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Abstract

In the first part of the paper, we present a short survey of the theory of multipliers, or double
centralisers, of Banach algebras and completely contractive Banach algebras. Our approach is
very algebraic: this is a deliberate attempt to separate essentially algebraic arguments from
topological arguments. We concentrate upon the problem of how to extend module actions, and
homomorphisms, from algebras to multiplier algebras. We then consider the special cases when
we have a bounded approximate identity, and when our algebra is self-induced. In the second
part of the paper, we mainly concentrate upon dual Banach algebras. We provide a simple
criterion for when a multiplier algebra is a dual Banach algebra. This is applied to show that
the multiplier algebra of the convolution algebra of a locally compact quantum group is always
a dual Banach algebra. We also study this problem within the framework of abstract Pontryagin
duality, and show that we construct the same weak∗ topology. We explore the notion of a Hopf
convolution algebra, and show that in many cases, the use of the extended Haagerup tensor
product can be replaced by a multiplier algebra.
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1. Introduction

Multipliers are a useful way of embedding a non-unital algebra into a unital algebra: a

problem which occurs often in algebraic analysis. The theory has reached maturity when

applied to C∗-algebras (see, for example, [59, Chapter 2]) where it is best studied in the

context of Hilbert C∗-modules, [33]. Indeed, one can also study “unbounded operators”

for C∗-algebras, [61], which form a vital tool in the study of quantum groups. For Banach

algebras with a bounded approximate identity, much of the theory carries over (see [24,

Section 1.d] or [8, Theorem 2.9.49]) although we remark that there seems to be no parallel

to the unbounded theory.

This paper starts with a survey of multipliers; we start with some generality, working

with multipliers of modules, and not just algebras. This material is surely well-known

to experts, but we are not aware of any particularly definitive source. For example, in

[41], Ng uses similar ideas (but for C∗-algebras, working in the category of operator mod-

ules) motived by the study of cohomology theories for Hopf operator algebras (that is,

loosely speaking, quantum groups). However, most of the proofs are left in an unpub-

lished manuscript. The particular aspects of the theory which we develop are somewhat

motivated by Ng’s presentation.

We quickly turn to discussing Banach algebras, but we shall not (as is usually the

case) require a bounded approximate identity at this stage. Instead, we proceed in a very

algebraic manner: the key point is that under some mild assumptions on the ability to

extend module actions, most of the theory can be developed without worrying about how

such an extension can be found.

In Section 3, we do consider the classical case of when we have a bounded approximate

identity. There are two main ideas here: the use of Cohen’s factorisation theorem, and

the use of Arens products. Again, this section is mostly a survey, although we, as usual,

proceed with more generality than usual.

In Section 4, we turn our attention to dual Banach algebras: Banach algebras which are

dual spaces, such that the multiplication is separately weak∗-continuous. Here we apply the

idea of using the Arens products to give a very short, algebraic proof of [22, Theorem 5.6].

In Section 5, we look at self-induced algebras (see [17]), which we argue form a larger,

natural class of algebras where multipliers are well-behaved. We show how various exten-

sion problems for multipliers can be solved in the self-induced case, but we do not give a

complete survey.

Many algebras which arise in abstract harmonic analysis, for example the Fourier

algebra A(G), are best studied in the category of operator spaces. Rather than develop

[5]



6 M. Daws

the theory twice, once for bounded maps, and then again for completely bounded maps,

we try to take a “categorical” approach throughout, so that we can develop both theories

in parallel. For example, we introduce the Arens products in Section 3 in an unusual way,

making more explicit links with the projective tensor product. This seems unnecessary

in the Banach algebra case, but it does mean that our proofs work mutatis mutandis in

the operator space setting. In Section 6 we quickly check that everything we have so far

developed does work for completely contractive Banach algebras.

We then look at the Fourier algebra in more depth: in particular, we show that A(G)

is always self-induced, as a completely contractive Banach algebra. Of course, A(G) has a

bounded approximate identity only when G is amenable. This provides some motivation

for looking at the larger class of self-induced algebras.

There has been considerable interest in multipliers as applied to abstract (quantum)

harmonic analysis (see [20, 26, 22, 52, 40] for example). Part of our motivation for writing

this paper is to argue that a slightly more systematic approach to multipliers allows one

to separate out the abstract Banach algebra arguments from specific arguments, say from

abstract harmonic analysis. We take up this study seriously in Section 7, where we provide

a simple criterion (and construction) for showing that the multiplier algebra of a Banach

algebra is actuallyadualBanachalgebra (somethingonewouldnotactually expect tobe true

by analogy with the C∗-algebra setting). We quickly check that our abstract result agrees

with more concrete constructions for L1(G) andA(G). We show that dual Banach algebras

always have multiplier algebras which are dual, and we make links with the case when we have

a bounded approximate identity: here we can make our construction more concrete.

In Section 8 we apply these ideas to the study of the convolution algebra of a locally

compact quantum group G. Indeed, we show that M(L1(G)) and Mcb(L
1(G)) are always

dual Banach algebras: we need remarkably little theory to show this! We check that,

again, our work carries over to the operator space setting with little effort. Multipliers

and dual space structures were considered by Kraus and Ruan in [27] for Kac algebras,

using the duality theory of Kac algebras. We generalise (some of) their work to locally

compact quantum groups, and show that the resulting dual Banach algebra structure on

Mcb(L
1(G)) agrees with that given by our abstract construction.

In the final section, we look at the notion of a Hopf convolution algebra, [14]. The

operator algebra approach to quantum groups usually starts with a C∗-algebra or a von

Neumann algebra which carries a co-product, hence turning the dual or predual into a

Banach algebra, which we term a convolution algebra. However, in abstract harmonic

analysis, one usually privileges the convolution algebra as being the object of study.

Hence, can we give the convolution algebra a coproduct? By analogy with the C∗-algebra

setup, we would expect the coproduct to map into a multiplier algebra. We explore this

possibility, and show that in many cases (including the Fourier algebra, and discrete

and compact quantum groups) this is possible. We also develop an abstract theory of

corepresentations in this setting.

A final word on notation. We generally follow [8] for matters related to Banach al-

gebras, but we write E∗ for the dual space of a Banach space E. We write κE for the

canonical map E → E∗∗ from a Banach (or operator) space to its bidual.
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2. Multipliers

In this section, we shall present some general background theory about multipliers. We

shall develop the theory in a rather general context, namely for modules and not just

algebras. This material, as applied to algebras, is well-known, but to our knowledge, has

not been systematically presented in this general context. As such, we make no particular

claim to originality, and we shall try to give references, and sometimes just sketch proofs,

where appropriate. We take a little care to present the material in a manner which clearly

holds both for Banach spaces, and for operator spaces.

Multipliers seem to go back to work of Hochschild, Dauns [9] and Johnson [25]. See

[42, Section 1.2] for more historical remarks. For C∗-algebras, all the standard texts cover

multipliers; both [59] and [3, Section II.7.3] are very readable. An approach using double

centralisers (see below) is taken by [39] while [53] follows a bidual approach (compare

with Theorem 3.1 below), and [43] explains the links between these two approaches.

Let A be a (complex) algebra, and let E be an A-bimodule. We say that E is faithful

if, for x ∈ E, whenever a · x · b = 0 for all a, b ∈ A, then x = 0. We remark that,

for C∗-algebras, the term non-degenerate is commonly used for this property. Notice

that E0 = {x ∈ E : a · x · b = 0 (a, b ∈ A)} is a submodule of E, and that E/E0 is

faithful. Unless otherwise stated, we shall always assume that modules are faithful, and,

furthermore, that A is faithful as a module over itself.

A multiplier of E is a pair (L,R) of maps A → E such that a · L(b) = R(a) · b for

a, b ∈ A. This notion (at least when E = A) is often called a centraliser in the literature

(see [25] or [26]). We write M(E) or MA(E) for the collection of multipliers of E. Each

x ∈ E induces a multiplier (Lx, Rx) given by

Lx(a) = x · a, Rx(a) = a · x (a ∈ A).

As E is faithful, this gives an inclusion E →M(E).

We shall, occasionally, use the following notions. Write Ml(E) for the collection of

left multipliers of E, that is, maps L : A → E with L(ab) = L(a) · b for a, b ∈ A.

Similarly, we define Mr(E), the collection of right multipliers, those maps R : A → E

with R(ab) = a ·R(b) for a, b ∈ A.

Lemma 2.1. Let (L,R) be a multiplier of E. Then L and R are linear, L is a right module

homomorphism (that is, a left multiplier), and R is a left module homomorphism (that

is, a right multiplier). When A is unital, M(E) ∼= E.

Proof. When A = E, this is well-known (compare [42, Theorem 1.2.4]). For a, b, c ∈ A
and t ∈ C,

a · L(b+ tc) = R(a) · (b+ tc) = R(a) · b+ tR(a) · c = a · (L(b) + tL(c)).

As E is faithful, it follows that L(b+ tc) = L(b) + tL(c), so that L is linear. Furthermore,

a · L(bc) = R(a) · bc = (R(a) · b) · c = (a · L(b)) · c = a · (L(b) · c),

so that L(bc) = L(b) · c, so that L is a right module homomorphism. The claims about R

follow analogously.
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When A is unital, we see that

L(a) = L(1a) = L(1) · a, R(a) = R(a1) = a ·R(1) (a ∈ A).

Furthermore, for a, b ∈ A, we have a · L(1) · b = a · L(b) = R(a) · b = a · R(1) · b, so that

L(1) = R(1), and so (L,R) is induced by L(1) ∈ E.

When E = A, we can turn M(A) into an algebra with the product (L,R)(L′, R′) =

(LL′, R′R). In general, M(E) is an A-bimodule for the actions

(a · L)(b) = a · L(b), (a ·R)(b) = R(ba),

(L · a)(b) = L(ab), (R · a)(b) = R(b) · a (a, b ∈ A, (L,R) ∈M(E)).

These are well-defined, as, for example,

a · (a0 · L)(b) = aa0 · L(b) = R(aa0) · b = (a0 ·R)(a) · b (a, b, a0 ∈ A, (L,R) ∈M(E)).

If E is a submodule of F , then the idealiser of E in F is EF = {x ∈ F : a · x, x · a ∈
E (a ∈ A)}. Then we have an obvious map EF →M(E);x 7→ (Lx, Rx) where, as before,

Lx(a) = x · a,Rx(a) = a · x for a ∈ A. If F is faithful, this map is injective; it is always

an A-bimodule homomorphism.

Lemma 2.2. M(E) is a faithful A-bimodule, and the idealiser of E in M(E) is all of

M(E).

Proof. Let us consider the module actions on M(E) in more detail. Given (L,R) ∈M(E)

and a ∈ A, we have

(a · L)(b) = a · L(b) = R(a) · b = LR(a)(b),

(a ·R)(b) = R(ba) = b ·R(a) = RR(a)(b)
(b ∈ A),

so that a · (L,R) = (LR(a), RR(a)) ∈ E. Similarly, (L,R) · a = (LL(a), RL(a)) ∈ E. Thus

the idealiser of E in M(E) is all of M(E).

Furthermore, a · (L,R) · b = (LR(a)·b, RR(a)·b), so if this equals 0 for all a, b ∈ A, then

using the “right” map, we see that c · R(a) · b = 0 for all a, b, c ∈ A. As E is faithful,

R = 0, and hence a · L(b) = 0 for all a, b ∈ A, so that L = 0. Thus M(E) is faithful.

So, given any faithful module F such that E is a submodule of F and F idealises E,

we have an injection F →M(E). Given the previous lemma, we can hence regard M(E)

as the “largest” faithful module containing E as an idealised submodule.

When E = A, these considerations take on a more familiar form. The A-module

structure on M(A) is induced by considering A as an ideal in M(A); that is, a · (L,R) =

(La, Ra)(L,R) and (L,R) · a = (L,R)(La, Ra) for a ∈ A and (L,R) ∈M(A).

If A is an ideal in an algebra B, then B is an A-bimodule, and the notion of B being

a faithful module corresponds to another notion. For an algebra B, we say that an ideal

I ⊆ B is thick or essential if whenever J is an ideal, then I ∩ J = {0} implies that

J = {0}. The following lemma is surely folklore, but we give a sketch proof.

Lemma 2.3. Let B be an algebra and let A ⊆ B be an ideal. Consider the following

properties:
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(1) considering B as an A-bimodule, B is faithful;

(2) for b ∈ B, if aba′ = 0 for all a, a′ ∈ A, then b = 0;

(3) A is essential.

Then (1)⇔(2) and (2)⇒(3). If A is faithful over itself, then (3)⇒(2).

Proof. (2) is simply (1) written out in detail. If (2) holds, then consider an ideal J ⊆ B
with J ∩ A = {0}. For b ∈ J and a, a′ ∈ A, we find that aba′ ∈ J as J is an ideal,

and aba′ ∈ A as A is an ideal; so aba′ = 0. Thus b = 0, showing that J = {0}. So A is

essential.

If (3) holds then let J = {b ∈ B : aba′ = 0 (a, a′ ∈ A)}. For b ∈ J and c, c′ ∈ B, we

see that for a, a′ ∈ A, acbc′a′ = (ac)b(c′a′) = 0 as A is an ideal. So J is an ideal in B. If

A is faithful over itself, then for b ∈ J ∩A, we have b = 0. Thus J = {0}, showing (2).

These ideas often appear in C∗-algebra theory (see for example [53, Chapter III,

Section 6]). Notice that if A is a C∗-algebra, then every ideal has a bounded approximate

identity, and hence is faithful over itself.

The above discussion hence shows that M(A) is the “largest” algebra which contains

A as an essential ideal.

To close this section, we introduce some notation. We shall write a typical element

of M(E) as x̂, and will use the notation x̂ = (Lx̂, Rx̂). This notation is inspired by the

embedding of E into M(E). For example, the calculations in Lemma 2.2 can be expressed

as a · x̂ = Rx̂(a), x̂ · a = Lx̂(a) for x̂ ∈ M(E), a ∈ A. Hence we can write the actions of

the maps Lx̂, Rx̂ as module maps. Similarly, when E = A, we write â = (Lâ, Râ) for a

typical element on M(A), and then Lâ(a) = âa, Râ(a) = aâ for a ∈ A.

2.1. For Banach algebras. For a Banach algebra A, it is customary to consider con-

tractive modules (see [8] for example). However, it will be convenient for us to consider

merely bounded modules. We shall be careful to indicate procedures where one starts

with a contractive module but ends up with only a bounded module. Furthermore, when

A is a Banach algebra, by a (left/right/bi) A-module E, unless otherwise stated, we will

always mean that E is a Banach space, and the module actions are bounded.

An A-bimodule E is essential when A·E ·A is linearly dense in E. Following Johnson,

[24], we shall say that E is neo-unital if E = {a · x · b : x ∈ E, a, b ∈ A}. Essential to

many of our arguments is the following result. This, when E = A, was proved by Cohen

in [5], and then extended to, essentially, the version presented here by Hewitt in [18], and

independently by Curtis and Figà-Talamanca in [7].

Theorem 2.4. Let A be a Banach algebra with a bounded approximate identity with

bound K > 0, and let E be an essential left A-module. Then E is neo-unital. Indeed, for

each x ∈ E and ε > 0 there exist y ∈ E and a ∈ A with x = a · y, ‖x − y‖ < ε and

‖a‖ ≤ K. We can choose y in the closure of {b · x : b ∈ A}. A similar result holds for

right A-modules.

Proof. See, for example, [4, Chapter 11], [19, Theorem 32.22] or [8, Corollary 2.9.25].

Let A be a Banach algebra and let E be an A-bimodule. It is natural to consider M(E)

to be those multipliers (L,R) such that L,R ∈ B(A, E). However, this is automatic from
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the Closed Graph Theorem. Indeed, suppose that an → a in A and that L(an)→ x in E.

Then

b · x = lim
n
b · L(an) = lim

n
R(b) · an = R(b) · a = b · L(a) (b ∈ A),

so as E is assumed faithful, L(a) = x, and we conclude that L is bounded. Similarly, R

is bounded. We norm M(E) by considering M(E) as a subset of B(A, E) ⊕∞ B(A, E),

so that ‖(L,R)‖ = max(‖L‖, ‖R‖). The strict topology on B(A, E) ⊕ B(A, E) is defined

by the seminorms

(L,R) 7→ ‖L(a)‖+ ‖R(a)‖ (a ∈ A).

Proposition 2.5. M(E) is a closed subspace of B(A, E)⊕∞ B(A, E) in both the norm

and strict topologies. In particular, M(E) is a Banach space.

Proof. Suppose that the net (Lα, Rα) in M(E) converges strictly to (L,R) in B(A, E)⊕∞
B(A, E). For a, b ∈ A, we have

a · L(b) = lim
α
a · Lα(b) = lim

α
Rα(a) · b = R(a) · b,

so that (L,R) ∈M(E) as required. As norm convergence implies strict convergence, this

completes the proof.

In the rest of this section, we shall study various extension problems. Almost all of

these boil down to extending module actions to M(A), with further extension problems

following by purely algebraic methods. We shall explore these methods here, deferring

treatment of the original module extension problem until later (where we study what

extra properties of A, or the module in question, will ensure that such extensions exist).

Let us first consider the following problem, for a Banach algebra A and an A-

bimodule E. We showed above that M(E) is an A-bimodule. Can we extend these module

actions to turn M(E) into an M(A)-bimodule?

If E is an M(A)-bimodule, then we say that the module actions are strictly continuous

if, whenever âα → â strictly in M(A), we have âα · x→ â · x, x · âα → x · â, in norm, for

x ∈ E.

Theorem 2.6. Let A be a Banach algebra, and let E be an A-bimodule. Suppose that E

is also an M(A)-bimodule, with actions extending those of A. Then there is an M(A)-

bimodule structure on M(E) given by

Lâ·x̂(a) = â · Lx̂(a), Râ·x̂(a) = Rx̂(aâ),

Lx̂·â(a) = Lx̂(âa), Rx̂·â(a) = Rx̂(a) · â (a ∈ A, â ∈M(A), x̂ ∈M(E)).

These satisfy:

(1) the module actions extend both those of A on M(E) and M(A) on E;

(2) when the action of M(A) on E is strictly continuous, the module action M(A) ×
M(E) → M(E) is strictly continuous in either variable; and analogously for M(E)

×M(A)→M(E).

With respect to condition (1), the definitions of Lâ·x̂ and Rx̂·â are unique. If A is essential

over itself, then the definitions of Râ·x̂ and Lx̂·â are also unique.
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Proof. These definitions are motivated by, and clearly extend, the module actions of A on

M(E). For example, it is easy to see that then the pair (Lâ·x̂, Râ·x̂) is indeed a multiplier,

and similarly x̂ · â is well-defined. For x ∈ E and â ∈M(A),

(â · x) · a = â · (x · a) = â · Lx(a) = Lâ·x(a) (a ∈ A),

and so forth, showing that these actions extend those of M(A) on E. We shall hence-

forth use fully the notation introduced at the end of the previous section, and write, for

example, the first definition as (â · x̂) · a = â · (x̂ · a).

If âα → â strictly in M(A), then for x̂ ∈M(E) and a ∈ A,

(âα · x̂) · a = âα · (x̂ · a)→ â · (x̂ · a) = (â · x̂) · a,

and similarly a · (âα · x̂)→ a · (â · x̂). Thus âα · x̂→ â · x̂ strictly in M(E). Now suppose

that x̂α → x̂ strictly in M(E). Then, for â ∈M(A),

(â · x̂α) · a = â · (x̂α · a)→ â · (x̂ · a) = (â · x̂) · a (a ∈ A),

showing that â · x̂α → â · x̂ strictly. Analogously, these hold for the right module action.

Suppose now that we have some left-module action of M(A) on M(E) satisfying (1)

and (2). Let â ∈M(A) and x̂ ∈M(E), and let (L,R) = â · x̂. Then

a · L(b) = (a · L)(b) = (a · â · x̂) · b = aâ · Lx̂(b) (a, b ∈ A).

As E is faithful, we conclude that L = Lâ·x̂ as defined above. Similarly, we see that

R(ba) = (a ·R)(b) = b · (a · â · x̂) = Rx̂(baâ) (a, b ∈ A),

so if products are dense in A, then R = Râ·x̂ as defined above. The arguments for the

right action are analogous.

It might seem unnatural to first define E as an M(A)-bimodule: perhaps it would

be easier to extend the action of A on E directly to an action of M(A) on M(E). The

following shows that if we can do this, then in many cases, E will automatically be an

M(A)-submodule of M(E).

Proposition 2.7. Let E be an essential A-bimodule, and suppose that M(E) is an

M(A)-bimodule satisfying condition (1) from the previous theorem. Then E is an M(A)-

bimodule, with the module actions extending those of A. Furthermore, when A is essential

over itself, the action of M(A) on M(E) is given by the definitions in the previous theo-

rem.

If, further, E = {a · x · b : a, b ∈ A, x ∈ E} then the action of M(A) on E is strictly

continuous, and condition (2) holds.

Proof. Let â ∈ M(A), x ∈ E and let (L,R) = â · (Lx, Rx) ∈ M(E). Suppose that

x = a · y for some a ∈ A and y ∈ E, so that (Lx, Rx) = a · (Ly, Ry) and thus (L,R) =

âa · (Ly, Ry) ∈ E. By density, as E is essential, this shows that we have a module action

M(A)× E → E which extends the module action of A. Let âα → â in M(A). Then

âα · (a · y) = (âαa) · y → (âa) · y = â · (a · y) (a ∈ A, y ∈ E),

so we have strict continuity, under the stronger condition on E (notice that we cannot

assume that (âα) is bounded).
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We now essentially reverse the uniqueness argument in the preceding proof. For x̂ ∈
M(E), â ∈M(A) and a, b ∈ A, if (L,R) = â · x̂, then, as before, R has a unique definition,

and a · L(b) = aâ · x̂ · b = aâ · Lx̂(b) for a, b ∈ A. Then â · Lx̂(b) ∈ E by the previous

paragraph, and so L(b) = â · Lx̂(b) for b ∈ A.

The arguments “on the right” follow analogously. When E satisfies the stronger con-

dition, uniqueness shows that (2) holds.

We shall address the question of when E is an M(A)-bimodule in later sections.

Another typical problem in the theory of multipliers is to extend (module) homomor-

phisms to the level of multipliers. At the level of modules, this is just algebra, as the

following proof shows.

Theorem 2.8. Let E and F be A-modules, and let ψ : E → F be an A-bimodule homo-

morphism. There exists a unique extension ψ̃ : M(E) → M(F ) which is an A-bimodule

homomorphism. Furthermore, ψ̃ is strictly continuous.

If E and F are also M(A)-bimodules, with actions extending those of A, then use The-

orem 2.6 to turn M(E) and M(F ) into M(A)-bimodules. Then ψ̃ is an M(A)-bimodule

homomorphism.

Proof. We first define ψ̃ as follows. For x̂ ∈M(E) define ψ̃(x̂) = (L,R) where

L(a) = ψ(x̂ · a), R(a) = ψ(a · x̂) (a ∈ A).

For a, b ∈ A, a · L(b) = ψ(a · x̂ · b) = R(a) · b as ψ is a module homomorphism, and so

(L,R) ∈M(F ). For a, b ∈ A,

ψ̃(a · x̂) · b = ψ((a · x̂) · b) = ψ(a · (x̂ · b)) = a · (ψ̃(x̂) · b),

and similarly b·ψ̃(a·x̂) = b·(a·ψ̃(x̂)) so that ψ̃(a·x̂) = a·ψ̃(x̂). Similarly ψ̃(x̂·a) = ψ̃(x̂)·a,

so that ψ̃ is an A-module homomorphism. Clearly ψ̃ is linear, is an extension of ψ, and

satisfies ‖ψ̃‖ ≤ ‖ψ‖.
If φ : M(E)→M(F ) is another extension, then for a, b ∈ A, and x̂ ∈M(E), we have

(a · φ(x̂)) · b = φ(a · x̂) · b = ψ(a · x̂) · b = (a · ψ̃(x̂)) · b,

using that φ is an A-module homomorphism, and that a · x̂ ∈ E. As F is faithful,

a · φ(x̂) = a · ψ̃(x̂), and a similar argument establishes that φ(x̂) · a = ψ̃(x̂) · a. Thus

φ = ψ̃.

If x̂α → x̂ in M(E) then for a ∈ A,

ψ̃(x̂α) · a = ψ(x̂α · a)→ ψ(x̂ · a) = ψ̃(x̂) · a,

and similarly a · ψ̃(x̂α)→ a · ψ̃(x̂). Thus ψ̃ is strictly continuous.

Now suppose that E and F are M(A)-bimodules, with actions extending those of A,

and apply Theorem 2.6. Let a, b ∈ A, â ∈M(A) and x̂ ∈M(E). Then

b · (ψ̃(â · x̂) · a) = b · ψ((â · x̂) · a) = b · ψ(â · (x̂ · a) = ψ(bâ · (x̂ · a))

= bâ · ψ(x̂ · a) = b · ((â · ψ̃(x̂)) · a).

We also have

(â · ψ̃(x̂)) · a = â · (ψ̃(x̂) · a) = â · ψ(x̂ · a).
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As F is faithful, it follows that ψ̃(â · x̂) · a = (â · ψ̃(x̂)) · a. Similarly,

a · ψ̃(â · x̂) = ψ(a · (â · x̂)) = ψ(aâ · x̂) = aâ · ψ̃(x̂) = a · (â · ψ̃(x̂)).

We conclude that ψ̃(â · x̂) = â · ψ̃(x̂). Analogously, one can show that ψ̃(x̂ · â) = ψ̃(x̂) · â.

Now suppose that B is a Banach algebra and that θ : A → M(B) is a bounded

homomorphism. Then B becomes a bounded (but maybe not contractive!) A-bimodule

for the actions

a · b = θ(a)b, b · a = bθ(a) (a ∈ A, b ∈ B).

There appears to be no simple criterion on θ to ensure that B is then a faithful A-

module. If B is faithful, then we can apply the above theorem to find an extension

θ̃ : M(A)→MA(B) which is anA-bimodule homomorphism. There is a linear contraction

M(B)→MA(B) given by (L,R) 7→ (Lθ,Rθ). However, it is far from clear when θ̃ maps

into (the image of) M(B).

2.2. Extending module actions and homomorphisms. We saw in the previous

section that the ability to extend the bimodule actions of A on E to M(A) actions is

a sufficient (and often necessary) condition for M(E) to become an M(A)-bimodule, in

a natural way. In this section, we shall see that extending the action on E has a close

relation with the problem of extending homomorphisms between algebras.

Let A be a Banach algebra and let E be a bimodule. Recall that E is essential if

A · E · A is linearly dense in E. As an aside, we note that in the pure algebra setting,

we would ask that the linear span of A · E · A be all of E. In this setting, the proofs

are similar (compare with [58, Appendix] for example). We shall concentrate upon the

Banach algebra case.

Now suppose that B is a Banach algebra and that θ : A → M(B) is a bounded

homomorphism. Then B becomes a bounded A-bimodule as above. Then B is an essential

A-bimodule if the linear span of {θ(a1)bθ(a2) : a1, a2 ∈ A, b ∈ B} is dense in B. This is

often referred to as θ being non-degenerate. Notice that the following does not need that

B is a faithful A-bimodule.

Proposition 2.9. Let θ : A → M(B) be a non-degenerate homomorphism. Then the

following are equivalent:

(1) the module actions on B can be extended to bounded M(A)-module actions;

(2) there is a bounded homomorphism θ̃ : M(A)→M(B) extending θ.

We may replace “bounded” by “contractive”. The extensions, if they exist, are unique and

strictly continuous.

Proof. If (1) holds then let â ∈ M(A) and define L,R : B → B by L(b) = â · b and

R(b) = b · â for b ∈ B. Let b1, b2 ∈ B and a1, a2 ∈ A, so that

b1θ(a1)L(θ(a2)b2) = b1(a1 · â · a2 · b2) = (b1 · a1âa2) · b2 = R(b1θ(a1))θ(a2)b2.

As θ is non-degenerate, this is enough to show that (L,R) ∈ M(B). Denote (L,R) by

θ̃(â). Then θ̃ : M(A)→M(B) is bounded and linear; if the module action is contractive,
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then so is θ̃. As θ̃ is built from a module action, it is clear that θ̃ is a homomorphism,

showing (2).

Conversely, if such a θ̃ exists, then as above, we find that B is an M(A)-bimodule,

and obviously these module actions extend those of A.

Let us consider (2). If θ̃ exists, then

θ̃(â)θ(a)b = θ(âa)b, bθ(a)θ̃(â) = bθ(aâ) (â ∈M(A), a ∈ A, b ∈ B),

which as θ is non-degenerate, uniquely determines θ̃. Similarly, if (âα) is a net in M(A)

converging strictly to â, then

lim
α
θ̃(âα)θ(a)b = lim

α
θ(âαa)b = θ(âa)b = θ̃(â)θ(a)b (a ∈ A, b ∈ B),

and similarly “on the right”, which shows that θ̃ is strictly continuous. Similar remarks

apply to the case of extending the module actions.

Consequently, the problem of extending module actions is more general than extending

homomorphisms, at least if we restrict to essential modules and non-degenerate homo-

morphisms. For Hilbert C∗-modules, the framework of adjointable operators provides a

way to pass between modules and algebras in a more seamless way.

The notion of non-degenerate is de rigueur in C∗-theory (see [33, Chapter 2] for

example). Analogously, it is usual to consider essential modules in Banach algebra theory.

By the above, we know that extensions will always be unique under such conditions. If

our algebra has a bounded approximate identity then we can construct extensions (see

Theorem 3.2). Essentiality seems like a reasonable minimal condition to consider, but at

least in principle, it would be interesting to consider wider classes of modules. We shall

not consider this problem, except when dealing with dual Banach algebras, where the

weak∗ topology can be used to deal with the non-essential setting (see Section 4).

2.3. Tensor products. A motivating example for us is the following. Let A be an

algebra, and let E be a vector space. Consider the vector space A⊗E (here and elsewhere,

an unadorned tensor product means the algebraic tensor product) which is anA-bimodule

for the actions

a · (b⊗ x) = ab⊗ x, (b⊗ x) · a = ba⊗ x (a ∈ A, b⊗ x ∈ A⊗ E).

Indeed, it is not too hard to show that M(A)⊗E is isomorphic to M(A⊗E) under the

map which sends (l, r)⊗x to (L,R) where L(a) = l(a)⊗x and R(a) = r(a)⊗x for a ∈ A.

The Banach algebra case is somewhat more subtle!

To consider a suitable Banach algebra version, we have to consider completions of

tensor products. Again, we work with a little generality. Let ⊗̂ denote the projective

tensor product, so for Banach spaces E and F , E ⊗̂ F is the completion of E ⊗ F under

the norm

‖τ‖ = inf
{ n∑
k=1

‖xk‖‖yk‖ : τ =

n∑
k=1

xk ⊗ yk
}

(τ ∈ E ⊗ F ).

Then ⊗̂ has the universal property that if φ : E × F → G is a bounded bilinear map

to some Banach space G, then there is a unique bounded linear map φ̃ : E ⊗̂ F → G
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linearising φ. The dual of E ⊗̂ F can be identified with B(E,F ∗) or B(F,E∗) by

〈T, x⊗ y〉 = 〈T (x), y〉, 〈S, x⊗ y〉 = 〈S(y), x〉,

where x⊗ y ∈ E ⊗̂ F , T ∈ B(E,F ∗) and S ∈ B(F,E∗).

Let A be a Banach algebra and let E be a Banach space. We shall say that a norm α

on A⊗ E is admissible if α(a⊗ x) = ‖a‖ ‖x‖ for a ∈ A and x ∈ E (which says that α is

a cross-norm) and the module actions of A are contractive. The triangle inequality then

shows that the projective tensor norm dominates α. Denote by A⊗̂αE the completion of

A⊗E under α. Then A⊗̂E → A⊗̂αE is norm-decreasing with dense range. The adjoint

of this map thus identifies (A⊗̂αE)∗ with a subspace of B(A, E∗), which we shall denote

by Bα(A, E∗). We equip Bα(A, E∗) with the norm induced by (A⊗̂αE)∗, say ‖ ·‖α. Thus

‖T‖α ≥ ‖T‖, ‖a · T‖α ≤ ‖a‖ ‖T‖α, ‖T · a‖α ≤ ‖a‖ ‖T‖α (a ∈ A, T ∈ Bα(A, E∗)).

Here (a · T )(b) = T (ba) and (T · a)(b) = T (ab) for b ∈ A.

It is not obvious that A ⊗̂α E will be faithful if A is; however, henceforth we assume

that A⊗̂αE is a faithful module. In particular, in examples, this will need to be checked.

For a given E, suppose for all choices of A we have an admissible norm α on A⊗E,

and that if T : A → B is a contraction, then T ⊗ IE : A ⊗ E → B ⊗ E is a contraction

with respect to α. Then we say that α is E-admissible.

Lemma 2.10. Let A be a Banach algebra, let E be a Banach space, and let α be an

admissible norm. There is a natural embedding M(A) ⊗ E → M(A ⊗̂α E) which is an

A-bimodule homomorphism. If α is E-admissible, this extends to a contraction

M(A) ⊗̂α E →M(A ⊗̂α E).

Proof. Let â ∈M(A) and x ∈ E, and define L,R : A → A ⊗̂α E by

L(a) = âa⊗ x, R(a) = aâ⊗ x (a ∈ A).

Then, for a, b ∈ A, we have a · L(b) = aâb ⊗ x = R(a) · b, so that (L,R) ∈ M(A ⊗̂α E).

Write β(â ⊗ x) for (L,R), so that β : M(A) × E → M(A ⊗̂α E) is bilinear. Thus β

extends to a linear map on M(A)⊗E. Suppose that
∑n
k=1 âk⊗xk is mapped to the zero

multiplier. We may suppose that {xk} is linearly independent, so for each a ∈ A, âka = 0

for each k. Hence âk = 0 for each k, and we conclude that β is an injection.

For â⊗ x ∈M(A)⊗ E and a ∈ A, we have

β(a · (â⊗ x)) · b = (aâ)b⊗ x = a · (β(â⊗ x) · b) (b ∈ A).

Similar calculations establish that β is an A-bimodule homomorphism.

If α is E-admissible, then fix a ∈ A with ‖a‖ ≤ 1, and define contractions S, T :

M(A)→ A by

S(â) = âa, T (â) = aâ (â ∈M(A)).

Then notice that for τ ∈M(A)⊗ E, if β(τ) = (L,R), then

L(a) = (S ⊗ IE)τ, R(a) = (T ⊗ IE)τ.

Thus max(‖L(a)‖, ‖R(a)‖) ≤ ‖τ‖. As a was arbitrary, we conclude that ‖(L,R)‖ ≤ ‖τ‖.
Thus β is a contraction, and so extends by continuity to M(A) ⊗̂α E.
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Let α be an E-admissible norm. Given a non-degenerate homomorphism θ : A →
M(B), we have the chain of maps

A ⊗̂α E
θ⊗IE−−−→M(B) ⊗̂α E →MB(B ⊗̂α E).

The composition is an A-bimodule homomorphism, if A acts on B (and hence on B⊗̂αE)

in the usual way induced by θ. Then we can apply Theorem 2.8 to find a unique, strictly

continuous extension

θ ⊗ IE : MA(A ⊗̂α E)→MB(B ⊗̂α E).

Extending maps defined on E is also easy, provided we have suitable tensor norms.

Suppose for all E we have an admissible norm α on A ⊗ E, and that if T : E → F is a

contraction, then IA ⊗ T extends to a contraction A ⊗̂α E → A ⊗̂α F . Then we say that

α is uniformly admissible.

Proposition 2.11. Let A be a Banach algebra, α be a uniformly admissible norm, and let

E and F be Banach spaces. Any T ∈ B(E,F ) can be uniquely extended to an A-bimodule

homomorphism TA : M(A ⊗̂α E) → M(A ⊗̂α F ) which satisfies TA(â ⊗ x) = â ⊗ T (x)

for â ∈M(A) and x ∈ E, and with ‖TA‖ ≤ ‖T‖.

Proof. Given x̂ ∈ M(A ⊗̂α E), define L,R ∈ B(A,A ⊗̂α F ) by L = (IA ⊗ T ) ◦ Lx̂ and

R = (IA ⊗ T ) ◦ Rx̂. Then (L,R) is a multiplier; denote this by TA(x̂). It is now easy to

verify that TA has the stated properties.

3. When we have a bounded approximate identity

In this section, we shall consider the case when a Banach algebra A admits a bounded

approximate identity. We shall see that we can form extensions to multiplier algebras,

a fact known since the start of the theory (see [24, Section 1.d]). We shall develop the

theory by using the Arens products, in a similar way to [8, Theorem 2.9.49] and [38].

The Arens products are discussed in [8, Theorem 2.6.15] and [42, Section 1.4]. We

shall define the Arens products in a slightly unusual way, but our construction will self-

evidently generalise to operator spaces. Recall that we identify the dual of A ⊗̂ A with

B(A,A∗) by

〈T, a⊗ b〉 = 〈T (a), b〉 (a⊗ b ∈ A ⊗̂ A, T ∈ B(A,A∗)).

We then have two embeddings of A∗∗ ⊗̂ A∗∗ into (A ⊗̂ A)∗∗ = B(A,A∗)∗, say

Φ⊗Ψ 7→ Φ⊗2 Ψ and Φ⊗3 Ψ (Φ,Ψ ∈ A∗∗),

which are defined by

〈Φ⊗2 Ψ, T 〉 = 〈T ∗∗(Φ),Ψ〉,
〈Φ⊗3 Ψ, T 〉 = 〈T ∗∗∗κ∗∗A (Φ),Ψ〉 (Φ,Ψ ∈ A∗∗, T ∈ B(A,A∗)).

For operator spaces, the following will be useful. Let α : B(A,A∗)→ B(A∗∗,A∗∗∗) be the

map α(T ) = T ∗∗, and let β : B(A∗∗,A∗∗∗) → (A∗∗ ⊗̂ A∗∗)∗ be the usual isomorphism.
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Then the map Φ⊗Ψ 7→ Φ⊗2 Ψ is simply the pre-adjoint of β ◦α. Similar remarks apply

to ⊗3.

Let π : A ⊗̂ A → A be the product map. For µ ∈ A∗, the map π∗(µ) ∈ B(A,A∗) is

the map a 7→ µ · a, for a ∈ A. Then we define maps 2,3 : A∗∗ ⊗̂ A∗∗ → A∗∗ by

〈Φ 2 Ψ, µ〉 = 〈Φ⊗2 Ψ, π∗(µ)〉, 〈Φ 3 Ψ, µ〉 = 〈Φ⊗3 Ψ, π∗(µ)〉 (Φ,Ψ ∈ A∗∗, µ ∈ A∗).

These are contractive associative algebra products on A∗∗, called the Arens products,

which extend the bimodule actions of A on A∗∗, where we embed A into A∗∗ in the

canonical fashion. More conventionally, we turn A∗ into an A-bimodule is the usual way,

and then define actions of A∗∗ on A∗ by

〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉 (Φ ∈ A∗∗, µ ∈ A∗, a ∈ A).

Then 2 and 3 satisfy

〈Φ 2 Ψ, µ〉 = 〈Φ,Ψ · µ〉, 〈Φ 3 Ψ, µ〉 = 〈Ψ, µ · Φ〉 (Φ,Ψ ∈ A∗∗, µ ∈ A∗).

The following is stated for Banach algebras with a contractive approximate identity in

[8, Theorem 2.9.49] and is modeled on [38]. Notice that if A has a bounded approximate

identity, then A is essential over itself.

Theorem 3.1. Let A be a Banach algebra with a bounded approximate identity (eα). Let

Φ0 ∈ A∗∗ be a weak∗ accumulation point of (eα). For an essential A-bimodule E we have:

(1) E is a closed submodule of M(E) which is strictly dense;

(2) θ : M(E) → E∗∗, defined by (L,R) 7→ L∗∗(Φ0), is an A-bimodule homomorphism,

and an isomorphism onto its range, with θ(x) = κE(x) for x ∈ E;

(3) the image of θ is contained in the idealiser of E in E∗∗. Indeed, R(a) = a · L∗∗(Φ0)

and L(a) = L∗∗(Φ0) · a for a ∈ A and (L,R) ∈M(E).

When E = A, the map θ is a homomorphism M(A)→ (A∗∗,3).

Proof. For (1), let (L,R) ∈M(E) and a ∈ A, so that L(a) = limα L(eαa) = limα L(eα)·a.

As E is essential, we see that eα · x → x for each x ∈ E. Thus R(a) = limαR(a) · eα =

limα a · L(eα). We conclude that L(eα)→ (L,R) strictly.

By passing to a subnet, we may suppose that eα → Φ0 in the weak∗ topology on E∗∗.

It follows that L(eα)→ L∗∗(Φ0) weak∗ in E∗∗, for each (L,R) ∈ M(E). Thus, from the

above,

L(a) = L∗∗(Φ0) · a, R(a) = a · L∗∗(Φ0) (a ∈ A),

showing (3). Notice that for a ∈ A, ‖L(a)‖ = ‖L∗∗(Φ0) · a‖ ≤ ‖L∗∗(Φ0)‖ ‖a‖, so that

‖L‖ ≤ ‖L∗∗(Φ0)‖ = ‖θ(L,R)‖. Similarly, ‖R‖ ≤ ‖θ(L,R)‖, and so θ is norm-increasing.

For x ∈ E, we have

θ(x) = L∗∗x (Φ0) = lim
α
κELx(eα) = lim

α
κE(x · eα) = κE(x),

again using that E is essential. In particular, if (xn) is a sequence in E converging to

(L,R) in norm in M(E), then (θ(xn)) is a Cauchy sequence in E∗∗, which means that

(κE(xn)) is Cauchy, that is, (xn) is Cauchy. So (L,R) ∈ E and E is closed in M(E),

which completes showing (1).
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Finally, for (L,R) ∈M(E) and a, b ∈ A,

a · θ(L,R) = a · L∗∗(Φ0) = lim
α
a · L(eα) = lim

α
R(a) · eα = R(a) = a · (L,R),

from Lemma 2.2, showing that θ is a left A-module homomorphism. It follows similarly

that θ is a right A-module homomorphism, which completes showing (2).

When E = A, for (L1, R1), (L2, R2) ∈M(A) and µ ∈ A∗, we have

〈L∗∗1 (Φ0) 3 L∗∗2 (Φ0), µ〉 = lim
α
〈µ · L∗∗1 (Φ0), L2(eα)〉 = lim

α
lim
β
〈L2(eα) · µ,L1(eβ)〉

= lim
α

lim
β
〈µ,L1(eβL2(eα))〉 = lim

α
〈µ,L1L2(eα)〉

= 〈(L1L2)∗∗(Φ0), µ〉.

This shows that θ is a homomorphism for 3.

Note that we cannot, in general, identify the image of θ with the idealiser of E in E∗∗

as E∗∗ may not be faithful. However, we could instead work with the canonical faithful

quotient of E∗∗. We shall explore a more general idea shortly.

Extending module actions is rather easy in this setting, once we have Theorem 2.4.

We can then apply Theorem 2.6 and Proposition 2.9 to find further extensions.

Theorem 3.2. Let A be a Banach algebra with a bounded approximate identity, and let E

be an essential A-bimodule. Then E carries a unique bounded M(A)-bimodule structure

extending the A-bimodule structure. If A has a contractive approximate identity, then E

becomes a (contractive) M(A)-bimodule.

Proof. Johnson showed this in [25, Section 1.d], so we only give a sketch. By Theorem 2.4,

each x ∈ E has the form a · y · b for some a, b ∈ A and y ∈ E. Then we define

â · x = (âa) · y · b, x · â = a · y · (bâ) (â ∈M(A)).

By using that E is faithful, we may check that these are well-defined actions; clearly they

extend the module actions of A. Uniqueness follows from Proposition 2.9.

If A has a contractive approximate identity, then Theorem 2.4 gives that for x ∈ E,

we can write x = a · z where z is arbitrarily close to x, and ‖a‖ ≤ 1. Similarly, we can

write z = y · b with y arbitrarily close to z, and with ‖b‖ ≤ 1. Thus

‖â · x‖ = ‖âa · y · b‖ ≤ ‖âa‖ ‖y‖ ‖b‖ ≤ ‖â‖ ‖y‖,

which can be made arbitrarily close to ‖â‖ ‖x‖. Hence the left module action of M(A) is

contractive; similarly on the right.

3.1. Smaller submodules. Theorem 3.1 identifies M(E) with a subspace of E∗∗. How-

ever, E∗∗ can both be very large, and can fail to be faithful. In applications, it is often

useful to work with a smaller A-bimodule.

Let F ⊆ E∗ be a closed A-submodule of E∗. Denote by qF the quotient map E∗∗ →
F ∗ = E∗∗/F⊥, which is an A-bimodule homomorphism. Let θF = qF θ : M(E) → F ∗,

where θ is given by Theorem 3.1. Let ιF : E → F ∗ be the natural map, which is qFκE .
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Theorem 3.3. Let A be a Banach algebra with a bounded approximate identity, let E be

an essential A-bimodule, and let F ⊆ E∗ be a closed submodule such that F · A or A · F
is dense in F . In particular, this holds if F is essential. Then:

(1) for x̂ ∈M(E) and a ∈ A, we have θF (x̂) · a = ιF (x̂ · a) and a · θF (x̂) = ιF (a · x̂);

(2) θF : M(E)→ F ∗ is strictly-weak∗-continuous;

(3) ιF : E → F ∗ is injective if and only if θF is injective;

(4) ιF is bounded below if and only if θF is bounded below;

(5) when θF is injective, the image of θF is the idealiser of E in F ∗.

Proof. With reference to Theorem 3.1, let Φ0 ∈ A∗∗ be the weak∗ limit of the bounded

approximate identity (eα), so that θF (L,R) = qFL
∗∗(Φ0) for (L,R) ∈ M(E). Thus, for

a ∈ A and x̂ ∈M(E),

θF (x̂) · a = qF (θ(x̂) · a) = qFκE(x̂ · a) = ιF (x̂ · a).

Similarly, a · θF (x̂) = ιF (a · x̂), showing (1).

Suppose that F · A is dense in F , so by Theorem 2.4, a typical element of F has the

form µ · a for some a ∈ A and µ ∈ F . Suppose that (Lα, Rα)→ (L,R) strictly in M(E).

Then

lim
α
〈L∗∗α (Φ0), µ · a〉 = lim

α
lim
β
〈µ · a, Lα(eβ)〉 = lim

α
lim
β
〈µ,Rα(a) · eβ〉 = lim

α
〈µ,Rα(a)〉

= 〈µ,R(a)〉 = 〈L∗∗(Φ0), µ · a〉,
using that E is essential. It follows that qFL

∗∗
α (Φ0)→ qFL

∗∗(Φ0) weak∗ in F ∗, as required.

The case when A · F is dense in F is similar, so we have shown (2).

We have seen before that as E is faithful, for x̂ ∈M(E), we find that x̂ = 0 if and only

if x̂ · a = 0 for all a ∈ A. Let ιF be injective, and suppose that θF (x̂) = 0. From (1), it

follows that ιF (x̂·a) = θF (x̂)·a = 0 for all a ∈ A, so that x̂ = 0. So θF injects. Conversely,

as θF (x) = qFκE(x) = ιF (x) for x ∈ E, if θF injects, then certainly ιF injects, so (3)

holds.

By Theorem 3.1, the inclusion E → M(E) is an isomorphism onto its range. As

ιF = θF |E , it follows that if θF is bounded below, then so is ιF . If ιF is bounded below

by δ > 0, then

‖θF (x̂)‖ ‖a‖ ≥ ‖θF (x̂) · a‖ = ‖ιF (x̂ · a)‖ ≥ δ‖Lx̂(a)‖ (a ∈ A).

Thus we have ‖θF (x̂)‖ ≥ ‖Lx̂‖, and similarly ‖θF (x̂)‖ ≥ ‖Rx̂‖. So (4) holds.

For (5), we first note that by Theorem 3.1, θF maps into the idealiser of E. Conversely,

if Φ ∈ F ∗ is such that A · Φ,Φ · A ⊆ ιF (E), then there exist linear maps L,R : A → E

with

ιFL(a) = Φ · a, ιFR(a) = a · Φ (a ∈ A).

As ιF is injective, it follows that (L,R) ∈ M(E). Suppose that A · F is dense in F (the

other case is similar) so that a typical element of F has the form µ · a for some a ∈ A
and µ ∈ F . Then

〈θF (L,R), µ · a〉 = lim
α
〈µ · a, L(eα)〉 = lim

α
〈µ,R(a) · eα〉 = 〈µ,R(a)〉

= 〈a · Φ, µ〉 = 〈Φ, µ · a〉,
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as E is essential. Thus θF (L,R) = Φ, as required. The case when A · F is dense in F is

similar.

The power of this result is illustrated by the following example. Let G be a locally

compact group, and consider when A = E = L1(G). Then A has a contractive bounded

approximate identity, so Theorem 3.1 applies, and we can consider M(A) as a subalgebra

of L1(G)∗∗. This, however, is a very large space! Instead, consider F = C0(G) which is (see

[8, Theorem 3.3.23]) an essential submodule ofA∗. Furthermore, the natural mapA → F ∗

is an isometry in this case. Thus we may (isometrically) identify M(A) with the idealiser

of A in F ∗. In this case, F ∗ = M(G), the measure algebra, and so M(A) = F ∗ = M(G)

(and we have essentially reproved Wendel’s Theorem; compare [8, Theorem 3.3.40]).

We finish this section by proving a “dual” version of the above, which is an easier

result.

Proposition 3.4. Let A be a Banach algebra with a bounded approximate identity, let

E be an essential A-bimodule, and let F ⊆ E∗ be a closed submodule. Then there is a

unique bounded A-module homomorphism φF from M(F ) into the idealiser of F in E∗

which extends the inclusion F → E∗. Furthermore, φF satisfies:

(1) x̂ · a = φF (x̂) · a and a · x̂ = a · φF (x̂) for a ∈ A and x̂ ∈M(F );

(2) φF is strictly-weak∗-continuous.

Proof. Let (eα) be a bounded approximate identity for A, and define

φF (x̂) = lim
α
x̂ · eα (x̂ ∈M(F )),

with the limit taken in the weak∗ topology on E∗. Then, for x̂ ∈M(F ) and a ∈ A,

〈x̂ · a, t〉 = lim
α
〈x̂ · (eαa), t〉 = lim

α
〈x̂ · eα, a · t〉 = 〈φF (x̂) · a, t〉 (t ∈ E),

showing that x̂ · a = φF (x̂) · a. Similarly,

〈a · x̂, b · t〉 = 〈x̂ · b, t · a〉 = 〈φF (x̂) · b, t · a〉 = 〈a · φF (x̂), b · t〉 (t ∈ E, b ∈ A),

which shows that a · x̂ = a · φF (x̂), using that E is essential.

Let µ ∈ F , so for a ∈ A and t ∈ E,

〈φF (µ), a · t〉 = 〈φF (µ) · a, t〉 = 〈µ · a, t〉 = 〈µ, a · t〉,

so as E is essential, φF (µ) = µ for µ ∈ F . Similarly, for x̂ ∈M(F ) and a, b ∈ A,

φF (a · x̂) · b = (a · x̂) · b = a · (x̂ · b) = (a · φF (x̂)) · b,

which shows that φF (a · x̂) = a · φF (x̂). Similarly, φF (x̂ · a) = φF (x̂) · a, so that φF is an

A-bimodule homomorphism.

If φ : M(F ) → E∗ is another extension of the inclusion F → E∗ which is an A-

bimodule homomorphism, then for x̂ ∈M(F ),

〈φ(x̂), a · t〉 = 〈φ(x̂ · a), t〉 = 〈x̂ · a, t〉 = 〈φF (x̂), a · t〉 (a ∈ A, t ∈ E),

so that φ(x̂) = φF (x̂). Hence φF is unique.

Let x̂α → x̂ strictly in M(F ), so that

lim
α
〈φF (x̂α), a · t〉 = lim

α
〈x̂α · a, t〉 = 〈x̂ · a, t〉 = 〈x̂, a · t〉 (a ∈ A, t ∈ E),
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and similarly for t · a, showing that φF (x̂α)→ φF (x̂) weak∗ in E∗, again, as E is essen-

tial.

Finally, we apply these ideas to extend module homomorphisms which map into dual

modules.

Proposition 3.5. With the same hypotheses, use Theorem 3.2 to turn E, and hence also

E∗, into an M(A)-bimodule. If F is weak∗-closed, then F is an M(A)-submodule, and

φF is an M(A)-bimodule homomorphism.

Proof. Let â ∈M(A) and µ ∈ F , and let λ be a weak∗ limit point of (µ · âeα). A typical

member of E is a · t for some a ∈ A and t ∈ E. Then

〈λ, a · t〉 = lim
α
〈µ, âeαa · t〉 = 〈µ, âa · t〉 = 〈µ · â, a · t〉,

which shows that λ = µ · â. As E is weak∗-closed, it follows that µ · â ∈ E; similarly,

â · µ ∈ E.

It is now easy to show that φF is an M(A)-bimodule homomorphism, using property

(1) established above in Proposition 3.4. For example, for â ∈ M(A), x̂ ∈ M(F ) and

a ∈ A,

φF (x̂ · â) · a = (x̂ · â) · a = x̂ · âa = φF (x̂) · âa,

and similarly a · φF (x̂ · â) = a · φF (x̂) · â, so that φF (x̂ · â) = φF (x̂) · â.

Theorem 3.6. Let A be a Banach algebra with a bounded approximate identity of bound

K > 0, and let E and F be A-bimodules, with one of E or F being essential. An A-

bimodule homomorphism ψ : E → F ∗ has an extension ψ̃ : M(E)→ F ∗ such that:

(1) if F is essential, then ψ̃ is uniquely defined, strictly-weak∗-continuous, and satisfies

‖ψ̃‖ ≤ K‖ψ‖;
(2) if both E and F are essential, then ψ̃ is also an M(A)-bimodule homomorphism.

Proof. Suppose first that F is essential. By Theorem 2.8, there is a strictly continuous

ψ0 : M(E) → M(F ∗) which extends ψ. Then consider the map φF∗ : M(F ∗) → F ∗

constructed by Proposition 3.4. Let ψ̃ = φF∗ψ0; the estimate ‖ψ̃‖ ≤ K‖ψ‖ follows easily

from the proof of Proposition 3.4. For x ∈ E, as ψ(x) ∈ F ∗, we have ψ̃(x) = φF∗ψ0(x) =

φF∗ψ(x) = ψ(x), so that ψ̃ is an extension. As φF∗ is strictly-weak∗-continuous, it follows

that ψ̃ is as well.

If φ : E → F ∗ is another extension, then for x̂ ∈ M(E) and a ∈ A, we see that

a · φ(x̂) = φ(a · x̂) = ψ(a · x̂) = a · ψ̃(x̂). As F is essential, this is enough to show that

φ(x̂) = ψ̃(x̂), so that ψ̃ is unique.

In the case when both E and F are essential, we can turn E, F and hence F ∗

into M(A)-bimodules, by Theorem 3.2. By Proposition 3.5, φF∗ is an M(A)-bimodule

homomorphism, as is ψ0, and hence also ψ̃.

If F is not essential, but E is essential, then we can adapt a technique which goes

back to Johnson (see [24, Proposition 1.8]). Let F0 = A ·F · A, which by Theorem 2.4, is

a closed essential submodule of F . Define a map ι : F ∗0 → F ∗ by

〈ι(µ), x〉 = lim
α
〈µ, eα · x · eα〉 (µ ∈ F ∗0 , x ∈ F ).
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Let q : F∗ → F ∗0 be the restriction map. Then qι is the identity, and ιq is a projection.

By the previous result, we can extend qψ to a map ψ0 : M(E) → F ∗0 . Let ψ̃ = ιψ0 :

M(E)→ F ∗. If E is essential, then a typical element of E is of the form x = a · x · b for

some y ∈ E and a, b ∈ A. Then, for t ∈ F ,

〈ψ̃(x), t〉 = lim
α
〈ψ0(x), eα · t · eα〉 = lim

α
〈ψ(x), eα · t · eα〉 = lim

α
〈a · ψ(y) · b, eα · t · eα〉

= 〈ψ(y), b · t · a〉 = 〈ψ(x), t〉,

so that ψ̃ does extend ψ. However, it is now not clear that ψ̃ is uniquely defined or

strictly-weak∗-continuous.

4. Dual Banach algebras

Following [47, 10], we say that a Banach algebra A which is the dual of a Banach space

A∗ is a dual Banach algebra if multiplication in A is separately weak∗-continuous. This

is equivalent to the canonical image of A∗ in A∗ being an A-submodule, that is, that

A is a dual A-bimodule. In [22, Theorem 5.6], it is shown that in the presence of a

bounded approximate identity, we can always extend homomorphisms which map into a

dual Banach algebra. We shall extend this result to multipliers of modules, and also show

how the result really follows from algebraic considerations, and Theorem 3.2. Firstly, we

shall explore connections with weakly almost periodic functionals, which we shall return

to when considering when multiplier algebras are themselves dual, in Section 7 below.

As in [48], given an A-bimodule E, we shall write WAP(E) for the collection of

elements x ∈ E such that Rx, Lx : A → E are weakly compact. It is easy to see that

WAP(E) is a closed A-submodule of E. When E = A∗, we recover the usual definition

of WAP(A∗) (which some authors write as WAP(A)) as, for µ ∈ A∗, R∗µκA = Lµ and

L∗µκA = Rµ so Rµ is weakly compact if and only if Lµ is.

Lemma 4.1. Let A be a Banach algebra with a bounded approximate identity, let E be

an essential A-bimodule, and let F ⊆ WAP(E∗) be a closed A-submodule. Then F =

{a · µ · b : a, b ∈ A, µ ∈ F}; in particular, F is essential.

Proof. Let (eα) be a bounded approximate identity for A. For µ ∈ F , by weak compact-

ness, the net (eα · µ) has a weakly convergent subnet, whose limit must be µ, as

lim
α
〈eα · µ, x · a〉 = lim

α
〈µ, x · aeα〉 = 〈µ, x · a〉 (x ∈ E, a ∈ A),

and using that E is essential. As the norm closure and weak closure of a convex set agree,

by taking convex combinations, it follows that µ is in the norm closure of {a ·µ : a ∈ A}.
By Theorem 2.4, it follows that F = {a · λ : a ∈ A, λ ∈ F}. Then repeat the argument

on the other side.

In particular, we can apply Theorem 3.3 for any closed submodule F ⊆WAP(E∗).

We now consider the case of homomorphisms; in this case, Lemma 4.1 becomes more

powerful. For a Banach algebra A, let F = WAP(A∗), let κw = qFκA : A →WAP(A∗)∗,
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and let θw = θF : M(A)→WAP(A∗)∗. Now, θw = qF θ, and θ : M(A)→ A∗∗ is a homo-

morphism for the second Arens product. As qF : A∗∗ →WAP(A∗)∗ is a homomorphism

for either Arens product, it follows that θw is a homomorphism.

Theorem 4.2. Let A be a Banach algebra with a bounded approximate identity of bound

K > 0, and let (B,B∗) be a dual Banach algebra. A homomorphism ψ : A → B has a

unique extension to a homomorphism ψ̃ : M(A) → B with ‖ψ̃‖ ≤ K‖ψ‖, and such that

ψ̃ is strictly-weak∗-continuous.

Proof. By [48, Theorem 4.10] there exists a unique weak∗-continuous homomorphism

ψ0 : WAP(A∗)∗ → B which extends ψ in the sense that ψ0κw = ψ, and with ‖ψ0‖ ≤ ‖ψ‖.
Indeed, to show this, observe that ψ∗(B∗) ⊆WAP(A∗), so we may define ψ0 = (ψ∗|B∗)∗.

Then let ψ̃ = ψ0θw, so that for a ∈ A, we have ψ̃(a) = ψ0κw(a) = ψ(a). Then ψ̃ is

strictly-weak∗-continuous by Theorem 3.3, and as ‖θw‖ ≤ K, it follows that ‖ψ̃‖ ≤ K‖ψ‖.
Uniqueness follows as A is strictly dense in M(A).

In [22, Theorem 5.6] this result is proved, using a completely different method, but a

priori with two differences:

• The modification that M(A) is given the right multiplier topology, determined by the

seminorms (L,R) 7→ ‖R(a)‖ for a ∈ A. However, if we examine the proof of Theo-

rem 3.3, then we actually only used the right multiplier topology.

• The extension is defined from A0, a Banach algebra which contains A as a closed ideal.

Then we have a natural contraction A0 → M(A), so really, it is enough to work with

M(A).

We explore below, in Proposition 5.8 and the remark thereafter, a more algebraic way

to prove this result.

We shall see in Section 7 that often M(B) is a dual Banach algebra. Thus, given any

homomorphism ψ : A → B, we can consider ψ as a homomorphism A → M(B), and

hence use the above theorem to find an extension ψ̃ : M(A)→M(B). This hence gives a

stronger extension result than that given by Proposition 2.9 and Theorem 3.2 (but only

gives a strictly-weak∗-continuous extension, not a strictly-strictly continuous extension).

5. Self-induced Banach algebras

We have seen that having a bounded approximate identity allows us to perform most of

the operations which we might wish, as regards multipliers. A larger class of algebras with

which multipliers interact well is the class of self-induced algebras, which we shall explore

in this section. The theory becomes very algebraic, and indeed, most of what we saw in

previous sections could have been proved by observing that any algebra with a bounded

approximate identity is self-induced (see Proposition 5.3 and references, below). However,

this would have been unconventional, and we achieved greater generality by waiting as

long as possible before exploring how we might extend module actions to algebras of

multipliers.
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Let A ⊗̂ A be the projective tensor product of A with itself, and let N be the closed

linear span of elements of the form ab ⊗ c − a ⊗ bc, for a, b, c ∈ A. Then we define

A ⊗̂A A := A ⊗̂ A/N . Let π : A ⊗̂ A → A be the product map, π(a ⊗ b) = ab. Then

clearly N ⊆ kerπ, so π induces a map A⊗̂AA → A. If this map is an isomorphism, that

is, kerπ = N , then A is said to be self-induced.

This idea was explored by Grønbæk in [17] in the context of Morita equivalence,

although the idea goes back at least to work of Rieffel in [46]. Similar ideas have also

been explored in the context of Banach cohomology theory (see for example [51]). We

shall argue that self-induced algebras form a natural setting to consider multipliers in.

We shall prove some general results, as the proofs will later be useful when we consider

completely contractive Banach algebras.

Given a Banach algebra A, let mod-A be the class of right A-modules. We similarly

define A-mod and A-mod-A. Given another Banach algebra B, let A-mod-B be the class

of left A-modules which are also right B-modules, with commuting actions.

For E ∈ mod-A and F ∈ A-mod, we let E ⊗̂A F = E ⊗̂ F/N where N is the closed

linear span of elements of the form x · a ⊗ y − x ⊗ a · y for x ∈ E, y ∈ F and a ∈ A. If

E ∈ A-mod-A and F ∈ A-mod-B, then it is easy to see that E ⊗̂A F ∈ A-mod-B.

For Banach spaces E and F , we identify (E ⊗̂F )∗ with B(E,F ∗). Then (E ⊗̂A F )∗ =

N⊥ where N⊥ = {T ∈ (E ⊗̂ F )∗ : 〈T, τ〉 = 0 (τ ∈ N)}. It is easy to see that in our case,

N⊥ = BA(E,F ∗), the space of right A-module homomorphisms.

The following is [46, Theorem 3.19], but we give a proof as we shall wish to generalise

this (to operator spaces) later.

Lemma 5.1. Let A and B be Banach algebras. Let E ∈ mod-A, F ∈ A-mod-B and

G ∈ B-mod. The identity map E⊗F ⊗G→ E⊗F ⊗G induces an isometric isomorphism

(E ⊗̂A F ) ⊗̂B G ∼= E ⊗̂A (F ⊗̂B G).

Proof. We shall first show that there is a natural isomorphism

α : BB(E ⊗̂A F,G∗) ∼= BA(E, (F ⊗̂B G)∗) ∼= BA(E,BB(F,G∗)),

the main claim then following by duality. As F ⊗̂B G ∈ A-mod, by duality, BB(F,G∗) =

(F ⊗̂B G)∗ ∈ mod-A. To be explicit, the module action is

(S · a)(y) = S(a · y) (S ∈ BB(F,G∗), a ∈ A, y ∈ F ).

For T ∈ BB(E ⊗̂A F,G∗), define

α(T ) ∈ BA(E,BB(F,G∗)), α(T )(x)(y) = T (x⊗ y) (x ∈ E, y ∈ F ).

Then for fixed T and x, clearly α(T )(x) ∈ B(F,G∗) with ‖α(T )(x)‖ ≤ ‖T‖ ‖x‖. For

y ∈ F, z ∈ G and b ∈ B, we have

〈α(T )(x)(y · b), z〉 = 〈T (x⊗ y · b), z〉 = 〈T (x⊗ y) · b, z〉 = 〈α(T )(x)(y) · b, z〉,

as T is a right B-module homomorphism. Thus α(T )(x) ∈ BB(F,G∗). Then obviously

x 7→ α(T )(x) is linear and bounded. For y ⊗ z ∈ F ⊗̂B G, we see that

〈α(T )(x · a), y ⊗ z〉 = 〈T (x · a⊗ y), z〉 = 〈T (x⊗ a · y), z〉
= 〈α(T )(x), a · y ⊗ z〉 = 〈α(T )(x) · a, y ⊗ z〉,
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as x · a ⊗ y = x ⊗ a · y in E ⊗̂A F . Hence α(T ) is a right A-module homomorphism, as

claimed. Finally, similar arguments show that α is indeed an isometric isomorphism.

The adjoint of α induces an isometric isomorphism

((E ⊗̂A F ) ⊗̂B G)∗∗ ∼= (E ⊗̂A (F ⊗̂B G))∗∗.

Let κ be the canonical map from (E ⊗̂A F ) ⊗̂B G to its bidual, and similarly let ι be the

canonical map from E ⊗̂A (F ⊗̂B G) to its bidual. Then it is easy to see that

α∗κ((x⊗ y)⊗ z) = ι(x⊗ (y ⊗ z)) (x ∈ E, y ∈ F, z ∈ G).

By continuity, α∗κ takes values in the image of ι, and (α−1)∗ι takes values in κ, from

which the claim immediately follows.

As in the previous section, we now consider the problem of extending homomorphisms

by way of modules.

Proposition 5.2. Let E ∈ A-mod-A, so that E0 = A⊗̂AE ⊗̂AA is also an A-bimodule.

Then E0 is an M(A)-bimodule, with the module actions extending those of A. If E is

essential over itself, these extensions are unique.

Proof. For (L,R) ∈M(A), a1, a2 ∈ A and x ∈ E, we define

(L,R) · (a1 ⊗ x⊗ a2) = L(a1)⊗ x⊗ a2, (a1 ⊗ b⊗ a2) · (L,R) = a1 ⊗ b⊗R(a2).

As L is a right module homomorphism, and R is a left module homomorphism, it follows

that these actions respect the quotient map A ⊗̂ B ⊗̂ A → E0, and simple checks show

that these are bimodule actions.

If A is essential over itself, then E0 is essential, and so uniqueness follows by Theo-

rem 2.6.

Given E ∈ A-mod, if the product map induces an isomorphism A⊗̂AE ∼= E, then we

say that E is induced. Similar remarks apply to right modules and bimodules. Hence, if

E ∈ A-mod-A is induced, then we can always extend the module actions to M(A). This

allows us to immediately reprove Theorem 3.2, given the following, which was first shown

by Rieffel in [46, Theorem 4.4] (again, we give a different proof, exploiting duality, as we

wish to generalise this later).

Proposition 5.3. Let A be a Banach algebra with a bounded approximate identity, and

let E ∈ A-mod be essential. Then E is induced. Similar remarks apply to right modules

and bimodules.

Proof. Let πE : A ⊗̂ E → E; a ⊗ x 7→ a · x, be the product map. We shall show that

kerπ = N , where N is the closed linear span of elements of the form aa′ ⊗ x− a⊗ a′ · x,

for a, a′ ∈ A and x ∈ E. As E is essential, πE has dense range, so it is enough to show

that π∗E : E∗ → (A ⊗̂ E)∗ = BA(A, E∗) surjects.

Let T ∈ B(A, E∗) be a right A-module map, and let (eα) be a bounded approximate

identity for A. By moving to a subnet we may suppose that T (eα) converges weak∗ to

µ ∈ E∗. Then, for a ∈ A and x ∈ E,

〈T (a), x〉 = lim
α
〈T (eαa), x〉 = lim

α
〈T (eα) · a, x〉 = 〈µ, a · x〉 = 〈π∗(µ)(a), x〉.

Thus T = π∗(µ), and we are done.
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The argument on the right follows similarly, and the bimodule case follows by using

Lemma 5.1.

Let A be self-induced, let B be a Banach algebra, and let θ : A → B be a homo-

morphism. Let πA : A ⊗̂A A → A and πB : A ⊗̂A B → B be the product maps. Then

[17, Proposition 2.13] tells us that AB(A,B) ∼= AB(A,A ⊗̂A B); in particular, θ induces

a unique map θ̂ : A → A ⊗̂A B such that πBθ̂ = θ. Indeed, we have θ̂ = (id ⊗ θ)π−1
A .

Similarly, we can work on the right, and so find a homomorphism θ0 : A → A⊗̂AB⊗̂AA.

Lemma 5.4. A ⊗̂A B becomes a Banach algebra for the product

(a⊗ b)(a′ ⊗ b′) = a⊗ bθ(a′)b′ (a, a′ ∈ A, b, b′ ∈ B).

Proof. The claimed product can be written as

στ = σ · πB(τ) (σ, τ ∈ A ⊗̂A B).

It is hence clear that this is a well-defined, contractive bilinear map. Notice that we have

πB(σ · πB(τ)) = πB(σ)πB(τ) for σ, τ ∈ A ⊗̂A B. Hence the product is associative, as

ω(στ) = ω · πB(σ · πB(τ)) = ω · πB(σ)πB(τ) = (ωσ)τ (σ, τ, ω ∈ A ⊗̂A B).

Similarly, B⊗̂AA becomes a Banach algebra for the product defined by (b⊗a)(b′⊗a′) =

bθ(a)b′⊗a′. Combining these observations, we see that A⊗̂AB ⊗̂AA becomes an algebra

for the product

(a⊗ b⊗ c)(a′ ⊗ b′ ⊗ c′) = a⊗ bθ(ca′)b′ ⊗ c′ (a, a′, c, c′ ∈ A, b, b′ ∈ B).

By Lemma 5.1, it is easy to see that A ⊗̂A B ⊗̂A A is induced as an A-bimodule.

Proposition 5.5. Let A be a self-induced Banach algebra, and let B be a Banach algebra.

Let θ : A → B be a homomorphism, and use this to induce a Banach algebra structure

on C = A ⊗̂A B ⊗̂A A. There is a unique extension of θ0 : A → C to θ̃0 : M(A)→M(C)
with ‖θ̃0‖ ≤ ‖θ0‖.

Proof. Let x = (L′, R′) ∈M(A) and define L ∈ B(C) by L(c) = x · c for c ∈ C. Then, for

ai ∈ A for 1 ≤ i ≤ 4 and b1, b2 ∈ B, with reference to the proof of Proposition 5.2 above,

we have

L((a1 ⊗ b1 ⊗ a2)(a3 ⊗ b2 ⊗ a4) = L(a1 ⊗ b1θ(a2a3)b2 ⊗ a4)

= L′(a1)⊗ b1θ(a2a3)b2 ⊗ a4 = L(a1 ⊗ b1 ⊗ a2)(a3 ⊗ b2 ⊗ a4).

So L ∈ Ml(C). Similarly, we define R ∈ Mr(C) by R(c) = c · x for c ∈ C. Then (L,R) ∈
M(C), and so we have defined θ̃0 : M(A) → M(C);x 7→ (L,R) as required. Uniqueness

follows as the linear span of elements of the form a · c, for a ∈ A, c ∈ C, are dense in C,
as A is self-induced.

Corollary 5.6. Let A be a self-induced Banach algebra, let B be a Banach algebra, and

let θ : A → B be a homomorphism such that B becomes induced as an A-bimodule. There

is a unique extension θ̃ : M(A)→M(B).

Example 5.7. Let A = `1(I) for some index set I, with the pointwise product. It is easy

to see that M(A) ∼= `∞(I), again acting pointwise. Furthermore, `1(I) is self-induced.
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This follows, as `1(I) ⊗̂ `1(I) = `1(I × I), and then N is the closure of the linear span of

{δiδj ⊗ δk − δi ⊗ δjδk : i, j, k ∈ I}.

This is the same as the closed linear span of {δi⊗ δk : i 6= k}. It now follows immediately

that `1(I) is self-induced.

Now consider `1(Z), and consider A(Z), the Fourier algebra on Z. This is defined

below, or as Z is abelian, we can consider A(Z) to be the Fourier transform of L1(T).

Then the formal identity map gives a contractive homomorphism `1(Z)→ A(Z). Suppose,

towards a contradiction, that we can extend this to a continuous homomorphism ψ :

`∞(Z) = M(`1(Z)) → M(A(Z)) = B(Z) ∼= M(T), the measure algebra on T, here

identified with B(Z) the Fourier–Stieltjes algebra, again by the Fourier transform. Let

c00(Z) be the collection of finitely supported functions, so c00(Z) is a subalgebra of `1(Z)

and B(Z), and so ψ(a) = a for a ∈ c00(Z). As ψ is continuous, it follows that ψ(a) = a

for a ∈ c0(Z), implying that c0(Z) ⊆ B(Z), a contradiction.

Thus, as we might expect, the canonical homomorphism `1(Z)→ A(Z) is not inducing.

Notice also that B(Z) is a dual Banach algebra, and so there can be no naive extension

of Theorem 4.2 to the self-induced case.

Finally, we note that a similar calculation to that in the first paragraph shows that

`1(Z) ⊗̂`1(Z) A(Z) ∼= `1(Z).

To close this section, we consider a self-induced version of Theorem 4.2.

Proposition 5.8. Let A be a self-induced Banach algebra, let (B,B∗) be a dual Banach

algebra, and let θ : A → B be a homomorphism. Then B, and so B∗, becomes an A-

bimodule. If B∗ is induced, then there is a unique extension θ̃ : M(A) → B which is

bounded and strictly-weak∗-continuous.

Proof. Let π : A⊗̂AB∗ → B∗ be the product map, π(a⊗µ) = θ(a)·µ, which by assumption

is an isomorphism. The adjoint is π∗ : B → BA(A,B) where BA(A,B) denotes the space of

maps T : A → B with T (aa′) = T (a)θ(a′) for a, a′ ∈ A, and π∗(b) is the map a 7→ bθ(a),

for a ∈ A and b ∈ B.

Let (L,R) ∈ M(A), and consider θL : A → B, which is a member of BA(A,B). Let

b = (π∗)−1(θL), so that bθ(a) = θL(a) for a ∈ A. Analogously, we can work with the

product map B∗ ⊗̂A A → B∗, which leads to b′ ∈ B such that θR(a) = θ(a)b′ for a ∈ A.

For a, a′ ∈ A, we have aL(a′) = R(a)a′, and hence

〈b− b′, θ(a′) · µ · θ(a)〉 = 〈θ(a)θ(L(a′))− θ(R(a))θ(a′), µ〉 = 0 (µ ∈ B∗).

As B∗ is induced, this shows that b = b′. Notice that ‖b‖ ≤ ‖θ‖ ‖π−1‖ ‖L‖.
It is now easy to verify that θ̃ : M(A)→ B; (L,R) 7→ b is a bounded homomorphism

which extends θ. Uniqueness follows as if ψ : M(A)→ B also extends θ, then for (L,R) ∈
M(A), a ∈ A and µ ∈ B∗,

〈ψ(L,R), θ(a) · µ〉 = 〈θ(L(a)), µ〉 = 〈θ̃(L,R)θ(a), µ〉 = 〈θ̃(L,R), θ(a) · µ〉.

As B∗ is induced, it follows that ψ = θ. Finally, if (Lα, Rα) → (L,R) strictly in M(A),

then, again using that B∗ is induced, it follows that θ̃(Lα, Rα)→ θ̃(L,R) weak∗ in B.
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If A has a bounded approximate identity (eα), and B∗ is essential, then B∗ is induced,

and so the above gives another proof of Theorem 4.2. If B∗ is not induced, then we can

use the following “cut-down” technique. Let e ∈ B be a weak∗ limit point of (θ(eα)), so

that e2 = e. Let C = eBe, a closed subalgebra of B which contains the image of θ. It is

easy to see that µ ∈ ⊥C if and only if e · µ · e = 0. Let b ∈ (⊥C)⊥, and let µ ∈ B∗. Then

e ·(µ−e ·µ ·e) ·e = 0, so 0 = 〈b, µ− e · µ · e〉 = 〈b− ebe, µ〉. Thus b = ebe, and we conclude

that C is weak∗-closed. Thus C is a dual Banach algebra with predual C∗ = B∗/⊥C.
We now observe that C∗ is essential as an A-bimodule. Indeed, ⊥C = {µ − e · µ · e :

µ ∈ B∗}, and so a typical element of C∗ is e · µ · e+ ⊥C. Let λ = e · µ · e+ ⊥C ∈ C∗, and

let c = ece ∈ C, so

lim
α
〈c, θ(eα) · λ〉 = lim

α
lim
β
〈cθ(eβ)θ(eα), λ〉 = lim

α
〈cθ(eα), λ〉 = 〈ce, λ〉 = 〈c, λ〉.

Thus θ(eα) · λ → λ weakly, and, by taking convex combinations, also λ is in the norm

closure of A · λ. Similarly, λ is in the norm closure of λ · A, and so C∗ is essential.

To finish, we apply the above proposition (or Theorem 4.2) to the map θ : A → C to

find an extension θ̃ : M(A)→ C ⊆ B, as required.

6. Completely contractive Banach algebras

In this section, we adapt the results of the previous sections to the setting of operator

spaces and completely contractive Banach algebras. As explained in the introduction,

we shall exploit duality arguments (essentially, the operator space version of the Hahn–

Banach theorem) to avoid lengthy matrix level calculations, where possible. We refer the

reader to [13] for details.

We shall overload notation, and write ⊗̂ for the operator space projective tensor

product; we shall not consider the Banach space projective tensor product of operator

spaces! We write CB(E,F ) for the space of completely bounded maps between operator

spaces E and F . A completely contractive Banach algebra (CCBA) is a Banach algebra A
which is an operator space such that the product map extends to a complete contraction

A⊗̂A → A. Similarly, for example, a completely contractive left A-module is an operator

space E such that the product map induces a complete contraction A ⊗̂ E → E. We

continue to write E ∈ A-mod, and so forth.

One, important, caveat is that the Open Mapping Theorem has no analogue for

operator spaces, so it is possible for T : E → F to be a completely bounded bijection,

but for T−1 to only be bounded. Fortunately, we shall see that we can usually find an

explicit estimate for the completely bounded norm of T−1: indeed, often T might be a

complete isometry, in which case there is no problem.

So, for example, if A is a completely contractive Banach algebra, then A is self-

induced if the product map induces an isomorphism A ⊗̂A A → A; it is not enough that

the product map induce a bijection A ⊗̂A A → A. However, see, for example, the proof

of Theorem 6.5 below.

For a CCBA A, we write Mcb(A) for the subalgebra of M(A) consisting of those pairs

(L,R) with L and R completely bounded. We give Mcb(A) an operator space structure



Multipliers, self-induced and dual Banach algebras 29

by embedding it in CB(A)⊕∞ CB(A) (see [44, Section 2.6]), so that

‖(L,R)‖n = max(‖L‖n, ‖R‖n) (L,R ∈Mn(Mcb(A)), n ≥ 1).

Everything in Section 2 translates to the completely bounded setting. For example,

Theorem 2.6 says that if E is an Mcb(A)-bimodule, then so is Mcb(E). For example,

consider

Lâ·x̂(a) = â · Lx̂(a) (a ∈ A, â ∈Mcb(A), x̂ ∈Mcb(E)).

Assume that E is a completely contractive Mcb(A)-bimodule, and so the product map

Mcb(A)⊗̂E → E is a complete contraction. This is equivalent (see [13, Proposition 7.1.2])

to the map λ : Mcb(A) → CB(E) being a complete contraction, where λ(â)(x) = â · x,

for â ∈ Mcb(A) and x ∈ E. Then Lâ·x̂ = λ(â)Lx̂, and so Lâ·x̂ is completely bounded.

Furthermore, the resulting map Mcb(A) ⊗̂Mcb(E)→Mcb(E) is

â⊗ x̂ 7→ λ(â)Lx̂ (â ∈Mcb(A), x̂ ∈Mcb(E)),

and is hence clearly a complete contraction. Similar remarks apply to Râ·x̂ and the

definition of x̂ · â.

Similarly, the construction in Theorem 2.8 is really given by composition of various

maps, and hence readily extends to the completely bounded case. Lemma 2.10 follows

through if we work at the matrix level. All other results in Section 2 are really just

algebra, carried out in the approach category (that is, either bounded maps, or completely

bounded maps).

We turn now to Section 3. From our presentation of the Arens products, it is clear that

when A is a CCBA, so is A∗∗ for either 2 or 3. For example, the map ⊗2 is the adjoint

of β ◦ α, and both β and α are complete isometries, so ⊗2 is completely contractive.

Then 2 is the composition with π∗∗, showing that 2 : A∗∗ ⊗̂ A∗∗ → A∗∗ is a complete

contraction. We now quickly show the completely bounded analogue of Theorem 3.1.

Theorem 6.1. Let A be a CCBA with a bounded approximate identity (eα), and let

Φ0 ∈ A∗∗ be a weak∗ accumulation point of (eα). Then:

(1) Mcb(A) ⊆ CB(A)× CB(A) is closed in the strict topology;

(2) A is a closed ideal in Mcb(A) which is strictly dense;

(3) θ : Mcb(A) → (A∗∗,3), defined by (L,R) 7→ L∗∗(Φ0), is an algebra homomorphism

and a complete isomorphism onto its range, with θ(a) = a for a ∈ A.

Proof. (1) follows by the arguments as used in Proposition 2.5, and (2) is exactly as in

the bounded case. Similarly, for (3), we can follow the bounded case to see that θ is a

homomorphism with θ(a) = a for a ∈ A. For any operator spaces E and F , given x0 ∈ E,

the map CB(E,F )→ F ;T 7→ T (x0) is easily seen to be completely bounded with bound

at most ‖x0‖. It follows that θ is completely bounded (even a complete contraction if

(eα) is a contractive approximate identity).

Let πl : A∗∗ → CB(A∗∗) be the left-regular representation for 3, so that πl is a

complete contraction. Then, as κAL(a) = πl(L
∗∗(Φ0))(κA(a)) for a ∈ A, it follows that

‖L(a)‖nm ≤ ‖L∗∗(Φ0)‖m‖a‖n ((L,R) ∈Mm(Mcb(A)), a ∈Mn(A), n,m ≥ 1).
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Similarly, if πr denotes the right-regular representation, then the equality κAR(a) =

πr(L
∗∗(Φ0))(κA(a)) implies

‖R(a)‖nm ≤ ‖L∗∗(Φ0)‖m‖a‖n ((L,R) ∈Mm(Mcb(A)), a ∈Mn(A), n,m ≥ 1).

It follows that θ is a complete isomorphism onto its range, as claimed.

A curious corollary of this observation is the following, shown in [27, Proposition 3.1]

by another method.

Theorem 6.2. Let A be a CCBA with a contractive approximate identity. Then M(A) =

Mcb(A) with equal norms. If A only has a bounded approximate identity, then M(A) =

Mcb(A) with equivalent norms.

Proof. Clearly Mcb(A) contractively injects into M(A). Conversely, let â = (L,R) ∈
M(A), so by Theorem 3.1 we can find Φ ∈ A∗∗ with ‖Φ‖ ≤ ‖â‖ and such that

κAL(a) = Φ 3 κA(a), κAR(a) = κA(a) 3 Φ (a ∈ A).

As κA is a complete isometry, and (A∗∗,3) a CCBA, it follows that L and R are com-

pletely bounded, with ‖L‖cb ≤ ‖Φ‖ and ‖R‖cb ≤ ‖Φ‖.
The case when A only has a bounded approximate identity is similar.

The proof of Theorem 3.2 could be translated to the completely bounded setting, but

instead we shall take a detour via the theory of self-induced algebras.

Theorem 3.3 translates, except for condition (5), for which we need a stronger hy-

pothesis; we use the same notation as before.

Proposition 6.3. Let A be a CCBA with a bounded approximate identity, and let E

and F be as in Theorem 3.3. If θF is a complete isomorphism onto its range (which is

equivalent to ιF being a complete isomorphism onto its range) then the image of θF is

the idealiser of E in F ∗.

Proof. The proof of Theorem 3.3 shows that if Φ ∈ F ∗ idealises E, then there exists

(L,R) ∈M(E) with θF (L,R) = Φ. Thus

Φ · a = ιFL(a), a · Φ = ιFR(a) (a ∈ A).

The map A → F ∗; a 7→ Φ · a is completely bounded, with bound at most ‖Φ‖. As ιF is a

complete isomorphism onto its range, it follows that L is completely bounded. Similarly

R is completely bounded.

To translate the proof of Proposition 3.4 we simply proceed as in the proof of The-

orem 6.2 above. The rest of Section 3 carries over without issue. The same applies to

Section 4.

The results of Section 5 similarly translate without issue, using standard results

about operator spaces. The typical idea which we exploit is illustrated by the proof

of Lemma 5.1. Here we wish to show that X and Y are complete isometric (say),

which we do by finding a completely isometric isomorphism α : Y ∗ → X∗ such that

α∗κX(X) ⊆ κY (Y ). Then (the proof of) Lemma 10.1 shows that there is a completely

isometric isomorphism β : X → Y such that α = β∗. The “matrix calculations” are all

hidden in the standard fact that κX is a complete isometry, and so forth.
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An exception is Proposition 5.3, which we check does translate; this was shown in

[16, Proposition 3.3], but in the interests of completeness, we give a proof here (which we

think is shorter).

Proposition 6.4. Let A be a completely contractive Banach algebra with a bounded

approximate identity, and let E ∈ A-mod-A be essential. Then E is induced.

Proof. We follow the proof of Proposition 5.3. In particular, we see that π∗ : E∗ →
CBA(A, E∗) surjects, the inverse being given by T 7→ µ where µ is the weak∗ limit of

T (eα). We shall show that this inverse is completely bounded, which will show that π∗

is a complete isomorphism, and hence also that π is (see [13, Corollary 4.1.9]).

Let the bounded approximate identity for A have bound K > 0, and let Φ ∈ A∗∗ be

a weak∗ limit of (eα), so that ‖Φ‖ ≤ K. For T ∈ CBA(A, E∗), the weak∗ limit of T (eα)

is κ∗ET
∗∗(Φ). Now, the map

CBA(A, E∗)→ CB(A∗∗, E∗); T 7→ κ∗ET
∗∗,

is a complete contraction (see [13, Chapter 3]) and

CB(A∗∗, E∗)→ E∗; S 7→ S(Φ),

is completely bounded, with bound at most ‖Φ‖ ≤ K. The composition is then (π∗)−1,

so we are done.

Finally, we come to our alternative proof of Theorem 3.2 for CCBAs. Indeed, we simply

combine the previous result with (the completely bounded version of) Proposition 5.2.

Notice that if A only has a bounded approximate identity, then A ⊗̂A E ⊗̂A A will only

be completely isomorphic (and not isometric) to E, which explains why E might only

become a completely bounded (not contractive) Mcb(A)-bimodule.

6.1. For the Fourier algebra. Let G be a locally compact group, and let λ be the

left-regular representation of G on L2(G), given by

λ(s)ξ : t 7→ ξ(s−1t) (s, t ∈ G, ξ ∈ L2(G)).

Let V N(G) be the von Neumann algebra generated by the operators {λ(s) : s ∈ G}. This

carries a coproduct, a normal unital ∗-homomorphism ∆ : V N(G) → V N(G) ⊗ V N(G)

given by

∆ : λ(s) 7→ λ(s)⊗ λ(s).

It is not immediately obvious that such a homomorphism exists, but if we define a unitary

W on L2(G×G) by Wξ(s, t) = ξ(ts, t) for ξ ∈ L2(G×G) and s, t ∈ G then we see that

∆(x) = W ∗(1⊗ x)W (x ∈ V N(G))

obviously defines a normal ∗-homomorphism which satisfies ∆λ(s) = λ(s) ⊗ λ(s) (and

hence ∆ does map into V N(G)⊗V N(G)). Denote by A(G) the predual of V N(G). Then

the pre-adjoint of ∆ defines a complete contraction ∆∗ : A(G) ⊗̂A(G)→ A(G). It is not

hard to show that this is an associative product (see [13, Section 16.2] for further details,
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for example). The resulting commutative algebra is the Fourier algebra as defined and

studied by Eymard in [15]. See also [54, Section 3, Chapter VII].

We may identify A(G) with a (in general, not closed) subalgebra of C0(G), where

a ∈ A(G) is the function s 7→ 〈λ(s), a〉 (note that this is a different convention to that

chosen in [55]).

Theorem 6.5. For any locally compact group G, the Fourier algebra A(G) is self-induced

as a completely contractive Banach algebra.

Proof. As ∆ is an injective ∗-homomorphism, it is a complete isometry, and so by [13,

Corollary 4.1.9], ∆∗ is a complete quotient map, so in particular, is surjective (Wood

proves this in [60] using a more complicated method). If we can show that ker ∆∗ = N

where N is the closed linear span of elements of the form ab ⊗ c − a ⊗ bc for a, b, c ∈
A(G), then ∆∗ will induce a surjective complete isometry A(G) ⊗̂A(G) A(G) → A(G).

In particular, the inverse will also be a complete isometry, and so A(G) will be self-

induced.

Following [15, Section 4], we define the support of x ∈ V N(G) to be the collection

of s ∈ G with the property that if a · x = 0 for some a ∈ A(G), then a(s) = 0. Let

D(G) = {(s, s) : s ∈ G} ⊆ G×G. Let x ∈ V N(G)⊗V N(G) = V N(G×G) annihilate N .

We claim that the support of x is contained in D(G). Indeed, given s 6= t in G, we can

find compact sets K,L and open sets U, V with s ∈ K ⊆ U and t ∈ L ⊆ V and U∩V = ∅.
By [15, Lemma 3.2], there exists a ∈ A(G) with a(r) = 1 for r ∈ K, and a(r) = 0 for

r 6∈ U . Similarly, there exists b ∈ A(G) with b(r) = 1 for r ∈ L, and b(r) = 0 for r 6∈ V .

Thus ab = 0. Then, for any c, d ∈ A(G), we see that

〈(a⊗ b) · x, c⊗ d〉 = 〈x, ca⊗ db〉 = 〈x, c⊗ abd〉 = 0,

as x annihilates N and A(G) is commutative. Thus (a⊗ b) · x = 0, so as (a⊗ b)(s, t) = 1,

we conclude that (s, t) is not in the support of x, as required.

By [55, Theorem 3] it follows that such an x is in the von Neumann algebra generated

by {λ(s, s) : s ∈ G}, that is, in ∆(V N(G)). So x = ∆(y) for some y ∈ V N(G). So the

annihilator of N is equal to the image of ∆, from which it follows that N = ker ∆∗ as

required.

This result is interesting, as A(G) has a bounded approximate identity if and only

if G is amenable [36]. It would be interesting to know if this result holds for a general

locally compact quantum group (see below). Obviously it holds for the group convolution

algebra L1(G), as L1(G) always has a bounded approximate identity.

Let us think further about the Fourier algebra. In [21], the completely bounded ho-

momorphisms between A(G) and A(H) are classified in terms of piecewise affine maps,

at least if G is amenable. However, there is no reason why all such maps A(G)→ A(H)

should be non-degenerate, while [21, Corollary 3.9] easily implies that we do have an

extension Mcb(A(G)) → Mcb(A(H)). We can of course (following [22]) apply the com-

pletely contractive version of Theorem 4.2, as Mcb(A(H)) is a dual, completely contractive

Banach algebra (compare Section 8.1 below).
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7. When multiplier algebras are dual

In this section, we provide a simple criterion for when M(A) is a dual Banach algebra.

Notice that for a C∗-algebra A, it is relatively rare for M(A) to be dual (that is, a

von Neumann algebra). However, multiplier algebras which appear in abstract harmonic

analysis do often seem to be dual spaces. Our result allows us to show that, in particular,

M(L1(G)) (and its completely bounded counterpart) are dual Banach algebras, for a

locally compact quantum group G. Our ideas are influenced by [51].

Theorem 7.1. Let A be a Banach algebra such that {ab : a, b ∈ A} is linearly dense

in A. Let (B,B∗) be a dual Banach algebra, let ι : A → B be an isometric homomorphism

such that ι(A) is an essential ideal in B. Suppose that the induced map B → M(A) is

injective. Then there is a weak∗ topology on M(A) making M(A) a dual Banach alge-

bra.

Proof. Given Banach spaces E and F , let E⊕1 F be the direct sum of E and F with the

norm ‖(x, y)‖ = ‖x‖ + ‖y‖ for x ∈ E and y ∈ F . Then (E ⊕1 F )∗ = E∗ ⊕∞ F ∗, which

has the norm ‖(µ, λ)‖ = max(‖µ‖, ‖λ‖) for µ ∈ E∗ and λ ∈ F ∗.
Consider (A ⊗̂B∗)⊕1 (A ⊗̂B∗) which has dual space B(A,B)⊕∞ B(A,B). Consider

X = lin{(b⊗ µ · ι(a))⊕ (−a⊗ ι(b) · µ) : a, b ∈ A, µ ∈ B∗} ⊆ A ⊗̂B∗ ⊕1 A ⊗̂B∗.

Then X⊥ ⊆ B(A,B) ⊕∞ B(A,B) is a weak∗-closed subspace, and we calculate that

(T, S) ∈ X⊥ if and only if

〈ι(a)T (b), µ〉 = 〈S(a)ι(b), µ〉 (a, b ∈ A, µ ∈ B∗),

that is, ι(a)T (b) = S(a)ι(b) for a, b ∈ A. So, if (T, S) ∈ X⊥, then ι(a)T (bc) = S(a)ι(bc) =

ι(a)T (b)ι(c) for a, b, c ∈ A. As B injects into M(A), and as A is always assumed faith-

ful, it follows that T (bc) = T (b)ι(c) for b, c ∈ A. As products are dense in A, and as

ι(A) is a closed ideal in B, it follows that T (A) ⊆ ι(A). A similar argument shows

that S(A) ⊆ ι(A). Consequently, there are L,R ∈ B(A) with T = ιL and S = ιR.

Then, for a, b ∈ A, ι(a)T (b) = ι(aL(b)) = S(a)ι(b) = ι(R(a)b). We conclude that

(L,R) ∈M(A).

We have thus shown that M(A) is isomorphic to X⊥, and so M(A) is a dual Banach

space. The weak∗ topology is given by the embedding M(A) → (A ⊗̂ B∗ ⊕1 A ⊗̂ B∗)∗
given by

〈(L,R), (a⊗ µ)⊕ (b⊗ λ)〉 = 〈ιL(a), µ〉+ 〈ιR(b), λ〉

for L,R ∈ B(A), a, b ∈ A and µ, λ ∈ B∗.
Next, notice that the linear span of {µ · ι(a) : µ ∈ B∗, a ∈ A} is dense in B∗.

Indeed, if b ∈ B is such that 〈b, µ · ι(a)〉 = 0 for a ∈ A and µ ∈ B∗, then ι(a)b = 0 for

all a ∈ A. Again, as ι(A) is an ideal in B, and A is faithful, it follows that b induces

the zero multiplier on A, and so by assumption, b = 0. Similarly, the linear span of

{ι(a) · µ : µ ∈ B∗, a ∈ A}, is dense in B∗.
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Suppose now that (Lα, Rα) is a bounded net in M(A) converging weak∗ to (L,R).

Let (L′, R′) ∈M(A), let a, b, c ∈ A and let µ, λ ∈ B∗. Then

lim
α
〈(Lα, Rα)(L′, R′), (a⊗ µ)⊕ (b⊗ ι(c) · λ)〉

= lim
α
〈ι(LαL(a)), µ〉+ 〈ι(R′Rα(b)), ι(c) · λ〉

= lim
α
〈ι(LαL(a)), µ〉+ 〈ι(Rα(b)L′(c)), λ〉

= lim
α
〈(Lα, Rα), (L(a)⊗ µ)⊕ (b⊗ L′(c) · λ)〉

= 〈(L,R), (L(a)⊗ µ)⊕ (b⊗ L′(c) · λ)〉
= 〈(L,R)(L′, R′), (a⊗ µ)⊕ (b⊗ ι(c) · λ)〉.

Thus, by the preceding paragraph, it follows that (Lα, Rα)(L′, R′) → (L,R)(L′, R′)

weak∗. A similar argument establishes that (L′, R′)(Lα, Rα) → (L′, R′)(L,R) weak∗.

We conclude that M(A) is a dual Banach algebra for this weak∗ topology.

If products are not linearly dense in A, then, following [51], one could instead consider

the unitisation of A. In our applications, this will not be needed.

We next show that, under a natural assumption, this weak∗ topology is unique.

Theorem 7.2. Let A and B be as above, and let θ : B → M(A) be the induced map.

There is one and only one weak∗ topology on M(A) such that:

• M(A) is a dual Banach algebra;

• for a bounded net (bα) in B and b ∈ B, we have bα → b weak∗ in B if and only if

θ(bα)→ θ(b) weak∗ in M(A).

Proof. We first show that the previously constructed weak∗ topology on M(A) has this

property. For b ∈ B, write θ(b) = (Lb, Rb) ∈ M(A). If bα → b weak∗ in B, then for

a, c ∈ A and µ, λ ∈ B∗,

lim
α
〈(Lbα , Rbα), (a⊗ µ)⊕ (c⊗ λ)〉 = lim

α
〈bαι(a), µ〉+ 〈ι(c)bα, λ〉

= 〈bι(a), µ〉+ 〈ι(c)b, λ〉 = 〈(Lb, Rb), (a⊗ µ)⊕ (c⊗ λ)〉,

showing that θ(bα) → θ(b) weak∗. Conversely, from the previous proof, we know that

elements of the form ι(a) ·µ and λ · ι(c) are linearly dense in B∗. Thus we can reverse the

argument to show that if θ(bα)→ θ(b) weak∗, then bα → b weak∗.

Now let σ be some other weak∗ topology on M(A) with the stated properties. Notice

that for (L,R) ∈M(A) and a ∈ A, we have, by the calculations of Lemma 2.2,

(L,R)θ(ι(a)) = (LLι(a), Rι(a)R) = (LL(a), RL(a)) = θ(ι(L(a))),

as Lι(a) = La and so forth. Let (Lα, Rα) be a bounded net in M(A) which converges in

σ to (L,R). Hence, for a ∈ A,

lim
α
θ(ι(Lα(a))) = lim

α
(Lα, Rα)θ(ι(a)) = (L,R)θ(ι(a)) = θ(ι(L(a))),

with respect to σ. Thus ι(Lα(a)) → ι(L(a)) weak∗ in B, for any a ∈ A. Thus, for
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a, b, c ∈ A and µ, λ ∈ B∗,

lim
α
〈(Lα, Rα), (a⊗ µ)⊕ (b⊗ ι(c) · λ)〉 = lim

α
〈ι(Lα(a)), µ〉+ 〈ι(Rα(b)), ι(c) · λ〉

= lim
α
〈ι(Lα(a)), µ〉+ 〈ι(bLα(c)), λ〉

= 〈ι(L(a)), µ〉+ 〈ι(bL(c)), λ〉
= 〈(L,R), (a⊗ µ)⊕ (b⊗ ι(c) · λ)〉.

Again, this is enough to show that (Lα, Rα)→ (L,R) in the weak∗ topology on M(A) =

X⊥, as in the proof of the previous theorem.

Hence the map (M(A), σ) → X⊥ is an (isometric) isomorphism such that weak∗-

convergent, bounded nets are sent to weak∗-convergent nets. So by Lemma 10.1, the two

weak∗ topologies agree, as required.

In connection with the condition in the previous theorem, the next lemma is useful.

Lemma 7.3. Let (B,B∗) and (C, C∗) be dual Banach algebras, and let θ : B → C be a

bounded linear map. The following properties are equivalent:

(1) for a bounded net (bα) in B and b ∈ B, we have bα → b weak∗ in B if and only if

θ(bα)→ θ(b) weak∗ in C;

(2) θ is weak∗-continuous, and the preadjoint θ∗ : C∗ → B∗ has dense range.

Proof. Lemma 10.1 shows that (1) implies that θ is weak∗-continuous. Suppose that (1)

holds, but that θ∗ does not have dense range. Then we can find a non-zero b ∈ B with

〈b, θ∗(µ)〉 = 0 for each µ ∈ C∗. Thus θ(b) = 0. Then the constant net θ(0) converges weak∗

in C to θ(b), so (1) shows that b = 0, a contradiction. Hence (1) implies (2).

If (2) holds, then clearly bα → b weak∗ implies that θ(bα) → θ(b). As θ∗ has dense

range, and (bα) is bounded, it follows that θ(bα) → θ(b) weak∗ implies that bα → b, so

that (1) holds.

Example 7.4. Consider A = L1(G) for a locally compact group G. Then M(A) =

M(G) = C0(G)∗. It seems natural to let B = M(G) in the above, so that θ is just the

identity map, under the natural identifications. The previous theorem then shows that

our abstract construction does construct the canonical weak∗ topology on M(A).

Example 7.5. Consider now the Fourier algebraA(G), for some locally compact groupG.

As A(G) is a regular Banach algebra of functions on G, it is not hard to show that we

can identify M(A(G)) with the collection of bounded continuous functions m : G → C
such that ma ∈ A(G) for any a ∈ A(G). See [52, Section 4.1] or [37] for further details,

or compare with Example 7.8 below.

Let C∗(G) be the full group C∗-algebra, whose dual is B(G), the Fourier–Stieljtes

algebra. By [15, Proposition 3.4], the natural map A(G) → B(G) is an isometry, and

A(G) is an ideal in B(G). Remember that by [37], we have M(A(G)) = B(G) only when

G is amenable. Nevertheless, we can apply our theorem to construct a weak∗ topology

on M(A(G)). This follows as A(G) separates the points of G, and so the map B(G) →
M(A(G)) is injective.
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In [11], it is shown that M(A(G)) is a dual Banach space, the predual being X, which

is the completion of L1(G) under the norm

‖f‖X = sup

{∣∣∣∣ ∫
G

f(s)m(s) ds

∣∣∣∣ : m ∈M(A(G)), ‖m‖M(A(G)) ≤ 1

}
.

Given m ∈M(A(G)), m induces a member of X∗ by

〈m, f〉 =

∫
G

f(s)m(s) ds (f ∈ L1(G)),

furthermore (and of course, this requires a proof) all of X∗ arises in this way. It is then

easy to see that M(A(G)) becomes a dual Banach algebra.

Let ω : L1(G)→ C∗(G) be the universal representation. Treating b ∈ B(G) = C∗(G)∗

as a continuous function G→ C, we have

〈b, ω(f)〉 =

∫
G

b(s)f(s) ds (f ∈ L1(G)).

It follows easily that the weak∗ topology on M(A(G)) induced by X satisfies the con-

ditions of Theorem 7.2, and so this weak∗ topology agrees with that constructed by

Theorem 7.1.

Later, we shall extend this idea to locally compact quantum groups, as well as con-

sidering operator space issues.

7.1. For dual Banach algebras. Suppose that we start with a dual Banach algebra

(A,A∗). Firstly, we show that A being faithful implies a number of useful properties.

Proposition 7.6. Let (A,A∗) be a dual Banach algebra which is faithful. Then:

(1) both {a · µ : a ∈ A, µ ∈ A∗} and {µ · a : a ∈ A, µ ∈ A∗} are linearly dense in A∗;
(2) given (L,R) ∈M(A), the maps L and R are weak∗-continuous.

Proof. The proof of (1) is exactly the same as the analogous statement in the proof of

Theorem 7.1. For (2), let (aα) be a bounded net in A which converges weak∗ to a. For

b ∈ A and µ ∈ A∗, we have

lim
α
〈L(aα), µ · b〉 = lim

α
〈R(b)aα, µ〉 = 〈R(b)a, µ〉 = 〈L(a), µ · b〉.

By (1), this is enough to show that L(aα)→ L(a) weak∗, so we conclude (see Lemma 10.1)

that L is weak∗-continuous. Similar arguments apply to R.

Theorem 7.7. Let (A,A∗) be a faithful, dual Banach algebra. Then we can construct a

predual for M(A) which turns M(A) into a dual Banach algebra. This weak∗ topology

on M(A) is the unique one such that, for a bounded net (aα) in A, and a ∈ A, we have

aα → a weak∗ in A if and only if aα → a weak∗ in M(A).

Proof. If products are dense in A, then we can immediately apply Theorem 7.1, with

B = A. Indeed, if we follow the proof of Theorem 7.1, then the only point at which we

use this density is to ensure that a map T : A → B actually maps into ι(A), but clearly

this is automatic in the current situation.
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By Lemma 7.3, we can equivalently say that we can construct a predual for M(A),

say M(A)∗, such that the inclusion A →M(A) has a preadjoint M(A)∗ → A∗ which has

dense range.

Example 7.8. Examples of non-unital dual Banach algebras arise in abstract harmonic

analysis. For example, let G be a locally compact group, let C∗r (G) be the reduced group

C∗-algebra of G, and let Br(G) be its dual. This is a commutative Banach algebra which

can be identified as an algebra of functions on G. As C∗r (G) is weak∗-dense in V N(G),

it follows that A(G) embeds isometrically into Br(G). Conversely, given a continuous

function f : G→ C, we have f ∈ Br(G) if and only if there is a constant c such that for

each compact set K ⊆ G, there exists a ∈ A(G) with a|K = f |K and with ‖a‖ ≤ c. See

[6] for further details (and more generality).

We claim that we can identify M(Br(G)) with an algebra of functions on G. Indeed,

let A be any algebra of functions on G such that for each s ∈ G, there exists a ∈ A
with a(s) = 1. Fix (L,R) ∈ M(A). As A is commutative, so is M(A), with L = R. For

s ∈ G, let a(s) = 1, and define f(s) = L(a)(s). This is well-defined, for if also a′(s) = 1,

then f(s) = f(s)a′(s) = L(a)(s)a′(s) = L(aa′)(s) = L(a′)(s)a(s) = L(a′)(s). So we find

a function f : G → C. For b ∈ A, we see that L(b)(s) = L(b)(s)a(s) = L(a)(s)b(s) =

f(s)b(s). So L(b) = fb, and hence

M(A) = {f : G→ C : fa ∈ A (a ∈ A)}.

For Br(G), we can say a little more. As A(G) ⊆ Br(G), for any s ∈ G we can find an

open neighbourhood U of s and a ∈ A(G) with a|U = 1. Then, for f ∈ M(Br(G)), and

any net (sα) converging to s in G, we see that

lim
α
f(sα) = lim

α
f(sα)a(sα) = lim

α
(fa)(sα) = (fa)(s) = f(s)a(s) = f(s),

as fa ∈ Br(G) and so fa is continuous. So f is continuous. Similarly, we can show that

f must be bounded.

By [15, Proposition 3.4] or [6], if a ∈ Br(G) has compact support, then actually

a ∈ A(G). It follows that if a ∈ A(G) has compact support, then for f ∈ M(Br(G)), we

see that fa ∈ Br(G) has compact support, so fa ∈ A(G). As such a are dense in A(G),

and f : A(G) → Br(G) is bounded, it follows that actually f maps A(G) to A(G). So

f ∈M(A(G)).

The arguments explored in Section 8 below will show that the weak∗ topology induced

on M(Br(G)) = M(A(G)) by the previous theorem agrees with that constructed in

Example 7.5.

7.2. When we have a bounded approximate identity. We now return to the case

when A has a bounded approximate identity, and make links with Section 4. Suppose

that A is a C∗-algebra, so that WAP(A∗) = A∗ and A has a contractive approximate

identity. It follows that θw : M(A) → WAP(A∗)∗ = A∗∗ is an isometry onto its range.

As M(A) is not, in general, a dual space, we cannot, in general, expect that θw has

weak∗-closed range.
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Theorem 7.9. Let A be a Banach algebra with a contractive approximate identity. Then

the following are equivalent:

(1) M(A) is a dual Banach algebra for some predual;

(2) there exists a closed A-submodule Z of WAP(A∗) such that θ0 : M(A) → Z∗ is an

isometric isomorphism, where θ0 is the composition of θw : M(A)→WAP(A∗)∗ with

the quotient map WAP(A∗)∗ → Z∗.

When (1) holds, we can choose Z in (2) such that θ0 : M(A)→ Z∗ is weak∗-continuous.

Thus all possible dual Banach algebra weak∗-topologies which can occur on M(A) arise

by the construction of (2).

Proof. If (2) holds, then by [10, Proposition 2.4], the quotient map WAP(A∗)∗ → Z∗ is

an algebra homomorphism turning Z∗ into a dual Banach algebra. Hence θ0 induces a

dual Banach algebra structure on M(A).

If (1) holds, then choose a dual Banach algebra (B,B∗) and an embedding ι : A → B
as in Theorem 7.1. Indeed, we can choose B = M(A). Let ι∗ : B∗ → A∗ be the map given

by 〈ι∗(µ), a〉 = 〈ι(a), µ〉 for a ∈ A and µ ∈ B∗. Following, for example, [48, Theorem 4.10],

it is not hard to show that ι∗ maps into WAP(A∗). Then ι̂ = (ι∗)
∗ : WAP(A∗)∗ → B is

a homomorphism which extends ι.

Define φ : A ⊗̂B∗ ⊕1 A ⊗̂B∗ →WAP(A∗) by

φ((a⊗ µ)⊕ (b⊗ λ)) = a · ι∗(µ) + ι∗(λ) · b (a, b ∈ A, µ, λ ∈ B∗),

and linearity and continuity. Then φ is a contraction. Let X ⊆ (A ⊗̂ B∗)⊕1 (A ⊗̂ B∗) be

as in the proof of Theorem 7.1. It follows easily that φ sends X to {0}, and so we have

an induced map φ̃ : (A ⊗̂ B∗ ⊕1 A ⊗̂ B∗)/X → WAP(A∗). Let Z be the closure of the

image of this map. It is easy to see that Z is an A-submodule of WAP(A∗), so as above,

Z∗ is a dual Banach algebra. From the proof of Theorem 7.1 it follows that Z is simply

the closure of the image of ι∗.

Let θ0 : M(A) → Z∗ be the composition of the map θw : M(A) → WAP(A∗)∗
and the quotient map WAP(A∗)∗ → Z∗. As A has a contractive approximate identity,

θ0 is a contraction. Then, with reference to Theorem 3.1, for a, b ∈ A, µ, λ ∈ B∗ and

(L,R) ∈M(A),

〈φ∗θ0(L,R), (a⊗ µ)⊕ (b⊗ λ)〉 = 〈L∗∗(Φ0), a · ι∗(µ) + ι∗(λ) · b〉
= 〈ι∗(µ), L(a)〉+ 〈ι∗(λ), R(a)〉 = 〈(L,R), (a⊗ µ)⊕ (b⊗ λ)〉,

where the final dual pairing is as in the proof of Theorem 7.1. Hence φ∗θ0 : M(A)→ X⊥

is the canonical map, which is an isometric isomorphism. Hence θ0 : M(A) → Z∗ must

be an isometry, and we see that φ̃∗ is an isometric isomorphism between the image of θ0

and X⊥.

It follows that φ̃ is an isometry (and hence an isometric isomorphism onto Z). Indeed,

for τ ∈ A ⊗̂ B∗ ⊕1 A ⊗̂ B∗, we can find T ∈ X⊥ with ‖T‖ = 1 and 〈T, τ〉 = ‖τ‖, the

norm in the quotient (A ⊗̂B∗ ⊕1 A ⊗̂B∗)/X. Then there exists Φ ∈ Z∗ in the image of

θ0 with φ̃∗(Φ) = T and ‖Φ‖ = 1. Then ‖τ‖ = 〈T, τ〉 = 〈Φ, φ̃(τ)〉 ≤ ‖φ̃(τ)‖ ≤ ‖τ‖, so we

must have equality throughout.
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Hence φ̃∗ : Z∗ → X⊥ is also an isometric isomorphism. We conclude that θ0 : M(A)→
Z∗ must surject, and is hence an isometric isomorphism, as required.

Example 7.10. Consider A = L1(G) for a locally compact group G. Then WAP(A∗) can

be identified with a C∗-subalgebra of C(G) ⊆ L∞(G) = A∗ which contains C0(G). Then

M(A) = M(G), and the map θ̃ is the restriction of the canonical map M(G) → C(G)∗

given by integration. As 1 ∈WAP(A∗), it is easy to see that θw is not weak∗-continuous.

Hence, in the previous theorem, we cannot in general take Z to be all of WAP(A∗).
Indeed, in this case, we have Z = C0(G).

Example 7.11. Now consider the Fourier algebra A(G). Then A(G) has a bounded

approximate identity if and only if G is amenable, in which case it has a contractive

approximate identity [36]. Then B(G) = Br(G), and M(A(G)) = B(G) = Br(G). We

have C∗r (G) ⊆ WAP(V N(G)) (see [12]) and so M(A(G)) = C∗r (G)∗. Hence Z = C∗r (G)

in the above theorem.

So far, we have not discussed the “non-isometric” case. That is, we have been consid-

ering a Banach algebra A to be a dual Banach algebra if A is isometrically isomorphic

to a dual space, such that the product is separately weak∗-continuous. However, one can

weaken this to just asking for A to be isomorphic to a dual space (sometimes this gives

the same notion of weak∗ topology; see for example [10, Section 4]). For example, in

Theorem 7.1, we can weaken ι from being an isometry to being an isomorphism onto its

range. By following the proof through, we see that now M(A) is only isomorphic (but not

isometric) to X⊥. Similarly Theorem 7.2 also works in this setting. Then we can adapt

the previous theorem to the case when A only has a bounded, but maybe not contractive,

approximate identity, to find Z ⊆WAP(A∗) with M(A) isomorphic to Z∗.

8. Application to locally compact quantum groups

We shall quickly sketch the theory of locally compact quantum groups, in the sense

of Kustermans and Vaes, [31, 32, 30]. This is a very short overview, but it is worth

mentioning that actually we need remarkably little of the theory in order to apply the

work of the previous section.

In the von Neumann algebra setting, we have a von Neumann algebra M together

with a unital normal ∗-homomorphism ∆ : M → M ⊗M which is coassociative in the

sense that (id ⊗ ∆)∆ = (∆ ⊗ id)∆. We term the pair (M,∆) a Hopf von Neumann

algebra. Furthermore, we have left and right invariant weights ϕ,ψ. For a weight ϕ, write

nϕ = {x ∈M : ϕ(x∗x) <∞}, mϕ = n∗ϕnϕ and pϕ = mϕ∩M+ (see [54] for further details,

for example). Then invariant means that

ϕ((a⊗ id)∆(x)) = ϕ(x)a(1), ψ((id⊗ a)∆(y)) = ψ(y)a(1) (x ∈ pϕ, y ∈ pψ, a ∈M+
∗ ).

Let (H,π,Λ) be the GNS construction for ϕ. We shall identify M with π(M) ⊆ B(H).

Then M is in standard form on H (see [54, Chapter IX, Section 1]), and so, in particular,

for each ω ∈M∗, there exist ξ, η ∈ H with ω = ωξ,η, so that 〈x, ω〉 = (x(ξ) | η) for x ∈M .

There is a multiplicative unitary W ∈ B(H ⊗ H) such that W ∗(1 ⊗ x)W = ∆(x) for
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x ∈ M . Let A be the norm closure of {(ι ⊗ ω)W : ω ∈ B(H)∗}. Then A is a C∗-algebra

and ∆ restricts to a map A → M(A ⊗ A). Furthermore, ϕ and ψ restrict to give KMS

weights on A (see [31]). Then A is a reduced C∗-algebraic locally compact quantum group.

As ∆ is normal, its predual ∆∗ induces a Banach algebra structure on M∗. Similarly,

the adjoint of ∆ induces a Banach algebra structure on A∗. As we have identified A with

a subalgebra of M , we see that we have a natural map M∗ → A∗. As discussed in [31,

pp. 913–914], we define L1(A) to be the closed linear span of the functionals xϕy∗, where

x, y ∈ nϕ. Here 〈xϕy∗, z〉 = 〈ϕ, y∗zx〉 for z ∈ A, which makes sense as nϕ is a left ideal.

Then

ϕ(y∗zx) = (zΛ(x) |Λ(y)) = 〈ω, z〉 (z ∈ A),

where ω = ωΛ(x),Λ(y) ∈ B(H)∗. An application of Kaplansky’s Density Theorem thus

allows us to isometrically identify M∗ with L1(A). Then [31, pp. 913–914] shows that

L1(A) is an ideal inA∗ (compare with Lemma 8.3 below). We also see that L1(A) normsA,

and so L1(A) is weak∗-dense in A∗.

Also [49, Proposition 4.2] shows that A∗ is a dual Banach algebra. Furthermore, [20,

Proposition 1] shows that M∗ is faithful. As ∆ is a complete isometry, it follows that ∆∗
is a complete quotient map, in particular it is surjective, so certainly {ω1ω2 : ω1, ω2 ∈
L1(G)} is linearly dense in L1(G).

We naturally have actions of M on M∗ and of A on A∗, which we shall write by

juxtaposition to avoid confusion with the actions of the Banach algebras M∗ on M and

A∗ on A. Finally, we shall follow [20, 26, 49] and use some notation due to Ruan. We write

G for a locally compact quantum group, and set L∞(G) = M,L1(G) = M∗, C0(G) = A

and M(G) = A∗.

Theorem 8.1. Let G be a locally compact quantum group. Then M(L1(G)) is a dual

Banach algebra, and the resulting dual Banach algebra weak∗ topology is unique such that

the map M(G)→M(L1(G)) satisfies the conditions of Theorem 7.2.

Proof. We simply need to verify the conditions of Theorem 7.1. As discussed above,

we naturally have a map ι : L1(G) → M(G) which is an isometric homomorphism with

ι(L1(G)) being an ideal. So we need only verify that the induced map M(G)→M(L1(G))

is injective. Suppose not, so that there exists µ0 ∈ M(G) with µ0a = 0 for a ∈ L1(G).

Observe that if instead aµ0 = 0 for a ∈ L1(G), then aµ0b = 0 for a, b ∈ L1(G) so as

L1(G) is faithful, µ0b = 0 for b ∈ L1(G). Consequently,

〈µ0 ⊗ a,∆(x)〉 = 0 (a ∈ L1(G), x ∈ C0(G)).

However, we claim that {(id⊗a)∆(x) : a ∈ L1(G), x ∈ C0(G)} is linearly dense in C0(G),

from which it follows that µ0 = 0, as required.

To prove the claim, we first note that [31, Corollary 6.11] shows that {∆(x)(1⊗ y) :

x, y ∈ C0(G)} is linearly dense in C0(G)⊗ C0(G). By taking the adjoint, and using that

L1(G) is weak∗-dense in C0(G)∗, it follows that

{(id⊗ ya)∆(x) : x, y ∈ C0(G), a ∈ L1(G)}

is linearly dense in C0(G). As ya ∈ L1(G) for a ∈ L1(G) and y ∈ C0(G) ⊆ L∞(G), it
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follows immediately that {(id ⊗ a)∆(x) : a ∈ L1(G), x ∈ C0(G)} is linearly dense in

C0(G), as required.

Let us return to the example of the Fourier algebra, Example 7.5. We used the em-

bedding A(G) → C∗(G)∗ = B(G), which seemed natural in light of [15] (where the

Fourier algebra is basically defined to be a certain ideal in B(G)). However, the above

theorem considers the reduced setting, which means in this case considering C∗r (G)

and hence A(G) → Br(G). As mentioned above in Example 7.11 we have Br(G) =

B(G) only when G is amenable. We shall now show that using Br(G) does indeed give

the same weak∗ topology on M(A(G)). Indeed, we shall show the quantum version of

this.

Firstly, we need to say what the quantum analogue of B(G) is. In [29, Section 11]

Kustermans gives the notion of a universal C∗-algebraic quantum group; let us very

quickly sketch this. A C∗-algebraic quantum group is essentially as described above, but

without assuming that the left and right invariant weights are faithful. Given such an

object, we can form a ∗-algebra A, called the coefficient ∗-algebra of A. Given such an A,

we can form a maximal C∗-algebra Au which contains A densely. Au can be given the

structure of a C∗-algebra quantum group, that is, ∆u : Au → M(Au ⊗ Au) and left and

right invariant weights ϕu, ψu. We call Au the universal enveloping algebra of A. Then

we can find a surjective ∗-homomorphism π : Au → A with

∆π = (π ⊗ π)∆u, ϕπ = ϕu, ψπ = ψu.

All of this generalises the passage of C∗r (G) to C∗(G) and back again.

From now on, fix a locally compact quantum group G, let A = C0(G), and let Au
be the universal C∗-algebraic quantum group associated with A. As π : Au → A is a

surjective ∗-homomorphism, it is a quotient map, and so π∗ : A∗ → A∗u is an isometry

onto its range. As ∆π = (π ⊗ π)∆u, it follows that π∗ is a homomorphism between

the Banach algebras A∗ and A∗u. As L1(G) is identified with a closed ideal of A∗, we

identify L1(G) as a closed subalgebra of A∗u. Let ι : L1(G) → A∗u be the map thus

constructed.

Lemma 8.2. With notation as above, (Au, A
∗
u) is a dual Banach algebra.

Proof. We adapt the proof of [49, Proposition 4.3]. Indeed, it is enough to show that

∆u(x)(1⊗ y) ∈ Au ⊗Au for x, y ∈ Au, which follows from [29, Proposition 6.1].

Proposition 8.3. With notation as above, L1(G) is an ideal in A∗u. Furthermore, the

induced map A∗u →M(L1(G)) is injective.

Proof. We adapt the argument given in [31, p. 914]. Let ω ∈ A∗u be a state, and let

(K, θ, ξ) be a cyclic GNS construction for ω. Let x, y ∈ nϕ and let a = ωΛ(x),Λ(y) ∈
L1(G). Let H = L2(G), and recall that we identify A with a subalgebra of B(H). Then

〈ι(a), z〉 = (π(z)Λ(x) |Λ(y)) for z ∈ Au. Let B0(H) be the compact operators on H,

and recall that M(B0(H)) = B(H). From [29, Propositions 5.1 and 6.2], there exists

V ∈ M(Au ⊗ B0(H)) such that (id ⊗ π)∆u(z) = V∗(1 ⊗ π(z))V in M(Au ⊗ B0(H)), for
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z ∈ Au. Let P = (θ ⊗ id)(V) ∈M(B(K)⊗ B0(H)) ⊆ B(K ⊗H). Then, for z ∈ Au,

〈ωι(a), z〉 = 〈ω ⊗ ι(a),∆(z)〉 = 〈ω, (id⊗ a)((id⊗ π)∆u(z))〉
= 〈ω, (id⊗ ωΛ(x),Λ(y))V∗(1⊗ π(z))V〉
= (P ∗(1⊗ π(z))P (ξ ⊗ Λ(x)) | ξ ⊗ Λ(y)),

from which it follows that there exists ω0 ∈ B(H)∗ with 〈ωι(a), z〉 = 〈π(z), ω0〉. It is now

immediate that L1(G) is a left ideal in A∗u.

Then [29, Proposition 7.2] shows the existence of an anti-∗-automorphism Ru of Au
with πRu = Rπ, with R being the unitary antipode on A. As χ(Ru ⊗ Ru)∆u = ∆uRu,

it follows that R∗u is an anti-homomorphism on A∗u, and as R leaves L1(G) invariant,

the same is true for Ru. Hence L1(G) is also a right ideal in A∗u, and hence an ideal, as

claimed.

To show that the map A∗u → M(L1(G)) is injective, as in the proof of Theorem 8.1,

it is enough to show that {(id⊗ ι(a))∆u(z) : a ∈ L1(G), z ∈ Au} is linearly dense in Au.

By [29, Proposition 6.1], {(1⊗ z1)∆u(z2) : z1, z2 ∈ Au} is linearly dense in Au ⊗ Au. As

ι(a)z = ι(aπ(z)) for a ∈ L1(G), z ∈ Au, it follows that

lin{(id⊗ ι(aπ(z)))∆u(w) : z, w ∈ Au, a ∈ L1(G)}

is dense in Au, which completes the proof.

Theorem 8.4. With notation as above, we use the inclusion ι : L1(G)→ A∗u to induce a

weak∗ topology on M(L1(G)). This topology agrees with that given by Theorem 8.1, that

is, when using A∗.

Proof. This follows essentially because ι factors through π∗. Indeed, let ιA : L1(G)→ A∗

be the map considered in Theorem 8.1, and recall the construction in Theorem 7.2. We

find that a net (Lα, Rα) in M(L1(G)) converges weak∗ to (L,R) when

lim
α
〈ιLα(a), x〉+ 〈ιRα(b), y〉 = 〈ιL(a), x〉+ 〈ιR(b), y〉 (a, b ∈ L1(G), x, y ∈ Au).

As ι = π∗ιA, this is equivalent to

lim
α
〈ιALα(a), π(x)〉+ 〈ιARα(b), π(y)〉 = 〈ιAL(a), π(x)〉+ 〈ιAR(b), π(y)〉.

As π is surjective, this is equivalent to (Lα, Rα) converging weak∗ to (L,R) in the weak∗

topology induced by ιA.

Given that we have introduced Au, now seems a good place to apply some of the

results from Section 3.

Theorem 8.5. The algebra L1(G) has a bounded approximate identity if and only if

the natural map M(G) → M(L1(G)) is an isomorphism. When L1(G) has a bounded

approximate identity, both M(G) and A∗u are isometrically isomorphic to M(L1(G)).

Proof. By [2, Theorem 3.1], we know that L1(G) has a bounded approximate identity if

and only if M(G) is unital. So, if the map M(G)→M(L1(G)) is surjective, then M(G)

is unital, and so L1(G) has a bounded approximate identity.

If L1(G) has a bounded approximate identity, then [20, Theorem 2] shows that we

can even choose the bounded approximate identity to be contractive, and to be a net of
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states in L1(G). By [49, Theorem 4.4], we have C0(G) ⊆WAP(L1(G)). So by Lemma 4.1,

we can apply Theorem 3.3 with F = C0(G) ⊆ L1(G)∗. Then ιF : L1(G) → M(G) is an

isometry, and so θF : M(L1(G)) → M(G) is an isometry, whose range is the idealiser

of L1(G) in M(G). As L1(G) is an ideal in M(G), it follows that θF is an isometric

isomorphism, as required.

Then exactly the same argument applies to A∗u, given the work above.

We remark that it would be interesting to know if M(L1(G)) = A∗u is equivalent to

L1(G) having a bounded approximate identity. Of course, even in the cocommutative

case, when L1(G) = A(G), this is rather hard (see [37]).

8.1. Completely bounded multipliers. We now turn to the operator space setting.

Let us just record the completely bounded version of our work in Section 7. As shown

in [35], it is possible for a Banach space E to be such that E∗ has an operator space

structure which is not the dual space structure of any operator space structure on E.

Consequently, we have to be a little careful when it comes to duality arguments (but we

are okay, essentially by an application of Lemma 10.1).

Theorem 8.6. Let A be a CCBA with dense products, let (B,B∗) be a dual CCBA, and

let ι : A → B be a complete isometry with ι(A) an ideal in B. Suppose further that the

induced map θ : B → Mcb(A) is injective. Then there is a unique operator space X such

that Mcb(A) is completely isometrically isomorphic to X∗, turning Mcb(A) into a dual

CCBA, and such that for a bounded net (bα) in B, bα → b weak∗ in B if and only if

θ(bα)→ θ(b) in Mcb(A).

Proof. We simply follow the construction of Theorem 7.1. We note that ⊕∞ and ⊕1 have

operator space analogue (see [44, Section 2.6]). Similarly, we work with the operator space

projective tensor product and so forth.

For uniqueness, we similarly adapt the proof of Theorem 7.2 making use of the com-

pletely bounded version of Lemma 10.1.

Example 8.7. Consider again the Fourier algebra A(G). As C∗(G) → C∗r (G) is a ∗-
homomorphism, it is a complete quotient map, and so the adjoint, C∗r (G)∗ → B(G),

is a complete isometry. Consider C∗r (G)∗∗, the universal enveloping von Neumann alge-

bra of C∗r (G). Then (see [53, Chapter III, Section 2]) there is a unique normal surjec-

tive ∗-homomorphism C∗r (G)∗∗ → V N(G), which is hence a complete quotient map. Its

preadjoint is hence a complete isometry A(G)→ C∗r (G). It is not hard to check that the

composition A(G)→ B(G) is the canonical map, which is thus a complete isometry.

Hence, exactly as in Example 7.5, we can use our theorem to construct a weak∗

topology on Mcb(A(G)). This was first done in [11, Proposition 1.10], at the Banach

space level, in exactly the same way as detailed in Example 7.5, with M(A(G)) replaced

with Mcb(A(G)). Again, it follows that we get the same weak∗ topology from our abstract

theorem.

Of course, our theorem actually turns Mcb(A(G)) into a dual CCBA. An operator

space predual for Mcb(A(G)) was constructed by Spronk [52, Section 6.2]. Indeed, let K

be the closure of {
∑
i fi ⊗ gi ∈ L1(G) ⊗ L1(G) :

∑
i fi ∗ gi = 0} in L1(G) ⊗h L1(G).
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Here we use the usual convolution product on L1(G), and ⊗h is the completed Haagerup

tensor product (see Section 9.1 below). Then

Q(G) = (L1(G)⊗h L1(G))/K

is an operator space with Q(G)∗ isometrically isomorphic to Mcb(A(G)). The dual pairing

is given by

〈(f ⊗ g) +K, a〉 =

∫
G

(f ∗ g)(s)a(s) ds (f, g ∈ L1(G), a ∈Mcb(A(G))).

It is shown in [52, Corollary 6.6] that, as a Banach space, Q(G) is isometric to the predual

constructed in [11, Proposition 1.10]. As such, the same argument as in Example 7.5

shows that Q(G) is completely isometrically isomorphic to the predual constructed by

Theorem 8.6.

8.2. Duality and multipliers. For a locally compact group G, consider the Fourier

algebra A(G). The multiplier algebra MA(G) can be (compare with Example 7.8 above)

identified with

{f ∈ Cb(G) = M(C0(G)) : fa ∈ A(G) (a ∈ A(G))}.

Similarly, consider L1(G), with multiplier algebra M(L1(G)) = M(G). The left-regular

representation λ : L1(G) → C∗r (G) extends to a homomorphism λ : M(G) → V N(G),

which actually maps into M(C∗r (G)). Indeed, M(G) can be identified with

{x ∈M(C∗r (G)) : xλ(f), λ(f)x ∈ λ(L1(G)) (f ∈ L1(G))}.

We wish to explain this in the language of locally compact quantum groups, but we

need to define the analogue of the left-regular representation. Given a locally compact

quantum group G, we form L2(G) and the multiplicative unitary W , as before. Then we

may define λ : L1(G)→ B(L2(G)) by

λ(ω) = (ω ⊗ ι)(W ) (ω ∈ L1(G)).

Then λ is a homomorphism which maps into C0(Ĝ), with dense range. If G is commuta-

tive, then λ : L1(G) → C∗r (G) is the usual left-regular representation; if G is cocommu-

tative, then λ : A(G)→ C0(G) is just the inclusion map.

Thus, when G is commutative or cocommutative, we can identify M(L1(G)) with the

algebra

{x ∈M(C0(Ĝ)) : xλ(ω), λ(ω)x ∈ λ(L1(G)) (ω ∈ L1(G))}.

Indeed, in both these cases, λ actually extends to a contractive homomorphism M(L1(G))

→M(C0(Ĝ)). Thus we identify the abstract multiplier algebra M(L1(G)) with a concrete

multiplier algebra, or what, in this paper, we refer to as an idealiser.

This idea is explored for Kac algebras, by Kraus and Ruan, in [27]. If we restrict atten-

tion to Mcb(L
1(G)), then everything carries over. It is necessary to consider unbounded

operators, and extensive use is made of antipode. In this section, we shall quickly show

that the ideas of Kraus and Ruan do, in some sense, extend to the locally compact group

case: of course, here, we do not have a bounded antipode, and so a modification of the

argument is needed. This allows us to identify M(L1(G)) with an idealiser in M(C0(Ĝ)).
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Then M(C0(Ĝ)) is a subalgebra of L∞(Ĝ), and it turns out that the closed unit ball of

M(L1(G)) is weak∗-closed. A standard argument then shows that the weak∗ topology on

L∞(Ĝ) induces a dual CCBA structure on M(C0(Ĝ)). We show that this weak∗ topology

agrees with that given by Theorem 8.1.

Let us recall a little about λ : L1(G) → C0(Ĝ). As the antipode S is generally

unbounded on L∞(G), we cannot (unlike the Kac algebra case) turn L1(G) into a ∗-
algebra in a natural way. However, following [29], we define

L1
∗(G) = {ω ∈ L1(G) : ∃σ ∈ L1(G), 〈x, σ〉 = 〈S(x), ω∗〉 (x ∈ D(S))}.

Here D(S) ⊆ L∞(G) is the (strong∗-dense) domain of S, and ω∗ denotes the normal

functional

L∞(G)→ C; x 7→ 〈x∗, ω〉.

Then L1
∗(G) carries a natural involution, ω† = σ. So, by definition, we have 〈x, ω†〉 =

〈S(x), ω∗〉 for x ∈ D(S). As argued in [29, Section 3], we find that L1
∗(G) is a dense

subalgebra of L1(G). Then [29, Proposition 3.1] shows that we can characterise L1
∗(G) as

L1
∗(G) = {ω ∈ L1(G) : ∃σ ∈ L1(G), λ(ω)∗ = λ(σ)},

and furthermore, λ is a ∗-homomorphism on L1
∗(G). See also [32, Definition 2.3] and the

discussion thereafter.

Proposition 8.8. Let G be a locally compact quantum group, and let (L,R)∈M(L1(G)).

There exists a densely defined, preclosed operator a0 on L2(G) with domain D(a0) such

that D(a0) is invariant under λ(ω) for all ω ∈ L1(G), and with

a0λ(ω)ξ = λ(L(ω))ξ, λ(ω)a0ξ = λ(R(ω))ξ (ω ∈ L1(G), ξ ∈ D(a0)).

Proof. Let X be the linear span of vectors of the form λ(ω)ξ where ω ∈ L1(G) and

ξ ∈ L2(G). As λ(L1(G)) is dense in C0(Ĝ), and C0(Ĝ) acts non-degenerately on L2(G),

it follows that X is dense in L2(G).

We first show that if ξ ∈ L2(G) with λ(ω)ξ = 0 for all ω ∈ L1(G), then ξ = 0. Indeed,

for η ∈ L2(G) and ω ∈ L1
∗(G), we have

0 = (λ(ω)ξ | η) = (ξ |λ(ω†)η).

As L1
∗(G) is dense in L1(G), we see that lin{λ(ω)η : ω ∈ L1

∗(G), η ∈ L2(G)} is dense

in X, which is dense in L2(G). Thus ξ = 0, as claimed.

Define a0 : X → X by a0λ(ω)ξ = λ(L(ω))ξ, and linearity. This is well-defined, for if∑n
i=1 λ(ωi)ξi = 0, then for any ω ∈ L1(G), we have

λ(ω)

n∑
i=1

λ(L(ωi))ξi =

n∑
i=1

λ(ωL(ωi))ξi = λ(R(ω))

n∑
i=1

λ(ωi)ξi = 0.

As ω was arbitrary, we have
∑n
i=1 λ(L(ωi))ξi = 0, as required.

Then, for ω ∈ L1(G) and ξ = λ(σ)η ∈ X, we have

λ(ω)a0ξ = λ(ω)λ(L(σ))η = λ(R(ω))ξ,

as required.
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Finally, we show that a0 is preclosed. If (ξn) ⊆ X with ξn → 0 and a0(ξn)→ ξ, then

for any ω ∈ L1
∗(G) and η ∈ L2(G),

(ξ |λ(ω∗)η) = lim
n

(a0(ξn) |λ(ω∗)η) = lim
n

(λ(R(ω))(ξn) | η) = 0.

Again, by density, this is enough to show that ξ = 0 as required.

For completely bounded multipliers, we can say more.

Theorem 8.9. Let G be a locally compact quantum group, and let (L,R) ∈Mcb(L
1(G)).

There exists a unique a ∈M(C0(Ĝ)) with

aλ(ω) = λ(L(ω)), λ(ω)a = λ(R(ω)) (ω ∈ L1(G)).

The resulting map Λ : Mcb(L
1(G)) → M(C0(Ĝ)) is a completely contractive algebra

homomorphism.

Proof. We continue with the notation of the last proof. For ξ ∈ X and η, ξ0, η0 ∈ L2(G),

we have

(W (1⊗ a0)(ξ0 ⊗ ξ) | η0 ⊗ η) = (λ(ωξ0,η0)a0(ξ) | η) = (λ(R(ωξ0,η0))ξ | η)

= 〈W,R(ωξ0,η0)⊗ ωξ,η〉 = 〈(R∗ ⊗ ι)(W ), ωξ0,η0 ⊗ ωξ,η〉
= ((R∗ ⊗ ι)(W )(ξ0 ⊗ ξ) | η0 ⊗ η).

Here we use the assumption that R ∈ CB(L1(G)) and so R∗ ∈ CB(L∞(G)) and thus

R∗ ⊗ ι ∈ CB(L∞(G)⊗L∞(Ĝ)). So, on the algebraic tensor product L2(G)⊗X, we have

(R∗ ⊗ ι)(W ) = W (1⊗ a0).

As the left-hand side is bounded, andW is a unitary, it follows that a0 is actually bounded.

Let a be the continuous extension of a0 to all of L2(G), so that 1⊗ a = W ∗(R∗ ⊗ ι)(W ).

It follows by density that λ(ω)a = λ(R(ω)) and aλ(ω) = λ(L(ω)) for ω ∈ L1(G). As

λ(L1(G)) is dense in C0(Ĝ), it follows by continuity that a ∈M(C0(Ĝ)).

It is clear that the resulting map Λ : Mcb(L
1(G)) → M(C0(Ĝ)) is an algebra homo-

morphism. As 1⊗ a = W ∗(R∗ ⊗ ι)(W ), it follows immediately that ‖a‖ ≤ ‖R‖cb, and it

also follows that Λ : (L,R) 7→ a is actually a complete contraction.

Conversely, if a ∈ M(C0(G)) idealises λ(L1(G)) then we find maps L,R : L1(G) →
L1(G) with λ(L(ω)) = aλ(ω) and λ(R(ω)) = λ(ω)a for ω ∈ L1(G). It hence follows

that (L,R) ∈ M(L1(G)). It is not clear to us if there is any easily stated condition on

a which will ensure that (L,R) ∈ Mcb(L
1(G)). Indeed, it is also unclear if the previous

theorem can be extended to M(L1(G)). Kraus and Ruan show slightly better results for

Kac algebras in [27].

We next show that the restriction of the weak∗ topology on L∞(Ĝ) induces a dual

Banach algebra structure on Mcb(L
1(G)) which agrees with the weak∗ topology on

Mcb(L
1(G)) constructed by (the operator space version of) Theorem 8.1.

We first collect some properties of the map λ. Again, these are weaker than in the

Kac algebra case, but are sufficient for our needs.

Lemma 8.10. Let ω∈L1(G) and ω̂∈L1(Ĝ). Then 〈λ(ω), ω̂〉=〈λ̂(ω̂∗)∗, ω〉, λ̂(ω̂∗λ(ω)∗)∗=

ω · λ̂(ω̂∗)∗, and λ̂(λ(ω)∗ω̂∗)∗ = λ̂(ω̂∗)∗ · ω.
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Proof. Let ω = ωξ,η and ω̂ = ωα,β . We have Ŵ = σW ∗σ where σ is the “swap map” on

L2(G)⊗ L2(G). Thus

〈λ(ω), ω̂〉 = ((ω ⊗ ι)(W )α |β) = (W (ξ ⊗ α)|η ⊗ β) = (α⊗ ξ | Ŵ (β ⊗ η))

= ((ωβ,α ⊗ ι)(Ŵ )η | ξ) = (λ̂(ωβ,α)η | ξ) = (λ̂(ωβ,α)∗ξ | η) = 〈λ̂(ω̂∗)∗, ω〉.

Here we use that ω̂∗ = ωβ,α, which follows as

〈x, ω̂∗〉 = (x∗α |β) = (xβ |α) = 〈x, ωβ,α〉 (x ∈ L∞(Ĝ)).

For the second claim, for σ ∈ L1(G), we have

〈λ̂(ω̂∗λ(ω)∗)∗, σ〉 = 〈λ(σ), λ(ω)ω̂〉 = 〈λ(σω), ω̂〉 = 〈λ̂(ω̂∗)∗, σω〉 = 〈ω · λ̂(ω̂∗)∗, σ〉,

using that ω̂∗λ(ω)∗ = (λ(ω)ω̂)∗. The third claim follows analogously.

Proposition 8.11. Let Λ : Mcb(L
1(G)) → M(C0(Ĝ)) be the completely contractive

homomorphism constructed in Theorem 8.9. Let (xα) be a net in the closed unit ball

of Mcb(L
1(G)) such that (Λ(xα)) converges weak∗ in L∞(Ĝ). Then there exists x ∈

Mcb(L
1(G)) with ‖x‖cb = 1 and Λ(xα)→ Λ(x) weak∗.

Proof. Let y ∈ L∞(Ĝ) be the weak∗ limit of (Λ(xα)), and let X = {λ̂(ω̂)∗ : ω̂ ∈ L1(Ĝ)} ⊆
C0(G). Fix ω ∈ L1(G), and define µ : X → C by

µ(λ̂(ω̂∗)∗) = 〈λ̂(y∗ω̂∗)∗, ω〉.

As λ̂ is an injection, it follows that µ is well-defined. Clearly µ is linear. Notice that

y∗ω̂∗ = (ω̂y)∗. Then we calculate that

〈λ̂(y∗ω̂∗)∗, ω〉 = 〈λ(ω), ω̂y〉 = lim
α
〈Λ(xα)λ(ω), ω̂〉 = lim

α
〈λ(xαω), ω̂〉 = lim

α
〈λ̂(ω̂∗)∗, xαω〉.

It follows that

|µ(λ̂(ω̂∗)∗)| ≤ ‖ω‖ ‖λ̂(ω̂∗)∗‖.

So µ is a bounded linear map, which extends by continuity to a member of C0(G)∗ =

M(G), as X is dense in C0(G). We have hence defined a bounded linear map L : L1(G)→
M(G) which satisfies

〈L(ω), λ̂(ω̂∗)∗〉 = 〈λ̂(y∗ω̂∗)∗, ω〉 = lim
α
〈λ(xαω), ω̂〉.

Let ω1, ω2 ∈ L1(G). Then, by the previous lemma,

〈L(ω1ω2), λ̂(ω̂∗)∗〉 = lim
α
〈λ(xαω1ω2), ω̂〉 = lim

α
〈λ(xαω1), λ(ω2)ω̂〉

= 〈L(ω1), λ̂(ω̂∗λ(ω2)∗)∗〉 = 〈L(ω1), ω2 · λ̂(ω̂∗)∗〉 = 〈L(ω1)ω2, λ̂(ω̂∗)∗〉.

It follows that L(ω1ω2) ∈ L1(G) as L1(G) is an ideal inM(G). As {ω1ω2 : ω1, ω2 ∈ L1(G)}
is dense in L1(G) it follows by continuity that L actually maps into L1(G). Furthermore,

the calculation shows that L is a left multiplier.

Similarly, we can construct a bounded linear map R : L1(G)→M(G) which satisfies

〈R(ω), λ̂(ω̂∗)∗〉 = 〈λ̂(ω̂∗y∗)∗, ω〉 = lim
α
〈λ(ωxα), ω̂〉.
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We can then analogously show that R maps into L1(G) and is a right multiplier. Then,

for ω1, ω2 ∈ L1(G), we have

〈ω1L(ω2), λ̂(ω̂∗)∗〉 = 〈L(ω2), λ̂(ω̂∗)∗ · ω1〉 = 〈L(ω2), λ̂(λ(ω1)∗ω̂∗)∗〉
= lim

α
〈λ(xαω2), ω̂λ(ω1)〉 = lim

α
〈λ(ω1xαω2), ω̂〉

= lim
α
〈λ(ω1xα), λ(ω2)ω̂〉 = 〈R(ω1), λ̂(ω∗λ(ω2)∗)∗〉

= 〈R(ω1), ω2 · λ̂(ω∗)∗〉 = 〈R(ω1)ω2, λ̂(ω∗)∗〉.

It follows that (L,R) ∈M(L1(G)).

We now observe that L(ω), in M(G), is the weak∗ limit of (xαω). As (xα) is a bounded

net in Mcb(L
1(G)), it follows that ‖L‖cb ≤ supα ‖xα‖cb ≤ 1. The same is true for R, so

that x = (L,R) ∈Mcb(L
1(G)) with ‖x‖ ≤ 1. Then we have

〈Λ(x)λ(ω), ω̂〉 = 〈λ(L(ω)), ω̂〉 = 〈L(ω), λ̂(ω̂∗)∗〉 = 〈λ̂(y∗ω̂∗)∗, ω〉
= 〈λ(ω), ω̂y〉 = 〈yλ(ω), ω̂〉.

So Λ(x)λ(ω) = yλ(ω), and similarly, λ(ω)Λ(x) = λ(ω)y. By continuity, it follows that

y ∈M(C0(Ĝ)), and hence also that y = Λ(x) as required.

We now prove a general, abstract result. This is probably folklore, but we do not know

of a reference. We state this here in the operator space setting, but it has an obvious

Banach space counterpart.

Proposition 8.12. Let A and E be operator spaces, and let θ : A→ E∗ be an injective

complete contraction such that the image of the closed unit ball of A, under θ, is weak∗-

closed in E∗. Suppose further that θ(A) is weak∗-dense in E∗.

Let Q be the closure of θ∗κE(E) in A∗, so that Q is an operator space. Then Q∗

is canonically completely isometrically isomorphic to A, so Q is a predual for A. With

respect to this predual, for a bounded net (aα) in A, and a ∈ A, we have aα → a in Q∗

if and only if θ(aα)→ θ(a) in E∗.

Furthermore, if A is a CCBA, E∗ is a dual CCBA, and θ is an algebra homomorphism,

then A is a dual CCBA with respect to the predual Q.

Proof. As the image of θ is weak∗-dense, it follows that j = θ∗κE : E → A∗ is an

injection. Then Q is the closure of the image of j, and we identify Q∗ with A∗∗/Q⊥. Let

q : A∗∗ → A∗∗/Q⊥ be the quotient map, so we wish to prove that ι = qκA : A → Q∗ is

a completely isometric isomorphism. Suppose that ι(a) = 0 for some a ∈ A. Then, for

x ∈ E, 0 = 〈ι(a), j(x)〉 = 〈j(x), a〉 = 〈θ(a), x〉, and so θ(a) = 0, so a = 0. Hence ι is

injective.

For any n ∈ N, let (aα) be a bounded net in Mn(A) such that (θ(aα)) converges

weak∗ in Mn(E∗). As Mn(E∗) is, as a Banach space, isomorphic to Mn(E)∗, we see that

each matrix component of (θ(aα)) converges weak∗ in E∗. By assumption, it follows that

(θ(aα)) converges weak∗ to something in θ(Mn(A)); although note that we have lost norm

control.

Let µ ∈ Mn(Q∗), so there exists Φ ∈ Mn(A∗∗) with q(Φ) = µ and ‖Φ‖ = ‖µ‖. As

Mn(A)∗∗ = Mn(A∗∗), it follows that we can find a bounded net (aα) in Mn(A) converging
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weak∗ to Φ. For x ∈Mm(E), it follows that

〈〈µ, j(x)〉〉 = lim
α
〈〈j(x), aα〉〉 = lim

α
〈〈θ(aα), x〉〉,

so that the net (θ(aα)) is weak∗-convergent in E∗, say to λ ∈ E∗. Thus 〈〈λ, x〉〉 =

〈〈µ, j(x)〉〉. By hypothesis, there exists a ∈ Mn(A) with θ(a) = λ. Then 〈〈µ, j(x)〉〉 =

〈〈θ(a), x〉〉 = 〈〈ι(a), j(x)〉〉. As x was arbitrary, and j has dense range, it follows that

ι(a) = µ. Thus ι is surjective, and as ι is automatically a complete contraction, we may

conclude ι is a complete isometry, as required.

Henceforth, we can identify A as the dual of Q. Let (aα) be a bounded net in A, and

let a ∈ A. If aα → a weak∗, then by construction, θ(aα) → θ(a) in E∗. Conversely, if

θ(aα)→ θ(a) in E∗, then as aα is a bounded net, and ι(E) is dense in the predual of A,

it follows that aα → a weak∗ in A.

Suppose that E∗ is a dual CCBA, that A is a CCBA, and that θ a homomorphism.

Let (aα) be a net in A converging weak∗ to a ∈ A. For b ∈ A and x ∈ E,

lim
α
〈aαb, ι(x)〉 = lim

α
〈θ(aα)θ(b), x〉 = lim

α
〈θ(aα), θ(b) · x〉 = lim

α
〈aα, ι(θ(b) · x)〉

= 〈a, ι(θ(b) · x)〉 = 〈ab, ι(x)〉.

Thus aαb → ab weak∗ in A; similarly, baα → ba. So A is a completely contractive dual

Banach algebra with predual Q.

Combining the previous two propositions, we can construct an operator space predual

Q for Mcb(L
1(G)), which turns Mcb(L

1(G)) into a dual CCBA.

Theorem 8.13. Let G be a locally compact quantum group, and form Q as above. The

weak∗ topology induced on Mcb(L
1(G)) agrees with that given by the operator space version

of Theorem 8.1.

Proof. The weak∗ topology on Mcb(L
1(G)) constructed by Theorem 8.1 is unique under

the conditions that Mcb(L
1(G)) is a dual CCBA, and for a bounded net (bα) is M(G)

and b ∈M(G), we have bα → b weak∗ if and only if φ(bα)→ φ(b) weak∗ in Mcb(L
1(G)).

Here φ : M(G)→Mcb(L
1(G)) is the canonical map.

The weak∗ topology induced by Q satisfies that a bounded net (aα) in Mcb(L
1(G))

converges weak∗ to a if and only if Λ(aα)→ Λ(a) in L∞(Ĝ).

As in our discussion at the start of Section 8, we can identify L1(G) with the closed

linear span of elements of the form xϕy∗ where x, y ∈ nϕ. As nϕ is a left ideal, and

as C0(G) has an approximate identity, it follows that {x̂ω̂ : x̂ ∈ C0(Ĝ), ω̂ ∈ L1(Ĝ)} is

linearly dense in L1(Ĝ). Thus also {λ(ω)ω̂ : ω ∈ L1(G), ω̂ ∈ L1(Ĝ)} is linearly dense in

L1(Ĝ).

So, let (bα) be a bounded net in M(G). If bα → b weak∗, then for ω̂ ∈ L1(G),

lim
α
〈Λ(φ(bα)), λ(ω)ω̂〉 = lim

α
〈λ(bαω), ω̂〉 = lim

α
〈bαω, λ̂(ω̂∗)∗〉 = 〈bω, λ̂(ω̂∗)∗〉

= 〈Λ(φ(b)), λ(ω)ω̂〉.

As (bα), and hence also (Λ(φ(bα))), is a bounded net, this is enough to show that

Λ(φ(bα)) → Λ(φ(b)) weak∗ in L∞(Ĝ). So φ(bα) → φ(b) weak∗ with respect to the pre-

dual Q. Conversely, if φ(bα) → φ(b) weak∗ with respect to the predual Q, then, by the
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previous calculation, and Lemma 8.10,

lim
α
〈bα, λ̂(ω̂∗λ(ω)∗)∗〉 = lim

α
〈bα, ω · λ̂(ω̂∗)∗〉 = lim

α
〈Λ(φ(bα)), λ(ω)ω̂〉

= 〈Λ(φ(b)), λ(ω)ω̂〉 = 〈b, ω · λ̂(ω̂∗)∗〉 = 〈b, λ̂(ω̂∗λ(ω)∗)∗〉.

By density, this is again enough to show that bα → b weak∗ in M(G).

So the weak∗ topology induced by Q satisfies the uniqueness condition from Theo-

rem 8.1, and hence the proof is complete.

9. Multiplier Hopf convolution algebras

In the final section of this paper, we turn now to the study of Hopf convolution algebras,

as defined by Effros and Ruan in [14]. We have seen already the notion of a Hopf von

Neumann algebra (M,∆). As ∆ is normal, we can turn M∗ into a completely contractive

Banach algebra. We tend to think of M and M∗ as being two facets of the same object,

but this would mean that M∗ should also carry a coproduct which is induced by the

product on M . In the commutative case, we can certainly do this. Indeed, let G be a

locally compact group, and define

m∗ : L1(G)→M(L1(G) ⊗̂ L1(G)) = M(G×G);

〈m∗(a), f〉 =

∫
G

a(s)f(s, s) ds (f ∈ C0(G×G), a ∈ L1(G)).

Notice the natural appearance of a multiplier algebra here. This idea was, to our knowl-

edge, first explored by Quigg in [45], who worked in the Banach algebra setting. He

showed that if m : M ⊗M → M is the product of a von Neumann algebra M , then

m drops to a map m∗ : M∗ → M∗ ⊗̂M∗ if and only if M is the direct sum of matrix

algebras of bounded dimension. (It would appear that using multiplier algebras gives us

no further examples.)

The situation appears no better in the operator space setting, at least if we use the

projective tensor product. However, Effros and Ruan showed that if we instead work

with the extended Haagerup tensor product, then we can always define m∗ : M∗ →
M∗⊗ehM∗. However, this tensor product is rather large: for example, the algebraic tensor

product M∗ ⊗M∗ need not be norm-dense in it. We shall show that, in many cases, it is

possible instead to work with the multiplier algebra of the usual Haagerup tensor product

M∗ ⊗hM∗. We term such a structure a multiplier Hopf convolution algebra. We then go

on to study the basics of a corepresentation theory for such algebras. In [57], Vaes and

Van Daele study C∗-algebraic objects termed “Hopf C∗-algebras”; it is interesting to note

that multiplier algebras associated to Haagerup tensor products play a central role in the

theory.

9.1. Haagerup tensor products. Let us quickly review the Haagerup, and related, ten-

sor products. Let E and F be operator spaces. The Haagerup tensor norm on Mn(E ⊗ F )
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is defined by

‖τ‖hn = inf
{
‖u‖ ‖v‖ : τij =

m∑
k=1

uik ⊗ vkj , u ∈Mnm(E), v ∈Mmn(F )
}
,

where τ = (τij) ∈ Mn(E ⊗ F ). The completion is denoted by E ⊗h F . This tensor

product is both injective and projective, and is self-dual, but it is not commutative. For

more details, see [13, Chapter 9] or [44, Chapter 5]

The extended Haagerup tensor product is

E ⊗eh F = (E∗ ⊗h F ∗)∗σ,

the separately weak∗-continuous functionals on E∗⊗hF ∗. Notice then that E⊗hF embeds

completely isometrically into E ⊗eh F .

If φi : Ei → Fi are complete contractions between operator spaces, then we have a

complete contraction

φ1 ⊗ φ2 : E1 ⊗h E2 → F1 ⊗h F2.

If the φi are complete isometries, then so is φ1 ⊗ φ2. The same properties hold for the

extended Haagerup tensor product. If the φi are complete quotient maps, then φ1 ⊗ φ2,

mapping from between the Haagerup tensor products, is a complete quotient map. This

property is not true for the extended Haagerup tensor product.

Recall that the map E ⊗̂ F → CB(E∗, F ) need not be injective; denote the resulting

quotient of E ⊗̂ F by E ⊗nuc F . The shuffle map is

E1 ⊗ E2 ⊗ F1 ⊗ F2 → E1 ⊗ F1 ⊗ E1 ⊗ F2; a⊗ b⊗ c⊗ d 7→ a⊗ c⊗ b⊗ d.

This extends to a complete contraction

Se : (E1 ⊗eh E2)⊗nuc (F1 ⊗eh F2)→ (E1 ⊗nuc F1)⊗eh (E2 ⊗nuc F2).

Finally, let (M,∆M ) and (N,∆N ) be Hopf von Neumann algebras, so that M∗ and N∗
are completely contractive Banach algebras. Then M∗ ⊗nuc N∗ = M∗ ⊗̂N∗ (this follows

by duality and [13, Theorem 7.2.4]). Then M∗⊗ehN∗ is a completely contractive Banach

algebra: the product is just the composition of the maps

(M∗ ⊗eh N∗) ⊗̂ (M∗ ⊗eh N∗)→ (M∗ ⊗eh N∗)⊗nuc (M∗ ⊗eh N∗)
→ (M∗ ⊗̂M∗)⊗eh (N∗ ⊗̂N∗)→M∗ ⊗eh N∗.

Furthermore, the multiplication map m : M ⊗M → M induces a complete contraction

m∗ : M∗ →M∗ ⊗ehM∗ which is a homomorphism between the algebras M∗ and M∗ ⊗eh
M∗. For further details, see [14].

One might wonder how this relates to the classical case when M = L∞(G). It is shown

in, for example [28], that M ⊗h M = M ⊗γ M , where ⊗γ denotes the Banach space

projective tensor norm (to avoid confusion), with equivalent norms. As the Haagerup

tensor product is self-dual, it is not hard (compare with the proof of Lemma 9.3 below)

to show that

L1(G)⊗eh L1(G) = {T ∈ B(L∞(G), L1(G)) : T ∗(L∞(G)) ⊆ L1(G)},
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again, with equivalent norms. Then, for a ∈ L1(G), m∗(a) ∈ L1(G)⊗ehL1(G) is identified

with the map L∞(G)→ L1(G); f 7→ fa where fa is the pointwise product.

If we now do the same argument again with C0(G), we find that M(G)⊗ehM(G) =

B(C0(G),M(G)). Then we should have an inclusion L1(G) ⊗eh L1(G) → M(G) ⊗eh
M(G). Under our identifications, this is the map sending T ∈ B(L∞(G), L1(G)) to T̂ ∈
B(C0(G),M(G)), where T̂ is the composition

C0(G)→ L∞(G)
T−→ L1(G)→M(G).

At the beginning of this section, we considered the map m′∗ : L1(G) → M(G × G),

where, for a ∈ L1(G),

〈m′∗(a), F 〉 =

∫
G

F (s, s)a(s) ds (F ∈ C0(G×G)).

We can use this to define T : C0(G)→M(G) by

〈T (f), g〉 = 〈µ, f ⊗ g〉 (f, g ∈ C0(G)).

Then, for f, g ∈ C0(G),

〈T (f), g〉 =

∫
G

f(s)g(s)a(s) ds = 〈m∗(a)(f), g〉.

So m∗ is “the same map” as m′∗, but regarded as a map into L1(G)⊗ehL1(G) ⊆M(G)⊗eh
M(G) instead of M(G×G).

9.2. Multiplier algebras. Again, let M and N be von Neumann algebras, and suppose

that M∗ and N∗ are completely contractive Banach algebras. Then M∗ ⊗h N∗ is a com-

pletely contractive Banach algebra. Indeed, we have a complete isometry M∗ ⊗h N∗ →
M∗ ⊗eh N∗ and so we have a map

(M∗ ⊗h N∗) ⊗̂ (M∗ ⊗h N∗)→M∗ ⊗eh N∗
induced by the product on M∗ ⊗eh N∗. However, M∗ ⊗h N∗ is a closed subspace of

M∗ ⊗eh N∗, and so, by density, the product map takes (M∗ ⊗h N∗) ⊗̂ (M∗ ⊗h N∗) into

M∗⊗hN∗. Hence M∗⊗hN∗ is a CCBA. In this section, we shall investigate if M∗⊗ehM∗
may be replaced by the multiplier algebras M(M∗ ⊗hM∗) or Mcb(M∗ ⊗hM∗).

A useful fact about the Haagerup tensor product is that it is self-dual : in particular,

[13, Theorem 9.4.7] shows that, for any operator spaces E and F , the natural map

E∗ ⊗ F ∗ → (E ⊗h F )∗ extends to a complete isometry E∗ ⊗h F ∗ → (E ⊗h F )∗. A useful

consequence of this is the following. By [13, Theorem 9.2.1] the identity on E⊗F extends

to a complete contraction E ⊗h F → CB(E∗, F ). Let τ ∈ E ⊗h F , and let T ∈ CB(E∗, F )

be the induced map, so that

〈λ, T (µ)〉 = 〈µ⊗ λ, τ〉 (µ ∈ E∗, λ ∈ F ∗).

If T = 0, then by linearity and continuity, τ annihilates all of E∗⊗hF ∗, and so as the map

E∗∗⊗h F ∗∗ → (E∗⊗h F ∗)∗ is also a complete isometry, it follows that (κE ⊗κF )(τ) = 0.

Hence τ = 0, so that the map E ⊗h F → CB(E∗, F ) is injective.

Lemma 9.1. Let G be a locally compact quantum group. Then L1(G)⊗hL1(G) is faithful.
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Proof. By [32, Proposition 1.4], the set {x · ω : x ∈ L∞(G), ω ∈ L1(G)} = {(ω⊗ ι)∆(x) :

x ∈ L∞(G), ω ∈ L1(G)} is weak∗ linearly dense in L∞(G).

Let τ ∈ L1(G)⊗hL1(G) be such that στ = 0 for all σ ∈ L1(G)⊗hL1(G). Let τ induce

a map T : L∞(G)→ L1(G) as above. Then, for all x, y ∈ L∞(G) and a, b ∈ L1(G),

0 = 〈x⊗ y, (a⊗ b)τ〉 = 〈x · a⊗ y · b, τ〉 = 〈y · b, T (x · a)〉.

As T is weak∗-continuous, it follows that T = 0, and so τ = 0, as required.

From now on, let G = (M,∆) be a locally compact quantum group. Let H be a

Hilbert space arising from the GNS construction applied to the left Haar weight, and let

W ∈ B(H ⊗H) be the multiplicative unitary. Let σ : H ⊗H → H ⊗H be the swap map,

σ(ξ ⊗ η) = η ⊗ ξ. We say that W is regular if {(ω ⊗ ι)(Wσ) : ω ∈ B(H)∗} is dense in

K(H), the compact operators on H. If M = L∞(G) or V N(G) (or, more generally, is a

Kac algebra) then W is regular, but there do exist locally compact quantum groups for

which W is not regular (see [1]). For further details, see [56, Section 7.3].

Theorem 9.2. Let (M,∆) be a locally compact quantum group with regular multiplicative

unitary W . For a ∈M∗, m∗(a) is in the idealiser of M∗ ⊗hM∗ in M∗ ⊗ehM∗.

We need to explain some more machinery before we give the proof. For a Hilbert

space K, let Kc be the column Hilbert space, the operator space induced by the iso-

morphism K = B(C,K). For operator spaces E and F , let Γ2
c(E,F ) be the space of

completely bounded maps E → F which factor through a column Hilbert space Kc,

equipped with the obvious norm. Then (E ⊗h F )∗ = Γ2
c(F,E

∗) for the duality given by

〈T, x⊗ y〉 = 〈T (y), x〉 (T ∈ Γ2
c(F,E

∗), x ∈ E, y ∈ F ).

For further details, see [13, Chapter 9].

Lemma 9.3. For operator spaces E and F , we have

E ⊗eh F = (E∗ ⊗h F ∗)∗σ = {T ∈ Γ2
c(F

∗, E) : T ∗(E∗) ⊆ F}.

Proof. We have (E∗ ⊗h F ∗)∗ = Γ2
c(F

∗, E∗∗), so we need to show that T ∈ Γ2
c(F

∗, E∗∗)

induces a separately weak∗-continuous functional if and only if T maps into E, and

T ∗(E∗) ⊆ F .

Suppose that T maps into E, and let (µα) be a net in E∗ converging weak∗ to µ ∈ E∗.
Then, for λ ∈ F ∗,

lim
α
〈T, µα ⊗ λ〉 = lim

α
〈µα, T (λ)〉 = 〈µ, T (λ)〉 = 〈T, µ⊗ λ〉,

so T is weak∗-continuous in the first variable. Conversely, if T (λ) ∈ E∗∗ \ E for some

λ ∈ F ∗, then we can find a bounded net (µα) in E∗ with 〈T (λ), µα〉 = 1 for each α, and

with µα → 0 weak∗. However, T is weak∗-continuous, so

0 = lim
α
〈T, µα ⊗ λ〉 = lim

α
〈T (λ), µα〉 = 1,

a contradiction.

Similarly, we can show that T ∗(E∗) ⊆ F if and only if the functional induced by T is

weak∗-continuous in the second variable.



54 M. Daws

Given a, b, c ∈ M∗, we have m∗(a)(b ⊗ c) ∈ M∗ ⊗eh M∗. We wish to show that this

is really in M∗ ⊗h M∗, but first let us identify this with some T ∈ Γ2
c(M,M∗) with

T ∗(M) ⊆M∗.

Lemma 9.4. For a, b, c ∈M∗ let T ∈ Γ2
c(M,M∗) be induced by m∗(a)(b⊗c) ∈M∗⊗ehM∗.

Let a = ωξ0,η0 for some ξ0, η0 ∈ H. Then T factors through Hc as

M
T //

α

  B
BB

BB
BB

B M∗

Hc

β

=={{{{{{{{

where α(x) = ((ι ⊗ c)∆(x))(ξ0) and β(ξ) = ωξ,η0b for x ∈ M and ξ ∈ Hc. Furthermore,

α and β are completely bounded maps.

Proof. Let c = ωξ2,η2 for some ξ2, η2 ∈ H. DefineA : H → H⊗H is given byA(η) = η⊗η2,

and define B = ξ0 ⊗ ξ2 ∈ B(C, H ⊗H). Then for x ∈M and η ∈ H,

(A∗W ∗(1⊗ x)WB | η) = (∆(x)ξ0 ⊗ ξ2 | η ⊗ η2) =
(
(ι⊗ c)∆(x)ξ0 | η

)
.

Thus α(x) = A∗W ∗(1 ⊗ x)WB, which shows that α is completely bounded. A similar

decomposition can be shown for β.

Then for x, y ∈M , we have

〈y, βα(x)〉 = 〈∆(y), ωα(x),η0 ⊗ b〉 = ((b · y)α(x) | η0) = ((b · y)(c · x)ξ0 | η0)

= 〈m((b · y)⊗ (c · x)), a〉 = 〈y ⊗ x,m∗(a)(b⊗ c)〉,

so that T = βα as required.

Proof of Theorem 9.2. Let a, b, c ∈ M∗ and form α and β as in the lemma. Let (ei)i∈I
be an orthonormal basis for H, so we can find vectors (φi) with

W (ξ0 ⊗ ξ2) =
∑
i

ei ⊗ φi.

Hence
∑
i ‖φi‖2 = ‖ξ0‖2‖ξ2‖2. Pick ε > 0 and choose a finite set F ⊆ I with

∑
i 6∈F ‖φi‖2

< ε2.

For each i ∈ I, let Ri = (ωη2,ei⊗ι)(Wσ), which is a compact operator, as W is regular.

Let αi : M → Hc be the map αi(x) = R∗i x(φi). Clearly αi is completely bounded, and as

R∗i is compact, we can approximate αi, in the completely bounded norm, by a finite-rank

operator. The same is hence true of αF =
∑
i∈F αi.

Then, for x ∈M and η ∈ H,

((α− αF )(x) | η) = (W ∗(1⊗ x)W (ξ0 ⊗ ξ2) | η ⊗ η2)−
∑
i∈F

(σW ∗(ei ⊗ xφi) | η2 ⊗ η)

=
∑
i6∈F

(W ∗(1⊗ x)(ei ⊗ φi) | η ⊗ η2) = (T (1⊗ x)S | η),

where S =
∑
i 6∈F ei ⊗ φi ∈ B(C, H ⊗H) and T ∈ B(H ⊗H,H) is defined by (Tξ | η) =

(W ∗ξ | η ⊗ η2) for ξ ∈ H ⊗H. It follows that ‖α− αF ‖cb ≤ ‖S‖ ‖T‖ < ε‖T‖ = ε‖η2‖.
As ε > 0 was arbitrary, it follows that α is in the cb-norm closure of the finite-rank

maps from M to Hc. Thus also m∗(a)(b ⊗ c) = βα can be cb-norm approximated by
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finite-rank maps. As the inclusion M∗ ⊗hM∗ → M∗ ⊗ehM∗ is a complete isometry, we

conclude that m∗(a)(b⊗ c) ∈M∗ ⊗hM∗ as required.

To show that (b⊗ c)m∗(a) ∈M∗ ⊗hM∗, we use the unitary antipode. A little care is

needed, as R is not completely bounded. However, let r = (R⊗R)σ : M ⊗M →M ⊗M .

Then we claim that r extends to an isometry on M ⊗h M . Indeed, for τ ∈ M ⊗M , we

have

‖τ‖h = inf
{∥∥∥∑

i

xix
∗
i

∥∥∥1/2∥∥∥∑
i

y∗i yi

∥∥∥1/2

: τ =
∑
i

xi ⊗ yi
}
.

Then τ =
∑
i xi ⊗ yi if and only if r(τ) =

∑
iR(yi)⊗R(xi) and so

‖r(τ)‖h = inf
{∥∥∥∑

i

R(yi)R(yi)
∗
∥∥∥1/2∥∥∥∑

i

R(xi)
∗R(xi)

∥∥∥1/2

: τ =
∑
i

xi ⊗ yi
}

= inf
{∥∥∥∑

i

R(y∗i yi)
∥∥∥1/2∥∥∥∑

i

R(xix
∗
i )
∥∥∥1/2

: τ =
∑
i

xi ⊗ yi
}

= ‖τ‖h,

as R is an isometry.

As r is normal, and the Haagerup tensor product is self-dual, r induces an isometry

r∗ : M∗ ⊗h M∗ → M∗ ⊗h M∗; a ⊗ b 7→ R∗(b) ⊗ R∗(a). Similarly, as r is separately

weak∗-continuous, r∗ extends to an isometry M∗ ⊗eh M∗ → M∗ ⊗eh M∗. As R∗ is anti-

multiplicative, the same is true of r∗.

For a ∈M∗ and x, y ∈M ,

〈x⊗ y, rm∗(a)〉 = 〈R(y)⊗R(x),m∗(a)〉 = 〈R(xy), a〉 = 〈x⊗ y,m∗R∗(a)〉,

so that rm∗ = m∗R∗.

Thus, for a, b, c ∈M∗, we see that

(b⊗ c)m∗(a) = r(rm∗(a)(R∗(c)⊗R∗(b))) = r(m∗(R∗(a))(R∗(c)⊗R∗(b)))

which is in M∗ ⊗hM∗, as required.

Given a ∈M∗, we find that m∗(a) idealises M∗⊗hM∗ in M∗⊗ehM∗. Thus there exist

maps L,R : M∗⊗hM∗ →M∗⊗hM∗ such that L(τ) = m∗(a)τ and R(τ) = τm∗(a) for τ ∈
M∗⊗hM∗. Thus (L,R) ∈M(M∗⊗hM∗). Indeed, as L and R are induced by multiplication

by a member of M∗ ⊗eh M∗, and this algebra is a CCBA, it follows immediately that

(L,R) ∈ Mcb(M∗ ⊗h M∗). As m∗ : M∗ → M∗ ⊗eh M∗ is a complete contraction, it

follows that actually we can regard m∗ as a completely contractive homomorphism M∗ →
Mcb(M∗ ⊗hM∗).

It would, of course, be interesting to know if this result holds when W is not regular.

Suppose that M∗ is unital, so that G is a discrete quantum group (as C0(Ĝ) must also be

unital, so Ĝ is compact). It is shown in [56, Examples 7.3.4] that the multiplicative unitary

W associated to any algebraic quantum group is regular. In particular, this implies that

the W associated to a discrete quantum group is regular, and so our theorem holds. In

particular, this means that m∗ can be regarded as a map M∗ →M∗ ⊗hM∗.

9.3. Application to corepresentations. Following the usual theory for C∗-bialgebras

and Hilbert spaces, if M∗ is unital (so that W is regular), then we might define a corepre-

sentation ofM∗ on an operator space E to be a completely bounded map α : E → E⊗hM∗
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with (α ⊗ ι)α = (ι ⊗m∗)α. The use of the Haagerup tensor product here is essentially

forced upon us, as m∗ maps M∗ into M∗ ⊗hM∗.
If M∗ is not unital (and W is assumed regular) then m∗ only maps into the multiplier

algebra Mcb(M∗ ⊗h M∗). Consequently, we need to consider the ideas of Section 2.3.

Notice that the Haagerup tensor norm is uniformly admissible in the sense of Section 2.3.

So a corepresentation of M∗ will consist of an operator space E and a completely bounded

linear map α : E →Mcb(E ⊗hM∗) such that the following diagram commutes:

E
α //

α

��

Mcb(E ⊗hM∗)

IE⊗m∗

��
Mcb(E ⊗hM∗)

α⊗ι // Mcb(E ⊗hM∗ ⊗hM∗)

Here IE ⊗m∗ is the extension discussed in Section 2.3 (notice that the Haagerup tensor

product is sufficiently well-behaved, in particular, it is E-admissible for any E). However,

we must explain what α⊗ ι is.

Indeed, we first need to check that E ⊗hM∗ is faithful as an M∗-bimodule.

Lemma 9.5. For an operator space E, and any locally compact quantum group G, we

have that E ⊗hM∗ is a faithful M∗-bimodule.

Proof. Let τ ∈ E ⊗h M∗ with τ · ω = 0 for each ω ∈ M∗ (the case when ω · τ = 0 for

all ω is similar). As in the proof of Lemma 9.1 above, let τ induce a weak∗-continuous

completely bounded map T : E∗ →M∗. Then

0 = 〈µ⊗ x, τ · ω〉 = 〈µ⊗ ω · x, τ〉 = 〈ω · x, T (µ)〉 (µ ∈ E∗, x ∈M, ω ∈M∗).

Again, this shows that T = 0, so that τ = 0 as required.

We shall now assume that M∗ has a bounded approximate identity. This occurs when

G is co-amenable (see [2, Theorem 3.1] or [20, Theorem 2] for example), in which case

we even have a contractive approximate identity, say (eβ) ⊆ M∗. Future work would be

to try to make these ideas work in more generality. For example, we have not been able

to decide if m∗ : M∗ → M(M∗ ⊗h M∗) is inducing; if it were, then it might be possible

to use “self-induced methods” in place of a bounded approximate identity.

It will be useful to keep track of which algebra we are considering multipliers over, for

which we use the self-explanatory notation M cb
M∗

(E ⊗hM∗), and so forth. We now show

how to define α⊗ ι : MM∗(E ⊗hM∗)→MM∗⊗hM∗(E ⊗hM∗ ⊗hM∗).

Lemma 9.6. Let A be a CCBA, and let E be an operator space. The map φ : M cb
A (E ⊗h

A)⊗h A →M cb
A⊗hA(E ⊗h A⊗h A) defined on elementary tensors by

x̂⊗ a 7→ (L,R); L(b⊗ c) = x̂ · b⊗ ac, R(b⊗ c) = b · x̂⊗ ca,

is a complete contraction.

Proof. We claim that for any operator space F , the map ψ : CB(A, F )⊗hA → CB(A⊗hA,
F ⊗h A) defined by

ψ(T ⊗ a)(b⊗ c) = T (b)⊗ ac (b⊗ c ∈ A⊗h A)
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is a complete contraction. If so, then let F = E ⊗h A. Let pl, pr : M cb
A (E ⊗h A) →

CB(A, E ⊗h A) be given by pl(L,R) = L and pr(L,R) = R. Then, for τ ∈M cb
A (E ⊗h A)

⊗h A, we define φ(τ) = (L,R), where L = ψ((pl ⊗ IA)τ) and R = ψ((pr ⊗ IA)τ). Thus

φ is a complete contraction, as required.

So, we show that ψ is a complete contraction. Let τ ∈ Mn(CB(A, F ) ⊗ A) with

‖τ‖h ≤ 1, so by [13, Proposition 9.2.6], we can find T ∈Mn,r(CB(A, F )) and a ∈Mr,n(A)

with

τij =

r∑
k=1

Tik ⊗ akj (1 ≤ i, j ≤ n),

and such that ‖T‖ ‖a‖ ≤ 1. Let u ∈Mm(A⊗A). We can similarly find b ∈Mm,s(A) and

c ∈Ms,m(A) with

uαβ =

s∑
γ=1

bαγ ⊗ cγβ (1 ≤ α, β ≤ m),

and such that ‖u‖h = ‖b‖ ‖c‖. Then ψ(τ)(u) ∈Mnm(F ⊗h A) has matrix entries(∑
k,γ

Tik(bαγ)⊗ akjcγβ
)

(iα),(jβ)
,

and so has norm at most

‖(Tik(bαγ))(iα,kγ)‖Mnm,rs(F )‖(akjcγβ)(kγ,jβ)‖Mrs,nm(A)

≤ ‖T‖Mn,r(CB(A,F ))‖b‖Mm,s(A)‖a‖Mr,n(A)‖c‖Ms,n(A).

It follows that ψ is a complete contraction.

We now define α ⊗ ι : M cb
M∗

(E ⊗h M∗) → M cb
M∗⊗hM∗

(E ⊗h M∗ ⊗h M∗). Given x̂ ∈
M cb
M∗

(E ⊗h M∗), for each β we have x̂ · eβ ∈ E ⊗h M∗ and so (α ⊗ IM∗)(x̂ · eβ) ∈
M cb
M∗

(E ⊗hM∗) ⊗hM∗. Thus φ(α ⊗ IM∗)(x̂ · eβ) ∈ M cb
M∗⊗hM∗

(E ⊗hM∗ ⊗hM∗), by the

previous lemma. So we may (try to) define L,R : M∗ ⊗hM∗ → E ⊗hM∗ ⊗hM∗ by

L(a) = lim
β
φ(α⊗ IM∗)(x̂ · eβ) · a, R(a) = a · φ(α⊗ IM∗)(eβ · x̂) (a ∈M∗ ⊗hM∗).

Proposition 9.7. These limits exist, and we have (L,R) ∈M cb
M∗⊗hM∗

(E⊗hM∗⊗hM∗).
The map x̂ 7→ (L,R) is completely contractive.

Proof. Define Ela1 : M cb
M∗

(E ⊗h M∗) → E ⊗h M∗ to be the map ŷ 7→ ŷ · a1, which is

completely bounded. Similarly define Era1 .

Suppose that a = a1⊗a2 ∈M∗⊗M∗. Let ε > 0, and let β be such that ‖eβa2−a2‖ < ε.

We can find τ =
∑n
i=1 xi ⊗ ci ∈ E ⊗M∗ such that ‖x̂ · eβ − τ‖h < ε. Then, using the

definition of φ, we see that∥∥∥φ(α⊗ IM∗)(x̂ · eβ) · a−
∑
i

α(xi) · a1 ⊗ cia2

∥∥∥h < ε‖a‖.

However, as ‖x̂·eβ ·a2−x̂·a2‖h < ε‖x̂‖, we also have ‖
∑
i xi⊗cia2−x̂·a2‖h < ε(‖a2‖+‖x̂‖).

So

‖φ(α⊗ IM∗)(x̂ · eβ) · a− (Ela1α⊗ IM∗)(x̂ · a2)‖h < ε(‖a2‖+ ‖x̂‖+ ‖a‖).
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It follows that the net (φ(α ⊗ IM∗)(x̂ · eβ) · a) converges, and so L(a) is well-defined.

Similar remarks apply to R(a), as

R(a) = (Era1α⊗ IM∗)(a2 · x̂).

Indeed, we could define L and R by this formula, but it is not clear (to the author) that

this formula defines a bounded map on M∗ ⊗hM∗. However, clearly the limit does exist

for all a ∈M∗ ⊗hM∗.
It is then easy to verify that (b1⊗b2) ·L(a1⊗a2) = R(b1⊗b2) ·(a1⊗a2), so that (L,R)

is a multiplier. The net (φ(α⊗ IM∗)(x̂ · eβ)) is bounded in M cb
M∗⊗hM∗

(E ⊗hM∗ ⊗hM∗),
and so L is completely bounded; similarly R. Indeed, ‖(L,R)‖cb ≤ ‖x̂‖ ‖α‖cb. Similarly,

it now easily follows that the linear map x̂ 7→ (L,R) is a complete contraction.

We have not really motivated the construction of α⊗ ι, so let us do so now. Suppose

that x̂ = x ⊗ â ∈ E ⊗h M(M∗) ⊆ M(E ⊗h M∗). Then, for a = b ⊗ c ∈ M∗ ⊗h M∗, we

have that

L(a) = lim
β

(α(x)⊗ âeβ) · a = α(x) · b⊗ âc, R(a) = b · α(x)⊗ câ.

Thus (L,R) can be identified with α(x)⊗ â, as we might hope.

Thus we have defined all of our maps, and so have (a proposal for) a notion of a

corepresentation of a multiplier Hopf convolution algebra.

9.4. Avoiding multipliers. An alternative way to define a corepresentation would be

to use the extended Haagerup tensor product directly. That is, a corepresentation of M∗
would consist of an operator space E and a completely bounded map α : E → E ⊗ehM∗
such that (α ⊗ IM∗)α = (IE ⊗m∗)α. Here α ⊗ IM∗ and (IE ⊗m∗) are defined without

further work, and map into E ⊗ehM∗ ⊗ehM∗.
We hence have two proposals for what a corepresentation of a (multiplier) Hopf con-

volution algebra should be. In particular, these apply to A(G) for amenable G. It would

be interesting to explore this theory further: recently Runde has shown in [50] that, es-

sentially, one cannot move away from Hilbert spaces when considering corepresentations

of Hopf von Neumann algebras. Is the theory for Hopf convolution algebras richer? Al-

ternatively, as the corepresentation theory of M∗ should correspond to the representation

theory of M , perhaps we should only be interested in the case when E is a Hilbert space

(maybe even with the column structure). Is the theory easier in this case?

10. Weak∗ topologies

The following is surely known, but we have been unable to find a suitably self-contained

reference. As we also wish to check that the result holds for completely bounded maps,

we include a proof here for convenience.

Lemma 10.1. Let E and F be Banach spaces, and let T : E∗ → F ∗ be a bounded linear

map. Then the following are equivalent:
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(1) T is weak∗-continuous;

(2) for a bounded net (µα) in E∗, if µα → µ ∈ E∗ weak∗, then T (µα) → T (µ) weak∗

in F .

(3) T ∗κF (F ) ⊆ κE(E);

(4) there exists a bounded linear map S : F → E with S∗ = T .

If T is an isomorphism, then S in (4) is also an isomorphism, and the properties above

are also equivalent to:

(5) for a bounded net (µα) in E∗ and µ ∈ E∗, we have that µα → µ weak∗ if and only if

T (µα)→ T (µ) weak∗.

The same holds for operator spaces and completely bounded maps.

Proof. Clearly (1) implies (2). If (2) holds, then let x ∈ F and let M ∈ κE(E)⊥ ⊆ E∗∗∗.
Let (µα) be a bounded net in E∗ tending weak∗ to M in E∗∗∗. Thus µα → 0 weak∗

in E∗ and so T (µα) → 0 weak∗ in F ∗. Thus 〈M,T ∗κF (x)〉 = limα 〈T ∗κF (x), µα〉 =

limα 〈T (µα), x〉 = 0. This shows that T ∗κF (x) ∈ κE(E), which implies that (3) holds.

If (3) holds then there exists S : F → E with κES = T ∗κF . As κE and κF are linear

isometries, it follows that S is linear and bounded. For µ ∈ E∗ and x ∈ F , we see that

〈S∗(µ), x〉 = 〈µ, S(x)〉 = 〈T ∗κF (x), µ〉 = 〈T (µ), x〉, showing that S∗ = T . So (4) holds.

Finally, (4) clearly implies (1).

If T is an isomorphism, then so is T ∗, and hence, as κES = T ∗κF , it follows that S

is injective and bounded below. If µ ∈ S(F )⊥ then S∗(µ) = T (µ) = 0 so µ = 0. So S is

an isomorphism. Then clearly (5) holds, and obviously (5) implies (1).

If now E and F are operator spaces and T is completely bounded, then the only part

to check is that (3) implies (4). As κE and κF are complete isometries, and κES = T ∗κF ,

it follows that S is completely bounded, with ‖S‖cb ≤ ‖T ∗‖cb = ‖T‖cb. Finally, if

T is a complete isomorphism, then S−1 exists and is bounded. For x ∈ Mn(F ), we

have

‖S(x)‖ = ‖κES(x)‖ = ‖T ∗κF (x)‖ ≥ ‖(T ∗)−1‖−1
cb ‖κF (x)‖ = ‖T−1‖−1

cb ‖x‖.

It hence follows that ‖S−1‖cb ≤ ‖T−1‖cb, as required.
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