes Qk+j0
τ ′ ⊂ Qkτ , where Qkτ is the dyadic cube as in Lemma 2.5 and j0 is

a positive integer satisfying
2−j0C5 < 1/3. (6.19)

Denote by zk,ντ the “center” of Qk,ντ and by yk,ντ any point of Qk,ντ .
The Calderón reproducing formulae, due to Calderón [14] in the Euclidean case, are

proved to be a powerful tool in the study of Besov and Triebel–Lizorkin spaces on Rn; see
[34, 33]. For an extension of these formulae and its applications in spaces of homogeneous
type, especially in the context of Ahlfors 1-regular metric measure spaces, see [61]. The
following discrete homogeneous Calderón reproducing formula on RD-spaces was proved
in [60, Theorem 4.13]; see also [60, Theorems 4.11 and 4.12].

Lemma 6.10. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and ε ∈ (0, ε1 ∧ ε2). Let {Sk}k∈Z be an
(ε1, ε2, ε3)-ATI. Set Dk := Sk − Sk−1 for k ∈ Z. Then, for any fixed j0 satisfying (6.19)
large enough, there exist linear operators, {D̃k}k∈Z and {Dk}k∈Z, such that, for any fixed
yk,ντ ∈ Qk,ντ with k ∈ Z, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)}, and all f ∈ (G̊ε0(β, γ))′ (or
f ∈ G̊ε0(β, γ)) with β, γ ∈ (0, ε),

f =
∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )D̃k(·, yk,ντ )Dk(f)(yk,ντ )

=
∑
k∈Z

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )Dk(·, yk,ντ )Dk(f)(yk,ντ ),

where the series converge in (G̊ε0(β, γ))′ (or in G̊ε0(β, γ)). Moreover, the kernels of the
operators {D̃k}k∈Z satisfy, for all x, y ∈ X and k ∈ Z,

(a) |D̃k(x, y)| ≤ C 1
V
2−k (x)+V (x,y)

[
2−k

2−k+d(x,y)

]ε′
;

(b) for d(x, x′) ≤ [2−k + d(x, y)]/2,

|D̃k(x, y)− D̃k(x′, y)| ≤ C
[

d(x, x′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′
;

(c)
∫
X D̃k(w, y) dµ(w) = 0 =

∫
X D̃k(x,w) dµ(w),

where ε′ ∈ (ε, ε1∧ε2) and C is a positive constant independent of k, x, x′ and y. The kernels
of {Dk}k∈Z satisfy the above (a), (c) and

(b′) for d(x, x′) ≤ [2−k + d(x, y)]/2,

|Dk(y, x)−Dk(y, x′)| ≤ C
[

d(x, x′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′
,

where ε′ and C are as in (b).

As a consequence of the Calderón reproducing formulae, in [60, Theorem 7.2, Proposi-
tion 5.4] the following frame characterizations of Besov and Triebel–Lizorkin spaces were
proved.

Lemma 6.11. With all the notation as in Definition 6.9 and Lemma 6.10, the following
hold with implicit constants independent of f :
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(i) if p(s, ε) < p ≤ ∞ and 0 < q ≤ ∞, then

‖f‖Ḃsp,q(X ) ∼
{∑
k∈Z

2ksq
[ ∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ ) inf
z∈Qk,ντ

|Dk(f)(z)|p
]q/p}1/q

∼
{∑
k∈Z

2ksq
[ ∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )|Dk(f)(yk,ντ )|p
]q/p}1/q

∼
{∑
k∈Z

2ksq
[ ∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ ) sup
z∈Qk,ντ

|Dk(f)(z)|p
]q/p}1/q

;

(ii) if p(s, ε) < p <∞ and 0 < q ≤ ∞, then

‖f‖Ḟ sp,q(X ) ∼
∥∥∥{∑

k∈Z

∑
ν∈Ik

N(k,τ)∑
ν=1

2ksq inf
z∈Qk,ντ

|Dk(f)(z)|qχQk,ντ
}1/q∥∥∥

Lp(X )

∼
∥∥∥{∑

k∈Z

∑
ν∈Ik

N(k,τ)∑
ν=1

2ksq|Dk(f)(yk,ντ )|qχQk,ντ
}1/q∥∥∥

Lp(X )

∼
∥∥∥{∑

k∈Z

∑
ν∈Ik

N(k,τ)∑
ν=1

2ksq sup
z∈Qk,ντ

|Dk(f)(z)|qχQk,ντ
}1/q∥∥∥

Lp(X )
.

The following technical lemma proved in [60, Lemma 5.3] is very useful when dealing
with spaces Ḃsp,q(X ) and Ḟ sp,q(X ) for the cases p < 1 or q < 1.

Lemma 6.12. Let ε > 0, k′, k ∈ Z, and yk,ντ be any point in Qk,ντ for τ ∈ Ik and ν ∈
{1, . . . , N(k, τ)}. If r ∈ (n/(n + ε), 1], then there exists a positive constant C, depending
on r, such that, for all ak,ντ ∈ C and x ∈ X ,

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ντ )
1

V2−(k′∧k)(x) + V (x, yk,ντ )

2−(k′∧k)ε

[2−(k′∧k) + d(x, yk,ντ )]ε
|ak,ντ |

≤ C2[(k′∧k)−k]n(1−1/r)
[
M
( ∑
τ∈Ik

N(k,τ)∑
ν=1

|ak,ντ |rχQk,ντ
)

(x)
]1/r

,

where C is also independent of k, k′, τ and ν.

The following simple observation is of particular interest for estimates of the Triebel–
Lizorkin or Besov norms.

Lemma 6.13. Let p ∈ (0,∞) and σ ∈ (0,∞). Then there exists a positive constant Cp,σ,
depending only on p and σ, such that, for all non-negative sequences {aj}j∈N,[∑

j∈N
2−jσaj

]p
≤ Cp,σ

∑
j∈N

2−jσ(p∧1)apj . (6.20)

Proof. By the following elementary inequality: for all α ∈ (0, 1] and sequences {bj}j∈N,[∑
j∈N
|bj |
]α
≤
∑
j∈N
|bj |α, (6.21)
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we see that (6.20) holds when p ∈ (0, 1]. As for the case p ∈ (1,∞), applying Hölder’s
inequality, we know that[∑

j∈N
2−jσaj

]p
≤
[∑
j∈N

2−jσ
]p/p′[∑

j∈N
2−jσapj

]
≤ Cp,σ

∑
j∈N

2−jσapj .

Theorem 6.14. Let κ be the constant appearing in the reverse doubling condition (2.2) and
ε ∈ (0, 1)∩ (0, κ]. Suppose that the bilinear operator T is in BWBP(η) for some η ∈ (0, ε]

and its kernel K belongs to Ker(2, CK , δ) for some CK > 0 and δ ≥ 2ε. Assume that, for
all g ∈ Cηb (X ),

T (1, g) = T (g, 1) = T ∗,1(1, g) = 0 in (Cηb (X ))′.

For every j ∈ {0, 1, 2}, let |sj | < ε, p(sj , ε) < pj <∞ and p(sj , ε) < qj <∞ be such that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
,

and let Ḟ sjpj ,qj (X ) be the Triebel–Lizorkin space as defined in Definition 6.9(ii). Then T can
be extended to a bounded bilinear operator from Ḟ s1p1,q1(X )× Ḟ s2p2,q2(X ) to Ḟ s0p0,q0(X ).

Proof. Let ε1 and ε2 be positive real numbers such that min{ε1, ε2} > ε. By the density
of the set

G̊b(ε1, ε2) := {f ∈ G̊ε0(ε1, ε2) : f has bounded suppoort}

in Ḟ sjpj ,qj (X ) for j ∈ {1, 2} (see [60, Proposition 5.21]), it suffices to show that
T : [Ḟ s1p1,q1(X ) ∩ G̊b(ε1, ε2)]× [Ḟ s2p2,q2(X ) ∩ G̊b(ε1, ε2)]→ Ḟ s0p0,q0(X ).

Since functions in G̊b(ε1, ε2) are indeed atoms, modulo a positive constant, associated to
Christ’s dyadic cubes in the sense of Definition 6.4, we see that, for all f, g ∈ G̊b(ε1, ε2), it
follows from Theorem 6.6 that T (f, g) is a bilinear molecule and hence can be interpreted
in the usual way as an element of (G̊ε0(β, γ))′, where β and γ satisfy (6.18) with s, p therein
replaced by s0, p0, respectively. Consequently, it makes sense to write that, for all ` ∈ Z
and x ∈ X ,

D`(T (f, g))(x) := 〈T (f, g), D`(·, x)〉,

where {Sk}k∈Z is chosen to be a non-negative and symmetric 1-ATI with bounded support,
and Dk := Sk − Sk−1 for all k ∈ Z. Then, for all f, g ∈ G̊b(ε1, ε2), by the frame character-
ization of the Triebel–Lizorkin spaces (see Lemma 6.11), we see that ‖T (f, g)‖Ḟ s0p0,q0 (X ) is
comparable to∥∥∥{∑

`∈Z

∑
τ∈I`

N(`,τ)∑
ν=1

2`s0q0
∣∣∣ inf
y`,ντ ∈Q`,ντ

〈T (f, g), D`(·, y`,ντ )〉
∣∣∣q0χQ`,ντ }1/q0∥∥∥

Lp0 (X )
.

Denote by C̊ηb (X ) the collection of all f ∈ Cηb (X ) such that
∫
X f(x) dµ(x) = 0. Since

ε ∈ (0, ε1 ∧ ε2] and η ∈ (0, ε], we have
(G̊b(ε1, ε2), ‖ · ‖G(ε1,ε2)) ↪→ (C̊ηb (X ), ‖ · ‖Cηb (X )) ↪→ G̊ε0(β, γ),

where X ↪→ Y means that the space X is continuously embedded into Y . So we apply the
Calderón reproducing formulae to f, g ∈ G̊b(ε1, ε2) and obtain, for all w ∈ X ,

f(w) =
∑
k∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )Dk(w, yk,ν
′

τ ′ )Dk(f)(yk,ν
′

τ ′ ),
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g(w) =
∑
j∈Z

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qj,ν
′′

τ ′′ )Dj(w, y
j,ν′′

τ ′′ )Dj(g)(yj,ν
′′

τ ′′ ),

where both series converge in G̊ε0(β, γ) and hence in Cηb (X ). Then, for any ` ∈ Z, τ ∈ I`,
ν ∈ {1, . . . , N(τ, `)} and any y`,ντ ∈ Q`,ντ ,

〈T (f, g)(·), D`(·, y`,ντ )〉 =
∑
k∈Z

∑
j∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qk,ν
′

τ ′ )µ(Qj,ν
′′

τ ′′ )Dk(f)(yk,ν
′

τ ′ )

×Dj(g)(yj,ν
′′

τ ′′ )〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉.

It follows that

‖T (f, g)‖Ḟ s0p0,q0 (X )

∼
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0

× inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k∈Z

∑
j∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qk,ν
′

τ ′ )µ(Qj,ν
′′

τ ′′ )Dk(f)(yk,ν
′

τ ′ )

×Dj(g)(yj,ν
′′

τ ′′ )〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉

∣∣∣q0χQ`,ντ }1/q0∥∥∥
Lp0 (X )

=: Z.

If we set

Z(`,k,j)
τ,ν :=

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qk,ν
′

τ ′ )µ(Qj,ν
′′

τ ′′ )|Dk(f)(yk,ν
′

τ ′ )||Dj(g)(yj,ν
′′

τ ′′ )|

× |〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉|,

then obviously

Z ≤
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0 inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k∈Z

∑
j∈Z

Z(`,k,j)
τ,ν

∣∣∣q0χQ`,ντ }1/q0∥∥∥
Lp0 (X )

.

We estimate Z by splitting the summation
∑
k∈Z

∑
j∈Z into six parts according to the size

relationship of k, j and `. More precisely, Z1 is the part of Z where j ≤ ` ≤ k, namely,

Z1 :=
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0 inf
y`,ντ ∈Q`,ντ

[∑
k≥`

∑
j≤`

Z(`,k,j)
τ,ν

]q0
χQ`,ντ

}1/q0∥∥∥
Lp0 (X )

;

similarly, Z2 is the part of Z where k ≤ ` ≤ j, Z3 the part where j ≤ k ≤ `, Z4 the part
where k ≤ j ≤ `, Z5 the part where ` ≤ k ≤ j, and Z6 the part where ` ≤ j ≤ k. Clearly,

Z .
6∑
i=1

Zi.

So it is enough to show that, for i ∈ {1, . . . , 6},
Zi . ‖f‖Ḟ s1p1,q1 (X )‖g‖Ḟ s2p2,q2 (X ).
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The main tools to be used in the proof below are Theorem 6.8, Lemmas 6.12 and 6.13, and
the Fefferman–Stein vector-valued maximal function inequality; for the latter, see [48].

Since ε ∈ (0, 1)∩ (0, κ]∩ (0, δ/2], there exist positive real numbers γ̃, γ, σ, r0, r1, r2 such
that, for i ∈ {0, 1, 2},

γ̃ ∈ (0, δ/2],

γ ∈ (0, γ̃),

σ ∈ (0,min{δ − γ̃, 1, κ}],
|si| < min{σ, ε},

max

{
n

n+ γ
,

n

n+ σ
,

n

n+ σ + si

}
< ri < min{1, pi, qi}.

(6.22)

To see the existence of such numbers, we first choose a small positive number η and σ > 0

such that
|si| < ε− 2η < σ < ε− η < ε,

min{pi, qi} > max

{
n

n+ ε− 2η
,

n

n+ ε− 2η + si

}
, i ∈ {0, 1, 2};

it is easy to show that γ̃ := ε guarantees that
γ̃ ∈ (0, δ/2] and σ ∈ (0,min{δ − γ̃, 1, κ}];

finally, by taking γ := ε− η, we have

max

{
n

n+ γ
,

n

n+ σ
,

n

n+ σ + si

}
< min{1, pi, qi},

so ri can be taken to be any number in the interval(
max

{
n

n+ γ
,

n

n+ σ
,

n

n+ σ + si

}
, min{1, pi, qi}

)
.

In the following proof, we fix γ̃, γ, σ, r0, r1, r2 satisfying (6.22).

Estimate for Z1: j ≤ ` ≤ k. By Theorem 6.8(i), we see that, when j ≤ ` ≤ k,

|〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉|

. 2−(k−j)σK(2−`; γ, y`,ντ , yk,ν
′

τ ′ )K(2−j ; γ, y`,ντ , yj,ν
′′

τ ′′ ). (6.23)

From (6.23) and Lemma 6.12, it follows that, when j ≤ ` ≤ k,

Z(`,k,j)
τ,ν . 2−(k−j)σ

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )|Dk(f)(yk,ν
′

τ ′ )| K(2−`; γ, y`,ντ , yk,ν
′

τ ′ )

×
∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qj,ν
′′

τ ′′ )|Dj(g)(yj,ν
′′

τ ′′ )| K(2−j ; γ, y`,ντ , yj,ν
′′

τ ′′ )

. 2−(k−j)σ2(k−`)n(1/r1−1)
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)
(y`,ντ )

}1/r1

×
{
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(y`,ντ )

}1/r2
.
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Inserting this into the expression of Z1, we obtain

Z1 .
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

inf
y`,ντ ∈Q`,ντ

[∑
k≥`

∑
j≤`

2`(s1+s2)2−(k−j)σ2(k−`)n(1/r1−1)

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)
(y`,ντ )

}1/r1

×
{
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(y`,ντ )

}1/r2]q0
χQ`,ντ

}1/q0∥∥∥
Lp0 (X )

.
∥∥∥{∑

`∈Z

[∑
k≥`

∑
j≤`

2`(s1+s2)2−(k−`)σ2−(`−j)σ2(k−`)n(1/r1−1)

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)}1/r1

×
{
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)}1/r2]q0}1/q0∥∥∥
Lp0 (X )

,

where the last inequality was obtained by first removing the infimum and then using the
fact that, for all ` ∈ Z,∑

τ∈I`

N(`,τ)∑
ν=1

χQ`,ντ (x) = 1 for almost every x ∈ X .

Applying Hölder’s inequality to the last quantity displayed in the above inequality, we see
that

Z1 . I × J ,
where

I :=
∥∥∥{∑

`∈Z

[∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)]

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)}1/r1]q1}1/q1∥∥∥
Lp1 (X )

,

J :=
∥∥∥{∑

`∈Z

[∑
j≤`

2−(`−j)(σ−s2)

×
{
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|2js2Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)}1/r2]q2}1/q2∥∥∥
Lp2 (X )

.

To estimate I, by Lemma 6.13 and the fact that∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)] . 1

(this is because r1 > n/(n+ σ + s1)), we have[∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)]
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)
(x)
}1/r1]q1
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.
∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](q1∧1)

×
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)
(x)
]q1/r1

.

From this and the Fefferman–Stein vector-valued maximal inequality ([48]), we deduce
that

I .
∥∥∥{∑

`∈Z

∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](q1∧1)

×
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)]q1/r1}r1/q1∥∥∥1/r1

Lp1/r1 (X )

.
∥∥∥{∑

k∈Z

[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)]q1/r1}r1/q1∥∥∥1/r1

Lp1/r1 (X )

.
∥∥∥{∑

k∈Z

[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

]q1/r1}r1/q1∥∥∥1/r1

Lp1/r1 (X )

∼
∥∥∥{∑

k∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

2ks1q1 |Dk(f)(yk,ν
′

τ ′ )|q1χ
Qk,ν

′
τ′

}1/q1∥∥∥
Lp1 (X )

. ‖f‖Ḟ s1p1,q1 (X ).

A similar argument gives us

J . ‖g‖Ḟ s2p2,q2 (X ).

Combining the estimates of I and J implies that

Z1 . ‖f‖Ḟ s1p1,q1 (X )‖g‖Ḟ s2p2,q2 (X ).

Estimate for Z2: k ≤ ` ≤ j. By symmetry of f and g, the estimate of Z2 is similar to
that of Z1. More precisely, when k ≤ ` ≤ j, applying Theorem 6.8(ii) one deduces that

|〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉|

. 2−(j−k)σK(2−k; γ, y`,ντ , yk,ν
′

τ ′ )K(2−`; γ, y`,ντ , yj,ν
′′

τ ′′ ).

Comparing this inequality with (6.23), as well as the expression of Z1 with that of Z2, we
see that

Z2 :=
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0 inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≤`

∑
j≥`

Z(`,k,j)
τ,ν

∣∣∣q0χQ`,ντ }1/q0∥∥∥
Lp0 (X )

. ‖f‖Ḟ s1p1,q1 (X )‖g‖Ḟ s2p2,q2 (X ),

which was obtained via replacing the estimate of Z1 by reversing the roles of the terms
related to k and those related to j therein, the details being omitted.
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Estimate for Z3: j ≤ k ≤ `. Recall that

Z3 :=
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0 inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≤`

∑
j≤k

Z(`,k,j)
τ,ν

∣∣∣q0χQ`,ντ }1/q0∥∥∥
Lp0 (X )

.

From Theorem 6.8(iii) it follows that, when j ≤ k ≤ `,

|〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉|

. 2−(`−j)σK(2−k; γ, yk,ν
′

τ ′ , y`,ντ )K(2−j ; γ, yk,ν
′

τ ′ , yj,ν
′′

τ ′′ ). (6.24)

When j ≤ k, the doubling condition (2.1) implies that, for all z, yk,ν
′

τ ′ ∈ Q
k,ν′

τ ′ ,

K(2−j ; γ, yk,ν
′

τ ′ , yj,ν
′′

τ ′′ ) ∼ K(2−j ; γ, z, yj,ν
′′

τ ′′ ).

By this, (6.24) and Lemma 6.12, we deduce that, when j ≤ k ≤ `,

Z(`,k,j)
τ,ν . 2−(`−j)σ

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )K(2−k; γ, yk,ν
′

τ ′ , y`,ντ )|Dk(f)(yk,ν
′

τ ′ )|

× inf
z∈Qk,ν

′
τ′

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qj,ν
′′

τ ′′ )K(2−j ; γ, z, yj,ν
′′

τ ′′ )|Dj(g)(yj,ν
′′

τ ′′ )|

. 2−(`−j)σ
∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )K(2−k; γ, yk,ν
′

τ ′ , y`,ντ )|Dk(f)(yk,ν
′

τ ′ )|

× inf
z∈Qk,ν

′
τ′

[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

. 2−(`−j)σ
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r0 |Gj |r0χQk,ν′
τ′

)
(y`,ντ )

}1/r0
,

where, for all z ∈ X ,

Gj(z) :=
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

.

If, for any z ∈ X , we set

F(`,k,j)(z) :=
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0 |2js2Gj |r0χQk,ν′
τ′

)
(z)
}1/r0

,

then
Z(`,k,j)
τ,ν . 2−(`−k)σ2−ks02−(k−j)(σ−s2)F(`,k,j)(y`,ντ ).

Inserting this into the expression of Z3, we obtain

Z3 .
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0

× inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≤`

∑
j≤k

2−(`−k)σ2−ks02−(k−j)(σ−s2)F(`,k,j)(y`,ντ )
∣∣∣q0χQ`,ντ }1/q0∥∥∥

Lp0 (X )
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.
∥∥∥{∑

`∈Z

∣∣∣∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2)F(`,k,j)
∣∣∣q0}1/q0∥∥∥

Lp0 (X )

.
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)[F(`,k,j)]q0
}1/q0∥∥∥

Lp0 (X )
,

where, in the last step, we used Lemma 6.13. Invoking the definition of F(`,k,j), the above
inequality gives us

Z3 .
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)

×
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0 |2js2Gj |r0χQk,ν′
τ′

)]q0/r0}1/q0∥∥∥
Lp0 (X )

.

Since q0/r0 > 1 and p0/r0 > 1, by applying the Fefferman–Stein vector-valuedmaximal
function inequality ([48]), we continue the preceding estimate with

Z3 .
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)

×
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0 |2js2Gj |r0χQk,ν′
τ′

]q0/r0}1/q0∥∥∥
Lp0 (X )

∼
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)

× [2js2Gj ]
q0
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

]q0}1/q0∥∥∥
Lp0 (X )

.

Then Hölder’s inequality implies that

Z3 .
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)

×
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

]q0}1/q0∥∥∥
Lp0 (X )

×
∥∥∥{∑

`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(q0∧1)2−(k−j)(σ−s2)(q0∧1)[2js2Gj ]
q0
}1/q0∥∥∥

Lp0 (X )

.
∥∥∥{∑

k∈Z

[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

]q0}1/q0∥∥∥
Lp0 (X )

×
∥∥∥{∑

j∈Z
[2js2Gj ]

q0
}1/q0∥∥∥

Lp0 (X )

. ‖f‖Ḟ s1p1,q1 (X )

∥∥∥{∑
j∈Z

[2js2Gj ]
q0
}1/q0∥∥∥

Lp0 (X )
.

Next, the Fefferman–Stein vector-valued maximal function inequality ([48]) and the fact
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that r2 < min{p2, q2} imply that the second term is dominated by∥∥∥{∑
j∈Z

[2js2Gj ]
q0
}1/q0∥∥∥

Lp0 (X )

.
∥∥∥{∑

j∈Z
2js2q2

[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)]1/r2}1/q2∥∥∥
Lp2 (X )

. ‖g‖Ḟ s2p2,q2 (X ).

This proves that
Z3 . ‖f‖Ḟ s1p1,q1 (X )‖g‖Ḟ s2p2,q2 (X ).

Estimate for Z4: k ≤ j ≤ `. The estimate of Z4 is quite similar to that of Z3: indeed we
just need to repeat the reasoning for Z3 by reversing the roles of the terms related to k
and j therein; we omit the details.

Estimate for Z5: ` ≤ k ≤ j. The estimate ofZ5 is similar to that ofZ3; for the convenience
of the reader let us sketch the proof. In this case, applying Theorem 6.8(v), we see that∣∣〈T (Dk(·, yk,ν

′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ )
)
(x), D`(x, y

`,ν
τ )
〉∣∣

. 2−(j−`)σK(2−`; γ, yk,ν
′

τ ′ , y`,ντ )K(2−k; γ, yk,ν
′

τ ′ , yj,ν
′′

τ ′′ ). (6.25)

When k ≤ j, the doubling condition (2.1) implies that, for all z, yk,ν
′

τ ′ ∈ Q
k,ν′

τ ′ ,

K(2−k; γ, yk,ν
′

τ ′ , yj,ν
′′

τ ′′ ) ∼ K(2−k; γ, z, yj,ν
′′

τ ′′ ).

Combining this with (6.24) and Lemma 6.12, we conclude that, when ` ≤ k ≤ j,

Z(`,k,j)
τ,ν . 2−(j−`)σ

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )K(2−`; γ, yk,ν
′

τ ′ , y`,ντ )|Dk(f)(yk,ν
′

τ ′ )|

× inf
z∈Qk,ν

′
τ′

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qj,ν
′′

τ ′′ )K(2−k; γ, z, yj,ν
′′

τ ′′ )|Dj(g)(yj,ν
′′

τ ′′ )|

. 2−(j−`)σ2(j−k)n(1/r2−1)
∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )K(2−k; γ, yk,ν
′

τ ′ , y`,ντ )|Dk(f)(yk,ν
′

τ ′ )|

× inf
z∈Qk,ν

′
τ′

[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

. 2−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r0 |Gj |r0χQk,ν′
τ′

)
(y`,ντ )

}1/r0
,

where, as in the estimate of Z3, the function Gj is defined by

Gj(z) :=
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

, ∀z ∈ X .

Inserting this into the expression of Z5 and noticing that
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2`s02−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)2−ks12−js2

= 2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)],

and also observing that, for any measurable function H : X → [0,∞), all ` ∈ Z, and
almost every x ∈ X , ∑

ν∈I`

N(`,τ)∑
ν=1

[
inf

y`,ντ ∈Q`,ντ
H(y`,ντ )

]
χQ`,ντ (x) ≤ H(x),

we obtain

Z5 .
∥∥∥{∑

`∈Z

∑
ν∈I`

N(`,τ)∑
ν=1

2`s0q0 inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≥`

∑
j≥k

2−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r0 |Gj |r0χQk,ν′
τ′

)
(y`,ντ )

}1/r0 ∣∣∣q0χQ`,ντ }1/q0∥∥∥
Lp0 (X )

.
∥∥∥{∑

`∈Z

∣∣∣∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)]

×
{
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0 |2js2Gj |r0χQk,ν′
τ′

)}1/r0∣∣∣q0}1/q0∥∥∥
Lp0 (X )

.

The choices of σ, r0 and r2 imply that σ+ s0 − n(1/r0 − 1) > 0, σ+ s2 − n(1/r2 − 1) > 0

and hence ∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)] . 1.

By Lemma 6.13, the Fefferman–Stein vector-valued maximal function inequality (see, for
example, [48]) and Hölder’s inequality, we follow the same procedure as in the estimation
of Z3 to obtain

Z5 . ‖f‖Ḟ s1p1,q1 (X )‖g‖Ḟ s2p2,q2 (X ),

further details being omitted.

Estimate for Z6: ` ≤ j ≤ k. Analogously to Z4, to obtain the desired reasoning for Z6,
we just need to repeat the reasoning for Z5 by reversing the roles of the terms related to
k and j; we omit the details.

Summing the estimates of Z1 through Z6 completes the proof of Theorem 6.14.

6.4. Bilinear T1-theorem on Besov spaces. In this section we prove a bilinear T1-
theorem on Besov spaces that complements the corresponding results on the Triebel–
Lizorkin scale.

Theorem 6.15. Let κ be the constant appearing in the reverse doubling condition (2.2) and
ε ∈ (0, 1)∩ (0, κ]. Suppose that the bilinear operator T is in BWBP(η) for some η ∈ (0, ε]

and its kernel K belongs to Ker(2, CK , δ) for some CK > 0 and δ ≥ 2ε. Assume that, for
all g ∈ Cηb (X ),

T (1, g) = T (g, 1) = T ∗,1(1, g) = 0 in (Cηb (X ))′.
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For every j ∈ {0, 1, 2}, let |sj | < ε, p(sj , ε) < pj <∞ and 0 < qj <∞ be such that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
,

and let Ḃsjpj ,qj (X ) be the Besov space as defined in Definition 6.9(i). Then T can be extended
to a bounded bilinear operator from Ḃs1p1,q1(X )× Ḃs2p2,q2(X ) to Ḃs0p0,q0(X ).

Proof. Let ε1 and ε2 be positive real numbers such that min{ε1, ε2} > ε. Let {Sk}k∈Z be
a non-negative and symmetric 1-ATI with bounded support, and Dk := Sk − Sk−1 for all
k ∈ Z. As in the proof of Theorem 6.14, it suffices to show that, for all f, g ∈ G̊ε0(ε1, ε2)

with bounded supports,

‖T (f, g)‖Ḃs0p0,q0 (X ) ≤ C‖f‖Ḃs1p1,q1 (X )‖g‖Bs2p2,q2 (X ).

By the frame characterization of the Besov spaces (see Lemma 6.11), we write

‖T (f, g)‖Ḃs0p0,q0 (X )

∼
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

|〈T (f, g)(·), D`(·, y`,ντ )〉|p0
]q0/p0}1/q0

.

Next, applying the Calderón reproducing formula to f and g gives that, for all w ∈ X ,

f(w) =
∑
k∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )Dk(w, yk,ν
′

τ ′ )Dk(f)(yk,ν
′

τ ′ ),

g(w) =
∑
j∈Z

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qj,ν
′′

τ ′′ )Dj(w, y
j,ν′′

τ ′′ )Dj(g)(yj,ν
′′

τ ′′ ),

where each series converges in Cηb (X ). It follows that

‖T (f, g)‖Ḃs0p0,q0 (X )

.
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ )

× inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k∈Z

∑
j∈Z

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qk,ν
′

τ ′ )µ(Qj,ν
′′

τ ′′ )Dk(f)(yk,ν
′

τ ′ )

×Dj(g)(yj,ν
′′

τ ′′ )〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉

∣∣∣p0]q0/p0}1/q0

=: Y.

In what follows, we use the notation, for all k, j, ` ∈ Z,

Y(`,k,j) :=
∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

µ(Qk,ν
′

τ ′ )µ(Qj,ν
′′

τ ′′ )

×
∣∣Dk(f)(yk,ν

′

τ ′ )| |Dj(g)(yj,ν
′′

τ ′′ )| |〈T (Dk(·, yk,ν
′

τ ′ ), Dj(·, yj,ν
′′

τ ′′ ))(x), D`(x, y
`,ν
τ )〉|.
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With this notation, we have

Y =
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k∈Z

∑
j∈Z

Y(`,k,j)
∣∣∣p0]q0/p0}1/q0

.

As in the proof of Theorem 6.14, we estimate Y by splitting the summation
∑
k∈Z

∑
j∈Z

into six parts according to the size relationship of k, j, and `. To be precise, Y1 is the part
of Y where j ≤ ` ≤ k, Y2 the part where k ≤ ` ≤ j, Y3 the part where j ≤ k ≤ `, Y4 the
part where k ≤ j ≤ `, Y5 the part where ` ≤ k ≤ j, and Y6 the part where ` ≤ j ≤ k.
Clearly,

Y .
6∑
i=1

Yi.

Thus, it is enough to show that, for i ∈ {1, . . . , 6},
Yi . ‖f‖Ḃs1p1,q1 (X )‖g‖Bs2p2,q2 (X ). (6.26)

Observe that, by symmetry, the estimates of Y2, Y4 and Y6 are analogous to those of Y1,
Y3 and Y5, respectively. So we only prove (6.26) for j ∈ {1, 3, 5}.

Estimate for Y1: j ≤ ` ≤ k. Let σ, γ, r0, r1 and r2 be positive numbers satisfying (6.22).
Recall that, in the estimate for Z1 in Theorem 6.14, by Theorem 6.8(i) and Lemma 6.12,
we have obtained the following: when j ≤ ` ≤ k,

Y(`,k,j) . 2−(k−j)σ2(k−`)n(1/r1−1)
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)
(y`,ντ )

]1/r1
×
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(y`,ντ )

]1/r2
.

From this and Hölder’s inequality, it follows that

Y1 :=
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

∣∣∣∑
j≤`

∑
k≥`

Y(`,k,j)
∣∣∣p0]q0/p0}1/q0

.
{∑
`∈Z

2`s0q0
∥∥∥∑
j≤`

∑
k≥`

2−(k−j)σ2(k−`)n(1/r1−1)

×
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)]1/r1
×
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)]1/r2∥∥∥q0
Lp0 (X )

}1/q0

∼
{∑
`∈Z

2`s0q0
∥∥∥∑
j≤`

∑
k≥`

2−(k−j)σ2(k−`)n(1/r1−1)FkGj

∥∥∥q0
Lp0 (X )

}1/q0
,

where

Fk :=
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)]1/r1
,
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Gj :=
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)]1/r2
.

Noticing that s0 = s1 + s2 and applying Hölder’s inequality, we obtain

Y1 . I × J ,
where

I :=
{∑
`∈Z

2`s1q1
∥∥∥∑
k≥`

2−(k−`)[σ−n(1/r1−1)]Fk

∥∥∥q1
Lp1 (X )

}1/q1
,

J :=
{∑
`∈Z

2`s2q2
∥∥∥∑
j≤`

2−(`−j)σGj

∥∥∥q2
Lp2 (X )

}1/q2
.

To estimate the term I, for every ` ∈ Z, we set

I` :=
∥∥∥∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)]Fk

∥∥∥
Lp1 (X )

.

Obviously, I = [
∑
`∈Z(I`)q1 ]1/q1 . For each ` ∈ Z, we rewrite I` as

I` =
∥∥∥∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)]Fp1k

∥∥∥1/p1

L1(X )
.

Invoking the expression for Fk and applying Lemma 6.13 and using∑
k≥`

2−(k−`)[σ−n(1/r1−1)](p1∧1) <∞,

we conclude that

I` .
∥∥∥∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)

×
[
M
( ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)]p1/r1∥∥∥1/p1

L1(X )

∼
∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)

×
∥∥∥M( ∑

τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

)∥∥∥1/r1

Lp1/r1 (X )
,

which, combined with the fact thatM is bounded on Lp1/r1(X ) when p1/r1 > 1, implies

I` .
∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r1χ
Qk,ν

′
τ′

∥∥∥1/r1

Lp1/r1 (X )

∼
∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|p1µ(Qk,ν
′

τ ′ )
]1/p1

.

Again, applying Lemma 6.13 when p1 > 1 or (6.21) when p1 ≤ 1 and the fact that∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)(q1∧1) <∞,
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we know that

(I`)q1 .
∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)(q1∧1)

×
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|p1µ(Qk,ν
′

τ ′ )
]q1/p1

.

Next, we compute
∑
`∈Z(I`)q1 by interchanging the summations in ` and k, to obtain

I =
{∑
`∈Z

(I`)q1
}1/q1

.
{∑
`∈Z

∑
k≥`

2−(k−`)[σ+s1−n(1/r1−1)](p1∧1)(q1∧1)

×
[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|p1µ(Qk,ν
′

τ ′ )
]q1/p1}1/q1

.
{∑
k∈Z

[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|p1µ(Qk,ν
′

τ ′ )
]q1/p1}1/q1

. ‖f‖Ḟ s1p1,q1 (X ).

An argument similar to that used in the estimate of I gives that

J . ‖g‖Ḟ s2p2,q2 (X ).

Combining the estimates of I and J implies the desired estimate of Y1.

Estimate for Y3: j ≤ k ≤ `. Recall that

Y3 :=
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≤`

∑
j≤k

Y(`,k,j)
∣∣∣p0]q0/p0}1/q0

.

In the estimate of Z3 in Theorem 6.14, it was proved that, when j ≤ k ≤ `,

Y(`,k,j) . 2−(`−j)σ
[
M
(
|Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

)
(y`,ντ )

]1/r0
,

where, for all z ∈ X ,

Gj(z) :=
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

.

If, for any z ∈ X , we set

F(`,k,j)(z) :=
[
M
(
|2js2Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

)
(z)
]1/r0

,

then, by s0 = s1 + s2, we have

Y(`,k,j) . 2−(`−j)σ2−ks02(k−j)s2F(`,k,j)(y`,ντ ).

Inserting this estimate into the expression for Y3 gives that
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Y3 .
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ )

× inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≤`

∑
j≤k

2−(`−j)σ2−ks02(k−j)s2F(`,k,j)(y`,ντ )
∣∣∣p0]q0/p0}1/q0

.
{∑
`∈Z

∥∥∥∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2)F(`,k,j)
∥∥∥q0
Lp0 (X )

}1/q0
.

For each ` ∈ Z, applying Lemma 6.13 and the fact that∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)2−(k−j)(σ−s2)(p0∧1) . 1,

we obtain∥∥∥∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2)F(`,k,j)
∥∥∥
Lp0 (X )

=
∥∥∥{∑

k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2)F(`,k,j)
}p0∥∥∥1/p0

L1(X )

.
∥∥∥∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)2−(k−j)(σ−s2)(p0∧1)[F(`,k,j)]p0
∥∥∥1/p0

L1(X )

∼
[∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)2−(k−j)(σ−s2)(p0∧1)

∥∥∥∥[F(`,k,j)]p0
∥∥∥∥
L1(X )

]1/p0
. (6.27)

Notice that the Lp0/r0(X )-boundedness ofM and Hölder’s inequality imply that

‖[F(`,k,j)]p0‖L1(X ) .
∥∥∥|2js2Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

∥∥∥p0/r0
Lp0/r0 (X )

∼
∥∥∥2js2Gj

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥p0
Lp0 (X )

.
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥p0
Lp1 (X )

‖2js2Gj‖p0Lp2 (X ).

By this, (6.27), Lemma 6.13, and the fact that∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2) . 1,

we obtain∥∥∥∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)2−(k−j)(σ−s2)F(`,k,j)
∥∥∥q0
Lp0 (X )

.
[∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)2−(k−j)(σ−s2)(p0∧1)

×
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥p0
Lp1 (X )

‖2js2Gj‖p0Lp2 (X )

]q0/p0
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.
∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)(
q0
p0
∧1)2−(k−j)(σ−s2)(p0∧1)(

q0
p0
∧1)

×
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q0
Lp1 (X )

‖2js2Gj‖q0Lp2 (X ).

Then, Hölder’s inequality further gives that

Y3 .
{∑
`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)(
q0
p0
∧1)2−(k−j)(σ−s2)(p0∧1)(

q0
p0
∧1)

×
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q1
Lp1 (X )

}1/q1

×
{∑
`∈Z

∑
k≤`

∑
j≤k

2−(`−k)(σ−s0)(p0∧1)(
q0
p0
∧1)

× 2−(k−j)(σ−s2)(p0∧1)(
q0
p0
∧1)‖2js2Gj‖q2Lp2 (X )

}1/q2

.
{∑
k∈Z

∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q1
Lp1 (X )

}1/q1

×
{∑
j∈Z
‖2js2Gj‖q2Lp2 (X )

}1/q2
.

Obviously, the first term is equal to{∑
k∈Z

[ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

µ(Qk,ν
′

τ ′ )|2ks1Dk(f)(yk,ν
′

τ ′ )|p1
]q1/p1}1/q1

. ‖f‖Ḃs1p1,q1 (X ),

and, for the second term, the boundedness ofM on Lp2/r2(X ) implies that{∑
j∈Z
‖2js2Gj‖q2Lp2 (X )

}1/q2

.
{∑
j∈Z

∥∥∥2js2
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)]1/r2∥∥∥q2
Lp2 (X )

}1/q2

.
{∑
j∈Z

∥∥∥2js2
∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|χ
Qj,ν

′′
τ′′

∥∥∥q2
Lp2 (X )

}1/q2

. ‖g‖Ḃs2p2,q2 (X ).

Thus,
Y3 . ‖f‖Ḃs1p1,q1 (X )‖g‖Ḃs2p2,q2 (X ).

Estimate for Y5: ` ≤ k ≤ j. Recall that, in the estimate of Z5 in the proof of Theorem
6.14, we proved that, when ` ≤ k ≤ j,

Y(`,k,j) . 2−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)

×
{
M
(
|Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

)
(y`,ντ )

}1/r0
,
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where, for all z ∈ X ,

Gj(z) :=
[
M
( ∑
τ ′′∈Ij

N(j,τ ′′)∑
ν′′=1

|Dj(g)(yj,ν
′′

τ ′′ )|r2χ
Qj,ν

′′
τ′′

)
(z)
]1/r2

.

Set, for all z ∈ X ,

H(`,k,j)(z) :=
{
M
(
|2js2Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

)
(z)
}1/r0

.

Then
Y(`,k,j) . 2−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)2−ks02(k−j)s2H(`,k,j)(y`,ντ ).

Also, notice that

2`s02−(j−`)σ2(j−k)n(1/r2−1)2(k−`)n(1/r0−1)2−ks02(k−j)s2

= 2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)].

Therefore,

Y5 :=
{∑
`∈Z

2`s0q0
[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≥`

∑
j≥k

Y(`,k,j)(y`,ντ )
∣∣∣p0]q0/p0}1/q0

.
{∑
`∈Z

[ ∑
τ∈I`

N(`,τ)∑
ν=1

µ(Q`,ντ ) inf
y`,ντ ∈Q`,ντ

∣∣∣∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]

× 2−(j−k)[σ+s2−n(1/r2−1)]H(`,k,j)(y`,ντ )
∣∣∣p0]q0/p0}1/q0

.
{∑
`∈Z

∥∥∥∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)]H(`,k,j)
∥∥∥q0
Lp0 (X )

}1/q0
.

Applying Lemma 6.13 and the fact that∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)] . 1,

we conclude that, for every ` ∈ Z,

K` :=
∥∥∥∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)]2−(j−k)[σ+s2−n(1/r2−1)]H(`,k,j)
∥∥∥q0
Lp0 (X )

.
∥∥∥∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)](p0∧1)2−(j−k)[σ+s2−n(1/r2−1)](p0∧1)[H(`,k,j)]p0
∥∥∥q0/p0
L1(X )

∼
[∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)](p0∧1)

× 2−(j−k)[σ+s2−n(1/r2−1)](p0∧1)‖[H(`,k,j)]p0‖L1(X )

]q0/p0
.

The boundedness ofM on Lp0/r0(X ) and Hölder’s inequality imply that

‖[H(`,k,j)]p0‖L1(X )

=
∥∥∥{M(|2js2Gj |r0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|r0χ
Qk,ν

′
τ′

)}p0/r0∥∥∥
L1(X )
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.
∥∥∥|2js2Gj |p0

∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|p0χ
Qk,ν

′
τ′

∥∥∥
L1(X )

.
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥p0/p1
Lp1 (X )

‖2js2Gj‖p0/p2Lp2 (X ).

Combining this with Lemma 6.13, we further see that

K` .
∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)](p0∧1)(
q0
p0
∧1)2−(j−k)[σ+s2−n(1/r2−1)](p0∧1)(

q0
p0
∧1)

×
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q0/p1
Lp1 (X )

‖2js2Gj‖q0/p2Lp2 (X ).

From this estimate and Hölder’s inequality, we deduce that

Y5 .

{∑
`∈Z
K`
}1/q0

.
{∑
`∈Z

∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)](p0∧1)(
q0
p0
∧1)2−(j−k)[σ+s2−n(1/r2−1)](p0∧1)(

q0
p0
∧1)

×
∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q1/p1
Lp1 (X )

}1/q1

×
{∑
`∈Z

∑
k≥`

∑
j≥k

2−(k−`)[σ+s0−n(1/r0−1)](p0∧1)(
q0
p0
∧1)

× 2−(j−k)[σ+s2−n(1/r2−1)](p0∧1)(
q0
p0
∧1)‖2js2Gj‖q2/p2Lp2 (X )

}1/q2

.
{∑
k∈Z

∥∥∥ ∑
τ ′∈Ik

N(k,τ ′)∑
ν′=1

|2ks1Dk(f)(yk,ν
′

τ ′ )|χ
Qk,ν

′
τ′

∥∥∥q1/p1
Lp1 (X )

}1/q1

×
{∑
j∈Z
‖2js2Gj‖q2/p2Lp2 (X )

}1/q2

. ‖f‖Ḃs1p1,q1 (X )‖g‖Ḃs2p2,q2 (X ).

This proves the desired estimate for Y5 and finishes the proof of Theorem 6.15.



7. Multilinear vector-valued T1 type theorems

Let us recall the Tb-theorem by Semmes [92]. For any given family of functions

θk : Rn × Rn → C

such that, for all x, y, y′ ∈ Rn, k ∈ Z and some positive numbers A, δ1 and δ2,

|θk(x, y)| ≤ 1

2−kn
A

(1 + 2k|x− y|)n+δ2
(7.1)

and

|θk(x, y)− θk(x, y′)| ≤ A

2−kn
|y − y′|δ1

2−kδ1
, (7.2)

we have the following square function estimate:{∑
k∈Z
‖Θk(f)‖2L2(Rn)

}1/2

≤ C‖f‖L2(Rn) (7.3)

with the positive constant C independent of f , provided that, for a certain para-accretive
function b,

Θk(b) = 0, ∀k ∈ Z, (7.4)

where Θk is the operator associated with the kernel θk. By a duality argument, this theorem
easily implies, in particular, the celebrated boundedness of the Cauchy integral [92].

The main goal of this section is to investigate the multilinear version of such a quadratic
estimate (7.3). Precisely, by assuming certain decay, smoothness and cancelation conditions
on the sequence of multilinear operators, {Θk}k∈Z, we are interested in the behavior of{∑

k∈Z
2ksq‖Θk(~f )‖qLp(Rn)

}1/q

and
∥∥∥{∑

k∈Z
2ksq|Θk(~f )|q

}1/q∥∥∥
Lp(Rn)

for suitable p, q and s and a vector of functions

~f := (f1, . . . , fm) ∈
m∏
j=1

Yj ,

with each Yj being a Lebesgue or Besov or Triebel–Lizorkin space. A particularly useful
tool in the proof of the main results (Theorems 7.6, 7.8 and 7.9) in this section is the
Calderón reproducing formula in Lemma 6.10.

7.1. A multilinear off-diagonal estimate. A multilinear version of the family of the
operators {Θk}k∈Z appeared in Maldonado [77] when X is an Ahlfors 1-regular metric
space. Here we adopt the following definition.

[84]
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Definition 7.1. Let m ∈ N. Suppose that, for any k ∈ Z,

θk :

m+1 times︷ ︸︸ ︷
X × · · · × X → C,

and moreover that there exist constants A > 0, δ1 > 0 and δ2 > 0 such that, for all k ∈ Z
and points x, y1, . . . , ym belonging to X ,

|θk(x, y1, . . . , ym)| ≤ A
m∏
i=1

1

V2−k(x) + V (x, yi)

[
2−k

2−k + d(x, yi)

]δ2
(7.5)

and, for all j0 ∈ {1, . . . ,m} and y′j0 ∈ X satisfying d(yj0 , y
′
j0

) ≤ [2−j0 + d(x, yj0)]/2,

|θk(x, y1, . . . , yj0 , . . . , ym)− θk(x, y1, . . . , y
′
j0 , . . . ym)|

≤ A
[

d(yj0 , y
′
j0

)

2−j0 + d(x, yj0)

]δ1 m∏
i=1

1

V2−k(x) + V (x, yi)

[
2−k

2−k + d(x, yi)

]δ2
. (7.6)

In this case, write {θk}k∈Z ∈ Ker(m,A, δ1, δ2). Denote by Θk the m-linear operator

Θk(f1, . . . , fm)(x)

:=

∫
Xm

θk(x, y1, . . . , ym)f1(y1) · · · fm(ym) dµ(y1) · · · dµ(ym), ∀x ∈ X ,

which is well defined if fi ∈
⋃

1≤p≤∞ Lp(X ) for all i ∈ {1, . . . ,m} in view of (7.5).

Remark 7.2. For the special case m = 1 and (X , d, µ) := (Rn, | · |, dx), conditions (7.5)
and (7.6) turn out to be that, for all x, y ∈ Rn,

|θk(x, y)| ≤ A 2−kδ2

(2−k + |x− y|)n+δ2
(7.7)

and, when |y − y′| ≤ (2−k + |x− y|)/2,

|θk(x, y)− θk(x, y′)| ≤ A |y − y′|δ1
(2−k + |x− y|)δ1

2−kδ2

(2−k + |x− y|)n+δ2
. (7.8)

These two conditions are equivalent to (7.1) and (7.2) in the following sense:

(i) (7.7) is exactly (7.1);
(ii) if θk satisfies (7.7) and (7.8), then it satisfies (7.2);
(iii) if θk satisfies (7.1) and (7.2), then (7.8) holds true but with a new exponent δ′2 ∈ (0, δ2).

Obviously (i) holds. To prove (ii), when |y − y′| ≤ (2−k + |x − y|)/2, we see that (7.8)
directly implies (7.2) and, when |y−y′| > (2−k+ |x−y|)/2, we have |y − y′|δ2/2−kδ2 > 2δ2 ,
which combined with (7.7) implies that

|θk(x, y)− θk(x, y′)| ≤ 2

2−kn
≤ 2δ2+1

2−kn
|y − y′|δ2

2−kδ2
,

we therefore know that (7.2) holds for all x, y, and y′. Finally, (iii) holds if we take the
geometric mean between (7.1) and (7.2).

Basic examples of kernels {θk}k∈Z are given by approximations of the identity. For
instance, taking {Sk}k∈Z to be an (ε1, ε2, ε3)-ATI for some ε1 ∈ (0, 1], ε2 > 0, and ε3 > 0,
we consider

θk(x, y1, . . . , ym) := Dk(x, y1)Sk(x, y2) · · ·Sk(x, ym), ∀x, y1, . . . , ym ∈ X ,
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where Dk := Sk+1 − Sk for all k ∈ Z. It is easy to show that such θk satisfies (7.5) and
(7.6) with δ1 = ε1 and δ2 = ε2; moreover, for all x, y2, . . . , ym ∈ X and k ∈ Z,∫

X
θk(x, y1, . . . , ym) dµ(y1) = 0.

In what follows, we use the aforementioned notation K(t; ε, x, y): given ε ∈ (0,∞),
t > 0, we let, for all x, y ∈ X ,

K(t; ε, x, y) :=
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]ε
.

Regarding the family of functions {θk}k∈Z ∈ Ker(m,A, δ1, δ2), the following multilinear
version off-diagonal estimates hold true.

Lemma 7.3. Let m ∈ Z, ε1 ∈ (0, 1], ε2 > 0 and {θk}k∈Z ∈ Ker(m,A, δ1, δ2) for some
positive constants A, δ1 and δ2. Moreover, assume that each θk satisfies the cancelation
condition with respect to the y1-variable, namely, for all k ∈ Z and x, y2, . . . , ym ∈ X ,∫

X
θk(x, y1, . . . , ym) dµ(y1) = 0. (7.9)

Suppose that there exists a positive constant B such that the functions Dj : X × X → C,
j ∈ Z, satisfy, for all x, x′, y ∈ X ,

(i) |Dj(x, y)| ≤ B 1
V2−j (x)+V2−j (y)+V (x,y)

[
2−j

2−j+d(x,y)

]ε2
;

(ii) when d(x, x′) ≤ [2−j + d(x, y)]/2,

|Dj(x, y)−Dj(x
′, y)|

≤ B
[

d(x, x′)

2−j + d(x, y)

]ε1 1

V2−j (x) + V2−j (y) + V (x, y)

[
2−j

2−j + d(x, y)

]ε2
;

(iii)
∫
X Dj(w, y) dµ(w) = 0.

Then, for any given ε′1 ∈ (0, ε1∧ε2∧δ1∧δ2), there exists a positive constantC (depending on
ε′1 and the doubling constant C1) such that, for all k, j ∈ Z and points x, u, y2, . . . , ym ∈ X ,∫

X
θk(x, y1, . . . , ym)Dj(y1, u) dµ(u)

≤ CAB2−|k−j|ε
′
1K(2−(k∧j); ε2 ∧ δ2, x, u)

m∏
i=2

K(2−k; δ2, x, yi).

Proof. The reader may easily find that the proof is essentially given in [60, Lemma 3.2]
(see also Lemma 8.3 below), so the details are omitted.

Remark 7.4. In Lemma 7.3, instead of assuming that {θk}k∈Z satisfies (7.6) for all
j0 ∈ {1, . . . ,m}, it suffices to require that {θk}k∈Z satisfies (7.6) for j0 = 1.

Lemma 7.5. Let m ∈ N, ε1 ∈ (0, 1], ε2 > 0 and {θk}k∈Z ∈ Ker(m,A, δ1, δ2) for some
positive numbers A, δ1 and δ2. Moreover, assume that, for all k ∈ Z, i ∈ {1, . . . ,m} and
x, y1, . . . , ym ∈ X , ∫

X
θk(x, y1, . . . , yi, . . . , ym) dµ(yi) = 0. (7.10)
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Suppose that, for every fixed i ∈ {1, . . . ,m}, there exist positive constants {Bi}mi=1 such
that the functions {Dki}ki∈Z satisfy, for all x, x′, y ∈ X and ki ∈ Z,

(i) |Dki(x, y)| ≤ Bi 1
V
2−ki (x)+V

2−ki (y)+V (x,y)

[
2−ki

2−ki+d(x,y)

]ε2
;

(ii) when d(x, x′) ≤ [2−k−i + d(x, y)]/2,

|Dki(x, y)−Dki(x
′, y)|

≤ Bi
[

d(x, x′)

2−ki + d(x, y)

]ε1 1

V2−ki (x) + V2−ki (y) + V (x, y)

[
2−ki

2−ki + d(x, y)

]ε2
;

(iii)
∫
X Dki(w, y) dµ(w) = 0.

Then, for any given σ ∈ (0, ε1 ∧ ε2 ∧ δ1 ∧ δ2), there exists a positive constant C, depending
only on the doubling constant C1 and σ, such that, for all points y1, . . . , ym ∈ X ,

|Θk(Dk1(·, y1), Dk2(·, y2), . . . , Dkm(·, ym))(x)|

=

∣∣∣∣ ∫
Xm

θk(x, z1, . . . , zm)Dk1(z1, y1) · · ·Dkm(zm, ym) dµ(z1) · · · dµ(zm)

∣∣∣∣
≤ CAm

m∏
i=1

Bi2
−|k−ki|σK(2−(k∧ki); ε2 ∧ δ2, x, yi).

Proof. Fix k, k1, . . . , km ∈ Z and x, y1, . . . , ym ∈ X . Consider the function

θ
(m−1)
k, y1

(x, z2, . . . , zm) :=

∫
X
θk(x, z1, . . . , zm)Dk1(z1, y1) dµ(z1).

For all j ∈ {2, . . . ,m}, by (7.10), we have∫
X
θ

(m−1)
k, y1

(x, z2, . . . , zm) dµ(zj) = 0.

Since {θk}k∈Z ∈ Ker(m,A, δ1, δ2) and Dk1 satisfies (i) through (iii), we apply Lemma 7.3
to conclude that, for all z2, . . . , zm ∈ X and σ ∈ (0, ε1 ∧ ε2 ∧ δ1 ∧ δ2),

|θ(m−1)
k,y1

(x, z2, . . . , zm)|

. AB12−|k−k1|σK(2−(k∧k1); ε2 ∧ δ2, x, y1)

m∏
i=2

K(2−k; δ2, x, zi). (7.11)

Now fix j ∈ {2, . . . ,m}. We prove that, for all z2, . . . , zm, z
′
j ∈ X satisfying d(zj , z

′
j) ≤

[2−k + d(x, zj)]/2 and for all θ1 ∈ (0, 1) and σ ∈ (0, ε1 ∧ ε2 ∧ δ1 ∧ δ2),

|θ(m−1)
k, y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k, y1

(x, z2, . . . , z
′
j , . . . , zm)|

. AB12−|k−k1|σ(1−θ1)K(2−(k∧k1); δ2 ∧ ε2, x, y1)

×
[

d(zj , z
′
j)

2−k + d(x, zj)

]δ2θ1 m∏
i=2

K(2−k; δ2, x, zi). (7.12)

Indeed, suppose for the moment that we have proved that, for all z2, . . . , zm, z
′
j ∈ X

satisfying d(zj , z
′
j) ≤ [2−k + d(x, zj)]/2,
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|θ(m−1)
k,y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k,y1

(x, z2, . . . , z
′
j , . . . , zm)|

. AB1K(2−(k∧k1); δ2 ∧ ε2, x, y1)

[
d(zj , z

′
j)

2−k + d(x, zj)

]δ2 m∏
i=2

K(2−k; δ2, x, zi); (7.13)

then we obtain (7.12) by taking the geometric mean between (7.13) and using the following
estimate: when d(zj , z

′
j) ≤ [2−k + d(x, zj)]/2,

|θ(m−1)
k, y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k, y1

(x, z2, . . . , z
′
j , . . . , zm)|

. AB12−|k−k1|σK(2−(k∧k1); δ2 ∧ ε2, x, y1)
∏

2≤i≤m,i6=j

K(2−k; δ2, x, zi)

× [K(2−k; δ2, x, zj) +K(2−k; δ2, x, z
′
j)]

∼ AB12−|k−k1|σK(2−(k∧k1); δ2 ∧ ε2, x, y1)
∏

2≤i≤m

K(2−k; δ2, x, zi),

where we used (7.11) and the fact that, when d(zj , z
′
j) ≤ [2−k + d(x, zj)]/2,

K(2−k; δ2, x, zj) ∼ K(2−k; δ2, x, z
′
j).

Now we show (7.13) by considering k ≤ k1 and k > k1 separately.
If k ≤ k1 and d(zj , z

′
j) ≤ [2−k + d(x, zj)]/2, then

|θ(m−1)
k, y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k, y1

(x, z2, . . . , z
′
j , . . . , zm)|

=

∣∣∣∣ ∫
X

[θk(x, z1, . . . , zj , . . . , zm)− θk(x, z1, . . . , z
′
j , . . . zm)]Dk1(z1, y1) dµ(z1)

∣∣∣∣
. A

[
d(zj , z

′
j)

2−k + d(x, zj)

]δ2 m∏
i=2

K(2−k; δ2, x, zi)

×
∫
X
K(2−k; δ2, x, z1)|Dk1(z1, y1)| dµ(z1). (7.14)

To estimate the last integral above, we write∫
X
K(2−k; δ2, x, z1)|Dk1(z1, y1)| dµ(z1)

=

∫
d(x,y1)≤2[2−k+d(x,z1)]

K(2−k; δ2, x, z1)|Dk1(z1, y1)| dµ(z1)

+

∫
d(x,y1)>2[2−k+d(x,z1)]

· · ·

=: J1 + J2.

When d(x, y1) ≤ 2[2−k + d(x, z1)], we have

K(2−k; δ2, x, z1) . K(2−k; δ2, x, y1)

and hence

J1 . K(2−k; δ2, x, y1)

∫
d(x,y1)≤2[2−k+d(x,z1)]

|Dk1(z1, y1)| dµ(z1) . B1K(2−k; δ2, x, y1).
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When d(x, y1) > 2[2−k + d(x, z1)], we have

d(z1, y1) ≥ d(x, y1) + 2−k − [d(z1, x) + 2−k]

> d(x, y1) + 2−k − d(x, y1)/2

> [d(x, y1) + 2−k]/2,

which, together with the fact k ≤ k1 and the size condition of Dk1 , implies that

|Dk1(z1, y1)| ≤ B1
1

V (z1, y1)

[
1

1 + 2k1d(z1, y1)

]ε2
≤ B1

1

µ(B(y1, 2−k + d(x, y1)))

[
1

1 + 2kd(x, y1)

]ε2
∼ B1K(2−k; ε2, x, y1)

and, furthermore,

J2 . B1K(2−k; ε2, x, y1)

∫
d(x,y1)>2[2−k+d(x,z1)]

K(2−k; δ2, x, z1) dµ(z1)

. B1K(2−k; ε2, x, y1).

Combining the estimates for J1 and J2, we see that∫
X
K(2−k; δ2, x, z1)|Dk1(z1, y1)| dµ(z1) . B1K(2−k; ε2 ∧ δ2, x, y1).

Inserting this into (7.14), we conclude that, when k ≤ k1 and d(zj , z
′
j) ≤ [2−k+d(x, zj)]/2,

|θ(m−1)
k, y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k, y1

(x, z2, . . . , z
′
j , . . . , zm)|

. AB1

[
d(zj , z

′
j)

2−k + d(x, zj)

]δ2
K(2−(k∧k1); ε2 ∧ δ2, x, y1)

m∏
i=2

K(2−k; δ2, x, zi).

As for the case k > k1, by (7.6), we see that, when d(zj , z
′
j) ≤ [2−k + d(x, zj)]/2,

|θ(m−1)
k, y1

(x, z2, . . . , zj , . . . , zm)− θ(m−1)
k, y1

(x, z2, . . . , z
′
j , . . . , zm)|

=

∣∣∣∣ ∫
X

[θk(x, z1, . . . , zj , . . . , zm)− θk(x, z1, . . . , z
′
j , . . . , zm)]

× [Dk1(z1, y1)−Dk1(x, y1)] dµ(z1)

∣∣∣∣
≤ A

[
d(zj , z

′
j)

2−k + d(x, zj)

]δ2 m∏
i=2

K(2−k; δ2, x, zi)

×
∫
X
K(2−k; δ2, x, z1)|Dk1(z1, y1)−Dk1(x, y1)| dµ(z1). (7.15)

Write∫
X
K(2−k; δ2, x, z1)|Dk1(z1, y1)−Dk1(x, y1)| dµ(z1)

≤
∫
d(z1,x)≤[2−k1+d(x,y1)]/2

K(2−k; δ2, x, z1)|Dk1(z1, y1)−Dk1(x, y1)| dµ(z1)
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+

∫
d(z1,x)>[2−k1+d(x,y1)]/2

K(2−k; δ2, x, z1)|Dk1(z1, y1)| dµ(z1)

+ |Dk1(x, y1)|
∫
d(z1,x)>[2−k1+d(x,y1)]/2

K(2−k; δ2, x, z1) dµ(z1)

=: Z1 + Z2 + Z3.

To estimate Z1, for every z1 satisfying d(z1, x) ≤ [2−k1 + d(x, y1)]/2, we have
|Dk1(z1, y1)| . B1K(2−k1 ; ε2, z1, y1) ∼ B1K(2−k1 ; ε2, x, y1),

which, together with |Dk1(x, y1)| . B1K(2−k1 ; ε2, x, y1), implies that

Z1 ≤
∫
d(z1,x)≤[2−k1+d(x,y1)]/2

K(2−k; δ2, x, z1)[|Dk1(z1, y1)|+ |Dk1(x, y1)|] dµ(z1)

. B1K(2−k1 ; ε2, x, y1)

∫
d(z1,x)≤[2−k1+d(x,y1)]/2

K(2−k; δ2, x, z1) dµ(z1)

. B1K(2−k1 ; ε2, x, y1).

If d(z1, x) > [2−k1 + d(x, y1)]/2, then invoking the fact that k > k1, we obtain

K(2−k; δ2, x, z1) .
1

V (x, z1)

[
2−k

d(x, z1)

]δ2
. K(2−k1 ; δ2, x, y1)

and hence

Z2 . K(2−k1 ; δ2, x, y1)

∫
X
|Dk1(z1, y1)| dµ(z1) . B1K(2−k1 ; δ2, x, y1).

Also, by the size condition of Dk1 , we see that

Z3 ≤ |Dk1(x, y1)|
∫
X
K(2−k; δ2, x, z1) dµ(z1) . |Dk1(x, y1)| . K(2−k1 ; ε2, x, y1).

From the estimates of Z1, Z2, Z3 and (7.15), it follows that (7.13) also holds when k > k1.
Thus, we obtain (7.13), and hence (7.12) holds.

Summarizing, all these imply that, for all θ1 ∈ (0, 1) and σ ∈ (0, ε1 ∧ ε2 ∧ δ1 ∧ δ2),
{θ(m−1)
k,y1

}k∈Z ∈ Ker(m− 1, A(m−1), δ1, δ2θ1),

where
A(m−1) := CAB12−|k−k1|σ(1−θ1)K(2−(k∧k1); δ1 ∧ ε1, x, y1)

and C is a positive constant depending only on σ, θ1 and C1.
Likewise, for z3, . . . , zm ∈ X , we define

θ
(m−2)
k, y1, y2

(z3, . . . , zm) :=

∫
X 2

θk(x, z1, . . . , zm)Dk1(z1, y1)Dk2(z2, y2) dµ(z1) dµ(z2).

Since
θ

(m−2)
k,y1,y2

(z3, . . . , zm) =

∫
X
θ

(m−1)
k, y1

(x, z2, . . . , zm)Dk2(z2, y2) dµ(z2),

an argument similar to the above gives, for all θ1, θ2 ∈ (0, 1) and σ ∈ (0, ε1∧ε2∧δ1∧(δ2θ1)),
{θ(m−2)
k, y1, y2

}k∈Z ∈ Ker(m− 2, A(m−2), δ1, δ2θ1θ2),

where
A(m−2) := CA2B1B22−|k−k1|σ(1−θ1)2−|k−k2|σ(1−θ1)(1−θ2)

×K(2−(k∧k1); δ2 ∧ ε2, x, y1)K(2−(k∧k2); ε2 ∧ (δ2θ1), x, y2)

and C is a positive constant depending only on σ, θ1, θ2 and C1.
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Iterating this process m − 1 times, we see that, for all θ1, . . . , θm−1 ∈ (0, 1) and
δ ∈ (0, ε1 ∧ ε2 ∧ δ1 ∧ (δ2

∏m−2
i=1 θi)),

θ
(1)
k, y1, y2,...,ym−1

(zm)

:=

∫
Xm−1

θk(x, z1, . . . , zm)Dk1(z1, y1) · · ·Dkm−1
(zm−1, ym−1) dµ(z1) · · · dµ(zm−1)

belongs to Ker(1, A(1), δ1, δ2
∏m−1
i=1 θi), where

A(1) := CAm−1
m−1∏
i=1

Bi2
−|k−ki|

∏
1≤`≤i(1−θ`)K(2−(k∧ki); ε2 ∧ (δ2θ1 · · · θm−2), x, yi)

and C is a positive constant depending only on σ, θ1, . . . , θm−1 and C1.
Finally, since

Θk(Dk1(·, y1), . . . , Dkm(·, ym))(x) =

∫
X
θ

(1)
k,y1, y2,...,ym−1

(zm)Dkm(zm, ym) dµ(zm),

we apply (8.5) to find that, for all θ1, . . . , θm ∈ (0, 1) and δ ∈ (0, ε1 ∧ δ1 ∧ (δ2
∏m−1
i=1 θi)),

|Θk(Dk1(·, y1), . . . , Dkm(·, ym))(x)|

. Am
m∏
i=1

Bi2
−|k−ki|σ

∏
1≤`≤i(1−θ`)K(2−(k∧ki); ε2 ∧ (δ2θ1 · · · θm−1), x, yi).

From this and the arbitrariness of θi ∈ (0, 1), i ∈ {1, . . . ,m}, we deduce the desired
conclusion of Lemma 7.5.

7.2. Quadratic T1 type theorems on Lebesgue spaces. The main goal of this sub-
section is to study the multilinear version of the square function estimate on products of
Lebesgue and Besov (or Triebel–Lizorkin) spaces.

Theorem 7.6. Let {θk}k∈Z ∈ Ker(m,A, δ1, δ2) for some δ1 > 0, δ2 > 0 and A > 0.
Assume that, for all k ∈ Z and x, y2, . . . , ym ∈ X ,∫

X
θk(x, y1, . . . , ym) dµ(y1) = 0. (7.16)

Let 1 ≤ p, p1, . . . , pm ≤ ∞ be such that 1/p =
∑m
i=1 1/pi. For p1, s ∈ (−ε, ε) with

ε ∈ (0, 1 ∧ δ1 ∧ δ2)

and q ∈ (0,∞] as in Definition 6.9, the Besov space Ḃsp1,q(X ) is defined as a subspace
of a distribution space (G̊ε0(β, γ))′ with β, γ satisfying (6.18). Then there exists a positive
constant C such that, for all functions f1 ∈ Ḃsp1,q(X ) and fi ∈ Lpi(X ), i ∈ {2, . . . ,m},{∑

k∈Z
2ksq‖Θk(f1, . . . , fm)‖qLp(X )

}1/q

≤ CA‖f1‖Ḃsp1,q(X )

m∏
i=2

‖fi‖Lpi (X ), (7.17)

where C := C(δ1, δ2, ε, s, q, p, p1, . . . , pm,X ) > 0.

A key tool to be used in the proof of Theorem 7.6 is the following continuous homoge-
neous Calderón reproducing formula; see [60, p. 79, Theorem 3.13].
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Lemma 7.7. Let ε1 ∈ (0, 1], ε2 > 0, ε3 > 0 and ε ∈ (0, ε1 ∧ ε2). Let {Sk}k∈Z be an
(ε1, ε2, ε3)-ATI. Set Dk := Sk−Sk−1 for k ∈ Z. Then there exist linear operators {D̃k}k∈Z
and {Dk}k∈Z such that, for all f ∈ (G̊ε0(β, γ))′ (or G̊ε0(β, γ)) with β, γ ∈ (0, ε),

f =
∑
k∈Z

D̃kDk(f) =
∑
k∈Z

DkDk(f),

where both series converge in (G̊ε0(β, γ))′ (or G̊ε0(β, γ)). Moreover, the kernels of the operators
{D̃k}k∈Z satisfy, for all x, y ∈ X and k ∈ Z,

(a) |D̃k(x, y)| ≤ C 1
V
2−k (x)+V (x,y)

[
2−k

2−k+d(x,y)

]ε′
,

(b) if d(x, x′) ≤ [2−k + d(x, y)]/2,

|D̃k(x, y)− D̃k(x′, y)| ≤ C
[

d(x, x′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′
,

(c)
∫
X D̃k(w, y) dµ(w) =

∫
X D̃k(x,w) dµ(w) = 0,

where ε′ ∈ (ε, ε1∧ε2) and C is a positive constant independent of k, x, x′ and y. The kernels
of {Dk}k∈Z satisfy the above (a), (c) and, when d(x, x′) ≤ [2−k + d(x, y)]/2,

|Dk(y, x)−Dk(y, x′)| ≤ C
[

d(x, x′)

2−k + d(x, y)

]ε′
1

V2−k(x) + V (x, y)

[
2−k

2−k + d(x, y)

]ε′
.

Proof of Theorem 7.6. Fix ε, β, γ, δ1, δ2, s, p, q and {pi}mi=1 as in Theorem 7.6. Let {Sk}k∈Z
be a 1-ATI with bounded support and Dk := Sk − Sk−1 for all k ∈ Z. Of course, {Sk}k∈Z
is a (1, 1, 1)-ATI. Let f1 ∈ Ḃsp1,q(X ). Then the Calderón reproducing formula (see Lemma
7.7) implies that there exist linear operators {D̃k}k∈Z whose kernels satisfy properties (a),
(b) and (c) of Lemma 7.7 for any exponent ε′ ∈ (ε, 1) such that

f1 =
∑
j∈Z

D̃jDj(f1)

in (G̊ε0(β, γ))′. For any x, y2, . . . , ym ∈ X , observe that θk(x, ·, y2, . . . , ym) can be viewed
as an element of G̊ε0(β, γ). Thus, for all k ∈ Z,

‖2ksΘk(f1, . . . , fm)‖Lp(X ) =
∥∥∥∑
j∈Z

2ksΘk(D̃jDjf1, f2, . . . , fm)
∥∥∥
Lp(X )

. (7.18)

Since ε′ > ε, we fix ε′1 such that ε′1 ∈ (ε ∧ δ1 ∧ δ2, ε′ ∧ δ1 ∧ δ2). Using Lemma 7.3, we see
that, for all k, j ∈ Z and x ∈ X ,

Θk(D̃jDjf1, f2, . . . , fm)(x)| =
∣∣∣∣ ∫
Xm

[ ∫
X
θk(x, z1, . . . , ym)D̃j(z1, y1) dµ(z1)

]
×Dj(f1)(y1)

m∏
i=2

fi(yi) dµ(y1) · · · dµ(ym)

∣∣∣∣
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. A2−|k−j|ε
′
1

∫
Xm
K(2−(k∧j); 1 ∧ δ2, x, y1)

m∏
i=2

K(2−k; δ2, x, yi)

× |Dj(f1)(y1)|
m∏
i=2

|fi(yi)| dµ(y1) · · · dµ(ym)

∼ A2−|k−j|ε
′
1

{∫
X
K(2−(k∧j); 1 ∧ δ2, x, y1)|Dj(f1)(y1)| dµ(y1)

}
×

m∏
i=2

∫
X
K(2−k; δ2, x, yi)|fi(yi)| dµ(yi). (7.19)

Since 1/p =
∑m
i=1 1/pi, we apply Hölder’s inequality to obtain∥∥∥∑

j∈Z
2ksΘk(D̃jDjf1, f2, . . . , fm)

∥∥∥
Lp(X )

. A

∥∥∥∥∑
j∈Z

2−|k−j|ε
′
1+(k−j)s

∫
X
K(2−(k∧j); 1 ∧ δ2, ·, y1)|2jsDj(f1)(y1)| dµ(y1)

∥∥∥∥
Lp1 (X )

×
m∏
i=2

∥∥∥∥∫
X
K(2−k; δ2, ·, yi)|fi(yi)| dµ(yi)

∥∥∥∥
Lpi (X )

=: Z1 ×
m∏
i=2

Zi.

To estimate Zi for 2 ≤ i ≤ m, we use the following fact: for all δ > 0, k ∈ Z and
g ∈ Lr(X ) with r ∈ [1,∞],∥∥∥∥∫

X
K(2−k; δ, ·, w)|g(w)| dµ(w)

∥∥∥∥
Lr(X )

≤ C‖g‖Lr(X ) (7.20)

for some constant C depending only on ε and the doubling constant C1. To see (7.20), for
r ∈ (1,∞), we apply Hölder’s inequality to deduce that, for all x ∈ X ,∫

X
K(2−k; δ, x, w)|g(w)| dµ(w) .

{∫
X
K(2−k; δ, x, w)|g(w)|r dµ(w)

}1/r

,

and then Fubini’s theorem further implies that∥∥∥∥ ∫
X
K(2−k; δ, ·, w)|g(w)| dµ(w)

∥∥∥∥
Lr(X )

.

{∫
X

∫
X
K(2−k; δ, x, w)|g(w)|r dµ(w) dµ(x)

}1/r

. ‖g‖Lr(X );

suitable modifications also yield (7.20) for r = 1 or ∞. From (7.20), it follows that
Zi . ‖fi‖Lpi (X ), ∀i ∈ {2, . . . ,m}.

Now we turn to the estimate of Z1. By Hölder’s inequality, we obtain∫
X
K(2−(k∧j); 1 ∧ δ2, x, y1)|2jsDj(f1)(y1)| dµ(y1)

.

{∫
X
K(2−(k∧j); 1 ∧ δ2, x, y1)|2jsDj(f1)(y1)|p1 dµ(y1)

}1/p1

.

Combining this with Lemma 6.13 and Fubini’s theorem, we see that
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(Z1)q =

∥∥∥∥[∑
j∈Z

2−|k−j|ε
′
1+(k−j)s

∫
X
K(2−(k∧j); 1 ∧ δ2, ·, y1)|2jsDj(f1)(y1)| dµ(y1)

]p1∥∥∥∥q/p1
L1(X )

.

∥∥∥∥∑
j∈Z

2−|k−j|(ε
′
1−|s|)

[ ∫
X
K(2−(k∧j); 1 ∧ δ2, ·, y1)|2jsDj(f1)(y1)| dµ(y1)

]p1∥∥∥∥q/p1
L1(X )

.

{∑
j∈Z

2−|k−j|(ε
′
1−|s|)

∫
X 2

K(2−(k∧j); 1 ∧ δ2, x, y1)|2jsDj(f1)(y1)|p1 dµ(y1) dµ(x)

}q/p1
.
{∑
j∈Z

2−|k−j|(ε
′
1−|s|)‖2jsDj(f1)‖p1Lp1 (X )

}q/p1
.
∑
j∈Z

2−|k−j|(ε
′
1−|s|)(1∧

q
p1

)‖2jsDj(f1)‖qLp1 (X ).

Summing the estimates of Z1 through Zm, we conclude that∥∥∥∑
j∈Z

2ksΘk(D̃jDjf1, f2, . . . , fm)
∥∥∥q
Lp(X )

.
∑
j∈Z

2−|k−j|(ε
′
1−|s|)(1∧

q
p1

)‖2jsDj(f1)‖qLp1 (X )

m∏
i=2

‖fi‖qLpi (X ).

This, combined with (7.18), gives us{∑
k∈Z

2ksq‖Θk(f1, . . . , fm)‖qLp(X )

}1/q

. A
{∑
k∈Z

∑
j∈Z

2−|k−j|(ε
′
1−|s|)(1∧

q
p1

)‖2jsDj(f1)‖qLp1 (X )

}1/q m∏
i=2

‖fi‖Lpi (X )

. A
{∑
j∈Z
‖2jsDj(f1)‖qLp1 (X )

}1/q m∏
i=2

‖fi‖Lpi (X )

. A‖f1‖Ḃsp1,q(X )

m∏
i=2

‖fi‖Lpi (X ).

Thus, (7.17) holds, and we complete the proof of Theorem 7.6.

Theorem 7.8. Let {θk}k∈Z ∈ Ker(m,A, δ1, δ2) for some δ1 > 0, δ2 > 0 and A > 0, and
let every θk satisfy (7.16). Let p, {pi}mi=1 and q be given numbers such that 1/p =

∑m
i=1 1/pi,

1 < q ≤ ∞, 1 < p1 <∞ and 1 < pi ≤ ∞ for i ∈ {2, . . . ,m}.
For the indices p1, q and s ∈ (−ε, ε) with ε ∈ (0, 1 ∧ δ1 ∧ δ2), as in Definition 6.9, the
Triebel–Lizorkin space Ḟ sp1,q(X ) is defined as a subspace of a distribution space (G̊ε0(β, γ))′

with β, γ satisfying (6.18). Then there exists a positive constantC such that, for all functions
f1 ∈ Ḟ sp1,q(X ) and fi ∈ Lpi(X ) with i ∈ {2, . . . ,m},∥∥∥{∑

k∈Z
2ksq|Θk(f1, . . . , fm)|q

}1/q∥∥∥
Lp(X )

≤ CA‖f1‖Ḟ sp1,q(X )

m∏
i=2

‖fi‖Lpi (X ), (7.21)

where C := C(δ1, δ2, ε, s, q, p, p1, . . . , pm,X ) > 0.
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Proof. Let {Sk}k∈Z be a 1-ATI with bounded support, which is also a (1, 1, 1)-ATI, and
set Dk := Sk − Sk−1 for all k ∈ Z. Let f1 ∈ Ḟ sp1,q(X ). The Calderón reproducing formula
(see Lemma 7.7) implies that there exist linear operators {D̃k}k∈Z with kernels satisfying
properties (a)–(c) of Lemma 7.7 for any ε′ ∈ (ε, 1) such that

f1 =
∑
j∈Z

D̃jDj(f1)

in (Gε0(β, γ))′. Hence, we write∥∥∥{∑
k∈Z

2ksq|Θk(f1, . . . , fm)|q
}1/q∥∥∥

Lp(X )

=
∥∥∥{∑

k∈Z
2ksq

∣∣∣∑
j∈Z

Θk(D̃jDjf1, f2, . . . , fm)
∣∣∣q}1/q∥∥∥

Lp(X )
. (7.22)

Since ε′ > ε, we choose ε′1 such that (ε ∧ δ1 ∧ δ2) < ε′1 < (ε′ ∧ δ1 ∧ δ2). Then ε′1 > |s|. For
such an ε′1, by (7.19), we see that, for all k, j ∈ Z and x ∈ X ,

|Θk(D̃jDjf1, f2, . . . , fm)(x)|

. A2−|k−j|ε
′
1

{∫
X
K(2−(k∧j); 1 ∧ δ2, x, y1)|Dj(f1)(y1)| dµ(y1)

}
×

m∏
i=2

∫
X
K(2−k; δ2, x, yi)|fi(yi)| dµ(yi)

. A2−|k−j|ε
′
1M(Dj(f1))(x)

m∏
i=2

M(fi)(x), (7.23)

whereM is the Hardy–Littlewood maximal operator as in (2.3) and the last inequality of
(7.23) is due to Lemma 2.15(iv). Inserting (7.23) into (7.22), we obtain∥∥∥{∑

k∈Z
2ksq|Θk(f1, . . . , fm)|q

}1/q∥∥∥
Lp(X )

. A
∥∥∥{∑

k∈Z

[∑
j∈Z

2−|k−j|ε
′
1+(k−j)sM(2jsDj(f1))

]q}1/q m∏
i=2

M(fi)
∥∥∥
Lp(X )

.

Notice that ε′1 > |s| and Lemma 6.13 imply that∑
k∈Z

[∑
j∈Z

2−|k−j|ε
′
1+(k−j)sM(2jsDj(f1))

]q
.
∑
k∈Z

∑
j∈Z

2−|k−j|(ε
′
1−|s|)(q∧1)[M(2jsDj(f1))]q

.
∑
j∈Z

[M(2jsDj(f1))]q.

From this, Hölder’s inequality with exponents 1/p =
∑m
i=1 1/pi, the Fefferman–Stein

vector-valued maximal function inequality (see, for example, [48]) and the boundedness
ofM on Lpi(X ) for i ∈ {2, . . . ,m}, we continue to estimate (7.9):∥∥∥{∑

k∈Z
2ksq|Θk(f1, . . . , fm)|q

}1/q∥∥∥
Lp(X )

. A
∥∥∥{∑

j∈Z
[M(2jsDj(f1))]q

}1/q m∏
i=2

M(fi)
∥∥∥
Lp(X )
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. A
∥∥∥{∑

j∈Z
[M(2jsDj(f1))]q

}1/q∥∥∥
Lp1 (X )

m∏
i=2

‖M(fi)‖Lpi (X )

. A
∥∥∥{∑

j∈Z
[2js|Dj(f1)|]q

}1/q∥∥∥
Lp1 (X )

m∏
i=2

‖fi‖Lpi (X )

∼ ‖f1‖Ḟ sp1,q(X )

m∏
i=2

‖fi‖Lpi (X ).

This proves (7.21), and finishes the proof of Theorem 7.8.

7.3. Quadratic T1 type theorems on Besov and Triebel–Lizorkin spaces. By
applying the off-diagonal estimate for the sequence of multilinear kernels {θk}k∈Z (see
Lemma 7.5) and the Calderón reproducing formula, we prove the following main result of
this subsection.

Theorem 7.9. Let m ∈ N, and {θk}k∈Z ∈ Ker(m,A, δ1, δ2) for some δ1 > 0, δ2 > 0 and
A > 0. Assume that, for all k ∈ Z, i ∈ {1, . . . ,m} and x, y1, . . . , ym ∈ X ,∫

X
θk(x, y1, . . . , yi, . . . , ym) dµ(yi) = 0.

Let ε ∈ (0, 1 ∧ δ1 ∧ δ2) and s, s1, . . . , sm ∈ (−ε, ε) satisfy s =
∑m
i=1 si. Then:

(i) if 0 < p ≤ ∞, 0 < q ≤ ∞, p(si, ε) < pi <∞ and 0 < qi <∞ for all i ∈ {1, . . . ,m} are
such that 1/p =

∑m
i=1 1/pi and 1/q =

∑m
i=1 1/qi, and, as in Definition 6.9, Ḃsipi,qi(X )

is defined as a subspace of (G̊ε0(β, γ))′ with certain β, γ satisfying

max{si, 0, −si + n(1/pi − 1)+} < β < ε and

max{si − κ/pi, n(1/pi − 1)+,−si + n(1/pi − 1)+ − κ(1− 1/pi)+} < γ < ε,
(7.24)

then there exists a positive constant C such that, for all i ∈ {1, . . . ,m} and fi ∈
G̊ε0(β, γ) ⊂ Ḃsipi,qi(X ),{ ∞∑

k=−∞

2ksq‖Θk(f1, . . . , fm)‖qLp(X )

}1/q

≤ CAm
m∏
i=1

‖fi‖Ḃsipi,qi (X );

(ii) if 0 < p <∞, 0 < q ≤ ∞, p(si, ε) < pi <∞ and p(si, ε) < qi <∞ for i ∈ {1, . . . ,m}
are such that 1/p =

∑m
i=1 1/pi and 1/q =

∑m
i=1 1/qi, and, as inDefinition 6.9, Ḟ sipi,qi(X )

is defined as a subspace of (G̊ε0(β, γ))′ with certain β, γ satisfying (7.24), then there
exists a positive constant C such that, for all fi ∈ G̊ε0(β, γ) ⊂ Ḟ sipi,qi(X ),∥∥∥{ ∞∑

k=−∞

2ksq|Θk(f1, . . . , fm)|q
}1/q∥∥∥

Lp(X )
≤ CAm

m∏
i=1

‖fi‖Ḟ sipi,qi (X ). (7.25)

Remark 7.10. Using the fact that Ḟ 0
p,2(X ) coincides with the space Lp(X ), we see that

the conclusions of Theorem 7.9 do not cover those of Theorems 7.6 and 7.8. A result along
the lines of Theorem 7.8, in the Euclidean setting, has recently and independently been
proved by Hart [62, Theorem 1.4]. Examination indicates that Theorem 1.4 in [62] requires
a weaker cancelation condition and stronger regularity compared to Theorem 7.8 in our
work. It should also be noticed that an alternative approach to the bilinear T1-theorem
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was also obtained by Hart [63] in the Euclidean setting. Quadratic estimates of the form
(7.25) were also studied by Grafakos and Oliveira [49] via multilinear Carleson measure
techniques.

Proof of Theorem 7.9. Let {Sk}k∈Z be a 1-ATI with bounded support, which is also
a (1, 1, 1)-ATI, and set Dk := Sk − Sk−1 for all k ∈ Z. For every i ∈ {1, . . . ,m} and
fi ∈ G̊ε0(β, γ), by the Calderón reproducing formula in Lemma 6.10, we know that there
exist linear operators {Dki}ki∈Z such that, for any fixed yki,νiτi ∈ Qki,νiτi with ki ∈ Z, τi ∈ Iki
and νi ∈ {1, . . . , N(ki, τi)},

fi(·) =
∑
ki∈Z

∑
τi∈Iki

N(ki,τi)∑
ν=1

µ(Qki,νiτi )Dki(·, yki,νiτi )Dki(fi)(y
ki,νi
τi ), (7.26)

where the series converges in G̊ε0(β, γ), and the kernels of the operators {Dki}ki∈Z satisfy
(a), (b′) and (c) of Lemma 6.10 for any ε′ ∈ (ε, 1). In what follows, for the sake of simplicity,
we use

∑
(ki,τi,νi)

to denote
∑
ki∈Z

∑
τi∈Iki

∑N(ki,τi)
ν=1 for all i ∈ {1, . . . ,m}.

To show (i), applying (7.26) to each fi and then using Lemma 7.4, we see that, for any
given σ ∈ (0, 1 ∧ δ1 ∧ δ2) and all x ∈ X ,

|Θk(f1, . . . , fm)(x)|

≤
∑

(k1,τ1,ν1)

· · ·
∑

(km,τm,νm)

µ(Qk1,ν1τ1 ) · · ·µ(Qkm,νmτm )

× |Θk(Dk1(·, yk1,ν1τ1 ), . . . , Dkm(·, ykm,νmτm ))(x)| |Dk1(f1)(yk1,ν1τ1 ) · · ·Dkm(fm)(ykm,νmτm )|

. Am
m∏
i=1

∑
(ki,τi,νi)

2−|k−ki|σµ(Qki,νiτi )K(2−(k∧ki); 1 ∧ δ2, x, yki,νiτi )|Dki(fi)(y
ki,νi
τi )|.

By Lemma 6.12, the last quantity above is bounded by

Am
m∏
i=1

∑
ki∈Z

2−|k−ki|σ+[ki−(k∧ki)n(1/ri−1)]

×
{
M
( ∑
τi∈Iki

N(ki,τi)∑
ν=1

|Dki(fi)(y
ki,νi
τi )|riχ

Q
ki,νi
τi

)
(x)
}1/ri

,

whenever ri ∈ ( n
n+(1∧δ2) , 1]. In particular, since ε ∈ (0, 1 ∧ δ1 ∧ δ2) and

min{pi, qi} > p(si, ε) = max

{
n

n+ ε
,

n

n+ si + ε

}
, ∀i ∈ {1, . . . ,m},

there exist σ ∈ (0, 1 ∧ δ1 ∧ δ2) and {ri}mi=1 such that, for all i ∈ {1, . . . ,m},
n

n+ (1 ∧ δ2)
< ri ≤ 1, ri < min{pi, qi, } and n(1/ri − 1) < σ + si. (7.27)

Fix such σ and {ri}mi=1. Set

Fi :=
{
M
( ∑
τi∈Iki

N(ki,τi)∑
ν=1

|Dki(fi)(y
ki,νi
τi )|riχ

Q
ki,νi
τi

)}1/ri
.
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Thus, we have proved that, for σ and {ri}mi=1 as in (7.27), and all x ∈ X ,

|Θk(f1, . . . , fm)(x)| . Am
m∏
i=1

∑
ki∈Z

2−|k−ki|[σ−n(1/ri−1)]Fi(x). (7.28)

Since 1/p =
∑m
i=1 1/pi, it follows, from (7.28) and Hölder’s inequality, that

‖Θk(f1, . . . , fm)‖Lp(X ) . Am
m∏
i=1

∥∥∥ ∑
ki∈Z

2−|k−ki|[σ−n(1/ri−1)]Fi

∥∥∥
Lpi (X )

.

Notice that s =
∑m
i=1 si. Again, using 1/q =

∑m
i=1 1/qi and Hölder’s inequality we obtain{ ∞∑

k=−∞

2ksq‖Θk(f1, . . . , fm)‖qLp(X )

}1/q

. Am
{ ∞∑
k=−∞

m∏
i=1

2ksiq
∥∥∥ ∑
ki∈Z

2−|k−ki|[σ−n(1/ri−1)]Fi

∥∥∥q
Lpi (X )

}1/q

. Am
m∏
i=1

{ ∞∑
k=−∞

2ksiqi
∥∥∥ ∑
ki∈Z

2−|k−ki|[σ−n(1/ri−1)]Fi

∥∥∥qi
Lpi (X )

}1/qi

. Am
m∏
i=1

{ ∞∑
k=−∞

∥∥∥ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi

∥∥∥qi
Lpi (X )

}1/qi
. (7.29)

For every i ∈ {1, . . . ,m}, by σ + si − n(1/ri − 1) > 0, Lemma 6.13 and the boundedness
ofM on Lpi/ri(X ), we conclude that∥∥∥ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi

∥∥∥qi
Lpi (X )

=

{∫
X

∣∣∣ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi(x)
∣∣∣pi dµ(x)

}qi/pi
.

{∫
X

∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](pi∧1)|2kisiFi(x)|pi dµ(x)

}qi/pi
∼
{∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](pi∧1)

×
∫
X

[
M
( ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2ki,siDki(fi)(y
ki,νi
τi )|riχ

Q
ki,νi
τi

)
(x)
]pi/ri

dµ(x)

}qi/pi
.
[ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](pi∧1)

×
∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|piµ(Qki,νiτi )

]qi/pi
.
∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](pi∧1)(qi/pi∧1)

×
[ ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|piµ(Qki,νiτi )

]qi/pi
.
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With this estimate, we continue (7.29) as

{ ∞∑
k=−∞

2ksq‖Θk(f1, . . . , fm)‖qLp(X )

}1/q

. Am
m∏
i=1

{ ∞∑
k=−∞

∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](pi∧1)(qi/pi∧1)

×
[ ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|piµ(Qki,νiτi )

]qi/pi}1/qi

. Am
m∏
i=1

{ ∑
ki∈Z

[ ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|piµ(Qki,νiτi )

]qi/pi}1/qi

. Am
m∏
i=1

‖fi‖Ḃsipi,qi (X ).

This concludes the proof of (i).
Next we turn to (ii). For {fi}mi=1 ⊂ G̊ε0(β, γ) as in (i), using the Calderón reproducing

formula and Lemma 6.12, we see that (7.28) holds for some σ and a sequence {ri}mi=1

satisfying (7.27). By (7.28) and s =
∑m
i=1 si, we obtain

∥∥∥{ ∞∑
k=−∞

2ksq|Θk(f1, . . . , fm)|q
}1/q∥∥∥

Lp(X )

. Am
∥∥∥{ ∞∑

k=−∞

∣∣∣ m∏
i=1

∑
ki∈Z

2ksi2−|k−ki|[σ−n(1/ri−1)]Fi

∣∣∣q}1/q∥∥∥
Lp(X )

. Am
∥∥∥{ ∞∑

k=−∞

m∏
i=1

∣∣∣ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi

∣∣∣q}1/q∥∥∥
Lp(X )

. (7.30)

Since 1/q =
∑m
i=1 1/qi and σ + si − n(1/ri − 1) > 0 for all i ∈ {1, . . . ,m}, from Hölder’s

inequality and Lemma 6.13, it follows that

{ ∞∑
k=−∞

m∏
i=1

∣∣∣ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi

∣∣∣q}1/q

.
m∏
i=1

{ ∞∑
k=−∞

∣∣∣ ∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)]2kisiFi

∣∣∣qi}1/qi

.
m∏
i=1

{ ∞∑
k=−∞

∑
ki∈Z

2−|k−ki|[σ+si−n(1/ri−1)](qi∧1)|2kisiFi|qi
}1/qi

.
m∏
i=1

{ ∑
ki∈Z
|2kisiFi|qi

}1/qi
.

Inserting this into (7.30) and applying Hölder’s inequality with indices 1/p =
∑m
i=1 1/pi,
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we deduce that∥∥∥{ ∞∑
k=−∞

2ksq|Θk(f1, . . . , fm)|q
}1/q∥∥∥

Lp(X )
. Am

∥∥∥ m∏
i=1

{ ∑
ki∈Z
|2kisiFi|qi

}1/qi∥∥∥
Lp(X )

. Am
m∏
i=1

∥∥∥{∑
ki∈Z
|2kisiFi|qi

}1/qi∥∥∥
Lpi (X )

. (7.31)

For any i ∈ {1, . . . ,m}, since pi/ri > 1 and qi/ri > 1, we use the Fefferman–Stein
vector-valued maximal function inequality (see, for example, [48]) to find that∥∥∥{ ∑

ki∈Z
|2kisiFi|qi

}1/qi∥∥∥
Lpi (X )

=
∥∥∥{ ∑

ki∈Z

[
M
( ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|riχ

Q
ki,νi
τi

)]qi/ri}1/qi∥∥∥
Lpi (X )

.
∥∥∥{ ∑

ki∈Z

[ ∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|riχ

Q
ki,νi
τi

]qi/ri}1/qi∥∥∥
Lpi (X )

∼
∥∥∥{ ∑

ki∈Z

∑
τi∈Iki

N(ki,τi)∑
ν=1

|2kisiDki(fi)(y
ki,νi
τi )|qiχ

Q
ki,νi
τi

}1/qi∥∥∥
Lpi (X )

. ‖fi‖Ḟ sipi,qi (X ).

Then, applying (7.31), we conclude that∥∥∥{ ∞∑
k=−∞

2ksq|Θk(f1, . . . , fm)|q
}1/q∥∥∥

Lp(X )
. Am

m∏
i=1

‖fi‖Ḟ sipi,qi (X ).

This proves (ii) and completes the proof of Theorem 7.9.



8. Paraproducts as bilinear Calderón–Zygmund operators

In this section, we prove that paraproducts on spaces of homogeneous type can be viewed
as bilinear Calderón–Zygmund singular integrals of the kind considered in Sections 3 and 4.
As applications, such paraproducts have weighted boundedness properties as in Corollaries
4.14 and 4.15. In the special case X = Rn, these paraproducts go back to the classical ones
investigated by Coifman and Meyer [21, 82], Muscalu, Tao and Thiele [85], Grafakos and
Kalton [44, Section 8], and Gilbert and Nahmod [37, 38]. More recent developments on
paraproducts and their applications can be found in Bernicot’s works [7, 8, 9]. Unweighted
Euclidean counterparts to the results in this section were obtained by Bényi, Maldonado,
Nahmod and Torres [5].

8.1. Paraproducts. Paraproducts were first introduced and systematically studied by
J.-M. Bony [12] and they now play a central role in numerous areas of analysis and PDEs;
see, for example, [4] for an exposition on the evolution of the concept of paraproduct.

Definition 8.1. Given β, γ > 0 and a dyadic cube Q ∈ Q, say Q := Qkα for some k ∈ Z
and α ∈ Ik, a function ψ is called a bump function adapted to Q if, for all x, y ∈ X ,

|ψ(x)| ≤ µ(Q)1/2

µ(Q) + V (x, cQ)

[
1

1 + 2kd(x, cQ)

]γ
(8.1)

and, when d(x, y) ≤ [2−k + d(x, y)]/2,

|ψ(x)− ψ(y)| ≤ µ(Q)1/2

µ(Q) + V (x, cQ)

[
d(x, y)

2−k + d(x, cQ)

]β[
1

1 + 2kd(x, cQ)

]γ
, (8.2)

where cQ denotes the center of Q, namely, B(cQ, C62−k) ⊂ Q ⊂ B(cQ, C52−k) as in
Lemma 2.5.

In this case, we write ψQ to indicate that ψ is a bump function adapted to Q. If, in
addition, ψQ satisfies

∫
X ψ(x) dµ(x) = 0, then ψQ is called a (β, γ)-smooth molecule for Q.

From now on, β and γ are assumed to be uniform in ψQ.

Bump functions are actually test functions as in Definition 2.12. Obviously, if ψQ
is a bump function adapted to the dyadic cube Q := Qkα, then µ(Q)−1/2ψQ is a test
function of type (cQ, 2

−k, β, γ), and vice versa. Also, ψQ is a molecule if and only if
µ(Q)−1/2ψQ ∈ G̊(cQ, 2

−k, β, γ).
Paraproducts are defined as follows.

Definition 8.2. For any given three families of bump functions, {ψ(0)
Q }Q∈Q, {ψ

(1)
Q }Q∈Q,

and {ψ(2)
Q }Q∈Q, the bilinear (discrete) paraproduct is defined as follows:

[101]
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Π(f, g)(x) :=
∑
Q∈Q

µ(Q)−1/2〈ψ(1)
Q , f〉〈ψ(2)

Q , g〉ψ(0)
Q (x), ∀x ∈ X . (8.3)

In Lemma 8.9 below, we prove that if {ψ(1)
Q }Q∈Q and {ψ(2)

Q }Q∈Q are smooth molecules

and {ψ(0)
Q }Q∈Q are bump functions, then Π as in (8.3) is bounded from L2(X ) × L2(X )

to L1(X ). Notice that the kernel of Π is given by

KΠ(x0, x1, x2) =
∑
Q∈Q

µ(Q)−1/2ψ
(0)
Q (x0)ψ

(1)
Q (x1)ψ

(2)
Q (x2), ∀x0, x1, x2 ∈ X .

Indeed, K is a bilinear Calderón–Zygmund kernel provided that {ψ(0)
Q }Q∈Q, {ψ

(1)
Q }Q∈Q

and {ψ(2)
Q }Q∈Q are bump functions with fast decay ; see Lemma 8.10 below. Therefore,

weighted estimates ofΠ on the 2-fold product of Lebesgue spaces follow from themultilinear
Calderón–Zygmund theory of Section 4.

8.2. Almost diagonal estimates. For simplicity, we use the following notation: for any
given ε ∈ (0,∞), t > 0 and all x, y ∈ X ,

K(t; ε, x, y) :=
1

Vt(x) + Vt(y) + V (x, y)

[
t

t+ d(x, y)

]ε
.

A useful observation is that the doubling property of µ implies that, when d(x′, x) ≤ aε

and d(y, y′) ≤ aε,

K(t; ε, x, y) ∼ K(t; ε, x′, y′)

with implicit constants depending only on a, ε and C1.
The following off-diagonal estimates for any two test functions are proved in [60,

Lemmas 3.2 and 3.19].

Lemma 8.3. Let ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0. Fix ε′1 ∈ (0, ε1 ∧ ε2). Assume that there
exist positive constants A1 and A2 such that, for any k ∈ Z, the functions Qk : X ×X → C
and Pk : X × X → C satisfy, for all x, y ∈ X ,

|Qk(x, y)| ≤ A1K(2−k; ε2, x, y), |Pk(x, y)| ≤ A2K(2−k; ε2, x, y)

and
QkP`(x, y) :=

∫
X
Qk(x,w)P`(w, y) dµ(w).

Then there exists a positive constant C (depending on ε′1, ε1, ε2, and ε3) and δ (depending
on ε′1, ε1 and ε2) such that the following hold:

(i) when ` = k, for all x, y ∈ X ,

|PkQk(x, y)| ≤ CA1A2K(2−k; ε2, x, y); (8.4)

(ii) when ` > k, if ∫
X
P`(x,w) dµ(w) = 0, ∀x ∈ X ,

and, for all x, x′, y ∈ X satisfying d(x, x′) ≤ [2−k + d(x, y)]/2,

|Qk(x, y)−Qk(x′, y)| ≤ A1

[
d(x, x′)

2−k + d(x, y)

]ε2
K(2−k; ε2, x, y),
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then, for all x, y ∈ X ,

|P`Qk(x, y)| ≤ CA1A22−|k−`|ε
′
1K(2−(k∧`); ε2, x, y). (8.5)

An extension of (8.4) and (8.5) to an estimate of three test functions is as follows.

Lemma 8.4. Let γ > 0. Then, for any γ′ ∈ (0, γ) and γ′′ ∈ (0, γ−γ′), there exists a positive
constant C, depending only on γ, γ′, γ′′ and C1, such that, for all x0, x1, x2 ∈ X ,∫

X

2∏
j=0

K(2−k; γ, x, xj) dµ(x) ≤ CK(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1). (8.6)

The proof of Lemma 8.4 is based on Lemma 8.5 below. In the Euclidean case, Lemma
8.5 was proved in [51, Lemma 1]; see [46] for its extension to spaces of homogeneous type.

Lemma 8.5. Let ε ∈ (0,∞). Then there exists a positive constant C, depending only on ε,
C1 and n, such that, for all x,w ∈ X , r ∈ (0,∞) and R ∈ (0,∞),∫

d(x,y)<R

K(r; ε, y, w) dµ(y) ≤ C max

{(
R

r

)ε
, 1

}
VR(x)K(r; ε, x, w).

Proof of Lemma 8.4. We decompose the space X as follows:∫
X

2∏
j=0

K(2−k; γ, x, xj) dµ(x)

=

∞∑
s=0

∞∑
t=0

∫
d(x,x1)∼2−k+s

d(x,x2)∼2−k+t

2∏
j=0

1

V2−k(x) + V2−k(xj) + V (x, xj)

[
1

1 + 2kd(x, xj)

]γ
dµ(x)

.
∞∑
s=0

∞∑
t=0

2−sγ2−tγ
1

µ(B(x1, 2−k+s))

1

µ(B(x2, 2−k+t))

×
∫
d(x,x1)∼2−k+s

d(x,x2)∼2−k+t

1

V2−k(x) + V2−k(x0) + V (x, x0)

[
1

1 + 2kd(x, x0)

]γ
dµ(x),

where the notation d(x, x1) ∼ 2−k+s means 2−k+s ≤ d(x, x1) < 2−k+s+1 if s ≥ 1 and
d(x, x1) ≤ 2−k if s = 0; likewise for d(x, x2) ∼ 2−k+t.

Assume first that s ≤ t. Take γ′ ∈ (0, γ) and γ′′ ∈ (0, γ − γ′). Observe that, if there
exists an x ∈ X such that d(x, x1) ∼ 2−k+s and d(x, x2) ∼ 2−k+t, then

d(x1, x2) ≤ d(x1, x) + d(x, x2) ≤ 2−k+2 max{2s, 2t},

and hence
1

µ(B(x2, 2−k+t))
=
V2−k(x) + V2−k(x2) + V (x, x2)

µ(B(x2, 2−k+t))
[1 + 2kd(x2, x1)]γ

′′
K(2−k; γ′′, x2, x1)

.

[
max{2s, 2t}

2t

]n
[max{2s, 2t}]γ

′′
K(2−k; γ′′, x2, x1).

Applying Lemma 8.5 with ε = γ′, we see that
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1

µ(B(x1, 2−k+s))

∫
d(x,x1)∼2−k+s

d(x,x2)∼2−k+t

1

V2−k(x) + V2−k(x0) + V (x, x0)

[
1

1 + 2kd(x, x0)

]γ
dµ(x)

. max{2sγ
′
, 1}K(2−k; γ′, x0, x1).

From the last two estimates, it follows that
∞∑
s=0

∑
t≥s

2−sγ2−tγ
1

µ(B(x1, 2−k+s))

1

µ(B(x2, 2−k+t))

×
∫
d(x,x1)∼2−k+s

d(x,x2)∼2−k+t

1

V2−k(x) + V2−k(x0) + V (x, x0)

[
1

1 + 2kd(x, x0)

]γ
dµ(x)

.
∞∑
s=0

∑
t≥s

2−sγ2−tγ max{2sγ
′
, 1}
[

max{2s, 2t}
2t

]n
(max{2s, 2t})γ

′′

×K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

. K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1), (8.7)

where the last inequality is due to the fact that, when γ′ ∈ (0, γ−n) and γ′′ ∈ (0, γ−n−γ′),
∞∑
s=0

∑
t≥s

2−sγ2−tγ max{2sγ
′
, 1}
[

max{2s, 2t}
2t

]n
[max{2s, 2t}]γ

′′
<∞.

Likewise, a symmetric argument (by reversing the roles of x1 and x2) also implies that

∞∑
s=0

∑
t≤s

2−sγ2−tγ
1

µ(B(x1, 2−k+s))

1

µ(B(x2, 2−k+t))

×
∫
d(x,x1)∼2−k+s

d(x,x2)∼2−k+t

1

V2−k(x) + V2−k(x0) + V (x, x0)

[
1

1 + 2kd(x, x0)

]γ
dµ(x)

. K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1). (8.8)

Combining (8.7) and (8.8), we obtain the desired estimate (8.6).

Lemma 8.6. Suppose that x0, x1, x2 ∈ X are such that

d(x0, x1) ≥ d(x1, x2) ≥ d(x0, x2).

If β′ > 0, γ′ > n+ β′ and γ′′ > 0, then there exists a positive constant C, independent of
k and {xj}2j=0, such that∑
k∈Z

[2kd(x0, x1)]β
′
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

≤ C 1

[V (x0, x1) + V (x0, x2) + V (x1, x2)]2
. (8.9)

Proof. Define the sets

Λ1 := {k ∈ Z : 2kd(x0, x1) ≤ 1},
Λ2 := {k ∈ Z : 2kd(x0, x1) > 1 > 2kd(x1, x2)}, Λ3 := Z \ {Λ1,Λ2}.
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By the reverse doubling property of µ, we find that∑
k∈Λ1

[2kd(x0, x1)]β
′
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1) .

∑
k∈Λ1

1

V (x0, x1)

1

V2−k(x1)

.
1

[V (x0, x1)]2
.

Since γ′ > β′, it follows that∑
k∈Λ2

[2kd(x0, x1)]β
′
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

.
∑
k∈Λ2

[2kd(x0, x1)]β
′−γ′ 1

V (x0, x1)

1

V2−k(x1)

.
1

[V (x0, x1)]2

∑
{k∈Z: 2kd(x0,x1)>1}

[2kd(x0, x1)]β
′−γ′

.
1

[V (x0, x1)]2
.

For any k ∈ Λ3, we have 1 ≤ 2kd(x1, x2) ≤ 2kd(x0, x1) and hence, by using γ′ > n + β′

and the doubling property of µ, we obtain∑
k∈Λ3

[2kd(x0, x1)]β
′
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

.
∑
k∈Λ3

1

V (x0, x1)

1

V2−k(x1)
[2kd(x0, x1)]β

′−γ′ [2kd(x1, x2)]−γ
′′

.
1

[V (x0, x1)]2

∑
k∈Λ3

µ
(
B(x1, d(x1, x0))

)
µ(B(x1, 2−k))

[2kd(x0, x1)]β
′−γ′ [2kd(x1, x2)]−γ

′′

.
1

[V (x0, x1)]2

∑
{k∈Z: 2kd(x1,x2)≥1}

[2kd(x0, x1)]β
′+n−γ′ [2kd(x1, x2)]−γ

′′

.
1

[V (x0, x1)]2
.

Also, the doubling condition of µ and the assumption d(x0, x1) ≥ d(x1, x2) ≥ d(x0, x2)

imply that
V (x0, x1) ∼ V (x0, x1) + V (x0, x2) + V (x1, x2).

Therefore, summarizing all these estimates, we obtain (8.9).

8.3. Paraproducts as bilinear Calderón–Zygmund operators. This subsection is
concerned with the weighted boundedness of the following paraproducts. The approach
taken here is that these paraproducts can be viewed as bilinear Calderón–Zygmund oper-
ators; see Bényi, Maldonado and Nahmod and Torres [5] for the special case X = Rn.

Lemma 8.7. There exists a positive constant N∞, depending only on C1, C5, C6, γ and β,
such that, for all Q ∈ Q, bump functions ψQ adapted to Q and h ∈ L∞(X ),

|〈ψQ, h〉| ≤ N∞µ(Q)1/2‖h‖L∞(X ).
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Proof. The size condition of ψQ implies that

|〈ψQ, h〉| ≤ ‖h‖L∞(X )µ(Q)1/2

∫
X

1

µ(Q) + V (x, cQ)

[
1

1 + 2kd(x, cQ)

]γ
dµ(x).

Without loss of generality, we may as well assume that Q ∈ Ik for some constant k ∈ Z,
that is, B(cQ, C62−k) ⊂ Q ⊂ B(cQ, C52−k). Therefore, by splitting the integral over X
into the annulus d(x, cQ) < 2−k and 2−k+ν ≤ d(x, cQ) < 2−k+ν+1 for ν ≥ 1, we apply the
doubling condition of µ to conclude that∫

X

1

µ(Q) + V (x, cQ)

[
1

1 + 2kd(x, cQ)

]γ
dµ(x) <∞.

Lemma 8.8. Given a family {ψQ} of smooth molecules, there exists a positive constant N2,
depending only on C1, C5, C6, γ and β, such that, for all f ∈ L2(X ),∑

Q∈Q
|〈ψQ, f〉|2 ≤ N2‖f‖2L2(X ). (8.10)

Proof. Without loss of generality, we may assume that
∑
Q∈Q |〈ψQ, f〉|2 is finite; otherwise

we only need to prove that (8.10) holds for a finite number N of terms of the summation
and then letN →∞. Given f ∈ L2(X ) with ‖f‖L2(X ) = 1, by Hölder’s inequality, we have∑

Q∈Q
|〈ψQ, f〉|2 =

∑
Q∈Q
〈ψQ, f〉〈f, ψQ〉 ≤

∥∥∥ ∑
Q∈Q
〈f, ψQ〉ψQ

∥∥∥
L2(X )

.

Hence [ ∑
Q∈Q
|〈ψQ, f〉|2

]2
=

∑
Q,R∈Q

〈ψQ, f〉〈ψQ, ψR〉〈f, ψR〉.

Suppose that Q = Qkα for some k ∈ Z and α ∈ Ik, and R = Rk
′

α′ for some k′ ∈ Z and
α′ ∈ Ik′ . Then the decay, the regularity, and the cancelation conditions for the molecules
imply that we can apply (8.5) and (8.4) to deduce that

|〈ψQ, ψR〉| . µ(Qkα)1/2µ(Rk
′

α′)
1/22−|k−k

′|εK(2−(k∧j); γ, cQkα , cRjα′
)

∼ µ(Qkα)1/2µ(Rk
′

α′)
1/22−|k−k

′|ε inf
y∈Qkα, z∈Rk

′
α′

K(2−(k∧j); γ, y, z),

where ε ∈ (0, β ∧ γ). Thus,[ ∑
Q∈Q
|〈ψQ, f〉|2

]2
.
∑
k∈Z

∑
α∈Ik

∑
k′∈Z

∑
α′∈Ik′

2−|k−k
′|εµ(Qkα)µ(Rk

′

α′)|〈µ(Qkα)−1/2ψQkα , f〉|

× |〈f, µ(Rk
′

α′)
−1/2ψRk′

α′
〉| inf
y∈Qkα, z∈Rk

′
α′

K(2−(k∧j); γ, y, z).

By symmetry and estimating the factors |〈µ(Qkα)−1/2ψQkα , f〉| and |〈f, µ(Rk
′

α′)
−1/2ψRk′

α′
〉|

by the bigger one, we continue the above estimation with[ ∑
Q∈Q
|〈ψQ, f〉|2

]2
.
∑
k∈Z

∑
α∈Ik

∑
k′∈Z

∑
α′∈Ik′

2−|k−k
′|ε|〈ψQkα , f〉|

2µ(Rk
′

α′) inf
y∈Qkα, z∈Rk

′
α′

K(2−(k∧j); γ, y, z)
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.
∑
k∈Z

∑
α∈Ik

|〈ψQkα , f〉|
2
∑
k′∈Z

2−|k−k
′|ε inf
y∈Qkα

∫
X
K(2−(k∧j); γ, y, z) dµ(z)

.
∑
k∈Z

∑
α∈Ik

|〈ψQkα , f〉|
2

∼
∑
Q∈Q
|〈ψQ, f〉|2.

Dividing both sides of this inequality by
∑
Q∈Q |〈ψQ, f〉|2 yields (8.10).

Lemma 8.9. Let Π be the bilinear paraproduct defined as in (8.3) with {ψ(1)
Q }Q∈Q and

{ψ(2)
Q }Q∈Q smooth molecules and {ψ(0)

Q }Q∈Q bump functions. Then Π is bounded from
L2(X )× L2(X ) to L1(X ) with norm at most a positive constant multiple of N2N∞.

Proof. By duality and Lemmas 8.8 and 8.7, given h ∈ L∞(X ), we have

|〈Π(f, g), h〉| =
∣∣∣ ∑
Q∈Q

µ(Q)−1/2〈ψ(1)
Q , f〉〈ψ(2)

Q , g〉〈ψ(0)
Q , h〉

∣∣∣
≤ N∞‖h‖L∞(X )

∑
Q∈Q
|〈ψ(1)

Q , f〉| |〈ψ(2)
Q , g〉|

≤ N∞‖h‖L∞(X )

[ ∑
Q∈Q
|〈ψ(1)

Q , f〉|2
]1/2[ ∑

Q∈Q
|〈ψ(2)

Q , g〉|2
]1/2

≤ N2N∞‖f‖L2(X )‖g‖L2(X )‖h‖L∞(X ).

Lemma 8.10. Let Π be the bilinear paraproduct defined as in (8.3) with {ψ(0)
Q }Q∈Q,

{ψ(1)
Q }Q∈Q and {ψ(2)

Q }Q∈Q being bump functions satisfying (8.1) and (8.2) with β > 0

and γ > n. Then, for any given β′ ∈ (0, β ∧ (γ − n)), Π has a Calderón–Zygmund kernel
KΠ ∈ Ker(2, CK , β

′), where CK is a positive constant depending only on C1, C5, C6, γ, β,
and β′.

Proof. Notice that the kernel of Π is given by

KΠ(x0, x1, x2) =
∑
Q∈Q

µ(Q)−1/2ψ
(0)
Q (x0)ψ

(1)
Q (x1)ψ

(2)
Q (x2).

By Lemma 2.5, we may as well assume that Q = Qkα for some k ∈ Z and α ∈ Ik. Without
loss of generality we may also assume that

d(x0, x1) ≥ d(x1, x2) ≥ d(x0, x2).

For any γ′ ∈ (0, γ − n) and γ′′ ∈ (0, γ − n − γ′), by Lemmas 8.4 and 8.6, there exists a
positive constant C, independent of {xj}2j=0, such that, for all x0, x1, x2 ∈ X ,

|KΠ(x0, x1, x2)| ≤
∑
Q∈Q

µ(Q)−1/2|ψ(0)
Q (x0)ψ

(1)
Q (x1)ψ

(2)
Q (x2)|

.
∑
k∈Z

∑
α∈Ik

µ(Qkα)
2∏
j=0

K(2−k; γ, cQkα , xj)
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.
∑
k∈Z

∑
α∈Ik

µ(Qkα) inf
x∈Qkα

2∏
j=0

K(2−k; γ, x, xj)

.
∑
k∈Z

∫
X

2∏
j=0

K(2−k; γ, x, xj) dµ(x)

.
∑
k∈Z
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

.
1

[V (x0, x1) + V (x0, x2) + V (x1, x2)]2
.

Now we prove the regularity of KΠ. Fix β′ ∈ (0, β ∧ (γ − n)). Given any x1, x
′
1 ∈ X with

d(x1, x
′
1) ≤ max

0≤i,j≤2
{d(xi, xj)/2} = d(x0, x1)/2,

we write

|KΠ(x0, x1, x2)−KΠ(x0, x
′
1, x2)|

=
∣∣∣∑
k∈Z

∑
α∈Ik

µ(Qkα)−1/2[ψ
(1)

Qkα
(x1)− ψ(1)

Qkα
(x′1)]ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)

∣∣∣. (8.11)

For every k ∈ Z, set

Ik,1 := {α ∈ Ik : d(x1, x
′
1) ≤ (2−k + d(x1, cQkα))/2} and Ik,2 := Ik \ Ik,1.

Observe that, when α ∈ Ik,1, we have d(x1, x
′
1) ≤ (2−k + d(x1, cQkα))/2 and hence,

by (8.2),

µ(Qkα)−1/2|ψ(1)

Qkα
(x1)− ψ(1)

Qkα
(x′1)| |ψ(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

. µ(Qkα)

[
d(x1, x

′
1)

2−k + d(x1, cQkα)

]β′ 2∏
j=0

K(2−k; γ, cQkα , xj)

. µ(Qkα)

[
d(x1, x

′
1)

d(x1, x0)

]β′
[2kd(x0, x1)]β

′
2∏
j=0

K(2−k; γ, cQkα , xj).

From this, we apply Lemmas 8.4 and 8.6 to see that, for γ′ ∈ (n+ β′, γ) and γ′′ ∈ (0, γ),∑
k∈Z

∑
α∈Ik,1

µ(Qkα)−1/2|[ψ(1)

Qkα
(x1)− ψ(1)

Qkα
(x′1)]ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

.
∑
k∈Z

∑
α∈Ik,1

µ(Qkα)

[
d(x1, x

′
1)

d(x1, x0)

]β′
[2kd(x0, x1)]β

′
2∏
j=0

K(2−k; γ, cQkα , xj)

.

[
d(x1, x

′
1)

d(x1, x0)

]β′∑
k∈Z

[2kd(x0, x1)]β
′
∫
X

2∏
j=0

K(2−k; γ, x, xj) dµ(x)

.

[
d(x1, x

′
1)

d(x1, x0)

]β′∑
k∈Z

[2kd(x0, x1)]β
′
K(2−k; γ′, x0, x1)K(2−k; γ′′, x2, x1)

.

[
d(x1, x

′
1)

d(x1, x0)

]β′
1

[V (x0, x1) + V (x0, x2) + V (x1, x2)]2
. (8.12)
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When α ∈ Ik,2, we have 1 <
2d(x1,x

′
1)

2−k+d(x1,cQkα
)
, and hence

µ(Qkα)−1/2|ψ(1)

Qkα
(x1)ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

. µ(Qkα)

[
d(x1, x

′
1)

2−k + d(x1, cQkα)

]β′ 2∏
j=0

K(2−k; γ, cQkα , xj)

. µ(Qkα)

[
d(x1, x

′
1)

d(x1, x0)

]β′
[2kd(x0, x1)]β

′
2∏
j=0

K(2−k; γ, cQkα , xj),

so an argument similar to that used in (8.12) gives∑
k∈Z

∑
α∈Ik,2

µ(Qkα)−1/2|ψ(1)

Qkα
(x1)ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

.

[
d(x1, x

′
1)

d(x1, x0)

]β′
1

[V (x0, x1) + V (x0, x2) + V (x1, x2)]2
. (8.13)

The assumption d(x1, x
′
1) ≤ d(x0, x1)/2 implies that d(x0, x1) ≤ 2d(x0, x

′
1) and

2d(x′1, x0) ≥ d(x1, x2) ≥ d(x0, x2).

Also, when α ∈ Ik,2, we have d(x1, x
′
1) > [2−k + d(x1, cQkα)]/3 and hence

µ(Qkα)−1/2|ψ(1)

Qkα
(x′1)ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

. µ(Qkα)

[
d(x1, x

′
1)

2−k + d(x′1, cQkα)

]β′
K(2−k; γ, cQkα , x

′
1)
∏
j=0,2

K(2−k; γ, cQkα , xj)

. µ(Qkα)

[
d(x1, x

′
1)

d(x1, x0)

]β′
[2kd(x0, x1)]β

′
K(2−k; γ, cQkα , x

′
1)
∏
j=0,2

K(2−k; γ, cQkα , xj),

so an argument similar to that used in (8.12) shows that∑
k∈Z

∑
α∈Ik,2

µ(Qkα)−1/2|ψ(1)

Qkα
(x1)ψ

(2)

Qkα
(x2)ψ

(0)

Qkα
(x0)|

.

[
d(x1, x

′
1)

d(x1, x0)

]β′
1

[V (x0, x′1) + V (x0, x2) + V (x′1, x2)]2

.

[
d(x1, x

′
1)

d(x1, x0)

]β′
1

[V (x0, x1) + V (x0, x2) + V (x1, x2)]2
. (8.14)

Inserting the estimates (8.12)–(8.14) into (8.11), we see thatKΠ satisfies the regularity
condition in the x1-variable. Similar proofs show the regularity of KΠ in the x0- and
x2-variables. Thus, KΠ satisfies (3.1) and (3.2) in the definition of a Calderón–Zygmund
kernel, which completes the proof of Lemma 8.10.

Consequently, applying Lemmas 8.9 and 8.10 and the theory of weighted multilinear
singular integrals in Section 4 (see Corollaries 4.14 and 4.15) as well as Theorem 5.6, we
have the following conclusions, the details being omitted.
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Theorem 8.11. Let Π be the bilinear paraproduct defined as in (8.3), with {ψ(1)
Q }Q∈Q and

{ψ(2)
Q }Q∈Q being smooth molecules, and {ψ(0)

Q }Q∈Q being bump functions, satisfying (8.1)
and (8.2) with β > 0 and γ > n. Let 1/2 ≤ p < ∞ and 1 ≤ p1, p2 < ∞ be such that
1/p1 + 1/p2 = 1/p. Let ν ∈ A∞, {wj}2j=1 be weights and ~w := (w1, w2). Then:

(i) Π is a bilinear Calderón–Zygmund singular integral operator;
(ii) if pj ≥ 1 for all j ∈ {1, 2} and (ν; ~w) satisfies (4.1), then Π is bounded from Lp1(w1)×

Lp2(w2) to Lp,∞(ν);
(iii) if pj > 1 for all j ∈ {1, 2} and (ν; ~w) satisfies the bump weight condition (4.8) for

some r > 1, then Π is bounded from Lp1(w1)× Lp2(w2) to Lp(ν).

Theorem 8.12. Let Π be as in Theorem 8.11. For any 1/2 ≤ p <∞ and 1 ≤ p1, p2 <∞
such that 1/p1 + 1/p2 = 1/p, and ~w := (w1, w2) ∈ A(p,q) with ν~w := w

p/p1
1 w

p/p2
2 , the

following hold:

(i) Π is bounded from Lp1(w1)× Lp2(w2) to Lp(ν~w) if p1, p2 ∈ (1,∞);
(ii) Π is bounded from Lp1(w1)× Lp2(w2) to Lp,∞(ν~w) if p1 = 1 or p2 = 1.

8.4. Boundedness of paraproducts on Triebel–Lizorkin andBesov spaces. Recall
that paraproducts considered in Subsection 8.3 can be viewed as bilinear Calderón–
Zygmund operators. Consequently, Theorems 6.14 and 6.15 imply the boundedness of
such paraproducts on products of Triebel–Lizorkin or Besov spaces. We have the following
conclusion.

Theorem 8.13. Let Π be the bilinear paraproduct defined by

Π(f, g)(x) :=
∑
Q∈Q

µ(Q)−1/2〈ψ(1)
Q , f〉〈ψ(2)

Q , g〉ψ(0)
Q (x), ∀x ∈ X ,

where, for i ∈ {0, 1, 2}, {ψ(i)
Q }Q∈Q are (β, γ)-molecules with β > 0 and γ > n. Let κ be the

constant appearing in the reverse doubling condition (2.2) and let ε satisfy

0 < ε ≤ κ and 0 < ε < min

{
1,

1

2
[β ∧ (γ − n)]

}
.

Then:

(a) For every j ∈ {0, 1, 2}, let |sj | < ε, p(sj , ε) < pj < ∞ and p(sj , ε) < qj < ∞ be such
that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
,

and let Ḟ sjpj ,qj (X ) be the Triebel–Lizorkin space as defined in Definition 6.9(ii). Then Π

can be extended to a bounded bilinear operator from Ḟ s1p1,q1(X )× Ḟ s2p2,q2(X ) to Ḟ s0p0,q0(X ).
(b) For every j ∈ {0, 1, 2}, let |sj | < ε, p(sj , ε) < pj <∞ and 0 < qj <∞ be such that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
,

and let Ḃsjpj ,qj (X ) be the Besov space as defined in Definition 6.9(i). Then Π can be
extended to a bounded bilinear operator from Ḃs1p1,q1(X )× Ḃs2p2,q2(X ) to Ḃs0p0,q0(X ).
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Proof. From Lemma 8.10, it follows that the kernel of Π is of the class Ker(2, C, β′) for
some positive constant C and β′ ∈ (0, β ∧ (γ − n)) as in Definition 3.1. Also, by Lemma
8.9, Π is bounded from L2(X ) × L2(X ) to L1(X ), so Π ∈ BWBP(η) for all η ∈ (0, ε].
Since every ψ(i)

Q is a molecule, we have
∫
X ψ

(i)
Q (x) dµ(x) = 0 and hence

Π(1, g) = Π(g, 1) = Π∗,1(1, g) = 0, ∀g ∈ (Cηb (X ))′.

Applying Theorems 6.14 and 6.15 yields (a) and (b), respectively.



9. Bilinear multiplier operators on Triebel–Lizorkin
and Besov spaces

t is well known that the boundedness of pseudodifferential operators associated with some
classes of symbols is a typical application of the Calderón–Zygmund theory. The main goal
of this section is to apply the previous bilinear T1-theorems to obtain the boundedness of
bilinear multiplier operators on products of Triebel–Lizorkin and Besov spaces.

9.1. Bilinear multiplier operators. Consider the bilinear multiplier operators of the
form

Tσ(f, g)(x) :=

∫
Rn

∫
Rn
σ(ξ, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξ dη, ∀x ∈ Rn, (9.1)

where f̂ denotes the Fourier transform of the function f , that is,

f̂(x) :=

∫
Rn
f(ξ)e−iξ·x dξ, ∀x ∈ Rn,

and the symbol σ is an infinitely differentiable function on (Rn × Rn) \ {(0, 0)} with the
property that, for any multiindices β ∈ Z2

+ and γ ∈ Z2
+, there exists a positive constant

Cγ,β such that, for all points (ξ, η) ∈ (Rn × Rn) \ {(0, 0)},

|∂γξ ∂
β
η σ(ξ, η)| ≤ Cγ,β(|ξ|+ |η|)−|γ|−|β|. (9.2)

These bilinear multipliers are also known as Coifman–Meyer multipliers and render the
bilinear version of the (linear) Mikhlin multipliers. The basic mapping properties of these
operators in Lebesgue spaces have been obtained in [19, 20, 21].

Using themolecular decompositions of homogeneous Besov spaces, Grafakos and Torres
in [52, Theorem 3] also proved that Tσ is bounded from Ḃα1

p,p(Rn)×Ḃα2
q,q(Rn) to Ḃα1+α2

r,r (Rn)

for all α1, α2 > 0, 1 < p, q, r <∞ and 1/p+ 1/q = 1/r, provided that σ satisfies (9.2) and
the following cancelation conditions: for all ξ 6= 0,

∂βξ σ(0, ξ) = ∂βξ σ(ξ, 0) = ∂βξ σ(ξ,−ξ) = 0 (9.3)

for all multiindices β up to a suitable order and all ξ ∈ Rn \ {0}. Under the assumption
that σ satisfies (9.2) and (9.3) for all |β| ≤ 1, Bényi [3, Proposition 3] proved that

Tσ : Ḟ 0
p1,q1(Rn)× Ḟ 0

p2,q2(Rn)→ Ḟ 0
p0,q0(Rn)

when 1 < p1, p2, p0 <∞, 1 < q1, q2, q0 ≤ ∞, 1/p0 = 1/p1 +1/p2 and 1/q0 = 1/q1 +1/q2.
For 1 ≤ p1, p2, p0 ≤ ∞, 1/p0 = 1/p1 + 1/p2, 1 ≤ q ≤ ∞ and s ∈ R, the boundedness of

Tσ : Ḃsp1,q(R
n)× Lp2(Rn)→ Ḃsp0,q(R

n)

was studied by Maldonado and Naibo [78, Theorem 3.1].

[112]
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The operator Tσ as in (9.1) is related to bilinear operators in the following way: for all
compactly supported Schwartz functions f, g and for all x /∈ supp f ∩ supp g,

Tσ(f, g)(x) =

∫
Rn

∫
Rn
Kσ(x, y1, y2)f(y1)g(y2) dy1 dy2,

where the kernel Kσ is defined by

Kσ(x, y1, y2) :=

∫
Rn

∫
Rn
σ(ξ, η)eiξ·(x−y1)eiη·(x−y2) dξ dη, ∀x, y1, y2 ∈ Rn.

By using K(x, y1, y2) = K∗,1(y1, x, y2) = K∗,2(y2, y1, x) and the Fourier transform, for all
x ∈ Rn, we obtain

T ∗,1σ (f, g)(x) =

∫
Rn

∫
Rn
σ(−ξ − η, η)f̂(ξ)ĝ(η)eix·(ξ+η) dξ dη,

T ∗,2σ (f, g)(x) =

∫
Rn

∫
Rn
σ(ξ, −ξ − η)f̂(ξ)ĝ(η)eix·(ξ+η) dξ dη.

In what follows, for convenience, we denote by T ∗,0σ the operator Tσ.

9.2. Off-diagonal estimates for bilinear multiplier operators. Now we fix a real-
valued radial function φ ∈ S(Rn) such that

supp φ̂ ⊂ {ξ ∈ Rn : π/4 ≤ |ξ| ≤ π},

φ̂ is bounded away from zero on the annulus {ξ ∈ Rn : π/2 ≤ |ξ| ≤ 3π/4} and, for all
ξ 6= 0, ∑

ν∈Z
|φ̂(2νξ)|2 = 1. (9.4)

For ν ∈ Z and k ∈ Zn, let Qν,k be the dyadic cube

Qν,k := {(x1, . . . , xn) ∈ Rn : ki ≤ 2νxi < ki + 1 for all i ∈ {1, . . . , n}}.

The lower-left corner of Qν,k is denoted by 2−νk and we set

φν,k(x) := 2νn/2φ(2νx− k), ∀x ∈ Rn.

Obviously, φ̂ν,k(x) = 2−νn/22−i2
−νk·xφ̂(2−νx) for all x ∈ Rn and

supp φ̂ν,k ⊂ {ξ ∈ Rn : 2ν−2π ≤ |ξ| ≤ 2νπ}.

Also, for any given multiindex γ and N ∈ N, there exists a positive constant Cγ,N,n,
depending only on γ,N, n, such that, for all x ∈ Rn,

|∂γφν,k(x)| ≤ Cγ,N,n
2νn/22|γ|ν

(1 + 2ν |x− 2−νk|)N
.

The condition (9.4) implies the following Calderón reproducing formula: if f ∈ S(Rn) (or
(S(Rn))′), then f can be written as

f =
∑
ν∈Z

∑
k∈Zn
〈f, φν,k〉φν,k, (9.5)

where the series converges in S(Rn) (or (S(Rn))′); see Frazier and Jawerth [33].
Regarding the wavelets {φν,k}ν∈Z, k∈Zn , we have the following off-diagonal estimates,

which are indeed parallel to those of Theorem 6.8.
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Lemma 9.1. Let Tσ be as in (9.1) and let the symbol σ satisfy (9.2) and the cancelation
condition: for all ξ 6= 0,

σ(ξ, 0) = σ(0, ξ) = σ(ξ,−ξ) = 0. (9.6)

Then, for all integersN > n, there exists a positive constant CN,n such that, for all x ∈ Rn,
ν, µ ∈ Z and k, ` ∈ Zn and all i ∈ {0, 1, 2},

|T ∗,iσ (φν,k, φµ,`)(x)| ≤ CN,n
2−|ν−µ| 2νn/2 2µn/2

(1 + 2ν |x− 2−νk|)N (1 + 2µ|x− 2−µ`|)N
. (9.7)

Moreover, if ν ≥ λ ≥ µ, then, for all i ∈ {0, 1, 2},

|〈φλ,m, T ∗,iσ (φν,k, φµ,`)〉|

≤ CN,n
2−|ν−µ| 2−νn/2 2λn/22µn/2

(1 + 2λ|2−λm− 2−νk|)N (1 + 2µ|2−λm− 2−µ`|)N
. (9.8)

Proof. Observe that (9.8) follows easily from (9.7) and [51, Proposition 3]. So it suffices
to prove (9.7). Without loss of generality, we may as well assume that ν ≥ µ.

First we prove that (9.7) holds when i = 0. By a simple change of variables and the
cancelation condition σ(ξ, 0) = 0, we see that, for all x ∈ Rn,

Tσ(φν,k, φµ,`)(x)

= 2νn/22µn/2
∫
Rn

∫
Rn
ei((2

νx−k)ξ+(2µx−`)η)σ(2νξ, 2µη)φ̂(ξ)φ̂(η) dξ dη

= 2νn/22µn/2
∫
Rn

∫
Rn
ei((2

νx−k)ξ+(2µx−`)η)[σ(2νξ, 2µη)− σ(2νξ, 0)]φ̂(ξ)φ̂(η) dξ dη,

where the integration indeed takes place for π/4 ≤ |ξ| ≤ π and π/4 ≤ |η| ≤ π. If 4ξ
denotes the Laplace operator in ξ, then

(1−4ξ)Nei((2
νx−k)ξ+(2µx−`)η) = (1 + |2νx− k|)Nei((2

νx−k)ξ+(2µx−`)η).

Therefore, integration by parts gives us

Tσ(φν,k, φµ,`)(x) =
2νn/22µn/2

(1 + |2νx− k|)N

∫
Rn

∫
Rn
ei((2

νx−k)ξ+(2µx−`)η)

× (1−4ξ)N ([σ(2νξ, 2µη)− σ(2νξ, 0)]φ̂(ξ))φ̂(η) dξ dη. (9.9)

Notice that

|(1−4ξ)N ([σ(2νξ, 2µη)− σ(2νξ, 0)]φ̂(ξ))|

.
∑

α1, α2∈Zn+
|α1|+|α2|≤2N

|∂α1

ξ [σ(2νξ, 2µη)− σ(2νξ, 0)]| |∂α2

ξ φ̂(ξ)|.

By the mean value theorem and (9.2), we conclude that, for some θ ∈ (0, 1),

|∂α1

ξ [σ(2νξ, 2µη)− σ(2νξ, 0)]| . 2ν|α1||2µη|
(|2νξ|+ |2µθη|)|α1|+1

.
2ν|α1||2µη|
|2νξ||α1|+1

. 2µ−ν ,

where the second inequality is due to the facts ν ≥ µ, |ξ| ∼ 1 and |η| ∼ 1. Since φ ∈ S(Rn),
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it follows that |∂α2 φ̂(ξ)| . 1. Summarizing these estimates gives that

|(1−4ξ)N ([σ(2νξ, 2µη)− σ(2νξ, 0)]φ̂(ξ))| . 2−|ν−µ|.

Inserting this estimate into (9.9) further implies that, for all x ∈ Rn,

|Tσ(φν,k, φµ,`)(x)| . 2νn/22µn/22−|ν−µ|

(1 + |2νx− k|)N
. (9.10)

The same computations using integration by parts in the variable η give us that, for all
x ∈ Rn,

|Tσ(φν,k, φµ,`)(x)| . 2νn/22µn/22−|ν−µ|

(1 + |2µx− `|)N
. (9.11)

Considering the geometric mean between (9.10) and (9.11) shows that (9.7) holds for i = 0.
To prove that (9.7) holds for i = 1 or i = 2, we repeat the above computations but

using the expression of T ∗,iσ and the cancelation condition σ(ξ,−ξ) = 0, the details being
omitted.

Remark 9.2. (i) The decay coefficient 2−|ν−µ| in (9.7) and (9.8) comes from the cance-
lation condition (9.6). Indeed, if instead of (9.6) we assume that ∂γσ(ξ, 0) = ∂γσ(0, ξ) =

∂γσ(−ξ, ξ) = 0 for multiindices γ such that |γ| ≤ L, then both (9.7) and (9.8) hold with
the decay 2−|ν−µ| there replaced by 2−|ν−µ|(L+1).

(ii) From the conclusion that (9.8) holds for T ∗,iσ with i ∈ {0, 1, 2}, it follows easily that
Tσ satisfies all off-diagonal estimates (i)–(vi) listed in Theorem 6.8, but with the indices
γ, γ′ and σ there being chosen as N,N and 1, respectively.

9.3. Boundedness of bilinear multiplier operators. In analogy with Lemma 6.12,
we have the following estimate from [33, p. 147, Lemma A.2 and Remark A.3].

Lemma 9.3. Let ν ∈ Z and ν′ ∈ Z. Then, for any given r ∈ (0, 1] and N > n/r, there
exists a positive constant C, depending on r, n andN , such that, for all ν, ν′ ∈ Z, sequences
{aν,k}k∈Zn ⊂ C and x ∈ Rn,

∑
k∈Zn

2−[ν−(ν∧ν′)]n

(1 + 2(ν∧ν′)|x− 2−νk|)N
|aν,k|

≤ C2[(ν∧ν′)−ν]n(1−1/r)
{
M
( ∑
k∈Zn

|aν,k|rχQν,k
)

(x)
}1/r

,

whereM denotes the Hardy–Littlewood maximal function on Rn.

Applying Lemmas 9.1 and 9.3, Remark 9.2(ii), and the Calderón reproducing formula
(9.5), we obtain the corresponding T1-theorem for the bilinear multiplier operator Tσ. The
proof is essentially contained in the proof of Theorems 6.14 and 6.15, the details being
omitted here.

Theorem 9.4. Let Tσ be as in (9.1) and the symbol σ satisfy (9.2) and the cancelation
condition, for all ξ 6= 0,

σ(ξ, 0) = σ(0, ξ) = σ(−ξ, ξ) = 0.
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(a) For every j ∈ {0, 1, 2}, let |sj | < 1, 0 < pj <∞ and 0 < qj <∞ be such that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
.

Then Tσ can be extended to a bounded bilinear operator from the product space
Ḟ s1p1,q1(Rn)× Ḟ s2p2,q2(Rn) to Ḟ s0p0,q0(Rn).

(b) For every j ∈ {0, 1, 2}, let |sj | < 1, 0 < pj <∞ and 0 < qj <∞ be such that

s0 = s1 + s2,
1

p0
=

1

p1
+

1

p2
and

1

q0
=

1

q1
+

1

q2
.

Then Tσ can be extended to a bounded bilinear operator from the product space
Ḃs1p1,q1(Rn)× Ḃs2p2,q2(Rn) to Ḃs0p0,q0(Rn).

Remark 9.5. Theorem 9.4 extends the results in [51, 52], where the diagonal cases p1 = q1,
p2 = q2 and p0 = q0 were considered.

Remark 9.6. (i) According to Remark 9.2(i), if in Theorem 9.4 we further assume that,
for any multiindices γ,

∂γσ(ξ, 0) = ∂γσ(0, ξ) = ∂γσ(−ξ, ξ) = 0,

then, for all integers N > n and L ∈ N, there exists a positive constant CN,n,L such that,
for all m, k, ` ∈ Zn, λ, ν, µ ∈ Z satisfying ν ≤ λ ≤ µ, and i ∈ {0, 1, 2},

|〈φλ,m, T ∗,iσ (φν,k, φµ,`)〉|

≤ CN,n,L
2−|ν−µ|L2−νn/22λn/22µn/2

(1 + 2λ|2−λm− 2−νk|)N (1 + 2µ|2−λm− 2−µ`|)N
. (9.12)

Using (9.12), Lemma 9.3 and following the proofs of Theorems 6.14 and 6.15, we see that
(a) and (b) of Theorem 9.4 hold for all s0, s1, s2 ∈ R satisfying s0 = s1 + s2.

(ii) In principle, if the symbol σ satisfies (9.12), then the operator Tσ satisfies (a)
and (b) of Theorem 9.4 for all s0, s1, s2 ∈ R satisfying s0 = s1 + s2.
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