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Introduction

One of the most beautiful and important results in the classical complex analysis is the
Riemann Mapping Theorem stating that any nonempty simply connected open subset
of the complex number plane, other than the plane itself, is biholomorphic to the open
unit disk D C C. On the other hand, H. Poincaré (1907) proved that the groups of
(holomorphic) automorphisms of the open polydisc and of the open ball in C? are not
isomorphic; hence these two topologically equivalent domains are not biholomorphically
equivalent. Therefore it is important that any domain D in C™ can be associated with
some biholomorphically equivalent object. Generalizing the Schwarz—Pick Lemma, C.
Carathéodory (1926) provided the first example of such an object, different from the au-
tomorphism group; this object was later called the Carathéodory pseudodistance. That
is the largest Poincaré distance between the images of two points from D under all holo-
morphic mappings from D into D. Somewhat later (1933) S. Bergman started to consider
the generating kernel of the Hilbert space of square-integrable holomorphic functions on
D with the natural Hermitian metric and distance (later his name was given to these
three invariants). In 1967 S. Kobayashi introduced a pseudodistance, dual in some sense
to Carathéodory’s. More precisely, it is the greatest pseudodistance not exceeding the
so called Lempert function, the infimum of the Poincaré distances between preimages of
pairs of points from D under an arbitrary holomorphic mapping from D to D.

In Chapter [I] we discuss the basic properties of various invariant functions and their
infinitesimal forms called (pseudo)metrics.

The estimates and the limit behavior of invariant (pseudo)distances (or more generally,
of functions) and (pseudo)metrics, as well as of the Bergman kernel, play an important
role in numerous problems of complex analysis like asymptotic estimates of holomorphic
functions (of various classes), continuation of holomorphic mappings, biholomorphic (non)-
equivalence of domains, description of domains with noncompact groups of automorphisms
etc. (see e.g. |58, 54, [67, [T08]). We only mention that one of the basic points in the classifi-
cation theorem of bounded convex domains of finite type in C™ with noncompact groups
of automorphisms (see [8]) is an estimate for the Kobayashi and Carathéodory pseudodis-
tances (see also Proposition . In Chapter [3| we obtain estimates of these metrics, as
well as of the Bergman kernel and Bergman metric of so-called C-convex domains.

Let us note that the exact calculation of some of the invariants or finding estimates
thereof leads e.g. to criteria for solvability of corresponding interpolation problems or to
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6 N. Nikolov

restrictions on solvability. Chapter [2|is partially motivated by two examples of such types
of problems.

This work is the author’s D. Sc. dissertation originally written in Bulgarian and
defended in October, 2010.

The results have been published as follows:

Chapter [T} in [86, 87, 88, 89, 00, 103);
Chapter 2} in [82, 0T, 94, 95, 96, 97, 100} (10T}, 102, 104);
Chapter B} in [57, 180, 81, 83, 02, 84, 08].

Some of the results we mention come from [79] 85], 03] ©9].

1. Lempert functions and Kobayashi metrics

1.1. Synopsis. The aim of this chapter is the introduction of basic invariant functions,
distances and metrics together with their basic properties.

The Lempert function /s and the Carathéodory function cj; of a given complex
manifold M are the greatest and the least holomorphically contractible functions (i.e.
decreasing under holomorphic mappings), coinciding with the Mé&bius distance mp on
the unit disc D. The Kobayashi and the Carathéodory (pseudo)distances, ky; and cpy,
are the greatest and the least holomorphically contractible (pseudo)distances, coinciding
on D with the Poincaré distance pp. Note that cp; = tanh ™! ¢y, while kyr < tanh ™! 15
in general. Define the Kobayashi function by the equality k3, = tanh k.

In Section we note that the objects under consideration are upper semicontinuous
(see Proposition and the comment preceding it). The main result in that section,
namely Theorem [1.2.2] states that if z € M and the function ks is continuous and
positive in (z; X) for each nonzero vector X, then the “derivative” of k‘g\T) at z in the di-
rection of X coincides with /{5\7) (z; X). An essential step in the proof is Propositionm
stating that the “upper derivative” of kgT) does not exceed HE\T) in the general case. The-
orem[[.2.2] generalizes some results of M.-Y. Pang [105] and M. Kobayashi [62] concerning
taut manifolds (domains). We provide examples to demonstrate that the assumptions in
the theorem are essential.

In Section we find some relationships between the Minkowski functions of a bal-
anced domain or of its convex/holomorphic hull and some of the previously defined bi-
holomorphic invariants of that domain whenever one of their arguments is the origin.
Some of these relationships are used in the subsequent chapter.

In Sectionwe prove that the Kobayashi—-Buseman metric ks equals the Kobayashi
metric /ig\z/["71 of order 2n — 1 and this number is the least possible in the general case.
A similar result for 2n instead of 2n — 1 can be found in the paper [63] of S. Kobayashi,
where £, is introduced.

In Section [I.5] we prove a general statement, Theorem on approximation and
interpolation over so-called Arakelian sets. To this end we use a well-known interpolation-
approximation result of P. M. Gauthier and W. Hengartner [43] and A. Nersesyan [78§].
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This theorem is the base of the proof of Theorem [1.6.1] stating that the so-called
generalized Lempert function (of a given domain) does not decrease under addition of
poles. The last assertion is proven by Wikstrom [II8] for convex domains; he left the
general case as an open question in [I19].

In Section [I.7] we discuss the product property of the generalized Lempert function
in order to reject a hypothesis of D. Coman [22] on equality between this function and
the generalized pluricomplex Green function. In Proposition [[.7.2] we find a necessary
and sufficient condition for the Lempert function of the bidisc with (fixed argument and)
poles in the cartesian product of two two-point subsets of D, =D\ {0} to equal each of
the two corresponding functions of D.

1.2. Lempert functions and their “derivatives”. In this section we introduce the
Lempert functions of higher order and their infinitesimal forms, the Kobayashi metrics
of higher order, for an arbitrary complex manifold (see also [58] [64]).

Our main aim is to prove that if the Kobayashi metric of a complex manifold is contin-
uous and positive at a given point for each nonzero tangent vector, then the “derivatives”
of the Lempert functions exist and are equal to the corresponding Kobayashi metrics at
this point. This generalizes some results of M.-Y. Pang [105] and M. Kobayashi [62] for
taut domains/manifolds.

As usual D C C denotes the unit disc. Let M be an n-dimensional complex manifold.
Let us recall the definitions of the Lempert function {j; and the Kobayashi—Royden (for
short, Kobayashi) (pseudo)metric kps of M:

Ip(z,w) = inf{la| : 3f € O(D, M) : f(0) = z, f(a) = w},
kym(z; X) =inf{|a| : 3f € OD, M) : f(0) =z, afio(d/d() = X},
where X is a complex tangent vector to M at z. Such f always exist (see e.g. [120];

according to [34] p. 49] this was known even earlier to J. Globevnik).
Note that if F': M — N is a holomorphic mapping between two manifolds, then

I (z,w) > In(F(2), F(w)).

In particular, if F' is a biholomorphism, then we get equality, i.e. the Lempert function
is invariant under biholomorphisms. The above inequality also shows that this function
is the largest holomorphically contractible function that coincides on D with the M&bius
distance mp. On the other hand, the smallest such function is the Carathéodory function

(2, w) = sup{mp(f(2), f(w)) : f € O(M,D)}.
If in this definition we replace myp by the Poincaré distance pp, we get the Carathéodory
(pseudo)distance
ey = tanh ™' ¢},
As
k(2 X) > kn(F(2); Fi (X)),

the Kobayashi metric is the largest holomorphically contractible pseudometric such that
kp(0; X) = |X|. The smallest such pseudometric is the Carathéodory—Reiffen (briefly,
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Carathéodory) metric
(25 X) = sup{|f. . (X)| : f € O(M, D)}

(we can assume f(z) = 0).
As in the case of domains, the Kobayashi distance kj; can be defined as the largest
pseudodistance not exceeding the Lempert function of first order

Y = tanh ' 1),

(for convenience we distinguish this function from the Lempert function {;;). By the
Kobayashi function we mean

ky; = tanh kpy.

Let us note that if kg\zl) denotes the Lempert function of order m (m € N), i.e.

kgVT)(z,w) = inf{z kg\?(zj,l,zj) P20y, 2m EM, 20 =2, 2y = w},
j=1
then
ky(z,w) = kg\jo) := inf kE\T)(z,w).

Now let us recall that a manifold M is called taut if the family O(D, M) is normal. Every
taut domain in C" is pseudoconvex. Conversely, every bounded domain with a C!'-smooth
boundary is hyperconvez (i.e. has an exhausting negative plurisubharmonic function), so
it is a taut domain.

According to a result of M.-Y. Pang [105], the Kobayashi metric is the “derivative” of
the Lempert function if the domain is taut:

kp(z; X) = lim Ip(zz+tX)
t—0 t

(in this limit, as well as in some similar ones below, we can replace Ip by kg) and, in

general, an invariant function with values in [0, 1) by tanh™" of it, or vice versa).

In the general case the Kobayashi metric at a given point of a domain is not a
pseudonorm (vectorwise), i.e. its indicatriced are not convex domains. To avoid this defect,
S. Kobayashi [63] introduced a new invariant metric, later called the Kobayashi—Buseman
metric. As in the case of the Kobayashi distance, this metric #5; can be defined by letting
Rar(z;-) be the largest pseudonorm not exceeding s (z; ). Clearly

Mz X) = inf{i kmv(z;X5) :meN, in = X}.
j=1 j=1

Hence it is natural to consider the functions n(Mm), m € N, defined as follows:

ﬁg\;[n)(z;X) = inf{z k(2 X5) ZXj = X}.
j=1 j=1
We call the function HS\?) the Kobayashi metric of order m. Clearly ng\?) > mg\}nﬂ). Also

one can easily observe that if m%}n)(z; ) = ngyﬂ)(z; -) for some m, then /{S\:[n) (1) =
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KS&I)(Z; -) for each 5 > m. Furthermore, as we will see in the next section, mﬁnil) =
HE\ZC) = R, with 2n — 1 being the least possible number in the general case.

Let us note that all objects introduced above are upper semicontinuous; for s (and
hence for 1@5&”) and & jy) see also [64]. To prove the upper semicontinuity of k]((;), it suffices

to check it for {,;.

PROPOSITION 1.2.1. For each complex manifold M, the function ly; is upper semicon-
tinuous.

Proof. We use a standard procedure (see [I12]). Let r € (0,1) and z,w € M. Let f €
O(D, M) with f(0) = z and f(a) = w. Then f = (f,id) : A - M = M x A is
an immersion. Put f,.(¢) = f(r¢); now [I12, Lemma 3| implies that there is a Stein
neighborhood S € M of f, (D). As is well known, S can be immersed as a closed complex
manifold in C?"*!. Let ¢ be the corresponding immersion. Then there is an (open)
neighborhood V' C C?"*1N of ¢(S) and a holomorphic retraction 6 : V — 9(S). For 2’
near z and w’ near w we can find (in a standard way) g € O(D, V) such that ¢g(0) =
¥(2',0) and g(a/r) = h(w’, @). Denote by 7 the natural projection of M onto M. Then
h=moyp tofloge O, M), h(0) =2z and h(a/r) = w'. Consequently, riy (2, w') < a.
This shows that imsup,,_,, /., Im (2, w") <ly(z,w). =

To extend the previously mentioned result of Pang, we define the “derivatives” of kg\;[n),
m € N* = NU {oo}. Let (U, ¢) be a holomorphic chart near z. We put

m k.(m) —1 ty
DR (e X) = lmep (007 e() + )
t—=0,w—z, Y —p. X |t|

This definition does not depend on the chart; also,

DE(™M (2, AX) = ADE (2 X), AeC.
Replacing lim sup by liminf, we can define ng\T).

A result of M. Kobayashi [62] shows that if M is a complex taut manifold, then
k(23 X) = Dk (2 X) = Dk (2 X),
i.e. the Kobayashi-Buseman metric is the “derivative” of the Kobayashi distance. The
proof of this result allows us to learn something more:
K (2 X) = DES™M (2, X) = DR (2: X), meN.

Note that for the Carathéodory metric of an arbitrary complex manifold M one has
(see [68] for domains in C™)

Yu = Dey = Dey (1.2.1)
(the definitions of the last two invariants are obvious).

To formulate in full generality the main result of this section we need the following
notion. A complex manifold is called hyperbolic at the point z € M if kp(z,w) > 0 for
each w # z. (Recall that M is hyperbolic if it is hyperbolic at each of its points, i.e. ks
is a distance.) Then the following assertions are equivalent:

(i) M is hyperbolic at z;
(ii) liminf, . wea\v (v (2, w) > 0 for each neighborhood U of z;
(ili) kpr(2; X) :=lminf, ., x',x kp(2';X’) > 0 for each X # 0.
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The implications (i)=-(ii)=-(iii) are (almost) trivial, while (iii)=-(i) follows from the
fact that kjs is the integrated form of kj;.

In particular, if M is hyperbolic at z, then it is hyperbolic at each point 2’ near z.

If M is a taut manifold, then it is hyperbolic and kj; is a continuous function. This
shows that the theorem below generalizes the previously mentioned result of M. Koba-
yashi.

THEOREM 1.2.2. Let M be a complex manifold and z € M.

(i) If M is hyperbolic at z and kp; is continuous at (z,X), then
knm(z; X) =Dy (2, X) =Dl (2 X).
(ii) If kpr is continuous and positive at (z, X) for each X # 0, then
K57 (2:) = DESP (25) = DR (%57), m e N*.
The first step of the proof of Theorem [T.2:2]is the following
PROPOSITION 1.2.3. For each complex manifold M one has
& > DE™ | m e N

Note that if M is a domain, a weaker variant of Proposition [I.2.3] can be found in
[68], namely &p; > Dkjyy (the proof is based on the fact that Dkas(z;-) is a pseudonorm).

Proof of Proposition [I.2.3. Let us first consider the case m = 1. The main role will be
played by the following

THEOREM 1.2.4 ([112] @) Let M be a complex manifold and the mapping f € O(D, M)
be reqular at 0. Let r € (0,1) and D, = rD x D"~1. Then there is a mapping F €
O(D,, M) that is singular at 0 and F|,px o}y = f-

Since kpr(z;0) = Dip(z;0) = 0, one can assume that X # 0. Let @ > 0 and f €
O(D, M) be such that f(0) = z and af.o(d/d¢() = X. Let r € (0,1) and F be as in
Theorem Since F' is regular at 0, there are neighborhoods U = U(z) C M and
V =V(0) C D, such that F|y : V — U is a biholomorphism. Therefore (U, ¢), where
o = (F|v)™1, is a chart near 2. Note that ¢, .(X) = aey, where e; = (1,0,...,0).

If w and Y are close enough to z and ae;, then g(¢) = F(p(w) + (Y /a) belongs to
O(r?D, M), g(0) = w and g(ta) = o~ (p(w) +tY), t < r?/a. Consequently,

2y (w, o (p(w) + tY)) < ta.
Thus 7237 (2; X) < a. For r — 1 and o — kar(2; X) we get Dipr(z; X) < rpr(2; X).

Now let m € N. Recall that I{S\Zl)(z; -) is the largest function with the following prop-
erty:

For each X = >77" | X; it follows that ﬁg\:[n)(z; X) <3700 par (2 X5).

To prove that ng&n) > ij(&n), it is sufficient to check that Dkg\:[n) (z; +) has this property.
Using the above notation and choosing Y; — ¢, . X; so that Z;n:l Y; =Y, weputwy =w

(*) Instead of Theorem , one can use the approach from the proof of the semicontinuity
of l]u .
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and w; = ¢~ (p(w) —&—tZi:l Y;). Since

m 1
kS (w,wg) < 37 kS (w1, wy),

j=1

from the case m = 1 it follows that

NE

DESY (5 X) <3 Dhar(2: X;) <

j=1

k(25 X5).
1

<.
Il

Finally, let m = oo and n = dim M. Since Ry = Hﬂinfl) and ks < k:g\jnfl), the case

m = 2n — 1 shows that Dky; < Rp7. m

Proof of Theorem[1.2.3 We can assume that X # 0. Bearing in mind Proposition [1.2.3
we just have to prove that

—

k0 (2 X) < DR (2 X)

under the corresponding assumptions. For simplicity we assume that M is a domain in
C™ (the changes in the general case of a manifold are obvious).

(i) Fix a neighborhood U = U(z) € M. By hyperbolicity of M at z, there exist a
neighborhood V' = V(z) C U and a number § € (0,1) such that if h € O(D, M) and
h(0) € V, then h(6D) C U. By the Cauchy inequalities it follows that ||h*)(0) < ¢/d%,
k€N (| - |l is the Euclidean norm).

Now choose sequences w; — z, t; — 0 and Y; — X such that

Ly (wj, wj +t;Y5)
It;]
Let the holomorphic discs g; € O(D, M) and the numbers 5; € (0, 1) be such that g;(0) =
wj, g;(B5) = wj+t;Y; and B; < Inr(wj, wj+1t;Y;)+ |t;|/j. Note that Iy (w;, w; +1t;Y;) <
c[[t;Yjl < calt;|. Let

wj +1;Y; = g;(B5) = wj + g;(0)B; + hi(5))-
Then
1h; (B < € (B /6)F < eslB;” < ealty|?, 5 = do
k=2
We put Y; = Yj—h;(5;)/t;. Then g;(0) = w; and Big;(0)/t; = Y; — X. Consequently,
kar (w3 Y;) < Bi < b (25,05 +45Y;) + 1
1451 1451 j
For j — oo we get kpr(z; X) = Ky (23 X) < Dlp(2; X).
(ii) The proof of the case m € N is similar to the one below and we omit it. Now let
m = 0.

Our assumptions show that M is hyperbolic at z. Also it easily follows (say by con-
tradiction) that

Ve>030>0:||lw—z|| <4, ||V —X|| <3| X]|
= k(W Y) —wpm(z X)) <evm(zX).  (1.2.2)
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Also, the proof of (i) shows that
o(a,b)

k](\})(a, b) > km(a;b—a+o(a, b)), where ahi)rilz Ta—b] — 0. (1.2.3)
Now choose sequences w; —+ z, t; = 0 and Y; — X such that
k s+ Y
m(wy, wj + t5Y5) — Dk (2 X).
1451
Let wjo = wj, ..., wjm; =w;+1;X; be points from M such that
STk (i1, wik) < kar(wy,w; +£5Y;) +1/5. (1.2.4)
k=1

Put wj, = w; for k > m;. Since
!
kar(wy, wn) <3 kS (wirer,wie) < kar(wy,w;y +45Y5) + 1/5 < ealty| +1/5,
j=1

kar(wj,wj;;) — 0 uniformly in [. The hyperbolicity of M at z implies that w;; — 2
uniformly in /. Indeed, assuming the contrary and choosing a subsequence, we can assume
that w;,;;, ¢ U for some U = U(z). Then

0= lim ky(wj,w;y) > liminf Iy (2, w) > 0,
Jj—ro0 2=z, we M\U

which is a contradiction.
Finally let us fix R > 1. Then (1.2.2)) shows that
fn (25 wie — wjk—1) < R (W0 wj e — Wi k-1 + o(Wjik, Wi k—-1)), J = j(R).

From this inequality, (1.2.3) and (|1.2.4)) it follows that

z:l’@]\/[(z;ijC —wjp-1) < Rkp(wj,w; +t;Yj)+ R/j.
k=1

Since A (z;t,Y;) is bounded by the above sum, we get
ke (wj, wj +4Y ) +1/j
It;]
It remains to use that #s(z;-) is a continuous function. Then for j — oo and R — 1 it
follows that &pr(z; X) < Dkp(2;X). m

Rv(zY;) <R

REMARK. From the above proofs, by a standard diagonal process, it follows that if M is
hyperbolic at z, then k,,(z;-) = DI(z;-).
The subsequent examples show that the assumptions of continuity in Theorem [I.2.2]

are essential.

e Let A be a countable dense subset of C, (= C\ {0}). In [33] (see also [58]) there is
an example of a pseudoconvex domain D C C? such that:

(i) (Cx{0})U(AxC)cC D;
(i) if 29 = (0,¢t) € D, t # 0, then kp(zp;:) > C| - || for some C > 0. (It can even be
shown that Dip(zp;-) > C|| - ||.)
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Then it is easily deduced that kp(-;e) = Dkg’)(~;eg) = k‘g)) =0and Ap(zo;-) > | - |I,
where e = (0,1) and ¢ > 0. Therefore

kp(z0;X) > 0=kp(20;e2) = Dkg)(zo;eg) = Dkg)(zo;X), X € (C?,.

This phenomenon clearly appears also in C", n > 2 (say for D x D"~2). Thus the
inequalities in Proposition [I.2.3] are strict in the general case.

e There exists a bounded pseudoconvex domain D C C? containing the origin such
that (see e.g. [127, Example 4.2.10])

. lD (Oa tel) ..

0;e1) = Dkp(0; =1 ——=>1 f

kp(0;e1) p(0;e1) msup =7, > limin n
We conclude this section by the following

QUESTION. Is kp # Dlp in the general case? Is Dkp a holomorphically contractible

invariant? (For this question see also [60].)

A partial positive answer will be given in Section by showing that there is a

pseudoconvex domain D C C® and a point (2, X) € D x C" such that

kp(z; X) > 0 = limsup M.
t—0 |t|

1.3. Balanced domains. The biholomorphic invariants can be explicitly calculated for
a few classes of domains, usually contained in the class of Reinhardt domains. Each
complete Reinhardt domain is balanced. In this section we determine some relationships
between the Minkowski functions of a balanced domain or of its convex/holomorphically
convex hull and some biholomorphic invariants of the domain when one of their arguments
is the origin.

Recall that a domain D C C" is called balanced if Az € D for each (A, 2) € Dx D (for
this definition and part of the facts below see e.g. [58]). We naturally associate to such a
domain its Minkowski function

hp(z) =inf{t >0: 2/t € D}, z¢eC™
The function hp > 0 is upper semicontinuous and
hp(Az) = |Ahp(2), A€C,zeC", D={ze€C":hp(z)<1}.

Let us note that D is pseudoconvex exactly when logh € PSH(C™), which in this case
is equivalent to h € PSH(C™). Also recall that D is a taut domain exactly when it is
bounded and hp is a continuous plurisubharmonic function. This shows that, for a bal-
anced domain, being hyperconvex or taut is the same. Let us note that the hyperbolicity
of D is equivalent to its boundedness. More general results concerning so-called Hartogs
domains can be found in the paper [85] of the author and P. Pflug.

Clearly, the convex hull D of a balanced domain D is balanced. Let us recall the well-
known relationships between hp, h p = hp and some invariant functions and metrics.

PROPOSITION 1.3.1. Let D C C" be a balanced domain and a € D. Then:
(i) ¥ (0;-) = Ap(0;-) = hp. )

(ii) hp < cp(0,-) < kpH(0,-) <Ip(0,-) < hp and hp < k(0;-) < hp;

(iii) ¢5(0,a) = hp(a) © k5 (0,a) = hp(a) & hp(a) = hp(a).
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If in addition D is pseudoconvex, then

The Lempert theorem (mentioned in the introduction) implies that ¢}, = k¥, = Ip for
each convex domain D. Then by the above proposition we get

COROLLARY 1.3.2. For a pseudoconvez balanced domain D C C™ the following are equiv-
alent:

(i) D is convex (i.e. hp = hp)
(i) ¢p = Ip;
(111) C*D(O’ ) = lD(O’ )7
(iV) k*D = ZD;
(V) kB (07 ) = ZD(Ov )

Put (k‘gjm))* = tanh kgﬂ). Proposition iii) shows that at a € D the value of
kp(0,-) is maximal exactly when D is “convex” in the direction of a, i.e. hp(a) = hp(a).
The next result shows that more is true.

PrOPOSITION 1.3.3. Let D C C™ be a balanced domain and a € D. The following are
equivalent:

) hnfe) = npfay
(i) (k' (0,a))* = hp(a);
(iii) (D)(O,a) = hp(a).
Since k(m)( a) < k(B)(O a) < hp for 3 < m < oo (kp = kgo)) and n%)(o a) <
(2)(0 a)for 2 <l < oo (kp = K(D )), for these m and [ it follows that hp(a) = hp(a) <
(k5" (0.a))" = hp(a) & 53 (0:a).
REMARK. We do not know whether 3 can be replaced by 2 (it cannot be replaced by 1
according to Proposition [1.3.1iv)).
Proof. The implication (i)=>(ii) follows from Proposition [1.3.1]
Assume (iii) holds. If a; + as = a, then by ﬁg)(O;a) < kp(0;a1) + £p(0;a2) and
kp(0;+) < hp it follows that hp(a) < hp(ai) + hp(az), so (i) holds.
It remains to prove (ii)=(iii). We first prove that (ii) implies
(K20, Aa))* = [Mhp(a), X eD. (1.3.1)
We can assume that hp(a) # 0. Considering the analytic disc ¢(¢) = al/hp(a) as a
competitor @ for Ip(Aa,a), we get
lD(Aa‘a Cl) < m(hD(Aa’)a hD(a))
Hence by the inequality
p(0, hp(a)) = £(0,a) < k2(0, Xa) + k2 (Aa, a)

(?) This means that ¢ belongs to the set over which we take the infimum in the definition
of lD .
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we get
p(0, N (a) = p(0, hp(a)) = p(Alhp (@), hp(a)) < k5 (0, Aa).
Thus
(k (0,20))" = [Alhp(a).
It remains to note that the opposite inequality is always true.

Now (|1.3.1) shows that
k5 (0, A
lim D (07 a’)
A—0 |)\|
On the other hand, by Proposition this limit does not exceed K(DZ)(O; a) < hp(a), so
(iii) is proved. m

Having in mind Propositions and it is natural to ask whether the mini-
mality (rather than maximality) of some k" (0,a), i.e. [p(0,a) = hg(a) for a domain
G D D, implies some “convex” property. We have the following

= hD(a).

ProprosITION 1.3.4. Let D C C™ be a bounded balanced domain and G C C" be a
pseudoconvex balanced domain containing D. Suppose that hp is continuous at some
a € D, hg(a) # 0 and G does not contain (nontrivial) analytic discs through a/hc(a).
Then the following are equivalent:

(1) hp(a) = hg(a);
(i) 1p(0,a) = ha(a);
(i) kp(0;a) = ha(a).

Proof. It suffices to prove that

Ip(0,a) =hg(a) = hp(a) < hg(a), kp(0;a)=hg(a) = hp(a) < hg(a).
Let (¢;) C O(D, D) and o;j — hg(a) so that ¢;(0) = 0 and ¢,(a;) = a (correspondingly,
a;¢;(0) = a). Expressing ¢; in the form ¢;(A) = A;(A), by the maximum principle
hgo; <1soy; € OD,G). As D is bounded, then by going to a subsequence we can
assume that ¢; — ¢ € O(D, D), hence ¢; — ¢ € O(D, G). In particular,

Y(ha(a)) = jliyc}o%(%) = jliglo o @ b (and ¥(0) = b),

a

respectively. On the other hand, as G does not contain analytic discs through b, we get
(D) = b. The continuity of hp at b implies that

1> hp(p;(A) = [Alhp(b), A €D.
When A — 1 we get hp(b) <1, ie. hp(a) < hg(a). =

REMARKS. (a) Since the holomorphic hull £(D) of a balanced domain D is a balanced
domain (see e.g. [59] Remark 3.1.2(b)]), the above result can also be applied for G = £(D).
Of course, it can also be applied for G = D.

(b) If hg is continuous near a and G does not contain analytic discs through a/hg(a),
then by the maximum principle it follows that G does not contain analytic discs through
a/hg(a) either.



16 N. Nikolov

(¢) In connection with Proposition it is natural to ask whether if hp = Ip(0,-)
for a balanced domain D, then it has to be pseudoconvex. The answer to this question
is unknown to us.

The next example shows that in Proposition the continuity of hp is essential.
EXAMPLE 1.3.5. If D =D?\ {(t,t) : |t| > 1/2}, d = (t,1), |t| < 1/2, then
hp(d) =2|t|, but 15(0,d) = |t| = hp2(d).

On the other hand, £(D) = D? and D? does not contain analytic discs through any point
from 0D x 9D.
Proof. We need to prove only that
Ip(0,d) < [t].
For each 7 € (|t|,1) we can choose o € D so that t = o(t/r), where p(\) = A\A=2

1-ax’
Then the disc ¥(¢) = (r(,¢(C)) is a competitor for [p(0,d), whence it follows that

Ip(0,d) < |t|/r. It remains to leave r — 1. m

Addendum. Note that even
Ip(0,-) = Ip2(0,-).
To see this, it suffices to prove that {p(0,a) < |a1| for a = (a1,a2) € D, a1 # as,
la1| > |az|. We see this easily by considering (A\) = (X, Aaz/a1) as a competitor for
ZD(O,CL).
On the other hand, if a; = (0,0) and ay = (b,0), b € D, then
Ip(ai,az) =lp2(ar,a2) < |b| <4/5.

Indeed, using the Mdobius transformation ¥, (\) = 1’\_;513\, we get [p(ay,as) =lIp,(0,a),

where a = (b, —b) and Dy, = D?\ {(¢p(N\),\) : 1/2 <N < 1}.

For |b] < 4/5 we easily check that ¢ = (id, —id) € O(D, D}). Then Ip,(0,a) < |b| so
ZD(al, ag) = ZDZ (al, ag).

To get this for |b| = 4/5, it suffices to consider r¢ for r € (0,1) as a competitor for
Ip,(0,a), and then let r — 1.

Now assume that {p(a1,a2) = lp2(a1,az) for |b] > 4/5. Then we can find discs ¢; €
O(D, Dy) such that ¢;(0) = 0 and ¢;(a;) = a, where a;; — b. The Schwarz—Pick Lemma
implies that ¢; — ¢. On the other hand, (D)N{(¢s (), A) : 1/2 < |A] < 1} is a singleton,
contradicting the Hurwitz Theorem.

REMARK. By [58, Theorem 3.4.2] (see also [108]) it follows that if D,, = D™\ {(¢,...,?) :
‘t| Z 1/2}, n Z 3, then ZDW, = Z]D)n.

The next example shows that in Proposition [I.3.4] the assumption on discs is essential.

EXAMPLE 1.3.6. Let 0 < a <1 and

D={zeD?:|%]®—d® <2(1-d®)|xl}
Then D is a balanced Reinhardt domain, hp is continuous function and £(D) = D? (see
e.g. [59]). On the other hand, if ¢ = (0,d), |d| < a, then

hp(c) =|d|/a > 1p(0,¢) = |d] = hp(c).
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Proof. We just have to show that Ip(0,¢) < d for d € (0,a). It suffices to show that
¢ = (1,id) € O(D, D), where 1(\) = A= It is easily seen that [¢(\)| > z=% for
x = |A| and it suffices to check that

2 2 @ —d) .
— 2(1 — _ .e.
x® —a” <2 a)l—dm’ ie

de® + (1 —2a®)x? — d(2 — a®)z + a® > 0.

This is clear for = 0. Since x € (0,1) and d € (0, a), we need to prove that
az® + (1 —2a®)2? — a(2 — a®)z + a® > 0,

which is equivalent to the obvious inequality (z —a)?(az +1) > 0. m

REMARK. Some propositions and examples in the spirit of the above for k(") can be
found in the paper [90] of the author and P. Pflug.

1.4. Kobayashi—-Buseman metric. The main aim of this section is to prove that the
Kobayashi-Buseman metric for an arbitrary domain equals the Kobayashi metric of order
2n — 1 and this number is the least possible. A similar result for 2n instead of 2n — 1 is
contained in the work [63] of S. Kobayashi, where this metric is introduced.

THEOREM 1.4.1. For each domain D C C™ one has

K2 = i, (1.4.1)

On the other hand, if n > 2 and

D, = {z e C™: (2028 — 28+ |2 + 22)) < 2(n — 1)},
j=2
then
Ko (0:7) # fp, (0:): (1.42)
The proof below shows that the identity (1.4.1) remains true for an arbitrary n-
dimensional complex manifold.

Theorems and lead to the following

COROLLARY 1.4.2. For every taut domain D C C" one has

(2n—1)
lim 7]%) (2, w) =1
w—z kD(Z; w)

locally uniformly on z. The number 2n — 1 is the least possible in the general case.

REMARKS. (a) Corollary remains true for an arbitrary n-dimensional complex taut
manifold.

(b) Corollary can be viewed as an affirmative answer to the infinitesimal version
of a question of S. Krantz [66]: For an arbitrary strictly pseudoconvex domain D C C", is
there some m = m(D) € N such that kp = k(Dm)? Unlike the infinitesimal case, m cannot
depend only on n, as shown in [58| p. 109].

For z € D C C", denote by Ip . the indicatriz of kp(z;-), ie. Ip, = {X € C" :
kp(z; X) < 1}. Note that Ip , is a balanced domain. In particular, it is starlike with
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respect to the origin. Then the identity Hgn) = Kk p is obtained from the following appli-
cation of a lemma of C. Carathéodory (see e.g. [62]):

hs = inf{z hs(X;) :m < 2n, ZXj =X,
Jj=1

j=1
Xy,...,X,, are R-linearly independent}, (1.4.3)

where hg and ﬁs are the functions of Minkowski of an arbitrary domain S C C™ that is
starlike with respect to the origin (i.e. ta € S for @ € S and t € [0, 1]) and of its convex
hull S, respectively (it is easily seen that in this case the number 2n is the least possible).

In order to replace the number 2n by 2n — 1, we will use the fact that Ip . is balanced
rather than starlike. For m € N we put

h{i™ (X) = inf{i hs(X;) : ixj - x}.

Proof of . This follows directly from
ProprosITION 1.4.3. If B C C" is a balanced domain, then

hp = h2". (1.4.4)
To prove Proposition [[.4.3] we need

LEMMA 1.4.4. FEvery balanced domain can be exhausted by bounded balanced domains with
continuous Minkowski functions.

Proof. Let B C C" be a balanced domain. For z € C* and j € N we put F, ;. =
B, (z,||zlI?/7) (Bn(a,r) C C™ is the ball of center a and radius r). We can assume that
B,(0,1) € B. Let

Bj={2€Bn(0,): Fn;-C B}, jeN

Then (B;) is an exhaustion of B by nonempty bounded open sets. We will show that B;
is a balanced domain with continuous Minkowski function h B;-

To this end let us note that if 2 € B; and A € (D)., then F, j x. C AF, ;. C B. Now
it easily follows that B; is a balanced domain.

As hp, is upper semicontinuous, it remains to prove that it is also lower semicontin-
uous. Assuming the contrary, we can find a sequence of points zj, tending to some z, and
a number ¢ > 0 such that hp;(2x) < 1/c < hp,(2) for each k. Note that F}, j.., C B, so
B, (cz,c?||z]|*/j) C B. On the other hand, let us choose ¢ € (0,1) such that hp, (tcz) > 1.

Then F, jtc: C By(cz,c2||z]|?/4) C B, so h(tcz) < 1, a contradiction. m

Proof of Proposition m We will first prove in the case when B C C" is a
bounded balanced domain with a continuous Minkowski function. Let us fix a vector
X € (C"),. Then hp(X) # 0 and we can assume that hp(X) = 1. As hp is continuous,
by there exist R-linearly independent vectors Xi,...,X,, (m < 2n) such that
Z;"':l X; = X and Z;"’:l hp(X;) = 1. As hp is a norm and hp < hp, by the triangle
inequality hp(X;) = iLB(Xj), j=1,...,m. To prove , it suffices to show that
m # 2n. Let H be a support hyperplane for B at X € 0B. We can assume that H =
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{#z € C" : Re(z — X, Xy) = 0}, where Xy € C" ({-,-) is the Hermitian scalar product).
Suppose that m = 2n. Then H = {Z 1 0;X;/hp(X;) : Z;”:l a;j =1, a1,...,q, € R}
In particular, OB contains a set relatively open in H. As B is a balanced domain, its
intersection with the complex line through X, directed at X, is a disc containing a
line segment in its boundary. This contradiction proves for a bounded balanced
domain with a continuous Minkowski function.

Now let B C C™ be an arbitrary balanced domain If (B;) is an exhaustion of B as in
Lemma . then hB \\ hp pointwise. Then shows that hB Ny hB Now
follows from the inequalities hp < h(2" D < h(2n D and the equality hB h(2n 1)
from above. =

Proof of , Observe that the domain D,, from Theorem [1.4.1]is pseudoconvex and
balanced. Then xp,(0;-) = hp, (see Proposition [1.3.1] (iv)) so Hgn)(() ) = h(DTZ). Thus
(1.4.2) is equivalent to

hp, #0572 (1.4.5)

To prove this inequality, let L, = {z € C" : z; = 1}. By the triangle inequality
D, cDxC* ! and

F,:=0D,NL,={z€C":2 =1, z?zl, 2<j<mn}

Hence 8D, N L, = F,, = {1} x A"=1 where A is the triangle of vertices 1, ¢27/3, ¢47i/3
together with its interior. Note that dD,, N L,, is a (2n — 2)-dimensional convex set. Put
o, ={Y € B, : hg:fz)(Y) = 1}. If X € F,,, then there exist vectors X1,..., X, €
(C")x, m < 2n — 2, such that 377" | X; = X and 3270, hp, (X;) = 1 (as D, is a taut
domain). Then X1 /hp, (X1),..., Xm/hp, (Xm) € F, and the convex hull of these vectors
contains X. As F), is a finite set, it is contained F),, in a finite union of not more than
(2n — 3)-dimensional convex sets. So F, # F,, which shows that fALD" #* hg:ﬂ). L]

Thus Theorem is proved.

1.5. Interpolation in the Arakelian theorem. The aim of this section is to prove a
general statement on approximation and interpolation over so-called Arakelian sets. This
statement will be used in the proof of Theorem [I.6.1] from the next section.

Let us first recall the well-known theorem of Mergelian that generalizes the theorems
of Weierstrass and Runge.

THEOREM 1.5.1. The complement of a compact K C C is a connected set if and only if
each continuous function on K that is holomorphic in the interior of K can be uniformly
approximated on K by polynomials.

The most popular generalization of Theorem belongs to N. Arakelian @

A relatively closed subset E of a domain D C C is called an Arakelian set if D* \ E
is connected and locally connected, where D* is the one-point compactification of D.

Denote by A(FE) the set of continuous functions on F that are holomorphic in the
interior E° of E.

(3) After the proof by N. Arakelian of Theorem J.-P. Rosay and W. Rudin [I11] showed
how this theorem follows from the Mergelian theorem itself.
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THEOREM 1.5.2 ([6]). A relatively closed subset E of a domain D C C is an Arake-
lian set if and only if each function from A(E) can be uniformly approzimated on E by
holomorphic functions from D.

The next result, proven independently by P. M. Gauthier and W. Hengartner and by
A. Nersesyan, provides an opportunity for interpolation in Theorem [[.5.2]

THEOREM 1.5.3 ([43], [78]). Let D C C be a domain, let E C D be an Arakelian set, and
let A be a sequence of points in E\ E° without an accumulation point in D. Suppose
for every A € A, a finite sequence (,Bf\’)z(:)‘f of complex numbers is given. Then for each
f € A(E) and each € > 0, there exists a g € O(D) such that |g(z) — f(2)| < e for z € E,
g\) = f(A\) and g (\) = B for N\€ A and v =1,...,v()\).

Now let us formulate an extension of Theorem [1.5.3]

THEOREM 1.5.4. Let D, E, A (possibly A = 0), 55 be as in Theorem and let
bi,...,bxp € E°. Then for each f € A(E), ¢ > 0 and m € N* there exists a g € O(D)
with the properties of Theorem and such that g(")(bj) = f(”)(bj) forjg=1,...k

andv=0,...,m.

Proof. We can clearly assume that E # D.

The proof will be divided into four steps.

Step 1. For each j = 1,...,k, there is a function s; € O(D), bounded on E and such
that s7(b;) # 0, s;(b;) = 0 and s;(by) # O for an arbitrary g # j

Indeed, choose a point ¢ € D\ E. As EU{c} C D is an Arakelian set, Theorem [1.5.2]
implies the existence of an § € O(D) such that |§| < 1 on E and [5(c) — 2| < 1. Put
§; =8—35(bj). As §j(c) # 0, we get §; # 0. Now as |$;| < 2 on E, the function

(2 —b)3;(2) seD

7

5](2) = H§:1(z . bq)ordbq 3
has the required properties.

Step 2. There exists a function p € O(D), bounded on E and such that p(b;) # 0 for
j=1,...,kand ordyp > v(\) + 1 for an arbitrary A € A.

Indeed, if ¢ = 0 on E and ¢(c¢) = 1, where ¢ € D \ E, we can apply Theorem m
for EU{c},¢,e=1and ¥ =0,v=1,...,v(A)+1, A € A. Thus we get a nonconstant
function p € O(D) such that [p| < 1 on E and ordyp > v(A) + 1, A € A. It remains to
put

p(z)
p(Z) = k ordy. D’
Hj:l(z —by)”
Step 3. Let s; be the function from Step 1, j = 1,...k, and let p be the function from
Step 2. For each v € N* we put

z€D.

D k
hl/ = — HSV+1,
J S q
Jq:]_

(4) This is clear if D is biholomorphic to a bounded domain; in particular, if D # C.



Invariant functions and metrics in complex analysis 21

Then

is well defined on D. The function

k
M, = Supz ‘hjy‘
E ‘31

will be also needed in the last step.
Step 4. We are ready to prove the theorem by mductlon on m.
V()\
Let m = 0 and g be the function from Theorem for A, (5%),2] and
easily checked that the function

k
= Z b;))h?

v +1 It is

has the required properties.

Put d = min; <<k dist(b;,C \ E°). Assume that the conclusion of Theorem is
true for some m > 0 and let g, be the corresponding function for e(1 + M,,+1(m +
1)!ld—™=1)~1 By the Cauchy inequality, the function

E
Im+1 = gm + Z(f(m+1)(bj) - g'Enm_H)(bj))h;nJrl
j=1
has the required properties for m + 1.
This finishes the induction step. m

1.6. Generalized Lempert function. In this section we define the generalized Lempert
function (introduced by D. Coman [22]) and prove that it decreases under adding poles.
This function is introduced as an easier and more flexible (in some sense) version of the
so-called generalized (pluricomplex) Green function (see e.g. [60]).
Let D C C™ be a domain and p > 0 be a function on D. Put
p| = {a € D:p(a) >0}
For z € D we define
(P, 2) = it { [T Ay.aP@) : 36 € O(D, D), (0) = 2, ¥(Ay.a) = a for cach a € |p]}

(for any a € |p| we take one Ay ).
From the proof of Theorem below it follows that such a 1 exists if |p| is finite
or countable. If |p| is uncountable and such a 1) exists, then it is easily seen that
0= lD(p7 Z) = inf{lD(pB7z) :BC |p|7 0< #B < 00}7
where pp = pxB-
If there is no such 1, we can define
Ip(p,z) =inf{lp(pg,2) : BClp|, 0 < #B < o0}.

The function Ip(p,-) so introduced is called the Lempert function of D with respect
to p (a generalized Lempert function). If A is a nonempty subset of D and x4 is its
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characteristic function, then we put Ip(A,z) = Ip(xa,z). This function is called the
Lempert function with poles in A. Let us note that Ip({a}, z) is the usual Lempert function
Ip(a,z).

Using the Lempert theorem, F. Wikstrom [I18] showed that if A and B are subsets
of a convex domain D C C" such that A C B, then Ip(B,-) <Ip(A4,-), i.e. the Lempert
function decreases under adding poles.

On the other hand, in [I19] there is an example of a complex space not satisfying this
inequality (under the same definition of a Lempert function) and it is asked whether this
inequality is true for arbitrary domains in C™.

The main aim of this section is to give an affirmative answer to this question. We will
use Theorem[I.5.4] that is, the possibility for interpolation in the Arakelian approximation
theorem.

THEOREM 1.6.1. If D C C" is a domain and p > 0 is a function on D, then
lD(p7') = inf{lD(pB7') :BC |p|a 0< #B < OO}
In particular, Ip(p,-) = nf{lp(pp,-) : 0 # B C |p|}.

COROLLARY 1.6.2. If D C C™ is a domain and p,q are functions on D such that 0 <
p S q, then ZD(q7 ) S lD(p7 )

Proof. By the above remark, the theorem follows in the case when |p| is uncountable.
Now let |p| = (aj)é-:l (I € N*) be a countable or finite nonempty set. Let z € D.
We first prove the inequality

Ip(p,z) <inf{lp(pg,2) : BC|p|, 0 < #B < co}. (1.6.1)

Let B # () be a finite subset of [p|. We can assume that B = A, := (a;)7L, for some
m <.

Let us consider an arbitrary ¢ : D — D such that ¢()\;) = a;, 0 < j < m, where
Ao =0 and ap = z. Let t € [maxo<j<m |Aj],1) and \; =1 — (1 —1t)/j, j € A(m), where
A(m) ={m+1,...,1} for | < oo and A(m) = {j € N: j > m} for | = co. Consider a
continuous curve ¢ : [t,1) — D such that ¢1(t) = ¢(t) and ¢1(\;) = a;, j € A(m). Put

Ol
f:{ |t]D>
§01|[t,1)

on Fy = tDU[t, 1) C D. Clearly F} is an Arakelian set for D, f € A(F;, D) and A = ()‘j)é‘:l
satisfies the conditions in Theorem Let d(z) = dist(f(z),0D), z € F;, where the
distance is generated by the L°°-norm. Choose a continuous real-valued function 7 on F}

such that

n<logd on[t,1), 7 =minlogd on tD.
D

By Theorem[L.5.3] there exists a ¢ € O(D) such that [( —n| < 1 on F;. By Theorem[L.5.4]
applied to the components of e¢~!f, one can find a ¢; € O(D) such that ¢(\) = f()\),
A€ A and

lge — fll < 671 < "™ < d(z), zeF,.
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Thus ¢:(F;) C D and so there exists a simply connected domain F; such that F; C F; C D
and ¢:(E;) C D.

Let p; : D — E; be the corresponding Riemann (conformal) mapping, satisfying
p:(0) = 0, p;(0) > 0 and p;(A}) = ;. Considering the analytic discs gz 0 p; : D — D we
get

l m
In(p,2) < [ NP < T Insfete.
Jj=1 J=1
Note that by the Carathéodory Kernel Theorem, p; for ¢ — 1 tends locally uniformly on
D to id. Hence the latter product above tends to [T/, |A; |P(25) Since ¢ was an arbitrary
competitor for Ip(p|a,,, ), we get the inequality (1.6.1)).
On the other hand, the existence of analytic discs containing z and |p| easily implies

Ip(p,2) > limsupip(p|a,., 2),
m— o0
which concludes the proof of the theorem. m

REMARK. The Lempert function does not decrease strictly under addition of poles; for
example [32, Theorem 2.1] shows that

Ip2({a1,a2} x {a1},0) = |a1] = Ip2({a1} x {a1},0).
The next example shows that our definition of a generalized Lempert function, in
the case of nonexistence of a corresponding disc, is more “sensitive” than that from [60]
(where in this case the function is set to be 1).

EXAMPLE. Let A C D be an uncountable set. Then there is no analytic disc ¢ € O(D, D?)
containing A x {0} and (0, w), w € D,.
Let B be an arbitrary finite subset of A. From [32, Theorem 2.1],
Ip(B x {0}, (0,w)) = max{ln(B,0), lp(0,w)} = max{ I 1o, |w|}.
beB
So lD(A X {0}7 (O,’LU)) = |’LU‘

Finally let us note that the generalized Lempert function is clearly biholomorphically
invariant, but in general not contractible under holomorphic mappings even when they
are proper coverings.

EXAMPLE. Let m(z) = 22. Clearly 7 : D, — D, is a proper covering (D, = D\ {0}). Let
a; = —ay €D, c=a? and z € D, 2 # a1, as. By [58, Theorem 3.3.7],
ZD* (C7 22) = Hlin{l[g)* (0’17 Z)? ZD* (a27 Z)} > ZD* (0’17 Z)ZD* (a2? Z)'

On the other hand, by [32, Theorem 2.1] the last product equals Ip, ({a1, a2}, z). Therefore

Ip, (p,7(2)) >Ip (pom,2) for p=xqq-

We conclude this section with the following comment. The proof of Theorem [1.6.1]is
contained in the paper [86] by the author and P. Pflug. Later, based on the same idea, F.
Forstneri¢ and J. Winkelmann [38] proved that, for every connected complex manifold,
the holomorphic discs with dense images form a dense subset of the set of all discs. To
this end a nontrivial approximation statement is used and the result is the following.
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Let M be a connected complex manifold, d is a distance generated by a complete
Riemann metric, A is a countable subset of M, f € O(D, X) and r € (0,1). Then there
exists a g € O(D, X) such that A C g(D) and d(f(z),g(z)) <1 —r for each z € rD.

A modification of the proof of this fact shows that if, apart from A, f,r, we are given
a finite subset A of D, then there exists a g as above, as well as a sequence (ux)rea C D
with r|pua| < |A| such that f(A) = g(ua), A € A. Letting » — 1 one can prove that
Theorem [I.6.1] remains true for complex manifolds.

1.7. Product property. Let [p(p,-) and lg(q,-) be generalized Lempert functions of
domains D C C™ and G C C™. They generate a generalized Lempert function Ipxg(r,-)
of the product product G x D, where

r(¢n) =pmnq(), (€D, ned.

In this section we discuss when the generalized Lempert function has the product
property, i.e.

Ipxa(r, (z,w)) = max{lp(p, 2),lc(q,w)}.

Let us note that the Lempert functions, the Kobayashi functions, and the Carathéo-
dory functions have this property; a similar property is true for their infinitesimal forms
(see e.g. [58] [60]).

We need the pluricomplex Green function gp defined as follows:

gp(z,w) = supu(w),
where the supremum is over all negative functions v € PSH(D) such that u(-) <
log || - —z|| + Oy(1). Then
¢p < gp :=expyp < Ip,
so for the infinitesimal form of gp, the so-called Azukawa (pseudo)metric,

x AX
Ap(z: X) = limsup 2222 HAX)
A—0 |/\‘

we have
vp < Ap < kp.
For example, the theorem of Lempert implies that if D is a convex domain, then in
both the chains of inequalities we have in fact equalities.
Recall that |p| = {a € D : p(a) > 0}. The next proposition provides a necessary and
sufficient condition for the product property when the support of one of the functions is
a singleton.

PRrOPOSITION 1.7.1. If (z,w) € D x G, |p| = {a} C D, then
ZDXG(Tv (Z7 U))) = maX{lD(pa Z)v lG(qv ’LU)}
for each function ¢ > 0 on G if and only if Ip(a,z) = gp(a, 2).

A special case of Proposition was used in Section with a quote of [32, The-
orem 2.1]. In fact, that theorem is Proposition in the special case when ¢ is the
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characteristic function of a finite set; in the general case the proof is similar and we omit
it. We only note that it is based on the inequality

lDXG(ra (va)) > maX{ZD(pv ')7ZG(Q7 )}v #|P| =1

The proof of this inequality, given in [32] for the above mentioned special case, contains
an essential flaw, corrected in the paper [I03] of the author and W. Zwonek.

Similarly to the generalized Lempert function, one can define a generalized Green
function. This function does not exceed the corresponding generalized Lempert func-
tion. In addition, by a result of A. Edigarian, it possesses the product property (see e.g.
[35 ©60]).

On the other hand, D. Coman [22] showed that the Lempert and Green functions of
a ball that have two poles coincide. He asked (see also [60]) whether, like the Lemert
theorem, this property remains true for every convex domain for every finite number of
poles.

To give a negative answer to this question is one of the reasons for our interest in the
product property of the generalized Lempert function (which shows that this function
does not have properties as typical as the generalized Green function). More precisely,
there are two-element subsets A, B of D and a point z € D such that

Ip2(A x B, (z,w)) > max{Ilp(4, z),ip(B,0)}. (1.7.1)
As
In(C,z) =gp(C,2) = H mp(c, z), (1.7.2)
ceC
we get

ZD2 (A X B7 (Za 0)) > max{lD(Av Z)7 ZD(Ba 0)} = max{gD(A, Z)7 gD(B7 O)}
= gp2 (A X B7 (270))
The inequality (1.7.1]) was first established by P. J. Thomas and N. V. Trao in [I14]
and independently, but somewhat later, by the author and W. Zwonek in [I03]. In the

latter work the proof is considerably shorter and includes a complete characterization of
the two-element subsets A and B of D for which we have the critical double equality

lDQ(A X B, (Z,U))) = l]D)(A, Z) = ZD(B,’IU).

(This characterization shows that the product property is not typical for the generalized
Lempert function.) By applying an automorphism of D?, it suffices to consider the case
z=w=0.

Note that, as above,

lD2 (’I‘, (Za w)) > gn2 (T7 (Z7 w)) = max{gD(p, Z)a ZD(qa w)} = max{lD(pa Z)v ZD(qv w)}v

in particular, always

Ip2(A x B, (z,w)) > max{Ilp(A4, 2),Ip(B,0)}. (1.7.3)
PROPOSITION 1.7.2. If A ={a1,a2} C D, and B = {b1,b2} C D, then
Ip2(A x B,(0,0)) = lp(A,0) = In(B,0) (1.7.4)

if and only if there is a rotation that maps A to B.
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In addition, if B = e A, § € R, then the extremal discs@for Ipz(A x B,(0,0)) are
of the form ¢ — (e'9¢, e #T0(), o € R.

REMARK. From the last statement it follows that the extremal discs for Ip2 (A x B, (0,0))
pass through two points from the four-element set A x B, although the Lempert function
decreases under addition of poles, according to Corollary

Proof. Let 1 = (11,12) be an extremal disc for Ipz2(A x B, (0,0)). Then we can find a
set J C {1,2} x {1,2} and points z; € D, (k,1) € J, such that

G(zk) = (arb) and  [] ekl = b2 (A x B,(0,0)).
(k,l)eJ
First let (1.7.4) be true. If #J = 1, we can assume that J = {(1,1)}. Then
|z11] = Ip2 (A x B, (0,0)) = Ip(A4,0) = |araz| < |as| = [¢1(z11)] < |z1]
(according to the Schwarz—Pick lemma), a contradiction.
If #J = 3, we can assume that J = {(1,1), (1,2), (2,2}. As above,
\21,121,22’2,2| = |a1a2\.

On the other hand, as ¢1 € O(D, D), v1(0) =0, p1(z1.1) = v1(21,2) = a1, p1(z2.2) = ag,
we get
|z1,121,2] < a1,  |z2,2] < asl,

with equalities attained when ¢ is a Blaschke product of order 2 and a rotation, respect-
ively—a contradiction.
Let #J = 4. We can assume that

Y1(2) = 2®@4(2), Pa(z) = eitz@g
for some «, 5 € D,t € R. Then
Zl,lq)a(zl,l) = 21,2‘1’(1(21,2), 22,1(1)04(22,1) = 22,2(1)04(22,2)7
211Pp(21,1) = 221Pp(22,1),  212Pp(21,2) = 222P5(22.2).
Consequently,
211 = Pal212) = Pg(221), 212 =Pp(222), 221 =Pa(222).
Hence 21,1 = @4 0 Pg(22,2) = Pg o D, (22,2). After some calculations we get the equality
(2—af —apf)(z5 (@ — B) + z22(af — aB) + 5 —a) = 0.
It is easily seen that if o # 3, then the two roots of the equation
2@a—-pB)+z(af—aB)=a—p
lie on the unit circle. Therefore oo = 3, 212 = 22,1, 21,1 = %2,2, a contradiction.

Let now #J = 2. We can assume that J = {(1,1), (2,2}. Then it easily follows that
P1(2) = ez, y(2) = €22, 01,05 € R, and so B = ¢ A, where 0 = 6, — 05.

(°) As D? is a taut domain, the infimum in the definition of 2 is attained and the corre-
sponding discs are called extremal.
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Conversely, if B = € A, the mapping (id,e?id) € O(D,D?) is a competitor for
Ip2(A x B,(0,0)) and so

In(A4,0) =ip(B,0) > Ip2(A x B,(0,0)).
To get (|1.7.4), it remains to use (1.7.3). m

COROLLARY 1.7.3. If A and B are two-point subsets of D and z € D\ A, then the set of
points w € D such that
In(4,z) =lp(B,w) < Ip2(A x B, (z,w))

has Hausdorff dimension 1.
Proof. It suffices to note that the set of points w € D such that Ip(A4,2) = Ip(B,w)
has Hausdorff dimension 1, and there are at most two points w for which there is an
automorphism of D that maps z to w and A to B. =

We do not know whether Proposition [I.7.2] remains true for sets of equal cardinality,
greater than 2. Anyway, for a given point (z,w) € D? this proposition and (1.7.2)) provide

a large class of counterexamples for the product property of Ip2(A X B, (z,w)), where A
and B have an arbitrary number of elements, greater than 1.

PROPOSITION 1.7.4. Let z,w € D, A,B CD and q € (0,1) such that
max{lp(A,z),lp(B,w)} = glp2(A x B, (z,w)) > 0.
Then
max{lp(AU A1, 2),lag(BUB1,w)} <lpxc((AUA;) x (BU By),(z,w)),
if A1,B1 CD, ANA; = BN By =0 and Ip(As, 2)lp(By,w) > q.
Proof. We have

Ipxc((AU Ay) x (BU By), (2, w))
> Ipxa(A %X B, (z,w))lpxc(A x By, (z,w))lpxa(A1 x (BU By), (z,w))
> Ipxa(A x B, (2,w))la(B1, w)lp (A1, 2)
> max{lp(4,z),lg(B,w)} > max{lp(AU Ay, 2),lc(BUDB;,w)}
(the first inequality is checked immediately; for the second one see ; for the fourth
one see Corollary . m

2. The symmetrized polydisc and the spectral ball

2.1. Synopsis. This chapter is devoted to geometric and analytic properties of so-called
symmetrized polydics and the spectral ball, which have been intensively studied recently
by many authors.

To understand better the geometry of the symmetrized polydisc we need some notions
of complex convexity of domains and their interrelations; this is the aim of the first part
of Section In 5, 50] one can find a detailed discussion of their role and applications.
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We only note that C-convexity is closely related to some important properties of the Fan-
tappié transformation, and, as a deep conclusion, to the question of solvability of linear
PDEs in the class of holomorphic functions. A domain D C C™ is called C-convez if its
nonempty intersections with complex lines are connected and simply connected. Some
other notions for complex convexity of D are linear convexity (each point in the comple-
ment of D is contained in a complex hyperplane, disjoint from D), weak linear convezity
(the same, but for the points in D) and weak locally linear convezity. C-convexity implies
weak convexity, and all the four notions coincide for bounded domains with C!-smooth
boundaries. In the general case their place is between convexity and pseudoconvexity.

Indeed, in Corollary [2.6.4 we give an affirmative answer to the question of D. Jacquet
[56, p. 58] whether each weakly locally linearly convex domain is pseudoconvex. On the
other hand, in Proposition we show that each weakly linearly convex balanced do-
main is convex, which strengthens the same observation for complete Reinhardt domains
in [5l Example 2.2.4].

Theorem implies that a C-convex domain is either a cartesian product of C and
another C-convex domain, or is biholomorphic to a bounded domain; in the latter case
it is c-finitely compact (i.e. balls with respect to the Carathéodory distance are relatively
compact). This generalizes the result of T. J. Barth in [7] for convex domains.

Let £ denote the class of domains D such that the least and the largest invariant
functions of D (from complex-analytic viewpoint), namely the Carathéodory function c7,
and the Lempert function I p, coincide (and in particular they coincide with the Kobayashi
function k},).

Recently D. Jacquet [55] proved that each bounded C-convex domain with C?-smooth
boundary can be exhausted by C-convex domains with (C°°-)smooth boundaries. Then
the fundamental Lempert theorem [69] [70] can be formulated like this:

Each bounded C-convex domain with C%-smooth boundary belongs to the class L.

This property carries over to convex domains, as they can be exhausted with smooth
(even strictly smooth) domains. It was an open question whether a bounded pseudoconvex
domain from £ had to be biholomorphic to a convex domain [125] [60]. A recently found
counterexample is the so-called symmetrized bidisc Gy C C?, the image of the bidisc
D? C C? under the mapping with coordinate components the two elementary symmetric
functions of two complex variables. This domain appears in the spectral Nevanlinna—
Pick problem, related to questions from control theory and applications in engineering
mathematics (see e.g. [I, B} B3] and the references therein). J. Agler and N. Young [2]
showed that Gy € L by calculating Ig,. On the other hand, C. Costara [24] proved that G
is not biholomorphic to a convex domain. In addition, let £ denote the class of domains
that can be exhausted with domains biholomorphic to convex domains. The Lempert
theorem implies that £ C £. A. Edigarian [36] showed that even Gy & £ (see Proposition
. In connection with this and the above mentioned result of D. Jacquet let us note
the following

([I25, Problem 2|, a hypothesis of L. A. Aizenberg [4]) Can each C-convex domain be
exhausted by smooth C-convex domains?
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T heoremi) states that G is a C-convex domain. Moreover, P. Pflug and W. Zwo-
nek [106] have recently shown that G5 can be exhausted by C-convex domains with real-
analytic boundaries (see . This gives an alternative proof of the fact that G, € L.
We may also formulate the following weaker version of the above hypothesis,

(125, Problem 4']) Does each bounded C-convex domain belong to L?
An affirmative answer would follow from an affirmative answer to
([125, Problem 4]) Is each bounded C-convex domain biholomorphic to a convex domain?

Theorem [2.6.6(i) together with the result of A. Edigarian gives a negative answer to
the last question.

In a similar way to G2 one can define the symmetrized polydisc G,, C C™. It is natural
to ask whether G,, for n > 3 has the same properties as Go. For example M. Jarnicki and
P. Pflug pose the following question:

([60, Problem 1.2]) Does G,, belong to L or even to €7

Clearly if G,, ¢ L then G,, & £.

Chronologically, first the author proved that G,, € € forn > 3 (T heorem. In its
proof the approach from [24, [36] is applied to so-called generalized balanced domains. In
Theorem [2.5.2| we prove that if such a domain in C™ belongs to &, then its intersection
with a special linear subspace of C™ is necessarily convex. This is in accordance with the
fact that a (usual) balanced domain is in the class € exactly when it is convex (Corollary
2.5.3)). Theorem follows from Theorem by showing that the corresponding
intersections for G,, are not convex.

Let us note that G,, for n > 3 is a linearly convex domain, but it is not C-convex by
Theorem ii).

Theorem [2.5.7]is also a direct corollary from G,, ¢ £, n > 3. This question is discussed
in Section [2.7] To this end one uses the infinitesimal forms of cg,, lg, and kg, , namely
the Carathéodory, Kobayashi and Kobayashi-Buseman metrics: g, , kg, and Ag,. We
also introduce a naturally emerging distance mg, on G, (an analogue to the Mobius
distance mp) and its infinitesimal form at the origin, p;,.

In [2] J. Agler and N. Young have shown that

ZG2 = ké@ = Ca2 = MgG,,
and mg, is (almost) explicitly calculated. The proof is based on the method of complex
geodesics; their complete description for Gy can be found in the work of P. Pflug and
W. Zwonek [106].
In [25] this identity is also obtained for some special pairs of points from G,, n > 3.
However in this case it turns out that

I, (0,) 2 K, (0,2) > ¢ (0,-) 2 mg, (0,) (Corollary B74).

These inequalities are directly obtained from the corresponding inequalities between the
infinitesimal forms, which are basically considered on the coordinate directions (Theorem
2.7.3).
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In Proposition we get an estimate for the difference between g, ., (0;-) and
pon+1 in the first direction where they do not coincide (Proposition . This esti-
mate is based on a “polynomial” description of g, . Using this description and computer
calculations it is shown that

RG5(0;+) # v65(0;-)  (Theorem [2.8.3))

so the Carathéodory and Kobayashi metrics do not coincide on Gs. It can be expected
that the approach in the proof is applicable in higher dimensions too.

The fact that G,, for n > 3 has quite different properties from G is confirmed by
Theorem [2.4:2] which gives an affirmative answer to the following question of M. Jarnicki
and P. Pflug.

([60, Problem 3.2|) Does the Bergman kernel of G,, (unlike G2) have zeroes?

The proof is based on an explicit formula obtained by A. Edigarian and W. Zwonek
in [37].

As we noted, the symmetrized polydisc appears in connection with the spectral
Nevanlinna—Pick problem, i.e. an interpolation problem for maps from the unit disc D
into the spectral ball ,, the set of complex n X n matrices of spectral radius less
than 1 (i.e. with eigenvalues in D). The infinitesimal form of this problem is the spectral
Carathéodory—Fejér problem. The easiest forms of these problems are reduced to finding
la, and kg, , while the continuous dependence on the given data reduces to the continuity
of these two functions. In the case of cyclic matrices (i.e. ones with a cyclic vector) they
coincide with the corresponding functions on the taut domain G,,, so they are continuous.

In Section we provide some equivalent conditions for a matrix to be cyclic (part
of these are used in the last sections of the chapter).

In Section[2.2) we gather the basic properties of the above problems and their reduction
to similar problems on the symmetrized polydisc in the case of cyclic matrices. (As this
is a taut domain, the problems there “depend” on the data in a continuous manner.)
This also determines the corresponding relationships with the Lempert function and the
Kobayashi metric on the symmetrized polydisc.

Section [2.9]is dedicated to the continuity of g, (in the general case). The main result
there (Theorem states that lg, (A;-) is a continuous function exactly when A is
a scalar matrix or n = 2 and A has (two) equal eigenvalues. This result is based on
Proposition which is obtained from the basic Proposition [2.7.1](iii).

In Section we discuss the (dis)continuity of kg, by studying its zeroes. In partic-
ular we have found all matrices A € Q3 such that kq,(A; B) > 0 for B # 0 (a relatively
easy question for n = 2).

As an application, in the last section 2.11] we show that the Kobayashi metric of a
pseudoconvex domain is not equal to the weak “derivative” of the Lempert function in the
general case (this gives a partially affirmative answer to a question from Section . The
counterexample is Q3 (or, of a lower dimension, the domain of zero-trace matrices in Q3).

Finally, we point out that a detailed study of another biholomorphic invariant, the
pluricomplex Green function, on the spectral ball and the symmetrized polydisc can be
found in [IT6].
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2.2. Preliminaries. Most of the facts in this section can be found in [1} 2] 8] 11} 24}
25, [26], 37, [60, [106].

Let D C C be the unit disc. Put o = (01,...,0,) : C* — C", where

ok(215- .y 2n) = Z Zj - %, 1<k<n.
1<ji<-<jgr<n
The open set G, = o(D") is called the symmetrized n-disc. Note that G,, is a proper
image of the n-disc D™ so it is a pseudoconvex domain. Moreover, by [25, Corollary 3.2] we
easily see that G,, is even a c-finite compact domain (in particular hyperconvex), so it is a
taut domain. Its Shilov boundary is o(T"), where T = 9D is the unit circle. Furthermore,
the group of (holomorphic) automorphisms of G,, admits a simple description:
Auwt(G,,) ={o(h,...,h): h € Aut(D)}.

More generally, a characterization of the proper holomorphic mappings from G, to itself
can be found in [37].

We also note that G, is close to being a balanced domain (see Section [2.5). More
precisely,

ma(2) = (A21, A220, ..., A"2,) €G,, AED, 2z € G™

In fact G, is the set of points (ay, ..., a,) € C" such that the zeroes of the polynomial
F(O) =¢"+ 3051 (=1)a;¢"7, ag # 0, lie in D. Clearly G; = . Furthermore, using the
above description and the Cohn rule (see Section , we find that

Go = {(s,p) : |s —3p| + [p|* < 1}.

The symmetrized polydisc appears in connection with the so-called Nevanlinna—Pick

spectral problem.

Denote by M., the set of n x n matrices of complex coefficients. The spectral ball €2,

is defined by

Q,={AeM,:r(A) = /\gslg(ﬁ)l)\‘ <1}

(r(A) and sp(A) are the spectral radius and the spectrum of A, respectively).

The spectral Nevanlinna—Pick problem, abbreviated as SNPP, is the following;:

Given m different points Ay, ..., A\, € D and m matrices Ay, ..., A, € Q,, determine
whether there exists a mapping F' € O(D, ,,) that interpolates the data, i.e. F(\;) = A,
forj=1,...,m.

A nonconstructive necessary and sufficient condition for solvability of SNPP is the
solvability of the classical Nevanlinna—Pick problem for matrices that are similar to the
given ones (see e.g. [10]). A more effective form of this result for 2 x 2 matrices can be
found in [9]. Now let us describe an approach that reduces this problem of n?m parameters
to a problem on G,, of nm parameters.

We say that a matrix A € M,, is cyclic if it has a cyclic vector (i.e. C* = span(v, Av,
..., A" 1y) for some v € C"). In the appendix at the end of this section we provide some
equivalent conditions for a matrix to be cyclic. The set of cyclic matrices in §2,, will be
denoted by C,,.

For A € M, put for brevity c(A) = o(sp(A)). From the context it will be clear
whether we mean o € O(M,,,C"™) or 0 € O(C",C™) (as defined at the beginning of this
section).
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The following basic theorem for lifting a mapping from O(D, G,,) to O(D, 2,,) holds:

THEOREM 2.2.1 (see [I, 25]). Given m different points A1, ..., Ay € D and m matrices
A, Ay €C. Let f € OD,Gy,) be such that f(\;) = o(A;j) for j =1,...,m. Then
there exists F' € O(D,Qy,) such that f =0 o F and F(\j) = A; forj=1,...,m.

For arbitrary matrices Ay, ..., A, € €, for n < 3 the possibility of lifting a mapping
is thoroughly discussed in [93].

As C, is a dense subset of (,,, this theorem states that in the generic case SNPP is
equivalent to an interpolation problem on G, (clearly one cannot expect a similar result
in full generality, as the spectrum does not contain the full information on a given matrix
up to similarity, in contrast, for example, to its Jordan or Frobenius form). As we noted, a
basic advantage of the second problem compared with the first one is the smaller number
of parameters. Furthermore, G,, is a taut domain, while on €2,, one cannot apply the typi-
cal Montel arguments, since €2, is not even Brody hyperbolic (it contains complex lines).
Probably the only advantage of €2, is that it is a balanced domain; however this is com-
pensated by the previously mentioned fact that G,, is close to being a balanced domain.

The solution of SNPP is equivalent to finding the Lempert function of €2,,. For cyclic
matrices, Theorem reduces this question to finding the Lempert function of G,.
Indeed, the following simple proposition holds; we omit its proof.

PROPOSITION 2.2.2. Let D C C™ be a domain, ai,as € D, A1, Ao € D.

(i) If there exists f € O(D, D) such that f(A) = a1 and f(A2) = ag, then Ip(ai,az) <
mD()\l, )\2)
(ii) Ifip(a1,a2) < mp(A1, A2), then there exists an f as in (i).

As usual, mp(A1, A2) = ’%| is the Mobius distance.

Note that if for example D is a taut domain, then there exist extremal discs for Ip
and so the condition Ip(a1,as) < mp(A1, A2) is equivalent to the existence of a corre-
sponding f. However, as mentioned, the spectral ball is not such a domain. On the other

hand, G,, is a taut domain. Then Theorem [2.2.] implies that
lQn(A]_,AQ) = l(;,n(O'(Al)7O'(A2)), Al,Ag eC, (2.2.1)

(and there exists an extremal disc for I, (Aj, A2)). Note that as o € O(Q,,,G,,), in the
general case (A1, A € Q,,) we have the inequality > .

As the cyclic matrices form a dense subset of M, and the Kobayashi metric is con-
tinuous,

an (Al, AQ) = k(g,n (O’(Al), O'(AQ)), Al,AQ S Qn (222)

The above considerations and the (almost) explicit calculation (by the method of
geodesics) of Ig, (= cg,) (see the Introduction) permit a complete solution to SNPP for
n = 2 (see e.g. [26]). As noncyclic 2 x 2 matrices are scalar, for this purpose it remains just
to calculate lg, (A, ") for n = 2 (I,, € M, is the unit matrix). As £, is a pseudoconvex
balanced domain whose Minkowski function is the spectral radius r, one has I, (0,-) = r
(see Proposition [[.3.1fiv)). Then from

®y(A) = (A= AL (I, — NA)™ € Aut(Q,), (2.2.3)
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we deduce

lo, (M, A) =1(Pr(4)) = aérb}gé) mp(A, a). (2.2.4)

Hence it also follows that 25 is an example of a nonhyperbolic pseudoconvex balanced
domain such that ci, = k&, < la,; on the other hand, k¢ (A1, A2) = lo, (A1, A2) for
Al, Ay € Co.

In connection with the use of @ let us note that in [I10] there is a conjecture on
a complete description of Aut(€,). This conjecture has recently been disproved in [65].
Note that for the Euclidean ball B,,, each proper holomorphic mapping from §2, into
itself is an automorphism (see [128]).

The approach of complex geodesics is applied in [25] for some special pairs of points
from G,, for n > 3. In other words, the Lempert function for all these pairs of points
coincides with the Carathéodory function. However in Section [2.7] we will see that this
is not true for each pair of points by obtaining some inequalities for the Carathéodory
and Kobayashi metrics on G,,, taken at the beginning. These inequalities and the lower
estimates from Section (for the Carathéodory metric, and hence for the Kobayashi
metric) carry some information on the so-called spectral Carathéodory—Fejér problem.
A reduction of this problem to a corresponding problem on G,, in the spirit of Theorem
can be found in [53, Theorem 2.1].

The easiest variant of this problem, abbreviated as SCFP, is the following:

For A € Q,, and B € M,,, determine whether there exists a mapping F' € O(D, 2,,)
such that F(0) = A and F'(0) = B.

In [93] SCFP is completely reduced to a problem on G,, for n > 3.

As SNPP, SCFP is also connected with finding xq, . Similarly to , we have

kq, (4; B) = kg, (0(A),0’4(B)), A€C,, BeEM,, (2.2.5)
where in this case o’y = 0 4 is the Fréchet derivative of o at A. Furthermore,
r(B)
My B) = —, 2.2.6
o, (i B) = 773 (2:26)

which together with [53] Theorem 1.1] permits a complete solution of SCFP for n = 2.
We conclude the section with the fact that the Carathéodory metric and Carathéodory
distance on §2,, can be calculated via those on G, (cf. (2.2.2)).

PROPOSITION 2.2.3. The following equalities hold:
CQn(A17A2) = CGW(O.(Al)’U(A2))7 A15A2 S an
Yo, (A; B) =g, (0(A);0'4(B)), A€Q,,BeM,.
Proof. Asco € O(G,,,D), we have the inequalities > . For the reverse inequalities it suffices
to show that if f € O(Q,,D), then there exists a g € O(G,,,D) such that f = goo. First
note that if A, B € ), have identical spectra, then there exists an entire curve ¢ in
Q,,, passing through A and B (see Proposition [2.7.1](ii)). The Liouville Theorem (applied

to the function f o ) implies f(A) = f(B) and so g is a well defined function. It is
holomorphic, since for each layer 0~ (o(C)) there is a matrix C so that rank o =n (see

Proposition [2.3.1]). =
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2.3. Cyclic matrices. In this brief section we provide some equivalent conditions for a
matrix to be cyclic. Part of these will be used at the end of the chapter.

First let us recall some definitions.

For A € M,,, ad4 : X — [A, X] is the adjoint mapping of A and C4 = kerad, is the
centralizer of A.

Let pa(z) = 2" + a,_12™ 1 + - + ag be the characteristic polynomial of A. The
matrix

0 0 0 —ao
1 0 0 —aq
0 1 0 —ag
0 0 1 —a,_1

is called adjoint to A (or to p).
PROPOSITION 2.3.1. For a matriz A € M,, the following are equivalent:

(1) A has a cyclic vector.

(2) A is similar to its adjoint matriz (i.e. it is the Frobenius form of A).

(3) The characteristic polynomial and the minimal polynomial of A coincide.

(4) Different blocks in the Jordan form of A correspond to different eigenvalues (i.e. each
eigenspace is one-dimensional).

(5) C(A) ={M e M,,: M = p(A) for some p € C[X]}.

(6) dimCy = n.

(7) rank o’y = n.

(8) kero’y =Imady .

A matrix with (one of) the above properties is called cyclic.

Proof. The equivalence of the properties (1) to (6) is well-known and can be found e.g.
in [51), 52]. We need to prove their equivalence with (7) and (8).
Observe that if M € M ! (i.e. M is an invertible matrix), then

oy (X) = O—E\/I—lAM(MilXM)'

So to prove that (2) implies (7), we can assume that A coincides with its adjoint matrix.
Let X = (x;;) with z; ; =0 for 1 <j <n — 1. Then

o' (X) = (~Tpms Tn1my - (1) 1),
and consequently Im ¢’y = C", i.e. ranko’y = n.

Let us now prove that (7) implies (4). Let A € C, and My = M — Al,,. As py () =
pu, (z+ ), there exists A(X) € M1 such that (M) = A(X)o(M,). Therefore rank o’y =
rank oy .

Suppose that (7) is true and (4) is false. There exists an eigenvalue A of A such
that dimker(A — A,) > 2. Let us complete a basis of ker(4 — A\I,,) to a basis of C™.
Then the matrix A — M\, is transformed to a matrix with at least two zero columns
and consequently oy, (A — AI,, + X) is a polynomial of degree two or more with respect
to x; ;. Hence (0y,n)« 4, = 0 and so rank o’y =ranko’y, <n — 1, a contradiction.

Finally, let us show that (6) 4+ (7) < (8). It is easily seen that Imads C kero’,.
Consequently, Imad4 = kero’; if and only if these two linear spaces have the same
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dimension. By the rank theorem, this is equivalent to dimC4 = rank ¢/,. It remains to
use that dimC4 > n > rank o/, for each A € M,,. n

2.4. G, is not a Lu Qi-Keng domain for n > 3. In 1966 Lu Qi-Keng [72] conjectured
that the Bergman kernel (see Section for the definition) of a simply connected domain
in C™ has no zeroes.

A domain with this property is called a Lu Qi-Keng domain. This conjecture was
disproved in 1986 by H. P. Boas [I3]. A review of the role of Lu Qi-Keng domains in
complex analysis, together with various counterexamples, can be found for example in
[14, [60].

Using Bell’s transformation formula (see e.g. [58]), in [37] the authors find an explicit
formula for the Bergman kernel of the symmetrized polydisc. This formula implies that
Gs is a Lu Qi-Keng domain.

The aim of this section is to provide an affirmative answer to

([60, Problem 3.2]) Does the Bergman kernel of G,, have zeroes for n > 3%

Thus G, is the first example of a proper image of the polydisc D™, n > 3, that is not
a Lu Qi-Keng domain, once again showing the difference in the structure of G,, for n = 2
and n > 3.

Now let us state the formula for the Bergman kernel of G,, [37]:

det[(1 — A\j7ip) *li<jh<n
Kg,(0(A),0(n) = i N ——
" H1§j<k§n[()‘j - )‘k)(ﬂj — )]
Although formally the right-hand side of (2.4.1)) is not defined on the whole G,, it is
continued smoothly there. From this formula we get

. A ueD™ (2.4.1)

PROPOSITION 2.4.1 (|37, Proposition 11]). Gs is a Lu Qi-Keng domain.
Proof. From ([2.4.1)) it is easily deduced that
2 — (A1 + Xo)(fHy + i) + 2M1 Ao iy i
Key(o(N), o(1) = - X2)(y + o) + P daifly
m Hj,k:1(1 — Ajlk)
Consider an automorphism of D that maps ps to 0. It clearly defines an automor-

phism of Go (see the beginning of Section . Consequently, it suffices to show that
Kg,(o(N),0(u)) # 0 if pg = 0. This is trivial since [(A; + A2)fi;| < 2. m

In contrast to Proposition [2.4.1] we have
THEOREM 2.4.2. G,, is not a Lu Qi-Keng domain for n > 3.
Proof. We prove by induction on n > 3 that:
(x) there exist points A, u € D™ with pairwise different coordinates such that
Ap (X, p) = det[(1 = \j7) " *higjkcn =0
and fr, = Ap(, Ay ooy Ay 1, - vy i) Z 0.

Base of induction: n = 3. We use the following formula (see Appendix A):

a()2?2 —b(v)z + 2¢c(v
Kg,(0(A1, A2, A3), 0 (1, po, 0)) = 7T3H( ) (v) - )\(-L)Lk)2’
1<5<3,1<k<2 J

(2.4.2)
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where z = Ti, /71y (1 #0), v; = \jfiy, j =1,2,3, and
a(v) = 02(v)(2 — 01(v)) + 03(v)(201(v) — 3),
b(v) = (o1(v) = 2)(02(v) — 201(v) +3) + 3(03(v) — 01(v) + 2),
c(v) = o9(v) — 201 (v) + 3.

For the fixed point vy = (e'7/9,€'7/3,¢=9/6) the number

ioya6 = 3V3 — V40V3 — 69
e
V2(3v3 - 5)

is a root of the equation a(1g)z3 — b(vo)20 + 2¢(vo) = 0 (see Appendix B). As z5 € D for
v € D? close to vy, there exists z € D close to zg such that a(v)z2 —b(v)z+2c(v) = 0. Now
choosing p; € D such that |u1| > |v1], |v2l, [v3], we get points A\, u € D? with pairwise
different coordinates such that Az(A, p) = 0.

It remains to check that f5 # 0. If this fails, then f3(0) = f4(0) = f£(0) =0, i.e.

zZo =

iy i [
det | (1—Aofi)™® (1= Nofip) ™ (1= Dofip) %] =0
(1= Xafiy) 2 (1= Aafip) ™2 (1 — Agrg) 2

for j = 0,1,2. As puq,po, pus are pairwise different, the vectors (1,1,1), (p1, e, us3)
and (u?,u3,p3) are C-linearly independent. Consequently, the vectors in the second
and third rows of the above determinant are C-linearly dependent. In particular,
Kg,(0(A2, Ag), 0 (2, 3)) = 0, a contradiction.

Induction step. Suppose that () holds for some n > 3. Choose A1 and 5\n+1 in D,
close to A1 and 1, respectively (this guarantees that the coordinates of the new points in
D"+ are pairwise different), so that

gn-i—l(j\l, X’I’L-‘,—l) = An-‘rl(;\la )\2) sery )\77,) 5"1’7,-‘1-17/’('17 o 7/’1‘1'7,7 A’rL-i-l) = 0
and gn11(+, Ant1) Z 0. Note that
fn(S\l)
(1= Ansaf?)?

where h,, is a continuous function on I x D. As f,, # 0 is a holomorphic function, for

In+1 (5\155\n+1) = + hn(;\175\n+1);

each small r > 0 the number \; is the only zero of f, in the closed disc D C D of
center A\; and radius 7. Then m = mingp | f,|/max, . g |hn| > 0. Consequently, |f,| >
(1= Ag1®)2|hn (- Apg1)| on OD, provided 1 —|X,41]? < v/m. Fix one such A, so that
g1 # Njspj, 1 <5< n. As Bn(-; Ans1) is a holomorphic function on I, by Rouché’s
theorem the number of zeroes of g,11(, 5\n+1) in D equals the multiplicity of A1 as a zero
of fn; in particular, gn41(-, Ang1) # 0. It remains to choose 7 so that )\j7uj75\n+1 Z D,
1< j<n,and a zero A; of gn+1(-,5\n+1) inD. m

REMARK. The above proof shows that if n > 4, then there exist points (\,v), close to
the diagonal of D" x D™ in the sense that A\; = pu; > 0 for j = 4,...,n and such that
Kg, (0(N),0(u)) = 0. On the other hand, one can prove that Kg,(o(X\),o(n)) # 0 if
A3 = 3.
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APPENDIX A. (2.4.1) implies that
(A = A2) (A = Az) (A2 = Na) Ty aa (g — i) Ky (0/(A1, Aty Ag), o (pan, o2, 0))

1-v1)"2 (1—z211)"2 1
=det [(1-19)"2 (1—21)"2 1

(1-v3)"2 (1—215)72 1
~de 1—v)2-1-v3)"2 (1—211)"2—(1—2v3)2
=12 (o) (- ) - (1- 21/3)2}

(rn —v3)(va —v3)z

(1 —v3)%2(1 — zv3)?
B (1rn —v3)(va —v3)z
B ITi<j<s1<hea(l = AjRR)
— (o + 3 — 2) (211 + 23 — 2)(1 — 1)2(1 — m)?) (2.4.4)
_ (v1 —v3)(va — 13)2(2 — 1)(A(v)2% — B(v)z + QC(I/))' (2.4.5)
[licj<si<nca(l = AjRk)?
To find A(v), B(v) and C(v), we use that the coefficients of 2%, z° and z in the large
parentheses of are equal to
A(v) = (v1 +v3 — 2) (o + 13)v (1 — 1) — (vo +v3 — 2) (11 + v3)v2(1 — v1)?,
—2C(v) = 2(v + v3 — 2)(1 —v1)? = 2(v; +v3 — 2)(1 — )2,
B(v)+2Cv) = (11 +v3 —2)(vy + v3 4+ 4v1) (1 — 1p)?
— (413 —2) (v + v3 +4us)(1 — 11)?,

(1—v1)? (1—2zv1)2
votvz—2 zv2+2zvs—2
(1—v2)2 (1—2zv2)2

(2.4.3)

[u1+y3—2 zv1+zrvs—2

5 ((Vl + vz —2)(2vy + 213 — 2)(1 — 211)2(1 — )2

respectively. Trivial calculations show that
A(v) = (va —11)(03,2(V)(2 — 03,1 (V) + 03,3(v)(201(v) — 3)),
C(v) = (v2 —11)(02(v) — 201(v) + 3),
B(v) = (vra — 11)((01(v) — 2)(02(v) — 201(v) + 3) + 3(05(v) — 01 (V) + 2)).

To infer (2.4.2)), it remains to substitute these formulas in (2.4.5)) and then to compare
(2.4.5) and (2.4.3).

APPENDIX B. As
L+2vV3+iv3
2 )
the formulas for a(v), b(v) and ¢(v) lead to
a(vy) = (3\/3— 5)ei"/3, b(vg) = (6\f_ 3\/6)61'0/12, c(vo) = (23 — 3)6—1‘0/6.

—io/4

24 V3 +i3 i
01(1/0) = Uz(Vo) = #, 03(1/0) =€ /3,

Then for z =€ x we have

€7/%(a(v)2? — b(vo)z + 2¢(v0)) = (3v/3 — 5)a® + (3V6 — 6v2)x + 4v/3 — 6 =: p(a).
6—3\/§:t\/m and

It remains to note that the zeroes of the polynomial p are equal to V3(3v/3-5)

the smaller one lies in (0,1).
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2.5. Generalized balanced domains. To show that G, & £ for n > 2 (see the Intro-
duction), we will define the so-called generalized balanced domains. For such domains we
will find a necessary condition for belonging to £ and then we will show that G,,, n > 3,
does not satisfy this condition; for Go the proof is somewhat different.
Let k1 < --- <k, be natural numbers and

(21, zn) = (W2, M2 A eCzeCm.
A domain D in C™ will be called (k1, .. ., k, )-balanced or generalized balanced if wx(z) € D
for each A € D, z € D. Put

hp(z) =inf{t >0: 7 ,(2) € D}, =zeC"

(generalized Minkowski function). The function hp is nonnegative and upper semicon-

tinuous,
hp(ma(z)) = |Mhp(2), AeC,zeC",
D={2eC":hp(z) < 1}.
EXAMPLE. hg,, (0(&1,...,&n)) = maxi<;<n |&;]-
Clearly the (1,...,1)-balanced domains are exactly the usual balanced domains. Part

of their properties remain true for the generalized balanced domains.

PROPOSITION 2.5.1. Let D be a generalized balanced domain. Then D 1is pseudoconvex
exactly when log hp € PSH(C™). Furthermore, the following are equivalent:

(i) loghp € PSH(C™) N C(C™) and h,'(0) = {0} (i.e. D is a bounded domain);
(ii) D is a hyperconvex domain;
(i) D is a taut domain.

Proof. Clearly if loghp € PSH(C"), then D is pseudoconvex.

To prove the converse, let D be (ki,...,ky)-balanced. Put ® : C* 5 (21,...,2,) —
(zM, . 2z e, D=®""(D)and hp = hpo®. Then D = {z € C" : hp(z) < 1} and
hp(\z) = |Ah(z), A € C, z € C". Consequently, D is a pseudoconvex balanced domain
with Minkowski functional hp. So loghp € PSH(C™). On the other hand, hp(z) =
h p(W/Z1,-.., ®%/Zn), 2 € (C"),, where the roots are arbitrarily chosen. Consequently,
log hp € PSH((C™),). By the Removable Singularities Theorem (see e.g. [58]) we conclude
that log hp € PSH(C™).

Now observe that the implication (ii)=-(iii) is true for an arbitrary domain, while
(i)=(ii) is trivial, since logh is a negative exhausting plurisubharmonic function for D.
To prove (iii)=-(i), we first note that D is a pseudoconvex domain and so loghp €
PSH(C") according to the first part of the proposition. Furthermore, if h},'(0) # {0},
then hp(z) = 0 for some z. Then D contains the entire curve C 3 A — my(z) € C”
and so D is not even Brody hyperbolic, a contradiction. Now suppose that hp is not
continuous. As hp is upper semicontinuous, one can find € > 0 and a sequence of points
z; tending to some z so that hp(z;) < hp(z) —e. By homogeneity of hp, we can assume
that hp(z;) < 1 < hp(z) for each j. Then the holomorphic discs D 3 A — m(z;) € D
converge (locally uniformly) to the disc D 3 A — 7, (2) € C™ that does not lie completely
within D, a contradiction. This proves (iii)=(i). =
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REMARKS. (a) The above proof shows that a generalized balanced domain is hyperbolic
exactly when it is bounded.

(b) In the case of a balanced domain, the implication (iii)=(i) can also be proven
like this. As D is a taut domain, vp is a continuous function. It remains to observe that
a taut domain is hyperbolic and pseudoconvex, so 751(2; ) = {0} for each z € D and
vp = hp.

The next theorem provides a necessary condition for a generalized balanced domain in
C™ to belong to the class £ in terms of convexity of its intersection with a linear subspace
of C™.

THEOREM 2.5.2. Let D € &€ be a (ky,...,ky)-balanced domain in C™. If 2k, 1 > ky, for
some m, 0 < m < n—1, then the intersection D,,, = DN{z1 = -+ = z, = 0} is a convex
set (we put Dy, = D if m = 0).

Proof. The proof is similar to that of [36, Theorem 1].

Fix a,b € D,,. Then we can find a domain D’ C D that is biholomorphic to a
convex domain G, and such that Aa,A\b € D’ for A € D. Let ¥ : D’ — G be the
corresponding biholomorphic mapping. After a linear coordinate substitution we can
assume that ¥(0) =0 and ¥’(0) = id. Put

o) = LA+ V),

Then ¥~og,;()) is a holomorphic mapping from a neighborhood of D in D. Let f,5(\) =
T1/x © U 0 gap(A). We will show that

. a+b
lim fu(A) = . (2.5.1)

Then fu5(\) extends analytically to A = 0. Consequently, h o f,;, € PSH(D) according to
Proposition and the maximum principle shows that

h(fab(0)) < max h(far(N)) < 1.

Hence “T'H’ € Dy, for a,b € D,,, i.e. D,, is a convex set.
To prove (2.5.1)), note that the equalities ¥=1(0) = 0 and (¥~1)’(0) = id imply
U5t o gan(N) = gy (V) + Ogar (W), =1,
As ¥(0) =0, ¥'(0) = id and a,b € D,,, we get
a; + b;

gari (V) = TN + O(A ),

The inequalities 2k,,4+1 > k, show that

Uit oga(N)  a;+b

J _% Ty

E =75t O(|A]).
Then ([2.5.1)) is obtained by letting A — 0. =

When m = 0, Theorem implies

COROLLARY 2.5.3. A balanced domain is in the class € exactly when it is convex.
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This also follows from Corollary that uses the Lempert theorem.
The condition 2k,, 11 > k, is essential as seen from the following

ExAMPLE. The (1,2)-balanced domain
D={2€C?: |z > +3|z+ 2} < 1}
is not convex (for example, (1,0),(2i,4) € D, while (1/2 +i,2) ¢ D)), but it is bi-
holomorphic to the (1,2)-balanced domain G = {z € C? : |21]2 + 3|22| < 4} (under the
mapping (z1,29) + (21, 22 + 23)).
Clearly the symmetrized polydisc G,, is a (1,...,n)-balanced domain. However The-

orem cannot be directly applied to show that Gy € £ (since 2k; = ko). Anyway its
proof permits us to get

PROPOSITION 2.5.4 (|36, Theorem 1]). Gz & €.

Proof. Assume the contrary. Choose ¢ € (0,1) and put G. = {z € C? : hg, < e}.
Then we can find a domain D, that is biholomorphic to a convex domain and so that
G. C D, C Gs. A closer inspection of the proof of Theorem easily shows that there
exists a constant ¢, € C such that
ar +by as + by
( 2 72

+c.(a; — b1)2) € Gy for each a,b € D,.

If = arg(c.), then for a = o(e,ice="%/2), b = o(e, —ice="9/2) we get c(e) = (e, —4|c.|e?)
€ G3. The example at the beginning of this section implies that

E1—&—\/1+16|c€\ _
— =

G2 (C(E)) <1

and so lim._,gc. = 0. Thus %H’ € G, for each a,b € Go, i.e. Gy is a convex domain. We
reached a contradiction, as (2,1), (2i, —1) € 0Gy, while (1 +4,0) € Gy. =

The above proof can be easily modified to get
PROPOSITION 2.5.5. If D is a balanced domain, then Go X D & £.

Recall that G2 € £. When we choose a D € L (for example convex), Propositionm
gives the first examples of domains in C™, n > 3, that are in £ but not in £.
We will now prove that G,, € £ for n > 3. To this end we need the following Cohn

rule that permits one to learn in finitely many steps whether the zeroes of a polynomial
lie in .

PROPOSITION 2.5.6 (see e.g. [I09]). The zeroes of the polynomial f(¢) = Y27 a;¢" ™7
(n > 2, ap # 0) lie in D if and only if |ag| > |an| and the zeroes of the polynomial
* _ @f(Q=an¢"F(1/Q)
£1(Q) = BLO=e,

lie in D.
ProposiTION 2.5.7. G, € & for n > 3.

Proof. As G, is a (1,...,n)-balanced domain, by Theorem it suffices to prove that
if m = [n/2], then the set G,, of points (am41,...,an) € C*™ for which the zeroes of
the polynomial f,(¢) =¢™ + >0, 1 a;¢"7 lie in D is convex.
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First we will consider the cases n = 3 and n = 4, and then we will reduce the case
n > 5 to them.
Case n = 3. For f3(¢) = ¢3 + p( + q we have

f3(6) —a¢® F5(1/C)
¢

£ = = (1—1q/*)¢* — pa¢ +p

and
*k 1- q p i 1 ¢
F4(0) = (1—1q*)f3 (2 ¢Cfi(1/Q)
By Proposition [2.5.6] after some calculations we get
Gs = {(p,q) € C*: |g| < 1, 7(p,q) < 0},

= ((1—q*)* = Ip|*)¢ = Pa(1 — |q|*) + p°7.

where

r(p,q) = [pa(L — |gI*) — p°ql + p|* — (1 — |g|*).
It is easily seen that if ¢/ € (—1,1) and p’ = 1 — ¢, then (p1,q1) = (p'e*™/3,¢') and
(pa, q2) = (p'e™/3, q'e™/?) are boundary points for D (as r(p’,q') = 0 and r(p,¢’) < 0 for
p€ (|¢'| = 1,p")). Then for

(Po, q0) = <P1 —;p27 o ;(b) = (p’ cos %emﬂ,q’ cos Ze“i/‘l)

we have
P00 (1 — g0]*) — P50l = IPodo| (1 — lgol? + |pol)-
Consequently,
r(Po; 20) = (1 — |go|* + [po) (1 + |g0]) (Ipo] + lgo| — 1)
So 7(po, go) > 0 exactly when |po| + |go| > 1. For ¢’ = 1/2 we get

3v/3 + 2V/2
\f;\f>1

So (po, qo) & Gs3, showing that G'3 is not a convex set.

Ipo| + |qo| =

Case n = 4. Similarly to the previous case we get
Gi={(p,q) € C*: |p| +|q|* < 1, s(p,q) < O},

where

s(p.q) = (1= [gl®)Pa((1 = |g*)? = IpI*) = 2’| + p|*]al* — (1 = [a*)? — [p[*)*.

It is easily seen that if ¢’ € [0,1) and p’ = (1—¢')v/1+ ¢, then (p1,q1) = (P e™/?,¢') € D
and (p2,¢2) = (p'e™/*,¢'e™/?) € D (as s(p',¢') = 0 and s(p',q) < 0, if p € (—p ,p))
Then for

(Po, q0) = (p1 -;Ch 7 D2 ;- Q2) (p cos L T 3mi/8 ¢ cos = : 7r7/6)
we have

[Pogo((1 — |q0/*)* = [pol?®) — Pia0°| = [Podo| (1 — |qo|*)* = Ipol® + Ipol?|o])-
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So

s(po,q0) = (1 = lqol*)((1 = |qol*) (L + lqol) = Ipo*) (1 + [pol — laol*)(Ipol + |qo] — 1).

Thus s(po, go) > 0 only when |po| + |go| > 1. For ¢’ = 2/5 we have

1 7(24 V2
|p0|+|qo|=10(3 (;‘f)+2\/§> > 1.

Consequently, (po,qo) & G4 and so G4 is not a convex set.

Case n > 5. Let j € {0,1,2}. Note that the nonconvex set G3 coincides with the set
of points (p,q) € C? such that the zeroes of the polynomial 27 f3(2*), k > 1, lie in D.
Consequently, forn =3k +2and k>3, n=3k+1and k> 2,orn=3k and k > 1, we
can view (G3 as the intersection of (G,, with a complex plane. So GG,, is not a convex set.

In the remaining cases n = 5 and n = 8 it suffices to observe that the nonconvex set
G4 coincides with the set of points (p,q) € C? such that the zeroes of the polynomials
¢*f4(C), respectively f4(¢?), lie in D, and then conclude the proof as above. m

2.6. Notions of complex convexity. The main definitions and facts from this section
can be found in [5], [50] (see also [56]).

Recall that a domain is called C-conver if all its intersections with complex lines are
connected and simply connected.

We will define two other notions of complex convexity. A domain in C" is called
linearly convezx if each point in its complement belongs to a complex hyperplane, disjoint
from the domain. If the latter is true for each boundary point, then the domain is called
weakly linearly convex. The following implications hold:

convexity = C-convexity = linear convexity = weak linear convexity = pseudoconvexity.

On the other hand, in [B, Example 2.2.4] it is shown that a complete Reinhardt
domain which is weakly linearly convex is convex. (A domain D in C" is called a complete
Reinhardt domain if for each z € D the closed polydisc of center 0 and radius z lies in D.)

We will see that this result remains true for balanced domains (but not for generalized
balanced domains, as shown by Theorem [2.6.6)).

PROPOSITION 2.6.1. A weakly linearly convexr balanced domain D C C™ is conver.

For the proof we will use a characterization of (weakly) linearly convex domains. For
a set D in C" containing the origin, put

D*={ze€C": (z,w) # 1 for each w € D}

({-,-) is the Hermitian scalar product). Clearly if D is open (compact), then D* is compact
(open). Furthermore, D C D**.

PROPOSITION 2.6.2 (see e.g. [B,60]). A domain D in C™ containing the origin is weakly

linearly convex (resp. linearly convex) if and only if D is a component of D** (resp.
D = D**).
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Proof of Proposition [2.6.1, As D is a balanced domain, it is easily seen that D* is a
compact balanced set. Consequently, D** is an open balanced set and in particular a
domain.

We will prove that this domain is convex. Assume the contrary. Then there exist
21,22 € D**, w € D* and t € (0, 1) so that (tz; + (1 —t)ze, w) = 1. Consequently, we can
suppose that [(z1,w)| > 1. As D* is a balanced set, @ = w/{w, z1) € D* and (z1,w) = 1,
a contradiction.

So D** is a convex domain. Since D is a weakly linearly convex domain, D is a
component of D** and consequently, D = D**. =

Let us note that the three notions of complex convexity are different, but for bounded
domains with C'-smooth boundaries they coincide (in the more general case of bounded
domains this is not true). We also mention that each C-convex domain in C” is hom-
eomorphic to C”, and each domain in C is linearly convex. Also, a Cartesian product
of (weakly) linearly convex domains is (weakly) linearly convex. On the other hand, we
have the following

REMARK. A Cartesian product of domains that do not coincide with the corresponding
spaces is C-convex only if both domains are convex. In particular, a Cartesian product
of n simply connected nonconvex domains from C is a linearly convex domain that is
biholomorphic to D", yet not C-convex.

Recall that a domain D with a C?-smooth boundary is convez (resp. pseudoconvez) if
the restriction of the Hessian (resp. Levi form) of its defining function to the real (resp.
complex) tangent space at each boundary point of D is a positive semidefinite quadratic
form. The following fact confirms the intermediate character of complex convexity: a
domain D with a C2-smooth boundary is C-convex exactly when the restriction of the
Hessian of its defining function to the complex tangent space at each boundary point of
D is a positive semidefinite quadratic form. This last turns out to be equivalent to the
function —2log dp(z) near 9D being C-convex (see e.g. [5]; the number 2 is important);
here dp(z) = dist(z,0D), z € D. The pseudoconvex analogue of this proposition without
a smoothness condition is well-known. Of course we also have a convex analogue, which
is given in [46, Proposition 7.1] for bounded domains with C2-smooth boundaries. To see
this for an arbitrary domain D, one can note that convexity of —dp (or, what is the
same, of D) trivially implies convexity of —logdp. The converse is also true; it suffices to
assume the contrary and then find a segment that, except for its midpoint, lies within D
(see e.g. [50, Theorem 2.1.27] for a more general fact).

For bounded domains with C!'-smooth boundaries the three notions of complex convex-
ity also coincide with the so-called weak local linear convexity (see e.g. [50, Proposition
4.6.4]). A domain D C C" is called weakly locally linearly convex if for each a € 9D
there exists a complex hyperplane H, through a and a neighborhood U, of a so that
H,NnDNU, = (. Note that there are bounded domains that are not locally linearly
convex (see e.g. [56]). In [56] p. 58] it is asked whether a weakly locally linearly convex
domain has to be pseudoconvex.

The next proposition gives more than an affirmative answer to this question.
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PROPOSITION 2.6.3. Let D C C™ be a bounded domain with the following property: for
each a € 9D there exists a neighborhood U, of a and a function f, € O(DNU,) so that
lim, 4 |fo(2)| = 00. Then D is a taut domain (in particular, pseudoconvex).

Proof. Tt suffices to prove that if O(D, D) 3 ¢; — ¢ and ¢(¢) € 0D for some ¢ € D, then
(D) C OD. Assume the contrary. Then we can easily find points g, — 1 € D so that
Y(nk) € D, but a = 9(n) € D. We can assume that n = 0 and g, = 1/f, is a bounded
function on D N U,. Let r € (0,1) be such that ¢(rD) € U,. Then ¢;(rD) C U, for each
J > jo. Consequently, |g, 01| < 1 and (by passing to subsequences) we can suppose that
ga ©V; = hq € O(rD, C). As hq(n) = 0, by Hurwitz’s theorem h, = 0. This contradicts
the fact that he(nk) = gq 0 Y (k) # 0 for |n| < 7. m

COROLLARY 2.6.4. A weakly locally linearly convexr domain is pseudoconver.

For the proof it is sufficient to exhaust the domain with bounded domains and for each
boundary point to consider the reciprocal of the defining function of the corresponding
separating hyperplane.

Further, note that a linearly convex domain D C C" containing a complex line is
linearly equivalent to C x D’, where D’ C C"~! [50, Proposition 4.6.11]. Indeed, we
can assume that D contains the z;-line. As the complement ¢D is a union of complex
hyperplanes not intersecting this line, *D = C x G and consequently D = C x °G.

The next theorem provides some properties of C-convex domains not containing com-
plex lines. It generalizes a result of T. J. Barth from [7] for convex domains.

THEOREM 2.6.5. Let D be a C-convex domain in C™ not containing a complex line. Then
D is biholomorphic to a bounded domain and is c-finite compact, hence also c-complete
(c is the Carathéodory distance). In particular, D is hyperconvez, so it is a taut domain.

Based on this theorem, the paper [99] by the author and A. Saracco includes various
equivalent conditions for a C-convex domain not to contain a complex line (the convex
case is treated in [I7]).

Proof of Theorem 2.6.5. For each z € D denote by L, some complex hyperplane through
z disjoint from D. Let [, be the line through the origin that is orthogonal to L.. Denote
by 7, the orthogonal projection of C™ onto I, and put a, = 7w,(a) (clearly 7, and m;
from Section refer to different objects). The set D, = 7,(D) is biholomorphic to D,
since it is connected, simply connected (see e.g. [5], Theorem 2.3.6]) and 7.(z) & m.(D).
As D is a linearly convex domain not containing complex lines, it is easily seen that
there exist n C-independent I/, (otherwise D, and so D, would contain a complex line
that is orthogonal to each [,). We can assume that those I, form the set C of coordinate
lines. Then D C G = []; ¢ 7=(D) and G is biholomorphic to the polydisc D" (as the
components of G are simply connected planar domains # C, they are biholomorphic to
D according to the Riemann theorem). Consequently, D is biholomorphic to a bounded
domain, so it is c-hyperbolic.

Further we can assume that 0 € D. To see that D is c-finite compact, it suffices to
show that lim,—,, ¢p(0;a) = oo for each z € D (recall that co € D if D is unbounded).
The last statement follows from the fact that G D D is a c-finite compact domain (being
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biholomorphic to D™). On the other hand, if « — z € 9D, then a, — m.(z) € 9D, and
consequently cp(0;a) > cp,(0;a,) — co. =

The main aim of this section is to show that Gg is a C-convex domain, which to-
gether with the fact that Gy € £ (see Proposition [2.5.4)) gives a negative answer to [125]
Problem 4] (see the Introduction).

THEOREM 2.6.6.

(i) Gg is a C-conver domain.
(ii) Gy, n > 3, is a linearly convex domain, yet not C-convez.

REMARKS. (a) Proposition implies that Gy x C™ is a C-convex domain that is in
the class £, but not in £ according to Proposition [2.5.5] However we do not have a similar
example of a bounded domain in C”, n > 3. (The most natural candidate is the Cartesian
product, but according to a remark above this is impossible, as the factors have to be
convex).

(b) It is easily seen that bounded generalized balanced domains with continuous
Minkowski functional are homeomorphic to C". So, Theorem [2.6.6{ii) provides the first
example of a linearly convex domain, namely G,,, that is homeomorphic to C", n > 3,
but is not C-convex, not in the class £ and not a Cartesian product.

(¢) Theorem ii) shows that Propositiondoes not remain true for generalized
balanced domains.

(d) Although G,, for n > 3 is not a C-convex domain, the conclusion of Theorem [2.6.5]
is true, i.e. G, is a c-finite compact domain. This fact follows directly from [25, Corollary

3.2] (see (2.7.2)).

Let us introduce the following notation. Let D be a domain in C™ containing the
origin, and 0 # a € D. Let T'p(a) be the set of points z € C™ such that the hyperplane
{w € C": (z,w) = 1} passing through a does not meet D.

For the proof of Theorem we will use the following characterization of bounded
C-convex domains.

PROPOSITION 2.6.7 (|5, Theorem 2.5.2]). A bounded domain D in C™ (n > 1) containing
the origin is C-convex if and only if for each a € OD the set T'p(a) C CP™ is nonempty
and connected.

REMARK. Proposition directly implies the above mentioned fact that a C!-smooth
bounded domain D in C", n > 1, is C-convex if and only if it is linearly convex.

Proof of Theorem|2.6.6. (i) According to Proposition we need to check that the set
I'(a) is nonempty and connected for each a € 9D.

First take a smooth boundary point a € dGs; without loss of generality it is of the
form o(u), where |p1] = 1, |p2| < 1. Then the tangent plane to Gy at a has the form
{o(u1,) : A € C} and clearly it does not meet Gs. So in this case I'(a) is a singleton.

Let now a € 0G2 be a nonsmooth boundary point, i.e. a = o(u), where || = |p2| = 1.
After a rotation we can assume that pipe = 1,i.e. ug = fi;. Then pg +p2 = 2Re py =: 2z,
where z € [-1,1].
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The complex lines through a that meet Gz have the form a + C(a — o(\)), where
A € D?. Consequently, the complement of I'(a) can be seen as the set
A+ A — 22
A=¢——— A, €Dy
{ Ao — 1 1, A2 € }
Connectedness of I'(a) means simply connectedness of A. Note that if || > 1, then
=% maps the unit disc D to the disc ]D)(M la—Bl ) So the set {’\+>‘1 2.\ € D}

B ; 1-[p27 [B12-1
coincides with

2x — 2Re)\1 |2$>\1 — )\% — 1|
Ay, =D
. < e Ak
As A=y, epAx, CC, Ais a simply connected set.

(ii) To prove the linear convexity of G,,, consider a point z = o(A) € C™*\ G,,. We can
assume that [A1] > 1. Then the set

B = {U()‘luula s a,U/n—l) Py Hn—1 € (C}
is disjoint from G,,. On the other hand, it is easily seen that
B = {()\1 + 21, Az1 + 2y ey )\127,,_2 + Zn—1, >\1va—1) P21y, .05 2n—1 € C},

so B is a complex hyperplane. Consequently, G,, is a linearly convex domain.
To prove that G,, is not a C-convex domain for n > 3, we consider the points

a; = o(t,t,t,0,...,0) = (3t,3t%,t3,0,...,0),
by = o(—t,—t,—t,0,...,0) = (=3t,3t>, —t3,0,...,0), t € (0,1).
Clearly ay, b; € G,,. Denote by L; the complex line through a; and by, i.e.
Ly = {ce = (3t(1 — 2X), 3t%,#*(1 — 21),0,...,0) : A € C}.

Suppose that G,, N L; is a connected set. As a; = ct,0 and b, = ct, 1, ¢\ € G,, for some
A=1/2+ir, 7 € R. Then

iy = (=6itt, 3t%, —2itt3,0,...,0).

Let ¢, = o(p), p € D". We can assume that p; = 0, j = 4,...,n, and —367%2 =
(i1 + p2 + p3)* = p + p3 + p3 + 6t°. Then

g2 i s+ ] 3 1
3672+ 6 3672 +6 — 2
Consequently, G,, N L; is not a connected set for ¢t € [1/ v2,1) and so G,, is not a C-convex

domain. =

The fact that Gy is a C-convex domain is also a consequence of a recent result by
P. Pflug and W. Zwonek [I07] which also confirms the Aizenberg hypothesis. Let us first
recall that a C2-smooth domain D in C" is said to be strongly linearly convez if the
restriction of the Hessian of its defining function to the complex tangent space at each
boundary point of D is a positive definite quadratic form.

Considering functions of the form

re(s,p) = |s —sp| — (1= p|*)* +¢,

one can show the following
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THEOREM 2.6.8 (see [107]). The domain

G5 ={(s,p):V|s —3p| +e+p* <1}, e€(0,1),

is strongly linearly convex. Consequently, Go = GY can be exhausted by strongly linearly
convex domains and hence Gy is a C-convex domain.

Since Go ¢ &£, we get immediately
COROLLARY 2.6.9. G§ & & for € > 0 small enough.

2.7. G, € L for n > 3. As mentioned in the Introduction, Gy € L, i.e. the Carathéodory
and Lempert functions of the symmetrized polydisc coincide. The main aim of this section
is to show that this no longer holds in higher dimensions, i.e. G, &€ £ for n > 3, which
solves [60, Problem 1.4].

Let n > 2, 2 € C" and A € D. Put
PO
(z) = I —
n+ Zj:l (n—j)zN
By [25, Theorem 3.1], z € G, if and only if sup, 5 [fA(2)| < 1. So for the Carathéodory
function we have

C(En (z,w) > mg, (z,w) := I}\lea%|m]p>(f>\(z),f>\(w))|. (2.7.1)
Note that mg, is a distance on G,,. Furthermore, by [25, Corollary 3.2],
. 1
Ji, e 210)

and consequently

wg%n cg, (2, w) = o0, (2.7.2)

i.e. G, is a c-finite compact domain.
The next basic proposition is used in the proof of Propositions and It
contains information on the zeroes of lg, and cf, .
PRrROPOSITION 2.7.1. Let A, B € Q,, and
s(A,B) = min max mp(\,u).
(. B) = it oty oo 1)
Then:

(i) lg,(0(A),0(B))) < la,(A,B) < s(A, B).
(ii) la,(A,B) =0 c; (A,B) =0 <« sp(A) =sp(B)
< Jp e O(C,Q,) : p(0) = A, (1) = B.
(iii) If the eigenvalues of A are equal, then the eigenvalues of B are equal

&g, (0(A),0(B)) =s(A,B) & lg,(0(A),0(B)) = s(A, B).

Proof. (i) The left inequality is noted in the Introduction (it follows from the holomorphic
contractibility of the Lempert function).

To prove the right inequality, let J4 and Jg be the Jordan normal forms of A and B,
respectively. As a nonsingular square matrix X can be expressed in the form X = eV,

we get A = e¥4J e ¥4 and B = e¥BJge ¥, where Y, Yp € M(C"). We have J, =
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(ajk)?,k:p where sp(A) = {ai1,...,ann}, aj ;41 = 0,1 and a;, = 0if j < k or j >
k + 1. A similar representation is valid for J, = (bjx)7;_;. Let A € sp(A) and A=
max,,csp(B) Pp(A, 11). Then one can easily find ¢;; € O(D,D) so that ¢;;(0) = a;; and
©;j(A) = bjj. Clearly we can choose ¢; i1 € O(D,D) and v € O(D, M,,) so that

ij,ij(O) = Gjj+1, @jj()\) = bjj and ’lﬂ(O) = Yy, w()\) = B. Put Pjik :~O lfj < k or
J>k+1,and ¢ = (pr)7—;- Then e e € O(D,Q,) and (0) = A, p()) = B, which
completes the proof. Consequently, I, (A, B) < || and as A € sp(A) was arbitrary, we
get the right inequality.

(ii) Clearly
la,(A,B) =0 = ¢, (A,B)=0=0 = sp(A) =sp(B),

since ¢, (A, B) = ¢, (0(A),0(B)) according to Proposition [2.2.3] If sp(4) = sp(B), then
as in the proof of the right inequality of (i), we can find ¢ € O(C,$,,) so that ¢(0) = A
and ¢(1) = B, leading to the implication sp(A) = sp(B) = lg, (4, B) = 0.

(iii) Since ¢ < g, < s (see (i) for the latter) we get the implication cf; (o(A),o(B))
=s(A,B) =g, (c(A),0(B)) = s(A, B).

Further, using @ (see (2.2.3))) we can assume that the eigenvalues of A are equal to 0.

To prove that if the eigenvalues of B are equal e.g. to u, then ¢ (0,0(B)) = 5(0, B)
(= |p]), it suffices to construct a function f € O(G,,, D) so that f(0) = 0 and f(c(B)) = p.
An example of such a function is f(z1,...,2,) = (21 + -+ 2n) /7.

It remains to prove that if g, (0,0(B)) = s(0,B), then the eigenvalues of B are
equal. Let sp(B) = (v1,...,v,). Let ¥/1={1,¢,...,e"'}. For each Blaschke product B
of order < n such that B(0) = 0, consider the mapping

A= f5(\) = a(B(VA), B(e VN), ..., B(e""1/N))

(where /X is arbitrarily chosen). It is easily seen that fz € O(D,G,). We need the
following

LEMMA 2.7.2. Let 1,...,0, € T be pairwise different. Then for any v, ... ,v, € D there
exists B € D and a Blaschke product B of order < n such that

B(O):Oa 6(51/8):’/1’ RS B(anﬁ):Vn

Proof. Let S be the set of all 5 € D such that the classical Nevanlinna—Pick problem
with data (0,0),(615,v1),-..,(0.53,v,) has a solution, i.e. there exists f € O(D,D) so
that f(8;8) = vj, 1 < j < n. Recall that this condition is equivalent to the positive
semidefiniteness of A(8) = [a; x(B)]} 1, where a;x(8) = 1—167,%% (see e.g. [40]). Note
that the function a; , j # k, is bounded on D. On the other hand, limg_,t a; ; () = +o0.
Consequently, the matrix A(f) is positive semidefinite when [ is close to T. We can
assume that 0 ¢ S (otherwise put B = id) and then S is a proper nonempty closed subset
of D (consisting of circles). So it has a boundary point Sy € D. Consequently, the number
m = rank A(fp) is not maximal, i.e. m < n+ 1. Thus the corresponding Nevanlinna—Pick
problem has a unique solution, which is a Blaschke product of order m (see e.g. [40]). =

The lemma for §; = &7, 1 < j < n, implies that
lg,(0,0(B)) < [B|™.
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It remains to prove that if |§|™ > |v;| for each 1 < j < n, then 11 = --- = v,. After a
rotation we can assume that
aozk + alzk’l + -t ag
Rk + g2+ T
where ag =1 and k < n — 1. As |v;| > |[B(¢8)], we get |8|™ > |B(e7 )], i.e.
181" Har(? B)* +a—1(e78)* ! + - + a0l 2 |ao(e7B)" + ar (7 B) 4+ .
By squaring we get

B(z) ==z

k
|ﬁ|2n72 <Z|as|2|ﬂ‘23 +92Re Z apasﬁsgpsj(sfp))
s=0

0<p<s<k

k
> Z |as|2|ﬁ‘2(k_s) + 2Re Z apasﬁk—pgk—sgj(s_p).
s=0

0<p<s<k

Adding these inequalities for j = 1,...,n yields

k k
B2 " asIB1* = > lau P8P8,
s=0 s=0
i.e.,
k
Z lag|*(|B2 1) — | g2k==)]) > 0.
s=0

Ask<n-—1,wehave k—s<n+s—11if s > 0 and so a; = 0. On the other hand,
ag = 1 # 0 and consequently k = n—1. We thus get B(z) = 2™ and hencev; = -+~ =1,,. =

Let eq,..., e, be the standard basis in C" and X = Z?Zl Xje;. Put

> B :
A = ZEEET and p(X) = max | (X))
By (2.7.1) we get the following estimate for the Carathéodory metric of G,,:
. PG (OutX)
. > n — .
16, (0:X) 2 M = = Al
Let Ly, = span(eg, e;). Clearly if X € Ly, k # [, then
k| Xk + 11X
o (0) = A1)

As noted, one of the basic results that motivate the discussion of the symmetrized
bidisc is that G2 € L. More precisely (see [2]),

lg, = kg, = G, = MG,;
in particular kg, = Yg,-
The next proposition shows that G,, does not have similar properties for n > 3.

THEOREM 2.7.3.

(i) If k divides n, then kg, (0;er) = pn(er). Consequently, if I also divides n, then
kG, (0;X) =76, (0; X) = pp(X) for X € L.
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(i) Ifn>3 and X € L1, \ (L1,1 U Ly ), then kg, (0; X) > pn(X).
(i) If k does not divide n, then vg, (0;er) > pn(eg).
As Gy, is a taut domain, Theorem and imply
COROLLARY 2.7.4. Ifn > 3, then
I, (0,7) 2 kg, (0,) > cg, (0,-) 2 mg,, (0, ).

REMARK. Clearly G, is a domain that is biholomorphic to Gz, N Ly, 25,. Then, unlike in
Theorem for z,w € L, 2, we have

me,, (z,w) < mg,, (z,w) <lg,(z,w) = mg,(z,w) < mg,, (z,w)
and so lg,, (z,w) = mg,, (z,w).
COROLLARY 2.7.5. The convex hull of the spectral unit ball 0, is
Q= {A € My(C): hg (A) = [tr Al/n < 1}.
Proof. By we get
kq, (0;tA) . kg, (0,0(tA))

As
o(tA) = (ttr A+ o(t),o(t),...,o(t))
and G,, is a taut domain, Theorem m(l) implies that the last limit equals
kg, (0;(tr A)ey) = |tr Al/n. =
REMARK. Corollary [2.7.5] can also be proven algebraically.

Proof of Theorem . (i) For 1 < j <nand ¢ € D put ¢;(¢) = 0 if k£ does not divide j,
and ¢;(¢) = (??:) ¢I/% if k divides j. As the zeroes of the polynomial (1+ ¢*)"/* lie in I,
we get o = (¢1,...,pn) € OD,G,). Furthermore, ¢’'(0) = nex/k and so

kg, (0ser) < n/k = pp(ex).

The opposite inequality is straightforward.

(ii) First note that if A € T, then m) € Aut(G,). Furthermore, kg, (0;AX) =
kg, (0; X). These two facts imply that we can assume that X1, X,, > 0.

As

6, (0:2) 2 6, (o 007, (0)0) = sy (072 Xrer + X ).
by induction on n we get kg, (0; X) > kg, (0;Y), where
Y =3Xe1/n+ X,e3 = Yier + Yies.
Suppose that xg, (0; X) = p,(X). Then
Pr(X) = kg, (0;Y) > p3(Y) = pp(X)

and consequently kg, (0;Y) = p3(Y). As G3 is a taut domain, there exists an extremal
disc for kg, (0;Y) of the form

e(C) = (C1(€), Cp2(C), Cp3(C)),
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where ¢/(0) = Y/ps(Y),

Y; Y;
©1(0) = - -

3(Y; +3Y3) 3(Y1 +3Ys)
Note that fy 0@ € O(D,D) and fy o ¢(0) = 0 for each A € D. For A € D and ¢ € D put
_Ae©) _ Xade N

¢ 3+ 2¢p1(OA + Cpa ()N

We have gy € O(D, D) according to the Schwarz-Pick lemma. By (2.7.3)) we get g+1(0) = 1
and so g+1 = 1 by the maximum principle, i.e.

©1(€) £ 2¢2(C) + 3p3(¢) = 3 £ 2¢p1(C) + Cp2(C)-
These two equalities imply that

©2(0) =0, 3(0) = (2.7.3)

_ _ -1
©2(C) =Cp1(¢) and @3(¢) =1+ 3 ©1(¢)-

Let ¥(¢) = ¢1(¢)/3. Now by g € O(D, D) for A € T we get

’1/1(4) +2X¢Y () + A2 (L + (¢ — 1)9(Q))
1+ 2X¢(C) + A2C9(C)
o |0 A IO <1 Re(w(0)0 - TG4 ~(1+A07) <0
IfA=2+iy, (=ir,r € R, a=Re(()) — [v¥()? b=TIm(x)(¢)), then
y(a(2r —y(r? +1)) + bx(1 —7?)) <0, Va?+4+y? =1
Then for z = 0 we get a > 0. On the other hand, letting y — 07 yields —2ar > (1—72)|b|.

Consequently, a = b = 0 if » > 0. Then by the uniqueness principle we get ¢y = 0 or
¥ =1. So X; =0 or X,, =0, a contradiction. m

(iii) Let ¥/1 = {&1,...,&}. For 2 € G,, and A € D such that the denominator of the
first formula below is nonzero, put

-

B D YL ED SRy ACY
g:(N) = AMfa(z) = nt Z;,:_ll (n— j)zj)\j ) gz,ko\) = E\E )

The equalities Z?zl &' =0, m=1,....,k—1, and the Taylor formula show that g,
extends analytically to 0. More precisely, g, 1(0) = Px(z), where Py is polynomial such
that ‘gf: (0) = k/n and

Py (twy, t2wo, . .. t"w,) = t*P(w), t,wi,ws,...,w, €C.

The maximum principle implies that g, ; € O(D, D). In particular, |P,(2)| < 1. To prove
the desired inequality g, (0; ex) > pn(ex), it suffices to show that | Py (z)| < 1 for z € G,,.
Assume the contrary. Then Py (z) = ¢ for some § € R and z € G,,. The maximum
principle implies that g,(£;\) = e?A¥, A € T, 1 < j < k. For {; = 1 we get

n n—1
ijj)\j = (n)\k + Z(n - j)zj/\k”).
j=1 j=1
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Equating the coefficients of the corresponding powers of \, we get 2z = ¢n/k, 2,11 1 =
coo=2,-1 =0and

(k+i)znrg =€’(n—j)z, 1<j<n—Fk

These equalities imply that z; = e ("{k), 1 <1< [n/k]. On the other hand, as k does
not divide n, n —k < k[n/k] <n and so 2y, k) = 0, a contradiction.

2.8. Estimates for 7g,,,,(0;e2). One of the aims of this section is to evaluate the
quantities in the inequality of Theorem iii) in the simplest case. More precisely,
we will find 7g,,,,(0;e2) with an error of o(n™%). To this end we use that g, (0;¢;)
solves an extremal problem for a class of polynomials. This observation, combined with
computer checks, allows us to show that the Carathéodory and Kobayashi metrics do
not coincide on G, thereby sharpening Theorem [2.7.3] Probably our approach can be
applied to obtain the same result for G,,, n > 4.
Let n,k € N, k < n. Note that

kg, (0;ex) < KGppm /1 (0;er) =1/[n/k].
Consequently,
k/n < e, (05er) < kg, (0;er) < 1/[n/k].
in particular,
nhﬁrr;o ne, (0;ex) = nl;rrgo nkg, (0;er) = k.

Let now n > 3 be odd. Then 2/n < 4g, (0;e2) by Theorem iii). On the other

hand,
2
VG, (0;e2) < KRG, (0;e2) < n_1

We will later improve both estimates. For the upper estimate we need the following.
Let D C C" be a (ki,...,ky,)-balanced domain. Denote by P; the set of polynomials P
such that supp, |P| < 1 and Pomy, = A% P, X\ € C. Put £; = span(e;, . .., e;), where [ > j
is the greatest index such that k; = k;. The proof of Theorem m(iii) easily implies
that

PROPOSITION 2.8.1. If D C C" isa (k1,...,ks)-balanced domain and X € L;,1 < j < n,
then vp(0; X) = sup{|P’'(0)X|: P € P;}.
REMARKS. (a) This proposition directly implies that if D is balanced domain, then

vp(0; X) = sup{|L’(O)X| :sup|L| <1, L a linear function}
D

and so vp(0;-) = v5(0;-) (for the last one see also Proposition i)).
(b) Another corollary is the formula

7@3(0; e2) = £<fc Jnax |29 + c27|. (2.8.1)

In spite of this formula, 4g,, ., (0;e2) is hard to calculate (see Lemma for n =1).
(¢c) If n is even, the extremal polynomials for g, (0;e2) = 2/n can differ not only
by a constant of absolute value 1. For example, after some easy calculations, from the
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proof of Theorem we get the polynomial 2z5/n — (n — 1)2% /n?, but the polynomial
(222 — 2%)/n is also extremal.

PROPOSITION 2.8.2. Ifn > 3 is odd, then

2 1+ 2 <G, (0;e2) < 2 1+ 2

n n—Dn+2)) el sg n—Dn+1))

Proof. Lower estimate. Let us first see that the polynomial

n—1
P,(z) = mz% — 29
satisfies
max |P,| = M, := w
G 2(n+1)
So if

n

-3 A () e

j=1
then maxyn |g,| = M,,. To prove the latter, let M* = maxyn |g,|. As g, (e?t) = e*¥ g, (1)
for each 0 € R, t € C", there exists v € T" such that g, (u) = M. Putting u; = x; +iy;,

z5,y; €ER, 1 <j<n, we get
2 2
w) ~(X=))
=1 j=1

%))

1

n

n

M, = Re(gn(u)) = %Z(%z —y;) + ni 1 (<
=1 i

n n n
1

1 2 _ 2 2
< 52(% —y;)+ n—i—l(nzy' - (
j=1 j=1 J
~ s (s - (X))
C2(n+1 R Z i 2;
by the Cauchy—-Schwarz inequality and the equalities yf =1 —2%,...,y2 =1 —22. The

last expression is a linear function for each x;. Consequently, it is maximal for 1 and/or
—1. As n is odd,

n—1)n n-1
; = ( ) = My,

2(n+1) n+1
with maximum attained only if [n/2] or [n/2] + 1 among the numbers t; are equal to
some tg € T, and the rest to —tg.

Using this fact one can easily prove that if € > 0 is sufficiently small and

Gn,e(t) = gn(t +5Zt2—sn+1)(z j)z, teC?,

j=1
then maxyn |gp o] < M,. Consequently, for
n—1-2n(n+1)e
2(n+1)
one has maxag, |Pn | < M,, showing that

1 2 2
o0 > 3= (1 g )

P,.= — (14 2¢)29
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Upper estimate. By (2.8.1) we need to prove that if ¢ € C, then
Mp.e i= max |z + czi| > nn” — 1)

= re U om2 +1)°
The coefficients of the polynomials (t — 1)™ and (t — 1)(t?> — 1)(»=1/2 give two points
z € 0G,, such that 21 = n, 20 = n(n—1)/2 and z; = 1, z3 = (1 — n)/2, respectively.
Then

2my, . > max{|n — 1 — 2c|,|n(n — 1) + 2cn?|}
and consequently
2(n? + V)my,. > [n?(n — 1) — 2en?| + [n(n — 1) + 2cn?|

>n?(n—1)4+n(n—1)=n(n*-1).
”E 2+1) Suppose that we have equality. Then ¢ = — 2(7;2 i_)f) On
the other hand, the coefficients of the polynomial (¢t —4)(t — 1)"~* glve a point z € 0G,,
2_
such that zy =n— 144,22 = (n — 1)(n — 2)/2+ (n—1)i and |z, — 2(n2+1) 23| > %,
a contradiction. m

This means that m, . >

Let now D be a domain in C", z € D and k € N. Denote by ’?gc)(z;X) the largest
pseudonorm not exceeding the kth Carathéodory pseudometric

) (2 X) = sup{| fP(X)| : f € O(D, D), ord, f > k},

where

o = 3 DX

a!
la|=k
(One can define similarly the kth Kobayashi pseudometric, which is essentially different
from the Kobayashi pseudometric mg) of order k, defined in Section .
As vp(z;-) is a pseudonorm,
~(k N
D < W(D) < AkpD-

Also note that, since the family O(Ggs, D) is normal, the argument in the proof of Theorem
shows the existence of m < 2n — 1 R-linearly independent vectors X1,...,X,, € C"

of sum X, so that
E
=> =X
j=1
(2)

THEOREM 2.8.3. ¢, (0;€2) > 1G4(0; €2). In particular, fig,(0;e2) > 464 (0;e2) and con-
Sequently kGa (07 ) 7é CGs (07 )

This theorem follows from the two lemmas below.

LEMMA 2.8.4. 76, (0;e2) < Cp := ,/Mﬁ =0.8208....

LEMMA 2.8.5. 45 (0;e2) > Oy = V0.675 = 0.8215 ...
Proof of Lemma|2.8.4. By (2.8.1) we need to show that if ¢ € C, then

_ 22>C 2
2,1 — el
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It suffices to show this for ¢ € R. Indeed, for each z € 0G3 we have Z € 0G3 and so
2maxz—cz2>max 29 — 2?2 Ty — (32
max |2z — 2] 2 max (122 — 2] + [% — 32

> max |220 — (c +C)27| =2 nax |22 — Re(c)zi|.
2€90G €oG

Let now ¢ € R. Then

max |zo — c2?]2 > max |1+ 2e —¢(2 + %)?|?

z2€0G, »€0,2m)
= max )(40(40 — 1) cos® ¢ 4+ 4(10¢* — Tc + 1) cos  + 25¢* — 22¢ + 5).
wel0,27
Put

fo(x) = 4c(de — 1)2® +4(2¢ — 1)(5¢c — 1)z + 25¢* — 22c +5,  x € [-1,1].
Ifcg A= (1/6,5—+/17/4), then

max  fo() = max{fo(—1), fo(1)} > (9_267) 5> 2

rel-1.] 2
Otherwise X ;
_ 10¢* = 7c+1Y\  (Bc—1)°
Jex, fo(@ )—ﬁ;( 2¢(1 — 4c) ) = o= 9

and it remains to see that min.ca g(c) = g(v/13 —1/12) = 1/C2. u
REMARK. Let ¢ = (v/13 —1)/12 and M = max,eag, |22 — co2?|. As in the proof of
Proposition 2.8:2] we have

M = R —p2?) = h
J2gg, Reles — comt) = g he 1),

where
h(a, B,7v) = (1 = 2¢p)(cos(a + ) + cos(8 + v) + cos(y + a))
— ¢o(cos 2a + cos 23 + cos 27).

Computer calculations show that the critical points of h (up to a permutation of variables)
are of the form (km,lm, mn) or (fag + jm /24 2km, tag + jw /2 4 2w, £y + j7 /2 + 2mrr),
k,Ibm € Z, j = 0,1,2,3. Then the proof of Lemma implies that M = C'O_l, ie.

V65 (0; €2) = Co.
Proof of Lemma[2.8.5 Let
f(2) = 0.67525 — 0.2912527 + 0.033z7.

We first check that max.cag, |f(2)| < 1 by reducing the check to finitely many points,
and then using a computer program. Put 6 = (01, 65), 61, 62 € [0, 27),

91(9) — 1 + 6i01 + e’i027 92(0) — 6i(91+02) + eiﬁl + 6i92,
g(0) = 0.675g5(0) — 0.291g2(0)g% () + 0.033g7(0).
< 1. Let

(0
We have to prove that max |g(6)]
,0) = max{|0; — 61|, |05 — |}

(0
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As | — %] < |6, — 8,], j = 1,2, we get
191(0) — g1(0)] < 2d(0,0),  |92(0) — g2(0)| < 4d(6,0).
Then the inequalities |g1] < 3, |g2| < 3 imply
19(6) — g(0)] < (0.675 - 24 4 0.291 - 72 + 0.033 - 216)d(0, §) = 44.28d(6, 6).

Let now 61, 02 vary in the interval [0, 6.2832] D [0, 2] with a step of 4-107°. The results
of the corresponding computer program (see Appendix C) show that |g(8)] < 0,999 for the
variable 0 = (01, 02). (In fact these results lead to the hypothesis that max |g(¢)| = 0.999,
with a maximum attained at the points (0, 7), (7,0) and (m, 7).) Then by the inequalities
19(8) — g()] < 44.28d(6,6) and Tig - 1073 > 41075 we easily get max|g(6)| < 1.

From the above it follows that if X € span(e;, e3), then

1 (Ose2 + X) 2 167 (e2 + X)1/2 = £ (e2)] /2 = O
On the other hand, recall that there exist five vectors Xi,..., X5 € C3 (some of
them can be zero) of sum ey such that &&)(0; e2) = 2?21 7([(;23) (0; X;). As 7([(;23) 0; X;) >
C11(X;, e)], we get 45 (0;e2) > C1. m
REMARK. An important moment in the above proof is finding a polynomial of the form

f(2) = az3 + bza2} + cz{ such that maxsg, | f| < 1 and v/a > Cy. Computer experiments
show that the maximal value of a is 0.676..., i.e. very close to 0.675/0.999.

Finally let us note that 'ygj (0;-) is not a norm.

ProrosiTION 2.8.6. If X1, X,, € C, then

n+1

7&2) (0; X1e1 + Xpen) > \/

n

76, (0; €2)[ X1.X .

In particular, as vyg,(0;e2) > 2/3 and vg, (0;e,) > 2/n, it follows that

7((;22 (0;ner + en) > 2= kg, (0;ne; +e,) = 'y&) (0;mer) + 'ygn) (0;e,), mn>3.

Proof. Let t1,...,t, € D. Consider >, _, t’,;“/n as a function f of o(t). Then f €
O(Gy,, D), ordp f = 2, and the Waring formula (see e.g. [I17])) implies that the coefficient
of 212, equals (—1)"~1 2t So

n+1
n

ve, (05 e2)| X1.X, ],

n

7(5}2)(03)(161 + Xne,) > |f(§2)(X)/2‘ = \/

where X = Xje; + X,e,. As 15, (0;e2) = 2/n for n even, we get the proposition for
such n.

On the other hand, Proposition implies that if 2C,, := g, (0;e2), then there
exists a ¢, such that P(z) = 2C,, 22 — ¢, 27 is an extremal function for 75, (0; e2). For odd
n = 2k — 1 we replace t1,...,t, by t’f, . ,tﬁ. Thus we get the function

n

(Cn — C")(Z t?)2 - O, Xn:t?k

j=1
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Consider this function as a function g of o(t). Then g € O(G,,, D), ordg g = 2, and the
coefficient of z;z, equals —(n + 1)C,,. Consequently,

3 (X n+1
W)L @i

(05 X) >

2

Appenpix C[(%)

language: FORTRAN 77; compiler: gnu-fortran (g77)
options for compiler: g77 -02 -o niki.exe niki.for -wall

command for execute: niki.exe

Program niki

implicit real*8 (a-h,o0-z)
implicit integer*4 (i-n)
complex*16 gO0,gl,g2

data c1,c2,c3 /0.675D0, -0.291D0O, 0.033D0/
data e,o0,t1d,t2d,t1u,t2u/1.0D0,3*0.0D0,2x6.2832D0/
write(*,102)
200 continue
read (*,*,ERR=201,END=201) s
Ni=(tlu-t1d)/s
N2=(t2u-t2d)/s
gu=-1D30
do i1=0,N1
t1=t1d+FLOAT(i1) *s
do i2=0,N2
t2=t2d+FLOAT (i2) *s
gO=DCMPLX(DCOS(t1)+DCOS(t2),DSIN(t1)+DSIN(t2))
g1=g0+DCMPLX (e,0)
g2=g0+DCMPLX (DCOS (t1+t2) ,DSIN(t1+t2))
g = CDABS(cl*g2**2+c2%g2xglx*2+c3*gl**x4)
if (g.GT.gu) then
gu=g
tig=t1
t2g=t2
endif
enddo
enddo
write(*,100) s,gu,tlg,t2g
goto 200
201 continue
write(*,101)
stop
100 format(1x,2f20.15,2f15.10)
101 format(8x,’ step ’,15x,’ g-max’,9x,’tita-1’,9x,’tita-2?)
102 format(8x,’ step ’ )
end

(°) The program was written by Pencho Marinov.
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----------------- Results ——----omm oo
step g-max tita-1 tita-2
0.001000000000000  0.998999998608272  3.1420000000  3.1420000000
0.000400000000000  0.998999999688699  3.1414000000  3.1414000000
0.000100000000000  0.998999999999547  3.1416000000  3.1416000000
0.000040000000000  0.998999999999547  3.1416000000  3.1416000000
0.000010000000000  0.998999999999941  3.1415900000  3.1415900000
0.000004000000000  0.998999999999985  3.1415940000  3.1415940000
0.000001000000000  0.998999999999999  3.1415930000  3.1415930000
0.000000400000000  0.999000000000000  3.1415928000  3.1415928000
0.000000100000000  0.999000000000000  3.1415927000  3.1415927000
0.000000040000000  0.999000000000000  3.1415925600  3.1415925600

2.9. Continuity of lg_ (A,-). As mentioned in the Introduction, the continuous depen-
dence of SNPP on the data (a necessary condition for reduction to an analogous problem
on G,,) is linked with the continuity of the function I, . The aim of this section is to
describe all matrices A € Q,, such that g (A, ) is a continuous function.
First recall that
lo,(A,B) > g, (6(A),0(B)).

Furthermore, if A, B € C, (i.e. they are cyclic matrices in €,), then we have equality
(see [2.2.1)) and so lg, is a continuous function on the open set C, x C,. In general, we
have equality if and only if I, is a continuous function in (4, B). To see this, it suffices
to use that lg, is a continuous function and the set C,, x C,, (where we have equality) is
dense in €,, X Q,,.

In [II5] the authors consider matrices B € €, such that g (A,.) is a continuous
function at B for each A € ,. They hypothesize that this is true for each B € C,
and confirm this for n < 3 [II5 Proposition 1.4|. Using the results from Section m
for the continuity of kg (A;.), the converse proposition is proven for each n (see [115]
Theorem 1.3]).

We first prove the following

PRrROPOSITION 2.9.1. If A € D and A € C,, then the following are equivalent:

(i) the eigenvalues of A are all equal;
(i) lq, is continuous at (A, AIp);
(iil) lq, (A,-) is continuous at AI,,.

Proof. The implication (ii)=>(iii) is trivial. For the rest of the proof we may assume that
A =0, applying @, (see (2.2.3)).
We will now show that (i)=(ii). Let the eigenvalues of A be equal to a. If A; — A
and B; — 0, then
la, (4;, B;) = cg, (0(4;),0(Bj)) = cg, (0(A),0) = [a] = lo, (4,0)

(the last two equalities follow from Propositions iii) and respectively). So the
function lg,, is lower semicontinuous at (0, B). As it is (always) upper semicontinuous, it
is continuous at this point.
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It remains to prove that (iii)=(i). As C,, is a dense subset of §2,,, we can find a sequence
Cn 2 B; — 0. By (2.2.4)) and (2.2.1)) we get
r(A) =lq,(4,0) < lo, (A, Bj) = lg, (sp(A),sp(Bj)) — g, (sp(A4), 0).
Proposition [2.7.1](iii) implies that the eigenvalues of A are all equal. m

Uunlike the above proposition, (2.2.4]) implies that lg (A,-) is a continuous function
for each scalar matrix A € Q),,.
As we noted, if A € Q,, (n > 2), then the following are equivalent;:

(i) lq, is continuous at (A, B) for each B € Qy;
(i) la,(4,) =g, (0(A),a(")).

Also consider the condition
(iii) A € Co has (two) equal eigenvalues.

By [26, Theorem 8], (iii) implies (ii). Theorem says that the scalar matrices and
those satisfying (iii) are the only ones for which I (A,-) is a continuous function. Then
Proposition implies that (iii) follows from (i). So assertions (i), (ii) and (iii) are
equivalent.

THEOREM 2.9.2. If A € Q,,, then lq, (A,-) is a continuous function if and only if A is a
scalar matriz or A € Cy has two equal eigenvalues.

Proof. Applying @, and
Up(X)=P'XP, PeM,' XeM,, (2.9.1)

we can assume that 0 is an eigenvalue of A with a maximal number of Jordan blocks and
the matrix is in Jordan form.

It suffices to prove that lg, (A,-) is not a continuous function if A has a nonzero
eigenvalue or A € ), is a nonzero nilpotent matrix and n > 3.

In the first case let dy > --- > di be the number of Jordan blocks that correspond
to the different eigenvalues A\; = 0, Az, ..., \x. We will prove that lg, (A4, ) is not contin-
uous at 0. It is easily seen that A can be expressed as blocks Aj,..., 4; (of dimensions
ni,...,n;) so that the eigenvalues of A; are equal to 0 and the remaining blocks are
cyclic with at least two different eigenvalues (A; is missing if d; = ds). By Proposition
2.7.1{(iii), there exists a sequence of matrices A; ; — 0 as j — oo, 1 < i < [, such that
sup; ; lo,, (Ai, Aij) =@ m < r(A). Forming A; from the blocks A j,..., 4 ;, it follows
that lo, (A, 4;) < max;lq, I(4;, Ai;) < m < lq,(A,0), meaning that lo, (4,-) is not
continuous at 0.

Let now A # 0 be a nilpotent matrix. Then A = (a;;)1<i j<n, Where a;; = 0 for
j#i+1. Let r = rank(A) > 1. Following the proof of [I15, Proposition 4.1], let

F():{].}U{je{Z,...7n}Zaj,17j20}12{1:b1<"'<bn,7«},

and by,_,11 =n+1. Put d; = 1+#(FoNn—i+2,...,n). As A # 0 is a nilpotent matrix, it
has a Jordan form such that a,—1, =1land 1 =d; =dy <d3 < --- <dy, = #Fp=n—r,
dj-‘rl < d]’ + 1.
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In [I15], Proposition 4.1, Corollary 4.3] there is a necessary and sufficient condition for
lifting of discs from O(D, G,,) to ones in O(D, 2,,), passing through a cyclic and nilpotent
matrix. They easily imply that for each C € C,,

la, (A,C) = hg,(0,0(C)) :=inf{|a] : T € H(D,G,) : (o) = a(C)},

where

H(D, Gn) = {’Q/J S O(]D),Gn) : OI‘do’(/Jj > dj, 1<5< n}

Note that d; < j — 1 for j > 2. Let m = min;>od;/(j — 1) and choose k such that
di/(k—1) =m.If m =1, then d; = j — 1 for each j > 2 and so in this case for n > 3
one can take k = 3.

Let A be a sufficiently small positive number, b = kA¥~1 and ¢ = (k — 1)\¥. Then A
is a double zero of the polynomial A(z) = 2" *(2* — bz + ¢) with zeroes in D. Let B be
a diagonal matrix with characteristic polynomial Pg(z) = A(z2).

Suppose that the function lg, (A4, ) is continuous at B. Then

lo, (A, B) = hg, (0,0(B)) =: a.

LEMMA 2.9.3. If lg, (A, B) = «, then there exists ¥ € H(D,G,,) so that Y(a) = o(B)
and

S wj@)(=N" =0,

Proof. Similarly to the proof of [I15, Proposition 4.1], let ¢ € O(D,,,) and & € D so
that ¢(0) = A and ¢(&) = B. By [115, Corollary 4.3] we have ¢ = 0 0 ¢ € H(D,G,,).
Now let us examine o,(¢(¢)) — o0n(B) = 0,(©(¢)) near { = @ We can assume that
the first two diagonal elements of B are equal to A. If ¢, (¢) = ¢({) — AI,,, then the first
two columns of ¢y («) are zero. Consequently, 0, 0y = det ¢y has a zero of order at least
2 at a. On the other hand, G,, is a taut domain, which easily provides the required . m

LEMMA 2.9.4. We have a™ < A . Furthermore, if m = 1 and n > 3, then o2/ < .
In particular, always o < .

Proof. Note that there exists ¢ > 0 so that for A < ¢ the mapping ¢ + (0, ..., 0, k(e¢)%,
(k—1)\(e¢)%,0,...,0) is a competitor for hg, (A, B). Consequently, (ea)® < A\F~1 ie.
a™ < A\

If m =1 and n > k = 3, by considering the mapping ¢ — (0,32, 2(e¢)?, 0...,0)
we get (ea)? < A3, m

To finish the proof of the theorem, put 1;(¢) = (% 6(¢); the condition in Lemmam
becomes .
aﬂ +5=0, (2.9.2)
!
where a = (k — 1)dy, — kdj—1 and S = Z;L:1 a6 (a)(=A)"~7. Note that a # 0. Indeed,
if m < 1, then dj, = di—; and consequently a = —dy, while if m = 1, then a = (k—1)(k—
1) —k(k—2) = 1. As G, is a bounded domain, the Cauchy inequalities imply [0} ()| < 1.

(") This means that o™ < C for some constant C' > 0 independent of \.
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By Lemma and by the choice of k it follows that for each j,

So S < A" 1. Once again by Lemma [2.9.4) o < A, contradicting (2.9.2). m

2.10. Zeroes of kq,. Recall that the spectral Carathéodory-Fejér problem of order 1
(SCFP) reduces to the calculation of the Kobayashi metric kg, of Q,. Furthermore, if

A €C, (i.e. Ais a cyclic matrix), then (see (2.2.2))
kq, (A; B) = kg, (4;0'4(B)).

In particular, kg, (4; B) =0 < ¢/, (B) = 0.

On the other hand, by Proposition 0’y (B) = 0 exactly when there exists Y € M,,
so that B = [Y, A]. Consequently, if A € C,, and ¢/4(B) = 0, considering ¢ + €Y Ae=¢Y
we find even an entire curve ¢ : C — €, so that ¢(0) = A and ¢’(0) = B. In general, if
kq, (4; B) = 0 (we do not assume A € C,), then SCFP has a solution for an arbitrary
disc instead of the unit one. Therefore it is important to know the zeroes of kg, . This
also bears information on the discontinuity of this function (hence also of SCFP).

Recall that for the Carathéodory metric of 2, things are much simpler (see Propo-
sition [2.2.3):

0, (4; B) = 1e, (0(A); 04(B))
and so 7o, (4; B) =0« ¢/,(B) =0.

To formulate the results in this section we need to introduce some notions.

For A € ), denote by Cy4 the tangent cone (see [20], p. 79]) to the isospectral (analytic)
set

Ly={CeQ, :sp(C)=sp(A)},
ie.

Cy={BeM,:30<c; —»0,C; € La so that ¢;(C; — A) — B}.

Note that L4 is smooth at D if D € C,,. Then C4 = ker o}, and as dimker o, = n®>—n
(see Proposition , C4 is an analytic set and dimCs = dimLs = n? — n by [20,
Corollary, p. 83]. If A ¢ C,, then dimkerc’; > n*> — n (see Proposition and so
C4 C kero’y. Thus

Cyp=keroy, & AcC,.

The next theorem characterizes C4 as the set of “generalized” tangent vectors at A
to an entire curve in 2, passing through A (in particular, this curve is contained in L 4).

THEOREM 2.10.1. Let A € Q,, and B € M,,. Then there exists m € N (m < n!) and
¢ € O(C,,) so that p(0) = A, ¢'(0) = --- = ¢m=1(0) = 0, ™ (0) = B only if
B e (Cy4.

We are not including the proof of this theorem, due to its length and the use of results
about analytic sets that are beyond the scope of the dissertation. It can be found in the
paper [100] by the author and P. J. Thomas.
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Theorem [2.10.1] shows that C4 is contained in the set of zeroes of the singular
Kobayashi metric £¢, (4;-). Recall that (see [123])

kg, (A; B) = inf{|a| : Im € N,p € O(D, Q) : ordg(p — A) > m, ap™(0) = m!B}.

Now we define another cone Cy C M,,, A € Q,,.

For a function g holomorphic near A, and for X in a neighborhood of A, put g(X) —
g(A) = g4 (X — A) + ---, where g% is the homogeneous polynomial of lowest nonzero
degree in the expansion of g near A. Put

C'y={BeM,: fi(B)=0 for each f € O(Q,,D)}.
Note that
Ca C Cy Ckeroly;
the first inclusion is proven e.g. in [20, p. 86]), and the second one follows from the facts
that each f € O(Q,,D) is constant on L4 (by the Liouville theorem) and that
ker o’y = {(0;)% = 0 for all j such that deg(c;)% = 1}.

Also, each of these three sets is invariant under automorphisms of €2,,.

The cone C'; coincides with C4 for n = 2 and n = 3 (for the last fact see Proposition
below and the remarks preceding it). We do not know whether this is true for
each n.

In the most trivial case of a noncyclic matrix, namely a scalar one, C’y = Cj4 is the
set of zero-spectrum matrices, while ker ¢/, is the set of zero-trace matrices.

)

Note that k¢, >3 , where 7 = sup,, ey %(Im is the singular Carathéodory metric

of Q,, (see Section for the definition of (™).
Theorem [2.10.1] implies that

BeCy = k4 (A;B)=0 = 74 (A;B)=0 & Be(C)
(the last equivalence is trivial). In particular,
ka,(4;B)=0 = Be(C).
PROPOSITION 2.10.2. If A € Q,, \ Cy,, then C'y # kerd’y.

Proof. As A € Q,, \ C,, at least two of the eigenvalues of A are equal, for example to A.

Applying @, (see (2.2.3)) and ¥p (see (2.9.1)) we can assume that A = 0 and that A is
in Jordan form. In particular,
Ao O
A =
( 0 Al) 7

where Ag € My, 2 <m <n, Sp(AO) = {0}7 A € My, 0 ¢ Sp(Al)'
Further, there exists a set J C {2,...,m}, possibly empty, such that a;_,; = 1 for
j € J, and all other elements a;; are equal to 0 for 1 < 4,5 < m. Put 0 <r = #J =

rank Ag < m — 2. Let
By 0
B = ns
(0 0) eM

where BO = (bij)lgi,jgm so that bj—lvj =-1 fOI"j S {2, .. .,m}\J, bml = 1, and bij =0
otherwise.
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As O'm/(:l) € 0(Q,,D), it suffices to prove the following
LEMMA 2.10.3. (oym)%(B) =1, but o/4(B) = 0.
Proof. First let us calculate o;(Ag + hBy), 1 < j < m, h € C. By developing along the
first column, we get
det(tI — (Ag + hBy)) =t™ + (=1)™ " 1pmT,
Equating the coefficients on both sides leads to

03 1§j§m_17

2.10.1
R, =m. (2.10-1)

o;(Ag + hBy) = {

Now we need a general formula for o;. For a given matrix M = (m;;)i<i j<n and a
set £ C {1,...,n} denote by dg(M) the determinant of the matrix (m;;); jer € Mug.
For convenience put dp(M) = o¢(M) := 1. Then

oj(M) = > Sp(M). (2.10.2)
EC{l,...,n}, #E=j
The block structure of our matrices implies that
0p(A+hB) = 0pnq1,...m} (Ao + hBo)dpnmy1,...n}y (A1)
So
o5(A+ hB) = 3 (X ow(A+hB)

max(0,j—n+m)<k<min(m,j) E’'C{1l,...m},#E'=k

x ( 3 S (Al))

E'"C{m+1,...n},#E"=j—k
= Z Uk(AO + hB())Uj,k‘(Al).
max(0,j—n+m)<k<min(m,j)
By (2.10.1) we get 0;(A+ hB) = S1 + Sa, where
g o), G<n—m o [E o (A), 2 m,
t= 0, otherwise, 27 0, otherwise.

In particular,
) o O'j(Al), jSTL—m,
oj(4) = { 0, otherwise.
Then
hm_ro"_ A 5 ,] 2 m,
0j(A+hB) —o0i(A) = { 0 o) otherwise.

Asm —r > 2, we get 0,(B) =0, but (6,,)%(B)=1. n

The main corollary from Proposition [2.10.2] and the implication preceding it is that
SCFP does not depend continuously on the data (so it cannot be reduced to a similar
problem on the symmetrized polydisc).

COROLLARY 2.104. If A€ Q,\C, and B € kero/, \ Cy, then
. p— 3 l.
KQ., (A, B) >0= Cnalgl’laA KQ, (A ,B).
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When A is a scalar matrix, we know more (cf. Proposition [2.9.1)):
PrROPOSITION 2.10.5. For B € M,, and t € D the following are equivalent:

(i) the eigenvalues of B are all equal;
(ii) kg, is continuous at (tI,; B);
(i) kq, (-; B) is continuous at tI,.
Proof. The implication (ii)=-(iii) is trivial. For the rest of the proof we can assume that
t =0 (applying ;).
We will now prove that (i)=-(ii). Let the eigenvalues of B be equal to 0. If A; — 0
and B; — B, then

Ka, (A5 Bj) > ke, (0(A;);0%,(B;)) = ke, (0504(B))
= kg, (0; (tr B)ey) = |b] = kg, (0; B)

(the last two equalities follow from Theorem [2.7.3)(i) and (2.2.6)), respectively).

Thus the function kg, is lower semicontinuous at (0; B). As it is (always) upper
semicontinuous, it is continuous at this point.

It remains to prove that (iii)=-(i). As C,, is a dense subset of §,,, we can find a sequence

Cn D (A;j) = 0. Then (2.2.6), and Theorem [2.7.3(i) imply that
H(B) = ko, (05 B) < i, (Azs B) = i, (0(A)i o, (By)) — ris, (03 04(B)) = |tx Bl /.
So r(B) = |tr B|/n, i.e. the eigenvalues of B are equal. m
Now let us formulate the following hypothesis for the zeroes of kg, .

HYPOTHESIS. kg, (A; B) = 0 if and only if there exists a ¢ € O(C,Q,,) so that p(0) = A
and ¢’(0) = B. In particular, if kg, (A; B) =0, then B € Cjy.

Note that there are matrices B € Cy4 such that kg, (A;B) # 0 (see Proposition
[2.10.6((ii) and Corollary 2.10.7).

In some cases the above hypothesis can be checked.

The remarks at the beginning of this section imply that this hypothesis is true for
cyclic matrices.

Also, as the zeroes of kg, (0;-) are exactly the zero-spectrum matrices and this set of
matrices is a union of complex lines through the origin, the hypothesis is true for scalar
matrices.

As the noncyclic matrices A in 2> are only the scalar ones, we can choose m = 1
in Theorem for n = 2; then C4 coincides with the zeroes of rkq,(A;-), as well as
with the set of matrices B = ¢'(0) for some entire curve ¢ in . (On the other hand,
kero’y = {B € My : tr B = 0}.) So we have a complete description of the set of zeroes of
kq, and the above hypothesis is true for n = 2.

Now let us consider the set of zeroes of kg, (A;-), when A is a noncyclic and nonscalar
matrix (we will confirm the hypothesis for n = 3, too). The use of the automorphisms
®, and ¥p of 23 reduces the problem to the following two cases:

0 0 0 0 0 0
A=A=[0 0 0|, teD,, A=A:=|0 0 1
0 0 ¢ 0 0 0
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It is easily seen that
OjAt C fo = {B S M3 . O_Zt(B)} = {B S M3 . b33 = b11 —+ b22 = b%l —+ b12b21 = 0}7
C5 CCi={BeM;s:0%(B)} ={B € Ms:bi1+ by + bsz = bzz = biabz; = 0}

(for example, to check the second equality, we observe that if B, = A+eB+ o(g), then
tr B. = etr B+o(e), 02(B:) = —¢ebsa+o(e) and det B, = £2(b1abs1 —b11b32)+0(g?)). As the

tangent cones are closed, the next proposition shows in particular that C'y, = CAA = ZA

and C; = 1’4 = Cg.
ProroSITION 2.10.6.

(i) If B € C}, (t # 0), then there exists a ¢ € O(C,Q3) such that ¢(0) = A; and
#(0) = B.

(i) Let B € C;. Then there exists a ¢ € O(C,(2y) so that ¢(0) = A and ¢'(0) = B only
if b11 = 0 and b1y # bs1. Otherwise kq, (;1; B)=1.

As kq,(A; B) > 0 for B ¢ (', this proposition and the remarks preceding it give a
complete description of the set of zeroes of kq,, thereby confirming the hypothesis for
n=3.

Proof. (i) Let us first B € C' . We express B in the form B = X + [V, A;], where X
is such that ¥(¢) = A; + (X € La, for each ¢ € C. Then p(¢) = Y 4(¢)e~ Y has the
required properties.

It is easily calculated that ¢(C) C Lj, exactly when sp(X) = 0 and x11 + xo2 =
22, + T12791 = 0. On the other hand,

0 0 w3
Y, 4] =t 0 0 o3
—ys1 —ys2 O
So we can choose
bu b12 0 0 0 b13
X=| by bp 0], Y=t 0 0 bog
0 0 0 —b31 —b3zy O

(ii) Let first B € C:&' If b1; = 0 or bya # b3, it suffices to find (as above) X and Y
so that B = X 4 [V, A] and A+ (X € L for each ¢ € C. The last condition means that
the eigenvalues of X are zeroes and x32 = 12231 = 0. On the other hand,

3 0 0 Y12
YAl = | —ys1 —ys3 Y22 — Y33
0 0 Y32

Suppose that b3; = 0 (when b1 = 0 the calculations are analogous). We have to
choose X of the form

b11 b12 b1z — Y12

X = bor+ys1 bao+ysz baz— Yoo+ ys3
0 0 —b11 — baa — Y32
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so that det X = 0 and 02(X) =0, i.e. DT =0 and D = T?, where
_ b1 b2
ba1 +ys1 b2z + Y32
These two conditions are true only if

, T =0b11 + bas + y32.

—ba, bi1 =0,
—boy — b}, /b12, b1z # 0.

It remains to show that if b;; # 0 and b2 = b33 = 0, then kq, ([l; B) = 1. We can
assume that by; = 1. Put B = diag(1, e2mi/3 eAmi/3  As above, we can choose Band Y so
that B = B+[Y, A;]. Let a > 0 and ¢ € O(a, Q3) be such that ¢(0) = A, and ¢’ (0) = B.
Putting 3(¢) = e Y ¢(¢)e¢Y, we have ¢ € O(aD,Q3), $(0) = A and @'(0) = B. So
ka,(A; B) > kq,(A; B). The converse inequality follows similarly. It remains to apply
Proposition from the next section. m

COROLLARY 2.10.7. For each n>3 there exist A€, and BeCy so that kq, (A; B)>0.
Proof. Put

Yz = —bi1 — b2, Y31 = {

0 0 0 1 ¢ 0

A=lo0oo0 1|, B.=(o0o -1 0],
0 0 0 0 0 0
A O B. O

1=(60) 5=(0 o)

As in the proof of Proposition [2.10.6(ii), it follows that

* kg, (A; Bo) > 0;
o for £ # 0 there exists . € O(C,Q,,) such that ¢.(0) = A and ¢.(0) = B..

Then B, € Ca,e #0,80 By € Cy. n

2.11. The Kobayashi metric vs. the Lempert function. As an application of part
of the above considerations, in this section we will provide an example showing that, in
general, the Kobayashi pseudometric of a pseudoconvex domain is not equal to the weak
“derivative” of the Lempert function. The pseudoconvex domain will be the spectral ball
Q3 C C? (that is also a balanced nontaut unbounded domain).
Recall that the Kobayashi metric of a taut domain D C C" coincides with the “deriva-
tive” of the Lempert function (see Section |1.2):
! / !/
ko2 X) = lim (', 2" +tX')
t—0,2' =2z, X' =X |t|

On the other hand, Proposition [T.2.3 states that

Ip(z', 2 +tX')

kp(z; X) > Dip(z; X) := lim sup (2.11.1)
t—0,2'—z, X' X ‘t|
for an arbitrary domain D C C™.
The aim of this section is to show that the inequality
~ l tX
kp(z; X) > Dip(z; X) := limsupM (2.11.2)

t—0 ‘t|
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is strict in the general case (of a pseudoconvex domain). Put
0 00 1 0 0
A= 0 0 1 and B; = 0 w 0
0 0 0 0 3t w?

where w = €27/3_ Let B = By.
ProrosiTION 2.11.1. The following inequality holds:
ko, (A; B) > 0 = Dlg, (A; B).
Moreover, ift; — 0 and C; — B (C; = (6,7”)) so that liminf,_, |c§72/tj — 3| >0, then
lim lo,(A, A+ t;C))
j—e0 1451

=0.

REMARK. As HD and [p have the product property (see Section , in general the
inequality (2.11.2)) is strict for pseudoconvex domains in C" for n > 9 (for example
for Qg3 x ID)k) In fact the proof below shows that Dl ,(4;B) = 0, where Qs is the set
of zero-trace matrices in 3. Consequently, the mequality in is strict for the
pseudoconvex domain 523 c C8.

QUESTION. It would be interesting to find an example of a lower dimension, as well as
to see whether in general the inequality (2.11.1)) is strict (the last question was posed at
the end of Section [L.2)).

Recall that there exist matrices B — B so that Kas (4; B) =0 (sce Proposition
(ii)); in particular, the function kg, (A;-) is not continuous at B.

Also note that the condition liminf; o |c},/t; — 3| > 0 in Proposition is
essential, as seen by the following

PROPOSITION 2.11.2. kg, (A4; B) = limy0la, (A, A+ tB:)/|t| = 1. In particular,
1= /@53(A;B) = Kkq,(4; B) = Dl§3(A;B) = Dlq,(A; B).
For the proof of Proposition [2.11.1| we will use the following special case of [115]

Proposition 4.1, Corollary 4.3] (see also [93] for more general facts).

LEMMA 2.11.3. Let M € Qs is a cyclic matriz and ¢ € O(D,G3) be a mapping such
that p(0) = 0 and p(a) = o(M) (o € D). Then there exists a v € O(D,Q3) such that
¥(0) = A, Y(a) = M and ¢ = o o exactly when ¢5(0) = 0. In particular,

lo, (A, M) = inf{|a] : Jp € O(D, Gs) : ¢(0) = 0, p(e) = (M), ¢5(0) = 0}
and (as G3 is a taut domain) there exists an extremal disc for lo, (A, M).

Proof. If such a 1) exists, then one directly calculates ¢45(0) = (03 0 1)’ (0) =
Conversely, let ¢5(0) = 0. Put

0 ¢ 0
Y(C) = 0 0 1 , CeD.
©3(0)/¢ —p2(¢) ¥1(¢)
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Then (0) = A and ¢ = ¢ o ¢). Furthermore, e5 = (0,0,1) is a cyclic vector for ()

when ¢ # 0. So ¥(«) is a cyclic matrix with the same spectrum as the cyclic matrix M
and consequently they are similar (to their adjoint matrix) by Proposition Then
we can express M in the form M = e%y(a)e™ for some S € Ms. It remains to put

V(¢) = eP(Q)e /e m

Proof of Proposition|2.11.1 By Proposition [2.11.2] we only need to check that
lim I, (A, A+1,C;)/|t;] = 0
j—00

under the conditions for ¢} ,.
Suppose the contrary. Then we may assume that
ZQS(A, A+ tjCj)/‘tj‘ —a > 0.

Step 1. Suppose that there exists a subsequence (not relabeled) such that all matrices
A +1t;C; are cyclic and belong to 3. By some calculations we get

o(A+t;C5) = (t;£1(Cy), t; F2(C), 85 f3(Cy)) =: (aj, b, ¢5),
where f1(C;) = 0, f2(C;) — 0 and f5(C;) — 0.
Put
©i(¢) = (Cay/rj,Cbj/r,CPei/r3), ¢ €D,
where r; = max{3|a;|, 3|b;|, /3[c;[}. Then @; € O(D,G3) with ¢;(0) = 0, ¢} 5(0) =0
and ¢;(r;) = o(A+t¢;C;). Lemma [2.11.3| implies that
la, (A, A+1;C5)/It] < rj/lt;| =0,
a contradiction.
Step 2. Suppose that all matrices A+t;C; are noncyclic. Then their minimal polynomials
have degrees less than 3 (see Proposition [2.3.1])). Consequently, these degrees are equal to
2 for all sufficiently large j. Hence
(A + tjCj)Q + l’](A + tjCj) + yjfg = O,

where z;,y; € C. We get nine equations (for the components); denote them by Ei o
where k and ¢ are the indices of the row and the column, respectively. The equation
Ej 5 gives x;/t; — 1. Using this in Ef ;, we get yj/t? — —2. Finally, Ej, implies

o/t = 2 —w —w?® = 3, a contradiction. =

Proof of Proposition . As A+ (B € (s for each ¢ € D, we get kg, (A;B) < 1.
It remains to show that

liminflq, (A, A+tB:)/|t| > 1.
t—0

Note that A + ¢tB; is similar to the matrix D, = diag(¢,t — 2¢t) and consequently
lo, (A, A+tB,) = la, (A, D) (we already applied this argument several times).

Suppose that t; — 0 so that lg, (A, Dy, )/[t;] — ¢ < 1.

Let 1p; € O(D, Q23) be a disc such that 1;(0) = A, ¥ () = Dy, and |oy|/|t;| — c. Put
¢j = 0 0. Direct calculations lead to ¢’ 3(0) = 0 and

@ () =t 5 () + 5] 1 () = 0.
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After expressing ¢; in the form

©; () = (€0;,1(€),€05,2(C), C%05,3(C)),

the last equality becomes

t8 = a2 (o0 5(a) — ;0 5 (a;) + 130 1 (aj)) (2.11.3)
(WC use 9]'71(013‘) = 0, 9]',2((1]') = —31‘?/@]‘ and 0]‘73(05]‘) = —Zt?/a?). As Gg is a taut
domain, by passing to subsequences we can assume that ¢; — ¢ = ((p1,(3p2,(3p3) €
O(D, Gs) and p1(0) = 0. Then shows that if K = 1/¢, then

p3(0) = k> + kp2(0).
Proposition [2.5.1] (see also [37, Proposition 16]) implies that
hg, (2) = max{|A| : A® — 21 A% + 25\ — 23 = 0}

is a (logarithmically) plurisubharmonic function and G3 = {z € C3 : hg,(2) < 1} (hg, is
the Minkowski function of the (1,2, 3)-balanced domain G3). As

IClhes (p1(C), p2(C), p3(C)) = hes(¢(¢) <1, (€D,

the maximum principle for plurisubharmonic functions implies that hg,(p1, p2,p3) < 1
on D. In particular, hg,(p1(0),p2(0), p3(0)) < 1. Consequently, all the three zeroes of
the polynomial P(\) = A% — p;(0)A? + p2(0)A — p3(0) lie in D. On the other hand,
P(A\) = (A= k)(A%2 + kX + k2 + p2(0)) with k > 1, a contradiction. m

3. Estimates and boundary behavior of invariant metrics on
C-convex domains

3.1. Synopsis. The main purpose of this chapter is to obtain estimates (in a geometric
way) for the Carathéodory, Kobayashi and Bergman metrics, as well as for the Bergman
kernel (on the diagonal), of an arbitrary C-convex domain D C C™ not containing complex
lines, in terms of the distance dp(z; X) from the point z € D to the boundary 0D in the
direction X € (C™),. These estimates show that on such a domain these three metrics
coincide up to a constant, depending only on n (Corollary . Similar results in the
special case of a C*°-smooth bounded C-convex domain of a finite type, with quite hard
proofs, are the main results of the dissertations of S. Blumberg [12] and M. Lieder [71].
In addition, the constants there depend on the domain. Earlier similar results for convex
domains can be found in the Ph.D. thesis [19] of J.-H. Chen and in the works [74] [75] of
J. D. McNeal; however their proofs have some essential deficiencies.
Using the 1/4-Theorem of Koebe, it is easily shown in Proposition that

1/4 <vp(z; X)dp(z; X) < kp(z; X)dp(z; X) < 1.

The two (absolute) constants are exact, and 1/4 can be replaced by 1/2 for convex

domains (see [8] or Proposition [3.2.1).

As an application of these estimates, in Section[3.3we find that the standard and linear
multitypes of D’Angelo and Catlin coincide for a smooth boundary point of a C-convex
domain. This generalizes a result of M. Conrad [23] and J. Yu [I21I] (see also the works
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of J. D. McNeal [73], and H. P. Boas and E. Straube [15]), while our proof is essentially
different and much shorter. It is based upon an easy result from [123] and transferring
the main result in [68] from the convex to the C-convex case (the considerations here are
easier than those in [68]).

The main result of Chapter 3] Theorem states that there is an inequality for the
Bergman metric, similar to the above one; the corresponding constants depend only on the
dimension n of the domain. To prove this, in Theorem [3.2.4] we get some estimates for the
Bergman kernel, which are also of independent interest. The constants there depend only
on n and are exact for the class of convex domains. These estimates are connected with
the so-called minimal basis (for a point in a given domain), introduced by T. Hefer [44]
for the smooth case (of finite type) and somewhat later, but independently, by the author
and P. Pflug [84] in the general case. It is used in the proof of Theorem and almost
all arguments are geometrical. One can define a minimal basis for a point in a given open
set (not containing complex lines) by induction: the first vector of the base is directed
towards the closest point from the set boundary, and the next ones are from the basis
of the intersection of the set with the complex hyperplane through the point, orthogonal
to that vector. The main (and trivial) property of that basis that is used for weakly
linearly convex domains is the orthogonality of the intersections of complex “support”
hyperplanes through the emerging boundary points, and the corresponding vectors form
the basis. The geometrical arguments are completed by the stability of C-convexity under
projections.

In the previously mentioned works |19, [74} [75], apart from the d-technique, the authors
use a similar (however notably more complicated) method but another basis that we will
call maximal. In Section [3.5] we provide a natural counterexample for the main “property”
of this basis (the same as for the minimal one) that is used in those and other works for
various problems (e.g. for the linear and D’Angelo types in the already cited paper [73]).
Nevertheless, in Section [3.6] we show how the estimates obtained in the minimal basis
imply those for the maximal one (using some combinatorial arguments).

Another aim of this chapter is to establish the local character of the results obtained
by showing that the estimates near a given boundary point a of a domain remain true if
the domain is weakly locally linearly convex near a and the boundary does not contain
analytic discs through a. Such a domain with a C?-smooth boundary near a turns out to
be locally C-convex (Proposition. Then the local character of the estimates for the
Kobayashi metric (if the domain is bounded) follows from the general localization propo-
sition [3.7.5] Its proof permits one to obtain immediately the exact boundary behavior of
this metric near an isolated point of a planar domain, having at least one more point on
its boundary. This essentially strengthens the main result from [61].

The local character of the estimates for the Bergman kernel and Bergman metric
is determined in Section where the domain is assumed to be pseudoconvex (but
not necessarily bounded) and locally convex around a boundary point not contained in
analytic (or, equivalently, linear) discs from the boundary. The proof is based on the
existence of a locally holomorphic peak function at this point (Proposition and
the localization theorem for the Bergman kernel and Bergman metric (if such a
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function exists). In the case of a bounded pseudoconvex domain this theorem is contained
in the fundamental work [49] of L. Hérmander as an application of the L?-estimates
for the O-problem. Our proof is a variation of this technique. As a corollary we get a
stronger variant of the main result of G. Herbort [47] without the use of the d-technique
of Ohsawa-Takegoshi (see the remark at the end of Section . The proof also implies
weak localization of the Bergman kernel and Bergman metric for a planar domain with
a nonpolar complement (Corollary [3.8.6)).

In the last section we get the exact boundary behavior of the invariant metrics under
consideration near a C'-smooth boundary point of an arbitrary planar domain, once again
using a geometric argument (the Pinchuk scaling method).

3.2. Estimates for the Carathéodory and Kobayashi metrics. The aim of this
section is to obtain estimates for the Kobayashi and Carathéodory metrics on C-convex
domains in terms of the distance to the boundary of the corresponding direction. These
results generalize similar statements for bounded smooth C-convex domains of finite type,
whose original proofs are quite hard (see [71]).

For a point z from a domain D C C™ and a vector X € (C")., we denote by dp(z; X)
the distance from z to 9D in the direction of X, i.e.

dp(z; X) =sup{r >0: Ax(z,r) C D}, where Ax(z,7)={z+AX: |\ <7}

Clearly

dist(z,0D) =: dp(z) = |\)i(rﬁf—1 dp(z; X).

If dp(z; X)) = 00, i.e. D contains the line through z in the direction of X, then
vp(2;X) = kp(2; X) = 0.
First recall the following result for convex domains.
PRrROPOSITION 3.2.1 (|8]). Let D C C™ be a convex domain. If dp(z; X) < oo, then
1/2 <vp(z; X)dp(z; X) = kp(z; X)dp(z; X) < 1.

Proof. The upper estimate holds for each domain D, as Dx(z,dp(z,X)) C D. For the
lower estimate consider an (open) supporting half-space II of D for a boundary point of
the type z + AX. Then

V(2 X) = (2 X) = dHH(f-HX) = d;(fHX).

It remains to note that the equality in the statement follows from the Lempert theorem
(see e.g. [69,[70]). m

The constants 1/2 and 1 cannot be improved, as seen from the examples of a half-space
and a ball.
Now we will establish a similar result for C-convex domains.

PROPOSITION 3.2.2. Let D C C™ be a C-convex domain. If dp(z; X) < oo, then
1/4 < vp(2;X)dp(z; X) < kp(2; X)dp(z; X) < 1.
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The constant 1/4 is the best possible in the plane, as seen in the example with the
image D = C\ [1/4,00) of D for the Koebe transformation z — z/(1 + z)%.

COROLLARY 3.2.3. For each C-convexr domain D C C", we have kp < 47p.

This is another argument supporting the hypothesis that kp = vp for each C-convex
domain D C C™ (a weaker variant of [125, Problem 4|; see the Introduction).

Proof of Proposition We can assume that || X| = 1. Let | be the complex line
through z with direction X, and a € IN9D so that ||z—al| = dp(z; X). Consider a complex
hyperplane H through a not intersecting D and denote by G the projection of D onto [
in the direction of H. Note that G is a simply connected domain (see e.g. [5, Theorem
2.3.6] or [50, Theorem 2.3.6]), a € OG and dp(z; X) = ||z — a|| = dg(z) = dist(z,0G). It
remains to apply the Koebe 1/4-theorem to get

vo(2: X) > v6(z1) >

Indeed, if f : D — @ is a conformal mapping such that f(0) = z, by the Koebe theorem
G contains the disc of center z and radius | f/(0)|/4. So |f'(0)| < 4d¢(z) and hence

1=(0;1) =va(f(0); f/(0)) = [f'(0)|va(z;1) < 4da(2)va(2;1),
and the result follows. =m

Recall that if a C-convex domain in C™ contains a complex line, then it is linearly
equivalent to the Cartesian product of C and a C-convex domain in C"~! (see Section.

In view of this it is natural to ask about the boundary behavior of the metrics in the
directions for which there are (linear) discs in the boundary in these directions.

More precisely, for a boundary point a of a domain D C C" we denote by L, the
set of all vectors X € C" such that there exists an ¢ > 0 so that 0D D> Ax(a,e). The
following result is an application of Proposition [3.2.2

PROPOSITION 3.2.4. Let a be a boundary point of a C-convex domain D C C™.

(i) We have
lim yp(2; X) =00 locally uniformly in X & L.

z—a
(ii) If D is C*-smooth at a, then L, is a linear space. In addition, for each nontangent
cone A with verter a @ we have
limsupkp(z; X) < oo locally uniformly in X € L.
ASz—a
The proof of this proposition, as well as of a part of the next ones, will be based on
the following geometrical property of weakly linearly convex domains (see also [126]).

LEMMA 3.2.5. Suppose that a weakly linearly convexr domain G C C™ contains the n
unit discs lying in the coordinate lines. Then G contains the convexr hull of these discs,
E={zeC: 30 |5 <1}

(YA ={2€C":c||z—a| < |pr,(2)|}, where ¢ € (0,1) and pr, is the projection onto the
interior normal to 0D at a.
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Proof. For each € € (0,1) there exists a 6 > 0 so that

Xo=J(Dx-xdDx gD xdDx - xdD) CG.

Jj=1 jth place
Note that )A(S C G, where )/(:6 is the least linearly convex set that contains X.. In addition,
X.={2€C"|VeC":(z,b)=13a€ X.: (a,b) =1}

(see e.g. [Bl p. 7] or [0, Proposition 4.6.2]). Then X_ is a balanced domain and as it is
linearly convex, it is convex (see Proposition [2.6.1]). Consequently,

EEZ{ZGCnZi|Zj|<E}CXECG
j=1

and letting e — 1 we get the desired proposition. =

REMARK. The same arguments show that G contains the convex hull of each of its
balanced subdomains. In particular, the maximal balanced subdomain of G is convex
(see also [126]).

Proof of Proposition m (i) Assuming the contrary, we can find r > 0 and sequences
D>z —aand C" 3> X; - X & L, such that 4ryp(z;; X;) < 1. By Proposition
dp(zj; X;) > 7. Then Ax,(zj,7) C D, = DN B, (a,2r) for each sufficiently large j. Note
that D, is a (weakly) linearly convex open set. By Proposition it is taut. Therefore
Ax(a,r) C 0D, a contradiction.

(i) As 0D is C'-smooth, for any two linearly independent vectors X,Y € L, one can
find a neighborhood U of @ and a number € > 0 so that Ax(z,e) C D and Ay(z,e) C D
for z € DNUNA. By Lemma 3.2.5, Axiy(z,&') C D for some & > 0. As in (i) we
get Axiy(a,e’) C dD. Consequently, L, is a linear space. Then, choosing a basis for L,
and applying Lemma [3.2.5 we find a neighborhood U of @ and a number ¢ > 0 so that
Ax(z,¢) C D for each z € DNU N A and each unit vector X € L,. Now the required
estimate follows from Proposition

REMARK. The smoothness condition is redundant if D is a convex domain. Indeed, in
this case it is clear that L, is a linear space. Also, if A C 9D, then for each b € D and
each t € (0, 1] we have tb+ (1 —t)A C D. So we can replace A by an arbitrary cone with
vertex a having as base an arbitrary compact set of D.

3.3. Types of boundary points. The aim of this section is to find estimates on the
behavior of invariant metrics of C-convex domains near a boundary point depending on
the multitype of this point.

Let a be a (C*°-)smooth boundary point of a domain D C C™. Denote by m, the
(D’Angelo) type of a, i.e. the maximal order of tangency of 0D at a with (nontrivial)
analytic discs through a (see e.g. the Ph.D. thesis [79] of the author; we will refer to it
several times in this chapter):

d
1y = sup ordy(ro7y)
~ ord, 7y

)
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where y varies over all analytic discs through a, while r is a smooth defining function of
D near a (this definition depends on 7). By requiring v°*4«7(a) = X, for a given vector
X € (C"),, we define the number m, x.

The point a is said to be of finite type if m, < co. A bounded domain D is said to be
of finite type if all its boundary points are of finite type.

Replacing the analytic discs by complex lines, we define the linear type I, of a. We
can also define the number [, x as the order of tangency of D at a to the line through
a in the direction of X.

Then I, x < mg x and [, < m,. Note that if [, x < oo, then X & L,.

PrOPOSITION 3.3.1. Let a be a smooth boundary point of a C-convexr domain D C C"
and let X € (C™), so that l, x < co. Denote by n, the interior normal to D at a. Then
there exists a neighborhood Ux of a and a constant cx > 1 so that

c;{ldp(z) < dD(z;X)l“'X <cxdp(z), z€DNUxNng.

Proof. We can assume that Rez; < 0 is the interior normal to 9D at a = 0. Let r(z) =
Rez1 + o(]z1]) + p('z) be a smooth defining function of D near 0.

For each sufficiently small § > 0 we have § = dp(d,), where 6, = (=4,’0). Put
Ls(¢) = -0, + (X, € C™

We consider two cases.

1. ls,x = 1. This means that X; # 0. Then r(L;(¢)) = —d + Re((X1) + o(/[¢]).
Consequently, Ls(¢) € D if || < §/(2|X1]|) and § is sufficiently small. This proves the
left inequality.

The right inequality follows from the inequality (Ls(26/X1)) > 0, which holds for
each small ¢ > 0.

2.1, x > 2. This means that X; = 0. Then r(Ls(¢)) = —6+p(¢’'X). As p(¢’'X) < ¢[¢]!
for some ¢; > 0, we get Ls(¢) € D, if ¢;|¢|' < 6. This proves the left inequality.

To prove the right inequality, we need to find a ¢ > 0 so that for each small § > 0
there exists ¢ such that |¢|' = ¢;'0 and p(¢'X) > 6. As D is a (weakly) linearly convex
domain, it follows that p(¢'X) = h(¢) + o([¢]') > 0, where

—k
h(Q) =Y ap’C #0.
j+k=l
Homogeneity of h implies h > 0. In addition, as h # 0, we can find ¢ so that |¢| = 1 and
h(¢) > ¢2 > 0. Now the constant ¢y has the required properties for all small § > 0. m

Combining Propositions [3.2.2] and we directly get the following generalization
(in an easy way) of the main result in [68] that deals with convex domains.

COROLLARY 3.3.2. In the notation of Proposition[3.3.1] if z € DN Ux Nng, then
(dex)"H(dp(2)) "X <qp (2 X) < kp(2X) < ex(dp(2)) !X

The main result in [73] (see also [I5]) states that m, = I, for each convex domain.
As an application of Corollary [3.3:2] we will easily show something more, even for an
arbitrary C-convex domain.
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ProprosiTION 3.3.3. If a is a smooth boundary point of a C-convex domain D C C",
then mq x = lg,x for each vector X # 0. In particular, mq = l,.

Proof. It suffices to prove that mq x <lq x if lo, x < co. By Corollary we have
limsup k5 (z; X)d"/' X > liminf yp(z; X)d'/'x >0

DNngdz—a DNng3z—a

(see Section for the definition of %) and the desired inequality follows from [123]
Corollary]. m

The following result is important if the boundary is not real-analytic near a boundary
point of infinite type.

PROPOSITION 3.3.4. If a is a C'-smooth boundary point of a C-convexr domain D C C",
then D does not contain analytic discs through a exactly when L, = {0} (i.e. 9D does
not contain linear discs through a).

Proof. We use the notation from the proof of Proposition It suffices to show that if
¢ : D — 9D is an analytic disc for which ¢(0) = 0, then L, # {0}. As 8D is C'-smooth
near a, there exists ¢ > 0 so that ps(¢) = —d, + ¢({) € D for § < ¢ and |[{| < c. Put
m = ordgp and X = ™) (0)/m!. Then vp(6,; X) < k%(6,; X) < 1/c and as in the
proof of Proposition it follows that Ax(a,c/4) COD. m

REMARK. In the case of a convex domain the smoothness condition is redundant, as seen
in the argument of the last remark in the previous section.

Now we will discuss the so-called multitypes of a smooth boundary point a of a domain
D C C". For each k=1,...,n put

‘ ordy(r 0 7)

a —

inf sup

m
L ordgy

i

where S varies over all hyperplanes through a with dimension k, while v varies over all
analytic discs in S that pass through a (see e.g. [79]). By replacing the analytic discs by
complex lines we define [¥. For k& = n these numbers coincide with m, and [, respectively.
Clearly I} = m! =1 and I¥ < mF. The D’Angelo multitype of a € D is defined as the
nondecreasing n-tuple of numbers M, = (m},...,m"). The D’Angelo linear type L, is
defined in a similar way. We can also define the Catlin multitype M, = (i}, ... m™) and

the Catlin linear multitype Lo, = (I1,...,1") (see e.g. [121]). Note that

The main result of [121] states that L, = M, (and so = M,) for each convex domain.
Using [I121] and other nontrivial facts, in [23] this equality is proven for C-convex domains.

As a corollary of Proposition (that we proved easily), we can get the above
results and even strengthen them a bit.

PrOPOSITION 3.3.5. If a a is smooth boundary point of the C-convex domain D C C",
then L, = M,.

Proof. We can assume that a = 0. We have to show that I§ > mb if I§ < oo and
k > 1. Let I% be attained for some S and a line s € S. If S is orthogonal to the complex
normal Ny to 9D at 0, we consider the subspace S’ generated by Ny and a subspace
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of S of codimension 1, containing s. Then D, = DN S’ C CF is a C-convex domain,
which is smooth near 0. Let mg  and Iy be the type and the linear type of the point
0 € ODy, respectively. Then lp, = If, as if a line s’ C S’ is not orthogonal to N,
then ordg(r o s') = 1 < [5. It remains to use that mf < mo, and mo i = lok by

Proposition 3:3.3] =

Let us mention that a pseudoconvex point a of finite type for which M, = M,, is
called semiregular (see [31]). Thus each smooth point of finite type of a C-convex domain
is semiregular.

3.4. Estimates for the Bergman kernel and the Bergman metric. In this section
we will prove some estimates for the Bergman kernel and the Bergman metric of a C-
convex domain D C C” not containing complex lines. The constants in these estimates
depend only on n. The estimate for the Bergman metric is in the spirit of those for the
Carathéodory and Kobayashi metrics from Section [3:2} As a corollary we find that these
three metrics are comparable with constants depending only on n.

First recall the definitions of the Bergman kernel and Bergman metric for a domain
D C C". For these and other basic facts see e.g. [58].

Denote by L? (D) the Hilbert space of square-integrable holomorphic functions f in D.
This space has a (unique) reproducing kernel K p(z, w), the Bergman kernel. For brevity,
its restriction Kp(z) = Kp(z, z) to the diagonal is also called the Bergman kernel; further
we will mainly work with Kp. It is well-known that Kp is a solution to the following
extremal problem:

Kp(z) =sup{|f(2)]" : f € Li(D), [Ifllp < 1},
where || - || is the L?-norm. If Kp(z) > 0 for some 2z € D, then the quadratic form

Gk=1 "7

is positive semidefinite and its square root Bp(z; X) is called the Bergman metric. It also
solves an extremal problem:
Mp(z; X)

Kp(z)
where Mp(z; X) = sup{|f.(X)| : f € Li(D), | fllp =1, f(z) = 0}.

Recall that the Carathéodory metric does not exceed the Bergman metric (if the latter
is defined):

Bp(z; X) =

vp < Bp.

There are the following transformation rules for the Bergman kernel and the Bergman
metric: if f: G — D is a biholomorphism between domains in C", then

Kp(f(2), f(w))Jac f(2) Jac f(w) = Ka(z,w), Bp(f(2); f.(X)) = Ba(z; X).
Note that unlike the Carathéodory and Kobayashi metrics, the Bergman metric is not
monotone under domain inclusions. However, it is the quotient of two monotone invari-
ants, Mp and Kp.
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This will help us to attain the main goal of this section, namely to show the converse
inequality to vp < Bp up to a constant depending only on n.

THEOREM 3.4.1. There exists a constant ¢, > 0, depending only on n, so that for each
C-convex domain D C C™ not containing a complex line @ we have the inequality

1/4 < Bp(z; X)dp(z; X) < ¢p.

By Propositions and and by the inequality vp < Bp, we get

COROLLARY 3.4.2. There ezists a constant ¢, > 1, depending only on n, so that for each
C-convex domain D C C™ not containing a complez line, we have

kp/4 < Bp < ¢pYD.
If D is a convexr domain, then the constant 4 can be replaced by 1.

The first results, similar to Theorem and to Theorem below (for the
Bergman kernel Kp), refer to bounded smooth convex domains of finite type [19, [74] [75].
Unfortunately the geometric construction there (see also [73]) has a flaw, as we will ob-
serve in the next section. These results are later proven for bounded smooth C-convex
domains of finite type [12] using a correct geometric construction from [44] 45] 23] and
the paper [84] of the author and P. Pflug (see also [29]). Note that the constants in the
corresponding estimates depend on the domains.

Now let us show the most general form of this construction.

Let D C C™ be a domain not containing a complex line. For a point z we choose
a' € D sothat d; := ||a'—z|| = dp(z). Put Hy = z+span(a'—2)* and D; = DNH;. Let
a? € OD; so that dy := ||a®>—z|| = dp, (). Put Hy = z+span(a'—z,a%—2)t, Dy = DNHy
and so on. Thus we get an orthonormal basis of the vectors e; = (a’ — 2)/||a? — 2|,
1 < j < n, which will be called minimal (for D at z), and positive numbers dy < --- < d,
(the basis and the numbers are not uniquely determined).

Put

pp(z) =dy...d,.

The lower estimate for the Bergman kernel Kp via pp in the next theorem is a main

point in the proof of Theorem but is also of independent interest.
THEOREM 3.4.3. Let D C C" be a C-convex domain not containing a complex line. Then
1 2n)!
Tom < KpGIrb() < o
In addition, the lower estimate is precise for n = 1, while the upper estimate is exact for
each n (even for convex domains); the inequality is strict for n > 2.

In addition, if D is a convex domain not containing complex lines, the lower estimate
can be improved by replacing the number 16 by 4. In this case the estimate is precise for
each n.

() Under this assumption D is biholomorphic to a bounded domain (see Proposition ,
so Bp is defined.
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Proof. The upper estimate. We can assume that z = 0. By Lemma [3.2.5]
D>G = {zec";2|zj|/dj < 1}.
j=1

Consequently, G UB,(0,d;) C D and so
Kp(0) < Kaug, (0.41)(0) < Ka(0) = Kp(0)/ph(0),

where
E:{zE(C”:Z|zj\<1}
j=1

(here we applied the transformation rule for the Bergman kernel under the dilatation
of the coordinates (z1,...,2,) = (21/d1,...,2n/dyn)). As E is a complete Reinhardt
domain, Kg(0) = vol(E)~!. It is easily calculated that this volume equals ((227;))7 (2m)™,
thereby proving the upper estimate.

It is precise for n = 1, as seen in the example of the unit disc and its center. If
n > 2, then G does not contain B, (0,d;) so the second inequality above is strict (since
the volume of G is less than that of GUB,(0,d;)).

To finish the discussion of the upper estimate, it remains to show that it is pre-
cise for n > 2. For m € N put b; = j™ for 1 < j < n. Let B; = B,(0,b;) N H}_,,
where H}_; = {0} x C"~7*'. Denote by T the convex hull of the union of Uj=, B; and
{z€C™: 320 |2/b; < 1}. It is not hard to see that b; = dist(0,9(T'N Hj_,)).

Further, if U(z) = (21/b1,...,2n/bn), then ¥(T) is the convex hull of the union of
S =Uj_, ¥(By) and E. For each k > j we have by, /b; — oo if m — co. Consequently, for
every A > 1 one can find an m such that S C AE. As AFE is a convex domain, it contains
U(T). So
Kg(0)

Kr(0)(by ... by)* = Kg(1)(0) > Kxp(0) = on

and as A > 1, the upper estimate is precise.

The lower estimate @ After a translation and a rotation, we can assume that z = 0,
H;={0} xC" 7 (j=1,...,n—1) and o/ = (0,a},0) e "' xCx C"J (j=1,...,n)
so that d; = |a;|

As D is a C-convex domain, there exists a hyperplane a’ + W;_; through a’ that is
disjoint from D. By our construction the ball in H; of center 0 and radius a2 lies in D
and so Wi N Hj is orthogonal to a2, i.e. Wy N Hy C {0} x C"~2. Consequently, W is
defined by the equation o 121 + 22 = 0. The same argument shows that the equation of
Wjfor j=0,...,n—11is

ajaz+ otz + 2z = 0.

Let F': C* — C™ be the linear mapping whose matrix A has rows (o 1,...,q;;,1,0,
...,0), 5 =0,...,n—1. Then G = F(D) is also a C-convex domain (G was another
domain in the proof of the upper estimate). Note that Kp(0) = K (0), as det A = 1.

(°) The geometric proof is close to that of Proposition W
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Put G; = 7;(G), where 7; is the projection onto the jth coordinate plane. Then G} is a
simply connected domain (see e.g. [5]) and G C G; X - -+ X Gy,. Consequently,

Kp(0) > Ka,x..xa, (0) = Kg, 0)--- Kg, (0). (3.4.1)

As G; # C is a simply connected domain, it is biholomorphic to D and /7Kp(0) =1 =
vp(0; 1) implies that

WKGj (0) =G, (O; 1). (3.4.2)
On the other hand,
1
(0;1) > 3.4.3

by the Koebe 1/4-theorem (this argument was already used in the proof of Proposition
3.2.2)).
Further, F(a’) € OG, and the jth coordinate of this point is a?. In addition, the

hyperplane {z € C" : z; = ag} does not intersect G. Consequently, a? € 0Gy; in particular
dj = |d’| > dg, (0).
This together with (3.4.1)), (3.4.2]) and (3.4.3)) proves the lower estimate.

Note that the constant 16 is the best possible for n = 1, as shown by the example of
the image D = C\ [1/4, c0) of D under the Koebe transformation z + z/(1+ 2)? (already
used in Section . This example is not applicable for n > 2 in a trivial way, since a
C-convex Cartesian product of domains that are different from C is necessarily convex
(see the first remark in Section [2.6)).

For the lower estimate in the case of a convex domain it is sufficient to note that the
G are convex domains, so the number 4 can be replaced by 2 due to Proposition @

Finally note that in this case the constant 4 is the best possible, as seen in the example
of a Cartesian product of half-planes. m

Using the lower estimate in Theorem [3.4.3] we can now prove Theorem [3.4.2]

Proof of Theorem[3.].2 We will use the geometric configuration from the proof of The-
orem

Let X € (C"),. First we will find an upper estimate for Mp(0; X). Fixak e J = {j:
X, #0}. Then

Uy (z) = <21 X 2k 21 Xk_lzk 2y Zh41 XkHZk z ank>
- Ty Fkyrcnck—1 7T T <k *ks fk+1 T sy AN T N
Xk X X

is a linear mapping of Jacobian 1 and
YF =W (X)=(0,...,0, X,0,...,0).

Let A; be the disc in the jth coordinate plane of center 0 and radius d; for j # k, and
radius dj, = | X;|dp(0,X) for j = k. Then A; C Dy = ¥4(D) and by Lemma [3.2.5]

U

Dy D Ey = ZE(C":|Zk|—|— Z @<1.
d | d;
ko j=1,#k 7
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Consequently,
Crndy.p(0)
Mp(0; X) = Mp, (0;Y*) < Mg, (0;YF ’ ,
p(0:X) = Mp. (075 = M (05 = 17, 003, (0, %)
where C), := Mg(0;e1) = (26(&:)12)1 (the latter is calculated directly, as E is a complete

Reinhardt domain), and e; is the first basis vector.

From this estimate and the lower estimate in Theorem [3.4.3] it follows that
MD(O X) < C;Ld]@D(O)

Kp(0) ~ |Xkld}(0,X)
where ¢}, = (4/T)"C,, = 2"/2"~1(2(n + 1))!/3.

It remains to note that Lemma implies the inequality

1 N
< J 3.4.5
dD(OaX) B ]2:; dj ( )

Bp(0; X) = 1<k<n, (3.4.4)

and then put ¢, = nc),. m

The above results and their proofs allow us to understand the boundary behavior
of any of the metrics Fp considered—Carathéodory, Kobayashi or Bergman—of a C-
convex domain that does not contain a complex line, in terms of minimal bases. This
strengthens some results from [19, [74], [75] 12, [TT], dealing with bounded smooth domains
of finite type; the constants there depend on the domain (the first three works even refer
to convex domains).

PROPOSITION 3.4.4. There exists a constant ¢, > 1, depending only on n, so that for
each C-convexr domain D C C" not containing a complex line, we have

et < FD(ZJX)<§ W>_ < cp.

(Here e;j(z) are the basis vectors of a minimal basis of D at z, and d;(z) are the corre-
sponding numbers.)

Proof. By (3.4.4]) and the inequality

1
Bo(=X) 2 -5
we get
X,(2)| __4c,
dj(z) ~ dp(z)
So

Z ‘X Z 4Cn
dp(z; X (2) dD(z X)’
where ¢, = nc},. Then ( and ( show that
X (z
(16¢,) ™' < Fp(z (Z' B > <c, m
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The following result is in the spirit of Proposition [3:4.4] but it deals with a fixed basis.
As each boundary point of a bounded C-convex domain is semiregular (see the end of
Section [3.3)), the result directly follows from [124, [16] and [79, Theorem 3.3.1].

PROPOSITION 3.4.5. Let a be a boundary point of finite type of a bounded smooth C-convex
domain D C C™. Denote by M, = (my,...,my) the Catlin multitype of a. Then there
exists a linear basis change with the following property: for each nontangent cone A with
vertex a there exists a constant ¢ > 0 so that for an arbitrary vector X = (Xi,...,X,)
in the new basis we have

n X| —1
-1 <Jiminf F X |7J
¢! <liminf p(2; )<;(dD(Z))1/mj

. - | X5 o

< limsup Fp(z; X < —_ <ec.
A>z—a ( ) ; (dD(Z))l/mj

In addition, for the Bergman kernel we have

¢! <liminf Kp(2)(dp(z)) ™27 < limsup Kp(2)(dp(2)) % < ¢,
Adz—a A>z—a

where ¢ = 1/mq + -+ + 1/m,,.

The basis change can be chosen to be linear because L, = M,.

Note that Proposition [3.4.5|implies a more precise variant of Proposition in the
case of finite type, namely that for each vector X € (C"), there exists j = 1,...,n so
that la,X =my;.

Finally let us mention that by a result from [23] the quotient (d; p)™/dp is bounded
near a (recall that m = m,, is the type of a) and then Proposition m provides a
neighborhood U of a and a constant ¢ > 0 so that

X
kp(z; X) > el X|

> 7(dD(z))1/m’ ze DnNU.

3.5. Maximal basis. A counterexample. To get estimates for the Bergman kernel
and the Bergman metric for C-convex domains, in the previous section we introduced a
basis (called minimal) with origin at a given point of the domain. As mentioned, in the
special case of a smooth convex domain of finite type, in [19] [74] [75] a similar basis is
introduced (that we call maximal). The minimal and maximal bases can be considered
in the context of the so-called extremal bases (see [I8]). Many other important results,
like those connected with the linear type, with the O-problem or with domains with
noncompact groups of automorphisms (see e.g. [(3] [76, [77), 41]), use in an essential way
the properties of the maximal basis, and most of all one extremal property, satisfied also
by the minimal basis. In general, this property means that the vectors from the basis are
orthogonal to the corresponding hyperplanes (see the Introduction; the details are given
below). Unfortunately exactly this property of the maximal basis turns out to be wrong
(the hints for corresponding proofs are based on an incorrect application of the method
of Lagrange multipliers).
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The main aim of this section is to provide a counterexample to the extremal property
of the maximal basis.

Now we define the notion of “maximal basis”. Let D C C™ be a domain, not containing
a complex line. For ¢ € D we choose a unit vector a; € C" so that

s1:=dp(g;a1) = dp(q).
Then we choose a unit vector as € span(a;)t so that

sz :=dp(q;az) = supdp(q; a),
where the supremum is taken over all the unit vectors a € span(a;)*. In the next step
we choose a unit vector az € span(ay, az)® so that

s3 = dp(q; az) = supdp(q;a),
where the supremum is taken over the unit vectors a € span(aj,az)’. Continuing the
procedure, we get an orthonormal basis ay, . . ., a, that will be called maximal (for D at q)
and a sequence of positive numbers so > -+ > s, > s1 > 0 (but they are not uniquely
determined). Note that, unlike the minimal basis, after the first step the corresponding
distances are chosen maximal (rather than minimal).

Assume now that D is a convex domain that is smooth near a boundary point p;
(of finite type). Let r be a locally defining function. Now we will describe the extremal
property mentioned in the Introduction. For ¢ € D on the interior normal to 9D at pq,
sufficiently close to p;, we consider a coordinate system defined by the maximal basis at ¢,
i.e. we put ¢ = 0 and express each z € C" in the form z = 2?21 wja;. We choose py, € 9D,
k=2,...,n, so that py = A\ga, where |A\g| = sx. Many of the works mentioned in the
Introduction (see e.g. [I9, Proposition 2.2(ii)], [73l Proposition 3.1(i)|, [74, Proposition
2.1(iii)]) claim that

or(pr) ,
—0, j=k+1,....n
(911}3' J + " (*)
This means that
T;,Ck (0D) Nspan(ay, .. .,ar)" = span(api1, ..., an). (%)

Note that the minimal basis has a very essential property which is equivalent to (x) in
the smooth case; we started from it when obtaining the lower estimate for the Bergman
kernel in Theorem [3.4.3

However now we will demonstrate a counterexample in C? to the property (*) of the
maximal bases at the points from an interior normal to the boundary of a domain in C?
(in C2 this property clearly holds).

Let 0 < B2 < 81 < 1. Put

D={zecC?*xC:p(2)+|z]* <1},

where p(z) = 22 + B19? + 22 + B2y3. Note that D is a strictly (pseudo)convex domain
with real-analytic boundary. Let ¢ = (0,0,4), where 0 < § < 1. The construction of a
maximal basis of D at ¢ leads to s; =1 —¢ and a; = (0,0, 1). From the next step we get

the domain
Ds ={z€C?:p(z) <1-6}.
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Note that a homothety transforms Ds into Dy and so we can examine only Dy. For
the second vector ay from the maximal basis we have as = (b,0), where b € C2. Then
span(ay,az)"’ is generated by (—bg, b1, 0). Put

T {b cc?. agg)(%) + agg) (&) = o}.

LEMMA 3.5.1. T={b€C?:by =0 orby =0 or Imb; = Imby =0}.

Proof. Some elementary calculations show that b € T exactly when
(51 - 52) Imb1 Imbg = 07 (1 — ﬂl) Imb1 Rebg = (1 — ﬁg) Imbg Rebl,
and the result follows. =

Let po € 0Dy so that

dp, (0;
M = $9 = sup dp,(0;a).
[[p2]| lall=1
The following result shows that the property (xx), equivalent to (), is not true at the
points on the interior normal to D at (1,0,0) (formally we must also consider the case
4 < 0, but then the closest point is (—1,0,0) and the situation is similar).

PROPOSITION 3.5.2. po € T.

Proof. Let b € T be a unit vector. Note that p(re®b) < 1 for each a € R if and only
if 2R(b) < 1, where R(b) = max,cr p(e'®b). Consequently, dp,(0;b) = 1/1/R(b). Let
b= (e cos©,e25inO), where 0 < © < 27 and 0 < ¢y, s < 7/2. By Lemmam
there are three possibilities for b:

e ©=0o0r ©=m:p(e®b) =cos?(a+ 1) + Bisin®(a+ ).
e ©=7/20r ©=31/2: p(e’®b) = cos?(a + @a) + Pz sin’(a + ).
e 01 = @y = 0: p(e'®b) = cos? a + sin® a(B; cos? O + By sin? O).

In all three cases R(b) = 1.

On the other hand, there exists a unit vector b* € C? such that R(b*) < 1, and so
pa & T. To define b*, put © = 7/4 ¢ = 0 and s = 7/2. Then 2p(e’*b*) = 1 + B2 +
(B1 — B2)sin® a. As 31 < B < 1, we conclude that R(b*) = (14 33)/2< 1. m

3.6. Estimates in a maximal basis. The aim of this section is to prove, using the
estimates for invariants in terms of a minimal basis, that they remain true in terms of a
maximal basis, in spite of the counterexample from the last section. A similar approach
allows one to confirm the correctness of other results using the maximal basis.

Let D C C" be a C-convex domain not containing a complex line (i.e. each nonempty
intersection of D with a complex line is biholomorphic to D). For z € D, let ey, ..., e, be
a minimal basis of D at z, and a4, ..., a, a reordered maximal basis of D at z, meaning
that the new aq is the old a1, but as = a,,a3 = ap_1,...,a, = as. Let d1 < --- < d,
and s; < --- < s, be the corresponding numbers (recall that dy = s; = dp(z)). Put
pp(z) = H?:l d; and sp(z) = H?:l sj. As before, Kp(z) denotes the Bergman kernel
(on the diagonal). Let Fp(z; X) be any of the metrics of Carathéodory, Kobayashi or
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Bergman. For X € C" put

Now, we will write f(2) < g(2) if f(2) < ¢,g(2) for some constant ¢, > 0 depending only

on n; f(z) ~ g(z) means that f(z) < g(z) < f(z). By Proposition Theorems
[3:4:3] and Proposition [3:4.4] we know that

Kp(z) ~1/ph(2), Fp(zX) ~ Ep(zX) ~1/dp(z X)

(as noted, under the much stronger requirements that the domain be C-convex, smooth,
bounded and of finite type these estimates follow also from [12] [71])). For brevity we will
sometimes omit the arguments z and X. Lemma easily implies that

KD,Sl/SzD, FD,SAD~

In particular,
1/dD(Z,X) ~ ED(Z;X) 5 AD(Z,X)

As mentioned, the main corollary from the incorrect property (x) for the maximal bases
(for a bounded smooth C-convex domain of finite type) is that

AD(Z,X) ~D 1/dD(Z,X),
where the constant in ~p depends on D. Based on this fact, in [19, [74] [75] it is shown

that
KD ~D 1/8%, FD ~D AD.

The next two propositions show that anyway these estimates are correct.

The first estimate can also be obtained from [45] in the case of a bounded smooth
C-convex domain of finite type. The proof there uses the incorrectly proven estimate
1/dp(z; X) ~p Ap(z; X), but a closer look shows that one can only use the correct part
of that estimate, 1/dp(z; X) <p Ap(z; X).

ProrosiTION 3.6.1. Let D C C™ be a C-convex domain not containing complex lines.
Then for each z € D we have d; ~ s, j=1,...,n.

Once again observe that the constant in ~ depends only on the dimension n of D.

Proof. We first prove that s; < dj. As Ep S Ap, it suffices to check that if Ep < cAp,
then s; < ¢/d;, where ¢ = nlc.

The formula for the determinant of the unitary transformation between two bases im-
plies that [T}_, [(aj, es(;))| > 1/n! for some permutation of o of {1,...,n}. In particular,
[{aj,es(jy)| > 1/n!. Then Ep(z;a;) < cAp(z;a;) implies s; < c'dyj).

Suppose now that ¢’dy < s for some k. Then

ddy < s < 55 < C/da(j), j>k.

Consequently, o(j) > k for each j > k, a contradiction, as o is a permutation.

These arguments show that CTJ ~ d;, where JJ are the corresponding numbers for
another minimal basis of D at z. Thus we can assume that e; = a;. We know that s; = d;.
It remains to show that sx = dji for k > 2. Choose a unit vector in span(eg, ..., e,) that



Invariant functions and metrics in complex analysis 85

is orthogonal to aky1,...,a, (al, = e, if kK =n). Then a} is also orthogonal to a; = e;.
Consequently, s; > dp(z;a)) (by the construction of a maximal basis). On the other
hand, as a), is orthogonal to e, ..., ex_1, we have
1 [{a),e)] 1
— ~ Ep(z4q] . TR RN
dp(z;ay,) (23 01) Jzk d; di’

So s > dp(z;a;,) 2 di. =
PROPOSITION 3.6.2. Let D be as in Proposition [3 Then Ap ~ Ep.

Proof. In view of the inequality EFp < Ap and Proposition m (sg ~ dy), it suffices to
prove
(X, a)|/de < Ep(z; X)

for each k. Put bji = (a;,er). As

1 1 |b;ik|

— ~———— ~ Ep(z;a;) > 2=

dj dp(z;aj) p(z05) 2 dy ’
it follows that |bjx| < di/d;. The unitary transformation with matrix B = (b;x) trans-
forms the basis eq, ..., e, into a1,...,a,. For the inverse matrix C' = (c;;) we have

lejn] < Z 1D10(1) -+ Ok—1,0(k—1)Dk1,0(k+1) - - - Oro(m)

O’ (o8 d do’ n d d
Do <1>... ooy oty | ot B,y B
k—1 dk+1 dn, = dj dj
where o varies over all bijections between {1,...,k— 1,k+1,...,n} and {1,...,5 — 1,

j+1,....,n} Consequently,
Xa - b
k SZ ’j ‘k]| §:|Xe] %SED-I

REMARK. The constructions of minimal and maxunal bases can be generalized in the
following way: we choose “minimal” discs at steps 1,...,k and “maximal” discs at steps
kE+1,...,n—1 (the nth choice is canonical); k = n — 1 gives a minimal basis, k =1 a
maximal one, and £ = 0 a basis without “minimal” discs. Note that Propositions [3.6.1
and remain true when s; are replaced by the numbers in the new basis and we
express Ap in this basis. (This construction has an obvious real analogue.)

3.7. Localizations. It is natural to ask whether the results from the preceding sec-
tions have local character, i.e. whether C-convexity is a local notion (like convexity and
pseudoconvexity) and whether the behavior of the invariant metrics considered near a
boundary point of a given domain is similar to that on the intersection of the domain
with a neighborhood of the points.

It is hard to get localization results for the Carathéodory metric and here we are not
going to deal with them. Some such results can be found in [79].

First we will discuss the local character of C-convexity. As noted in Section 2.6 each
bounded C-convex domain is (weakly) linearly convex, and the converse is true under the
additional assumption of a C!-smooth boundary.
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The next proposition shows that this fact has local character.

PROPOSITION 3.7.1. Let a be a C*-smooth boundary point (2 < k < o0) of a domain
D C C" that is locally weakly linearly conver near a @, i.e. for each b € 0D near
a there exists a neighborhood U, so that D N U, N TC(OD) = 0. Then there exists a
neighborhood U of a for which D NU is a C*-smooth C-convex domain.

Clearly this proposition has “convex” and “pseudoconvex” analogues, proven in a sim-
ilar, but easier, way.

Proof. We can assume that a = 0. Denote by Hy(z;X) the Hessian of a C%-smooth
function f. Put B; = B,(0,s) (s > 0) and

| —dp(2), zeD,
r(2) = { dp(z), z ¢ D.

The differential inequality for 72 in the proof of [5, Proposition 2.5.18, (ii)=-(iii)] easily
implies that there exists an € > 0 so that r is a C*-smooth defining function of D on Bs,,
and H,(z; X) > 0 if (Or(2),X) = 0 and 2 € D N Ba.. Then the proof of [27, Lemma 1]
shows that there exists a ¢ > 0 such that H,.(z; X) > —c||X|| - [(Or(z), X)|, 2 € DN Ba..
We can suppose that 2ec < 1 and D N B, is connected. Choose a smooth function y so
that y(x) = 0 for z < &2 and x/(z), X" (x) > 0 for z > £2. Put 0(z) = x(||2]|?). We can
find a C' > 1/2 such that

B G ={2€ Ba.: 0> p(z) =r(2) + CH(2)} C D.
Now, the inequalities 2ce < 1 and [(90(2), X)| < X'(|[z|*)|lz]- | X || yield x'(||z]|*)|| X ||
> c|(06(z), X)| if z € By, \ Be and X # 0. This, together with
Hy (2 X) > —c| X]| - [(0r(2), X)|, 2€G,
Hy(2 X) = Hy (2 X) +40x"(|21*)Re” (2, X) + 20X (||| X|*, € >1/2,
and the triangle inequality, implies that
Hp(2: X) 2 —c| X[ - (0p(2), X)|,  =z€G".

In addition, the last inequality is strict if 2 € G’ \ B. and X # 0. This shows that dp # 0
on OG’ \ B. (otherwise p would attain a local minimum at some point of this set, which
is clearly impossible). Thus 9p # 0 on IG'.

Let G be a connected component of G’ that contains D N B.. Then [B, Proposition
2.5.18] (see also [50, Proposition 4.6.4]) implies that G is a C*-smooth C-convex domain.
It remains to put U = B,(0,e) UG. =

Now we will discuss the localization of the Kobayashi metric. First recall that if D
is a hyperbolic domain (i.e. the Kobayashi pseudodistance kp is a distance), then the
following weak localization holds (see e.g. [79]):

ProOPOSITION 3.7.2. If V € U are neighborhoods of a boundary point of a hyperbolic
domain D C C™, then there exists a constant C > 1 such that for each z € DNV and

(*%) Cft. Section
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each X € C"™ we have
kp(z; X) < kpru(z; X) < Crp(z; X).

Propositions and show that all the above results for the Kobayashi metric,
as well as those connected with types and multitypes, have local character in the case of
bounded domains.

To see this, note the following. If @ is a boundary point of a bounded domain D C C",
then it is easily seen that for each neighborhood U of a we have

pp(2) ~« pDU(2),  sp(2) ~« sp(2), dp(2z;X) ~« dpnu(z; X),
Ep(z;X) ~ Epru(2:X),  Ap(z:X) ~v Apru(z; X)

near a; here the constant in ~, depends on D and U.
Thus we get the following corollary of Propositions [3.2.2] [3.7.1] and [3.7.2]

COROLLARY 3.7.3. Let a be a boundary point of a bounded domain D C C", as in

Proposition [3.7.1} Then
kp(2;X) ~p dp(2; X) ~p Ep(z; X)
near a (the constant in ~p depends on D).

Now we will sharpen the last corollary if 9D does not contain analytic discs through
a (by Proposition this is equivalent to 9D not containing linear discs through a).

PROPOSITION 3.7.4. Let a be a boundary point of a bounded domain D C C", as in
Proposition|3.7.1]. Also assume that 0D does not contain analytic discs through a. Then

1
I <liminfkp(z; X)dp(z; X) <limsup kp(z; X)dp(z; X) <1

z—a z—a
uniformly in X € (C"),.

As in D there are no analytic discs through a, Propositions [3.2.3] [3:2.4] and [3.7-
imply that for each sufficiently small neighborhood U of a we have lim,_,, dp(z; X) = o0

uniformly in all unit vectors in C™. Then by shrinking U (if necessary), dp(z; X) =
dpnu(z; X) for each z near a (also Ep(z; X)=Epnu(z; X) and Ap(z; X)=Apnu(z; X)).

After these remarks, Proposition [3.7.4] follows from the following strict localization
for the Kobayashi metric (cf. Proposition .

PROPOSITION 3.7.5. Let D C C™ be a bounded domain whose boundary does not contain
nontrivial analytic discs through a point a € 0D. Suppose that there exists a neighborhood
U of a and a function f € O(D NU) such that lim,_,, |f(2)| = oco. Then for each
neighborhood V' of a we have

tim "2V (X))
z—a  Kp(z; X)

uniformly in X € (C"),.

Proof. Using the condition on the discs, as in the proof of Proposition [2.6.3] it follows
that each sequence of analytic discs ¢; with ¢;(0) — a converges to a uniformly (on
compact subsets of D). Then the proposition is contained in [79, Corollary 2.3.4]. m
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As a planar domain having at least two points in its boundary is hyperbolic (see e.g.
[58]), the proof of the above proposition shows that the statement can be strengthened
for n = 1.

PROPOSITION 3.7.6. Let a be a boundary point of a domain D C C\ {a}. Then for each
neighborhood V' of a we have

lim kpnv(#:1) -1
z—a Kp(z;1)

In particular, if a is an isolated boundary point of D, then
lim kp(z;1)|z|log |z| = —1/2.
zZ—ra
Note that the last equality follows from the formula kp, (z;1) =

[58]).
Proposition m generalizes essentially, and with a short proof, [61, Theorem 1].

1
~ TTez Tl (see e.g.

3.8. Localization of the Bergman kernel and the Bergman metric. In this section
we provide localization theorems for the Bergman kernel and the Bergman metric, which
together with Proposition will allow us to localize the results from the preceding
sections that deal with the Bergman kernel and the Bergman metric.

In the case when D C C” is a bounded pseudoconvex domain, the corresponding
results are well known (see e.g. [30]).

THEOREM 3.8.1. Let V € U be neighborhoods of a boundary point zy of a bounded pseu-
doconvex domain D C C™. Then there exists a constant ¢ > 1 such that for each z € DNV
and for each X € C™ we have

¢ 'Kpru(2) < Kp(2) < Kpau(2), ¢ 'Bpru(2:X) < Bp(z;X) < cBpau(z X).
By imitating the proof of Corollary [3.7.3] we get
COROLLARY 3.8.2. Let a be a boundary point of a bounded domain D C C", as in
Proposition [3.7.1 Then
Kp(z) ~p 1/pp(2), Bp(zX) ~p 1/dp(2X) ~p Ep(2; X)
near a.

Note that for the Bergman kernel, the localization is strict if zg € 0D is a holomorphic
peak point in the most general sense, i.e. there exists a function p € O(D,D) such that
lim p(z) =1 > sup |p|
z—20 D\U
for each neighborhood U of 2. This is proved in the fundamental work [49] of L. Hor-
mander as an application of the L?-estimates for the -problem. More general results can
be found in [48§].

One of the goals of this section is to carry over this result to the case of an arbitrary
pseudoconvex domain (not necessarily bounded). We will say that zo € 9D is a locally
holomorphic peak point if zg is a holomorphic peak point of DNU for some neighborhood
U of 20-
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THEOREM 3.8.3. Let U be a neighborhood of a boundary locally holomorphic peak point
zo of a pseudoconver domain D C C™. Then
lim Kpau(z) _ 1. m Bpnu (2 X)
Z—20 KD(Z) zZ—20 BD(Z,X)
uniformly on X € (C"),.

=1

In particular, Kpny(z) > 0 and so Bpny(z; X) exists for z close to z.

To prove Theorem [3.8:3] we need a localization lemma for the pluricomplex Green
function gp (for the definition see Section |1.7)).

LEMMA 3.8.4. Let U be a neighborhood of a locally holomorphic peak point zy of a pseu-
doconvex domain D C C™. Then

lim inf =0.[™
HZIUITLIQD\UQD(ZW) 0.1(*)

In addition, there exists a neighborhood V- C U of zy such that
inf{gp(z,w) — gprv(z,w): z€ DNV, we DNU\{z}} =0.

In particular, we have strong localization for the Azukewa metric:

. Apnu (% X)
lim =209 g
Zlﬁnzlo AD<Z;X)

uniformly in X € (C"),.

The first equality means that D has the so-called property (P) (see e.g. [21]), which
has applications in problems about Bergman invariants, as well in pluripotential theory.

Proof. We use the fact that each locally holomorphic peak point is a plurisubharmonic
peak point, i.e. there exists a negative function ¢ € PSH(D) such that

lim ¢(z) =0> inf %
Z—20 D\U,;

for each neighborhood U; of zy. Indeed, one can assume that p is a holomorphic peak
function on D NU; at zg. Then it suffices to choose a neighborhood Us € U; of zy such
that G = DN U; \ Uy # 0 and to put 6 = supg |p| and

D
(,0:_1+ max(§, |p‘)7 mUQ;
0, D\ U,.
(This argument shows that the notion “plurisubharmonic peak point” has local character.)
On the other hand, each plurisubharmonic peak point is a plurisubharmonic antipeak
point (see e.g. [42]), i.e. there exists a negative function 1) € PSH(D) such that
lim 9(z) = —oo < inf

zZ—20 D\U1

for each neighborhood U of 2p: to see this, put ¢ = —log(—¢).

Now we pass to the proof proper. Let us first suppose that zg is a holomorphic peak
point of DNU. Let W & U be a neighborhood of zy. We can choose another neighborhood
V € W of z so that infp\y ) > ¢ := 1 +suppryy ¥. Fix z € DNV and put d(z) =

(*!) Here and further we assume D\ U # 0.
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infyeprav gpnu (2, w), u(z,w) = (¢ — Y (w))d(z) for w € D. As u(z,w) < gpnu(z,w) for
w € DNOV and u(z,w) > 0> gpny(z,w) for w e DNU \ W, the function

gpnu (2, w), weDNV,
v(z,w) = ¢ max{gpnv(z,w),u(z,w)}, we DNW\V,
u(z, w), weD\W,

is plurisubharmonic in the second variable and has a logarithmic singularity at z. Also,
v(z,w) < cd(2) and so gp(z,w) > v(z,w)—cd(2). As v(z,w) = u(z,w) > 0 for w € D\W,
we get gp(z,w) > —cd(z) for w € D\ W. Since

gpnu(z,w) > p(w)—p(z)‘

1—p(z)p(w) |
lim, ., d(z) = 0 and so lim, ., inf,,e p\w gp (2, w) = 0, which proves the first equality

in the lemma.

Let now U be an arbitrary neighborhood of zy. We repeat the above considerations.
Using the first equality in the lemma for V instead of U and the inequality gpnu > gp,
we get lim,_,,, d(z) = 0. Then the equality v(z,w) = gpnv(z,w) for w € DNV implies
the second equality in the lemma. m

REMARK. The above proof shows that for each neighborhood U of a plurisubharmonic
antipeak point zq, there exists a neighborhood V' C U of z; so that

1Lm inf{gp(z,w) — gpnu(z,w) :w e DNV \ {z}} > —o0.

In particular, we have the following weak localization for the Azukawa metric: for each
neighborhood U of zg, there exist a constant C' > 0 and a neighborhood V' C U of zj so
that for each z € DNV and for each X € C" we have

C ' Apru (2, X) < Ap(2;X) < Apru(z; X).

Note that each boundary point of a bounded domain is a plurisubharmonic antipeak
point, as shown by the function log(]|z — z¢]|)/diam(D).

A key role in the proof of Theorem [3:8.3] will be played by the following lemma
(replacing the existence of a bounded strictly plurisubharmonic function on bounded
domains).

LEMMA 3.8.5. For each plurisubharmonic antipeak point zy of an open set D C C™,
there exists a neighborhood V containing zy, a number ¢ > 0 and a bounded function
s € PSH(D) such that —1 < s < 0 and the function s(z) — c||z||? is plurisubharmonic in
DNV

Proof. Let ¢ be a plurisubharmonic antipeak function for zy, and W be a bounded
neighborhood of zg such that D N OW # @). Then
m=_inf (o= =2l > -o0
and consequently
5= { max{g, || —z[® +m}, DNW,
@, D\W,
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is a bounded plurisubharmonic function on D that coincides with || - —2¢[|?> + m in some
neighborhood V' of zy. It remains to put
supp § — 8
supp § —infp §
Proof of Theorem[3.8.3 Recall that
Mp(z; X)
Kp(z)'
where Mp(z; X) = sup{|f2(X)| : f € L{(D), Iflp =1, f(z) =0}.
We will only prove that

Bp(z;X) =

i Mprv(z; X)
im ——————=
z—z0 Mp(z; X)
uniformly in X € (C™),. The proof of the equality
K
lim 7DQU(Z>
z—=z0 Kp(z)
is analogous (even simpler) and we omit it. These two equalities imply the theorem.
By shrinking (if necessary) the neighborhood V in Lemma we can assume that
V' C U and that there exists a locally holomorphic peak function p for zg, defined on
DNYV. Let x be a smooth function with support in V such that 0 <y <1 and x =1 in

a neighborhood Vi € V of 2p. By Lemma [3.84] there exists a neighborhood V2 @ V; of
zp so that

=1

=1

m=inf{gp(z,w): z€ DNVa, w € D\ V1} > —o0.

For k€ N,z € DNV, and f € L2(DNU) such that f(z) = 0, put a = J(xfp*) and
extend « trivially as a 0-closed (0, 1)-form on D. Let

B =exp(=2(n+j)gp(z,-) — s),

where s is the function from Lemma [3.8.5) m As —log — ¢| - ||* is a plurisubharmonic
function on the open set {w € D : a(w) # 0}, from the proof of [49, Theorem 2.2.1'] it
follows that there exists a smooth function h on D such that Oh = a and

[mps<et [ japs

Then g = xfp* — h is a holomorphic function on D. As the right-hand side of the above
inequality is bounded, so is the left-hand side. Then h(z) = 0 and hence

92(X) = (p(2))* fL(X).
In addition, from gp < 0 and s < 0 it follows that

I3 < / 1125,
D

On the other hand, if C' = exp(—2(n + j)m + 1) sup |dx|? and ¢ = Suppry\v, [P, then

/ |Oé|25 S CqZk
D
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On putting Cy = 1/C/c, the last three inequalities imply
lglp <1+ Cig*.
Now the definition of Mp implies that

Mpru (2 X)|p(2) [

(1 + C1qk)2 '
Letting z — 2o, then & — oo and using lim,_,,, p(z) = 1 and ¢ < 1, we get the desired
equality. m

Mpru(z;X) > Mp(z; X) >

From the above proof (for k = 0) we get

COROLLARY 3.8.6. If U is a neighborhood of a plurisubharmonic antipeak point zy of an
(arbitrary) domain D C C™, then there exist a constant ¢ > 0 and a neighborhood V.C U
of zg so that

¢ 'Kpru(2) < Kp(2) < Kpru(2), ¢ 'Bpau(2;X) < Bp(z; X) < eBpru(z; X)

for each z € DNV and for each X € C". In particular, such a localization holds for an
arbitrary boundary point zo of a domain D C C whose complement is not a polar set.

Recall that a set E C C'is called polar if E C u~!(—o0) for some —co # u € PSH(D).
If the complement of a domain D C C is not polar, then Kp > 0; otherwise Kp = 0.

To see that zp is a subharmonic antipeak point of D, it suffices to note that for each
sufficiently small neighborhood V of zy, the complement of G = DUV is not polar. Then
9c (20, ) is a bounded function on G outside an arbitrary neighborhood of zg and so it is
a subharmonic antipeak function for zg.

Corollary [3.8.6) can be applied to prove that the completeness of the Bergman distance
of a planar domain with a nonpolar complement has local character (see [81]).

To apply Theorem [3.8:3] note that if a is a boundary point of a domain D C C" as
in Proposition [B:7.1] and in addition a is of finite type, then it is a locally holomorphic
peak point. Indeed, as noted at the end of Section [3:3] a is a semiregular point and so
it suffices to use the main result in [122]. A more general result in the smooth C-convex
case can be found in [28]. So we get

COROLLARY 3.8.7. Let a be a smooth boundary point of finite type of a (not necessarily
bounded) domain D C C™ as in Proposition m Then

Kp(2) ~1/pp(2), Bp(zX) ~1/dp(z X) ~ Ep(z; X)

Recall that the constants in ~ depend only on n. This corollary essentially strengthens
some of the main results in [19] [74] [75] [12].

The next proposition allows us to sharpen this result, as well as Corollary in
the case of convex domains. In less generality this proposition is formulated in [I13] with
only a hint for a proof.

ProrOSITION 3.8.8. Let D C C" be a convexr domain. Then a € OD is a holomorphic
peak point exactly when L, = {0}.
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Proof. The necessity of the condition L, = {0} is almost obvious. Indeed, suppose that
there exists a holomorphic peak function f for D at a, but L, # {0}. By the remark after
the end of the proof of Proposition one can find a vector X # 0, a number € > 0
and a sequence of points z; — a so that Ax(z;,&) C D. Then, considering the restriction
of f on the complex line through z; in the direction of X, we get a contradiction with
the maximum principle.

Let now L, = {0}. Then D does not contain complex lines; otherwise D would be
biholomorphic to C x D’, and the corresponding biholomorphism would extend over a
neighborhood of a (see the proof of Proposition and so D could contain analytic
discs, and so also linear discs through a (see the remark after the proof of Proposition
; a contradiction. Consequently, D is biholomorphic to a bounded domain and
the corresponding biholomorphism extends to a neighborhood of a (see the proof of
Proposition . Thus we can suppose that D is a bounded domain. Note that if ¢
is a positive number such that cinf,cp Re(z1) > —1 (D is bounded), then the function
f1(2) = exp(z1+cz?) belongs to A(D) = O(D)NC(D) and | f1(z)| < 1 for z € D\{z; = 0}.
This easily implies (cf. [39]) that supp u C Dy := 0D N {z; = 0}. Since L(0) = 0, the
origin is a boundary point of the compact convex set D;. As above, we may assume
that D; C {z € C" : Re(z2) < 0} (22 is independent of z1) and then construct a
function fo € A(D) such that |f2(2)] < 1 for z € Dy \ {22 = 0}. This implies that
supp 1 C Dy N {z2 = 0}. Repeating this argument we conclude that supp p = {0}, i.e. 0
is a peak point for the algebra A(D) (see e.g. [39]), which even means that there exists a
function f € A(D) such that f(a) =1 and |f(b)| < 1 for each point D > b # a. =

COROLLARY 3.8.9. Let the pseudoconvexr domain D C C™ be locally convex near its
boundary point a. If 0D does not contain analytic discs through a, then

Kp(z) ~1/pp(2), Bp(z; X) ~ kp(z;X) ~1/dp(z; X) ~ Ep(z; X)

The estimate for xp(z; X) follows from the strong localization for the Kobayashi
metric near a locally holomorphic peak point of an arbitrary (not necessarily bounded)
domain (see e.g. [79, Theorem 2.3.9]).

REMARK. Corollary [3.8.9 immediately implies that under these assumptions we get
lim Bp(z; X) = o0 (3.8.1)
zZ—ra
locally uniformly in X € (C™),. Thus we carry over (in an easy way) the main result from
[47] even to unbounded domains (the proof there is based on the -technique of Ozawa—
Takegoshi). In the case of bounded pseudoconvex domains that are locally C-convex
near a, the equality also remains true due to Theorem m This is another
strengthening of the above mentioned result. On the other hand, using the inequality
vp < Bp and Proposition [3.2.4 we can “reverse” the above considerations, i.e. from

(3.8.1) to get L, = {0}.

3.9. Boundary behavior of invariant metrics of planar domains. After discussing
the boundary behavior of the invariant metrics of domains in C™, it is natural to see
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whether these results can be more precise for planar domains. In this short section we
will prove the following

PROPOSITION 3.9.1. If ag is a C'-smooth boundary point of a domain D C C, then
lim yp(a;1)dp(a) = lim kp(a;1)dp(a) =1/2,
a—agp a—ao

lim Kp(a)ds(a) = = and lim Bp(a;1)dp(a) = @

a—ag 47 a—ao 2

The smoothness condition is essential, as shown e.g. by the first quadrant.

Proof. The proposition for the Carathéodory and Kobayashi metrics is equivalent to the

inequalities
limsup kp(a;1)dp(a) < 1/2, (3.9.1)
a—rag
limsupvyp(a;1)dp(a) > 1/2. (3.9.2)
a—ag

Inequality (3.9.1]) is given in [79} p. 60] in a more general situation (we are not including
its proof here): Let ag be a C*-smooth boundary point of a domain D C C, X, — X for
a — ag. If Xy is the projection of X onto the complex normal to 9D at ag, then

limsup kp(a; Xq)dp(a) < [| Xn||/2. (3.9.3)

a—ag

Now we will prove the less trivial inequality (3.9.2) (via the Pinchuk scaling method).
We can assume that ag = 0. For each a € D close to 0, there exists @ € 9D such
that |la —@|| = dp(a) and a lies on the interior normal to dD at @. Let r be a C*-smooth

defining function for D near 0. Put ®,(z) = %(a) (@ — z). Let also
E.={z€C:Rez>—¢lz|]}, F.={z€C:|z| >¢}.

For each sufficiently small € > 0 we have ®,(D) C E. UF; for |a| <e. Asa = P,(a) > 0,

[ X(a)| _ 76..(11)

To(a; 1) = 75,0r (@ X (@) = 6. , (1 1) = = d’Dd) . (39.4)
where X (a) = —%(ﬁ) and G, , = E. U F_ ;. Note that
Jim ye, (1) = e, (1;1) (3.9.5)
and
Jim s, (151) = ey (1;1) = 1/2. (3.9.6)

Then follows from 7.

To prove , we denote by H. and H. , the images of . and G, ,, respectively,
for the mapping z — 2/(z+1) if a < e < 1. Then H, and I:TE,a = H. ,U{0} are bounded
simply connected domains and consequently Cy, = Kp_ and Cy,, = Cp = Kz .
Now, using the Montel theorem, it is easily seen that

lim Kﬁm(l; 1) = Ky_(1;1),

a—rag

which implies (3.9.5)).
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The equality is proven in a similar way (or by using the conformal equivalence
of E. and Ej).

The statement for the Bergman kernel and Bergman metric is obtained analogously
(bearing in mind that Bp(z;1) = Mp(z;1)/+/Kp(z)) and we omit the proof. m

REMARK. Under the somewhat stronger requirement that the boundary be Dini-smooth
near ag, the proposition for the Bergman kernel, as well as for the metrics of Bergman
and Kobayashi, can also be proven by using that:

e cach C'-smooth boundary point a of a domain D C C' is a locally holomorphic peak
point and so we have strong localization for these invariants;

e there exists a neighborhood U of a so that G = D N U is a bounded Dini-smooth
simply connected domain and so the Riemann mapping between G and D extends to
a C!-diffeomorphism between G and D.
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