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Abstract

The multilinear Calderén—-Zygmund theory is developed in the setting of RD-spaces which are
spaces of homogeneous type equipped with measures satisfying a reverse doubling condition.
The multiple-weight multilinear Calderén—Zygmund theory in this context is also developed in
this work. The bilinear T'1-theorems for Besov and Triebel-Lizorkin spaces in the full range of
exponents are among the main results obtained. Multilinear vector-valued T'1 type theorems
on Lebesgue spaces, Besov spaces, and Triebel-Lizorkin spaces are also proved. Applications
include the boundedness of paraproducts and bilinear multiplier operators on products of Besov
and Triebel-Lizorkin spaces.
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1. Introduction

In this work we develop the theory of multilinear analysis related to the Calderén—Zygmund
program within the framework of metric spaces. The impetus created by the recent devel-
opments in the theory of multilinear operators has naturally led us to consider its extension
to the setting of metric spaces. Since the techniques involved in the proofs transcend the al-
gebraic and differential structures of the underlying spaces, it is appropriate to undertake
this study in a unified way. This setting is quite general and it includes graphs, frac-
tals, Riemannian manifolds, Carnot—Carathéodory groups, anisotropic structures in R",
Ahlfors spaces, etc. As a consequence of this work, previously disconnected topics con-
cerning multilinear operators are integrated and streamlined. These topics include bilinear
Calderon—Zygmund operators, vector-valued bilinear operators (e.g., square-function-like
operators), paraproducts, and Coifman—Meyer multipliers on Lebesgue spaces, Besov
spaces, and Triebel-Lizorkin function spaces.

One of the first examples of multilinear operators in Euclidean harmonic analysis are
the commutators of Calder6n which appear in a series representation of the Cauchy integral
along Lipschitz curves. The sharpest possible (endpoint) results for the m-commutators
of Calderdn were obtained by Calderén himself [I5] when m = 1, Coifman and Meyer [19]
when m € {1, 2} and Duong, Grafakos, and Yan [29] for m > 3. In particular, the article of
Coifman and Meyer [I9] not only established delicate estimates for the commutators but
also set a solid foundation for a comprehensive study of general multilinear operators; this
work, together with [20] 21], has been both fundamental and pioneering in this subject
and certainly inspiring in our own work. Another important example of a bilinear operator
is the paraproduct of Bony [12], which has been studied extensively and has experienced
remarkable development in recent years, in view of its important connections with partial
differential equations. Section [§] below is devoted to paraproducts and its introduction
contains recent advances in the theory.

Among the main motivations for the multilinear analysis in this work, we mention the
m-linear versions of the fractional Leibniz-type rules, that is, inequalities of the type

|0 (TL5)||,, o, < €SP U as ey [T el ey, (111)
j=1 &) 3 =
J

where C' is a positive constant independent of { f; =1, the indices obey the Hélder scaling
1/p=1/p1+---+1/py, < 1with each p; in [1, 00). Indeed, inequalities like are based
on mapping properties of bilinear Coifman—Meyer multipliers, which in turn follow from
paraproduct decompositions and mapping properties for such paraproducts. In [5], Bényi,
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6 1. Introduction

Maldonado, Nahmod, and Torres proved that paraproducts can be realized as bilinear
singular integrals of Calderéon-Zygmund type. Consequently, inequalities are Now
best understood via the use of the powerful multilinear Calderén—Zygmund theory that
was systematically developed by Grafakos and Torres [53] (see, for example, Grafakos [42]
for a survey of these techniques).

In addition, it turns out that there is a rich weighted-norm theory for multilinear
operators. In particular, multilinear Calderén—Zygmund operators obey vector-valued
and weighted estimates, with respect to certain classes of weights. Very natural classes of
multilinear weights surfaced in the work of Lerner, Ombrosi, Pérez, Torres, and Trujillo—
Gonzalez [72]. These weights are intrinsically multilinear and they have brought into
fruition a rich weighted theory for multilinear operators analogous to that of the classical A,
weighted theory for linear operators in Euclidean spaces. The metric-space implementation
of this class of weights is carried out in the present work.

Besov spaces were originally introduced by Besov [10, [I1] as the trace spaces of Sobolev
spaces, and were later generalized by Taibleson [96, @7 [98]. These spaces also arise as the
real interpolation intermediate spaces of Sobolev spaces. Around 1970, Triebel [100] and
Lizorkin [73] [74] started to investigate the scale F}; ,
Lizorkin spaces. The scales of Besov and Triebel-Lizorkin spaces include fundamental func-
tion spaces such as Lebesgue spaces, Sobolev spaces, Hardy spaces, and the space BMO of
functions with bounded mean oscillation. We refer to Frazier and Jawerth [33] for a survey
of the theory of Besov and Triebel-Lizorkin spaces and to Triebel’s books [10T], 102, T03]
for a more comprehensive study. Over the last few decades, Besov and Triebel-Lizorkin
spaces have consistently appeared in prominent parts of the literature and their usefulness
has been exposed in different areas of mathematics and physics, such as partial differen-
tial equations, potential theory, approximation theory, and fluid dynamics. The complete
framework of the classical Besov and Triebel-Lizorkin theory was extended to the context
of RD-spaces by Han, Miiller and Yang [60] [84]. In this work, we establish the bilinear 7'1-
theorems for Besov and Triebel-Lizorkin spaces, in the full range of indices. Moreover, we
obtain multilinear vector-valued T'1 type theorems on Lebesgue spaces, Besov spaces, and
Triebel-Lizorkin spaces. As an application, we deduce the boundedness of paraproducts
and bilinear multiplier operators on products of Besov and Triebel-Lizorkin spaces.

nowadays known as the Triebel-

Some of our results, for example those contained in Sections[6} [7} [0]and Subsection [8:4]
are new even in the Euclidean case. In particular, in Section [f] we establish T'1 theorems
for bilinear Calderéon—Zygmund operators on Triebel-Lizorkin spaces F; q(X ) and Besov
spaces B;q(z'\,’ ) for the full admissible range of s,p,q, successfully answering an open
problem posed by Grafakos and Torres [55], p. 85]. Appropriate contextual descriptions as
well as references are included at the beginning of each section.

As a whole, our results complement, from the Littlewood—Paley and real-analysis side,
the recent advances in analysis on metric spaces related to first-order calculus (e.g. Sobolev
functions, see Hajtasz and Koskela [56], Koskela and Saksman [69], Shanmugalingam [93]
and the references therein), and the (weighted and unweighted) multilinear theory of
potential operators in Grafakos and Kalton [43], Kenig and Stein [68], Moen [83], and the
references therein.



1. Introduction 7

NoOTATION. Let N:={1,2,...}, Z, := NU{0} and Ry := [0, c0).

For any p € [1, 0], we denote by p’ the conjugate index, that is, 1/p + 1/p’ = 1; if
p =1, then p’ = oo and, if p = oo, then p’ = 1.

For any a, b € R, let a A b := min{a, b} and a V b := max{a,b}.

For any ball B C X and k > 0, denote by kB the ball contained in X with the same
center as B but radius dilated by the factor .

Let Cy(X) be the set of all continuous functions on X with bounded support (that is,
contained in a ball of (X, d)).

Let Lg°(X) be the set of all bounded functions on X with bounded support.

We use Li _(X) to represent the collection of all locally integrable functions on (X, d, y).

loc

Moreover, for ¢ € (0,00),

L, (X) == {f : [f|? € Line(X)}.
Let
p(s,€) :=max{n/(n+¢€), n/(n+s+¢€)},
where n € N, e > 0 and s € R.
For any set E of X, we define

d(z,E) = inf{d(x,y) : y € E}.

We use ||T||x—y to denote the operator norm of T : X — .

Denote by C a positive constant independent of main parameters involved; it may
vary at different occurrences. Constants with subscripts do not change through the whole
paper. Occasionally we use Cq g, or C(a, 3,...) to indicate that the positive constant
C depends only on parameters «, 3,.... Denote f < Cgand f > Cgby f Sgand f 2 g,
respectively. If f < g < f, we then write f ~ g. m



2. Real analysis on spaces of homogeneous type

Spaces of homogeneous type provide a general framework where the real-variable approach
in the study of singular integrals of Calderén and Zygmund can be carried out. It turns
out that classical analysis topics such as the Littlewood—Paley theory and function spaces
can be introduced and developed in this context without resorting to the differential or
algebraic structure of the underlying space.

This section provides necessary notions and results related to the spaces of homogeneous
type and the so-called RD-spaces; see [22] 23] [75],[76], 27, [64] [61], 591 [60, [65] and the references
therein. The readers who are familiar with this basic knowledge can directly proceed to
the next section.

2.1. Spaces of homogeneous type and RD-spaces. Let X be a set. A function
d: X x X — Ry, is called a quasi-metric if
(i) d(z,y) = d(y,x) for all z,y € X;
(ii) d(z,y) =0 if and only if z = y; and
(iii) there exists a constant K € [1,00) such that d(z,y) < K[d(z,z) + d(z,y)] for all
z,y,2 € X.

In this case we call (X,d) a quasi-metric space. In particular, when K = 1, we call d a
metric and (X, d) a metric space. For all z € X and r > 0, set

B(z,r):={y € X :d(z,y) <7}
Next we recall the notions of spaces of homogeneous type in the sense of Coifman and
Weiss [22] 23] and of RD-spaces introduced in [59, 60].

DEFINITION 2.1. Let (X, d) be a metric space and let the balls {B(z,r) : r > 0} form
a basis of open neighborhoods of the point x € X. Suppose that u is a regular Borel
measure defined on a o-algebra which contains all Borel sets induced by the open balls
{B(z,r):xz € X, r >0}, and that 0 < u(B(z,r)) < oo for all z € X and r > 0. The triple
(X,d, ) is called a space of homogeneous type if there exists a constant Cy € [1,00) such
that, for all z € X and r > 0,

w(B(x,2r)) < Ciu(B(x,r))  (doubling condition). (2.1)

The triple (X, d, ) is called an RD-space if it is a space of homogeneous type and there
exist constants k € (0,00) and Cy € (0, 1] such that, for all x € X, 0 < r < 2diam(X)
and 1 <\ < 2diam(X)/r,

CoA*u(B(z, 7)) < p(B(x, Ar)); (2.2)
(8l



2.1. Spaces of homogeneous type and RD-spaces 9

here and in what follows,
diam(X) := sup d(z,y).
z,yeX
RD-spaces have become the underlying context in numerous areas of analysis and
PDEs; we refer the reader to [22 23] [59], 60, [84, [70] [7T], [39, 104, 106, 105] and references
therein.

REMARK 2.2. (i) For a space X of homogeneous type, by (2.1)), there exist C3 € [1,00)
and n € (0,00) such that, for allz € X, r > 0 and A > 1,

(B, Ar)) < Cs\"(B(z, 7).

Indeed, we can choose C3 := C and n := log, C. In some sense, n measures the “dimension”
of X. When X is an RD-space, we obviously have n € [k, c0).

(ii) For a space (X, d, i) of homogeneous type, if 1(X') < 0o, then there exists a positive
constant Ry such that X = B(z, Ry) for all z € X'; see Nakai and Yabuta [86, Lemma 5.1].
It follows that p(X) < oo if and only if diam(&X') < co.

(iii) X is an RD-space if and only if X is a space of homogeneous type with the additional
property that there is a constant ag > 1 such that for all z € X and 0 < r < diam(X)/ay,
B(z,aor) \ B(z,r) # 0; see, for instance, [60, Remark 1.1], [104] and [86]. Consequently,
any connected space of homogeneous type is an RD-space.

(iv) For any space (X, d, 1) of homogeneous type, the set

Atom(X,d, p) :={z € X : u({z}) > 0}

is countable and, for every x € Atom(X, d, i), there exists r > 0 such that B(x,r) = {z};
see Macias and Segovia [75, Theorem 1]. From (iii) or (2.2)), it follows that any RD-space
(X,d, i) is non-atomic, i.e., u({x}) =0 for all z € X.

(v) Throughout this paper, we always assume that (X,d,u) is an RD-space and
w(X) = oo, unless it is clearly stated that (X, d, 1) is a space of homogeneous type.

REMARK 2.3. For any quasi-metric space (X,d), Macias and Segovia [5, Theorem 2]
proved that there exists an equivalent quasi-metric p such that all balls corresponding to
p are open in the topology induced by p, and there exist constants C' > 0 and 6 € (0,1)
such that, for all z,y,z € X,

p(x,2) = p(y, 2)| < Clp(z, )’ [p(z, 2) + ply, 2)]' 7.
If the metric d in Definition [2.1] is replaced by p, then all results in this paper have
corresponding analogues on (X, p, ). In order to simplify the presentation, in this work
we always assume that d is a metric and the balls corresponding to d are open sets in the
topology induced by d.

Set
Vs(z) == u(B(z,0)) and V(z,y):= pu(B(z,d(z,y)))

for all ,y € X and § > 0. It follows from (2.1) that V(z,y) ~ V(y, z). Here we present
some estimates regarding spaces of homogeneous type; see, for example, [60, Lemma 2.1]
or [59].
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LEMMA 2.4. Let (X,d,p) be a space of homogeneous type, r > 0,6 >0, a >0, n >0 and
7€ (0,1).
(a) Forallz,y € X,
u(B(z,r +d(z,y))) ~ p(Bly,r + d(z,y))) ~ Vi(z) + V(z,y)
~ Ve(y) + Vi, y) ~ V() + Vi(y) + V(x,y),
with implicit constants depending only on Cy.
(b) Ifx,2’, 21 € X satisfy d(xz,2') < v(r 4+ d(z,x1)), then
r+d(x,m) ~r+da,z) and p(B(z,r+d(z,z1))) ~ (B r+d' z))),

with implicit constants depending only on v and C'.
(¢) There exists a positive constant C, depending only on Cy and «, such that, for all
re X,

d(z,y)® 1 0
du(y) < C6*  and / — ——dpu(y) < C.
/d(a: y)<s V(l‘, y) ( ) d(z,y)>68 V(.’E, y) d(l‘> y)a ( )

(d) If @« > n > 0, then there exists a positive constant C, depending only on C1, a and 7,
such that, for allz € X,

1 5 a , }
/X Vs(x) + V(z,y) Lsm(m’y)} d(z,y)" du(y) < C§".

2.2. Dyadic cubes, covering lemmas, and the Calderé6n—Zygmund decomposi-

tion. Throughout this subsection we always assume that (X, d, u) is a space of homoge-
neous type.

Recall that in R™ the dyadic cubes are defined, for all k € Z and £ = (¢4,...,4,) € Z™,
as

Qrei={x=(21,...,20) ER": 2770, <2y <27%(0; + 1), Vi€ {1,...,n}}.

Most of their properties are retained in the case of abstract spaces of homogeneous type.
Indeed, a construction due to Christ (see [16]) allows the following version of the Euclidean
dyadic cubes in a general space X of homogeneous type. It should be remarked that recently
Hytonen et. al. [I1 [66], 67] constructed a randomized dyadic structure by only assuming
that the underlying metric space is geometrically doubling.

LEMMA 2.5. Let X be a space of homogeneous type. Then there exists a collection Q =
{Q’é CX:k€Z ac I} of open subsets, where Iy, is some index set, and constants
0 € (0,1) and C5,Cs > 0 such that

(i) for each fized k € Z, (X \ U, QL) =0 and QE N QK =0 if a # f;
(ii) for any o, B, k, £ with ¢ > k, either Qf; c Qk or Qg NQEL = 0;
(iii) for each (k,a) and each £ < k, there is a unique 3 such that Q¥ C Qg;
(iv) diam(QF) < C56* and each QF contains some ball B(zE, Cs6%), where 2 € X.
One can think of Q¥ as being a dyadic cube centered at 2z with diameter roughly &§%.

In what follows, for simplicity, we always assume that § = 1/2; see, for example, Han and
Sawyer [61, pp. 96-98] on how to remove this restriction.
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Regarding covering lemmas, we begin with the so-called basic covering lemma (see, for
instance, Heinonen [64], p. 2]) on metric spaces, which is particularly useful.

LEMMA 2.6. Every family F of balls of uniformly bounded diameter in a metric space (X, d)
contains a subfamily G of pairwise disjoint balls such that

U Bc | 5B

BeF Beg
Moreover, every ball B from F meets a ball from G with radius at least half that of B.

Two geometric facts about spaces of homogeneous type, the Vitali-Wiener type covering
lemma and Whitney type covering lemma, play fundamental roles in establishing the
Calderon—Zygmund theory on (X, d, u); see [22], 23] as well as [76].

LEMMA 2.7 (Vitali-Wiener type covering lemma). Let E C X be a bounded set (that is,
contained in a ball). Consider any covering of E of the form {B(z,r;) : © € E}. Then
there exists a sequence of points x; € E such that {B(xj,74;)}; are pairwise disjoint and
{B(xj,Cors,)}; is a covering of E. Here Cy depends only on the doubling and quasi-triangle
constants.

We remark that, when € is an open bounded set, the following Lemma [2.8] was proved
in [22, pp. 70-71] and [23] Theorem 3.2]. The current version was claimed in [22, p. 70]
without a proof; see also [76], p. 277] for another variant, namely that € is assumed to be
an open set of finite measure strictly contained in X. In fact, a detailed proof of Lemma 2.8
can be given by borrowing some ideas from [94], pp. 15-16]; see also [47].

LEMMA 2.8 (Whitney type covering lemma). Let  be an open proper subset of X. For
z € X define d(x) := dist(z, QC). For any given ¢ > 1, let r(z) := d(x)/(2c). Then there
exist a positive number M, which depends only on ¢ and Cy but not on ), and a sequence
{zk }r such that, if we denote r(xy) by rg, then

(i) {B(xk,7m/4)}k are pairwise disjoint and J,, B(xy, i) = €Q;
(ii) for every given k, B(xy,cry) C Q;
)
)
(v) for every given k, the number of balls B(x;,cr;) intersecting the ball B(xy, cry) is at

most M.

(iii) for every given k, x € B(xy, cry) implies that cry, < d(x) < 3cry;

(iv) for every given k, there exists a yy & S such that d(zy,yr) < 3cry;

For any f € L] (X), the Hardy-Littlewood mazimal function M f is defined by
1

Mf(x) = S /B lf(y)ldu(y), VYzeX, (2.3)

where the supremum is taken over all balls B C X containing x. It is easy to see that
the function M [ is lower semi-continuous (hence p-measurable) for every f € Ll (X).
Using the Vitali-Wiener type covering lemma, Coifman and Weiss [22] proved that M
is bounded from L'(X) to L1*°(X) and bounded on LP(X) for all p € (1,00]. Also, by
an argument similar to Grafakos [40, Exercise 2.1.13], we know that M is bounded on

LP>(X) for p € (1,00). The operator norms
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Ml xysprexy, IMllorxysorxy  and (M| ppo(x) o oo (x)
all depend only on C4 and p.

Denote by Cp(X) the space of all continuous functions on X with bounded supports
(that is, contained in a ball of (X,d)). As in Definition we are assuming that p is
a regular Borel measure on the metric space (X, d), which means that p has the outer
and inner regularity (see Heinonen [64]), so Cp(X) is dense in LP(X) for all p € [1,00).
This, combined with the weak type (1,1) boundedness of M and a standard argument
(see, for instance, [64, pp. 12-13]), implies the differentiation theorem for integrals: for all
f € LL _(X) and almost every x € X,

loc
. 1
ey T {81 40)= 1)

, 1
T /B 1£(y) — £(@)| duy) = 0.

A consequence of the current Whitney covering lemma and the differentiation theorem
for integrals on (X,d, u) as well as the weak-(1,1) boundedness of M is the celebrated
Calderén—Zygmund decomposition process for integrable functions; see Coifman and Weiss
[22, 23].

LEMMA 2.9. Let f € L*(X). Then, for every X\ > || f| 1 (x)/im(X), there exists a sequence
of balls, { Bx }xer, where I is some index set, such that

and

(i) {3Bx}rer are pairwise disjoint;
(i) |f(z)| < CX for almost every x € X \ Uy Br:
(iii) for anyk €1,

Tzlm /B fldu > Ox;
(iv) S™ u(Br) < Cllf Lo/ A
kel

where the positive constant C' depends only on C.

LEMMA 2.10. Let f € L*(X). For every X > || fll1(x)/ (X)), let { By }rer be the sequence
of balls provided by Lemma . Then there exist functions g and {by}rer such that

(1) f=9+ > kerbr;
(i) |lgllzeeay < CX;
(iii) for everyk €1,

/ by dp = 0;
x

(iv) for every k € I we have supp by, C By;
(V) llgllerxy < Cllfllzrxy and > opcrlbkllnrxy < Cllfllzixy, where C is a positive
constant depending only on C.
For any n € (0, 1], let C"(X) be the set of all functions f : X — C such that

o @)~ 1)

fll := sup <
|| ||C"(X) zty d(x7y)'fl
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Denote by supp f the closure of the set {x € X : f(x) # 0} in X. Define
CJ(X) :={f € C"(X) : f has bounded support}.
Then C}'(X) C L*°(X) and the norm on C}'(X) is given by

[flleny = fllpee ey + [1f lemay-
In what follows, we endow C}/(X) with the strict inductive limit topology (see [76} p. 273])
arising from the sequence of spaces (C}(By), || - [lcn(x)), where {By}nez is any given
increasing sequence of balls with the same center such that X' = J,, .y Bn and
C)(By) :={f € C}(X) :supp f C By}

Denote by (C}/ (X))’ the dual space of C}'(X), that is, the collection of all continuous linear
functionals on C}/(X). The space (C}'(X))’ is endowed with the weak*-topology.

For functions in C}/(X), we have a more elaborate version of the Calderon—Zygmund

decomposition lemma when p(X) = co.

LEMMA 2.11. Let pu(X) = oo, n € (0,1] and f € CJ(X). For any X > 0, f has the

decomposition
kel

where g, {bx}rer and ", o, by are functions in Cy (X) satisfying (i)~(v) of Lemma[2.10]

Proof. Suppose that f € C}(X) with € (0,1] and A > 0. Consider the level set
Q:={xeX: : Mf(z) >}

Without loss of generality, we may assume that supp f C B(yo, R), where yo € X and

R > 0. Moreover, since pu(X) = oo, we can choose R sufficiently large so that f, A\ and

B(yo, R) satisfy the assumptions of [23] p. 625, Lemma (3.9)]. From this, we deduce that Q

is contained in some ball. Then we cover 2 by using balls { By }rer := {B(x, rr) }ker which

satisfy (i)—(v) of Lemma Take a radial function h € C2°(R) such that 0 < h < 1,
h(t) = 1 when |t| <1, and h(t) = 0 when [¢t| > 2. For every By, define

¢k(x) — h(d(‘ra xk)

Tk
It is easy to show that every ¢y is in C}(X) and ¢ (z) = 1 when x € By. Moreover, if
we take the constant ¢ in Lemma sufficiently large (for example, ¢ > 2), then we have
supp ¢r C 2By, C Q and {2By }rer has the bounded overlapping property. If we let

Pr
Py = R kel,
Zj ¢j
then {®y }xes forms a partition of unity of Q with every @, in C} (X). Now let
fX f@k d,u
Jx @ dp

gZ:f—Zbk.

kel
Then it is a standard procedure to show that g and {by }res satisfy (i)-(v) of Lemma[2.10]

), Ve e X.

by == f(I)k— Dy, kel,

and
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As f,®, € C(X), we see that every by, is in C}/(X) and supp by, C 2By,. Since supp f
and €2 are both bounded sets, », - ; by and g have bounded supports. The finite overlap
property of {2By }xes implies that ), _; by (2) has only finitely many terms for any fixed
x € X. From this and the fact that each by is in C}(X), it follows that »°, ., by is in
CJ(X), hence so is g. m

2.3. Space of test functions. We recall the notion of the space of test functions on the
RD-space (X, d, i) used in [59, [60].
DEFINITION 2.12. Let z1 € X, r € (0,00), § € (0,1] and v € (0,00). A function ¢ on X
is called a test function of type (x1,7,5,7) if there exists a positive constant C' such that
(i) for all z € X,
TV i)
Vi(z1) + Vi(z) + V(xy, 2) | r +d(zy,2) |
(i) for all z,y € X satisfying d(z,y) < [r + d(z1, 2)]/2,
d(z,y) 1° 1 [ r r
_ <C .
(@) =)l < L" +d(z1,2)| Vi(z1) +Vi(z) + V(zy,x) [ r+d(xg,x)
Denote by G(x1, 7, 3,7) the set of all test functions of type (x1,7, 3,7). if ¢ € G(z1,7,5,7),
its norm is defined by

lp(z)] <C

l¢llga,r,8,y) = inf{C : (i) and (ii) hold}.
The space G(x1,r, 3,7) is called the space of test functions. Set

G(a1,m,B,7) = {<P € G(wy,r, B,7): /Xw(:v) du(x) = O}.

The space Qo(xl, r,3,7) is called the space of test functions with mean zero.

It should be remarked that the prototype of such test functions on R™ first appeared
in the work of Meyer [80], where our Definition [2.12((ii) is replaced by

lp() = w(y)] < C<m;x/|)ﬁ[(T+ ‘;7 :m)7 + (THyTIl)W] (2.4)

Instead of imposing the condition that holds for all z,y € R™, Han [57] only required

for the points x,y satisfying |z — y| < (r + |z — x1])/2. The above definitions of

G(z1,r,B,7) and _C';(xl, r,3,7) for general RD-spaces were first introduced in [59, [60].
Following [60], fix 1 € X and let

G(8,7) =G(z1,1,8,7).
It is easy to see that, for any x5 € X and r > 0, we have G(xo, 7, 3,7) = G(5,~) with
equivalent norms (but with constants depending on x1, xo and r). The space G(8,7) is a
Banach space.
For any given e € (0, 1],1et G5(3, v) be the completion of the space G(e, €) in G(8, v) when
B,7 € (0,€]. Then ¢ € G§(B3, ) if and only if ¢ € G(3, ) and there exists {¢; }jen C G(€, €)
such that lim; o [|¢ — ¢;llg(,y) = 0- If ¢ € G5(8,7), we define

lellgs sy = llellgs.qy-
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For the above chosen {¢;};en, we have

Il

gs(e.y) = Hm [ jllges.)-

Similarly, the space gg (8,7) is defined to be the completion of é(e, €) in _C’:(ﬁ,v) when
B,7 € (0, ¢ and, for any ¢ € G5(8,7), we define [[¢lge (5., = lI€llg(s,7)- Both G5(8,7)

and G§(8,~) are Banach spaces.

Denote by (G§(8,7))" and (ég’o(ﬂ,y))’, respectively, the sets of all bounded linear
functionals on G§(5,~) and ég,o(ﬂ, 7). Define (f, ¢) to be the natural pairing of elements
I € (G5(8,7)) and ¢ € G5(5.7), or f € (G5(5.7))' and @ € G5(8,7). The space G§(6,7)
plays the same role as the Schwartz class S(R™) and the space of all infinitely differentiable
compactly supported functions on R".

Obviously, any function f € C(X) with n € (0,1] is a test function of type (zg, 7,7, 7)
for all zg € X, r > 0 and v > 0; moreover, there exists a positive constant C, depending
only on C4, supp f, 1, 8 and ~, such that

£ llg@ornmy < Clifllencay-
Conversely, if f € G(x1,1, 3,7) for some 3 € (0,1] and v > 0, then f € C#(X). Moreover,
by the size condition on f (see Definition i)), we see that

1
() < ——
[l ooy < Vl(x1)|\f||g(m,1,/3,y)

and, by Definition ii) when d(z,y) < 1/2 and Definition [2.12{i) when d(z,y) > 1/2,
[f(z) = f(y) b If(z)f(y)l}

s =max{ s HOZIWL
o) aty day<i/z AT y)° sty dy)>1/2 @ y)
98+1
<= :
SSACH 1fllg@r.1.87)

2.4. Approximations of the identity. Approximations of the identity on Ahlfors 1-
regular metric measure spaces (X,d, u) satisfying pu(X) = oo and p({z}) = 0 for all
x € X first appeared in David, Journé and Semmes [26, Lemma 2.2] and Han [58] (see
also [57, 61]). Also based on the ideas in [26], the corresponding versions in the context of
RD-spaces were proved in [60, Definition 2.2]. The following definition is from [59] [60].

DEFINITION 2.13. Let ¢; € (0,1], e2 > 0, and €3 > 0. A sequence {Sj}rez of bounded
linear integral operators on L2(X) is called an approximation of the identity of order
(€1, €2,€3) (for short, (€1, €9, €3)-ATI) if there exists a positive constant C' such that, for
all k € Z and z,2’,y,y’ € X, the integral kernel Si(x,y) of S is a measurable function,
from X x X into C, satisfying

: 1 2 ke2 .
@ 18k(=,9) < Cy v ves Brraeye’

(ii) for all d(x,2') < [27F + d(x,9)]/2,

|Sk(x’y) - Sk(x/7y)|
<c d(z,z') 1 9~ kez .
T 27 d(z,y)]e Vook () + Vor (y) + Vi, y) [27F +d(x,y))e
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(iii) Sy satisfies (ii) with 2 and y interchanged;
(iv) for d(z,2") < [27% + d(x,y)]/3 and d(y,y) < [27F + d(,y)]/3,

|[Sk(@,y) — Sk(z. y)] = [Sk(2’,y) — Sk, )]
d(x,x") dy,y" )
= OB dG g B Gy
y 1 27kes .
Vo-r(z) + Va-r (y) + V(z,y) [27F +d(z,y)]=’

(v) [y Selw,w)du(w) =1 = [ Si(w,y) du(w).

REMARK 2.14. (i) If {Sk}rez is an (1, €2, €3)-ATI with bounded support, that is, there
exists a positive constant C such that Si(x,y) = 0 whenever d(z,y) > C27F, then {S}. }rez
is an (e, €, €5)-ATI for all €, > 0 and €; > 0. Such a sequence of operators, {Sk}rez, is
called an approximation of the identity of order e; with bounded support (for short, e;-ATI
with bounded support). The existence of 1-ATT with bounded support was shown in [60,

Theorem 2.6] by using the ideas of David, Journé and Semmes [26].
(ii) Let {Sk}rez be an €;-ATI with bounded support. For any n € (0, €], there exists
a positive constant C such that, for all z,z',y € X and all k € Z,

d(z,2")]" 1
o e

|Mw%&%ﬂs4

Indeed, (2.5) follows from the regular condition of Sy if d(z,2’) < 27%~! and the size
condition of Sy, if d(z, ") > 27%~1. Combining (2.5) and the size condition of Sy, we see
that Sk(-,y) € CJ(X) for all k € Z and y € X. The same holds true for Sk (y, -).

Classical examples of operators satisfying Definition for the special case X = R™
can be built as follows. Let Fy,ss (F stands for filter) be the collection of non-negative
radial functions ¢ € S(R™) such that supp @ C {{ € R : || <2} and §(§) =11if |¢] <1,
where @ represents the Fourier transform of p. Let Fianq be the collection of non-negative
radial functions ¢ € S(R™) such that supp ¢ C {€ € R" : 1/2 < [¢] < 4} and () = 1 if
1 < |¢] < 2. Given ¢ € Fy,g, define S; by

Si(f)(x) = . Sj(@,y)f(y)dy, VfeSR")andzeR",
where j € Z and Sj(z,y) := 2/"¢(27(x — y)). Thus, S;(f)(z) = ¢; * f(z), where we used
the following convention: Given a function g and j € Z, we define the dilations g; as
gj(z) :=2I"g(27z). Also, set D;(z,y) := vj(z — y), where ¢; := ;11 — p; and 9 is such
that

¥(&) = 2(&/2) — (&), VEeR™
Notice that ¥ € Fpana. The operators S; and D; are the basic tools to develop the
Littlewood—Paley theory.
Finally, we summarize some properties concerning the size condition of such approxi-
mations of the identity as follows (see [60} p. 16, Proposition 2.7]).
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LEMMA 2.15. Suppose that a sequence {Si}rez of functions defined on X x X and taking
values in C satisfies Definition|2.13] Then:

(i) there exists a positive constant C' such that, for allk € Z and x,y € X,

[ i alduz) <0 and [ ISu(ewldut) < 0
X X
(ii) for allp € [1,00], there exists a positive constant Cy, such that, for all f € LP(X),
1Sk (P zex) < Cpll fllzo(xy:
(iii) for allp € [1,00) and f € LP(X),
i [[Sf = fllzex) = 0;
(iv) there exists a positive constant C' such that, for allk € Z, f € L (X) and z € X,
Sk(f)(z)| < CMf(z).

2.5. Singular integrals on spaces of homogeneous type. In this subsection we follow
the pioneer work of Coifman and Weiss [22, 23], and more recent results provided by Han,
Miiller and Yang [59 [60], to present the analogs of the boundedness for singular integrals
on some classical function spaces on R™ for spaces of homogeneous type. The following
theorem is due to Coifman—Weiss [22 Theorem 2.4].

LEMMA 2.16. Let T : C(X) — (C(X)) be a continuous linear operator such that, for
all f € CJ(X) and z € X away from supp f,

T(f)(x) = /X K (2, 9) £ (4) duly),

where the kernel K satisfies Hormander’s condition

sup 1K (2, y) = K(2,y)| + | K(y,2) = K(y', 2)|| dpu(z) < Cxe < 00

Yy EX /d(y,y’)<d(1»y)/2
for some positive constant Cr. If T is bounded on LP(X) for some p € (1,00), then

(i) T can be extended to a bounded linear operator on L1(X) for all ¢ € (1,00);
(ii) T can be extended to a bounded linear operator from LY (X) to LY (X).

The norm of T in (i) or (ii) is at most a positive constant multiple of
Ck + 1Tl e (a)— Lo ()-
The T'1-theorem gives necessary and sufficient conditions for the continuity of singular

integral operators in L?(X). The first instance of such a theorem, in the Euclidean setting,
was proved by David and Journé [25]. The theorem also extends to RD-spaces [59, [60].

DEFINITION 2.17. Let ¢ € (0,1]. A continuous complex-valued function K (x,y) on
= {(ry) €Xx X a4y}

is called a Calderon—Zygmund kernel of type 6 if there is a positive constant C'k such that,
for all (z,y), (2/,y) € Q,
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and, when d(z,z') < d(z,y)/2,

N6
.m%w—KWwNHKm@—K@”NSCKwaq wiw'

In this case, write K € Ker(Ck, ).

DEFINITION 2.18. Let np € (0,1]. A Calderén—Zygmund singular integral operator is a
continuous operator T : C}/(X) — (C} (X))’ such that, for all f € CJ(X) and x ¢ supp f,

/ny du(y),

where the kernel K € Ker(Ck, ¢) for some Cx > 0 and ¢ € (0, 1]. The transpose T™* of T
is defined by

(T"f.9) =Ty, f)
for all f, g € C}(X). The kernel K* of T* is related to the one of T' by K*(z,y) = K(y, )
forall z,y € X.

DEFINITION 2.19. Given n € (0,1], x € X and r > 0, a function ¢ on X is called a
normalized bump function for the ball B(z,r) if
(i) ¢ € CJ(X) and supp ¢ C B(z,r);

(i) flellpoe(xy < 15
(iil) |¢(2) — e(y)| < r~"d(z,y)" for all z,y € X.

Denote by T (n, z,r) the collection of all normalized bump functions for the ball B(x,r).

DEFINITION 2.20. Let 0 < n < 6. A singular operator T : C}/(X) — (C(X))’ is said to
have the weak boundedness property (for short, WBP(n)) if there exists a positive constant
C such that, for allz € X, r > 0 and ¢, € T(n,z,r),

[(Te, )| < Cu(B(z,r)). (2.6)
The smallest possible constant C' in (2.6) is denoted by [|T|lwgp(s)-

The following BMO-type spaces on spaces of homogeneous type (X, d, u) were intro-
duced by Coifman and Weiss [23].

DEFINITION 2.21. Let ¢ € [1,00). A function f € L]
BMO, (X) if

(X) is said to be in the space

loc

. ‘ 1 qd 1/‘1
|UMBMOAX>3-{5331453/Q|f@»——f3| u@»} < oo,

1
7B)/Bf(y) du(y)

REMARK 2.22. (i) If f1, fo € BMO,(X) and f; — f2 is a constant, then we regard f; and fo
as the same element in BMO,(X).

(ii) If ¢ = 1, we write BMO(X) instead of BMO;(X) for simplicity.

(iii) For any given g € (1,00), the two spaces BMO,(X’) and BMO(X) coincide with
equivalent norms; see [23], pp. 593-594].

where
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In the following T'1-theorem on spaces of homogeneous type, “(i)<(ii)” is due to [60]
Theorem 5.56], and the proof of [60, Theorem 5.57] implies that “(i)=-(iii)=(iv)=(ii)".

THEOREM 2.23. Let € € (0,1], n € (0,¢) and T be a continuous linear operator from
CJ(X) to (CY (X)) as in Definition|2.18| associated with a kernel K € Ker(Ck, €) for some
Ck > 0. Then the following statements are equivalent:

(i) T extends to a bounded linear operator on L?(X);

(i) T(1) € BMO(X), T*(1) € BMO(X) and T € WBP(n);

(iil) there exists a positive constant C' such that, for allz € X, R >0 and ¢ € T(n, z, R),
1T (D) L2y + I1T™(A) | L2y < Cu(B(z, R));

(iv) forallz € X, R>0 and ¢ € T(n,z, R),

1T (é)lIBmocxy + 1T7(¢)IBmO(x) < 0.



3. Multilinear Calder6n—Zygmund theory

This section is entirely devoted to the extension of the multilinear Calderéon-Zygmund
theory in the Euclidean case, as developed by Grafakos and Torres in [53], to the context of
RD-spaces (X, d, p). This theory stems from the work of Coifman and Meyer [19] 20, 2T, [82];
see also Kenig and Stein [68].

3.1. Multilinear Calderén—Zygmund operators. Motivated by [563] we study the
following multilinear singular integrals on (X, d, u).

DEFINITION 3.1. Given m € N, set

Q= X"\ A{(W0, Y15 Ym) Y0 = Y1 =+ = Ym }-
Suppose that K : ,, — C is locally integrable. The function K is called a Calderén—
Zygmund kernel if there exist constants Cx € (0,00) and 6 € (0,1] such that, for all
(yOa Yi, - .- 7ym) € Qma
1

|K(y03y17"-5ym)| SCK m (31)
> k=1 V (Yo, yx)]™
and that, for all £ € {0,1,...,m},
‘K(yanlw'wyk)"wym) _K(y07y17"'ayl/g7"'ym)‘
/ 8
1

maxo<k<m (Yo, yk) | 2521 V (Yo, yw)l™
whenever d(yk, y;,) < maxo<ip<m d(Yo,yr)/2. In this case, write K € Ker(m, Ck,9).

DEFINITION 3.2. Let n € (0,1]. An m-linear Calderon—Zygmund operator is a continuous

operator
m times

T3 GIE) - x CYA) = (CUX)Y
such that, for all fi,..., f,, € CY(X) and = ¢ (., supp f,

Xxm i=1

where the kernel K is in Ker(m, Ck,d) for some Cx > 0 and 6 € (0,1]. As an m-linear
operator, T has m formal transposes. The jth transpose T*7 of T is defined by
<T*j(f17 DRI f?n)7g> = <T(f17 .. 'a.fj—17g7.fj+17 .. 7fm)afj>

20]
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for all fi,..., fm,g in C}(X). The kernel K*7 of T*J is related to the one of T' by

K*j(xayla"'7yj71,yj7yj+17"'ay’m) = K(:Uj’yla'~'7yj71ax7yj+17'"aym>‘

To maintain uniform notation, we may occasionally denote T by T*° and K by K*°.

3.2. Multilinear weak-type estimates. We use the Calderén—Zygmund decomposition
to obtain the endpoint weak-type boundedness for multilinear operators; see [53] when
(X,d, 1) is the Euclidean space.

THEOREM 3.3. LetT be an m-linear Calderon—Zygmund operator associated with a kernel
K € Ker(m,Ck,d). Assume that, for some 1 < q1,q2,...,qm < 00 and some 0 < ¢ < 00
with Z;n:l 1/q; =1/q, T maps LT (X)X ---x LI (X) — L9*°(X). ThenT can be extended
to a bounded m-linear operator from the m-fold product L' (X) x - - - x L*(X) to LY/ (X)
and

ITM 1 (x0)x o x L1 ()= L/mooe () < ClCK + | T Lar () x - x Lam () = Lo ()]
for some positive constant C' that depends only on Cy, Cs, 6 and m.
To show Theorem we first establish the following lemma.

LEMMA 3.4. For any § > 0, there exists positive constant C, depending only on C1,0 and
m, such that, for alli € {1,...,m} and all x,y;, € X with k # 1,

1 o 1 1 0
7 d i) < c .
/X |:maX1§k§m d(fv,yk)] >k Vi, yr) i) maxy <k<m, ki (25 Y)
Proof. Let

= d .
ai= _max (z, yx)

By (a) and (b) of Lemmaand (2.1), we see that, when d(x,y;) < 2a,

> Viaye) ~ n(Blw,a)),
k=1

which further implies that

1 b 1
dp(y;
/d(ar,yi)<2a |:HlaX1§k§m d(l‘, yk):| EZL:I V(Z‘, yk) ( )

< [ L ]%(B(x,za))
maxi<k<m, ki (T, yr) | w(B(z,a))

5
S )
maxi<k<m, ki A(T, Yx)
On the other hand, when d(z,y;) > 2a, we have

1§2de(w,yk)=d(x7yi) and ;V(x,yk)NV(x,yi);

consequently, again using (2.1) implies that
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1 J 1
/<> {maxl<k<md<x7yk>} ST V() P

oo

/ [ v
2¢a<d(w,y;)<2¢*1la d(‘r’yl) V(x7y1

~

dp(ym)
~ ):u’y

= 71\’ w(B(z,2 1))
5;@) u(Blw, 27a)

s
< { L :| . n
Max|<k<m, ki AT, Yx)
Applying Lemmas [2.11] and [3.4] we now show Theorem [3.3]

Proof of Theorem[3.3 Let

A = |T||par () x Lam () La-20 (%) -

Since the space C}/ (X) is dense in L*(X) for any n € (0, 1] (see [60, p. 22, Corollary 2.11]), it
suffices to prove the theorem for functions { f; i C C}(X). Fix o > 0. By homogeneity,
without loss of generality, we may assume that || f;||z1(x) = 1. For any a € (0, 00), let

E, ={zeX:|T(f1,..., fm)(@)] > a}.
We only need to show that
WEa) S (Cx + A mamt/m,

Let v > 0 be a constant to be determined later. For all j € {1,...,m}, apply the
Calderon—Zygmund decomposition (Lemma i to f; at height (ay)'/™ to obtain good
and bad functions g; and b; and families of balls, {Bj x}rer, jef1,....m} With {I;}1<j<m
being index sets, such that f; = g; 4+ b;, where b; = Zkelj b, 1. satisfying, for all k € I;
and s € [1, 00],

(i) suppbjr C B and [, b x(y) du(y) = 0;
(ii) 1b7,kll 22y S (@)™ u(Bjp);
(iii) ke, MBjx) S ()1

)

(iv lgillze ey S (@)™ and - 1bsllpiay < Pper, Ibskllzrcxy S L.

Also, notice that g; and b; as above are functions in C} (X) by Lemma
Now let
Ey = {.’L' : |T(glag27 s 7gm)(x)‘ > a/2m}?
E2 = {1' : |T(b1,92» s agm)(m)‘ > a/2m},
Es = {l‘ T (g1, b2, - . agm)(x)‘ > O‘/2m}y

Bom = {z: |T(by, ba, ..., b)) ()] > /2.
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Since
p({x [T (fr,. oo f) (@) > a}) < Zu

we only need to prove that, for all r € {1,...,2™},
W(En) S (Cc + AYl/ma=tim, (3.0

Chebyshev’s inequality and the L% (X) x - - - x LY (X) — L?°°(X) boundedness of T' give
2 AN
() < (22 ol N W

< A Iml( )q/(mq'») A q( ym=t/aa/m o gag=1/mya=1/m
— i)~ —_ ~ .
~\ o oy o) & o g

j=1
Consider a set E,. as above with 2 < r < 2™. Suppose that, for some 1 < ¢ < m, we have
exactly ¢ bad functions appearing in T'(h1, ..., hy,), where h; € {b;, g;} and assume that

the bad functions occur at the entries ji,...,j,. The next step is to show that
u(Ey) = p({z : T (hy, ..., hip)(@)| > a/27})
Sa My 4y (v O (3.5)

Let r; 1, and c; 1 be the radius and the center of the ball B; j, respectively. Set
(Bje)™ = B(¢jk: 57j,k)-

Since

o(U) U Bi)) S ) iim,

j=1 keIJ

(3.5) is a consequence of

u({zg U T(hi, . h)(@)] > a/27}) S (@) /" (i) V% (3.6)

j=1kel,

Fixz ¢ U;n:1 Uk:e[j (Bj )™ Then

Z Z K(x,y1,- -y Ym)

ki1€lj, ke€l;,

|T(h17 ceey hm)(x”

IN

S | Hl% (y5.) dulyr) - - dps(ym)
v:e{jl,...,je}

kleljl }Cgeljz

Fix, for the moment, the balls B , ..., Bj, ; ; without loss of generality, we may suppose

that BY , has the smallest radius among them. Notice that
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[ RGam b () du)

Ji.k1

= ‘/* [K(mvyla”-vyjlv"',ym)_K(l'vyla"-7Cj1,k1a"'7ym)]bj1,k1(yj1)d/1‘(yj1)

J1.k1

d(y;,, ¢y, 1
< Ok B { e 1bjy &y (Y52 dpe(yj, )-

5
max <p<m d(z, yk)} i Vi, ye) ™
Integrating with respect to every y; with ¢ ¢ {j1,...,je} and using Lemmam — £ times,

we obtain
/ , /* K(x,y1, . Ym)bj iy (50) de(y;,) H du(y:)
o i@{j1,.-de}

J1,k1

< CK/ 1bjy k1 (Y52
B;L’ﬁ

Ao {masfzféfhf%)ywr[zk T T vt fants)

¢ {1,nde}
Ay, cnnm) 1 1
SCK/ b.: ey (Y5 [ J1y ~J1,R1 dpL Y
vt ) s dle )| T2, Vg )
< CK|: T'j1,k1 :|6 th,kl HLl(X)
- maxi<i<e d(T, k) | [0 Vi@, ejp)])

where, in the last step, we used the fact that y;, € Bj, x, and z ¢ UT:1 Ukelj (Bj k)™
imply that

d(z,y;,) ~d(x, ¢, k,) and V(z,y;) ~ V(z,cjm)
By the arithmetic-geometric mean inequality and since we are assuming that r;, x, is the
smallest among {r;, 1, }Y_;, we have

5 4 5/¢
|: (A :| 1 < H |: T ki :| 1 .
maxi<i<e d(@, ¢, 1) | [0, Viw, )]t~ n Ld@ciin) ] ViE,cjir,)
Then, by the fact that, for all i € {1,...,m},
1gill Ly S (ay)t/™
we have

L b o) )

14
X H |gl(yl)‘ H ‘bjhki (yjz)| H d“(yz)

ig¢{j1,--nde} i=2 i€{l,...,m}
i#£j1

£
[T FAYES /Xe 111650 (i)
~li=2

5/¢
o H { Tjik - )} 7 1 ) dp(yj,) dp(y;,) - - - dp(y;,)

"1" CJ@ i x7cj'i;k7i

m—£
S Ok(ay) ™
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couor g ke
- -1 d(z, ¢ k) Vi(x, ¢j, k)

14 ) 5/¢ 1/m (B )
<o ] [ | B
~ K( 7) H d( kb) V(x Cji,k-)

We now bound |T'(hy, ..., hm)(x)| as follows: for any x ¢ UJ 1 UkeI (Bjk)**,

m 5/e a 1/m _—
oz 5 ] e

ki1€lj, k‘[EIJ =1
£ 6/¢
< C Q Jis i :l JisRi )
~oR ’Y]:[(k; |:d(xvcji7k1:) V(x’cji,k'i)

<C’KoryH Z (XB;, 1, )]1+5/(n5)’

i=1k; €1,
where, in the last step, the doubling Condition and x ¢ (Bj, r,)** imply that

[ ik ]“/ (Bjur) [ Tk r/‘ #(Bjs )

d(@, ¢j, k;) Vi(z, ¢ ) d(@, ¢y k) + Tk w(B(@, d(z, ¢, k) + 75, ki)
< [ p(Bjy 1) ]1”/ "
~ LBz, d(z, ¢y k) + 7o k:)
S [M(XBhkl)( )}1—&-6/(71@).

By this, the L'*%/(")(X)-boundedness of M and Hélder’s inequality, we conclude that

<{ §éU U Bi)™ 1T hl,...’hm)(x)‘>a/2m})

j=1kel;

Sa it / T, .. hn) ()] " dps(a)
X\U] 1 ng[ (Bg k)**

I1 Y e, @0 o

i= I
€ /X
(

( { 1k;
5(01<7)1/Z { Z
i=1 "~ ki€l

( / { > u(B;, ,:)}W

< (Cr)M*

- —

Jirkq

~

1/¢
M(xs, . )(@)]+/00 dmx)}
k.

S (Cx)M*
i=1 kel
< (Cx)Y i (ay) 7V,
This proves (3.6). Selecting v = (Cx + A)~!, we see that all the sets E,. satisfy (3.4),
which completes the proof of Theorem "



4. Weighted multilinear Calderén—Zygmund theory

Weighted estimates for multilinear Calderon—Zygmund operators first appear in the article
of Grafakos and Torres [53]. Weighted estimates for multilinear commutators via the sharp
maximal function were subsequently obtained by Pérez and Torres [91]. One of the main
motivations for the results in this section comes from the article by Lerner, Ombrosi, Pérez,
Torres, and Trujillo-Gonzalez [72] where a very natural multiple-weight theory adapted to
the multilinear Calderén—Zygmund theory was developed. One should mention the recent
work by Bui and Duong [I3], in which multiple weighted norm inequalities for multilinear
Calderon—Zygmund operators on R™ were studied, but with kernels satisfying some mild
regularity condition which is weaker than the usual Holder continuity.

If a measure p is absolutely continuous with respect to the measure pu, that is, there is
a non-negative locally integrable function w such that dp(z) = w(z)du(z) for all x € X,
then p is called a weighted measure with respect to p and w is called a weight. A weight w
is said to belong to the Muckenhoupt class A, for p € (1,00) if

[w]a, = sup L(lB)/Bw(y) du(y)] [M(lB)/Bw(y)”” du(y)} " < o,

where the supremum is taken over all balls B contained in X'. When p = 1, a weight w is
said to belong to the Muckenhoupt class Ay if

wla, = sup [u(lB) [ vt du(yﬂ [infu(@)] " <o,

Set
A= |J A4,
1<p<oo

For more details on A, weights on spaces of homogeneous type, see for instance [95]; for
the Muckenhoupt class on R", see for example [41], [36].

As part of results in this section we extend the multiple-weight Calderéon—Zygmund the-
ory of [72] to the context of spaces of homogeneous type. Multiple-weight norm inequalities
for maximal truncated operators of multilinear singular integrals are also obtained.

4.1. Multiple weights. In the context of RD-spaces, motivated by [72], we consider the
following multiple weights.

DEFINITION 4.1. For m exponents p1, ..., Pm, write p for the exponent defined by
1 1 1
=44 —
p p1 Pm

and P := (p1,...,pm).

[26]
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DEFINITION 4.2. Let 1 < pi,...,pm < 0o and p € (0,00) be such that 1/p = Z;n:l 1/p;.
Suppose that v is a weight and @ := (w1, ..., wy,,) with every w; a weight. We say that
(v; W) satisfies the A5 condition if

o | [ u(x)du(as)}l/pﬁ[ o <>1P9du<x>r/p;<oo, (41)

B balls

[u(lB) /B wj(x)' 77 du(m)] "

is understood as (inf g w;)~!. The expression on the left-hand side of (4.1]) is referred to
as the A constant of (v;w) and denoted by [(v;W)]a ;-

In particular, if v is taken to be the weight
m

=T wt™, (4.2)
i=1

then (vg;w) and [(vg;W)]a, are respectively denoted by w and [w]a ;.

where, when p; =1,

PROPOSITION4.3. Letl < p1,...,pm <o00,1/p=1/p1+--+1/pm and P = (P13 Pm)-
For any given weights W := (w1, ..., wy) and vg as in (4.2)), the following hold true:

(i) If every wy is in Ay, then w € Ap and
H 1/171

(i) If W € Ap, then vg € Apy and w P € Apy, forall j € {1,...,m}, where the

1/m

1-pj
condition w; 7 € Ampf in the case p;j = 1 is understood as w;"™ € A;. Moreover,

Vo)A, < [W ]A and

P . 1/m l/m .
< [w]ifﬁ if pj>1 or [w./ la, < [w]A/}3 ifp; = 1.

l—pf
[w; 7] i

' A

mp ;

(il) Ifvg € Apyp and wj P Amp;_ forallje{1,...,m}, thenw € Az and
= =5 /pi11/p; 1
[W]a, < [Vm]Amp{ I ™ la,l }{ 1T [wj/m]A1}7
1<j<m, pj>1 ’ 1<j<m, pj=1
1—
where the condition w; ; € Amp/ in the case p; = 1 is understood as w e Ay

Proof. To see (i), if each w; is in A, then from 1/p = 377" | 1/p; and Hélder’s inequality,
we have

B
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The proofs for (ii) and (iii) were indeed given in [72, Theorem 3.6], so we omit the details
here. m

4.2. Weighted estimates for the multi-sublinear maximal function. Given f =
(f1,--., fm) with every f; being a locally integrable function on X, we define the maximal
operator M by

M@W»—gﬂlﬁméummwwy v € R™,

where the supremum is taken over all balls B C X containing x.
We use the following notation. For p € (0, 00] and weight w € A, denote by LP(w)
the collection of all functions f satisfying

1
o= [ 1r@Po ] <o
Analogously, we denote by LP*°(w) the weak space with norm
1f 1 Lrroe () = iggt[w({x € X :|f(x)] > th]'P,
where
w(B) = [ i) duta)

for all sets E contained in X.
THEOREM 4.4. Let1l <pj,...,pm <0 andl/p=1/p1+---+1/pm. Suppose that v and
allwy, j € {1,...,m}, are weights. Then (v;w) € Ap if and only if the inequality

IM(F) vy < C TT £ 223 (4.3)

j=1
holds true for all f = (f1,..., fm) € LP (wy) X - -+ x LPm (w,,).
Proof. Suppose that holds. Let
M= M| o1 (wr) - x Lom (wpn )= L252 (0) -

Then, for any f € LP'(wy) X - -- X LP™ (w,,), by the differentiation theorem for integrals
on (X,d, i), we see that, for all € € (0,1),

[mewmymﬁum

{v(ve B: Mlixa..fxe)@) > e [[1506)} " TT 1515
j=1 j=1

IN

1 m
SIMITTI5xBl 2 ) (4.4)

j=1

IN

where

1
|mymmﬁym»ww
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for all j € {1,...,m}, and v denotes the measure given by

v(E) ::/Eu(z)d,u(z)

for all sets £ C X.
For j € {1,...,m}, we set f; := wl 1fpj > 1and f; := xs,, if pj = 1, where

Sin = {xGB wj()<77—|—i%fwj},

7 is a positive sufficiently small constant, and inf is the essential infimum. Then, by (4.4)),
we see that

{/Bz/(a:)du(x)}l/ I u( »)7 11 ﬁ/lgwj(x)l_p; du(z)

{j:p;=1} Jipi>1}
, 1/p;
<Y 11 / @) T | [ wier = auo)
{5:p;=1} {:p;>1) M7 B
1 , 1/p;
<t IT ws(ornfes) T | [ w@ #aw)]
{j:ps=1} (ips>1p BB

Letting € — 1 and  — 0, we then conclude that (v;@) € A and
[(v; @)]a, < M|

Now assume that (v; @) € Ag, that is, (v; W) satisfies (4.1). Applying Holder’s inequal-
ity, we obtain

M SupH i [ ) ) o [ [t vy

Bam ,

< (s, TTIMLF Py )@ P

j=1

Here we remark that, when p; = 1, to obtain the second inequality, we just need to replace

Lt(lB)/Bwj(y)—P;/pj d“(y)r/p;

by (infp wj)_l. Denote by M,, the weighted Hardy-Littlewood maximal function,

/\f o(y) duly), Ve € X,

Mf)a) = sp s
B>z JgV

where the supremum is taken over all balls B of X’ containing x. Since v is an A, weight,
it follows that v(z)du(z) is a doubling measure (see [95, p. 8, Lemma 12]) and M, is
bounded from L!(v) to L}*°(v). From this and Holder’s inequality for weak spaces (see
[40, p. 10, Exercise 1.1.2]), we deduce that

X — _ " 1/ps; . .
M) ooy < (3 @)™V T 03/ 1M (1705 /)P | s oo )
j=1
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— _ 1/p; . 1/p;
= ()] a7 Ty 1M (1P /)
j=1

- - . j
< [(v;&)]ag Moz vy = L1 )P 1/pHp/p I £5ll 275 ()
j=1

This concludes the proof of Theorem [£.4] m

The following theorem shows that the hypothesis (v;w) € Ap is not strong enough
to imply the boundedness of M from H;”:l LPi(w;) to LP(v). The proof here is partly
motivated by the work of Pérez [8§].

THEOREM 4.5. For1 < pi1,...,pm < 00 and 0 < p < oo such that 1/p = ZT:l 1/p;, the
assumption (v, W) € Ap does not imply that M is bounded from LP* (wy) X - -+ X LP™ (wyy,)
to LP(v).

Proof. We prove the conclusion by contradiction. Assume that, for all weights v and
{w;}", satisfying

Jj=1
1 1/p m 1 ' 1/17;-
sup /l/xdﬂx} {/w-x_pjpjdux} =: K <oo, (4.5
s g [, v vt NG ™ )
and for all f; € LPi(w;) with j € {1,...,m}, we have
. m p/P;
/X[M(f)(ff)]pV(fE) du(z) S T { /X |f5 ()P w; () dﬂ(«’ﬂ)} : (4.6)
j=1
Fix xg € X. Forany 1 <j <mand N € N, set
w) = XBaon) + NXer\pe1) and vy = [JIM((w))775/P))#/ws,
j=1
Obviously, all vy and wjv are weights, and (vy;Wy) with Wy = (wl, ..., wl) satisfies
(4.5) with constant K = 1. If we now choose f; := XB(z,1), then (4.6) becomes

[M(XB(x0,1)) ()] .
/ - dp(x) S p(B(wo, 1)) (4.7)
/X [T/ swpcx,Bse {ﬁ Jr wJN(y)*Pj/pj du(y)}p/pj 0

Obviously, the left side of (4.7 is not less than

[M(XB(x0,1)) ()] ) = T x
/X M(XB(ag 1)) () =572 P75 dule) = /XM(XB(WU)( i)

BNB 1
> / qup MBOBEOD)
d(x,x0)>10 BCX, B3z .U(B)

M(B(.%‘o, 1))
= /d<x,xo)210 1(B (o, 2d(, 0)))

= o0;

du(z)

but the right-hand side of (4.7)) is finite. This contradiction completes the proof. m
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To obtain the strong boundedness of M, we assume that (v; &) satisfies some power
bump conditions as in below. For m = 1 and X = R"”, this type of power bump
conditions appears for the first time in the work of Neugebauer [87] but with an extra
power bump in the weight v. Pérez [88] then removed the power from the weight v and
replaced the power bump in w by a logarithmic bump or a more general type of bump
(see also [89, 0] and the book [24]). In [45], it was proved that, if (v, @) satisfies a
certain power bump condition, which is defined by replacing balls with rectangles of R"
in , then the multilinear strong maximal function satisfies the corresponding strong
type mutiple weighted estimates. Also, Moen [83] used such bump conditions to study
weighted inequalities for multilinear fractional integral operators.

THEOREM 4.6. Letl < pi,...,pm < oo and1l/p=1/py+---+1/pm. Suppose that v and
allwj, j € {1,...,m}, are weights. If, for some r € (1, 00),

1 1/p m 1 ' s 1/(rpj)
v;w)la, = su — [ vd 7/w»Tj ’d ] 4.8
( )]AP” balls [E)CX LL(B) /B M] 11;[1 [M(B) B s (48)

is finite, then there exists a positive constant C' such that, for all f with each fj € LP3 (w;),
M)l Lr @y < Cllvs @) H 1511273 () (4.9)
Proof. For any N € Nand z € X, set

My(F)@ = s [ [ 150l duty)
B>z, rp <N

where, for any ball B of X', we use rp to denote the radius of B. It suffices to show

that there exists a positive constant C, independent of N, such that, for all f with each

fi € L (wy),

My (P )lzrey S @) as, TT 151w s (4.10)

j=1
since once (4.10]) holds then (4.9) follows by letting N — oo and applying the monotone
convergence lemma. Moreover, by the density of LY (X) in LP4 (w,) foreach j € {1,...,m},

it suffices to show that (4.10) holds true under the assumption that each f; € L{°(X).
To this end, we assume that every f; € Ly°(X). Fix N € N. For any k € Z, we set

Q= {z e X: My(f)(z) > 2"}
If £ € Qp \ Qk+1, then there exists a ball B, C X satisfying rg, < N, B, 3 « and

ok +l > 31;[1 @ /B |f3 ()| dp(y) > 2~

This implies that B, C Q \ Qg+1, and hence

O\ Qg1 = U B..
2€Qp\ Q1
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Applying the basic covering lemma (see Lemma to the family of balls

{Bac cx € Qg \ Qk—i—l},
we obtain the existence of a sequence {B%},c;, of pairwise disjoint balls contained in
Q \ Q41 such that

Qg \Qk+1 C U 532

acly,

and
m

240> [ s [ 150l duty) > 2"

j=1
Notice that balls in {B¥ : k€ Z, a € I k} are pairwise disjoint. Therefore,

My (I, }jA P @)Po(a) du(z)

kez k\9k+1
< 2P (O \ Qpga)

keZ
: ST -2 [ ]
<23 S v 1 g [, 1wl awe] -

By the bump condition of (v; @), Holder’s inequality and the doubling property of u, we

see that
/;guwyndu@ﬂp

) -

v S)II[MC;@t/ 1@ [y ()72 ()

p/(rp})’

]p/(rp})

1 (a))]— TP/ P
x[ﬂ(ﬁ)/ggwxyn auly)

Sy

B . T oy () /D
< [(V;w)]imu(B(’i) _inf, H[M(\fjl( 23 ap TP (@) P )

Inserting this into (4.11]) and using the disjointness of { BX } kez. aer, and Hélder’s inequality,
we obtain

‘|MN(f)||z£p(y) iﬁ Z Z/ H |f | p})’ (Tpﬂ)/pf)( )}P/ Tp}) d,u( )

kEZ acly a] 1

Swa);, /X H[ MU 0 P PO dy)

m

7N/ . Iy P/Pj
{ApmmWﬁ@””wmwwﬂww}

Slwali, 1

Al

Sesad)h, T ),
J:



4.2. Weighted estimates for the multi-sublinear maximal function 33

where, in the last step, we used p;/(rp})’ > 1 and the fact that M is bounded on L?(&X)
for all ¢ € (1, 00]. This proves (4.10) and finishes the proof of (4.9)). =

As a corollary of Theorem and Proposition ii) the following conclusion holds.
THEOREM 4.7. Let P := (p1y--eyPm) With1 < p1,...,pm <00 and 1/p=1/p1 +- -+

1/pm. Then @ := (w1, ... wn) € Ap if and only if there exists a positive constant C' such
that, for all f := (f1,..., fm) with each fi € LIOC(X)
M) 2o () < C H 1fill 273 oy - (4.12)
j=1

Proof. Necessity follows from Theorem so it remains to prove sufficiency. Assume that
W € Ap. By Proposition ii), each w;pj /s is in the Muckenhoupt class A, , we thus
apply the reverse Holder inequality, that is, there exists 7; > 1 such that, for all r € [1,7;]

and all balls B,

{1/ w; ()PP d (x)] v < L/ w;(z) PP dp(x)

w(B) J5" e BT
This implies that (vz, W) satisfies the bump condition with respect to r. Therefore,
is a consequence of Theorem n

We conclude this subsection by showing that H;w:l M(f;) satisfies weighted weak-

type estimates by means of mixed weak-type inequalities. By the Calderon—Zygmund
decomposition and the Marcinkiewicz interpolation, we proceed as the classical arguments
(see |28, p. 37]) and conclude that, for any non-negative measurable function w and
p € (1,00), there exists a positive constant C, depending only on p and the doubling
constant C4, such that, for all f € LP(M(w),dpu),

/A4 o) du(e <c/u P M (w) () du(z) (4.13)
and, for all f € L*(w,dp),
C
/ wummws;/ﬁmMMwmwww» A > 0.
{zeX: M(f)(z)>A} X

Applying (4.13) and Holder’s inequality, we see that, for 1 < p1,...,p, < co and 1/p =
1/p1+ -+ 1/pm, there exists a positive constant C such that, for all f = (f1,..., f) in

the m-fold product LP* (M (w1), du) oo x LPm (M (wp), dﬂ)
HH Lp( <CH”M fi) HLP'](wJ) <CH||f7HL"J M(w;),dp)>
Jj=1

where vg = H;n 1 wp /P If there exists some p; = 1, we have the following weak-type
conclusion for the operator M by means of Theorem [£.4]

COROLLARY 4.8. Letl < py,...,pm <o0andl/p=1/p1+---+1/pm. Then there exists a
constant C' > 0 such that, for all (f1,..., fm) € LP*(M(w1),dp) x - -+ x LPm (M (wp, ), dp),

| TTMm,, . < O TT s sy
=1 j=1

where vg == [, WP

< (va)
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Proof. By Holder’s inequality, we have

sup L(lm | vt duto

<11 [ [ ane] [ [ M) ance)

[M(IB)/BM(wj)(g;)l—p; dﬂ(x)} 1/p}

1/p}

: ﬁ [ 2 M(wj)(x)} " [Sup M(wj)(x)l‘pg} "

with the usual modification if p; = 1. This, together with Theorem@ implies the desired
conclusion. =

4.3. Weighted estimates for multilinear Calderé6n—Zygmund operators. In this
subsection and the following two subsections, we assume that 7" is an m-linear operator with
a kernel K € Ker(m, Ck, ¢) for some Cx > 0 and ¢ € (0,1), and that T maps L9 (X) x
<o X LA (X) to LY(X) with norm ||| a1 (x)x...Lam (x)—La(x), Where 1 < gy, ..., gm < 00
and 1/q =1/q1 +---+1/¢y,. Based on Theorem[3.3] T is bounded from the m-fold product
space L1(X) x --- x LY (X) to LY/™>(X).

Our main goal in this subsection is to prove the multiple-weight boundedness of
the multilinear Calderén-Zygmund operator 7". This indeed follows from a Cotlar-type
inequality (see Theorem [4.12] below) and the Fefferman-Stein type inequalities related to
sharp maximal functions (see Lemma [4.11] below).

DEFINITION 4.9. For any given locally integrable function f on (X, d, 1) and for allz € X,
the sharp mazimal function M® f(x) is defined by

1
Mif) = swp /B F@) — fol duly):

here and in what follows,
o =57 [ S0 duto)
Moreover, for any § € (0, 00), set
Mif(z) = (ML) @}, we X
REMARK 4.10. Observe that, for § € (0, 00), by the inequality
min{1,2° "' }(a® +b°) < (a 4+ b)° < max{1,2°"'}(a® +b°), a>0,b>0,

we have
1/6

Mifo) ~ s int | [ |71~ 1] duto)

Bz c€
The following lemma serves as an analog of the classical Fefferman—Stein inequalities in
[31), 18]. It should be remarked that, in the setting of spaces of homogeneous type, Martell
[79] Corollary 4.3] proved a kind of Fefferman—Stein inequality for another sharp maximal
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function defined via certain approximations of the identity of Duong and McIntosh [30].
Our proof here invokes some ideas from [79)].

LEMMA 4.11. Let 0 < pg < p < 00 and w € Ay. Then there exists a positive constant
C :=C([w]a,C1,p) such that, for all f € Li (X) satisfying M f € LPo>(w),

(i) if po < p and p(X) = oo, then

Ml Lo (wy < CIMEFll o)
(ii) f po < p and u(X) = oo, then
[MF || ooy < CIIMP ]l oo ()
(iii) if po < p and p(X) < oo, then
IMFllLraw) < CUIFlLry + IMEFllew);
(iv) if po < p and u(X) < oo, then
M|l ooy < CUIFLr ) + 1M Fll oo ()

Proof. Using the Calderon-Zygmund decomposition, we obtain the “good-\" inequality:
for any given v > 0, there exist positive constants 6y and C, depending only on C7, v and
w, such that, for all f € L*(X) and A > || f|| 12y /1(X),

w({z € X : Mf(x) > 203\, MPf(x) < ~A})
< CyPow{z e X : Mf(z) > A}), (4.14)
where we recall that w(E) = [, w(z) du(z) for any set E C X.
To prove ([.14)), for every f € L*(X) and A > || f||11(x)/p(X), we set
D ={ze X : Mf(z)> A}

Then ) is an open proper set of X with finite measure. Applying Lemma [2.8 with
Q = Q) and the constant ¢ therein equal to 10, we obtain sequences {zy}r C X and
{rr}r := {dist(zy, 2C)/20} such that

Q)\ = U B(xk, ’I"k),
k
{B(xr,7/4)} 1 are pairwise disjoint, B(xy, 30r,) NQx # 0 and {B(z, ri) }x has the finite

overlap property. This implies that the proof for (4.14)) can be reduced to the following
estimate:

w({z € B(xg,ry) : Mf(x) > 203N, MPf(2) < AN} SAPw(B(ag, ), V.
To prove this, it suffices to show that, for all k,
p({a € By, i) : Mf(2) > 207N, MEf(x) < A}) S yu(B(xg, 1))- (4.15)
Indeed, the hypothesis w € A, implies the existence of constants Cy > 1 and 6y > 0 such

that oo

w(B) u(B)
for every ball B and every measurable set £ C B.
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Set By := B(xg,ri). We may assume that there exists 2o € By such that
M f(0) <X

otherwise, (4.15) trivially holds true. We may assume that B(z, 30r;) N Q, # 0 contains
a certain point yg; then

|fls0B, < Mf(yr) <A
and hence

M| fls2Br X328 ) < |fl32m, < A

For every z € By, satisfying M f(z) > 2C$ ), there exists a ball B 5 z with radius rp such

that

1

5y . L 2
201 < iy [ W) < G [ wldu),

which, combined with Mf(yx) < A, gives that y ¢ B(x,2rg). Thus, 2rp < 31r; and
therefore B(z,2rp) C 32By; moreover, M(|f|x325,)(z) > 2C1 A and

M((Lf] = | fls2B)x328,) (x) = M| f[x328, ) (2) — M(|fla2B, X328, ) (z) > C1A.
Summarizing all these we conclude that the left hand side of (4.15) is bounded by
n({z € Blzg,rk) : M((If] = [fls28, ) x328, ) (x) > C1A})

M| ;1 1,00
< M=) / F @) — | Fla2m| di(y) S u(32BR)ME f(a0) S (B ).
C(1/\ 32By

This proves (4.15)) and hence (4.14]).

Let A :=2C%. To prove (i), for each N € N, we set

AN
Hy = 2,,/ AP Luw({z € X s Mf(z) > 2)}) d),

0
Fix 9 € X and R > 0. Write f = gr + hg, where gr := fXB(z,r) a0d AR 1= [Xp(sy,m)C-
Then

AN
Hy < 2”/ PP lw({z € Xt Mgr(z) > A}) d)
0

AN
+ 2”/ pNPrw({x € Xt Mhr(z) > A}) d)
0

= HN7R + ﬁN,R-
We claim that
lim Hy, g = 0. (4.16)

R— o0

Assume for the moment that (4.16)) holds true. Since p > pg and M f € LPO>*°(w), it
follows that Mgr € LP**°(w) and hence

AN
Hyr < 2’7/0 pAp71A7p°||MgR\|i‘}J0,m(w) d\ < oo.
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By this fact and (4.16)), one finds that Hy is finite for large R. Since gr € L*(X) and it
has bounded support, we apply (4.14)) to obtain

N
Hy g = (2A)p/0 pANrw({x € X - Mggr(x) > AN}) dX
N
< (2A)p/0 PN lw({z € X Mgp(z) > AN, MPgp(z) < yA})dA
N
+ (214)1)/0 PP rw({x € X MPgp(z) > YA}) dA

_ N
<GP [V tul(e € X' Man(e) > A dh+ AV IME I,

< 5<2A> YO HN + QAPIME ST, - (4.17)

Notice that (4.16] implies that Hy = limpr_,oc Hy, . Thus, in (4.17)), by letting R — co and
choosing small enough such that C(24)Py% < 1/2 we Conclude that Hy < [[MAf]17,
Then letting N — oo we obtain (i).

Now it remains to prove . Since Mhr(z) < Mf(z) for all x € X, p > py and
M(f) € LPo->°(w), we have

AN
/ pAPrw({z € X : Mhr(z) > A}) d) < oo.
0

Thus, (4.16]) follows from the dominated convergence theorem and the fact that
lim Mhgr(z) =0, VredlX. (4.18)
R—o00
To see that (4.18)) holds true, observe that, for any fixed z € X', Mhg(x) is decreasing as
R — oo. Assume that (4.18) fails, that is, there exists x; € X such that
lim ./\/lhR(l‘l) =co > 0.
R—o0
For x € X, set
R, = max{d(z1,x0), d(z,z0)} + 1.
Then z,z1 € B(xg, R;). For all x € X and R > 4R,

1
cSth:supi/ fy)| du(y
0 r(@1) B3, H(B) B\B(mo,R)‘ W)l duly)
1
<Cpsup o | )l duly)
! r>0 [L(B(ZL’l,T)) B(z1,r)\B(z0,R) ‘ (
1
=C7} sup 7/ F@)l duy
Y =3r, p(B(x1,1)) B(acl,r)\B(:co,R)| W)l dp(y)
< CiM ().
Thus, with g := 00072/2 we have
Mo N'w({z € Xt Mf(x) > Ao})

w) 2
> hm MNPw({z € X: R>4R,})
= o0.

This contradiction implies (4.18). Thus, (4.16) holds and we complete the proof of (i).
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To prove (ii), for every N € N, set A := 2C5 and
Jn = sup 2°XPw,({z € X : Mf(x) > 2A}).
0<A<AN
Then we argue as in the proof of (i) but using Jy instead of Hy, the details being omitted.
The proofs for (iii) and (iv) are similar to those of (i) and (ii), the presence of an extra
term || f|| L1 (x) is due to the fact that holds only for A > || f[| 1 (x)/1(X), the details
being omitted. m

THEOREM 4.12. Let v € (0,1/m). Then there exists a constant C := C(y,m,d,C1) > 0
such that, for all f € LPY(X) X -+ X LPm(X) with 1 < p1,...,pm < 00,

—

ME(T())(x) < C(Cx +W)M[(a), (4.19)
where

W= ||T||L1(X)><~--xLl(X)ﬂLl/mvw(Xy
Proof. Let v € (0,1/m). Fix a point z € X. To obtain (4.19), by Definition and

Remark 4.10, it suffices to prove that, for any ball B containing x, there exists cg € C
such that

1/y
| [T = ol auta)] S (€ wimiTa) (4.20)
Let zp and rp be the center and radius of B, respectively. For j € {1,...,m}, we set
fjo = fixp~ and f° = f; — f] , where B* := B(zp,5rp). Then
[AHw) =TI w)+£2wn= ]I (1) S (ym)
j=1 j=1 ai,...,om €{0,00}

I 5w+ S ) o ),

where each term of 3’ contains at least one a; # 0. Write FO = (f2,..., f°) and
T(f) fO )+ Z o fom)), (4.21)
Set

H ( )‘f HLI(X)
LY(X) t

Since T is bounded from L!(X) x o L'/™>°(X) with norm W, we obtain

—_

1 - , 1/~ B WA . | B
[MB)/BIT(J”O)(z) du(z)} = L()/O W u({x € B T(f0)(2)] > t}) dt
1

1/~

s T (e € B T(O):) >t}>dt}

|:< +W1/mA1/m/

/v
,yt'y—l—l/m dt:l
WA
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Without loss of generality, we may assume that a;, = --- = a;, = 0 for some
{j1,---,Je} € {1,...,m} and 0 < £ < m. By convention the set {j1,...,j¢} is empty if
¢ = 0. Recall that x € B. Then for any z € B, by the regularity condition (3.2]), we have

T ) (2) =TT ) (@)
d(z,z) O TS 1£57 ()
< CK/m { e yk)] [ o dp(yn) - dp(ym)

maxi<k<m Zk 1 (Z7yk)]

<O [ 15 )

5
2rp ] igpn,.i0 1Fi(y))l
8 m7 ; d Yy o.d Ym

/(X\B ym—t {max1<k<m dz,ye) | oo, Viz,ue)™ w(y1) 1(Ym)

< Ck / f3, L (Y5) - j (i)
Z S Tie i (8 B*)m=\(3k -1 Br)m =t

% [ 2rp } ng’t‘{jl,...,jg} |fJ(yJ)‘
maxy<p<m d(z,96) | 2oty Vi(z,ye)]™

o0
SOk >3 [ U ) A )
k=1 (B*)

Hje{jl,...,jg} |fj(yj)|
. /(3kB )ym [M(B<Z 3krp))m

du(y) - - dp(Ym)

dp(y1) - - - dp(ym)

SCkYs ’“5H g [, )] i)

k=1

S OKM(f)(JS)-

Define cp in ([#20)) to be cg := 32" T(f --- f&m)(x). Then from (4.21)) it follows that
the left hand side of (4.20]) is bounded by

1/7-1 [M(lB) | e du(Z)] "

+21/vl[1/ ST fam) () = TR fa) @) diz)
(v

1/~

n(B
S (W + Cr)M(F) (),

which completes the proof. m

PROPOSITION 4.13. Let w be an A weight and p € [1/m,00). Then there exists C > 0
such that, for all bounded functions f with compact support, if p > 1/m, then

T oy < CIMUG) Lo ), (4.22)

and if p > 1/m, then
T o ) < CIME) | o () - (4.23)
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Proof. We only prove (4.22]) since similar arguments give the weak-type estimate (4.23)).
For every N € N, set w,, := min{w, N}. Then w, € A, and Fatou’s lemma implies that

T e < B TG o
Since each function f; is in Ly°(X), by assumption,
T:L%(X)x - x LI"(X) = LY (X)
for some indices 1_,§ q1y---5Gm < o0 and 0 < q < oo satisfying 1/¢ =1/q1 + -+ + 1/qm,
we know that T'(f) € L¥*(X), and hence |T(f)|” € L{ (&) for all v € (0,1/m). Then,

loc

using Lemma, i) and (4.19) we see that, for any fixed v € (0,1/m),
||T(f)||Lv(wN) < ||[M(lT(f)lv)]l/Vllm(wN)
SIMET N Lrw,,)
S (Cx + WMl zrw,)
< (Cx + W) M) | Lo )
which gives (4.22)) by letting N — oo, provided that we can show that, for some py € (0, p),
IMAT )M zroe wy ) < 00 (4.24)

To see (4.24), we choose pg = 1/m. Then, applying v < 1/m < p, [|[wy||p~@) < N
and the fact M is bounded on L™*°(X) for all r € (1,00) (see [40, Exercise 2.1.13]), we
obtain

IMATE) PN s,y < NIMATEDI

L1/(m).00 (X

1 r 1
< NIMI s oty 221002 ey IO o oy

1 -
= NIMI L s ) £/ e ey 1T gm0,
which is finite since T': L'(X) x --- x L' (X) — L'Y/™>(X). Hence, ([4.24) holds. m

Consequently, this proposition, together with Theorems [4.4] and implies the fol-
lowing weighted estimate for multilinear Calderén—Zygmund operators.

COROLLARY 4.14. Letl < p1,...,pm < 00,1/p=1/p1+--+1/pm and P := (p1,...,pm).
Suppose that v € A and {w;}7", are weights. Let W := (w1, ..., wm). Then:

(i) ifp; > 1 forallj e {1,...,m} and (v; W) satisfies , then T can be extended to a
bounded m-linear operator from LP*(w1) X -+ X LP™(w,,) to LP*°(v);

(ii) ifp; > 1 forallyj € {1,...,m} and (v; W) satisfies the bump weight condition for
some r > 1, then T can be extended to a bounded m-linear operator from LP*(wy) X
coo X LPm(wyy,) to LP(v).

In either case, the norm of T is bounded by C(Cr + ||T|| La1 (x)x-.. x Lam (x)—La(x)), where

C' is a positive constant depending on m,d,Cy and [(v; )] a; (or [(v;W)]a, ).

Likewise, Proposition together with Theorems [£.4) and [4.7] implies the following
weighted estimate for multilinear Calderén—Zygmund operators.
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COROLLARY 4.15. Let 1 < p1,...,pm <00, 1/p=1/p1+ -+ 1/pm, P.= (P1y- -y Dm)s
and W := (w1, ..., wy) € Ag. Then:

(i) T can be extended to a bounded m-linear operator from LP*(wy) X -+ X LP™(w,,) to
L?(vg) if all the exponents p; are greater than 1;
(ii) T can be extended to a bounded m-linear operator from LP*(wy) X - -+ X LPm(w,,) to

LP>°(vg) if some of the exponents p; are equal to 1.

In either case, the norm of T is bounded by C(Ck + ||T|| L1 (x)x-..x Lam (x)—La(x)), where
C is a positive constant depending on m,d,Cy and [w]a ;.

4.4. Weighted estimates for maximal multilinear singular integrals. Let T be as
in the previous subsection. Define the maximal truncated operator by

—.

T*(f)(x) =sup [Ta(f1,- .-, fm)(@)], Vo€ X,
a>0
where, using the notation 7 := (y1,...,ym) and du(¥) := du(y1) - - - dp(ym ), we set

Tolfoed)@ o= [ K un) i) ) 409
L d(zyg)>a

Such maximal truncated operators for multilinear integrals on (R™)™ were first introduced
in [54]. In the Euclidean setting, it was proved in [54] that if multilinear Calderén—Zygmund
operators are bounded at one point, say T : L7 (R™) x - -+ x LI (R"™) — L9(R™) for some
1<q,....,qm <ocand 1/g=1/q1 + -+ 1/Gm, then

T : LPY(w) X -+ x LPm(w) — LP(w)

forall 1 <pi,...,pm < oo where 1/p=1/p1 + -+ 1/py, provided w € (< ;<,, Ap;-

Notice that the size condition of K implies that 7*(f1, ..., fin) is pointwise well-defined
when f; € L% (X) with ¢; € [1,00]; see [53 p. 1263]. The goal of this subsection is to
obtain the following multiple weight norm estimates for 7.

THEOREM 4.16. Let 1 < py,...,pm <00, 1/p=1/p1+ -+ 1/pm, P = (p1,....pm),
and W := (w1, ..., wy) € Ag. Then:

(i) T* can be extended to a bounded operator from LP*(w1) X -+ X LP™ (w,,) to LP(vg) if
all the exponents p; are greater than 1;
(ii) T* can be extended to a bounded operator from LP*(w1) X « -+ x LPm (wyy,) to LP*°(vg)

if some exponent p; is equal to 1.

In either case, the norm of T* is bounded by C(Crx + ||T'|| Lar (x)x... x Lam (x)—La(x)), where
C' is a positive constant depending on m,d,Cy and [w]a ;.

Consequently, this result, along with Theorems [4.4] and implies the following
weighted estimate for multilinear Calderén—Zygmund operators.

THEOREM 4.17. Let1 < p1,...,pm <00, 1/p=1/p14---+1/pm and P := (p1, ..., pm).

Letv € As and {w;}7", be weights. Let w := (w1, ..., wy). Then:

(i) ifp; > 1 forallyj € {1,...,m} and (v; W) satisfies (4.1), then T* can be extended to a
bounded operator from LP* (wy) X - -+ X LP™ (wy,) to LP*°(v);
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(i) ifp; > 1 forallj € {1,...,m} and (v; W) satisfies the condition (4.8)) for somer > 1,
then T* can be extended to a bounded operator from LP* (wy) X « - - X LP™ (w,) to LP(v).

In either case, the norm of T' is bounded by C(Ck + ||T|| a1 (x)x-..x Lam (x)—La(x)), where
C' is a positive constant depending on m,d,Cy and [(v;@)]a; (or [(v;wW)]a, ).

We only prove Theorem [4.16] since the proof for Theorem [£.17] similar. We need the
following Cotlar-type inequality.

PROPOSITION 4.18. For ally > 0, there exists a positive constant C' := C(m, Cy,d,) such
that, for all f == (f1,..., fm) with every f; € Ly°(X) and x € X,

T*(f) () < C{M(T(F)) @) + (Cx + W)M(f)(x)}, (4.25)
where
W= ||T||L1(X)><~~-xLl(X)aLl/mwoc(X)-

Proof. By Holder’s inequality, it suffices to show that (4.25) holds for v € (0,1/m). Fix
v €(0,1/m) and x € X. Set

Sa(z) = {ge XM sup d(z,y;) < a},

1<j<m
Ug() := {yES deyj >oz}

For any § € U,(z), there exists y;, such that d(az, Yjo) = ¢&/m. From this and the doubling
property of pu, it follows that

n(B(z, ><0m012:m%

Thus,
| | AXxvyh.n7ym>fmy1>~-fm<%n>du@n\
a>0 | JU,(z)
su CK|f1(y1)"'fm(ym)| s
%ﬁﬁm ST Vg MW
- Lf1(y1) - fon(ym) -
SQﬁﬁlﬂ@ (B, aym )
S CrM(f )( )-

Therefore, it is enough to prove that (#.25) holds with 7*(f) replaced by

(f
T*(f)(z) = (Sllip()'Ta(flw-wfm)(mH
where
Ta(fis.- ) (@) == [gs ( )K(w,yh..',ym)fl(yl)~~~fm(ym)dl~t(z7)~

Fix @ > 0 and let B(z,a/2) be the ball centered at = and of radius «/2. From
every f; € L°(X), together with the boundedness of T from L'(X) x --- x L}(X) to
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LY™2(X) (see Theorem , it follows that T'(f) € L™ (X), and hence it is finite
almost everywhere. For a > 0, x € X and z € B(z,«/2), we set

Ga(f)(xv Z) = [gs () K(Za Y- 7ym)f1(y1) U fm(ym) dﬂ(g)
Yy alZ
Observe that, for all z € B(z, a/2),

I Ta(F)@)] < |Ta(f)(@) = Gal )@, 2)| +1T(F)(z) = T(fo)(2)], (4.26)

where fy 1= (leB(a:,a), cees meB(x,a))~
Applying the regularity condition ([3.2]), we obtain

To(f)(x) = Galf)(, 2)]
5 m o
< CK/ { d(z, z) H] 1 |f](yj)‘ du(f). (4.27)
yQS'a( )

max<p<m A, yr) | 2311 Vw,ye)]™
Notice that the right hand side of (4.27)) can be written as a sum of integrals over sets
Rj, .., for some {j1,...,j} € {1,...,m} so that, for ¥ := (y1,...,ym) € Rj, .. j,, We
have d(z,y;) < o if and only if j € {j1,...,je}. Set

{k1, .. km—e} ={1,...,m}\ {41,.-.,Je}-
Then m — ¢ > 1 and
[T=y [£5(y;)]

Lol
veny . Lmaxicrem d(@ ) | o Ve Y
<ol / 1) da(y;)
je{m, dlwyy)<e

1 "I e ()
X S dp (Y, ) - (Y, )-
/<X\B<m,a>w [maxl<k<m i, ykﬂ STV (g V) A )
Since

1 ’ Hmif|fk (Yk,)
S dp(Yky ) - Ay,
/mB(m,a»me [maxl<k<m i, yw] S Vg ) k)
</ Hi:l |fk7(yk7)
~ @ syt dwue>ar [0 d(@y)P [0V ()™

dp(yr, ) -+ - dp(yr,, )

oo
- /
=0 /2 a< T d(@ye, ) <2 Hla

— 1
Z 29 29+1 m H L(w2*+1 |fk yk)

9:0

(yki)a

we have

[ d(z, 2) H;n:1 £ (yj)] ()

&
Maxi<k<m d(ﬂﬁ,yk)] [Z}f L V(@ yi)™
Tz L [ g 1609100
()@

A
NE

Il
=]

S

2
<
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Combining this with and ([£.26)), we see that for all z € B(x, o/2),
ITa(f)(@)] S CxM(F)(@) + T+ T (o) (2)]- (4.28)

Raising (4.28)) to the power v, taking integral average over the ball B := B(x, a/2) with
respect to the variable z, we obtain

To(F) (@) S [CkMF) @) + MIT(F)]) (@ |B|/ IT(fo) ()" du(z).  (4.29)
Since

/B T(o) ()] dulz) = mry / TN (s € B TR) )T > AY) d

o m
< m7/0 AL min {M(B), A~ lwt/m H |ijB(x7a)||2/1’(”X)} dA

j=1

S /J(B)l_mWW’Y H HijB(m,a)HL(X),
j=1
we then conclude that

1 - 1 1 1 fiXB@a o -
{@ Lo e SIS M)

Combining this with (4.29)), we obtain (4.25)). m
Proof of Theorem . To prove (i), we apply Proposition to obtain
1T (F) Lo ey S MMATENN o) + (Crx + WM |10 (1) -

Theoremnlmphes that [|M(f )”Lp(l/w S T2y 1£51l 27 (w;)- By Proposition ii) and
W€ Ap, we have vy € App,. If we choose 0 < v < 1/m, then vz € A,/ and

IMATOM N iom < M oo T ) € T2 o
j=1
where, in the last inequality, we used Corollary [4.15(1). This finishes the proof of Theorem
110/1).
Using Proposition Theoremand Corollary4.15(ii), together with an argument
similar to the proof of (i), we obtain (ii), the further details being omitted. m



5. A multilinear 7'1-theorem on Lebesgue spaces

The linear T'1-theorem was obtained by David and Journé [25]. Multilinear T'1-theorems
have been obtained by Christ and Journé [I7] and Grafakos and Torres [53]. In this section
we extend the latter to the context of RD-spaces. The multilinear T'1-theorem provides a
criterion for the boundedness of an m-linear Calderén—Zygmund operator on products of
Lebesgue spaces.

5.1. Some lemmas on multilinear Calderé6n—Zygmund operators. The following
lemmas for the case X = R™ were proved in [53]. The proof of Lemma is similar to
that of [53, Lemma 1], the details being omitted.

LEMMA 5.1. Fizxg € X and n € (0,1]. Assume that v» € C®°(R) is such that 0 < ¢ < 1,
P(t) =1 when |t| < 1, and ¥ (t) = 0 when [t| > 2. Define
Ui(z) = (27 d(x, 20))

for allx € X and k € Z. Every m-linear Calderon—Zygmund operator T with a kernel
K € Ker(m,Cg, ) for some Cx > 0 and 6 € (0,1] as in Deﬁnition can be extended
to the m-fold product space (C"(X)NL>® (X)) x -+ x (C"(X)NL>®(X)) as an element of
(CJ(X)) via

T(fisevs ) (@) = Jim [TWfus oo f) @) + Gty bufu)] (5:1)

forallz € X, where

G(d}kfla cee aq/}kfm)

—/ K (0,91, ) (0 F1) (1) - (0 fon) () 1) « -~ A,
ming < <m{d(y;,20)}>1

and the limit is taken in the weak*-topology of (C} (X))’

REMARK 5.2. Forall f1,..., f,, € C)(X) and x ¢ ﬂ;"zl supp f;, since there exists ky € Z
such that supp f; C B(xo,2") for all j € {1,...,m}, we see that, when k > k1,
(i) fi(yz) = (27 d(y;, 20)) fi (y;) = £i(y;)

for all j € {1,...,m} and y; € X, which implies that the value of T'(f1,..., fm)(x) as
defined in (5.1)) differs from that in Definition 3.2 by the constant

—/ K(zo,y1, - Ym) fr(y1) -« fon(Ym) dia(yr) - - - dp(ym).-
IIlinlSjgm{d(yj,xo)}Zl

[45]
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However, this causes no difference when T'(f1,..., f) is considered as a function in
BMO(X).

LEMMA 5.3. Let K € Ker(m,Cy,8) and fn, € L®(X). Let Q1 be as in Definition[3.1]
For (z,y1,...,Ym-1) € Qm_1 define
Kfm ((E, Y1y .- 7ym71) = / K(l’, Yty sy Ym—1, ym)fm(ym) dﬂ(ym) (52)
x

Then there exists a positive constant 5, depending on X and m, such that
Kfm € Ker(m -1, 50K||fm||L°°(X)7 5)
Proof. Fix (z,y1,-.-,Ym-1) € Qm—_1. Without loss of generality, we may assume that

d@wO:K$%AM%w)

Then
m—1
Vi(z,y1) Z Vi(z,y) — V(). (5.3)
k=1
First we consider the size estimate of Ky, . Using (3.1) and (5.3), we obtain

|Kfm (xvyla e aym—l)‘

1
< Cillfullio [ty )

1
V(z,y1) + V (2, ym)]™

1
~ C m o d "o
K| fmllL (X)Z/y"“w 2td(my) V(@ y1) + V(@ ym)|™ plym)

where the notation d(y,,z) ~ 2%d(z,y;) means that d(y,,,z) < 2¢d(x,y;) for £ = 0 and

20 1d(z, y1) < d(ym, ) < 24d(x,y1) for £ > 1. Obviously, when £ = 0,
1 1
O p———
/d(ymﬂ‘)<d(1‘,y1) [V(l‘, yl) + V('T7 ym)]m [V(Iv yl)]mil

For each fixed ¢ > 1, using (2.2), we see that
/ 1

A(Ym,x)~2td(z,y1) [V(JJ, yl) + V(a:, ym)]m

< Okl e ) / dpi(ym)

dp(ym)

1
< dp(ym)
x/d(y,,”,m)wﬂd(z,yl) [V(x7 yl) + M(B(x’ 26_1d($a y1>))]m
—LlKk(m—1)
S
[V (z,y1)m?
Combining the last two formulae and summing over ¢, we obtain
CK||fm||L°°(X)< CCk|| frnll Lo ()
V(g™ = [0 Vi, y)mt
where we used (5.3)) in the second inequality. Here and in the remainder of this proof,
C denotes a positive constant depending on X and m.

‘Kfm(xvyla'--vym—lﬂ ,S (54)
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Set yo := x. Suppose that 0 < j <m — 1 and
dlyjy5) < | _max  d(,yi)/2.
Then d(y;,y}) < maxi<k<m d(z,yx)/2. Consequently, applying we obtain
Kt (Y0, Y15+ 3 Yoo s Ym—1) — K (Y0, Y155 U o5 Y1)
d(y;,y;) 1

§
= dp(Ym)-
) maxo<k<m-—1 d(yo,yk)} /X D onet Vo, y)l™ pym)
Finally, as we proved before,

< Okl fmllpex

1 1 C
A S Vsl ) 2 Wy S 5T G gt

which implies that Ky, has the desired smoothness estimate. From this and (5.4), we
deduce that

Ky, € Ker(m —1,CCk || fm|l 1 (x),0). =

REMARK 5.4. By symmetry, Lemma is true if we use any other variable in K instead
of Y. Given an m-linear operator T' and a fixed function f; € C}(X) for some j €
{0,...,m}, we define the (m — 1)-linear operator T, as

Tfj<f17"'7fj717fj+1?"'7fm) = T(fla'"afj717fjafj+la"'7fm)-

The transposes of T, satisfy
(Ty,)™ = (T*%)y,, ke{l,....j—1}, (5.5)
(Ty,)** = (T, ke {j,...,m—1}. (5.6)
Denote by Lp°(X) the set of all bounded functions on X with bounded support.
LEMMA 5.5. Let T be a multilinear operator with kernel K € Ker(m,Ck,d) which can
be extended to a bounded operator T : LP(X) X -+ x LPm(X) — LP(X) for some indices

1<p,pi,....,pm <ocandl/p=1/p1+---+1/pn. Given f,, € Ly°(X), let Ty, be asin
(5.4). Then T}, is an (m — 1)-linear Calderon—Zygmund operator with kernel Ky, given

by ,

Proof. Let f1,..., fm—1 € C/(X) and f,, € L;°(X). By Lemmal[5.3|and Deﬁnition it
is enough to show that, for every x ¢ ﬂ;";ll supp fe,

Tfm(f17~-~,fm—1)($):/ 1Kfm($7y1,---aym 1 H (ye) dp(ye)- (5.7)
xm= ol
To this end, take h € C}'(X) such that
m—1
supp h N m supp fe = 0. (5.8)
=1

By duality and the hypotheses, we obtain
<T(.f17 R fm—lv f’m)a h> = <T*m(f1a EERE fm—17 h)a fm>7
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where T*™(fy, ..., fm—1,h) is well defined and belongs to LPm (X) (with the convention
1" = oo and oo’ = 1). Also, (5.8) implies that T*™(f1,..., fm—1,h) is given by the
absolutely convergent integral

m—1
Z = K(x7y17"'7ym71> Hff y@ dﬂ‘ yf
xm =1

By this and (5.8)), we know that (T'(f1,..., fm—1, fm),h) is given by the absolutely con-
vergent integral

m—

/X {/X B @y Y H (ye) dp ye}h(x)du(l"%

which implies (5.7)). =

5.2. BMO-boundedness of multilinear singular integrals

THEOREM 5.6. Let T be an m-linear operator with a kernel K € Ker(m, Ck,0) for some
Ckx > 0 and § € (0,1), and T bounded from LI (X) x --- x LIm(X) to L1(X), where
1<q,q1, -, qgmn <o0andl/q=1/q1+---+1/qmn. ThenT extends to a bounded operator
from the m-fold product Ly°(X) x --- x Ly°(X) to BMO(X) with norm at most a positive
constant multiple of Cx + || T | Lar (x)x .. x Lam (x)— La- (X) -
Proof. Set
W= ||THL‘11(X)><~-xL4m (X)— L1250 (X)-

We prove the assertion of Theorem[5.6]by induction over m. In the case m = 1 the assertion
is a known result of linear Calderén—Zygmund theory; see [94] [40]. Next, we assume that
the theorem is true for (m — 1)-linear Calderon—Zygmund operators, and prove that it is
valid for the m-linear operators.

To achieve this, we fix a function f,, € Ly°(X) and define the (m — 1)-linear operator

Tfm(fla s 7fm—1) = T(fh e 7fm)
By Lemmasand Ty, isan (m—1)-linear Calderén-Zygmund operator with a kernel
Ky, € CZK(m—1,CCk|| fmll 1o (x),9) as given by (2.17)). Notice that the mth transpose
T of T is a Calderén—Zygmund operator with the following boundedness property:
T*™ LX) X - x LIm1(X) x L9 (X) = LI (X)

with norm W. Since Corollary [£.15] holds when the multiple weight is wq = -+ = wy, = 1,
we know that

T L™(X) x - x L"™(X) — L*(X)
with norm C(Ck + W) and C as in Corollary By duality,
T:L™X) x L™(X) x -+ x L®(X) = L™ (X)

with norm C(Ck +W). It follows that T, is bounded from the (m — 1)-fold product space
L™(X) x - x L™(X) to L™ (X) with operator norm C/(Ck + W)l fm Lo (x)- Therefore,
the induction hypothesis implies that T7,, is bounded from the (m — 1)-fold product space
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Li®(X) x -+ x L®(X) to BMO(X) with operator norm C(Ck + W)|| fm || Lo (x)- Since fo,
is an arbitrary Ly°(X) function, the conclusion of the theorem follows. m

COROLLARY 5.7. Let T be as in Theorem[5.6l Then T extends to a bounded operator from
the m-fold product L (X) x - - - x L>(X) to BMO(X) with norm at most a positive constant
multiple of Cx + [|T|| Lar (x)x .. x Lam (X)—La- (X) -
Proof. Fix zp € X and consider a function & : R — R such that supph C (-2,2),
0<h<l,and h(t)=1if0<|t| < 1. For k € Z and = € X, define

Un(@) = (2 d(, 20).
For any k € Z, since T maps the m-fold product space L™ (X) x - -- x L*™(X) to L*(X),

we know that T(¢g f1, ..., ¥k fm) € L?(X) whenever fi, ..., f,, € L>(X). Hence, for any
given fi,..., fm € L=(X), we define

G(Wrfiy- o Yufm) == K (@o,y1,- - ym) [ [ r (i) £5(5) dualy;)-

j=1

Then, by Lemmal5.1] T extends to the m-fold product L>(X) x - -+ x L*®(X) via
T(flv L) fm) = kli)ngo[T(wkflv cee ﬂbkfm) + G(wkflv s 7wkf’m)]7 (59)

where the limit exists almost everywhere and defines a locally integrable function. Now,

by (5.9) and Theorem we have
IT(f1,- .., fm)llBMO(R) < 1ilrcn sup [|T(Yr f1, - s Yk fm) + GWr f1, -+ Yk fm) [IBMO (1)
—00

= limsup ||T(Yx.f1, - -, Yrfm) IBMOX)
k—o0

/min1<j<m d(y;,w0)>1

S (Cx + B) lim TT e fill s )
j=1

S (Ck + B) H I fill ooy ™

j=1
5.3. A multilinear T'1-theorem
DEFINITION 5.8. Let A > 0. We say that an m-linear Calder6n—Zygmund operator T’

is BMO-restrictively bounded with bound A if there exists n € (0,1] such that, for all
T1yee3Tm € X; R17""Rm € (0700)7 ¢z € T(n7$17Rz) andj € {07"'am}7

1T (¢1, - - dm)lIBMO (1) < A

Obviously, any m-linear Calderon—Zygmund operator T as in Theorem [5.6] is BMO-
restrictively bounded. Conversely, we have the following multilinear T1-type theorem.

THEOREM 5.9. Let T be anm-linear Calderon—Zygmund operator with a kernel K belonging
to Ker(m, Ck,d) for some Cx > 0 and 6 € (0,1]. Suppose that T is BMO-restrictively
bounded for some positive constant A. Then there exist 1 < q,q1,...,qm < 00 such that
>ie11/aj = 1/q and T has a bounded extension from L% (X) x -+ x LI (X) to LI(X).
Moreover,

I T Lar () x Lam (x)—La(x) < C(A+ Ck),

where C depends only on Cy, Cy, m and §.
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Proof. We use induction on m. By Theorem the assertion is true if m = 1. Suppose
that the result is valid for (m — 1)-linear operators. Let T be an m-linear operator, fix
¢m € T (N, Tm, Rm), and consider the (m — 1)-linear operator

T¢m(fla ) fm—l) = T(fla ) fm—l, ¢m)
By (5.5) and (5.6)), together with Definition[5.8} we sce that T}, is also BMO-restrictively
bounded with constant A. By the induction hypothesis, we know that there exist 1 <
G, q1s - -y Gm—1 < 00 satisfying Z;";ll 1/q; = 1/q such that
Ty : LX) x -+ x L1 (X) — LX)
with norm at most a positive constant multiple of Cx + A.
Next, by Lemmal5.5|and the fact that ¢,,, € T (1, &, Rim) C L®(X), we conclude that

Ty, has a Calderon-Zygmund kernel in Ker(m — 1,Ck, §). Thus, from Theorem it
follows that

m—1times

Ty, Li*(X) x -+ x L°(X) — BMO(X)

with norm less than a positive constant multiple of Cx + A. Consequently,

IT(g, $2,- > dm)llB7MO(x) S (C + A)llgllL~(xy  forall g € Li®(X). (5.10)

Notice that we could repeat this argument when the function g appears in any other entry
2 < j <m. Next, for 1 < j <m and g; € Ly°(X), consider the operators Ty, given by

Ty (f1see s fm1) =T(f1,- s fim1595 Firs oo fne1)-
By , Ty, satisfies the (m — 1)-linear BMO-restrictive boundedness with a constant
of the form C; := C(Cx + A)|g1]|Loe(xy, where C depends only on Cy, C, m, and 4.
Analogous conclusions hold for all T, 2 < j < m. Therefore, by the inductive hypothesis
we conclude that, for 1 < j < m, the operator T}, satisfies

LX) x -+ x LI=1(X) x LI+ (X)--- x LI (X) — LX)

for some 1 < gk == qx(j), ¢ == q(j) < oo satisfying >,y <., x»; 1/ax = 1/¢, with bound
at most a positive constant multiple of 5]- = C(Ck + A)|lgjllzo(x)- In other words, T
maps
LX) x - x LI=1(X) x LP(X) x LY+ (X) -+ x LI™(X) — LYX),
with norm bounded by at most a positive constant multiple of C'x + A. Now notice
that each point of the form (1/q1,1/q2,...,1/qm), with 1 < ¢, ..., ¢n < oo and
1/g1 + -4+ 1/gm < 1, lies in the open convex hull of points of the form
Jjth entry

~~ .
(1/(11»---’1/ij17 0 71/Qj+17-~-a1/Qm)7 1§j§m
Based on [43, Theorem 4.6] (see also [50]), T is of strong type for any point in this convex

hull with a bound controlled by a positive constant multiple of Cx + A, which completes
the proof of Theorem[5.9] =



6. Bilinear 7T'1-theorems on Triebel-Lizorkin and Besov spaces

A powerful method to prove the boundedness of operators on Triebel-Lizorkin or Besov
spaces is to show that they map appropriate atoms into molecules. This method goes back
to Y. Meyer [81] and it was used by Frazier, Han, Jawerth and Weiss [32] and by Frazier,
Torres and Weiss [35] to prove the T'1-theorem for linear Calderén—Zygmund operators
on Triebel-Lizorkin spaces; see also the work of Torres [99]. A systematic treatment of
bilinear operators through the use of wavelet decompositions was developed by Grafakos
and Torres [51]. Bényi [3] applied such decomposition techniques to obtain a T'1-theorem
for bilinear operators on the space Fg’q(R”) for 1 <p < ooand1 < g < oco. Bényi [2] also
studied more singular pseudodifferential operators with forbidden symbols on Lipschitz
and Besov spaces.

Motivated by these pioneering works, in this section, we prove T'1-theorems for bilin-
ear Calderén—Zygmund operators on Triebel-Lizorkin spaces F]f,q(?( ) and Besov spaces
B; q(X ) for full admissible ranges of s, p, g; see Theorems and This successfully
addresses an open problem posed by Grafakos and Torres [55], p. 85].

6.1. Bilinear weak boundedness property. Let Q denote the collection of Christ’s
dyadic cubes as in Lemma [2.5] For any k € Z, let
Q9 :={QF :a € I,}.
Denote by cq the center of a cube Q € Q.
DEFINITION 6.1. Let n € (0,1]. A continuous bilinear operator
T CPX) X C(X) = (CPX)Y

is said to satisfy the bilinear weak boundedness property (for short, T € BWBP(n)) if
there exists a positive constant C' such that, for all f,g,h € T(n,z,r) and i € {1,2},

(T (f.9).h)] < Cp(B(z,r)). (6.1)
Denote by ||T||swsp(y) the smallest C' satisfying (6.1)).

If T €e BWBP(n) and K is the distribution kernel of T as defined in (3.3]), then (6.1))
is equivalent to the following:

(K, fog®h)| < Cu(B(x,r)), VfgheThnzr); (6.2)
here and in what follows,

(f ®gX h)('rvyVZ) = f(x)g(y)h(z), Vz,y,z € X.

51]



52 6. Bilinear T'1-theorems on Triebel-Lizorkin and Besov spaces

However, unlike in the Euclidean case, we do not know whether holds for general
“bump functions” on X3 or not. In other words, we do not know whether or not
implies that
(K, F)| < Cu(B(z,7))
whenever F : X3 — C satisfies, for all zg, 21,22 € X,
(i) supp F' C B(z,r) x B(z,r) x B(x,r) for some z € X and r > 0;

(i) [[F]poexxxxay < 1;
(iii) ||F(’7$17z2)||(',"n(;\{) <r ”F(xOv '7$2)“CW(X) <r " and ||F(:r0,x1, ')HC'W(X) <r

The following lemma, usually referred to as Meyer’s lemma (see Meyer [81], also
Torres [99) for its linear version), was proved by Bényi [3] for bilinear Calderén—Zygmund
operators on R™. This bilinear Meyer’s lemma is crucial for the proof of T' mapping atoms

into bilinear molecules. We mention that the proof for RD-spaces is much more subtle
than that in R”.

LEMMA 6.2. Letn € (0,1] and
D= X3\ {(z,2,2) : x € X}.
Suppose that T € BWBP(n) and its kernel K satisfies, for all (zo,z1,22) € Dt
1
[V (2o, 1) + V (20, 22)]*
If f,g,h € C(X) and f ® g ® h vanishes on the diagonal {(z,z,z) : x € X'}, then

(T(f,g),h) = /DU K(xo,x1,22) f(x1)g(x2)h(x0) dxo dry das, (6.3)

and the integral is absolutely convergent.

|K(.’E0,l’1,1’2)| S CK

Before we prove Lemma [6.2] m we first establish the following auxiliary estimate.

LEMMA 6.3. Let a € ( , 0 € X and R € (0,00). Then

d(z,z1)* + d(z, z2)”
/ B(zo,R) /B(mo R)/ Blaory IV (@ a1) + V(@ 22)]2 dp(zy) dp(xs) du(x) < oo.

Proof. Observe that, when x1,zs, 2 € B(xg, R), we have
d(z,x1) <2R and d(x,x9) < 2R.

With this observation, we may assume that a < k; otherwise we may bound
d($7 xl)a =+ d(ﬂf, x?)a
by (2R)*€[d(x, x1)¢ + d(x, z2)¢] for some € € (0, k).
Now assume that o < k. In this case it suffices to prove that there exists a positive
constant C' such that, for all z € B(zg, R),

x xl) +d(x x2)
/B(wo,R) ~/B($0, V(x,x1) + V(z,22)]2 du(xy) du(ze) < C.

To this end, by symmetry, we see that it is enough to show that

d(z,z1)* + d(z, x2)*
dp(xe) du(z,) < C 6.4
L(wO,R)/ z,x2)>d(x,z1) V($,$1)+V($,$2)]2 M( 2) lu( 1) N ( )
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for some positive constant C' independent of € B(xg, R). To prove (6.4)), we observe that

d(x,z1)* + d(x, z2) d(z, z9)
dutaz) ~ [ BT ),
/d(x,zg)>d(x,zl) V(z,21) + V(x, 22)]? d(z,z2)>d(z,e1) [V (@, 72)]?

where the right hand side can be estimated as follows:

d(x,x9)*
— = du(x
/d(xvxE)Zd($7$l) [V (z,22)]? (2)

oo

B d(x,x9)* .
= z:l/z o s dp(x2)

j= I ld(z,zq) <d(z,22)<27d(z,21) [V(l‘,$2)]2

oo

Jj= I=td(x,zq) <d(z,22)<27d(z,21) [,U(B(LE, 23d($, zl)))]Q

i [27d(x,21)]*
=gl (x,29d(x,11)))
Furthermore, from the reverse doubling condition (2.2) and the assumption a < &, it
follows that

o0 oo

Z [27d(x,x1)] 2Jd (z,21)]* < d(x,z1)*
— 1(B(x,27d(z, 1)) 205 u(B(z,d(z,21))) ~ w(B(z,d(z,21)))

Jj=1 le

Thus, we have

d *+d @ d @
/ W) A2 () 5 )
d(z,x2)>d(z,z1) [

Viz,z1) + V(x, 22)]? p(B(x,d(x,21)))

Integrating both sides on the ball B(xg, R) with respect to z; and then using Lemma
c), we see that the right hand side of (6.4) is bounded by a positive constant multiple

of ( )
d(x, )%
’ du(zi) < R%,
/B(aco,R) ,LL(B(I,d(fE,:ZEl))) M( 1) ~

which proves (6.4), and hence completes the proof of Lemma L]

Proof of Lemma. Let { Sk} kez be a 1-ATT with bounded support and with the additional
properties that every Sk(x,y) is non-negative and

Sk(w,y) = Sk(y, )

for all z,y € X and all k € Z. Without loss of generality, we may as well assume that
Sk(z,y) = 0 when d(z,y) > 27%. Let ¢ € C>°(R) be a non-negative radial function such
that 0 < ¢ <1, ¢(§) =11if |£] <2, and ¢(§) = 0 if |£| > 4. Define

Mol y) = /X Sul(, 2)0(2%d(z, ) du(=), Yk € Z and 2,y € X.

It is easy to see that the functions {\x }rcz enjoy the following properties:
(i) A € G (X);

(ii) 0 < Ag(z,z) <1forall x € X;

(iii) Ax(7,y) = 0 when d(z,y) > 27F+3;
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(iv) Ae(x,y) = 1 when d(z,y) < 27F;
(v) Me(z,y) = M(y, ) for all z,y € X.
Observe that, if f,g € C}(X), then fg € C}'(X). So we can write
(T(f,9),h) = (T(fO)M(s2), g()An(, ), h(z))
(T O 2), ()1 = Ak, 2)]) (@), A=)
HTOR =Ml 2)] g())(2), A(@)). (6.5)
First we consider the second term of (6.5)). Since
x & supp(f(-) A (-, 2)) Nsupp(g(-)[1 — A (-, 2)]),
by , we obtain
T(fOM( ), g()[1 = Ak, 2)]) (2)

= /. Kz, 21, 2) f(21) A (21, 2)g(22)[1 = A (22, 2)] dpa(1) dpa(a).-

Without loss of generality, we may assume that f, g, h are supported on some ball B(xq, R)
with 2o € X and R € (0, 00). Hence,

(IO ), 9O = Akl 2)]), b))
= / K(z, 21, 29) A\ (21, 2)[1 — Mg (22, )]
B(zo,R)?
X f(x1)g(@2)h(z) dp(ey) dp(w2) du(r)
[ Koz ol - ez
B(zo,R)?
X [f(@1)g(w2) — f(x)g(2)|h(z) dp(ey) dp(ze) dp(z),  (6.6)
where we used the fact f(z)g(z)h(z) =0 for all z € X. Since f, g € C}/(X), we have

|f(z1)g(@2) = f(x)g(@)] < |f(z1)]|g(@2) — g(@)| + [ f(z1) = [(@)|g(2)]
< ||f||Loo(X)||9||c'n(x)d($2a x)" + HQHLw(X)Hf||c‘n(2c)d($17$)"7
so the last integrand in is bounded by

d(zy,2)" + d(xg,z)"
Callf oo lallen + loliecollflen ol D £ ST o

which is integrable on the product domain B(z, R)? in view of Lemma From this and
the Lebesgue dominated convergence theorem, it follows that

Hm (T(f()Ar(2), gL = Ak 2)]), h(2))

k—o0

= /B lim A (z1,2)[1 — Ap(z2, )| K (z, 21, 22)

(z0,R)3 k—o0

X [f(z1)g(@2) — f(x)g(x)]h(x) dp(zy) du(zs) du(x) = 0.
For the third term of (6.5)), an argument similar to the above implies that
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i (T(f ()1 = k(- 2)], 9()) (@), h(x))

k—o0

= /X lim [1— A (22, 2)] K (2, 21, 22) [f (21)g(22) — f(2)g(x)]h(x) du(x1) dp(w2) du(x)

3 k—oo

= [ K0 gaz) o) ) die) do).

Therefore, to obtain (6.3)), it suffices to prove that

Hm (A 2), 9()A(, 2) (@), h(z)) = 0. (6.7)
To this end, we claim that, for any &k € Z and x € X,
(o) = Jim Y 7 (@) Su(-, c)ur(2d(cq, x)) (6.8)
QeQy

in C(X). Indeed, was proved in [60, p. 31, (2.85)]; moreover, for each fixed large
number J and z,y € X, say J > k + 10, the sum

> w@Q)Sk(- Qv (2¥d(cq, x))

Qe
has only finitely many non-zero terms.
For notational convenience, for any @ € Q and k € Z, set

Vs o) = v(2%d(cq,)) and  Skq() = Sk(-cq)-
By , we write
(T(f)M(2), g() Ak ))(x)ah(ﬂ?»

= hm Z Z f\Ifk Q,g\I/k p) Sk QSk ph> (69)
QEQJ PeQ,

Taking into account the support condition on Sj oSk, ph, we see that the sums in
are over all Q, P € Q satisfying Q Nsupph # 0, P Nsupph # 0 and d(cg,cp) < 27FF1,
Observe that
(T(fY%,0,9Y%kpP), Sk,0Sk,Ph)
= (T(lf = f(c@)¥hq:l9 = 9(cP)|¥k,P), Sk@Skrlh — h(cQ)])
+ heQ)(T([f = f(cQ)¥k.q: 9 — 9(cp)]¥k.pP), Sk.QSk.P)
+9(ep)(T(If = f(cQ)I¥k.@: Yk.P), Sk.QSk.Ph)
+ fc@){T(Yr,q: 9%k,P), Sk,@SkPh)
=171 +7Zo+ 73+ Zy4.
To estimate Z; through Z4, we apply the hypothesis T € BWBP(#). Notice that

supp([f — f(cQ)]¥r.@) C Bleg,27*?)
and, for any z € X,
[f (@) = F(c)]Wr@@)] < [ fllgnx)d(@, cQ)" (2" d(z, cq))
< 20FED| £l 5 - (6.10)
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Now we show that, for all z, 2’ € X,
@) - Fle)¥role) - [f@) - Feo)Wiol@)] S dea’).  (6.11)
To this end, by the support condition of ¥j, o, we may as well assume that
d(z,cq) <2782 or d(z/,cq) < 27FF%

otherwise the left hand side of (6.11) is equal to 0 and (6.11]) holds automatically. By
symmetry, it suffices to consider the case d(2’,cq) < 27%+2 Then, for all z, 2’ € X,

[f(z) = f(c@)|¥iq(x) — [f(2) — f(cQ)]Pro(z)]
< [f(@) = fED V@) + 1f(2) = fleQ) [ (@) — Tr o)
S Sl gy dlw, &)+ [ flln iy dla’, eq) 25 d(w, "))
S d(x,a')",
which proves (6.11]). From and , it follows that there exists a positive constant
C such that, forall k € Z, J > k+ 10 and Q € 9,
C2M1[f — f(eQ)|Wrq € T(n,cQ.272).
As we are considering the cubes @ and P such that d(cg, cp) < 27F+1 an argument similar
to that used in the proofs of and also implies that there exists a positive
constant C' such that, forallk € Z, J > k+ 10 and Q, P € Qy,
C2¥[g — g(cp)|Wip € T(n,cq,27 "),
CVa-i () Va-i (cp)Sk,qSk,p € T(n,cq,27"1?),
C2"1Vy 1 (cq)Va-+(cp)Sk,@Sk,p[h — h(cg)] € T(1,¢q,27*?).
From these and the hypothesis 7' € BWBP(n), we obtain
1

Va-r(cq)Va-r(cp)’
1

Vo-k(cq@)Va-r(cp)

21| S 27" u(B(eq, 27?))

|Z2] S 272 u(B(cq, 271?))

and

1Zs| < [g(cp(T([f — f(cQ)¥k,@: Vk,P), Sk,@Sk,p[h — h(cg)])]|
+1g(cp)h(cQ(T([f — f(cQ)|¥k,q> Yk,P), Sk,@Sk,P)|

< 2—k77 M(B(CQ72_k+2)) )
T Var(eg)Va-r(ep)

Using the assumption f(z)g(z)h(z) =0 for all x € X, we write
Zy = f(cQ)(T(Yr,q, 9 — 9(cp)|¥k.p), SkqSk.p[h — h(cq)))
+ f(c@)g(cP)(T(Vr,Q, Yi.pP), Sk, Sk.p[h — h(cq)])
+ fle@)h(c){T(Yk,q, 9 — 9(cP)|Yr,P), Sk.QSk.P)
+ fle@)h(cQ)lg(cr) — 9(c@) T (Yh,q, Yk,P), Sk.QSk.P)
=241 +7242+ 243+ Zsy.




6.2. Bilinear molecules 57

As in the estimates of Z; through Zs, applying the hypothesis T € BWBP (1) gives
1
Va-i(cq)Va-r(cp)
From d(cg,cp) <27kl g€ C)(X), T € BWBP(5) and the facts
C\I/k,p, C\I/k,Q, CVy (CQ)V277€ (Cp)SkyQSkyp € T(?], cQ, 2_k+2),

where C' is a positive constant, we also obtain

Zaal + |Zaal + Zag] S 27 (Bleg, 272))

1
Va-i(cq)Va-r(cp)
Combining the estimates of Z; through Z,, we conclude that

1 1
T(fV Ui p), SkoSkph) S27F —— <27 —
(T(fY%,q: 9¥k,P), Sk,QSkPh) < Voor (cn) ~ Vo (c0)
Now we insert this into and see that, for all J > k + 10,
(T (AR ), gAk () (2), h())]
Ckn s 1
S27% lim Y > w@QuP)——

J—o00 0co, Peo, Vg—k(CQ)
QNsupp h#0 d(cp,cq)<2 k!

|Zeal S 27"u(Bleq, 272))

< 97,

Letting & — oo we obtain (6.7)). This concludes the proof of Lemma 6.2. =

6.2. Bilinear molecules. Now we elaborate on the concept of bilinear molecules, as
introduced by Grafakos and Torres in [51], and stress the importance of mapping properties
from atoms to molecules in the boundedness of bilinear operators on Besov and Triebel—
Lizorkin spaces. The whole section stems from the seminal work in the linear case by
Y. Meyer [81] and David, Journé and Semmes [25] 26].

DEFINITION 6.4. Let 8 € (0,1]. If Q € Qy, for some k € Z, then a function ag is called a
B-atom associated with @ if the following hold:

(1) suppag C Q and, for all x € X,

(iii) [y aq(y) duly) = 0.
Obviously, any S-atom is an element of

{f€ g°(,6,7) : f has bounded support}

for all v € (0, 00). The converse is also true modulo a positive constant.

Bilinear molecules on R™ were first introduced by Grafakos and Torres [51]; these
molecules as well as their derivatives decay rapidly at infinity. Here we introduce bilinear
molecules on RD-spaces with no requirements on their smoothness.
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DEFINITION 6.5. Let v € (0,00) and o € (0,00). If Q € Qf and P € Q, for some k, j € Z,
a function Mg p is called a bilinear (v, o)-molecule associated with Q and P if, for almost
every x € X,

| Mg, p(z)] < 275917 0(Q) 2 (P 2K (27F: y, m, cQ)K (27757, 2, cp)
and

[ Mor@)dute) =0,
X

where, for any given ¢ € (0,00),¢>0and all z, y € X,

1 ¢ ‘
K(t; e,2,y) == Vi(z) + Vi(y) + V(x,y) |:t+d(xay):| .

THEOREM 6.6. Letn € (0,1], 8 € (0,1], T € BWBP(n) with a kernel K € Ker(2,Ck, 9)
for some Cx >0 and § > 0. Assume that, for all g € C}(X),

T(9,1) =T"'(1,9) =0 in (C](X))"

If ag is a -atom associated with QQ € Qy for some k € Z, and ap a B-atom associated
with P € Q; for some integer j < k, then, for any given

7€ (0a5/2] and o € (Oamin{(s_’%Baﬁ}]v
T(ag,ap) is a constant multiple of a bilinear (v, o)-molecule associated with Q and P.

Proof. Without loss of generality, we may as well assume that 8 < k, where & is the reverse
doubling exponent in ([2.2)), since any S-atom is a 8’-atom whenever 8’ € (0, 3].
We first estimate |T'(ag,ap)(x)| for all € X by considering the following four cases:

CASE 1: d(x,cq) > C527%+10 and d(z, cp) > C5279110. In this case, by (3-3) and

/ aq(y) du(y) =0,
X
we write

T(aguar)o)] = | [ Kl m)aqlun)ar(ye) ) dute)

= ‘ /X?[K(l’,yl,yz) — K(z,cq,y2)]aq(y1)apr(y2) du(yr) du(yz)|-

Since suppag C @ and suppap C P, it follows that, if the integrand is non-zero, then
d(z,p1) ~d(z,cq), d(z,y2) ~d(z,cp) and d(y1,cq) < Cs27F < d(x,y1)/2.

Applying the regularity condition on K and the size conditions on ag and ap, we conclude
that

NGe) " (@) Pup)
Toaor)ol% [, [, [max{dwyl) ] T v e )

< r u(@Q) 2 p(P) 2
~ | max{d(z, CP)a d(z,cq)}] [W(B(z,d(z,cq))) + p(B(x,d(x,cp)))]?
S 20RO Q)2 u(P) PR (27 v, 2, c)K (275, 2, cp).
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CASE 2: d(r,cq) < C527%10 and d(x,cp) > C5277710. In this case, again by (3.3) and

/ aq(y) du(y) = 0,
X
we write

IT(aq,ap)(w)| = ‘/XQ[K(%yhyz) — K(z,cq,y2)laq(y1)ar(y2) du(yr) du(y2)|-

Notice that, for all y; € @Q and y» € P,
d(z,y2) ~ d(z,cp) and d(y1,cq) < C527F < C5277 < d(x,y9)/2.
Applying the regularity condition on K as well as the size conditions on ag and ap yields
g —1/2 —1/2
Y1,¢Q) } w(@) P u(P)
ag,a < d d
ey o ] R cemmEs cemm L CRE S

<2<M>5{ 277 r (@) ()
~ d(.’L’,Cp) [/‘(B(:E7d($>CP)))]2
S 2R (@)Y u(P) PR (27R y, @, eq)K (27756, 2, p),

where we used the estimates 27%d(x,cg) <1, 7 < k and
‘/2*’“(37) + V(xch) S N(B(xv 2_k)) S M(B(x7 2_j)) S M(B(x7 Cl(l‘, CP)))'

CASE 3: d(w,cq) > C527%10 and d(x,cp) < C5277710. As in the previous two cases,

T (aq,ap)(z)| =
Notice that, for all y; € Q and yo € P,
d(xvyl) ~ d(.’E,CQ) a‘nd d(ylch) S (7527}7€ S d(x7y1)/2

/Xz[K(af,yl,yz) — K(z,cq,y2)]aq(y1)ap(y2) du(yr) du(yz2)|-

By the regularity condition on K and the size conditions on ag and ap, we know that
g —1/2 —1/2
(y1.¢q) } @)~ u(P)
ag,a < d d
To0an@) 5 [ [ | ) Wl 2V e gl ) )

< 2(j—k)(6—'y)|: 27k TM(Q)UQM(P)_UQ
~ d(xaCQ) :U‘(B(xad(xch)))

9-i o= 1 J
X
/P{max{d@,%),d(z,m)}} V(o 2) 1+ V(w,co) 102
< 20RO ()2 (P) P27 vy, 2, cQ)K (2775, 2, cp),s

where the last inequality is due to the following three estimates:

1 . .
—— < K(27;9,x,¢cp when d(z, cp) < C5277710,

2 k :|’Y 1 ‘
SK@ %y, when d(z, co) > C5277110,
[d(xvCQ) pw(B(z,d(x,cq))) ( v ) (z,cq) 5

and
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93 = 1
/ { } du(y2)
P maX{d(CC,CQ), d<xay2)} V(.’L‘,yg) +V($70Q)

- 2 o 1

= dp(y2)
=0 v d(z,y2)~2¢—k max{d(x, CQ)’ d(l‘, y2)} V(:L‘7 y2) + V(SU, CQ)
> 1

S 27t 0= dp(y
2 [ W(Bla, 27 #2)

< 1,

~

where the notation d(z,y2) ~ 2/~* means that 2% < d(z,y) < 2°7*! when ¢ € N, and
d(z,y2) < 27% when £ = 0.

CASE 4: d(z,cq) < C527FF10 and d(z,cp) < C5277710. In this case, it suffices to show
that

IT(aq,ap)XB(cq, Csa-++10)nB(ep, Cra-i+10) | Lo () S 2972 u(Q) ™1/ 2pu(P) /2. (6.12)

Since (X, d, p) is assumed to be an RD-space, it follows that Cy (X) is dense in L' (X) (see
[60, Corollary 2.11]). Thus, the proof of (6.12]) would follow from the estimate

(T (agsap), h)| S 20798 (Q)~V/2u(P)~1/2 (6.13)
for all functions h € C}/(X) with ||A[|L1(xy = 1 and
supph C B(cg, Cs27*10) N B(cp, C5279110).
To prove ([6.13)), by the assumption T'(g,1) = 0 in (C} (X))’ for all g € C}(X), we have
(T(ag, 1), hap) =0
and hence
(T(aq;ap), h) = (T(ag; [ap — ap(x)])(x), h(z)).
Applying Lemma[6.2] and using the size and regularity conditions on ap, we see that
(T(aq,[ap — ap(z)])(x), h(z))|
=| [ K m)aamn)lan(m) - ap@lhte) duon) dutye) dua)

W@ VPu(P) V2 (Td(z,y2)]”

By the doubling and reverse doubling conditions on p, we obtain

/Q /X i { {d(;gﬁ] L 1} V() +1V(x, )2 ) di(y)

< i > Ax,yl)m—k—s min{ {d(;’i/z)r’ 1} Vo jv(% Lo d(we) dn(y)

S=OEL T 4o, ys)~vC2 I




6.2. Bilinear molecules 61

minf2—t8, 1y PB@:27) p(B(x,27))
<ZZ {2 [ ( (Z,Qisik))+,LL(B((£,2*t*j))]2

s=0teZ
s—k
_t/@,UB —tB (B( 2” ))
S Y wsEEE S S e e )
s=0t+j>s+k s=0t<s+k—j

00 t—i\ K oo s+k—j s—k co -1 9—s—k\ <
> Y (= k) Y > () + X % ()
s=0t+j5>s+k s=0 t=0 s=0t=—o00
< 9= (k=78
(here we used S < k), therefore,
[(T(aq,ap),h)| < 2_(k_j)5u(Q)_1/2M(P)_l/2/X |h(x)| dp()
S 2P u(@Q) P u(p) 2,
which proves (6.13)) and hence (6.12)).

Putting all estimates in the four cases above together, we finally conclude that T'(aq, ap)
satisfies the size condition of a bilinear (v, o)-molecule associated with ¢ and P modulo
a positive constant. Moreover, it is easy to see that

[ Tag.ar)@)du(s) = (Tlag.ar). 1) = (17 (.ar).aq) =0,
X
which completes the proof of Theorem 6.6. =

The following bilinear almost diagonal estimate is a variation of the one in [51l, Propo-
sition 3] but it is in the context of RD-spaces; see also [46, Proposition 3.2] and the related
work of Bényi and Tzirakis [6].

THEOREM 6.7. Let {,k,j be integers such that j <€ <k, R€ Qp, Q € Qi and P € Q;.
Then, for ally € (0,00), 7" € (0,7) and~" € (0,7),
R S )
" 1(R) JB(er, 0520y Var (@) + V(@,c0) [ 14 2Fd(2, cq)

: e JW

x Vo-i(x) + V(z,cp) |1+ 29d(z, cp
< CK(27% 9, cr,cq)K (2797 e, cp), (6.14)

where C is the constant appearing in Lemma[2.5], and C' is a positive constant independent
of P, Q, R
Proof. Let

Ag = {x € X :d(x,cp) < 2177},

Ay ={x e X: 27177 < d(x,cp) < 2t_j}7 Vvt € N.
Let also

Wo:={x € X :d(x,cq) <277},

W, :={zecX: :22717F <d(x,cq) <2°7%}, VseN.
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Then

dp(x).

= — 1 1 1
NS 27t _ /
2.2 1(R) p(B(cq,257%)) w(B(cp,279)) J(en.cs2-9na,nw.

t=0 s=0
If B(cg, C527%) N A, N W, # (), then, by j < £ < k, we have
d(cr,cq) < Cs27 42570 < max{?fe7 QS*’“} and d(cg,cp) < Cs27f 42177 < 9ot

which implies that, for all s > 0 and 7' € (0,7),

’

1 B(cg,27* + d(cg, 27t +d v
_ gu( (cq ECkR CQ))){ + _(iRvCQ)] K@ en o)
1(B(cq,257F)) 1(B(cq,257%)) 2
P(Ble 2t +27F)) oy,
< 2%7 K275+, cg,c 6.15
W(Bleg xR 2T emc) (6:15)
and, for all t > 0 and v” € (0,~),
7]. _.. 'Y”
L P ) 2 s tenen))
u(B(cp,2t77)) u(B(cp,277)) 277
<$27K@5, crs cp). (6.16)

By (6.15)), (6.16)), together with the facts
n(Bleq,27" +2°7%)) ~ p(Bleg, 27" +2771))
and
p(B(cr, C527°) N A, N W) S min{u(R), u(B(cq,2° %))},

we obtain

=S —t(v=7") —s('y—'y”):u(B(cQ,Q_e —|—28_k))min{,u(R)7 M(B(CQ’QS—]C))}
TRmnT W(Bleq, 2 )u(R)

X ’C(Qif; 7/7 CR, CQ)IC(Qij; 7//3 CR, CP)
S ’C(2_£7 ,y/a CR, CQ)’C(Q_J7 'y//a CR, CP)'

Inserting the estimate of 7 into (6.17)) implies the desired inequality (6.14)). This concludes
the proof of Theorem 6.7. =

As an application of Theorems [6.6| and [6.7] we easily obtain the following conclusion.

THEOREM 6.8. Letn € (0,1], 8 € (0,1], T € BWBP(n) with a kernel K € Ker(2,Ck, 9)
for some Cx > 0 and 6 > 0. Assume that, for all g € C}'(X),
T(l,9)=T(9,1) =T (1,9) =0 in (C}(X))"

Suppose that ¢, j and k are integers such that ap, ag and ar are 3-atoms associated with
cubes P € Q;, Q € Qy, and R € Qy, respectively. Then, for any given

7€ (0,6/2] and o€ (0,min{d -1, B, x}],
the following hold: for any given ~',~v" € (0,7),
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(i) whenj </t <k,
|<CLR,T((ZP7CLQ)>|

< C27 Wl (RYY2(Q) P u(P) P27 Y er, c@)K(27757"  er, cp);
(ii) when k <€ <j,
l{ar, T(ap,aq))]

< C27FIl (R (@) P (P) P27 %y er, ) K (275 cr cp);
(iil) when j <k </,
l{ar, T(ap,aq))|

< 02717917 W (RYV21(Q) 2 (P2 (27K ey er) (27757 e, ep);
(iv) whenk <j </,
|<aR7T<aP7aQ)>|

< C27 1Kl W (RYY2 (@) 2 u(P) PR (27054 s ep, er)K (2% 4 ep, cq);
(v) whent <k<j,
l{ar, T(ap,aq))

< C27 1 W(R) 2 u(Q) P (P) PR (275 g cr)K (27 cq, ep);
(vi) when ¢ <j <k,
|<aR7T(aP7a’Q)>|

< C27 1R (R (@) 2 u(P) PR (275 Y ep, ecr)K (27059 ep cq):

here C' is a positive constant independent of P, ) and R.

Proof. Since T'(g,1) = T*'(1,9) = 0 in (C}(X))’, by Theorems and we see that,
when j < /¢ <k,

/ ar(@)T(ap, ag) (x) du(z)
X

. 1 1
< 2—|k—J\0N R)1/2 Q 1/2,u P 1/27/ V
(R)7 (@) (P) 1(R) Blen, Cs2-4) Vo-r(z) + V(z,cq)

1 " 1 1 v
X , dp(x)
1+ 2%d(z,cq) | Va-i(z) +V(x,cp) |14 27d(z,cp)
S./ 2_‘k_jIUIU’(R)l/QIU‘(Q)l/Qu(P)1/2,C(2_£; ’yl7 CR, CQ)’C(2_J7 ’7”7 CR, cP)a (617)

which proves (i).

By symmetry, (ii) holds true.
To prove (iii) and (iv), we write
(ar, T(ap,aq)) = (aq,T"*(ap,ar)).
Since j < k < ¢ and the operator S := T*? satisfies
S(g,1) =5°1(1,9) =0 in (CJ(X)),

we apply (i) and (i), respectively, to deduce the estimates (iii) and (iv).
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Finally, (v) and (vi) hold true for similar reasons, the details being omitted. This
finishes the proof of Theorem 6.8. m

6.3. Bilinear T'1-theorem on Triebel-Lizorkin spaces. Homogeneous Besov and
Triebel-Lizorkin spaces on Ahlfors 1-regular metric spaces were first introduced by Han
and Sawyer [61] via applying the Calderon reproducing formulae, but only for exponents
p,q € (1,00) (for Triebel-Lizorkin spaces p, ¢ € [1,00)). An extension to the range of p, ¢
smaller than 1 and near 1 was obtained by Han [57]. For a systematic treatment of the
theory of (in)homogeneous Besov and Triebel-Lizorkin spaces on RD-spaces, we refer the
reader to the work of Han, Miiller and Yang [60]. We recall their definitions.

DEFINITION 6.9. Let (X,d, 1) be an RD-space and p(X) = oo. Let ¢; € (0,1], e2 > 0,
e3 > 0, ¢ € (0,e1 A €2), |s|] < ¢, and {Sk}rez be an (e1,€q,€e3)-ATL For k € Z, let
Dy, := 5, — Sk_1. Set also
p(s,€) :=max{n/(n+c¢€), n/(n+e+s)}.
(i) Let p(s,e) <p < oo and 0 < ¢ < co. The space B’;,q()() is defined to be the set of all
f € (G&(B,7)), for some J3, v satisfying
max{s,0,—s+n(l/p—1)+} < S <,
max{s — /p, n(1/p — )4, s+ n(1/p—1)4 — #(1 — 1/p)4} <7 < &,
such that

(6.18)

1/q
196 0 = | 3 25D ] < 0

k=—oc0
with the usual modifications when p = oo or ¢ = o0
(ii) Let p(s,e) < p < oo and p(s,€) < ¢ < oo. The space F}; (X) is defined to be the set

of all f € (G5(8,7)), for some 3,7 satisfying (6.18]), such that

Hf||ps () = H[ 2ksq|Dk(f)|q:|1/q‘

k=—oc0

)

Lr(X)

with the usual modification when ¢ = oco. When p=00 and p(s,€) < ¢ < oo, the

space F, ,(X) is defined to be the set of all f € (G5(53,7))’, for some 3, v satisfying
ls] < B8 <e max{s, 0, —s — Kk} <7y <k,

such that

1/q
Fg ,(x) 7= SuD sup [ o0 /Qe ZQW\D )quu(w)} < o0,

LeEZ acly

where the supremum is taken over all dyadlc cubes as in Lemma [2.5] with the usual
modification when ¢ = oo

Let
Q:={QFcx:kecZ acl}

be the collection of all Christ’s dyadic cubes as in Lemma [2.5] For k € Z and 7 € I, we
denote by

{Q:ve{1,...,N(k,1)}}
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the set of all cubes Qf,ﬂ" C QF, where QF is the dyadic cube as in Lemma and jg is
a positive integer satisfying

270005 < 1/3. (6.19)
Denote by 2% the “center” of Q¥ and by y*¥ any point of Q%.

The Calderén reproducing formulae, due to Calderén [14] in the Euclidean case, are
proved to be a powerful tool in the study of Besov and Triebel-Lizorkin spaces on R"; see
[341,33]. For an extension of these formulae and its applications in spaces of homogeneous
type, especially in the context of Ahlfors 1-regular metric measure spaces, see [61]. The

following discrete homogeneous Calderén reproducing formula on RD-spaces was proved
in [60, Theorem 4.13]; see also [60, Theorems 4.11 and 4.12].

LEMMA 6.10. Let e; € (0,1], e2 > 0, €3 > 0 and € € (0,61 A €2). Let {Sk}rez be an
(€1, €2,€3)-ATIL. Set Dy, := Sy, — Si—1 for k € Z. Then, for any fized jo satisfying
large enough, there exist linear operators, {Bk}kez and { Dy }rez, such that, for any fized
ykv € QMY withk € Z, 7 € I, and v € {1,...,N(k,7)}, and all f € (C:S(B,'y))’ (or
f € G§(8,7)) with B,~ € (0,¢),

N(k,7)

F=>> Z (@)D (-, ¥ ) Di () ()

keZ rel, v=1
N(k,T)

=33 DT W@ D, yE) DR (W),

keZ rel, v=1

where the series converge in (G§(8,7)) (or in G§(B,7)). Moreover, the kernels of the
operators { Dy }rez satisfy, for allx,y € X and k € Z,

—k €
(a) |Dk:<:lj y)| < C 2 k(:z:)+V(:z:,y) [Q—kid(x7y)] 5

(b) ford(z,2") < [27% +d(x,y)]/2,

’

D ~ z,x —k
|Di(x,y) — Di(2',y)| < C[ d(z, z') 1 { 2

2—k+d<x,y>} Var(@) + V(z,y) 2—k+d<x,y>] ;
) [ Di(w,y) du(w) =0 = [, Dy, w) du(w),

where €’ € (e,€1 Nea) and C is a positive constant independent of k, x, ' andy. The kernels
of {Dy }rez satisfy the above (a), (c) and

(b") ford(w,a") < [27" +d(z,y)]/2,

d(z, ") r 1 { 2k ]E
2=k +d(z,y)| Vor(z)+V(z,y) |27k +d(z,y)] ’

Di(yr) ~ Duta') < €|
where € and C are as in (b).

As a consequence of the Calderon reproducing formulae, in [60, Theorem 7.2, Proposi-
tion 5.4] the following frame characterizations of Besov and Triebel-Lizorkin spaces were
proved.

LEMMA 6.11. With all the notation as in Definition [6.9] and Lemma [6.10] the following
hold with implicit constants independent of f:
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(i) if p(s,€) <p < oo and0 < q < oo, then
N(k,T)

/ /
Hf||B;1q(X)~{ZQkSq Do ek _nf \Dk(f)(z)|p]qp}lq
kEZL Te€l, v=1 Q
. N(k,T) N N a/py1/q
ST [ w@EIDsn ]
kEZ Tel, v=1
N(k,T)
AT [T Y @) sw pner]” )
keZ rel, v=1 2€Q”

(ii) if p(s,e) < p < o0 and 0 < g < 00, then
N(k,T) 1/q
g o0~ [{Z X X 20 i IDutneNxgee |
keZvel, v=1
N(k,T) 1/q
~HEX X 2’“SQ|Dk<f><y’:7">|qXQ¢,u} |
keZvel, v=1
N (k,T)

I3 s 1D NEINge )|

keZvel, v=1

LP(X)

Lr(X)

Lr(x)

The following technical lemma proved in [60, Lemma 5.3] is very useful when dealing
with spaces B; () and Fj (X) for the cases p < 1or ¢ < 1.

LEMMA 6.12. Let € > 0, k', k € Z, and y*" be any point in Q¥Y for 7 € I and v €
{1,...,N(k,7)}. If r € (n/(n+ €),1], then there exists a positive constant C, depending
on r, such that, for all a®¥ € C and z € X,

N(k,T)

1 9—(k'Ak)e
Z Z Qk’/ k,v ’ k,v |Gf_”j
rel, v=1 Vz—(k'Ak)(x)JrV(%yr’ ) 27 AR) +d(, y7)]e
N(k,T) 1/r
< oatemtin [ 55 g o]
7€l v=1

where C is also independent of k, k', T and v.

The following simple observation is of particular interest for estimates of the Triebel—-
Lizorkin or Besov norms.

LEMMA 6.13. Let p € (0,00) and o € (0,00). Then there exists a positive constant Cp, 5,
depending only on p and o, such that, for all non-negative sequences {a;};en,

, P .
{Z 2—30%} < Cpo Y 27900, (6.20)
JjEN JEN
Proof. By the following elementary inequality: for all o € (0, 1] and sequences {b; };en,

[l < S tbal, (6.21)

jEN jEN
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we see that (6.20) holds when p € (0,1]. As for the case p € (1,00), applying Holder’s
inequality, we know that

[22—1’%4’) <[> Q—j"}p/p DR W S A
JjEN jEN jEN JEN
THEOREM 6.14. Let k be the constant appearing in the reverse doubling condition and
€ (0,1) N (0, k]. Suppose that the bilinear operator T is in BWBP(n) for somen € (0, €]
and its kernel K belongs to Ker(2,Ck, ) for some Cx > 0 and § > 2¢. Assume that, for
allg € CJ(X),
T(1,9)=T(9.1) =T (1,9) =0 in (C}(X))".
For every j € {0,1,2}, let |s;| <€, p(sj,€) < p; < oo and p(sj,€) < g < oo be such that
1 1 1 1 1 1
so=581+8, —=—+— and —=—+—,
Po P1 P2 qo0 a1 42
and let F,fj,q (X) be the Triebel-Lizorkin space as defined in Definition .(11 ThenT can
be extended to a bounded bilinear operator from F5'  (X) x F52 (X) to F5  (X).

P1Lq1 P2,q2 P0>90
Proof. Let €; and € be positive real numbers such that min{e;, e2} > €. By the density
of the set
Gy(e1,€2) :={f € G§(er, €2) : f has bounded suppoort}

in F7 4, (X) for j € {1,2} (see [60, Proposition 5.21]), it suffices to show that

T [Fph,, (X) N Gyler,€2)] X [F2 (X)) N Gy(er, e2)] = Fo  (X).
Since functions in gb(el, €2) are indeed atoms, modulo a positive constant, associated to
Christ’s dyadic cubes in the sense of Deﬁnition we see that, for all f,g € g°b(q7 €2), it
follows from Theorem [6.6 - that T'( f ,g) is a bilinear molecule and hence can be interpreted
in the usual way as an element of (QO (8,7)), where 3 and ~ satisty with s, p therein
replaced by sg, po, respectively. Consequently, it makes sense to write that, for all £ € Z
and x € X,

Dy(T(f,9))(x) :== (T (f,9), De(:, 2)),

where { Sk }rez is chosen to be a non-negative and symmetric 1-ATI with bounded support,
and Dy := Sy — Sk for all k € Z. Then, for all f,g € éb(el, €2), by the frame character-

ization of the Triebel-Lizorkin spaces (see Lemma7 we see that [|T'(f, 9)|l
comparable to

(X) is

N(£,1)

XX X 2o,

9 1/q0
X@‘;’"}
LeZ rel, v=1

Denote by C’g( ) the collection of all f € C}(X) such that [, f(x)du(z) = 0. Since
€ € (0,e1 A eg] and 7 € (0, €], we have

(Golerse2), |- lgter.en) = (CF X, [ - leg ) = Go(8,7),
where X < Y means that the space X is continuously embedded into Y. So we apply the
Calderon reproducing formulae to f, g € Gy(€1, €2) and obtain, for all w € X,
N(k,m")

=55 ST @) Di(w. v DR (),

keZ el v'=1

Rz

1nf (T(f,9), De(-,y2"))
€Qy

Lro(x)
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N(@,7")

=2 > 2w D;(w, 2 \D;(g) (),

JELZT"El; v'=1
where both series converge in ng(ﬁ, 7) and hence in C}/(X). Then, for any ¢ € Z, 7 € Iy,
ve{l,...,N(r,0)} and any y2" € Q%"
N(k, ")

(T(f.9)(). D =333 Z > Z (@2 Di(f) (W)
keZ jeZ t'el, v'=1 T”EI v''=1
x Dy (g) (W2 WT(Dr(-y5), Dy (22 ) (), De(x, y&)).
It follows that

IT(f, )l 50

PO qo(X)

N(¢,T)
~{E X X et
LeZvel, v=1
N(k,m") N(5,7"")

nf [V S Y Y 4 2 DR W)

eueQeu
Yr T keZ jeZ t'el, v'=1 t'el; v'’=1
9 1/q0
XQ.‘}‘“}

471/// k?,lj/ <7V// v
x Di(g) (2 WT(Di(-y5" ), Dyl ) (@), De(w, y2))
=: 7.

If we set

Lro (X)

N(k,7") NG ")

ZERD = 3TN ST ST @@ ) DR W OIDs(9) (w2 )]

T'el, v'=1 77€el; v'=1

k7ul 47’/// ) v
X |<T(D7€(7y7—’ )7 Dj('ay-];-” ))(.’IZ‘), D@(l‘, yi )>|7

then obviously

N(&T) '/q
2115303 SEETINTINDS) B Sl
¢z vel, v=1 Y- €Q" ez ien (%)

We estimate Z by splitting the summation ) 7, ., >° jez into six parts according to the size
relationship of k, j and ¢. More precisely, Z; is the part of Z where j < ¢ < k, namely,
N(¢,T)

VARES H{ZZ Z 9¢s040 ,inf, [ZZZNW)] N M}l/qo

Z v v
(€Zvel, v=1 €Q" " iSej<e
similarly, Z, is the part of Z where k < £ < j, Z3 the part where j < k < /¢, Z4 the part
where k < j < {, Z5 the part where £ < k < j, and Zg the part where £ < j < k. Clearly,

6
Z< Z 7.
=1

So it is enough to show that, for i € {1 ., 6},

LPO(X);

Pl ‘11 P2 ‘12 X)
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The main tools to be used in the proof below are Theorem|[6.8] Lemmas and|6.13] and
the Fefferman—Stein vector-valued maximal function inequality; for the latter, see [48].

Since € € (0,1)N (0, k] N (0, /2], there exist positive real numbers 7, ~, o, ro, 71, r2 such
that, for ¢ € {0,1,2},

7 €(0,6/2],
v e (075)7
o € (0,min{é — 7,1, Kk},

|s;| < min{o, €},

A — i < r; < min{1L,p;, q;}
max , , r; <minql, p;, q;}-
n+y n+o n+o+s; ! bi> 4

(6.22)

To see the existence of such numbers, we first choose a small positive number n and o > 0

such that

lsi| <e—2n<o<e—n<e,

n n
) ) 6 07]‘72;
€—2n n+€—277+s,} red }

it is easy to show that 7 := € guarantees that
7€ (0,6/2] and o € (0,min{é —7,1,k}];
finally, by taking v := € — 1, we have

n n n < min{1 )
max min{1, p;, ¢},
n+y'n+o’ nto+s; bid

so r; can be taken to be any number in the interval
n n n
’ ) ; i 17 iy 41 .
(mac{ 2 2 b win{pan )
In the following proof, we fix ¥, v, o, ro, 1, 2 satisfying (6.22).

’Estz'mate forZy:j <t<k. ‘ By Theorem (i), we see that, when j < £ <k,

min{p;, ¢;} > max { .

(T (i), Dyl ) (@), Dl yi)|

<22y, g ) K27,y ).

From (/6.23]) and Lemma it follows that, when j < £ < k,

N(k,r")
2D <27 m0r SN Q) D () (W) K@t )
T'el, v'=1
N(G,m")

X 3 @D Ry )

rrel; vi=1

N(k,7")

< 27(1@73‘)02(1@4)71(1/“71){M( Z Z |5k(f)(y1:;u')|r1XQi;V/)(yﬁ’u)}l/m

T'el, v'=1
N(@G,m")

AM( X X Do) )I”inﬁ/')(yf’”)}l/rz.

Trel; vi=1
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Inserting this into the expression of Zi, we obtain
N(¢,T)
ZE11530 o0 SIS o RO T
tezvel, v=1 Y7 €Q77 ">y <y
N(k,7")

(5, X P g o}
T r V=
N(g,m")

X {M( > > @j(g)(yi’//””)I”XQi.;/f)(yf’”)}l/rz}qoxdu}l/%

LPo (X)

(€T k>t j<t
N(k,m")

MY D )}

T'el, v'=1

AM(T S B g )}

where the last inequality was obtained by first removing the infimum and then using the
fact that, for all £ € Z,
N(¢,T)
Z Z Xger(x) =1  for almost every x € X.
Tel, v=1
Applying Holder’s inequality to the last quantity displayed in the above inequality, we see
that

Lro(x)’

Z1 S AR j7
where
z= [{ [ oty
L€T k>4
N(k,7") 1 L
s1 7y RVANTS ri7q1y /a1
(S S D g ) T
'€l v'=1
T = H{ 3 [224473‘)(0752)
L7 j<4
N(G,7m")

MO W g )

el; v'=1

Lr2(x)’

To estimate Z, by Lemma [6.13] and the fact that
22—(k—£)[a+51—n(1/r1—1)] <1
E>¢
(this is because r1 > n/(n + o + s1)), we have
N(k,7")

[Z2—<k_e)[a+sl—n(1/r1—1ﬂ{M< > % |2kslﬁk(f)(yf;u’)‘rlekm,)(x)}l/rl}th

’
k>0 rely vi—1 -
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5 Z 2—(k—€)[o+sl—n(1/r1 —1)](g1 A1)
E>¢

N(k,m") o , /r
MO S R DU g ) @]
el v'=1 T

From this and the Fefferman—Stein vector-valued maximal inequality ([48]), we deduce
that

< H{ Z Z 9—(k=0)[o+s1—n(1/r1=1)](q1A1)

0€T k>t
N(k,7")
ks1 7y ko' 1 , q1/T1}’r‘1/q1 1/
- [M( Z Z |2 Dk(f)(yT/ )| XQE;V )] LP1/71(X)
el v'=1
N(k’,r’) o b lIl/Tl 7‘1/(]1 1/7“1
SUS MOE X D6l )
-/ Lr1/71(X)
keZ el v'=1
N(k,m")
_ / /riyri/ai 1/
< ksi ko' r /]Q1 }
PSS S P g,
keZ t'el, v'=1
N(k,7") / ”m
~ 2k81Q1ﬁ k;’/ q1 VU/}
(XX X 2B g b

keZ el v'=1
< -5
S gz, a0
A similar argument gives us

I < gl gz

P33 (X))

Combining the estimates of Z and J implies that
Z1 S| f]

E5l (X)||g|

52 .
P1,91 FP2,<12(X)

’Estimate forZo:k <t€<j. ‘ By symmetry of f and g, the estimate of Zs is similar to
that of Z;. More precisely, when k& < ¢ < j, applying Theorem (ii) one deduces that

l,v
)(@), De(, y2"))
S 27U R e ) K@y ),

’

(T(Di(,y5"), Dyt

Comparing this inequality with (6.23)), as well as the expression of Z; with that of Z5, we
see that

N(e,T)
) X 0k, q0 1/q0
2z = H{ Z Z Z 2 ¢ ulnfz v ZZZEF”’ & XQE-’V} Lro(X
ez vel, v=1 Yt €QT T sy >0 ()

S Wl collgllzzz,, 2

P2,92
which was obtained via replacing the estimate of Z; by reversing the roles of the terms
related to k and those related to j therein, the details being omitted.
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’ Estimate for Zs: j < k < /. ‘ Recall that

N(¢,T)

73 = H{ZZ Z 2550‘10 mf

(e vel, v=1 Qv i<t i<k
From Theorem (111) it follows that, when j < k </,

(T(De(y"), Doy )(@), Dl ye¥))|

S 27UN7R (2R Byt K2y ), (6.24)
When j < k, the doubling condition implies that, for all z, yf,"/ € Ql:}”

K277, y’:}”/7yi’,',ﬂ) ~ K275y, 2, yi@',’//).
By this, and Lemma we deduce that, when j < k </,

1/q0
X z,u}

Lro(x)

N (k)
2D <270 NN QK@ Ryt Dk () ()]
el v'=1
N(5,7")

inf N (@) K@y, b ) Dy (9) ()

ZEQ , ”EI =1

N(k,7")
Sot=ir 3N, 2 Fy g ) D) W)
T'el, v'=1
N(]iT ) - o, 1/7,2
x it (MDY D) X ) (2)]
2€Q el vi=1 T
—(—y) N & T £,v 1/ro
sz 3 Z D)W 16, x g )W)}
T'el, v'=1
where, for all z € X,
N(@j,7") . s
G |:M( Z Z y,r// )|T2XQZ-—7,,;//>(Z)1| .
//eI ,/// 1
If, for any z € X, we set
N(k,m") o ‘ 1/ro
FORDE) = (M 30 30 Dl )6y ox g ) ()}
T'el, v'=1
then
Z’(rli;/ku’) < 2—(5—16)02—7@502—(k—j)(0—82)]_:‘(5x’€)j)(yf’l’).
Inserting this into the expression of Z3, we obtain
N(¢,T)
sl{T3 Y
ez vel, v=1
. . 1/40
~ —(t—k)og—ksog—(k—j)(o—s2) (L k.5) (, Ly | " }
X [,ulnfé,u 222 2 2 F (yT ) XQ{}’V Lpo(X)
Yy €QT k<t j<k
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: H{Z’ZZ2’“””("*8@27<kfj>(afsfz>p<1 : qo}l/qo

(€L k<tj<k
{330 2 trhe s aonng=(hmilo ) @Al [p(tk) }1/%
CEZ k<t j<k

where, in the last step, we used Lemma Invoking the definition of F(“%:7) the above
inequality gives us

Zs < H{ 33 2R s) g (ki) (s ()

LPo(X)

Lro(x)’

LET k<t j<k
N(k,7")
MY DU e g )Y
J Q7 Lvo ()
T'el, v'=1

Since qo/r9 > 1 and po/rg > 1, by applying the Fefferman—Stein vector-valued maximal
function inequality ([48]), we continue the preceding estimate with

73 S H{ Z Z Z 9= (t=k)(c—s0)(q0A1) 9~ (k—j)(0—s2)(q0A1)

LEL k<t j<k
N(k,7")
D v\ [0 9ds2 (3|7 90/m0y 1/d0
<[ D G x g ] )
'€l v'=1 i LPo(X)
{ Z Z Z 2_(f—k)(U—SU)(qo/\l)2_(k_j)(0_82)(q0/\1)
€T k<t j<k
N(k,7")
! 90y 1/q0
QJSZG |: 2k€1D ;1/ X ,L,/} } .
T;k V’Zl l )‘ Qi’ Lro(X)
Then Holder’s inequality implies that
Zs S H{ ZZZ2_(e_k)(0—30)(CIo/\l)Q—(k—j)(g_sz)(qo/\l)
LET k<éj<k-
1/q
ap> Z D6 o P
el v'=1 Q LPo(X)
x H{ ZZZ2_(Z_k)(J_so)(qo/\l)2_(k_j)(0—82)(QU/\1)[stsz]qo}l/qO
0€7 k<l j<k LPo(X)

Nk'r

S H{Z{ Z Z 12851 D ( ;V/)|XQ,:}V/}‘10}1/¢10

kez r'e€l, v'=1

ey

]EZ

Foliar () H{ > [ }1/%

JEZ

Lo (%)

Lro(x)

Lro(x)’

Next, the Fefferman—Stein vector-valued maximal function inequality ([48]) and the fact



74 6. Bilinear T'1-theorems on Triebel-Lizorkin and Besov spaces

that ro < min{ps, g2} imply that the second term is dominated by

{30}

LPo(X)
NG 1/r2y 1/a:
< Js292 T2 -
NH{Z2 [ (Z Z yT” )| XQ’T’ﬁ )} } LP2(X)
€z rrel; v'=1
~ ||!J||F;22 a0 (X)°
This proves that
Zs < g .

’ Estimate for Z4: k < j < /. ‘ The estimate of Z4 is quite similar to that of Z3: indeed we
just need to repeat the reasoning for Z3 by reversing the roles of the terms related to &
and j therein; we omit the details.

’ Estimate for Zs: 0 <k < j. ‘ The estimate of Zs is similar to that of Zs; for the convenience
of the reader let us sketch the proof. In this case, applying Theorem [6.8] -(v we see that

|<T(Dk(ay7-;y )7 Z)](7y-j,—7/7 ))(I)7 D@(‘Ta yr’u)>|
S2*(j*€)”/C(2*Z;%yf/’”/,yf’”)K(Q*k;v,yf;”/,yi’u””). (6.25)
When k < j, the doubling condition unpheb that, for all z, y” Ve Qﬁ}”l,

K@ 05 ) ~ K@y, 2,050,
Combining this with (6.24) and Lemma we conclude that, when ¢ < k < j,

N(k,7")
ZERD <9700 NN @By ) DR ()W)
T'el, v'=1
N(G,7"")

inf S > w@Q ) K@y D () ()

ZEQ}”,V el v'=1

< 27U 0ogG=Rn/ra =) NN QB K27, 5yt DR () (5]

el v'=1
N(J T”) 1/7,2
x inf (M3 Dia) W) xgu ) @)
ZEQT}V ”GI =1

< 9= (1-0o9(i—k)n(1/ra—1)9(k—L)n(1/ro—1)
N k' 1/ro
AM(X X BN I G g )}
T'el, v'=1
where, as in the estimate of Z3, the function G; is defined by
NG, Lrs
|:M( Z Z yT” >|T2XQ:_/1;”)(Z)1| y Vz e X.
,/GI_ V// 1
Inserting this into the expression of Z5 and noticing that
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28302—(j—£)z72(j—k)n(1/r2—1)2(k—€)n(1/r0—1)2—k312—]‘82
= 2~ (k=Dlotso—n(1/ro—D]g=(j—k)lo+s2—n(1/ra—1)]
and also observing that, for any measurable function H : X — [0,00), all £ € Z, and

almost every x € X,
N (&)

> [t HOE) xge @) < H@),

L,v L,v
vel, v=1 yr €EQr

we obtain
N(e,T)
Zs < H{ZZ Y otsow inf 33 27 Um0 pG=Rn(/ram D (k= On(1/ro-1)
(€7 vel, v—1 Y €QT Sy ik
N(k,7") 1) 1)
— ko' o 7o / o To |40 } q0
AMOY X DO IIG X )} X} g
T'elr v'=1
< H{ 3 ‘ 35 o k=lotson(1/ro=Dlg—(i=k)lr+sa=n(1/ra= 1)
LEL k> 5>k
N(k,7") 1) 1)
ks1 Ty kw'\|ro js2 (Y . |To , o qo} a0
x{M(g > DU e Xt )} ot
T k V=

The choices of o, rg and r9 imply that o+ sg —n(1/rg—1) > 0,0 +s3 —n(l/ra —1) >0
and hence

ZZ2—(k—€)[a+so—n(1/ro—1)]2—(j—k)[0+52—n(1/r2—1)] < 1.

k>05>k

By Lemma the Fefferman—Stein vector-valued maximal function inequality (see, for
example, [48]) and Holder’s inequality, we follow the same procedure as in the estimation
of Z3 to obtain

Zs S| f
further details being omitted.

it 9z, 2

’ Estimate for Zg: { < j < k. ‘ Analogously to Z,4, to obtain the desired reasoning for Zg,
we just need to repeat the reasoning for Zs by reversing the roles of the terms related to
k and j; we omit the details.

Summing the estimates of Z; through Zg completes the proof of Theorem 6.14. m

6.4. Bilinear T1-theorem on Besov spaces. In this section we prove a bilinear T'1-
theorem on Besov spaces that complements the corresponding results on the Triebel—-
Lizorkin scale.

THEOREM 6.15. Let K be the constant appearing in the reverse doubling condition and
€ € (0,1) N (0, k]. Suppose that the bilinear operator T is in BWBP(n) for somen € (0, €]
and its kernel K belongs to Ker(2,Ck, ) for some Cx > 0 and § > 2¢. Assume that, for
allg € CJ(X),

T(1,9)=T(9,1)=T""(1,9) =0 in (C}(X))"
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For every j € {0,1,2}, let |s;| <€, p(sj,€) <p; < oo and 0 < g < oo be such that
1 1 1 1 1 1

so=581+8, —=—+— and —=—+—,
Po P11 P2 qo0 q1 qz

and let BZ;',% (X) be the Besov space as defined in Deﬁnition' ThenT can be extended
to a bounded bilinear operator from B2' _ (X) x B2 (X) to B, (X).

p1,q1 P2,92 Po,q0

Proof. Let €1 and €2 be positive real numbers such that min{e;,ea} > €. Let {Sk}rez be
a non-negative and symmetric 1-ATT with bounded support, and Dy := Sy — Si_1 for all
k € Z. As in the proof of Theorem it suffices to show that, for all f,g € C;S(q, €2)
with bounded supports,

||T(f7g)||3;8)q0(2¥) < CHf”B P2 a2 (X)°

By the frame characterization of the Besov spaces (see Lemma, we write

IT(f, 9)l5

Bpd g0 (X)
N(£7) q0/Poy 1/q0
STOIERED DD SUTCE I ST ORI e R
(€7 Tel, v=1 reQr

Next, applying the Calderon reproducing formula to f and g gives that, for all w € X,

N(k, ")

=33 ST @) Di(w, v ) Dr(H) ),

keZ el v'=1
N(G7")

w) =33 3 W@ )D;(w,yk VDo) (W),

JjEZT'El; v'=1

where each series converges in C}/ (X). It follows that

1T 9)sg . o)
N(¢,T)
S {32t QL")
LEL T€l, v=1
NET) NG
o [YYY S @ @ D)
vr €Q ez jenrely vi=1 1iel; vi=1
- jl/// k' jV” ‘o Po q()/p(l 1/‘]0
< D0 VTR ), D ), Deta, e )[]"")
=Y.

In what follows, we use the notation, for all k, j, ¢ € Z,

. N(k,m") N(5,7"") , o
Y(f,kﬂ) .= Z Z Z Z M(Qf—;y )M( g_,/z// )

el v'=1 t’el; v’'=1

< | Dr(N WS Ds(9) (2 N T (Dr (5", Dy 2% ) (@), D, yo¥)).
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With this notation, we have
N(¢,T)

Y = { 9¢s0d0 [ L) inf y (6kid)
As in the proof of Theorem we estimate Y by splitting the summation ), _, ZjeZ
into six parts according to the size relationship of k, 7, and £. To be precise, Y is the part
of Y where j < /¢ <k, Y, the part where k < ¢ < j, Y3 the part where j < k < ¢, Y, the
part where k < j < £, Y5 the part where £ < k < j, and Y the part where ¢ < j < k.
Clearly,

Po}qo/m}l/qo

6
Y<S) v

i=1
Thus, it is enough to show that, for i € {1,...,6},
S s

s 911232, o) (6.26)
Observe that, by symmetry, the estimates of Yo, Y4 and Yg are analogous to those of Yy,

Y3 and Y5, respectively. So we only prove (6.26) for j € {1,3,5}.

’ Estimate for Y,:j < { < k. ‘ Let o, v, 7o, 71 and 2 be positive numbers satisfying (6.22]).
Recall that, in the estimate for Z; in Theorem by Theorem [6.8]i) and Lemma
we have obtained the following: when j < ¢ < k,

N(k,m") ™
Y (ki) < 9= (h=iogk—On(1/r— 1)[ (Z Z Du(f) (" )I"lek}yf>(yf”’)]
rel, v'=1 T
N (G’ Lra
[ ( Z Z y-r” )|T2XQJTV/7”)(3J£’V)} .
/IEI l/// 1
From this and Hoélder’s inequality, it follows that
"D P07 q0/Poy 1/q0
NEEOSELUD D SRTCEONE TN 9) St i
tet Tely v=1 v Qﬁu J<t k>t
S (o] Szttt
LEL J<l k>4
N(k, ") o L 1
<M X D )]
'€l v'=1
N(G,7m") s a0 e
[M< Z Z yT” )|T2XQj’,7/l)] LPo(X }
//61 =1 T ( )
{ZQ&'O%HZZ2 (k=ogt=0n(/m-Dp, G % }1/%7
LeZ J<e k>0 Lro(x)
where
N(k,7")

—M(X S B )]

T'el, v'=1
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NG,

(28 B )

rel; v'=1
Noticing that so = s1 + s and applying Hélder’s inequality, we obtain
Y1 <ZIxJ,

where

T = {ZQESNM

q }1/111
?
LP1(Xx
LEZ (%)

2 1/q2
J = {%2222632@ j LPZ(X)} .

To estimate the term Z, for every ¢ € Z, we set

T, = HZZ (k=0)ots1=n(1/m-Df, ‘
k>t

Obviously, T = [Y°,,(Z¢)?]"/9 . For each { € Z, we rewrite Z, as

7, = H Z 27(164)[a+817n(1/r171)]F21
k>0

22 (k—0)[c—n(1/r1— 1)]

Lri(x)

1/p1

Li(x)

Invoking the expression for F, and applying Lemma [6.13] and using
Z2—(k—€)[0—n(1/7'1—1)](p1A1) < 00,
k>
we conclude that
7, < H S g (k= Olotar—n(1/m=DI@AD

k>0
N(k,7")
M(E X D )]
T'el, v'=1
~ Z 27(k72)[6+517?1(1/7"171)](171/\1)
k>0
N(k,m") o , 1/m
MO X D@ g )| g e
el v'=1
which, combined with the fact that M is bounded on LP'/"1(X) when p; /r; > 1, implies
(h=0)[o-+s1-n(1L/r~ D) (p1 A1) N e Hn
—(KR=L)lorsi—n{l/r1— P1 S1 NN
Ifskzzf HTgk 2 2 D) X5 Nl onrma )

N(k"r/) — ’ ’ 1/P1
~ Z 2—(k—€)[o+s1—n(l/h—l)](]h/\l) |: Z Z |2ksl Dk(f)(yf/’y )|p1,U/(Q§;V ):| .

k>0 el v'=1
Again, applying Lemma when p; > 1 or (6.21) when p; < 1 and the fact that
Z 9= (k=B)otsi—n(l/r=DIP1AD @A)
k>0
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we know that
(Z)" < Z2*(k*4)[0+81*n(1/7“1*1)](171/\1)(%/\1)

k>0
N(k,7") @/
s1 7 ko' kv
XS P B P
T'el, v'=1

Next, we compute ), ,(Z;)?" by interchanging the summations in £ and k, to obtain

7 = { Z(I‘)ql }l/ql < { Z Z 9—(k=0[o+s1—n(1/r1—1)](p1A1)(q1A1)

L€, 0EZ k>0
N(k,7")

XY D @]

el v'=1
N(k,7")

SO D D S0 (s Cnte/<h] ke

keZ Tt'el, v'=1
< s
[ S eos
An argument similar to that used in the estimate of Z gives that

J S gl

Combining the estimates of Z and J implies the desired estimate of Y.

52
P2 Q2

] Estimate for Ys:j < k < L. \ Recall that

N(¢,T)

Y ::{Zzzsoqo[z Z QzV 1nf“ ZZYM

LET rel, v=1 Q- k<t j<k

po}%/po}l/tm

In the estimate of Z3 in Theorem it was proved that, when j < k < /,

N(k,m")

y(eRi) < 9- [ <|G ST ST DR )|T°XQ§}V')(Z/£’V)T/TO’

T'el, v'=1
where, for all z € X,

N(G,7"")

Gi) = [M( XY Do) g )]

rrel; v'=1
If, for any z € X, we set

N(k,m")

F(£7k7j)(z) [ <|2352G | Z Z 2k61D T;V/)|T'0XQ:C—}V/)(Z)}1/r0’

T'el, v'=1
then, by so = s1 + s2, we have

Y E&ET) < 9=(f=j)og—ksog(k—j)s2p(6,k.5) (y_l;,l/)_

Inserting this estimate into the expression for Y3 gives that
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N(¢,T)
Vs {2 30 3 @)
LEZ rel, v=1
: j j P07 490/Poy 1/a0

x lnf ZZ2_(£_J)a-2_ksoQ(k_])SQF(E,k,J)(yf—’u) :| }

et iz
{ZHZZQ (t=k)(o—s0)9—(k=j)(o— 82)F(£1w) }1/%.

Lro(Xx)

ez k<t j<k
For each ¢ € Z, applying Lemma [6.13] and the fact that
373 g (R (o g (o5 (o) < 1

k<t j<k
we obtain
H 3N 2R (ki e p( ’w)‘
LPo(X)
k<t j<k
- H ZZ2—<e—k><a—sO>2—<k—j><a—s2>p<am>}”0 /o
k<t j<k Lo
< ‘ZZ2_(4_]“)(0—30)(110/\1)2—(’f—j)(0—82)(:00/\1)[F(fakvj)]l)o 1/po
~ ; L (X)
k<t j<k
~ _ZZ2*(15*’9)(0*50)(170/\1)2*(k*j)(0*82)(100/\1) [F(Mvj)]]ﬂo }UPO. (6.27)
k<t <k L1(X)
Notice that the LPo/7 (X)-boundedness of M and Hélder’s inequality imply that
NGk Po/To
(0,k,5) s ks T
IPCRD g ey 5 1222 Gl 30 D0 2 DR X | o
T'el, v'=1
N(k,7") o o
~ JS2 (Y . ksi NZ ,
2 G] Z Z |2 Dk(f)(y'r’ )|XQ5}U 1ro (X)
el v'=1
N(k,m") o
< ks1 7y kv’ ’ js2
~ % ,Zl |2 Dk(f)(y-r’ )‘XQ:VJV Lpl(X)H2 G; HLpz X)
T k V=
By this, (6.27)), Lemma|6.13} and the fact that
Z Z 9~ (E=k)(e=s0)g—(k=j)(o=s2) < 1
k<t j<k
we obtain
H 3N 2 sy (k) (s phd)
k<t i<k Lro (%)
< {ZZ2—(f—k)(U—So)(Po/\l)Q—(k—j)(U—Sz)(Po/\l)
k<t j<k
Nk k1S Po ois2 q0/po
Z Z |27 Dy (f yT/ )|XQk1 || G ”Lpz(X)

el v'i=1
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< 303 2 R AN AD o= (k=)o) po A
k<t j<k

N(k,7")
| XX DD g |, 1277 Coll e
T'el, v'=1

Then, Holder’s inequality further gives that
Y; < { Z Z Z 9= (t=k)(o=50)(PoA1) (53 A1) 9= (k—3) (0 =52) (PoAL) (FZ A1)

LET k<l j<k
N(k,7")
ksi Ty 71’/ ’ " }1/q1
< X 3 e Bn6k gy
Tl v'=1
X {zzz2*(H><Ho><mm<:fzm
L€Z k<l j<k
1/q
s« 9~ (k=3)(o=s2)(PoAL) (5 ||2]S2Gr ||LP2(X)} 2
NED ks1 Ty k' a Va
HXIE X e moe gl )

keZ 1€l v'=1

G B}

JEZ
Obviously, the first term is equal to

P3Py Z 2D (f)(y’:;”/>|pl}q“’”}”‘“

keZ Tt'el, v'=1
and, for the second term, the boundedness of M on LP2/72 (X) implies that

1/
(312605, 0}

Bpiai (X)

JEL
| NG , Uraye Vs
AT S X Do o)) )
jez rel; vi=1 ’
N(]T/,)
q2 1/q2
]SS2
T S X P g ] )
T”EI =1
S lgllszz 20
Thus,
YS S Hf”B;i a1 (X)Hg”BPz 42(‘)().

’ Estimate for Ys: £ < k < j. ‘ Recall that, in the estimate of Zs in the proof of Theorem
6.14} we proved that, when £ < k < j,
Y Ekd) < 9= (i=Oag(—k)n(1/ra=1)g(k=O)n(1/ro—1)

N(k,7")

c{m(lee 3 > Dl 'ﬁ”I)I”’XQI:;V/)(yf’”)}l/r()7

el v'=1
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where, for all z € X,

N(Gr") ) e
=M X D@ g, )@
// eI ,/// 1

Set, for all z € X,

HOIG) = (M6 3 N pmgs 6 x g ) ()

T'el, v'=1
Then
v (k) < 27(j7£)0’2(j7k)n(1/7n271)Q(kil)n(l/rgil)QikSOQ(kfj)SQH(E,k,j)(yﬁ,y)'

Also, notice that
9lsog—(i—)og(i—k)n(1/r2=1)g(k—O)n(1/ro—1)g—ksoq(k—j)s2

— 9= (k=0)o+so—n(1/ro—1)]g—(j—k)[o+sz—n(1/ra—1)]

Therefore,
el Po790/Poy 1/40

Y5 = {22590(10[2 Z Q/V inf ZZY(Z,k,j)(ygy> } }

tez rel, v=1 v eQr” Sl is

N(¢,T)
ZV k—£)[o+s0—n(1/ro—1
{Z[ZZ (@7 lnfhzzw )[o+so—n(1/ro—1)]
€z rel, v=1 Q7" NS>k

% 2*(]’*1@)[a+szfn(1/r271)]H(g)k)j)(yf’y) Po}qo/pg}l/qo

{ZHZZQ (k=0)[o+s0—n(1/r0=1)] 9= (i —k)[o+s2—n(1/r2= 1) f{(£,k.5)
CET k>l >k
Applying Lemma [6.13] and the fact that
ZZ2—(/%‘—5)[0-*'50—"(1/7“0—1)]2—(j—k)[0+32—"(1/7“2—1)] <1,
k>6 >k
we conclude that, for every £ € Z,
ZZQ (k=0)[o+s0—n(1/ro—1)]g—(3—k)[o+s2—n(1/r2 = D] (£, ’w)‘

1/q0
LPo (X)} '

k>05>k LPo (X)

ZZ2_(1f—€)[<7+so—n(1/7"o—1)](1)0/\1)2—(]’—lc)[a-i-sz,—n(1/7n2_1)](p0/\1)[ILI(MW-)]I)0 90/Po

kzﬁjzk Ll(X)
~ [ZZ2—(k—€)[o+so—n(1/r0—1)](po/\l)

k>05>k

X 2’“*’“)[”“2*“(1/?”271)](po/\l)”[H(e,k,j)]po”Ll(X)}%/po
The boundedness of M on LPo/7(X) and Holder’s inequality imply that

y y
[HERDPPo(| 1 vy
N(k,7") oo
S T ks
o [IGERCED D SR MG IO s

T'el, v'=1
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N(k,")
. N — k7 ’
Sl X 3 D g
T'el, v'=1 T (%)
NGk Po/p1
| > Z 2 D)W Mg 1, ) 1272 Call e
el v'=1

Combining this with Lemma[6.13] we further see that
Ky < Z Z zf(kff)[0+80*n(l/TO*l)](PoAl)(%/\l)2*@*’6)[0+82*n(l/rzfl)](po/\l)(%g/\l)

k>0 j>k
kT) ksi Ty q0/p1 ]32 QO/PQ
‘ Z Z 2 D yT, )|XQk:V ” G]”Lpz
T'el, v'=1

From this estimate and Hoélder’s inequality, we deduce that

1/q0
Y5 S {Z/Q}

LeZ

83

5{2222 (k=)[o+so—n(1/ro— 1)}(100/\1)(%Al)2*(j*k)[0+82*n(1/T2*1)](170/\1)(%/\1)

LEL k>0 §>k
N (k,7")
o= k! q1/p1 /a1
<SS PN x g }
! LP1 (X)
el v'=1
% { Z Z Z 9~ (k=0)lo+so—n(1/ro—1)](poA1) (52 A1)
LET k>0 >k

. q 1/q
% 2*(]*’6)[0’+52*n(1/T2*1)}(P0/\1)(ﬁ/\l ||2]S"‘G ”fp/zp(zx } 2

N(k,m")

XX X D@ g

keZ t'el, v'=1

1/q2
< {3y |

JEZL

@/p1 y1/q
LP1(X)}

S, ollllsz -
This proves the desired estimate for Y5 and finishes the proof of Theorem [6.15] m



7. Multilinear vector-valued 7'1 type theorems

Let us recall the Th-theorem by Semmes [92]. For any given family of functions
0, :R*" xR" - C

such that, for all z, y, ¥’ € R™, k € Z and some positive numbers A, §; and ds,

A

1

1Ok, 9)| < 5o T ) (7.1)

and
A Jy—y|™

10k (2, y) — O (z,y)| < 5 Fn g ke (7.2)

we have the following square function estimate:
1/2
{YleeDe@n} < Cllfllian (7.3)

keZ
with the positive constant C independent of f, provided that, for a certain para-accretive
function b,

OKb) =0, VkeZ, (7.4)

where Oy, is the operator associated with the kernel 8. By a duality argument, this theorem
easily implies, in particular, the celebrated boundedness of the Cauchy integral [92].

The main goal of this section is to investigate the multilinear version of such a quadratic
estimate . Precisely, by assuming certain decay, smoothness and cancelation conditions
on the sequence of multilinear operators, {O }rcz, we are interested in the behavior of

[ 20D} o {2901}
kEZ

kEZ

Ly (R")

for suitable p, ¢ and s and a vector of functions

Fi=(f1,. . fm) € Hyj»
j=1
with each V; being a Lebesgue or Besov or Triebel-Lizorkin space. A particularly useful
tool in the proof of the main results (Theorems and in this section is the
Calderon reproducing formula in Lemma [6.10}

7.1. A multilinear off-diagonal estimate. A multilinear version of the family of the
operators {O}rez appeared in Maldonado [77] when X is an Ahlfors 1-regular metric
space. Here we adopt the following definition.

(84]
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DEFINITION 7.1. Let m € N. Suppose that, for any k € Z,

m-~+1 times
—N—
O : X x---x X — C,

and moreover that there exist constants A > 0, 6; > 0 and > > 0 such that, for all k € Z
and points z, 1, ..., ¥, belonging to X,

m 1 2_k %2
Ou(z, 1, .. ym)| < A "
0k (z, 11 Ym)| E Vi (z) + V(x, ys) [2k + d(m,yi)] (7.5)
and, for all jo € {1,...,m} and yj, € X satisfying d(y;,,yj,) < (277 + d(z, y5)1/2,

10k (2, Y15 Yjor -+ - YUm) —Ok(x,y17...,y;»0,...ym)\
A[ (yjo- Y5,) rl 1 1 { 2 ]62 (7.6)
2700 +d(z,y5,) | b Var(@) + Vi(w,y) [27F +d(z,ys) ] '

In this case, write {0 }rez € Ker(m, A, §1,02). Denote by Oy, the m-linear operator

Or(f1s-- - fm) (@)

= - Ok (2, 51, sy ) f1 (1) - fon (ym) dpp(y1) - - dp(ym), Vo € X,

which is well defined if f; € U<« LP(X) for all i € {1,...,m} in view of (7.5).

REMARK 7.2. For the special case m = 1 and (X, d, p) := (R™,| - |, dx), conditions (7.5)
and (|7.6)) turn out to be that, for all z,y € R™,

IN

27}(}62
< .
0k (@ 9| < A =y (7.7)
and, when |y —y/| < (277 + |z — y])/2,
_ o101 9—kd2
6u(asy) — O (o y)| < AtV =Y (7.8)

Q7 F 4z -y @7F+ |z -yt
These two conditions are equivalent to (7.1)) and (7.2)) in the following sense:

(i) (7.7) is exactly (7.1);
(ii) if O satisfies (7.7) and (7.8)), then it satisfies (7.2));
(iil) if Oy, satisfies (7.1) and (7.2)), then (7.8)) holds true but with a new exponent 64 € (0, d2).

Obviously (i) holds. To prove (ii), when |y — /| < (27% + |x — y|)/2, we see that
directly implies and, when |y —y'| > (27 + |z —y|)/2, we have |y — /|2 /27 K02 > 202
which combined with implies that
do+1 _ /02
() — 00, 9)| < 5oy < o LU,
we therefore know that holds for all z,y, and y'. Finally, (iii) holds if we take the
geometric mean between and .

Basic examples of kernels {0 }rcz are given by approximations of the identity. For
instance, taking {S }rez to be an (€1, €2, €3)-ATT for some €1 € (0,1], e2 > 0, and €5 > 0,
we consider

Ok (z,y1y- -y ym) = Dr(z,y1)Sk(z,y2) - - Sk(x, ym), YV, y1, .-, Ym € X,
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where Dy, := Si11 — Sk for all k € Z. It is easy to show that such 0}, satisfies (7.5 and
(7.6) with 9, = €1 and d2 = e3; moreover, for all x, y3, ..., Yy € X and k € Z,

/ ek(%yh cee 7ym) dlLL(yl) =0.
X

In what follows, we use the aforementioned notation K(t; €,x,y): given ¢ € (0,00),
t >0, welet, for all z, y € X,

1 €
K(t; e,z,y) == V(@) + Vi(y) + V(z,y) [t-l—d(l‘,y)} .

Regarding the family of functions {0y }recz € Ker(m, A, d1, d2), the following multilinear
version off-diagonal estimates hold true.

LEMMA 7.3. Let m € Z, ¢1 € (0,1], e2 > 0 and {0r}rez € Ker(m, A, d1,02) for some
positive constants A, 61 and do. Moreover, assume that each 0y, satisfies the cancelation
condition with respect to the yy-variable, namely, for allk € Z and x,y2, ..., Yym € X,

/ O (.51, -+ ) dpi(2) = 0. (7.9)
X

Suppose that there exists a positive constant B such that the functions D; : X x X — C,
j € Z, satisfy, for all z,x',y € X,

. 1 2—J €2
i) 1D;(z,9)| < By =y, s ives leraes)
(ii) when d(z,2") < [277 +d(x,y)]/2,

|Dj(x,y) — Dj(2',y)|

d(z,z") 1% 1 277 .
SB[Q_j+d($,y):| ‘/Z*j(l‘)"’—‘é*j(y)""_v(x?y) |:2_j+d(x7y)] ’
(iit) [y Dj(w,y) du(w) = 0.

Then, for any given €} € (0, e1 Aea Ad1 Ada), there exists a positive constant C (depending on
€} and the doubling constant Cy) such that, for allk, j € Z and points x,u,ya, ..., Ym € X,

/X Or(x,y1,- - Ym)Dj(y1, u) dp(u)

< CABQ‘lk_j‘elliC(Q_(k/\j); €2 A b2, T, u) HIC(Q_k; 82,2, Yi).

=2

m

Proof. The reader may easily find that the proof is essentially given in [60, Lemma 3.2]
(see also Lemma[8.3| below), so the details are omitted. m

REMARK 7.4. In Lemma instead of assuming that {0x}rez satisfies (7.6) for all
jo € {1,...,m}, it suffices to require that {6 }rcz satisfies (7.6) for jo = 1.

LEMMA 7.5. Let m € N, e; € (0,1], e > 0 and {0 }rez € Ker(m, A,61,92) for some
positive numbers A, 61 and d3. Moreover, assume that, for allk € Z, i € {1,...,m} and
T,Y1y--,Ym € X7

/ 9k(£7y1a7yl7aym)dy’(yz):0 (710)
X
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Suppose that, for every fized i € {1,...,m}, there exist positive constants {B;}™, such
that the functions { Dy, }k,cz satisfy, for allz,z',y € X and k; € Z,

. 1 2~ ki €2,
() [Dri (2, y)| < Biy— (z>+vrk,;<y>+vu,y>[2—ki+d(m,y)] ’

(ii) when d(z,2") < [27%" + d(z,v)]/2,

‘Dkz (.’)37y) - Dki (xlvy)‘

_ d(x,a’) ! 1 2k <
=5 [2_'“"’ + d(z, y)] Vamii (2) + Vo (y) + V(2 y) [2_'“"’ + d(z, y)] ’
(111) fx Dy, (’LU, y) dﬂ(w) =0.

Then, for any given o € (0, €1 Aea Ad1 A d2), there exists a positive constant C, depending
only on the doubling constant Cy and o, such that, for all points yy,...,ym € X,

|®k(Dk1<'7y1)aDk2<'7y2)a""D rn,( ym))( )l

] 0u(, 21s- .+ 2m) Do (21,91 - Do, (oo ) (1) -~ dp(zm)
Xm

< CA™ HBiT‘k*ki‘U/C(T(kMi); €2 N\ 02,2, Y;).

=1

Proof. Fix k,kq,...,kyn € Z and z,y1,...,ym € X. Consider the function
9,(:;:1)(3:, 29,0y Zm) 1= / Or(z, 21, -« 2m)Diy (21, 91) duu(z1).
x
For all j € {2,...,m}, by (7.10), we have
/ Gl(cmyll (x, 22, ..., 2m) du(z;) = 0.

Since {0 }rez € Ker(m, A, §1,02) and Dy, satisfies (i) through (iii), we apply Lemma
to conclude that, for all zo,..., 2, € X and o € (0,€1 A e2 A d1 A d2),

m—1
1057 (@, 22, . 2m)|

< AB 27 I Rilo (o= (RARD ) A 6y ) H K©27% 60,2,2).  (7.11)
i=2

Now fix j € {2,...,m}. We prove that, for all 2y, ..., 2z, 2} € & satisfying d(z;, 2}) <
[27% + d(z,2;)]/2 and for all §; € (0,1) and o € (0,1 A€z A dy A d2),

m—1 m—1
|91(c , Y1 )(x,227...,zj,... ) el(c Y1 )(x,ZQ,...,Z;7...,Zm)|
< AB 27 Ik=Rile=00 (o= (kAR 5 A ey, 2, 71)
d(z,25) 17" {5
— K©27F: 60,2, 2).  (7.12
ity ket oo
Indeed, suppose for the moment that we have proved that, for all zo,.. .,zm,z] e X

satisfying d(z;, 2}) < [27% + d(z, 2;)]/2,
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m—1 m—1
\QI(WI )(a:,zg,...,zj,...,zm)—Hl(wl )(J,‘,Zg,...,Z;-,...,Zm”
d(zj,25) 1%
< AB K (27BN 5y A — K26 ;o (713
~ 1 ( 3 02 627xay1) 2*k+d(x,zj) H ( 3 27$72)7 ( )

i=2
then we obtain (|7.12]) by taking the geometric mean between (7.13)) and using the following
estimate: when d(z;, 2}) < [27% + d(z, 2;)]/2,

m—1 m—1
|0,(€7y1 )(x,z%...,zj,...,zm)—9,(67111 )(x,ZQ,...,z;-7...,zm)|
< A312_|k_k1|"lC(2_(kAk1); 02 A €2, T,Y1) H K276, z, 2;)

2<i<m, i
X [K(27%; 62,3, 2;) + K(27; 62, z, 2})]
~ ABIQ_lk_klng(Q_(kAkl); 62 A €2, x,yl) H }C(Z_k7 (52,.(1}, Zi))

2<i<m
where we used (7.11)) and the fact that, when d(z;, 2}) < [27% + d(z, ;)] /2,
K(27F; 89, ,25) ~ K(27; 62, , 25).
Now we show ([7.13)) by considering k& < ky and k > k; separately.
If k < kq and d(z;, zé) <[27F 4+ d(x, 2;)]/2, then

‘a(m—l)

(m—1)
k,y1 -0

(@, 22,3 Zjs oy 2m) — O (@, 22, 2y 2m)|

/ Or(z, 21,0, 255 ooy Zm) = Ok, 20,000, 255 o 2| Dy (21, 91) dpa(21)
X

d(zj, 2)) 82 m
<Al 22177 | I 9=k. 5 S
~ |:2_k—|-d($,2j)] i:2’C( 02, %)

x / K2 s 69,2, 20)| Diy (21, 91) | d(21). (7.14)
X

To estimate the last integral above, we write

/K(Q_k§52>I7Zl)‘Dkl(Zlaylﬂd:“(zl)
X

/ K(2F; 63, @, 20)| Dy (21, 91) | dul1)
d(x,y1)<2[27*+d(z,21)]

+
d(z,y1)>2[2=F+d(z,21)]
=J1+ Jo.
When d(x,y1) < 2[27% + d(z, 21)], we have
K(27F; 62, 2,21) SK(27F; 62, z,91)
and hence

NS K(2*k;62,x,y1)/ |Diy (21, 91)| du(z1) S BiK(27%; 62, 2, 1).
d(z,y1)<2[27F+d(z,21)]
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When d(x,y1) > 2[27% + d(z, 21)], we have
d(z1,91) > d(w,y1) + 27" — [d(z1,2) +27%]
> d(z,y1) + 275 — d(z,y1)/2
> [d(z, 1) +27/2,
which, together with the fact £ < k; and the size condition of Dy, , implies that

1 1

€2
D <B
| k1(217y1)| — 1V(Zl7y1) |:1+2k1d(21?y1):|

1 1 e
<B
B 1Ab(B(yl, 27k +d(z,y1))) {1 + de(xvyl)]
~ BiK(27% e, 2,y1)
and, furthermore,
Jo S BiK(©2 % e, 2, yl)/ K (2765, @, 21) dp(z1)
d(z,y1)>2[2"F+d(z,21)]
S BIK(27 e, m,91).
Combining the estimates for J; and 7>, we see that
/ K(27k7 527 x, Zl)|Dk1 (Zla y1)| d,u(Zl) 5 Bl’C(2ik; €2 A (52,$, yl)
X

Inserting this into (7.14), we conclude that, when k < k1 and d(z;, 2}) < [27%+d(z,2)]/2,

|9,(€fr;:1)(x,22,...,zj,..., )f0;”211)(x,22,...,z;,...,zm)|
d(zj,2}) 92 m
SABy | —— 20 | (27D gy A G K27k 6y, 2, 2).
~ 1|:2_k+d(l'72]'):| ( ;€2 23x7y1)i1;[2 ( ; 02, Z)

As for the case k > ki, by (7.6)), we see that, when d(z;, z}) < [27F + d(z, 2;)]/2,

05" (1,20, 2y 2m) = O D (20, 2 )|
’/Hkle,...7 e, Z )—Gk(ac,zl,...,z;,...,zm)]
X [Dkl(zlvyl) - Dkl (xayl)] du(zl)
d(zj,2) 1% &

<Al 27k 5 ;

<Almrring) Lees e
X/ K(27k; 527 z)'zl)‘Dkl (Zlvyl) —Dkl(m,y1)|du(21). (715)

x
Write

/K K:83, ,21)| Di, (21, 51) — Dy (2, y1) dpa(z1)

f/ K262, 21)| Des (21 1) — Dy (0,0 dia(22)
d(z1,z)<[2~ k1 +d(z,y1)]/2
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+/ K(27%; 82,2, 21)| Dy, (21, 91)| dpe(21)
d(z1,2)>[27%1 +d(z,y1)]/2

+ | Dy, (2, y1)] K(27F; 6,2, 21) du(21)
d(z1,2)>[27F1 4+d(2,y1)]/2
— Ty + Ty + Zs.
To estimate Z, for every z; satisfying d(z;,x) < [27% + d(z,y1)]/2, we have
1D, (z1,51)| S BiK(27% 69, 21,11) ~ BIK(27 "5 60,2, 11),
which, together with | Dy, (z,v1)| < B1K(27%1; €2, 2, 1), implies that

Zl < / K(Q_k;627 .T,Zl)[lel (Z17y1)| + ‘Dkl (%yl)” d/’[’(zl)
d(z1,2)<[27%1 +d(2,y1)]/2

SBIK:(Q_kl;627 37>y1)/ K(2_k;627 .’I},Zl)d/lz<2'1)
d(z1,2)<[27*1 4-d(2,y1)] /2
5 BIK:(2_k1;627 37>y1)~
If d(z1,7) > [27% +d(z,91)]/2, then invoking the fact that k > ki, we obtain

1 9=k 7%
K<2_k;627xaz1) < |:d( ):| 5 K:(2_k1;627x3y1)

~ V(xazl) €, z1

and hence
Z2 S K(2_k1;52,$,y1)/ |Dk1(217y1)|du(zl) g Bllc(2_k1;527xvy1)'
X

Also, by the size condition of Dy, , we see that
Z3 < |Dk1(€0,y1)\/ K(27%; 65,2, 21) dpu(21) S | Dy (w,00)| S K275 €0, 2, 41).
x

From the estimates of Z;, Zs, Z3 and ([7.15)), it follows that ((7.13]) also holds when & > k;.
Thus, we obtain (|7.13]), and hence (7.12]) holds.

Summarizing, all these imply that, for all ; € (0,1) and o € (0,1 A €2 A d1 A d2),
{0’(;’7;:1)}kez € Ker(m - 17 A(mil)a 617 5201)7
where

A= = 0 AB 27 Ik Rile (=00 (o= (RARD . 5 A ey )

and C is a positive constant depending only on o, ; and C;.
Likewise, for z3,..., 2z, € X, we define

91%:,21)12(237“‘7%) ::/2gk(mvzlvmazm)Dkl(Zhyl)Dkg(Zzayz)dﬂ(zl)dﬂ(22)~
X
Since
0](;;;1_;)2 (237 BN Zm) = /X ol(gtnyjl)(x7 22y ey Zm)Dk2 (227 yQ) d:u‘(ZQ)v

an argument similar to the above gives, for all 61,05 € (0,1) and o € (0, €; Aea A1 A(d261)),
{9](;721:723)/2 }kGZ € Ker(m - 27 A(M—Q)’ 517 529192)7
where

(m72) pp— 2 7‘k71€1‘0’(1701) 7|k7k}2|0’(1791)(1702)
A = CA*B1Bs2 2
x K27 RN 5y A eg, 2, y1) K27 R 69 A (8261), 2, 92)

and C is a positive constant depending only on o, 6, > and C}.
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Iterating this process m — 1 times, we see that, for all 6,...,6,,—1 € (0,1) and
d € (0, €1 Neag Ao A ((52 HZZ_IQ 91')),

(1)
k¢yluy27~-uym—l(zm)
= / ) ek(.’ﬂ, 21y 7Zm)Dk1 (217 yl) e ka71 (szla ymfl) du(zl) Ce dﬂ(szﬁ
xm-

belongs to Ker(1, A, 6,5, Hf:ll 0;), where

m—1
A .— o™t H B; 2~ k=il ngtzgi(l_eé)lC(Qf(kAk"); ez A (0201 - Om—2), ,¥;)
i=1
and C is a positive constant depending only on o, 04, ..., 0,,_1 and C}.
Finally, since

Ok(Dy (1), - -, Di, (-1 m)) (2) = /X 08 o (2m) Dy (2 Ym) dpt (2.
we apply (8.5) to find that, for all 6,...,6,, € (0,1) and 6 € (0,e1 A d1 A (2 H:i_ll 0:)),
|®k(Dk1 ('7 yl)’ R ka('v ym))(x)l

S A Biz W RloIhices =00 k(=MD ) A (8301 -+ 1), ,3).
i=1
From this and the arbitrariness of 6; € (0,1), ¢ € {1,...,m}, we deduce the desired
conclusion of Lemma [Z5 w

7.2. Quadratic 71 type theorems on Lebesgue spaces. The main goal of this sub-
section is to study the multilinear version of the square function estimate on products of
Lebesgue and Besov (or Triebel-Lizorkin) spaces.

THEOREM 7.6. Let {0 }rez € Ker(m, A,d1,02) for some 61 > 0, 3 > 0 and A > 0.
Assume that, for allk € Z and z,ya,...,Ym € X,

/X Ok (2, Y1, - Ym) dip(y1) = 0. (7.16)

Let1 <p,p1,...,pm < 00 be such that 1/p =" 1/p;. For p1,s € (—¢,€) with
66(071/\51/\(52)

and g € (0,00] as in Definition the Besov space B;lyq(X) is defined as a subspace

of a distribution space (ég(ﬁm))' with 8,7 satisfying (6.18]). Then there exists a positive
constant C' such that, for all functions f1 € BS (X)) and f; € LPi(X), i€ {2,...,m},

P1.9

1/
{050k, by} < CAILA

g, o0 LAl o, (717)
keZ ' i=2

where C := C(81,02,€,8,4,D0, D1, - - -, Pm, X) > 0.

A key tool to be used in the proof of Theorem[7.6]is the following continuous homoge-
neous Calderon reproducing formula; see [60, p. 79, Theorem 3.13].
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LEMMA 7.7. Let e; € (0,1], e2 > 0, e3 > 0 and € € (0,e1 A €3). Let {Sk}keZN be an
(€1, €2,€3)-ATL. Set Dy, := Sy, — Si—1 for k € Z. Then there exist linear operators { Dy } ez
and {Dy}rez such that, for all f € (G5(3.7))' (or G5(8,7)) with 8,7 € (0,€),

f =Y DiDi(f) = DiDi(f),

kEZ keZ

where both series converge in (gg(@ ¥)) (or _C';S(B, v)). Moreover, the kernels of the operators
{ Dy }rez satisfy, for allz,y € X and k € Z,

5 1 2=k ¢
(a) [Dule,y)| < Oy vy 7 rawy) -

(b) ifd(z,2") < [27% +d(z,y)]/2,

’

~ ~ d(xz,x") € 1 2k ¢
Dk(,9) = Di(@,w)l < C[z—k T d(x,yﬂ Vo () Vi) {H T d(x,m] ’
(©) [y Di(w,y)du(w) = [, Dy(z,w) du(w) = 0,

where € € (e,e1 Nex) and C' is a positive constant independent of k, x, ' andy. The kernels
of {Dy }rez satisfy the above (a), (c) and, when d(z,2') < [27% 4+ d(x,y)]/2,

d(x,x") ‘
2=k 4+ d(x,y)} Vo—i(z) + V(z,y)

|Di(y,z) — Dy(y, z")| < C[ : {2* i_d]zx, y)]e '

Proof of Theorem. Fixe, 8,7,01, 02, $,p,q and {p; }; asin Theorem Let {Sk }kez
be a 1-ATI with bounded support and Dy := Sy, — Sk_1 for all k € Z. Of course, { Sk }rez
isa(1,1,1)-ATL Let f; € B;l’q(X). Then the Calderén reproducing formula (see Lemma
implies that there exist linear operators {ﬁk} rez whose kernels satisfy properties (a),

(b) and (c) of Lemma [7.7] for any exponent ¢ € (e, 1) such that

fir=>_D;Di(f1)

JEZ

in (C;g(ﬁ,’y))'. For any z,ya,...,ym € X, observe that 0y (z,-,y2,...,ym) can be viewed
as an element of G§(/3,~). Thus, for all k € Z,

125°0k(Fr,- - Sllley = | S22 OWDiDi 1, fors S|, (T18)

Lr(X
JEZ (%)

Since € > ¢, we fix €| such that €] € (e A d1 A b, € Ady Ads). Using Lemma[7.3] we see
that, for all k,j € Z and x € X,

OuD;D 1t S @ =| [ | [ o1 Dyt )|

x@mmmﬂﬁwwmm~@%w

=2
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m

S A2_|k_j|6ll I(:(Q_(k/\])7 1A 527 z, yl) H K<2_k7 627 x, y7,>
am i=2
< D (F) )| [T 1FiCwi)l da(yn) - - dpa(ym)
=2

~ A2~ Ik=il4 { / K27 1A Sy, y0) Dy (F1) (1) dﬂ(%)}

<1 / K2 8, 2, ) fo ()] (- (7.19)

Since 1/p=3"1", 1/pl-, we apply Holder’s inequality to obtain

H Z 2ké®k(ﬁijf1a f27 sy fm)’
JEZ

Lr(X)

A|| Y 2 kel / K@M A B, y0) |27 D, (1) (90) | dpan)

jEZ

I

=2

=: Zl X HZl
=2

To estimate Z; for 2 < i < m, we use the following fact: for all § > 0, k € Z and
g € L™(X) with r € [1, 00],
< Ollgllzrxy (7.20)

‘/ 27F: 5, w)|g(w)| du(w) L7(X)

for some constant C depending only on € and the doubling constant C;. To see ([7.20)), for
€ (1,00), we apply Holder’s inequality to deduce that, for all z € X,

[ xe gl < { [ ke mw)g(wwdu(w)}w,

and then Fubini’s theorem further implies that

[ Kt wlgtw) datw) . <{ [ [ xe 57x,w)|g(w)|’“du(w)du(z)}l/r

suitable modifications also yield ([7.20)) for » = 1 or co. From ([7.20)), it follows that
ZiSHfiHLPi(X), Vi€{2,...,m}.

Now we turn to the estimate of Z;. By Holder’s inequality, we obtain

/ K@ M1 A By, 50)129° Dy (1) ()] dln)
X

Lr1(Xx)

/X K(27F; 85, -, o) | £ ()| dpays)

LPi(X)

1/p1
s{ [ K@ s 2Dy ) |
X
Combining this with Lemma[6.13] and Fubini’s theorem, we see that
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P119/P1
(Z1)" =] [22"’““’1*““”8 / K<2—<’W‘>;1A62,~,y1>2]‘3Dj<f1><y1>|du<yl>}
JjEZ X L1 (x)
p1(19/P1
S| Do les lsl)[/ K2 M LA G, 91)[27° Dy (f1) (1) Idu(yl)}
=/ L1(x)
Q/p1
S {Z oIkl G=lsD [ g2 1 A b, 1) 27D (1) ()P dpa(yn) du(w)}
jez A2
q/p1
< { S0 2 A D, ()] ) )
JEL
< ZQ*\’C*J’I(EQ*I sPANZE ||2]SD (fl)”Lm
JEL

Summing the estimates of Z; through Z,,, we conclude that

| 2 0uD;Dififovo )|

JEZ

Lp(X)

k—il(e —|s a s
< S o Ikl DA oo 14 pl(X)HHfZHL,,L(X).
JEL
This, combined with (7.18]), gives us

/a
{ Y2 enfi... .,fm)llmm}1

keZ
514{2227"“ HE=IDAAE) 93 . (1) Hmm} H||f1||m(x)

keZ jez
1/q &
S ALY 12D (G b LT Millzws oy
JEL s
m
SJA”fl”B;l,q(;\f)1_[||fz‘||LM(;'c)~

=2

Thus, (7.17)) holds, and we complete the proof of Theorem n

THEOREM 7.8. Let {0k }rez € Ker(m, A, 01,d2) for some 61 > 0, 62 > 0 and A > 0, and
let every 0y, satisfy (7.16 - ). Let p, {p;}7™, and q be given numbers such that1/p = >, 1/p;,

l<g<oo, 1<pi<oo and 1<p;<oco forie{2,...,m}.

For the indices p1,q and s € (—¢,€) with ¢ € (0,1 A 1 A d2), as in Deﬁmtwn. the

Triebel-Lizorkin space F;'l ,(X) is defined as a subspace of a distribution space (G5 (8,7))
withﬁ v satisfying (6.18)). Then there exists a positive constant C such that, for all functions
fie Fs (X )andfieLpi(X) withi € {2,...,m},

p1,9

{2 0utrie. . )|, <cannls (X)anznmm, (7.21)

kEZ Lr(®)

where C' := C(01,02,€,8,¢, D, P1, - - Pm, X ) > 0.
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Proof. Let {Si}rez be a 1-ATI with bounded support, which is also a (1, 1,1)-ATI, and
set Dy := S — Sp_1 for all k € Z. Let f1 € F]fl,q(X)' The Calderon reproducing formula

(see Lemma ) implies that there exist linear operators {ﬁk}kez with kernels satisfying
properties (a)—(c) of Lemma [7.7|for any € € (e, 1) such that

fi=Y_D;D;(f1)
J€EL
n (G5(8,7)) . Hence, we write

{22 0uts, - gmie}

keZ
=[[{32

}1/q
keZ

Since € > €, we choose €} such that (e A (51 Ad2) < €y < (¢ Ad1 Ada). Then €] > |s|. For
such an €, by (7.19)), we see that, for all k,j € Z and z € X,

|@k(l~)ijf17f27 o fm) (@)
sArWﬂé{AK@*M%lA@wmeAm@nme@

Lr(Xx)

Z%DDﬁﬁwﬁm

o (122
ey (2

1 K(27F: 69, 2, y:)| fi(ys i
XEL?@ 02 2,y £ ()| dpe)

< A2~ k=il p(D HM 7 (7.23)

where M is the Hardy-Littlewood maximal operator as in (2.3) and the last inequality of

(723) is due to Lemma[2.15|iv). Inserting (7.23) into (7.22)), we obtain
1/q
[{ 210t i} |

kEZ

Lp(X)

s A|{ T[Tz @, ()]} T M
keZ  jeL i=2
Notice that €] > |s| and Lemma [6.13]imply that

Z[ZQ |k—j|€}+(k— ]SM(QJSD (f1) } <ZZQ |k—3] (e} H)(q/\l)[M(stDj(fl))]q

kEZ jEZ kEZ jEZ

<Z QJSD (f1))]“.

JEZ

LP(X)

From this, Hélder’s inequality with exponents 1/p = Y7, 1/p;, the Fefferman-Stein
vector-valued maximal function inequality (see, for example, [48]) and the boundedness
of M on LPi(X) for i € {2,...,m}, we continue to estimate ([7.9):

MZW%M@WMQW

kEZ

L (X)

sAHwamwmﬂwH M(F)

JEZ =2

Lr(X)
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< Al{ Sme ;)|

JEZ
<al{ ey}
~ il (X)H Il

JEZL
This proves 7 and ﬁnlshes the proof of Theorem . n

Lri(Xx) Z=1_[2 ||M(fz)||LPL(X)

Lr1(X) g ”fi”Lpi(X)

7.3. Quadratic 71 type theorems on Besov and Triebel-Lizorkin spaces. By
applying the off-diagonal estimate for the sequence of multilinear kernels {0y }recz (see
Lemma and the Calderén reproducing formula, we prove the following main result of
this subsection.

THEOREM 7.9. Let m € N, and {0y }rez € Ker(m, A, 01, d3) for some 61 > 0, 62 > 0 and

A > 0. Assume that, for allk € Z, 1 € {1,...,m} andx, y1, ..., Ym € X,
/9k(£7yla'"7yi7"'5ym)dﬂ(yi):O'
X
Lete € (0,1 A 61 Ad2) and s, s1, ..., Sy € (—€,€) satisfy s => v, s;. Then:

(1) f0<p<o0,0<q<o0,p(sie) <p<ooand0 < q; <ooforallie{l,...,m}are
such that 1/p=>1" 1/p; and 1/q =3"1" | 1/q;, and, as in Deﬁmtwn B;Z,qz (X)
1s defined as a subspace of (QQS(B, ) with certain 3,7 satisfying

max{s;, 0, —=s; +n(l/p; — 1)1} < B <e and (7.24)
max{s; — £/pi, n(1/pi — )4, —si +n(1/pi = 1)1 —s(1=1/p;)1} <y <e

then there exists a positive constant C such that, for all i € {1,...,m} and f; €
G6(8,7) € By 4, (X),

0o 1/q m
ksq m A e .
{kz FNOfrvevos o)l | < CA [L0ia, v
(i) if 0 <p<o0,0<q<o0,p(sie) <pi <ooandp(s;e) <qg <ooforiec{l,...,m}
aresuchthatl/p =Y i~ 1/p; and1l/q = >""" 1 1/q;, and, asin Deﬁmtzon. F;; 0 ()
is defined as a subspace of (go(ﬁ ) with certain B, satzsfymg -, then there

exists a positive constant C' such that, for all f; € QO(/J’ y) C ESi(X),

Piqi
H{ Z kaq\@k(fl,-~-,fm)|q}l/q‘
k=—oc0

REMARK 7.10. Using the fact that FS’Q(X) coincides with the space LP(X), we see that
the conclusions of Theorem[7.9]do not cover those of Theorems|[7.6|and [7.8 A result along
the lines of Theorem [7.8] in the Euclidean setting, has recently and independently been
proved by Hart [62, Theorem 1.4]. Examination indicates that Theorem 1.4 in [62] requires
a weaker cancelation condition and stronger regularity compared to Theorem [7.8| in our
work. It should also be noticed that an alternative approach to the bilinear T'1-theorem

oy = 047 H fillzg,, - (725)
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was also obtained by Hart [63] in the Euclidean setting. Quadratic estimates of the form
(7.25]) were also studied by Grafakos and Oliveira [49] via multilinear Carleson measure
techniques.

Proof of Theorem . Let {Sk}rez be a 1-ATI with bounded support, which is also
a (1,1,1)-ATI, and set Dy := Sy — Sk—1 for all k € Z. For every i € {1,...,m} and
fi€ QQS(B ,7), by the Calderén reproducing formula in Lemma we know that there
exist linear operators { Dy, } ez such that, for any fixed yf“’l € Q’ﬁl”l withk; € Z,7; € I,
and v; € {1,...,N(k;, 1)},

N (k;,7i)

-y ¥ Z Q) D (g D (F) ™), (7.26)

keZQEIg v=1

where the series converges in Qoo(ﬁ 7), and the kernels of the operators { Dy, }1,cz satisfy
(a), (b') and (c) of Lemmal6.10]for any €’ € (e, 1). In what follows, for the sake of simplicity,

we use ). .y to denote Zk cz Znelk Ziv ];T foralli e {1,...,m}.
To show (i), applying ([7.26)) to each f; and then using Lemma. we see that, for any
given o € (0,1 A 61 A d2) andallx € X,

‘ek(fl7 o -afm)(m”

S Z . Z (leﬂ/l) . ( 7k_:::,ym)

(k1,7m1,v1) (Km,Tm ,Vm.)

% |Ok (D, (Y75, Dy ym Y )) (@) Dy (F1) (™) -+~ Dy (Frn) (™)

AmH Y 2RI QK2 M LA Gy, ) D, (f) (W)

=1 (ks,7i,v3)

By Lemmal[6.12] the last quantity above is bounded by

m
m 7“{,‘7]61‘O'Jr[ki*(k‘/\k,j)n(l/’f‘i*l)]
Aar 12

i=1k;€Z

whenever 7; € ( 1]. In particular, since € € (0,1 A d1 A d2) and

__n
TL+(1/\52) ?

n n
in{pi, giy > i,€) = , C vie{l,....m),
min{p;, ¢;} > p(si,€) max{TH_6 n+8i+€} ied{ m}
there exist o € (0,1 A d1 A d2) and {r;}1™; such that, for all i € {1,...,m},
m <r; <1, r<min{p;,q;,} and n(l/ri—1)<o+s;. (7.27)

Fix such o and {r;}7*,. Set

N(kuTz)

= {M( X Y DK

7161';c v=1

1/7‘1'
w )}
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Thus, we have proved that, for o and {r;}, as in , and all z € X,

Ok(f1,- ., fm)(@)] S A™ H 3 o lkekillo=n(1/ri=blp, (7). (7.28)

i=1 kieZ
Since 1/p =i~ 1/p;, it follows, from and Holder’s inequality, that

19k (f1,--y fm) ||LP(X) A" HH ZQ |k—ki|[o—n(1/r;—1) F’
i=1

LPz

Notice that s = >_I" | s;. Again, using 1/q = Zi:l 1/¢; and Holder’s inequality we obtain

{ Z 2ksq‘|@k(f1’...,fm)H%P(X)}l

k=—oc0
= 1/q
m ks; |k—k;|[c—n(1/r;—1)]
san{( 3 T2 o i
k=—occi=1 ki€Z
" 1/qi
m ksiq; |k—k;|[c—n(1/r;—1)
<A H{ Z ghsiail| 3™ o~ Lm(}()}
=1 k=-—oc0 i €
< Am ﬁ{ g lk—killotei—n(1/ri-1)] } Y (ra9)
~ RUZAES ' '
=1 k‘——oo ki€Z

For every i € {1,...,m}, by 0 +s; —n(1/r; — 1) > 0, Lemma and the boundedness
of M on LPi/™(X), we conclude that

H Z g~ lk=killotsi—n(1/ri=Dlgkisip, )
ki€Z

Lri(Xx)

; q:/pi
{/ ‘ Z o—lk—ksl[o+si—n(1/ri—1)]gk; SR (2 )’ 'du(x)}

ki EZ
qi/pi
{/ Z g—lk—ki|[o+s;—n(1/ri—1)] P1A1)|2k SR ()P d,u(z)}
X pez
~ { Z 9—lk—ki|[o+si—n(1/ri—1)](piA1)
ki, EZ
NEorms) pi /s qi/pi
[ MO D g ) @) o |
i€l v=1 [
< [Z 9—lk=kil[o+si—n(1/ri=1)](piA1)
ki EZ
N(ki,7i)

_ ]9/ Pi
X R DL @)

Ti€ly, v=1

< Z 9—lk=kil[o+si—n(1/ri=1)](piA1)(q:/piAl)
ki€EZ
Nk ) i/
(XX D]

7'1€I;C v=1
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With this estimate, we continue ([7.29) as

. /
{ Z 2ksq||@k(f1,--~’f’“”)HqLP(X)}1q

k=—oc0
SA’"H{ Z Z o= Ik—kil[o+s:—n(1/ri=1)](piA1)(ai/piAL)

i=1 k=—o0k,€EZL
N(k;,7i)
o~ 1/a;
: ( ki7ui):|(h/pw} /(h
Ti

<> > R DU

nelkl v=1

m N (ki i)

sar[H{X [ X X D

i=1 k;€Z miely, v=1

qi/piy 1/q:
@]

m

S T 00

This concludes the proof of (i).

Next we turn to (i ) For {fi}™, C G5(B,) as in (i), using the Calderén reproducing
formula and Lemma we see that - ) holds for some o and a sequence {r;}™,

satisfying - By - ) and s = > " | s;, we obtain
> 1/q
> 2 nentsis. o pmle}
b oo Lr(X)

k=—o0 t=1k;€Z

5 AmH{ i ﬁ‘ Z 27|k*ki|[a+5i*n(1/ri71)]

k=—oc0i=1 k;€Z

q 1/(1‘
} Lp(X)

Q}l/q

Since 1/g =3"" ,1/¢; and o + s; —n(1/r; — 1) > 0 for all i € {1,...,m}, from Holder’s
inequality and Lemma [6.13] it follows that
}1/q

{ Z H‘ Z 27 |[k—ki|[o+s;—n(1/r;—1)]
{ Z ‘Z 9= lk=killo+si—n(1/ri=1)]

k=—o0t=1 k;€Z
1 k=—o0 k;E€EZ

{ i 3 2kl tsimn(/ri-Dl(as

1 k=—oc0 k;EZ
}1/‘11‘

{X
Inserting this into (7.30) and applying Hélder’s inequality with indices 1/p = >, 1/p;,

(7.30)

Lr(x)

qi }1/%
1/q:
Qi}

A
s

.
Il

A
ﬂ":]g

<
S

zl ki€Z
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we deduce that

S 2ot s}, <27 T3 e}

i=1  k;€Z Le ()
< Amﬁ [®> ’“}1/%\ (7.31)
- i=1 kic€Z Lri(x) .
For any i € {1,...,m}, since p;/r; > 1 and ¢;/r; > 1, we use the Fefferman—Stein
vector-valued maximal function inequality (see, for example, [48]) to find that
I DN
ki€Z Lre(%)
N (k;,7i)
qi/Tiy1/q:
-{EM(E X peDumuirg-)] ...
ki€Z ri€ly, v=1 HX)
N(ki;mo) ks ki qi/Tiy1/q:
SHE[E X e Dumes g} .0
ki€Z el v=1 HX)
N(k“ﬂ) 1/q:
U TS DL g

LPi(X
keZnElk v=1 ( )

S Willgse
Then, applying (7.31]), we conclude that

H{kiwzw@k(fh...,fm)rZ}”"HL .- ’”anan,q -

This proves (ii) and completes the proof of Theorem [7 . n



8. Paraproducts as bilinear Calder6n—Zygmund operators

In this section, we prove that paraproducts on spaces of homogeneous type can be viewed
as bilinear Calderén-Zygmund singular integrals of the kind considered in Sections[3|and [
As applications, such paraproducts have weighted boundedness properties as in Corollaries
[A14)and [I.15] In the special case X = R™, these paraproducts go back to the classical ones
investigated by Coifman and Meyer [21} [82], Muscalu, Tao and Thiele [85], Grafakos and
Kalton [44] Section 8], and Gilbert and Nahmod [37, [38]. More recent developments on
paraproducts and their applications can be found in Bernicot’s works [7,[8,[9]. Unweighted
Euclidean counterparts to the results in this section were obtained by Bényi, Maldonado,
Nahmod and Torres [5].

8.1. Paraproducts. Paraproducts were first introduced and systematically studied by
J.-M. Bony [12] and they now play a central role in numerous areas of analysis and PDEs;
see, for example, [4] for an exposition on the evolution of the concept of paraproduct.

DEFINITION 8.1. Given 3,7 > 0 and a dyadic cube Q € Q, say Q := Q¥ for some k € Z
and a € I, a function 1 is called a bump function adapted to @ if, for all x,y € X,

M(Q)UZ 1 Y
(@)l < w(@Q)+Vi(z, cq) [1 + de(z,cQ)] (8.1)
and, when d(z,y) < [27F + d(z,v)]/2,
- p(Q)Y? dz,y) 7’ 1 ”
(@) —v(y)l < w(Q) +Viz, cq) {2’“ + d(x, CQ)] L + 2kd(z, CQ):| ’ (8.2)

where cg denotes the center of @, namely, B(cg,Cs27%) C Q C B(cg,C527%) as in
Lemma [2.5]

In this case, we write 9 to indicate that v is a bump function adapted to Q. If, in
addition, ¢q satisfies [, ¥ (z) du(x) = 0, then v is called a (8, v)-smooth molecule for Q.
From now on, # and +y are assumed to be uniform in #q.

Bump functions are actually test functions as in Definition Obviously, if ¥g
is a bump function adapted to the dyadic cube Q := QF, then ,u(Q)*l/Q@ZJQ is a test
function of type (CQ,2*’“,5,7), and vice versa. Also, 1)g is a molecule if and only if

M(Q)il/sz S go(CQv 27]“; 67 ’7)

Paraproducts are defined as follows.

DEFINITION 8.2. For any given three families of bump functions, {’(/)gj)}QGQ7 {wg)}Qeg,
and {wg )}QGQa the bilinear (discrete) paraproduct is defined as follows:

[101]
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(f,9)(x) = Y w(@Q)2Wwg) NG 90y (@), Veex. (8:3)
QeQ
In Lemmabelow, we prove that if {wg) }oeg and {wg)}QEQ are smooth molecules

and {l/fg))}QeQ are bump functions, then IT as in (8.3 is bounded from L?(X) x L?(X)
to L'(X). Notice that the kernel of IT is given by

K (zo, 21, %2) = Z M(Q)_1/2¢$)(mo)wg)(m)ibg)(m), Vzo, 71,72 € X.
QeQ

Indeed, K is a bilinear Calderéon—Zygmund kernel provided that {wo)}QeQ, {wg )}Qeg

and {wg ) toeco are bump functions with fast decay; see Lemma below. Therefore,
weighted estimates of IT on the 2-fold product of Lebesgue spaces follow from the multilinear
Calderon—Zygmund theory of Section [4]

8.2. Almost diagonal estimates. For simplicity, we use the following notation: for any
given € € (0,00),t >0 and all z,y € X,
1 t ‘
K(t;e,z,y) := .
) = e TV )
A useful observation is that the doubling property of p implies that, when d(z’,z) < ae
and d(y,y') < ae,

K(t;e,z,y) ~ K(t;e,2',y)

with implicit constants depending only on a, € and Cj.
The following off-diagonal estimates for any two test functions are proved in [60]
Lemmas 3.2 and 3.19].

LEMMA 8.3. Lete; € (0,1], e2 > 0 and e3 > 0. Fiz €] € (0,1 A €2). Assume that there
exist positive constants Ay and As such that, for any k € Z, the functions Qp : X x X — C
and Py : X x X — C satisfy, for allx,y € X,

Qr(z,y)] < AL 60, 2,y),  |Pu(2,y)] < AsK(27% €2, 2,y)
and
QuPile.y) = | Qulw)Palw.y) duw).
Then there exists a positive constant C' (depending on €}, €1, €2, and €3) and § (depending
on €}, €1 and €3) such that the following hold:
(i) whent =k, for allx,y € X,
|PQi (@, y)| < CALAK (27 €2, 2, y); (8.4)
(ii) when £ >k, if
/X Py(z,w)du(w) =0, VrelX,
and, for all z,',y € X satisfying d(z,z') < [27% +d(z,y)]/2,

d / €2
|Qk<x7y) - Qk(‘r/7y)| S Al {m] }C(Z_k7 €2,T, ZU)»
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then, for all x,y € X,
|PiQi(, )| < CALA27F K (27000 65 o, ). (8.5)
An extension of (8.4) and (8.5 to an estimate of three test functions is as follows.

LEMMA 8.4. Lety > 0. Then, for anyy’ € (0,7) and~" € (0,7—7"), there exists a positive
constant C, depending only on v, v, v" and Cy, such that, for all xog, 1,72 € X,

2
/ HIC(2_k77,$,$J)d/L($) < C’C(Z_k;’y/,xo,xl),C(Q_k;’}/l,l'g,1’1). (86)
X

The proof of Lemma|[8.4]is based on Lemma[8.5 below. In the Euclidean case, Lemma
8.5 was proved in [51}, Lemma 1]; see [40] for its extension to spaces of homogeneous type.

LEMMA 8.5. Let e € (0,00). Then there exists a positive constant C, depending only on e,
Cy andn, such that, for allx,w € X, r € (0,00) and R € (0,00),

/ K(r;e,y,w) du(y) < Cmax { <R> , I}VR(J:)IC(T; €, T, W).
d(z,y)<R r

Proof of Lemma[8.]} We decompose the space X as follows:

[ TLx@*5m0,2,) duta)
X2

o

2 vy
1 1
[ Vor (2) + Vare () 1 V(z,25) [1 = 2kd<x,x]—>] ()

(o)
s=0 t=0 d(m’z2)~2—k+t 3=0
== u(Blar, 255%)) j(Blaz, 2770))
X / 1 1 5 )
‘ x
dlae)n2 ™ Vo (@) + Vo (wo) + V (@, 20) | 1+ 2Fd(w,20) ] T

d(z,xe)~2 R T
where the notation d(x,z1) ~ 275+ means 27%*% < d(x,21) < 27%+s+1 if s > 1 and
d(x, 1) < 27 if s = 0; likewise for d(z, z2) ~ 27+,
Assume first that s < ¢. Take 7/ € (0,7) and 4" € (0,7 —+'). Observe that, if there
exists an x € X such that d(z,z1) ~ 275+ and d(x, z2) ~ 275+, then

d(z1,29) < d(x1,2) + d(z,22) < 9~ k+2 max{2°% 2%}

and hence
1 _ Vor(x) + Vo-r(w2) + V(x, 22) . v ke (9—k.
WBEn 2 ) aBlaa ki) 2 e TEE T )
max{2% 2¢}1" s oo
. {{zt}] [max{27, 217 K275 9", w2, 21).

Applying Lemma |8.5| with € = 4/, we see that
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1 1 1

)
_— d
MB%Jk“”éﬁﬂﬁjzwkm+%k@w+Wumﬂunww%J ule)

< maX{ZSA’/, LK™ 4 2, 21).
From the last two estimates, it follows that

SNt :

2.2 (B, 275)) a(Blas 2 770)
x/ 1 1 ”d (@)
x
e 2 Vo) + Vo (o) £V 20) (14 26w, a0) ]
s t s maX{QS Qt} s of ”
hS ZZQ 727" max{2 g 1} (max{2°,2°})”
s=0t>s

x K277 20, 21)K(27% 7" 22, 1)

S K@ w0, 2)KQ2 759" 20, 20), (8.7)
where the last inequality is due to the fact that, when’ € (0,7—n) andy” € (0,7y—n—~"),
ZZQ 1271 max{2*7, 1} {max{? zt}] [max{2%,2'}]"" < .

5=0t>s
Likewise, a symmetric argument (by reversing the roles of z1 and z2) also implies that

)B) ST N :

k-+s —k+t
2.2 (Bo1, 275)) (B2, 274))

1 1 v
x ﬁu,mwij Vo (z) + Va-r (z0) + V (@, 7o) [1 + 2Fd(x, xo)] du(a)

d(z,xe)~27F
SK(Z_k;’y/7$0,$1)IC(Q_k;’Y//7.’172,,’I,‘1). (88)
Combining (8.7)) and (8.8), we obtain the desired estimate (8.6]). m

LEMMA 8.6. Suppose that xg,x1,xs € X are such that
d(l‘o,xl) Z d(l‘l,IQ) Z d(l‘o,&?g).

If 8 >0, >n+ " and~” > 0, then there exists a positive constant C, independent of
k and {x;}5_, such that

> _[12¥d(x, e)]P K@ w0, 21)KQ27F ", 22, 21)

keZ 1
< C . 8.9
< Ol ag o) + Viwoza) Ve &Y

Proof. Define the sets
Ay i={k € Z:2%d(x0,21) < 1},
Ay = {k €Z: 2kd(f£0,l‘1) >1> 2kd(’l}1,$2)}, A3 =7 \ {Al,AQ}.



8.3. Paraproducts as bilinear Calderén—Zygmund operators 105

By the reverse doubling property of u, we find that

S [2Rd(wo, 20l K@ w0, 00Ky we) S Y
keAy keA

1 1
V(xo, 1) Vo-r (1)

<L
~ V(o 21)]?

Since 7/ > /', it follows that

3 2 d(wo, 20))P K2 w0, 21)K (275" 22, 21)

kEA2
’ ’ 1 1
< 2k d (g, x1))7 7
k?;z[ ( ’ 1)} V(JjO)xl) ‘/Q—R: (xl)
1 o
S e P d(zo, 21)]P 7
R Vo, o)l Yoo 2R )]

{k€Z: 2kd(zg,x1)>1}
< '
[V (zo, 1))

For any k € A3z, we have 1 < 2%d(x1,z5) < 2Fd(x¢, ;) and hence, by using v/ > n + 3’
and the doubling property of u, we obtain

Z 2% d(wo, 21)]7 K277 o, 21)K (277" 22, 11)

keAs
N Z V(mi x1) Vil( )[de(xo,xl)]ﬂl—'y/[zkd(xhxQ)]_,yn
kEAs3 y b1 2—k (X7
5 [V(CEO% :L‘l)]z sz: M<f((;1(’;j(,x21_75)0)))) [de(x()?xl)]ﬁ'f'y’ [2kd(131,x2)]77“
: m Z 28 d(zo, 21))P Y 2R d (2, 20)] 7

{k€Z: 2k d(m1,w0)>1}
< 1
™ [V (@o, x1)?
Also, the doubling condition of p and the assumption d(zg,x1) > d(x1,22) > d(xo,z2)
imply that
V(xo,21) ~ V(xo, 1) + V(x0,22) + V (21, 22).

Therefore, summarizing all these estimates, we obtain (8.9)). =

8.3. Paraproducts as bilinear Calderé6n—Zygmund operators. This subsection is
concerned with the weighted boundedness of the following paraproducts. The approach
taken here is that these paraproducts can be viewed as bilinear Calderén—Zygmund oper-
ators; see Bényi, Maldonado and Nahmod and Torres [5] for the special case X = R™.

LEMMA 8.7. There exists a positive constant N, depending only on Cy1, Cs, Cg, v and 3,
such that, for all Q € Q, bump functions g adapted to Q and h € L>(X),

(s h)| < Noop(Q)'|hl| oo (x)-
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Proof. The size condition of ¢ implies that

(k)| < Mhllam @2 [ o i | auto)

Without loss of generality, we may as well assume that @@ € I for some constant k € Z,
that is, B(cg,C627%) C Q C B(cg,C527%). Therefore, by splitting the integral over X
into the annulus d(7,cg) < 27% and 27% < d(x,cq) < 27K+ for v > 1, we apply the
doubling condition of u to conclude that

/ ! [ ! }7 dp(z) < oo
.
2 Q) +V(w.eq) [T+ 2Fd(w,cq) |
LEMMA 8.8. Given a family {1g} of smooth molecules, there exists a positive constant Na,
depending only on Cy, Cs, Cg, v and B, such that, for all f € L*(X),

> 1o AP < Nall fl72)- (8.10)
Qe
Proof. Without loss of generality, we may assume that > ¢ o [(¥q, f) |2 is finite; otherwise
we only need to prove that (8.10]) holds for a finite number N of terms of the summation

and then let N — oo. Given f € L*(X) with || f||,2(x) = 1, by Hélder’s inequality, we have

> e N = Y o, F.4a) < || D (F.9a)¥q]
Qe

QeQ Qe

L2(x)

Hence

[ S lwa.nNP) = X (o £ e va)Fiin).

QeQ Q,ReQ

Suppose that Q = Q¥ for some k € Z and a € I, and R = R’;/, for some k' € Z and
o' € Is. Then the decay, the regularity, and the cancelation conditions for the molecules

imply that we can apply (8.5 and (8.4) to deduce that
(o vr) < (@) 2 u(RE) P27 KK (27 M)y e e )

~ p(QE) (R )27 IR i (27 M)y, 2),
yEQE, zERY,

where € € (0,8 A 7). Thus,
2 ’ /
[ 1we NP 3030 30 3 2 (@) (RE) (n(@8) ™ 2y 1)
QeQ k€Z a€ly k'€Z o’ €1}

< (RE) T2 )| inf (27 FM) iy 2),
o' yeQk,zeRY,

By symmetry and estimating the factors |<u(Q§)’1/2wQ§, £ and [(f, p(RE) V20 )|
by the bigger one, we continue the above estimation with ’

[ e n)P]
QEQ
ST Y e g, APH(RE) it K2 #)y,2)

k k!
keZ acly k'€Z o/ €1, YEQq, z€R,
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<SSO (o, P ST 2RI g /X K@My g, 2) d(z)

k
keZ acly K ez veQs

SO g, NI

kEZ el

~ > W, NIP

QeQ
Dividing both sides of this inequality by > oc o [(¥q. F)|? yields (8.10)). m

LEMMA 8.9. Let IT be the bilinear paraproduct defined as in (8.3) with {wg)}QeQ and

{wg)}QeQ smooth molecules and {’l/)g))}QeQ bump functions. Then 11 is bounded from
L?(X) x L*(X) to L*(X) with norm at most a positive constant multiple of NoN,

Proof. By duality and Lemmas and given h € L>®(X), we have

(L9, = Y w@ 2w, NS 9 @S m)|

QeQ
< Noollbllz=xy Y 105, AL, 9)l
QeQ
1/2 1/2
< Naolblleeo | 32108, 0P 7] 32 168, 0]
QeQ QeQ

< NoNo |l fll2 oy lgll 2 ) | Al oo (x)- m

LEMMA 8.10. Let I be the bilinear paraproduct defined as in (8.3) with {1/18)}@69’

{wg)}QEQ and {1/18)}@69 being bump functions satisfying (8.1) and (8.2) with S > 0
and v > n. Then, for any given 8’ € (0,8 A (v —n)), II has a Calderén—Zygmund kernel

Ky € Ker(2,Ck, 8'), where Ck is a positive constant depending only on Cy,Cs, Cg, 7, 5,
and f3'.

Proof. Notice that the kernel of II is given by
Kn(vo,z1,22) = Y p(Q)0) (wo)d () (ws).
QeEQ
By Lemma we may as well assume that Q = Q¥ for some k € Z and a € I;,. Without
loss of generality we may also assume that
d(fﬂo,xl) Z d(l’l,(EQ) 2 d(i[o,l’g).

For any ' € (0,7 —n) and 4" € (0,7 — n —«'), by Lemmas and there exists a

positive constant ', independent of {xj} such that, for all zg, z1, 22 € X,

Jj=0’

|K11(20, 21, 72)| < Z M(Q)_l/QWS))(xO)w(E? ($1)w(2)( )]
QeQ

SO @ [T E@ ™ 57, cqr.2))

kEZ o€l j=0
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2

<ZZ (QF) 1€an]€‘ K27y, 2, ;)

kEZ o€l
<Z/ H’C ,’Y,fﬂ%)d/i( )
keZ

S/ Z’C 2_16;7 71’0,1’1)’6(2_ 77 7x23x1)
keZ
1

< .
~ [V(@o, 1) + V(zo, x2) + V(21, 22)]?
Now we prove the regularity of Ky1. Fix 5’ € (0,8 A (v —n)). Given any z1, 2z} € X with
d(zy,21) < Oggéz{d(%’xa‘)/?} = d(zo,21)/2,

we write

|Kti(zo, 1, x2) — KH($0,$/17$2)|

= 3237 @) P () — wh) @Dl @)y (o) (8.11)

ke€Z acly
For every k € Z, set

Ik:,l = {a S I].C : d(:r:l,xll) S (2_k —‘rd(l‘l,CQI&))/Q} and Ik,g = Ik\Ik,l-
Observe that, when a € Iy 1, we have d(z1,2}) < (27% + d(z1,cqr))/2 and hence,
by (8.2),
(@) 2[5 (1) — vl ()] [5) (w2)wg) (20)]

d(xy, ]
< k 9 1 .
N/u‘(Q )|:2 k+dl’1,CQk :| HIC ;77CQ’(§;$J)

< (@) [ngi] 2 d(ao e T] K@ 5c0.25).

3=0
From this, we apply Lemmas and [8.6] to see that, for v/ € (n+ f',7) and 7" € (0,7),
oD @) T (1) = ol ()WL ()] (o))

k€Z a€ly 1
2

<Z Z Qk[ xl’xl)} [2%d(z0,21)]? H 7, o, 5)

k€Z acly 1 ,1’0) j=0
Fd(1,20)]” e ke
< d 2k d(xg, 1)])? K@%y, 2z, 2;) du(x
) ) XU ( ) du(z)
[d(zy,24)]” ,
< (o1, 1) Z[de(%affl)]ﬁ K275 2o, 20)K27% " w2, 21)
Ld(@m0) ] i
< [d1,29)]” 1 . (8.12)
~ ld(z1,z0) |  [V(zo, 1) + V(zo,22) + V (21, 22)]?
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2d(z1,77)
27k+d(£r1,Cng‘) ’

(@) 25 @)eg) (w2)1g) (20)]

d(xy, ]
< k ) 1 I I ) )
~ ILL(Q )|:2 L +d 1“1 CQk :| ’C afY?CQ’&axJ)

When a € I, 2, we have 1 < and hence

d(zxy1, 2] s 2
S/ILL(Q?X) |:(11):| [ 50071'1 H ;chQl‘;?xj)a

d(.’lﬁl,xo) =0

so an argument similar to that used in (8.12)) gives

SN @k 1/2|z/)Qk(w1)¢Qk($2)¢$§(m>|

k€Z acly 2

(8.13)

- [d(agl,xg)r 1
~ d(llil,fﬂo) [V(IQ,LEl) +V(I’0,I’2) +V(I1,I2)P.

The assumption d(z1,z}) < d(zg, z1)/2 implies that d(zg,z1) < 2d(xg,x]) and
2d(z', x0) > d(z1,2) > d(z0, T2).

Also, when « € Iy 5, we have d(xq,2}) > [27% + d(z1, ¢or )] /3 and hence

(@) V2B 5L @ )e5) (@2)vg) (20)]

d(xq1, )
27F 4+ d(x, cor

/8/
< ulek)| | et cgna) T K2-*ncop. o)

< Q) de,21) ﬂl[de(z )P K2y, con, ) H K275, cor,x;)
« d(CL‘l,.T()) 0,41 y 1 EQE L1 o y HEQES LG

so an argument similar to that used in (8.12)) shows that
0
o3 @) TSl (@) v 5l (w2)eg) (o)

kEZ o€l
- {d(xl,x’l)]ﬁ 1
d(z1,20)| [V(zo,2)) + V(zo,z2) + V (2], 22)]?

d(zy,24)]” 1
S |:d(fE1,.’E0):| [V(.’Eo,xl) + V(l’o,l’g) -+ V(xl,.’EQ)P ’

(8.14)

Inserting the estimates (8.12))(8.14)) into (8.11]), we see that Ky satisfies the regularity
condition in the zi-variable. Similar proofs show the regularity of Ky in the zg- and
xo-variables. Thus, Ky satisfies and in the definition of a Calderén—Zygmund
kernel, which completes the proof of Lemma "

Consequently, applying Lemmas [8.9] and [8.10] and the theory of weighted multilinear
singular integrals in Section [4] (see Corollaries and [4.15)) as well as Theorem we
have the following conclusions, the details being omitted.
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THEOREM 8.11. Let IT be the bilinear paraproduct defined as in (8.3)), with {wg)}QeQ and

{’l/]g)}QeQ being smooth molecules, and {wg))}QEQ being bump functions, satisfying (8.1))
and (8.2) with 8 > 0 andy > n. Let 1/2 < p < 00 and 1 < py,pa < oo be such that
1/p1+1/pa = 1/p. Let v € Awo, {w;}5_, be weights and & := (w1, ws). Then:

(i) II is a bilinear Calderon—Zygmund singular integral operator;
(i) ifp; > 1 forallj € {1,2} and (v; @) satisfies (&.1)), then I1 is bounded from LP* (wy) X
LP2(wsy) to LV (v);
(iii) if p; > 1 for all j € {1,2} and (v; W) satisfies the bump weight condition for
somer > 1, then II is bounded from LP* (wq) x LP2(ws) to LP(v).

THEOREM 8.12. Let II be as in Theorem|8.11| For any 1/2 < p < 0o and 1 < py, p2 < o0
such that 1/py + 1/pa = 1/p, and @ = (w1, w2) € A q) with vg = wlf/?lwg/iﬂz} the

following hold:

(1) II 4s bounded from LP*(w;) x LP2(wq) to LP(vg) if p1,p2 € (1,00);
(i) II 4s bounded from LP'(w;) X LP2(wg) to LP*°(vg) if p1 =1 orpe = 1.

8.4. Boundedness of paraproducts on Triebel-Lizorkin and Besov spaces. Recall
that paraproducts considered in Subsection [83] can be viewed as bilinear Calderén—
Zygmund operators. Consequently, Theorems [6.14] and [6.15] imply the boundedness of
such paraproducts on products of Triebel-Lizorkin or Besov spaces. We have the following
conclusion.

THEOREM 8.13. Let II be the bilinear paraproduct defined by
(£, 9)(2) == Y wl@Q @Y, HEWS 9wl (@), vaex,

QeQ

where, fori € {0,1,2}, {7/)8)}@69 are (B, )-molecules with B > 0 and v > n. Let k be the
constant appearing in the reverse doubling condition (2.2)) and let € satisfy

0<e<k and 0<e<min{1,;[ﬁ/\(7—n)]}.

Then:

(a) For every j € {0,1,2}, let |s;| <€, p(sj,€) < p; < oo and p(sj,€) < g; < oo be such

that
1 1 1 1 1

sp=581+8, —=—+— and —=—+—,
Po PpP1 P2 G a1 92
and let Fy? 4, (X) be the Triebel-Lizorkin space as defined in Deﬁnition(ii). Then 11
can be extended to a bounded bilinear operator from F51 \ (X) x Fp2  (X) to F0 | (X).
(b) For every j € {0,1,2}, let |sj| <€, p(sj,€) <pj < oo and 0 < g; < 0o be such that
1 1 1 1 1 1
so=s51+58, —=—+— and —=—+—,
Po PpP1 P2 G a1 g2
and let By} 4,(X) be the Besov space as defined in Definition (1) Then I can be
extended to a bounded bilinear operator from B3 (X) x B2 (X) to B0  (X).

p1,91 Pp2,92 Po,q0
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Proof. From Lemma it follows that the kernel of II is of the class Ker(2,C, ') for
some positive constant C' and 5’ € (0,5 A (v —n)) as in Definition Also, by Lemma
IT is bounded from L?(X) x L?(X) to L'(X), so Il € BWBP(1) for all € (0,€].
Since every wg) is a molecule, we have [, wg) (x) dp(z) = 0 and hence

M(1,9) = (g, 1) = T (1,9) =0, Vg € (CJ(X))".
Applying Theorems and yields (a) and (b), respectively. m



9. Bilinear multiplier operators on Triebel-Lizorkin
and Besov spaces

t is well known that the boundedness of pseudodifferential operators associated with some
classes of symbols is a typical application of the Calderén-Zygmund theory. The main goal
of this section is to apply the previous bilinear T'1-theorems to obtain the boundedness of
bilinear multiplier operators on products of Triebel-Lizorkin and Besov spaces.

9.1. Bilinear multiplier operators. Consider the bilinear multiplier operators of the
form

L)@ = [ [ oemfeame o dcan voer o)
where fdenotes the Fourier transform of the function f, that is,
fla):== | f&e®*d¢, VaeR",
Rn

and the symbol o is an infinitely differentiable function on (R™ x R™) \ {(0,0)} with the
property that, for any multiindices 8 € Zi and v € Zi, there exists a positive constant
C,, g such that, for all points (§,7) € (R” x R™)\ {(0,0)},

10205 (€,m)| < Cyp(l€] + nl) 7= 1A, 9.2)

These bilinear multipliers are also known as Coifman—Meyer multipliers and render the
bilinear version of the (linear) Mikhlin multipliers. The basic mapping properties of these
operators in Lebesgue spaces have been obtained in [19] 20, 21].

Using the molecular decompositions of homogeneous Besov spaces, Grafakos and Torres
in [62, Theorem 3] also proved that T, is bounded from Bg;,(R") X Bgfz (R™) to ij;‘*“"? (R™)
for all 1,0 > 0,1 < p,q,r < oo and 1/p+1/q = 1/r, provided that o satisfies and
the following cancelation conditions: for all £ # 0,

9,0(0,6) = 9/0(¢,0) = 9/ o(¢,~€) = 0 (9:3)
for all multiindices 8 up to a suitable order and all £ € R™ \ {0}. Under the assumption
that o satisfies (9.2)) and (9.3) for all |3] < 1, Bényi [3, Proposition 3] proved that

T,:F°  (R") x F° _(R") — F° (R")

P1,91 p2,q2 Po,q0
when 1 < p1, pa, po < 00,1 < q1, g2, go < 00,1/po =1/p1+1/prand 1/qo = 1/q1 +1/qo.

For 1 < py, p2, po <00, 1/pg =1/p1 +1/p2, 1 < g < 0o and s € R, the boundedness of
T, : B, ,(R™) x LP*(R") — B, (R™)

was studied by Maldonado and Naibo [78, Theorem 3.1].

[112]
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The operator T, as in ([9.1]) is related to bilinear operators in the following way: for all
compactly supported Schwartz functions f, g and for all « ¢ supp f Nsupp g,

Ty(f,9) /n RnK o (@, y1,92) f(y1)9(y2) dyr dys,

where the kernel K, is defined by
Ko (z,91,92) 5=/ / o(&,m)es@vem @) gedn - Va,yp,y, € R™.

By using K (z,y1,v2) = K*'(y1,2,y2) = K*%(y2,%1, ) and the Fourier transform, for all
x € R”, we obtain

4 = [ [ ot-¢—n mF©ame € dg an
T2 = [ [ o6 ~¢ - mF@ame € dean

In what follows, for convenience, we denote by 7" the operator T,.

9.2. Off-diagonal estimates for bilinear multiplier operators. Now we fix a real-
valued radial function ¢ € S(R™) such that

supp$ C {€ € R" i /4 < [¢] < 7},
¢ is bounded away from zero on the annulus {£ € R™ : 7/2 < |¢| < 37/4} and, for all
£#0,
S lere))? =1. (9.4)

ver
For v € Z and k € Z", let Q. be the dyadic cube
Qui i ={(z1,...,2n) eR" 1 k; <2x; < k; +1foralli e {1,...,n}}.

The lower-left corner of Q, 1 is denoted by 27"k and we set

bup(x) ==2""2p(2"x — k), VreR"™
Obviously, ¢, () = 27"/22-2 k= 4(2-vz) for all 2 € R™ and

suppq?,;g C{¢eR": 2" 2 < €| < 2¥r).

Also, for any given multiindex v and N € N, there exists a positive constant C, nn,
depending only on «, N, n, such that, for all z € R",

vn/29/y Iy
107 ()] < Cy e 2
: N (T 2]z — 2 k)N

The condition (9.4]) implies the following Calderén reproducing formula: if f € S(R™) (or
(S(R™))"), then f can be written as
F=Y3 (F bur)bun, (9.5)
ver ken
where the series converges in S(R™) (or (S(R™))’); see Frazier and Jawerth [33].

Regarding the wavelets {¢, 1 },ez, kezn, we have the following off-diagonal estimates,
which are indeed parallel to those of Theorem [6.8]
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LEMMA 9.1. Let T, be as in (9.1) and let the symbol o satisfy (9.2) and the cancelation
condition: for all £ # 0,

0(£,0) =0(0,8) = o(&,—§) = 0. (9.6)
Then, for all integers N > n, there exists a positive constant Cn y, such that, for allx € R",
v, € Z and k, 0 € Z™ and alli € {0,1,2},
9—lv—pl gvn/2 9un/2

T (v ks <Cnmn 9.7
T2 (G @) (@) < O, (1+ 2|z — 27Vk|)N (1 + 20|z — 2-me)N (0.7)
Moreover, if v > X\ > u, then, for alli € {0,1,2},
|<¢)\,m7 T;ﬂ;((bl/,k:a ¢u,€)>|
2—|1/—,u\ 9—vn/2 2>\n/22,un/2
< CN,n (98)

(14 2227 m — 277k|)N (1 + 202 3m — 2-#)N

Proof. Observe that follows easily from and [51] Proposition 3]. So it suffices
to prove . Without loss of generality, we may as well assume that v > p.

First we prove that holds when ¢ = 0. By a simple change of variables and the
cancelation condition (&, 0) = 0, we see that, for all x € R,

Ta(¢u,k7¢u,l)($)
=iz [ [ G0 (7, 20) ()50 d

ZQMWQ/ / G R R 2 [ (97 2tiy) — o(2€, 0)](€) D) dE i,

where the integration indeed takes place for n/4 < |¢| < m and /4 < |n| < 7. If A
denotes the Laplace operator in &, then

(1— Ag)Nei((2“w—k)€+(2“w—€)n) =(1+ 2"z — k‘)Nei((Q”w—k)£+(2”w—€)n)'

Therefore, integration by parts gives us

21/7L/22;nz/2 v .
To(Su g, o) (T) = AT T— // k)E+ (24 z—E)n)

x (1= DN ([0(27€,2") — 0(27€,0)]6())b(n) dE . (9.9)
Notice that

(1= Ae)N([0(27€,2"n) — 0(27€,0)16())|
S 19 e(2g,24n) — o (27€, 0] 9g2 6(€)].

a1, az€Z7
lai|+|az|<2N

By the mean value theorem and (9.2)), we conclude that, for some 6 € (0, 1),

2vleal] 20| 2vleal|21g)
O [o(2€,20n) — 0(27€,0)]| < < < o,
| 3 [U( 5 77) U( £ )H ~ (|2V€| + |2M977|)|a1‘+1 ~ |2V§|‘O¢1‘+1 ~

where the second inequality is due to the facts v > p, || ~ 1 and |n| ~ 1. Since ¢ € S(R™),
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it follows that [9°2¢(¢)| < 1. Summarizing these estimates gives that

11— De)N([0(27€,2") — 0(2€,0)]p(€))] S 27+,
Inserting this estimate into further implies that, for all x € R"™,
ovn/29un/29—|v—pl
(1+ 27 — kDN

The same computations using integration by parts in the variable 7 give us that, for all
xz eR”?,

|Ta(¢v,kv (725#75)(95” S

(9.10)

T - ovn/29un/29—|v—pul
| U(¢V,k7¢ll,£)(x)| ~ (1 T ‘2l‘m — €|)N .
Considering the geometric mean between ((9.10) and (9.11)) shows that (9.7]) holds for i = 0.

To prove that (9.7)) holds for ¢ = 1 or ¢ = 2, we repeat the above computations but
using the expression of 77" and the cancelation condition o (&, —¢) = 0, the details being

(9.11)

omitted. m

REMARK 9.2. (i) The decay coefficient 2-1*~#I in and comes from the cance-
lation condition (9.6). Indeed, if instead of we assume that 970 (£,0) = 070(0,&) =
o(—¢€,€) = 0 for multiindices y such that |y| < L, then both and hold with
the decay 27 1¥~#l there replaced by 2~V —#I(L+1),

(ii) From the conclusion that holds for T}¢ with i € {0, 1,2}, it follows easily that
T, satisfies all off-diagonal estimates (i)—(vi) listed in Theorem but with the indices
v, 7" and o there being chosen as N, N and 1, respectively.

9.3. Boundedness of bilinear multiplier operators. In analogy with Lemma [6.12]
we have the following estimate from [33, p. 147, Lemma A.2 and Remark A.3].

LEMMA 9.3. Let v € Z and v' € Z. Then, for any given r € (0,1] and N > n/r, there
exists a positive constant C, depending onr, n and N, such that, for allv,v' € 7, sequences
{av i trezn C C and z € R™,

27[1/7(1//\1/)]71

Z (1+ 20~z — 2-vEk[)N vkl

kezr
< CQ[(DAD’)—u]n(l—l/r){M< 3 |au7k|rXka)(m)}l/r,

kezn

where M denotes the Hardy—Littlewood maximal function on R™.

Applying Lemmas and Remark (ii), and the Calderén reproducing formula
, we obtain the corresponding T'1-theorem for the bilinear multiplier operator T,,. The
proof is essentially contained in the proof of Theorems [6.14] and [6.15] the details being
omitted here.

THEOREM 9.4. Let T, be as in (9.1) and the symbol o satisfy (9.2) and the cancelation
condition, for all £ # 0,

9(£,0) = 0(0,§) = 0(=£,£) = 0.
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(a) For every j € {0,1,2}, let |s;] < 1,0 < pj < 00 and 0 < g; < 0o be such that
1 1 1 1 1 1
s50=81+8, —=—+— and —=—+ —.
Po P11 D2 do q1 Qg2
Then T, can be extended to a bounded bilinear operator from the product space

Es1 (R™) x 52 (R™) to F%0(R™).

P1,q1 P2,q92 Po,90
(b) For every j € {0,1,2}, let |s;] < 1,0 < p; < oco and 0 < g; < oo be such that
1 1 1 1 1 1
so=s51+58, —=—+— and —=—+—.
Po P1 P2 Go 91 Q2

Then T, can be extended to a bounded bilinear operator from the product space
By} (RY) > B2 o, (R™) to B 4 (R™).
REMARK 9.5. Theoremextends the results in [51}52], where the diagonal cases p; = ¢1,

P2 = ¢2 and pg = qo were considered.

REMARK 9.6. (i) According to Remark [0.2(1), if in Theorem [9.4] we further assume that,
for any multiindices 7,

90(£,0) =970(0,§) = "o (=£,£) =0,

then, for all integers N > n and L € N, there exists a positive constant C,,, 1, such that,
for all m, k,£ € Z™, \,v, u € Z satisfying v < X < pu, and 7 € {0, 1, 2},

|<¢>\,m7 T:J((bl/,ka ¢u,€)>|
27|V7;1,\L27Vn/22)\n/22un/2
1+ 2M27Am — 277k|)N (1 + 242 Am — 2= 1f| )N~
Using , Lemma and following the proofs of Theorems and we see that
(a) and (b) of Theoremhold for all sg, s1, s3 € R satisfying sg = s1 + so.
(ii) In principle, if the symbol o satisfies (0.12)), then the operator T, satisfies (a)
and (b) of Theorem for all sq, 51,52 € R satisfying sg = s1 + so.

(9.12)

< CN,n,L<
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