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Summary

Our work is divided into six chapters. In Chapter I we introduce necessary notions and
present most important facts. We also present our main results. Chapter I covers the
following topics:

e Extremal plurisubharmonic functions: the relative extremal function and the pluri-
complex Green function;

e The analytic discs method of E. Poletsky: disc functionals, envelope of a disc func-
tional, examples of disc functionals;

e The Poisson functional: We present properties of the most important functional,
including the main result of the paper, plurisubharmonicity of the envelope of the Poisson
functional on a class of complex manifolds. We also prove the product property of the
relative extremal function;

e The Riesz functional: We state some properties of the Riesz functional which follow
from the properties of the Poisson functional and the Poisson—Jensen formula. Since these
results are contained in other papers, we do not give the proofs.

e The Green and Lelong functionals: We concentrate mainly on the product property
of the Green functional.

Chapter II is devoted to the general properties of disc functionals (Section 2.1, Propo-
sitions 2.1-2.5) and properties of analytic discs in complex manifolds (Section 2.3). In
Section 2.2 we study a class of complex manifolds which is important in Poletsky’s theory.

In Chapter III we give the main results of the paper. We show that the envelope of
the Poisson functional on any complex manifold is upper semicontinuous (Theorem 3.5).
Section 3.2 contains the most important (and most difficult) result of the paper. In
Theorem 3.10 we show the plurisubharmonicity of the Poisson functional on a class of
complex manifolds. Section 3.3 contains properties of the Poisson functional on Liouville
manifolds. Using Poletsky’s theory, we give a characterization of Liouville manifolds in
terms of analytic discs (Theorem 3.21).

Product properties of the Poisson and Green functionals are presented in Chapter IV
(Theorems 4.1 and 4.9).

In Chapter V we give applications of the results obtained. In Section 5.1 we state
some properties of the relative extremal function. In Section 5.2, using the product prop-
erty of the relative extremal function for open sets (Theorem 5.3.) we show the product
property of the plurisubharmonic measure in bounded domains in C™ (Theorem 5.6).
Section 5.3 is devoted to the pluricomplex Green function. We obtain the product prop-
erty of the pluricomplex Green function as a corollary of the product property of the
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relative extremal function (Theorem 5.8). In Section 5.4 we give simple results related to
the polynomial hulls of compact sets in C" (Theorem 5.10).

Chapter VI contains remarks related to Poletsky’s theory. We concentrate mainly on
holomorphically invariant pseudodistances (Section 6.4).

Most of the prerequisites that we use may be found in the following books: [15], [17],
[20], [24].

Some of the results contained in this work may be found in the following papers: [7],
[8], 9], [10], [11].

This research was partly supported by the Foundation for Polish Science (FNP).

The author thanks Professors Marek Jarnicki, Peter Pflug and Wlodzimierz Zwonek
for their remarks and for stimulating discussions.

1. Introduction

1.1. Extremal plurisubharmonic functions. Let X be a complex manifold (). We
denote by PSH(X) the set of all plurisubharmonic functions on X (2) (3).

Let & € PSH(X). We put
Py(x) =sup{u(z) :ue i}, zeX. (1.1)

It is well known that if the family il is locally bounded from above, then P is a pluri-
subharmonic function on X (cf. [20]), where v*(x) = limsup,_,, v(y) denotes the upper
semicontinuous regularization of a function v.

The construction (1.1) plays an important role in pluripotential theory (see e.g. [20]).
Let us consider some examples.

Let X be a complex manifold and let E be any subset of X. We put
w(z, B, X) =sup{u(z) :u e PSH(X),u<-1lon E,u<0on X}, =z€X.

The function w(-, E, X), introduced in 1969 by J. Siciak [42], is called the relative extremal
function. As mentioned above, the function w*(-, E, X) is plurisubharmonic in X (*).
Since in the one-dimensional case the function w*(, E, X) is closely related to the no-
tion of harmonic measure (see e.g. [37]), in higher dimensions it is sometimes called the
plurisubharmonic measure of E relative to X (cf. [20], [40]).

In 1991 Nguyen Thanh Van and J. Siciak [32] proved the following product property
of the relative extremal function.

(1) All complex manifolds considered in the paper are assumed to be connected.

(?) We assume that the constant function —oo is plurisubharmonic.

(®) For convenience of the reader we list some standard notation in the section “List of
symbols”.

(*) Note that if U is an open set in X, then w(-,U,X) = w*(-,U,X) and, therefore,
w(-,U,X) € PSH(X).
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THEOREM 1.1. Let D C C" and G C C™ be pseudoconvexr domains (°) and let U C D,
V C G be open subsets. Then

w((z,y),U x V,D x G) = max{w(z,U,D),w(y,V.G)}, (2,y) € DxG.

The proof of Theorem 1.1 given in [32] extensively uses the pseudoconvexity of D
and G. The question whether Theorem 1.1 is true for any (non-pseudoconvex) domains
in C™ (or, more generally, complex manifolds) remained open until 1997.

In 1985 M. Klimek [20] introduced another extremal function, which is also important
in pluripotential theory, as follows. Let {2 be a domain in C". Define

go(x,p) = sup{u(z) : v € PSH™(2), u(y) —log|ly —pll <O(1) asy — p}, x,p€ 2,

where PSH™ (£2) denotes the set of all negative plurisubharmonic functions on the do-
main (2. The function gq(+,p) is called the pluricomplex Green function with pole at p.
It may be viewed as a natural analogue of the Green function from the classical potential
theory (cf. [37]).

In 1989 P. Lelong [27] defined on a domain 2 C C™ the pluricomplex Green function
with poles at p1,...,pn € £2 and weights v1,...,vy € (0,00), where p; # p;, ¢ # j, as
follows:

go(x; (p1,11), - .-, (Pv,vw)) == sup{u(z) : uw € PSH(£2), u <0,
u(y) —vjloglly —pil <OM) asy —pj, j=1,....N},  ze2

We see that go( - ;p) = gao( - ;(p,1)). P. Lelong [27] proved that in any hyperconvex
domain §2 (°) the pluricomplex Green function with poles at py,...,py and weights
V1,...,vn is the unique solution of the Dirichlet problem (7). One can easily extend
Lelong’s definition to complex manifolds.

It seems that the most general pluricomplex Green function was introduced by A. Ze-
riahi [47] (see also [25]) as follows. Let X be a complex manifold and let o : X — [0, 00)
be a function. Define the pluricomplex Green function with pole function o by the formula

gx (z,a) :=sup{u(z) : w € PSH(X), u <0, v(-,u) > a},

(°) Recall that a domain 2 C C" is called pseudoconvez if there exists a plurisubharmonic
exhaustion function u for §2, i.e. {x € 2 : u(x) < B} is relatively compact in {2 for any 5 € R
(see e.g. [24]).

(°) Recall that a bounded domain 2 C C™ is called hyperconvex if there exists a negative
plurisubharmonic exhaustion function u for {2, i.e. {z € 2 : u(x) < B} is relatively compact in
2 for any 8 < 0 (see e.g. [20]).

(") More precisely, go(x; (p1,v1), ..., (PN, va)) is the unique solution of the following Dirich-
let problem:

u € C(2\{p1,...,pn}) NPSH(2),

(dd°uw)™ =0in 2\ {p1,...,pnN},

u(@) — v;log |l — pyl| = O(1) as @ — py, j = 1,..., N,
u(xz) — 0 as z — 942,

where (dd°u)™ is the Monge—Ampere operator (see e.g. [20], [23]).
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where v(-,u) denotes the Lelong number of u (®). Note that for a plurisubharmonic
function u in a neighborhood of zg € C™ we have v(xg,u) > vp > 0 if and only if
u(z) —volog ||z —x0]] < O(1) when  — zq. Therefore, in the case suppa = {p1,...,pn},
a(p;) =vj, j=1,...,N, we have the equality
gX( : ;(p17V1)a""(pN7VN)) :gX( ! 70[)'
We have the following equivalent definition of the pluricomplex Green function with

pole function a.

PROPOSITION 1.2 (see Proposition 5.10 below). Let X be a complex manifold and let «
be a non-negative function on X. Then

9x (z, ) = sup{u(z) : w € PSH(X), u < pig)f{a(p)gx(~,p)},

and, therefore, gx (-, a) is a plurisubharmonic function on X.

There is an interesting relation between the relative extremal function and the pluri-
complex Green function. We need some more definitions. We set ||z| :=max{|z1],. .., |2n|},
r=(21,...,20) € C" and P(z,7r) :={y € C" : |ly — z| <r}, r > 0. We put P(x,0) =0,
x € C™. Set P(r) = P(0,r).

For a complex manifold X and a family of local coordinates {(U,, (;) }zex such that
CI(I> =0 and Ca:(Uw) = P(l) we put

PB(r,a) = J G PEW), e,
yeX
where 71/0 = 0 for r € (0,1). We have the following result (cf. [10]).

THEOREM 1.3 (Theorem 5.11). Let X be a complex manifold and let « : X — [0,00)

be any function. Assume that {(Uy,()}eex is a family of local coordinates such that
Cx(x) =0 and (,(Uy) = P(1). Then

(=logr)w(z,P(r,a),X) \ gx(z,0), z€X.
r—0
Using the method from [10], as a corollary of Theorem 1.3 we get the product property
of the pluricomplex Green function.

THEOREM 1.4 (Theorem 5.12). Let X1 and X5 be complex manifolds. Assume that for
any open subsets £y C Xy and Ey C X we have the following product property:

w((xl,xg),El XE27X1 XXQ) = max{w(xl,El,Xl),w(ajg,EQ,Xg)}, (1‘1,332) S X1 XXQ.
Then for arbitrary functions oy : X1 — {0,1} and ag : Xo — {0,1} we have
9X1><X2((x17x2)7a1 0 Oég) = max{g)ﬁ (xlaal)ang (.’L‘g,ag)}, (331,56‘2) € Xy x X27

where (a1 ® ag)(x1, T2) 1= a1 (x1)as(x2).

(%) Recall that the Lelong number of u at the point = € {2 is defined by
v(z,u) ;== lim Mu(z,7)
r—o+ logr
where My (To,7) = SUD,cB, (zo,m ¥(z) and By (z,r) = {y € C" : |ly — | < r}. We put
v(-,—00) = co. The Lelong number is a biholomorphic invariant (see e.g. [4], [5]).
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As a corollary of Theorems 1.4 and 1.1 we have the following.

THEOREM 1.5. Let D C C" and G C C™ be pseudoconvex domains. Then for arbitrary
functions a: D — {0,1} and B : G — {0,1} we have

9pxc((z,9),a® p) =max{gp(z,a),9c(y,B)}, (x,y) € D xG.

In particular,

ngG((xay)7 (p7 Q)) = max{gD(xvp)ng(va)}v (x,y), (pv q) €D xG. (12)

The product property of the pluricomplex Green function for one pole in pseudoconvex
domains (i.e. (1.2)) was proved by M. Jarnicki and P. Pflug [17]. Later, the same authors
proved that it suffices to assume the pseudoconvexity of one of the domains D or G [18].
In the meantime, they conjectured that it is true for arbitrary domains, but until 1997
it was an open problem.

In the classical pluripotential theory (°) pseudoconvexity of a domain (or more pre-
cisely, hyperconvexity) is very important. It seems to be interesting to find methods which
work equally well on any domain. The purpose of the paper is to present such a method,
the analytic discs method of E. Poletsky. This technique allows us to study problems not
only in any domain in C™ but also on a large class of complex manifolds.

1.2. Analytic discs method of E. Poletsky. In the previous section we described
extremal functions which are defined with the help of plurisubharmonic functions. In 1991
E. Poletsky [35] proposed a method of characterization of some of them by the family
O(D, X) (1°). This approach turns out to be very successful in solving many problems in
complex analysis which were unaccessible before.

The main idea is to study disc functionals and their envelopes. More precisely, we
proceed as follows. Let X be a complex manifold. A disc functional on X is a function
H: O, X) — R (*). The envelope of H is a function Ey : X — R defined by the
formula

Ey(z):=inf{H(f): f € OD, X), f(0) =z}, z¢€X.

Now, we give examples of disc functionals, some of which are related to the functions
considered above. The presented functionals will be studied more carefully later. The
functionals §1, 2, §4 were introduced by E. Poletsky in [35], Examples 3.1-3.3. Follow-
ing [25], we call them the Poisson functional, and Riesz functional, and Lelong functional
respectively. The first two are motivated by the Poisson—Jensen formula. The functional
§s was suggested by E. Poletsky in [34] (see also [7], [9]).

Poisson functional. Let X be a complex manifold and let ¢ : X — R be a measurable
function. Assume that ¢ is locally bounded from above or below (i.e. ¢ is locally bounded

(°) Here, by classical we mean methods and techniques which are gathered in [20].

(%) O(D, X) denotes the family of all holomorphic mappings f : D — X which are holomor-
phic in a neighborhood of the closure D.

(') We put R = [—o0, 00].
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from above everywhere on X or ¢ is locally bounded from below everywhere on X) (12).
Define the functional §; = §f by the formula

2m

1
27 b

31(/) p(f(e?)dd,  feOD,X).

Riesz functional. Let X be a complex manifold and let v be a plurisubharmonic function
on X. We define the functional §» = F4 as follows. If f € O(D, X) and v o f is not
identically —oo, then

Ba(f) = = [ (log |- ) A(w o )

D

where Au denotes the generalized Laplacian of a subharmonic function u (see e.g. [37],
Chapter 3). If f € O(D, X) and vo f = —oo, then we put Fa(f) := 0.

Green functional. Let X be a complex manifold and let o : X — [0, 00) be an arbitrary
function. We define the functional §3 = §5 by the formula

Fa(f) =Y alf(2)loglz|, feOD,X),
z€D.
where D, := D\ {0}. The sum, which may be uncountable, is defined as the infimum of
finite partial sums.

Lelong functional. Let X be a complex manifold and let « : X — [0,00) be an arbitrary
function. We define the functional §4 = §§ by the formula

Fa(f) =D a(f(z)ord.(f)loglz|,  fe€OMD,X),

z€D,

where ord, (f) denotes the multiplicity of f at z.

Lempert functional. Let X be a complex manifold and let « : X — [0, 00) be an arbitrary
function. We define the functional §5 = §& by the formula

S5(f) =inf{a(f(2))log|z| : z € D.}, fe€OD,X).

Motivated by the Lempert function (see e.g. [17]), the functional §5, in case supp a =
{z} and a(x) = 1, was introduced in [7]. For any « it was introduced in [25].

The main point of E. Poletsky’s theory is the plurisubharmonicity of the envelopes of
disc functionals. In the paper we present systematically the plurisubharmonicity of the
envelope of the Poisson functional on a class of complex manifolds, containing all domains
in C"™. We get as a corollary the proof of the product property of the relative extremal
function and, consequently, of the pluricomplex Green function on any domains in C™.

It is still an open problem whether the envelope of the Poisson functional is pluri-
subharmonic on any complex manifold. So, it seems to be interesting to give a class of
complex manifolds as large as possible on which the property holds.

ote that in this case for any | € _, the integral 5~ 7 © el is well defined.
12) Note that in thi f O(D, X) th 1= 27 o(f(e)) df is well defined
Note also that it may attain the value —oo or oco.
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1.3. A class of complex manifolds. The disc functional method of E. Poletsky was
first extended to a class P of complex manifolds by F. Larusson and R. Sigurdsson [25]
in 1997.

Recall that an n-dimensional complex manifold X is said to be a Stein manifold if:

(a) X has a countable basis;
(b) X is holomorphically convex, i.e. for any compact set K C X the set

KO = {z e X : |f(2)| < ||f|x for any f € O(X)}

is compact in X, where || f||x := sup{|f(z)| : z € K};

(¢) O(X) separates points in X, i.e. for any points z,y € X, x # y, there exists an
f € O(X) such that f(z) # f(y);

(d) for any point = € X there exists a holomorphic mapping F' : X — C™ such that
F is injective in a neighborhood of x.

Recall that for domains in C™, Steinness coincides with pseudoconvexity (see e.g. [15],
Chapter VII).

Define P as the class of complex manifolds X for which there exists a finite sequence
of complex manifolds and holomorphic maps

h h R
XOAleHXm:X, mZO,

where X is a domain in a Stein manifold and each h;,7 = 1,...,m, is either a holomorphic
covering or a finite branched covering (13).

Apart from domains in Stein manifolds, P contains for instance all Riemann surfaces
and all covering spaces of projective manifolds (1) (see [25]).

The definition of the class P, which may look unnatural, follows from the properties
of disc functionals. Studying more carefully these properties we propose an even larger
class of complex manifolds.

We say that a complex manifold X belongs to the class P if there exists a sequence
of domains X; C Xo C X3 C ... in X, each in the class P, such that X = U;o:l X

As was shown by J. E. Fornaess [13], there exists a sequence X7 C Xo C X3 C ... of
Stein manifolds such that X = (J;—, X}, is not Stein. So, it seems (*°) that the class P
is a proper subclass of the class P.

We have the following properties of the class P.

PROPOSITI(ZN 1.6 (Proposition 2.8). Lft Y be a domain in a complex manifold X. If X
is of class P, then Y is also of class P.

PROPOSITION 1.7 (Proposition %9) Let X,Y be complex manifolds of class P. Then the
product X XY is also of class P.

(**) We say that a holomorphic mapping F : X — Y is a finite branched covering if dim X =
dimY and F' is a proper holomorphic mapping, i.e. for any compact set K C Y the set Ffl(K)
is compact. Note that F' is surjective and there exists k& € N such that #F~!(y) = k for any
y €Y\ F(Z), where Z = {z € X : rankdF, < dim X} (cf. [39]). We call Z the branched locus
of F.

(*) By a projective manifold we mean a complex submanifold of complex projective space P,,.

(**) We do not yet have an example showing that P & P.
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1.4. The Poisson functional. The most important functional in applications is the
Poisson functional. Let us start with the following basic result.

THEOREM 1.8 (Theorem 3.2). Let X be a complex manifold and let ¢ : X — R be a
measurable function which is locally bounded from above or below. Then

sup{v € PSH(X) :v < ¢} < Ege <9  on X. (1.3)
Therefore, if Ege is a plurisubharmonic function on X, then
Ege =sup{v € PSH(X) :v < ¢} on X. (1.4)

In the course of his study of disc functionals, E. Poletsky [35] introduced the class
of approzimately upper semicontinuous functions (%) (}7). We think that the class of
functions given below, which is related to the class of approximately upper semicontinuous
functions, is more natural and more handy.

Let £2 be a domain in C™ and let ¢ : £2 — R be a measurable function locally bounded
from above or below. We say that ¢ is a weakly integrally upper semicontinuous function
if for any xg € {2 we have

. 1
lim sup m[ sup S o(y) d£2"(y)} < (o),
r—0t Un z€B,, (zo,7) B (z,7)
where b, ;= L2 (B,,) (1®).
The following result gives non-trivial examples of weakly integrally upper semicon-
tinuous functions.

PROPOSITION 1.9 (Proposition 3.3). Let {2 be a domain in C™ and let ¢ be a superhar-
monic on 2. Then ¢ is weakly integrally upper semicontinuous on {2.

Let X be a complex manifold and let ¢ : X — R be a measurable function locally
bounded from above or below. We say that ¢ is an integrally upper semicontinuous
function (written ¢ € ZCT(X)) if for any domain 2 C C™, m > 1, and any holomorphic
mapping F' : 2 — X the function ¢ o F' is weakly integrally upper semicontinuous
on 2 (19).

(*®) Let ¢ : 2 — R be a function, where 2 C C" is a domain. We say that ¢ is an
approximately upper semicontinuous function if for any = € (2 and any € > 0 there exists a
measurable set F' C C" such that {y € 2 : ¢(y) > ¢(z) + e} C F and

limsup £°"(F N B, (z,7))/L*" (B, (x,7)) = 0,
r—0
where £2™ denotes the Lebesgue measure in C".

(*") As shown by E. Poletsky, there exists a lower semicontinuous function ¢ on the unit ball
B, := B,(0,1) in C™ such that ng is not plurisubharmonic. So, it seems interesting to give a
class of functions ¢ for which quz is plurisubharmonic and which contains upper semicontinuous
and plurisuperharmonic functlons The latter is important in the study of the Riesz functional
(see Section 1.5).

(*®) Let p(2) = 1if z = 1/n, n € N, and 0 otherwise. Note that ¢ is not an upper semicon-
tinuous function on C, but it is weakly integrally upper semicontinuous.

(*?) Note that the relation between weakly integrally upper semicontinuous and integrally
upper semicontinuous functions is similar to the relation between superharmonic and plurisu-
perharmonic functions.
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We see from the definition that any upper semicontinuous function is integrally up-
per semicontinuous. The following proposition shows that there exist integrally upper
semicontinuous functions which are not upper semicontinuous.

PROPOSITION 1.10 (Corollary 3.4). Let X be a complex manifold and let ¢ € PSH(X).
Then —p € ICT(X).

One of the main results connected with the Poisson functional is the following.
THEOREM 1.11 (Theorem 3.5). Let X be a complex manifold. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # co.

Then Ege is upper semicontinuous.

The next result gives us a class of integrally upper semicontinuous functions for which
we have Ege < oo.

PROPOSITION 1.12 (Proposition 3.9). Let X be a complex manifold. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # co.

Then EST < 0.

We are able to prove the plurisubharmonicity of the envelope for complex manifolds
of class P. As mentioned above, it is the main point of Poletsky’s theory.

THEOREM 1.13 (Theorem 3.10). Let X be a complex manifold of class P. Assume that

(a) p € ZC1(X) is locally bounded from above or
(b) @ is a plurisuperharmonic function on X, ¢ % oo.

Then Eg¢ is a plurisubharmonic function and, therefore,
Ege =sup{v € PSH(X) :v < ¢} on X.

Theorem 1.13 for upper semicontinuous functions and for domains in C™ was proved
by E. Poletsky [34], [35]. For upper semicontinuous functions on complex manifolds of
class P it was proved by F. Larusson and R. Sigurdsson [25]. For plurisuperharmonic
functions and the same class of complex manifolds the proof was given by the author [11].

Now, let us consider the following special case of the Poisson functional. Let X be a
complex manifold and let U be an open subset of X. We put

2

w(z,U,X) = inf{% S —xu(f(e?)do: f e OD,X), f(0)= x}
0

=—sup{%a({T€T:f(T) ceU}): feoD,X), f(O)zx}, z e X,

where yxy denotes the characteristic function of U and o denotes the arc length measure
on the unit circle T. Note that —xy is upper semicontinuous.
As a corollary of Theorem 1.13 we obtain the following result.
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COROLLARY 1.14. Let X be a complex manifold of class P and let U be an open subset
of X. Then

w(z,U,X) =o(z,U, X). (1.5)

The main result relating to this special function is the following product property,

first proven in [12].

THEOREM 1.15 (Theorem 4.1). Let Xy and X5 be complex manifolds and let Uy C X1,

Us; C X5 be open sets. Then

&((331, 332), U1 X UQ, X1 X Xg) = max{@(xl, Ul, Xl),(:)(xg, UQ, XQ)}, (1‘1, 33‘2) S X1 X XQ.
Using Corollary 1.14 and Theorem 1.15 we obtain the product property for the relative

extremal function (see [12]).

THEOREM 1.16 (Theorem 5.5). Let Xy and X5 be complex manifolds of class P and let
FEy C Xy, Es C X5 be open or compact subsets. Then

w((l‘l,l’g),El XEZ,Xl XXQ) = max{w(xl,El,Xl),w(:cg,Ez,Xg)}, (ZL’l,IL'Q) € X1 XXQ.

1.5. The Riesz functional. By the Riesz representation, for a plurisubharmonic func-
tion v on a complex manifold X and a holomorphic mapping f € O(D, X) such that
vo f # —oo we have

27
S5(f) = v(f(0) — 5 | v(f(e?))do.
So,
§5(f) =v(f(0)) +31°(f) and Eg =v+ Ego. (1.6)

As a simple corollary of Theorem 1.11 and (1.6) we have the following.

COROLLARY 1.17. Let X be a complex manifold and let v be a plurisubharmonic function
on X. Then Egy is an upper semicontinuous function on X.

Recall the following result.

THEOREM 1.18 (see Theorem 4.4 in [25]). Let X be a complex manifold and let v be a
plurisubharmonic function on X. Then

sup{u € PSH(X) :u <0, L(u) > L(v)} < Bz on X,

where L(v) denotes the Levi form i00v of v, which is a closed positive (1,1)-current on
X (see e.g. [20]) (*°). Moreover, if Egy is plurisubharmonic then

sup{u € PSH(X) :u <0, L(u) > L(v)} = Bz on X.
As a corollary of Theorem 1.13, Theorem 1.18, and (1.6) we get we following

THEOREM 1.19. Let X be a complex manifold of class P and let v be a plurisubharmonic
function on X. Then Eg; is a plurisubharmonic function on X and, therefore,

sup{u € PSH(X) :u <0, L(u) > L(v)} = Bz on X.

(*%) We put £(—o0) = 0.
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Theorem 1.19 for plurisubharmonic functions on domains in C™ was stated by E. Po-
letsky (see [35]). For continuous plurisubharmonic functions on complex manifolds of
class P it was proved by F. Larusson and R. Sigurdsson (see [25]). It seems that the first
complete proof for any plurisubharmonic function was given by the author (see [11]).

1.6. The Green and Lelong functionals. Since both functionals are related to the
pluricomplex Green function and are very similar, we decided to present their properties
together.

Let X be a complex manifold and let o : X — [0,00) be any function. Note that
§4 < 8% and, therefore, Ego < Fgo.

For both functionals we have the following duality property (see Proposition 5.1
in [25], see also [35], [7]).

THEOREM 1.20. Let X be a complex manifold and let o : X — [0,00) be any function.
Put u= Fya, where H = §3 or §4. Then

sup{v € PSH(X) : v <0, v(,v)>a} <u<0 on X.

Moreover, if u is a plurisubharmonic function on X, then v(-,u) > a on X. Therefore,
in this case we have

sup{v € PSH(X) : v <0, v(,v) >a}=u on X.

We have the following result, related to the plurisubharmonicity of the functionals §§
and §7.

THEOREM 1.21 (see Theorem 1 in [7], Theorem 5.3 in [25]). Let X be a domain in a
Stein manifold and let o be a non-negative function on X. Then

Ege = Eze =sup{v € PSH(X) :v <0, v(,v) > a}.

In the case when X is a domain in C", supp« = {z}, and a(z) = 1, Theorem 1.21
was proved by the author. The general case is proved by a similar method. One has to
use the Remmert-Bishop-Narasimhan embedding theorem and proceed in C™ as in [7]
(for more details see [25]).

We have the following product property.

THEOREM 1.22 (Theorem 4.10 for F3). Let X; and Xo be complex manifolds and let
ay : X1 — {0,1} and az : X9 — {0,1} be arbitrary functions. Assume that H = §3 or
Fa. Then

Froi0a, (Il,l‘g) = maX{Ech1 (Il),EHag ($2>}7 ($1,$2> € X1 x Xo.

The study of the product property of disc functionals was initiated by the author
(see [8] where Theorem 1.22 is proved for the case suppa = {z} and «a(z) = 1). Later
extensions to the general case and to the Poisson functional are modifications of the
original proof. Theorem 1.22 for the Green functional was proved by the author [9] and
for the Lelong functional by F. Lirusson and R. Sigurdsson [26].
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2. Preliminary results

2.1. General properties of disc functionals. In this section we present simple but
important properties of disc functionals.

PROPOSITION 2.1.  Let X be a complex manifold and let {X;}52,, X; C Xj1, be a
sequence of domains in X such that X = U;il X;. Assume that H : O(D,X) - R is a
disc functional. Then

EH\xj N\ En as j — o0.

Moreover, if EHIxj € PSH(X;) for any j > 1, then Ex € PSH(X).
Proof. Note that
EH\X, >F

= H‘Xj+1 ZEH Oan, ]:1,27

Fix an 2y € X. We may assume that Fg(zg) < oo. Fix § € R such that Eg(xg)
< (. Then there exists an f € O(D, X) such that f(0) = xo and H(f) < 3. There exists
jo > 1 such that f(D) C X; for j > jo. Then Epy, (o) < H(f) < B for j > jo. Hence,
Eny, (xo) \ En(xo) as j — oo.

Recall that if {u;};en C PSH(Y') is a decreasing sequence of plurisubharmonic func-
tions on a complex manifold Y, then v = lim;_ u; € PSH(Y") (see e.g. Theorem 2.9.14
in [20]). So, if Eny, € PSH(X;) for any j > 1, then Ey € PSH(X}) for any j > 1 and,
therefore, Eyy € PSH(X). m

PROPOSITION 2.2. Let X be a complex manifold and let H be a disc functional. Assume
that Hj, j =1,2,..., is a sequence of disc functionals such that H;(f) \, H(f) for any
f€0OD,X). Then

Eu, \\ En as j — oo.

Proof. Fix an zg € X. We may assume that Ey(zg) < oco. Fix 8 € R such that Ey(zo)
< f3. Then there exists an f € O(D, X) such that f(0) = 29 and H(f) < 8. There exists
Jo > 1 such that H;(f) < 3 and, therefore, Ep, (zo) < 8 for j > jo. m

PROPOSITION 2.3. Let X be a complex manifold. Assume that H : O(D,X) — R is a
disc functional. Then

Eg(xz) = inf{Ey, (z) : Y is a relatively compact domain in X, v €Y}, x€X.

Proof. Note that the inequality “<” follows from the definition of the envelope of a disc
functional.

Fix 29 € X. We may assume that Ep(z9) < co. Fix 8 € R such that Ey(zg) < §.
Then there exists an f € O(D, X) such that f(0) = 2o and H(f) < 3. There exists a
relatively compact domain Y such that f(D) C Y. Then Ep, (z) < H(f) < /3 and,
therefore,

inf{Ep, (z0) : Y is a relatively compact domain in X, 20 € Y} < 3. =
Let X and Y be complex manifolds and let F' : X — Y be a holomorphic mapping.
If H is a disc functional on Y, then the pullback disc functional F*H on X is defined by

the formula B
FH(f)=H(Fof), feOD,X).
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PROPOSITION 2.4. Let X and Y be compler manifolds and let F : X — Y be a holo-
morphic mapping. Assume that H is a disc functional on Y. Then

EH ol S EF*H-
Moreover, if F is a holomorphic covering, then Ep«yg = Ep o F.

Proof. Fix xg € X. We may assume that Ep g (z9) < co. Fix § € R such that Ep« g (xq)
< f3. There exists an f € O(D, X) such that f(0) = xg and F*H(f) < 3. Hence, H(Fo f)
< B.Put f = Fof. Note that f € O(D,Y) and f(0) = F(xg). Therefore, Ex (F(x0)) < 3.

Assume that F' is a holomorphic covering. Fix xp € X and fix § € R such that
Eg(F(x)) < B. There exists an f € O(D,Y) such that f(0) = F(zo) and H(f) < S3.
Since F' is a holomorphic covering, there exists an fe O(D, X) such that ]?(O> = xg and
f=Fof. Then H(f) = H(F o f) and, therefore, Ep-y(z0) < 3. m

PROPOSITION 2.5. Let X and Y be compler manifolds and let F' : X — Y be a holo-
morphic finite branched covering. Let Z be the branched locus of F. Assume that H is a
disc functional on 'Y such that Ey|_ = Ep, where Y :=Y \ F(Z). Then

EﬁOF:EF*H on X,

where X .= X\ Z and H := Hlg.
Moreover, if Eyg = Ef onY, then Ep«g = Epqgon X.

Proof. Note that F| 5 X >Yisa holomorphic covering. Hence,
EgoF=F, 5 on X.

We have Ey o F < Epepy, Epo F < EzoF, and Ep-yr < E.77. So, if Ey = B on Y,

then Ep«g = F ...+ on X. m

F*H
2.2. A class of complex manifolds. Let us start with the following two results, which
are crucial for our considerations. The first one is well known (see e.g. [15], Chapter VII).

THEOREM 2.6 (Remmert-Bishop-Narasimhan embedding theorem). Let X be a Stein
manifold. Then there exists a holomorphic embedding of X into CN for some N € N (21).

THEOREM 2.7. Let X be a domain in a Stein manifold. Then there exist a domain Y in
C™ and holomorphic mappings ®: X — Y, ¥ :Y — X such that ¥ o® =idy.

Proof. Let X be a domain in a Stein manifold X. There exists a biholomorphic mapping
:X 7 , where Z is a submanifold of C¥.

By a theorem of Docquier and Grauert (see e.g. [15], VIII.C.8) there exists a connected
neighborhood Y of Zin CN and a holomorphic retraction ¢ : Y — Z. We put @ := 5|X
and ¥ := &~ 'of|y, where Y is a connected component of ¢ ~(@(X)) which contains #(X).

It is easy to check that o ® =idx. m

Note that if X,Y are complex manifolds, X is of class P and h : X — Y is either a
holomorphic covering or a finite branched covering, then Y is also of class P.

(®") Recall that a holomorphic mapping F : X — CV is called an embedding if F is injective,
proper, and for any = € X the tangent mapping dFy : T, X — TF(I)(CN is injective.
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PROPOSITION 2.8 (cf. Proposition 3.5 in [25]). Let Y be a domain in a complex mani-
fold X. If X is of class P, then' Y 1is also of class P.

Proof. First note that it follows immediately from the definition that any complex ma-
nifold of class P has countable base.

Let Y = U;’;le, where Y; C Y11, j = 1,2,..., are relatively compact domains
in Y. It suffices to prove that Y; are of class P, j =1,2,...

So, we may assume that Y is relatively compact in X. It suffices to prove that if X
is of class P, then Y is also of class P. Note that if h : X — X is a holomorphic covering
(resp. a finite branched covering), Y is a domain in X and Y is a connected component of
h=1(Y), then hly : Y — Y is a holomorphic covering (resp. a finite branched covering).

Let

Xomx, 3.  "mx, =X m>o0,

be a sequence as in the definition of the class P.
If m = 0, then X is a domain in a Stein manifold and, therefore, Y is also a domain in
a Stein manifold. Hence, Y is a manifold of class P. If m > 1, then we define a sequence
Zaiva. By, =Y
by induction as follows. For ¢ =m,... 1, let Y;_1 C X;_1 be a connected component of
h1(Y;) and let ¢; = hily,_,. Then Yj is a domain in a Stein manifold, and we see that

Y is a complex manifold of class P. m

PROPOSITION 2.9 (cf. Proposition 3.6 in [25]). Let X,Y be complex manifolds of class P.
Then the product X XY 1is also of class P.

Proof. It suffices to prove that if X,Y are of class P, then X x Y is also of class P. Note
that if A : X — X is a holomorphic covering (resp. a finite branched covering) and Z is a
complex manifold, then h x id : X x Z — X X Z is a holomorphic covering (resp. a finite
branched covering). Note also that the product of Stein manifolds is a Stein manifold.
Let , , ,
XoMx, 2 tmx —x vwEVE. . y,-v,
be sequences as in the definition of class P. We may assume that they are of the same
length, because such sequences can always be extended by identity mappings. Now we
hi o . h7, i
replace each mapping X; = Xi;+1 by the composition X; = Xin iq X;y1 and each
£; - i £;
mapping Y; st Yi 11 by the composition Y; 4 y, 25 Yit+1. Then the sequence
h1 xid id x £, ha xid B xid id X £y,

XoxYy— Xy xYy— Xy xY] — ... — X, xY,, 1 — X, xXY,, = X XY

shows that X x Y is a complex manifold of class P. =

2.3. Variation of analytic discs. This part of the paper is based mainly on the
results from [25]. For the sake of completeness we give proofs.

THEOREM 2.10. Let X be a complex manifold. Let f : D — X be a holomorphic mapping.
Then there exist open sets W C D x X, W C D x C" (n = dim X), and a biholomorphic



Analytic discs method in complex analysis 19

mapping ¥ : W — W such that
U(z, f(2)) = (2,0), =ze€D.
Proof. Consider the graph
I'={(z,f(z)):ze D} CDx X.

Then I' is a Stein submanifold of D x X. By Siu’s theorem (?2?) there exist a Stein
neighborhood W C D x X of I' and a biholomorphic map ¥ of W onto a neighborhood
of the zero section of the normal bundle of I', which identifies I" with the zero section. It
is well known that the normal bundle of I" is holomorphically trivial (>3) and, therefore,
it is biholomorphic to I" x C™. From this we conclude that there exists a biholomorphic
map ¥ : W — W such that U(z, f(2)) = (2,0) for all z € D, where Wis a neighborhood
of D x {0}. m

COROLLARY 2.11 (cf. Lemma 1.1 in [46]). Let X be a complex manifold and let fo €
Oy, X), 7o > 1. Then for any r € (1,79) there exist an open set U C Dyy x X and a
biholomorphic mapping @ : U — D, x D™ such that

(i) {(z, fo(2)) : z€ Dy} C U,
(ii) @(z, fo(2)) = (2,0), z € D,.

Proof. By Theorem 2.10 there exist open sets W C Dy, x X, W c D,, x C", and a
biholomorphic mapping ¥ : W — W such that

U(z, fo(z) = (2,0), ze€D,,.

Fix r € (1,79). Note that {(z,0) : z € D,} is relatively compact in W. Therefore, there
exists R > 0 such that

U= {(z,21,...,20) : 2 €Dy, |2j] <R, jzl,...,n}CW.
Put U = ¥~ Y(U) and &(z,z) = (¥1(z,z), (1/R)W(z, x)), where ¥ = (¥, W), u

COROLLARY 2.12 (see [25], Lemma 2.3; cf. [6], Theorem 1.1). Let X be a complexr ma-
nifold and let fo € O(Dy,, X), 1o > 1. Then for any r € (1,rq) there exist an open
neighborhood V' of xo = fo(0) and f € O, x V, X) such that

(1) f(z,2z0) = fo(2) for all z € D,,
(i) f(0,z) ==z for all z € V.

Moreover, if fy is non-constant, then for every finite set M C D, we can find an f
such that

(iii) f(w,2) = fo(w),

(*2) THEOREM (see [43], Corollary 1). Suppose that V is a complex submanifold of a complex
manifold M. If V is Stein, then there exists a biholomorphic map from an open neighborhood
W of V in M onto an open neighborhood of the zero cross section of the normal bundle of V'
in M such that its restriction to V agrees with the canonical map from V onto the zero cross
section. As a consequence, there is a holomorphic retraction from W onto V.

(**) THEOREM (see e.g. [14], Theorem 30.4). Let X be a non-compact Riemann surface,
i.e. a 1-dimensional connected complex manifold. Then every holomorphic vector bundle on X
is holomorphically trivial.
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(iv) ordy, f( - ,2) = ordy, fo(+) for all w € M and all x € V.

If fo is constant, then for every finite set M C D, and every N € N we can find an
f such that

(iii/> f(wa$> = fO(w)a
(iv') ordy, f( - ,2) > N for all we M and oll x € V.

Proof. Fix r € (1,rp) and 7 € (r,79). According to Corollary 2.11 there exist a neighbor-
hood U C D, x X of {(z, fo(2)) : z € Dy} and a biholomorphic mapping @ : U — Dy xD"
such that @(z, fo(2)) = (2,0), z € Ds.

If M = (), then set P = 1. If M # (), then we take m € N such that m > ord,(fo) +1,
w € M, if fy is non-constant, and m > N + 1 if f; is constant. Define

m
Pz) = [ [T (1 = 2/w)]
weM

Note that ¢(0,z¢) = (0,0). Hence, there exists a neighborhood V of xy such that (z,0) +
P(2)?(0,z) e D x D" forall z €D, and z € V.

Let pr: C x X — X be the natural projection. If we define the holomorphic mapping
by

f(z,z) = pr(®7((2,0) + P(2)®(0,))), z€D,, z€V,

then all the conditions are satisfied. m

COROLLARY 2.13. Let X be a complex manifold and let fo € O(Dyy, X), ro > 1. Suppose
that {w1,...,we} C D, are different points. Then for any r € (1,rg) there exist disjoint
neighborhoods U; C Dy of wj, j=1,...,¢, and f € OD, x Uy x ... x U, X) such that

(1) f(()azla"'azl) = fO(O);
(i) f(z,21,...,20) = folw;) for j=1,...,£ and for all z1 € Uy, ..., z, € Up.

Proof. Fix r € (1,79) and 7 € (r,79). According to Corollary 2.11 there exist a neighbor-
hood U C D, x X of {(z, fo(2)) : z € Dz} and a biholomorphic mapping @ : U — Dy xD"
such that @(z, fo(z)) = (2,0), z € Dj.

Since wy, ..., w, are different points, there exist disjoint neighborhoods Uy, ..., U,
C D, of wy,...,we. Consider the polynomial P(z,z1,...,2¢) = (2 — 21)...(2 — z¢) and
the holomorphic mapping
¢
~ P(z,z1,...,20) w;
2.1 2 2,y ) = R - —L1(2,0
@ flam,.m) Lz_:l Pl(zj, 21,5 20)(2 — 25) 7 =0
z2€Dy,, 21 €Un,...,20 € Up.
Note that
¢
P(z,21,...,2
Z / ( - Z> =1, ZEDTO, z1€Ur,...,20 € Uy,
j=1 PZ(ZJ7ZIa 725)(2_2:])

and, therefore,
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R o o [

z2€Dy,, 21 €Un,...,20 €Uy

Hence, taking even smaller Uy, ..., U, we may assume that f(z, 21,--.,20) € D x D™ for
all z € D,, z5 € Uj,j: 1,....¢.
Note that f(zj,zl,...,Zg) = (w;,0), j =1,...,¢, and f(072:1,...72:g) =0, 2, € Uy,
2z €Up. Put f(z,21,...,2¢) =pro @‘1(f(z,21, ..., 20)). It is easy to see that all the
conditions are satisfied. m

3. The Poisson functional

3.1. Upper semicontinuity of the Poisson functional. In this section we study
the upper semicontinuity of the envelope of the Poisson functional.
As a corollary of Proposition 2.4 we have the following result.

THEOREM 3.1. Let X and Y be complexr manifolds and let F : X — Y be a holomorphic
mapping. Let ¢ : Y — R be a measurable function which is locally bounded from above
or below. Then

Egslo ol S ngoF.

Moreover, if F is a holomorphic covering, then
EgeoF = Eg(foF.

Proof. Note that F*§¢ = §¢°F and use Proposition 2.4. m

We have the following duality for the Poisson functional (see [34], [35], [25]).
THEOREM 3.2. Let X be a complex manifold and let ¢ : X — R be a measurable function
which is locally bounded from above or below. Then

sup{v € PSH(X) :v <} < Eze < on X. (3.1)
Therefore, if Ege is a plurisubharmonic function on X, then
sup{v € PSH(X) :v < ¢} = Ezr  on X.
For the sake of completeness we give a proof.

Proof. Take a function f € O(D, X) and a plurisubharmonic function v < ¢. Then

27 2
1

: 1 .
< — ©))do < — @) do.
O < o |l a0 < 5o Y ot
So, we have the left inequality of (3.1). For the right inequality it suffices to take constant
functions. m

The following proposition served as a motivation for introducing (weakly) integrally
upper semicontinuous functions. It gives examples of integrally upper semicontinuous
functions which are not upper semicontinuous.
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PROPOSITION 3.3. Let 2 be a domain in C™ and let ¢ : 2 — (—o0,00] be a superhar-
monic function. Then ¢ is weakly integrally upper semicontinuous on 2 (**).

Proof. Fix zg € 2 and ¢ > 0. We may assume that ¢(zq) # oo. Put g1 := &/(22" — 1).
Since ¢ is lower semicontinuous, there exists ro > 0 such that

o(z) +e1 > @(xg), x€By(xo,2r0) € 2.
Fix z € B, (zo,7), r € (0,r9). We have

JR— 1 n
p(z0) = CTED | e dc™)
" B, (z0,27)
R Vool ac™ ) + L | e(y) AL (y)
b (2r)%" by (2r)2n
By (z,7) B, (z0,27)\By, (z,r)
1 1
> 2n _ 92 2n 2n
= by (2r)2n Bn(gxm)@(y) dL™(y) + b (20)7 (¢(w0) — €1)(bn(2r) bpr?™)
1 2n 1
= b (2,},,)2n S (,0(?}) ac (y) + (‘P(-’EO) - E1) 1-— 2%
" By (z,r)
- on PR S
= b (S AL+ p(a0) —glro) g = (1 2%).
So,
1 1
plao) +e 2 s Vel dc(y) = o } (@ +ry)dc(y).
n B, (z,r) n B,

As a corollary of Proposition 3.3 we get

COROLLARY 3.4. Let X be a complex manifold and let ¢ € PSH(X). Then —p €
ICT(X).

The main result of this section is the following
THEOREM 3.5. Let X be a complex manifold. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # co.

Then Ege is upper semicontinuous.
Before we go into the proof we need the following results.

LEMMA 3.6. Let ¢ : T x B,, — R be an integrable function. Then

27 27
1 0 2n _ 1 0 10 2n
— §B§ p(e,y) AL (y) df = 5o (SHBX (e, ey) dL* (y) do. (3.2)

(24) Note that we may define weakly integrally upper semicontinuity at a point zo € 2. Then
Proposition 3.3 may be reformulated as follows.

PROPOSITION. Let 2 be a domain in C" and let ¢ : 2 — (—o0, 0] be a lower semicontinu-
ous function. Assume that limsup, _,(bpr?™) ™! SIB% (zo0.r) o)L (y) < p(z0). Then ¢ is weakly
integrally upper semicontinuous at xo. 7
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Therefore, there exists yo € B, such that

2 2
1 i0 2 1 0 10
’ dL " (y)df > — woe' de.
27Tbn (SJ BS 50(6 7y) L (y) = or (SJ 90(6 € yO)

Proof. This follows immediately from measure theory (use change of variables). m
LEMMA 3.7. Let X be a compler manifold. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # oco.

Suppose that 2 is a domain in C™. Let f : D, x 2 — X, r > 1, be a holomorphic
mapping such that po f(e¥ ) # oo, § € [0,27) (*°). Then
2m

F(y) = o

=5 Velf(e ) o, yen,
T 0

s an integrally upper semicontinuous function on 2.

Proof. Note that if ¢ is a plurisuperharmonic function, then F' is also plurisuperharmonic.
So, in case (b) the result follows from Corollary 3.4.

Hence, we may assume that we have case (a). Note that it suffices to prove that F is
weakly integrally upper semicontinuous. Fix yg € 2. We may assume that F(yo) < oc.
Fix 8 > F(yo). Suppose that there exist r,, \, 0 and y,,, € B, (y0, 7n) such that
1
b_ S F(ym + 7nmy) d£2n(y) > p.

n
B.
Note that

1 127711 .
o F 1) €27 0) = 52V | | (e 4 r) a0 .
0

bn Bn B,
By Fatou’s theorem

2w

. 1 1 i n

lim sup 9 S {b S O(f(e Y + rmy)) dL? (y)] de
m— 00 0 n ]Bn

2
]- . ]- 7 n
< o S lim sup [b_ X O(f (e Y + rmy)) dL> (y)} das.
o M n B,

But for any fixed § € [0,27), ¢(f(e?,-)) is an integrally upper semicontinuous function
and, therefore,

lim sup {bi g ‘p(f(eiev Ym + Tmy)) dﬁzn(y):| < @(f(eiea Y0))-

m— 00 n B
n

So,
2w
g <timsup L | [ [ (e + ) €27 (1)] 40 < Fiow)

m—0Q0 0 bn an

The contradiction finishes the proof. m

LEMMA 3.8. Let X be a complex manifold. Suppose that

(%) Note that po f(e*,-) = 00, 6 € [0,2r), is possible only in case (b).
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(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # oco.

Assume that zo € X, B € R, and fo € O(D, X) is such that fo(0) = x¢ and F1(fo) < 3,
where §1 = §7. Then there exist a neighborhood V of xzo in X, r > 1, and f €
O, x B,(r) x V, X) such that:

(a) £(0,0,2) = f(0,y,z) = for any x € V and any y € By;

(b) f(2,0,20) = fo(2) for any z € Dj

(c) )

™ S 51(f(-,y,2)dL*™(y) < B forallz € V.
ng

Proof. According to Corollary 2.12, there exist an 7 > 1, an open neighborhood V of x0,
and an f € O(D; x V, X) such that f(z,z0) = fo(z) for all z € Dy and f(0,2) = x for
all z € V.

Let (U,¢) be a local coordinate such that ¢(z¢) = 0. We may assume that U C V,
¢:U — ¢(U) =B,. Consider the function

2m

[ o(F(.¢7 ) dd,  we B,
0
By Lemma 3.7, F' is an integrally upper semicontinuous function on B,,. Fix an ¢ > 0

such that §1(fo) < 8 — €. Then there exists an ¢ € (0,1/2) such that
1
— | Fyr +ry) dc(y) < 8,

b
ng,

F(w)

T o

for any y; € B, (r1), r1 € (0,70). Fix r; € (0,70). Put f(z,9,7) := f(z,{ 1 (¢(x) +712Y))
and V := ("1(B,(r1)). We have

r 2m
i LS o)) = | |5 o) o) e
" B "B, -70 0
1 1 T i0 ~—1 i0 omn
=5 1 |5r 1 o.M C@) e y)))da] 42 (y)
B, - 0
1 1y = 0 ~—1 on
= | o } o(f(e?,¢ (C(m)+r1y)))d9] dc? (y)
B, - 0
= bi | F(C(x) +riy) dL(y) < B.
" Bn

Take r € (1,7) such that {(z) +rzy € B, foranyz €V, z€D,, y € B,(r). m

Proof of Theorem 3.5. Fix an xp € X. We may assume that Ez (x9) < oo, where
§1 =737 Let > Ej (x0) be fixed. By definition there exists an f € O(D, X) such that
f0(0) = zg and F1(fo) < . According to Lemma 3.8 there exist a neighborhood V of zg
in X, r>1,and f € O(D, x B,(r) x V, X) such that f(0,0,z) =z and

S Si(f(,yx)dL®(y) < B forallz e V.

1
bn
B,
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Fix an z € V. By Lemma 3.6 there exists yy € B,, such that

% | 310/(- y.2)) AL (y) = Fal9),

IB’VL

where g(z) = f(z, zyo, z). It suffices to note that g(0) = z. m

PRrROPOSITION 3.9. Let X be a complex manifold. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ % oco.

Then Ege < 0.
1

Proof. Note that case (a) is trivial. Assume that ¢ is a plurisuperharmonic function.
Let xg € X be fixed. We have to show that Eg¢ (z9) < co. Assume that (U, () is a local
coordinate such that ((z¢) = 0. We may assume that ( : U — ((U) = B, (2). Take an
1 € U, 21 # x0, such that p(x1) < co. Consider the superharmonic function v := @ o f|
where f(z) := ("1 (2¢(z1)/||¢(z1)]]), z € D. Note that f(0) = z¢ and u(||¢(x1)]) =
o(x1) < 00. Since u # 00,
2 27

3T (f) = % | wofe?)do= % | u(e®)do < oo
0 0

Hence, Egy < §7(f) <oco. m

3.2. Plurisubharmonicity of the Poisson functional. In this section we study the
Poisson functional on complex manifolds of class P. First we show plurisubharmonicity
on domains in Stein manifolds. Later, using Propositions 2.1, 2.4, and 2.5 we extend the
results obtained to the class P.

The main result of this part (and, actually, of the whole paper) is the following.

THEOREM 3.10. Let X be a complex manifold of class P. Assume that

(a) ¢ € ICT(X) is locally bounded from above or
(b) ¢ is a plurisuperharmonic function on X, ¢ # oco.

Then Eg¢ is a plurisubharmonic function on X.

We assume first that X is a domain in a Stein manifold. The idea of the proof in this
case goes back to E. Poletsky ([34], [35]). First note that E5 < oo (use Proposition 3.9)
and Eg is an upper semicontinuous function in both cases (use Theorem 3.5), where
F1 = Sf. Therefore, we have to prove that

17 :
Eg, (h(0)) < 5 | By, (h(c"”)) b
0
for any h € O(D, X). Fix an h € O(D, X). Since Ey, is upper semicontinuous, there exists
a sequence of continuous functions v, on X such that v, \, Eg, (cf. [30], Chapter III).
Hence, it suffices to show that for every € > 0 and v € C(X,R) with v > Eg, there exists
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g € O(D, X) such that g(0) = h(0) and
1 2

i0
i) < o5 (S) v(h(e'”)) d +&.
For the construction of g, we first show that there exist > 1 and F € C*°(D, x T, X)
such that F(-,w) € O(D, X), F(0,w) = h(w) for all w € T, and

2w 2w
1

. 1 ,
6 6
o §81(F(~,e ) do < - (SJ v(h(e)) do +e.
Next we show that there exist s € (1,r) and G € O(Ds xD,, X) such that G(0, w) = h(w)
for all w € Dy and

27 27

L[ 3G ) db < = | §1(F(¢))db + <.
0
)

2770

Finally, we show that there exists a 6y € [0, 27) such that if g is defined by the formula
g(2) = G(e' 2, 2), then
2w
1 ,
B1(9) < 5 | Bu(G( ) db.
o

As we see, the main steps of the proof coincide with the proof of the plurisubharmonicity
of Ege for an upper semicontinuous function ¢ (see the discussion before Lemma 2.3 in
[25]). But the proofs of these steps turn out to be technical and complicated.

Let us start with the following result, which follows from measure theory.

LEMMA 3.11. Let ¢ : T — R be a measurable function such that §|1|do < oo (i.e.
Y € LY(T)). Then for any € > 0 there exists § > 0 such that

Sw(w) do(w) < e

I

for any measurable set I C T with o(I) < §.

Proof. Fix e > 0. We have { |¢)|do < co. Hence, there exists C' > 0 such that

{ | do < %
(€T ()20}
Take ¢ := ¢/(2C'). Then
[ do < {loldo = | | do + | |1/)|d0§Ccr(I)+%<s.-
I I {ze:|¢¥(z)|<C} {ze:|y(2)|>C}

LEMMA 3.12 (cf. Lemma 5.5 in [34], Lemma 2.5 in [25]). Let h € O(D, X), ¢ > 0, and
v e C(X,R) with v > Eg, . Assume that:

(a) ¢ is an integrally upper semicontinuous function on X locally bounded from
above or

(b) ¢ is a plurisuperharmonic function on X such that ¢ o h # oco.
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Then there exist r > 1 and F € C®°(D, x T, X) such that F(-,w) € O(D,, X), F(0,w) =
h(w) for all w € T, and

1 27 ‘ 1 27 ‘
o | S1(F (-, e?))do < o | v(n(e?))do +e. (3.3)
0 0

Proof. Let wg € T. Put 29 = h(wp). From Lemma 3.8 it follows that there exist rq > 1,
fO € O(D'fo X BTL(TO) X ‘/O)X) such that fO(Ovoam) = fO(anvx) =T, Tc %7 ) € ]Bn(ro),
and

S F1(fo( -y, 2))dL?"(y) < v(zg) for all z € V.

1
bn B,

Replacing V) by a smaller neighborhood of g we get

o B2 dC() < o@) + 5, @€ Vo,

B n

N

We can take an open arc Iy C T containing wg such that h(w) € V, for all w € Ij.
Define Fy : Dy, x B, (r9) x Iy — X by Fo(z,y,w) = fo(z,y, h(w)). Replacing ro by a
smaller number in (1,00) and Iy by a smaller open arc containing wg, we may assume
that Fo(Dy, x B, (r¢) x Ip) is relatively compact in X.

Using a compactness argument, we see that there exist a covering of T by open arcs
{LYY_,,r,>1,and F, € C®(D,, x B,(r,) x I, X) such that

a) F,(-,-,w) € O(D,, x B, (r,), X),

b) Fl/(07 0, w) = F,,(O, va) = h(w)a

c) F,(D,, xB,(r,) x I,) is relatively compact in X,

)

[}

| 31(E (- y,w)) dL(y) < v(h(w)) +
B,

= ™

1
bn,
fory e B,(r,), wel,,v=1,...,N.

Put 7 := min, r,. Choose M C X to be a compact set such that

N
hD)U | Fo(Dr x By(r) x I,) C M.
v=1
Let C' > max{sup,, |v|,sup,; ¢} in case (a) and let C' > sup,, |v| in case (b).

In the case of a plurisuperharmonic function ¢ such that ¢ o h # oo it is well known
that ¢ o h € LY(T) (cf. [37]). So, by Lemma 3.11 there exists § > 0 such that for any
measurable set I C T with o(I) < § we have

S pohdo < e

7 2
In case (a) we put § = 1. There exist a subset A C {1,..., N} and disjoint closed arcs
Jy, C I,, v € A, such that o(T \ JJ,) < min{d, 7e/(2C)}. By possibly removing some
arc I, from the covering of T, we may assume that A = {1,..., N}. We choose disjoint
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open arcs K, such that J, C K, C I, and a function ¢ € C°°(T) such that
e0< o<1,
e o(w) =1 forwe |JJ,,
e o(w)=0forweT\|JK,.
Note that
1 5
[ oo | 1Ry w) AL () do(w) < § o(h(w)) dotw) + So(7,).
J, " B, Ju
Hence, there exists y, € B,, such that
€
S S1(Fy (- 9, w)) do(w) < S v(h(w)) do(w) + ZO’(J,,). (3.4)
Jy Ju
We define F': D, x T — X by
F(e(w)z, yp,w), z€Dr, weK,,
F =
(z,w) {h(w), zeD,,weT\UJK,.
The choice of g ensures that F' € C*°(D, x T, X), F(-,w) € O(D,, X), and F(0,w) =
h(w), w € T. We have

27

V S1(F(e?)do = | $1(F (- g, w)) do(w)

0

v J
+> 0 | suEew) p,w)do(w)+ | p(h(w)) do(w).

VKN U, K.
By (3.4) we get
S 3By w) do(w) < S | o(h(w)) do(w) + ZJ(U JV).
v J, v J, v
Let us estimate >, SKV\JV S1(F,(o(w)-,yy, w)) do(w). Note that

2m

> | niBlewr ) dow) =Y | o § eFlew) i w) 0 do(w).
T KA v K, \Ju 0
In case (a) we have
3§ o L etlewie? n,w) ddo(w) < 0o (KA )
v K, \J, 0 Y Y
And in case (b) we have
> 1 g VelBle@e pw)) dodotw) < 3 | e(Fu0.uw)) do(w)
> KN\ o v K \Jy

=> | olhw)do(w).

v KN\J,
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If we combine the inequalities we already have, then in case (a) we get

[ §1(FC. e do< | v(h(w))da(w)Jria(UJl,)
0 U, v

+C’0<UKV\UJ,,) +Co(T\ (K, )

< Jo(n( w)— | v(h(w))do(w) + me
T nU, /.
< Sv (w) + 2me.
T
In case (b) we have
27 ) c
[ §1FCe®)do < | v(h(w))do(w) + ZU(UJV)
0 Uy, Jv v

| ew)do)+ | e(h(w))do(w)
U, KU, Jv MU, Kv
v(h(w)) do(w) — S v(h(w)) do(w) 4+ e
U, Jv
v(h(w)) do(w) 4 27e. m

IN

He— He—

<

Recall the following approximation result (see Lemma 2.6 in [25], cf. Lemma 5.6
in [34], Lemma 6 in [7]).

LEMMA 3.13. Let X be a domain in a Stein manifold. Let r > 1, h € O(D,, X), and
F e C=(D, xT, X) be such that F(-,w) € O(D,, X), and F(0,w) = h(w) for all w e T.
Then for any s € (1,7) there exists a sequence F; € O(Ds x Aj,X), j > 1, where A; is
an open annulus containing T, such that
(i) F; — F uniformly on Dy x T as j — oo,
(ii) there is an integer k; > j such that the map (z,w) — Fj(z2w",w) can be extended
to a map G € O(D?j,X), where s; € (1,s) and
(iii) G;(0,w) = h(w) for all w € Dy, .

Proof. By Theorem 2.7 there exist a domain Y in C™ and holomorphlc mappings @ :
X —-Y, ¥ :Y — X such that ¥ o ® = idx. We define F = PoF, h = ® o h. For any
7 € N we put

7 2T

= 7 1 B, 30\ _ T (,i0Y,—ik0 k

Fi(z,w) = h(w) + Z. <% V (F(z,€) = h(e?))e= "0 df | w". (3.5)
k=—j 0

Since the function § — F(z,e) — h(ei?) is infinitely differentiable with period 27, its

Fourier series converges uniformly on R. Hence the series in (3.5) converges uniformly on

D; x T, te (1,7").
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Let t € (s,7). Since F(z,w) € Y for all (z,w) € D, x T and ﬁj — F uniformly on
D; x T, we can choose jp so large that ﬁj(Z,U)) €Y for all (z,w) €Dy x T and j > jo.
Since s € (1,t), by continuity we can choose an open annulus A; containing T such that
FJ(z w) € Y for all (z,w) € Dy x A;. We define F; € O(Ds XA],X) by F; =WoF
Then (i) holds.

For every z € D, the mapping w — ﬁj(Z,U)) — h(w) has a pole of order at most j
at the origin, and for every w € D, \ {0} the mapping z — ﬁj(z, w) — h(w) has a zero
at the origin. Hence (z,w) — ﬁj (2w*,w) can be extended to a holomorphic mapping
DxD—C" foreveryk>j

Since F (0,w) = h(w) € Y for all w € D, \ {0}, there exists § > 0 such that
Fj(zw*, w) € Y for all integers k > j and (z,w) € Ds x D. Since Fj(z,w) € Y for
all (z,w) € D x T, we can choose p; € (0,1) such that ﬁj(z,w) €Y for all (z,w) €
D x (D \ D,,), so we conclude that Fj(2w*,w) € Y for all (z,w) € D x (D\ D,,) and
all integers k > j. Now we take k; so large that [zw®i| < § for all (z,w) € D x D,,.
Then Fj(zw",w) € Y for all (z,w) € D x D. We finally choose s; € (1,s) such that
Fj(zwki w) € Y for all (z,w) € D, s; X D, and define G;(z,w) = ¥ o Fj(zw*i, w). Then
(ii) and (iii) hold. m

LEMMA 3.14. Let X be a domain in a Stein manifold. Let h and F satisfy the conditions
of Lemma 3.12. Then for every € > 0 there exist s € (1,r) and G € O(D, x Dy, X) such
that G(0,w) = h(w) for all w € Dy, and

2 27

oo VG db < o T &R () d+e.
0 0

Proof. By Theorem 2.7 there exist a domain Y in C" and holomorphic mappings & :
X —-Y ¥:Y — X such that W o® = idx. We define F' = @ o F| F, = ® o F}, and
@ := @oW. Note that ¢ is a weakly approximately upper semicontinuous function on Y.
For any fixed z,w € T there exists r(z,w) > 0 such that
- P €
— \ B +ry) AL (y) < B(F(z,w)) + 5 = p(F(z,w)) +

by, 2
Brn

for y1 € B(F(z,w),r), r € (0,7(z,w)). Hence, for any fixed z,w € T we have

1 = 1

m— o0 k—o0 np
n

| ™

By Fatou’s theorem, we have

m—oo  k— 4 bn

2m 2T
1 1 ~ 1
hmsuphmsup— S S [— S @(Fk(e”,ele)—l— —y) dCQ"(y)] dr df
™50 B, m

2 2w
< % S S [limsuplimsupi S @(ﬁk(ew,ew)—i- %y) dﬁzn(y)] drdo

00 m— o0 k—o0

1 ir 6 €
SHS | o(F(e, e ) drdf + 3.
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Hence, there exist my and kg such that

1 2w 21 1 ~ 1
‘ ‘ [ g @(Fko (€', ) + —y) d/SZ"(y)] dr do
0 ' Mo

— | —
47 5 by, B
1 27 27
<— S S O(F(e'™,e?)) dr df +e.
4m2
00
So, there exists yg € B,, such that
1 27 21 _ 1 1 27 27
o= S S @(Fko(e”,ew) + m—oe”yo) drdf < 2 S S O(F(e,e"))drdf + ¢
00 00

Put G(z,w) = ® o Gy, (z,w) 4 (1/mg)zwoyy and G = ¥ o G, where Gy, is given by
Lemma 3.13. Finally we note that

27 27 21
1 i 1 T 1
5= V831G o= 5 | | o(G(e,¢))dr do
0 0 0
1 27 21 o _
=13 ) ) B(G(e. ) drdo
0 0
1 21 2T 1 2
<— | VoFEm e drdo+c = — | §1(F(-e?)df +c. m
4m2 00 2 0

LEMMA 3.15. Let s > 1 and G € O(Ds x Dy, X). Then there exists g € O(Ds, X) such
that g(0) = G(0,0) and

Proof. Note that

N P N
0 0 0

(G(e', e+ 7Y)) dr df.

|

2
x| =

N
O ey
O ey

S

So, there exists 0y € [0,27) such that
27 27 1 2
| | oGem et ) drdo > o | o(G(e'm eei)) dr.
m
00 0

1
472
Put g(z) = G(z,e%%). u

Now we are going to prove Theorem 3.10 for any manifold of class P. First recall the
following result.

LEMMA 3.16 (see Proposition 2.9.26 in [20], cf. Lemma 3.2 in [25]). Let X,Y be complex
manifolds and let h: X — Y be a finite branched covering. Let u be a plurisubharmonic
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function on X. Then the function h,u defined by the formula
hou(y) = max{u(z) :x € b (y)}, yeY,
is plurisubharmonic on' Y (2%).
For the sake of completeness we give a proof.

Proof. Let S C Y be the branch locus of h. Then h : X \ h~1(S) — Y \ S is a finite
holomorphic covering, so h,u is plurisubharmonic on Y\ S. The restriction h.uly\g
extends to a plurisubharmonic function v on Y with
v(y) = limsup h.u(y), ye€S.
J—y, yES

If w is continuous, then h,u is also continuous and, hence, plurisubharmonic. In the
general case, let p € S and U be an open coordinate ball containing p. We have a finite
map h : h~Y(U) — U, so h=}(U) is Stein, and the main approximation theorem for
plurisubharmonic functions holds on h=(U). Let V be a relatively compact open ball in
U with p € V. Then there are smooth plurisubharmonic functions wu,, on h=1(V) such
that u, \, u. Since h,u, are plurisubharmonic and h,u, \, h.u, we conclude that h,u
is plurisubharmonic on V. =

Recall also the following modifications of Propositions 3.1, 3.3 from [25].
ProprosSITION 3.17. Let XY be compler manifolds such that there exists a finite
branched covering h: X — Y. If Ege € PSH(X) for every integrally upper semicontinu-

ous function ¢ on X locally bounded from above, then Ege € PSH(Y") for every function
@ on Y with the same properties.

Proof. Let ¢ : Y — R U {—o00} be an integrally upper semicontinuous function locally
bounded from above. Let v = FE Spon- By assumption ¢ is plurisubharmonic on X and
Ege oh <. Now ¢ < poh,so h*¢<g0and h. < Ege. Hence,

(hap) o h < Eg¢ o h < 4.
Note that (h.«t) o h <4 implies that (h.y) oh = . Hence, Ege o h =t and Ege = hyt)
is plurisubharmonic. =

ProprosITION 3.18. Let X,Y be complex manifolds such that there exists a finite
branched covering h: X — Y. If Ege € PSH(X) for every plurisuperharmonic function
¢ on X, ¢ # oo, then Ege € PSH(Y') for every such function ¢ on'Y.

Proof. The same as the proof of Proposition 3.17. m

Propositions 2.1, 2.4, 3.17, 3.18 imply Theorem 3.10 for any complex manifold of
class P.

3.3. Liouville manifolds. We say that a complex manifold X is a Liouville manifold
if any negative plurisubharmonic function on X is constant (37).

(*®) Recall the following useful result. Suppose that zo € X is an isolated point of the set
R (h(zo)). Tt is well known (see e.g. [41]) that there exist domains U C X and V C Y such
that A= (h(z0)) NU = {x0} and h|y : U — V is a finite branched covering.

(*") Recall that by Liouville’s theorem, C™ is a Liouville manifold (see e.g. [20]).
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In this section we study the envelope of the Poisson functional on Liouville manifolds.
Let us start with the following result, which is crucial for our considerations.

PROPOSITION 3.19 (cf. [25], Proposition 6.1). Let X be a Liouville manifold. Let U # ()
be an open set in X such that W(-,U, X) is a plurisubharmonic function on X. Then
for every x € X and every € > 0 there exists an f € O(D, X) such that f(0) = x and
o(TNf~YU)) > 2r —e.

Proof. We know that &(-,U, X) = Esfxy. Since W(-, U, X) < 0, from the assumptions we
1

get &(-,U, X) = —1. Hence, for every z € X and every £ > 0 there exists an f € O(D, X)
such that f(0) =z and

o _o(Tn W)

L1 S (we ) L

21 2
T

Hence, o(TN f~1(U)) > 21 —c. m

PROPOSITION 3.20 (cf. [25], Proposition 6.1). Let X be a complex manifold. Assume that
for any x € X, any open set U # () in X, and any € > 0 there exists an f € O(D, X)
such that f(0) = x and o(T N f~Y(U)) > 27 — e. Then for every upper semicontinu-
ous function ¢ : X — [—00,00) bounded from above, Egs is constant (and, therefore,
plurisubharmonic) on X. In particular, X is a Liouwville manifold and @(-,U, X) is a
plurisubharmonic function on X for any open subset U of X.

Proof. Note that ES“{’ >infy ¢ on X.

Suppose that ¢ < C on X. Fix ¢ € R such that ¢ > infx ¢. Put U, := {x € X :
¢(z) < c}. Note that U, # ) is an open subset in X. Fix ¢ > 0. Let f € O(D, X) be such
that f(0) = z and o(T N f~1(U)) > 27 — . Then we have

S@Ofdaz S po fdo+ S o fdo <co(TN f~Y(U,)) + Ce < 2mc+ Ce.
T TN~ (Ue) T\f~*(Ue)
So,

€
Egp(2) <JT(f) s e+ Cqp
Since € > 0 is arbitrary, we get Ege (z) < c. Take ¢\ infx . Hence, Eze =infx . m

Let us give some corollaries of Propositions 3.19 and 3.20. First, we have the following
characterization of Liouville manifolds in terms of analytic discs.

THEOREM 3.21. Let X be a complex manifold from class P (?8). Then X is a Liouville
manifold if and only if for any x € X, any € > 0, and any open set U # O there exists
an f € O(D, X) such that f(0) =z and o(TN f~H(U)) > 21 —¢.

COROLLARY 3.22. Let X be a Liouville manifold. Then the following conditions are
equivalent:

(1) @(-,U, X) is a plurisubharmonic function on X for every open subset U of X;
(2) For any x € X, any open subset U # (), and any € > 0 there exists an f € O(D, X)
such that f(0) =z and o(TN f~1(U)) > 27 —e.

(*®) Actually, it suffices to assume that (-, U, X) € PSH(X) for any open subset U of X.
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Moreover, if X is a compact manifold, then the above conditions are equivalent to

(3) For any upper semicontinuous function ¢ : X — [—00,00) the function Ege is
plurisubharmonic on X.

Proof. Tt suffices to note that on a compact complex manifold any upper semicontinuous
function is bounded from above. m

We have the following result.

PROPOSITION 3.23 (see Proposition 6.4 in [25]). Let X, Y be complex manifolds and let
F: X =Y be a surjective holomorphic mapping. Assume that X (and, therefore, Y) is a
Liouwville manifold and that w(-, U, X) is a plurisubharmonic function on X for every open
subset U of X. Then w(-,V,Y) is a plurisubharmonic function on'Y for every open subset
V of Y. Moreover, if Y is a compact complex manifold, then Ege is a plurisubharmonic
function on'Y for any upper semicontinuous function ¢ : Y — [—o0, 00).

Proof. Let V # () be an open subset of Y. Then
O(F(2),V,Y)<@(x, F7Y(V),X), z€cX.
By the assumptions &(-, F~1(V), X) = —1. Therefore, o(-,V,Y) = —1. m

PROPOSITION 3.24 (cf. Remark 6.2 in [25]). Let X be a Liowville manifold. Assume that
X is taut (*°). Then for any r > 1 there exists an open subset U # () of X such that

Oz, U, X) := inf{217T V(—xvof)do: feOD, X), f(0) = x}
T

18 mot a plurisubharmonic function on X.

Proof. Fix r > 1. Assume that @, (-, U, X) is a plurisubharmonic function on X for any
open subset U # () of X.

Let 29 € X and let (U,) be a decreasing neighborhood basis of a point yg # xo
in X. Then @,(-,U,,X) = —1. We get holomorphic mappings f, : D, — X such that
fn(0) = z¢ and (TN £, 1(U,)) > 27— 1/n. Since X is taut, there exists a subsequence of
(fn) which converges uniformly on compact sets to a holomorphic mapping f : D, — X.
Then f(0) = zo and f(T) = {yo}. Hence, we obtain a contradiction. m

REMARK 3.25. Note that C\ S is a Liouville taut domain for any closed polar set S C C
with #S5 > 1 (see e.g. [17]).

3.4. The Poisson functional on domains in C”. In the definition of the envelope
of a disc functional we use all analytic discs. In this section we show that for domains in
C™ it suffices to take analytic discs which are restrictions of the polynomial mappings.

(*°) Recall that X is called taut if the space O(D,X) is normal, i.e. for any sequence
{fi};en C O(D,X) there exists a subsequence {f;,} with f;, = f € O(D,X) or there
exists a subsequence {f;,} which diverges uniformly on compact slé?sc,x}i.e. for any two compact
sets K C D, L C X there is an index v € N such that f;, (K)NL =0 if v > vy (cf. [45]).
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THEOREM 3.26. Let §2 be a domain in C" and let ¢ : 2 — [—00,00) be an upper
semicontinuous function. Then

Eg¢(x) = inf{F{(f) : f € OD, N2), f:C— C" is a polynomial, f(0) = x}.
Proof. Note that

Eg¢(x) <inf{F7(f): f € O(D,R2), f:C— C"is a polynomial, f(0)=x}.
Fix 29 € X. We may assume that Eg¢ (x9) < oo. Take § € R such that Ege (x9) < 8. By
the definition, there exists an f € O(D, X) such that f(0) =z and F{(f) < 8. Assume

that o
= Z 2, zeD,
k=0

is the Taylor expansion of f, where ¢, € C™. Put fy := szvzo cp2®. There exists ng € N
such that fy (D) C {2 for any N > ng. We have
27
. 1 . i
limsup 7 (fn) < — ‘ limsup (fn () df < F7(f) < B.
Hence, there exists N € N such that §7(fn) <. m

4. Product property

4.1. Product property of the Poisson functional. The main result of this part is
the following product property.

THEOREM 4.1 (cf. [12]). Let X1 and X2 be complex manifolds and let Uy C X1, Uy C Xo
be open sets. Then

((xh.’lﬁg) U1><U2,X1 XXQ) —max{w(xl,Ul,Xl) (CL‘Q,UQ,XQ)} (.’L‘l,IQ) €X1 XXQ.

For the proof of Theorem 4.1 we need some technical results. First recall the following
two of them.

THEOREM 4.2 (see [33], Chapter II1). Let m: D — D be an inner function (3°). Assume
that 7 is non-constant and not a Blaschke product (3'). Then there exists a 0 € [0, 27)
such that 7 (e?) = 0.

THEOREM 4.3 (see [33], Chapter II). Let m be a bounded holomorphic function on the
unit disc and let A be a compact polar set in C. Assume that there exists a set I C T of
positive measure such that n*(z) € A, z € I. Then 7 is constant.

(3%) Recall that a function 7 : D — D is called inner if 7*(e*) := lim,_1 w(re?®) € T for
almost all 0 € [0, 27).
(*") Let {an} C D, and let Y (1 —|an|) < co. A function of the form
19 2™ |an‘ an —Z
0eR
H an 1 —anz’ €x

is called a Blaschke product. Note that for a Blaschke product we have B(0) =0 for m > 1 and
|B(0)| =I1,, lan| for m = 0. It is well known that any Blaschke product is an inner function (see
e.g. [38], Theorem 15.24).
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LEMMA 4.4. Let A be a compact polar subset of the unit disc D and let 7 : D — D\ A
be a universal covering. Then 7 is an inner function. Moreover, if 0 & A, then 7 is a
Blaschke product.

Proof. Note that if 7* () exists for a 6 € [0, 2), then 7*(e?) € TUA. From Theorem 4.3
we deduce that 7*(e?) € T for almost all § € [0, 2).
If 0 € A, then from Theorem 4.2 we see that « is a Blaschke product. =

LEMMA 4.5. Let B be a finite Blaschke product and let m : D — D be a holomorphic
function. Then 7 is an inner function if and only if B o7 is inner.

Proof. Tt suffices to note that B extends holomorphically to D and B(T) C T. m

We need a version of Lowner’s theorem (cf. [44], Theorem VIIL.30). But first recall
the following.

THEOREM 4.6 (see [37], Theorem 1.2.4, [44], Theorem IV.1). Let ¢ € L'(T). Put

1 2m -
Up(2) == o (SJ P(z,0)p(e") db,

where P(z,0) = (1 —|z|?)/|e? — z|? denotes the Poisson kernel. Then

(a) uy is a harmonic function on D, infr ¢ < u, < supp g;

(b) ul(e®) = lim, .y u,(re) exists for almost all 6 € [0,27); moreover, uj, = ¢ a.e.
on T;

(c) if ¢ is continuous at (o € T, then u, extends continuously to (o.

LEMMA 4.7 (Léwner’s theorem). Let m: 1D — D be an inner holomorphic function such
that w(0) = 0. Then for any open set I C T we have o((7*)~1(I)) = o(I).

Proof. Note that any open I C T can be written as I = U;il I;, where I; are disjoint
open arcs. So, we may assume that I is an open arc.
Fix an open arc I C T. Note that J := (7*)~%(I) is a measurable set. Put

2

ur(z) = 5 | Pz O)xa(e”) db,
0
1 2 -
u(z) = o= | P(,0)xs(c") do,
0

w(z) == ur(n(2)) —us(z), =ze€D.
Note that uy is a continuous function on T\ 9I. Put
A:={CeT: Thinl uy(r¢) does not exist}
U{CeT:uj(¢) = }erllu,f(rC) exists and u%(¢) # xs}
u{¢eT: }1301 m(r¢) does not exist}
u{¢eT: =" () = }eri 7(r¢) exists and 7*(¢) € OI}.
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Note that A C T is of measure zero (use Theorem 4.3). Moreover, if € € J\ A
(ie. u¥(e®) =1 and 7*(e") € I), then

u* (") = lim1 u(re'?) = liml(uj(ﬂ'(reie)) —uy(re?)=1-1=0.

If e ¢ JUA, then u*(e?) < 0. So, u* < 0 a.e. on T (actually, on T\ A). Hence, u < 0 (32)
and, therefore,

0> u(0)=us(0) —uy(0)= oll) _ —.

So, o(I) < a(J).

By the same reason

o(T\I) < o((n*)"H(T\ 1)) < o(T\ J).

Hence, 27 — o(I) < 27 — o(J) and, therefore, o(I) > o(J). =
LEMMA 4.8. Let {Ij};?:l be a family of disjoint open arcs on the unit circle, let I =
U§:1 I;, and let o(I) = o > 0. Then for every € > 0 there exists a finite Blaschke
product B : D — D such that B(0) = 0, B'(z) # 0 for z € B~1(0), and B~(J.) C I,
where J. = {e? : 0 < < a—¢}.
Proof. We may assume that a < 27. Note that the functions

2m
1
uj(z) = 5= | P(z0)xs, df, 1<j<k,
27 o !
are harmonic on D. Let v; be a conjugate harmonic function to u; such that v;(0) = 0.
So, hj =uj+iv; : D — R={z¢€ C:0<Rez <1} is a holomorphic mapping such that

h;(0) = o(I;)/(2m). Actually, it is not difficult to see that

hj(z) = L Log (Z - erj) _o(ly)

z €D,

T z — i1 2’

where I; = {€'? : 61; < 0 < 0,} (hence, o(I;) = 05;—01;) and Log : {z : Imz > 0} — {z:
0 <Imz < 7} issuch that Logi = mi/2 (cf. [31]). Moreover, h; extends homeomorphically
to T\ {e?,¢e"2i} - {2 € C:Imz=0o0r Imz =7} and h;(I;) = {z € C:Imz = 0}.

The mapping h = Z§=1 h; also maps D into R and h(0) = «/(27). Moreover, h ex-
tends homeomorphically to T\ I and hl; : I — J' := {z € C: Rez = 27} (and
I=h"'(J)). Let

emEt _ eai/2

Flz)=——°__  :eR

eﬂzi _ e—ai/Z ’

Then F : R — D is a conformal mapping such that F(a) = 0 and F(J') = J = {e% :
0 < 6 < a}. Note that F' extends homeomorphically to OR. Let B = F o h. Then

(32) Note that if u is a subharmonic function on D bounded from above, such that u* < 0
a.e. on T, then v < 0 on D. Indeed,

27 27 2m
u(0) < limsup % S u(re’) do < % S lims?pu(rew)dﬂ < % S u* (") do < 0.
0 o "7 0

r—1

Using automorphisms of the unit disc, we get v < 0 on D.
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B(0) = 0. Note that Blpg; : T\ 8I — T. Moreover, B(I) = J and B(T\ 1) =T\ J.
A straightforward calculation shows that
[ (= — ) — e Ij (= — )
[Tjm (= e2) =TIy (= =€)
Hence, B(e?17) = 1 and B(e?21) = ', j = ., k. Therefore, B(T) C T and we deduce
that B is a finite Blaschke product (cf. [39], Chapter 7.3.1).
Suppose that

B(z) =

e z—a; \™
- i ()
; j

Jj=1
Note that B(T \ I) C T\ J. Take a closed arc J C J such that o(J) > a — . Then
B(T\I)CT\.J.

Take different points a;1,...,am,, j = 1,..., N, sufficiently close to a; such that a; €
{aj1,...,a;m;}. It is sufficient to replace B by

N mj

- fifi (52

j=14=1
If aji, ..., am,; are close enough to a;, then
B(T\I)CT\.J.

Note that B~1(J) C I. Take B(z) = B(ei?z) with 0 such that B satisfies the conclusion
of the lemma. m

The following result is a simple corollary of the definition of @ and Proposition 2.4.

PROPOSITION 4.9. Let X,Y be complexr manifolds and let U C X,V CY be open sets.
Suppose that F : X — 'Y is a holomorphic mapping such that F(U) C V. Then
w(z,U,X) >w0(F(x),V,Y), z€X.
Moreover, if F is a holomorphic covering and U = F~Y(V'), then
w(z,U,X)=w(F(x),V,Y), z€X.
Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1. For the proof of the inequality “>” it suffices to consider the
projections pry : X1 x X2 — X; and pry : X7 X Xo — X9 and use Proposition 4.9.
To prove “<”, put u; = —xy, and ugs = —Xxv,-
Let (z1,22) € X1 x X2 be fixed and let 8 € R be an arbitrary number such that
max{w(xl,Ul,Xl) ($2,U2,X2)} <ﬂ

By definition there are holomorphic mappings f; : D — X; and f5 : D — X5 such that
f1(0) = 1, f2(0) = x2, and
2

% Vui(fi(e?)do < B, j=1,2.
0
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Note that ffl(Ul) N T is an open set in T. So, we may choose a finite set of disjoint
open arcs I1 e 1 < fi7%(U1)N T on the unit circle T such that o(I') > —27(, where
=y 1. S1m1lar1y we choose 17, ..., I% with I? = UJ 1 I7. By Lemma 4.8 we may
find Blaschke products B, Bs and an open arc I on the unit circle with o(I) > —2x/
such that By '(I) C I' and B, '(I) C I?, B;(0) = 0, Bj(z) # 0 for z € B;'(0), j = 1,2.

Let A be the set of critical values of the mappings B; and Bs. Note that 0 is not in A.
Let 7 be a holomorphic universal covering of I\ A by D with 7(0) = 0. If I = (7*)~1(I),
then according to Lemma 4.7, U(I~) = o(I). There are liftings 11 and 12 of D into D such
that 7 = By 011 = By 019 and ¥1(0) = ¥2(0) = 0. Note that by Lemma 4.5, 11, ¥ are
inner holomorphlc mappings because 7 is inner. Also the non-tangential boundary values
of 11 and 15 on I belong to I' and I? respectively. Put f1 fiovy and f2 fa 0s.
Then

By S maX{Ul(fl(ew),fz(eze))vw(fl(@w)aJ?Q(ele))}fw < o < pB.
0

21

By Fatou’s theorem the same inequality holds if we replace fj(z), j =1,2, with f;—(rz),
where r < 1 is sufficiently close to 1. Hence, @((z1,x2),U; x U, X1 x X2) < (3. Since 3
was arbitrary, we get the assertion. m

4.2. Product property of the Green functional. The main result of this part is
the following product property (cf. [8], [9]).

THEOREM 4.10. Let X; and X5 be complex manifolds. Assume that oy : X1 — {0,1}
and as : X9 — {0,1} are arbitrary functions. Then

ES§‘1®“2 (x1,22) = max{Eggl (acl),Esgz (x2)}, (21,22) € X1 x Xo.

For the proof of Theorem 4.10 we need some technical results. Let aq,...,a; € D and

let mq,...,my € N. Suppose that
m;
_ 10
—° H(l%) .

We put mult(B) = mq + ...+ my.

LEMMA 4.11. For any c € D,
B(z)—c¢
1—-¢B(z)

s a Blaschke product and mult B, = mult B.

B.(z) =

Proof. Since B, is a proper holomorphic function in D, B, is a finite Blaschke product

(see e.g. [38]). Note that
B.(z)+¢

14¢B.(2)
Hence, it suffices to show that mult(B.) > mult(B). Observe that B’(z) = 0 if and only
if B/(z) = 0. The equation B.(z) = —c has mult(B) solutions in D. Let

B(z) =
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The equation

has at least mult(B) solutions. Therefore, ¢ > mult(B). =

LEMMA 4.12. Let

_620H<1a] )

where the numbers a1, ...,ap; € D are different. In the above notation
b —
e'fe H ( iz ) +c
B(z) = Be(z)+c jo1 \L—bjz
- 1+eB(z) C_ ’

1 + ce'te H ( b; _Z )
. 1-— ij
j=1

where ¢ € D. Let

A
ewCH< J :Z>+c

= j=1 l—b-z L =
B(z) = ! / =e H I~ ).
0. _ el 1-a;z
1+47ce' H ( = ) =
1- b ¥

If the numbers 51, . ,Zg are sufficiently close to by,..., by, then the numbers ay,...,ap
are sufficiently close to aq,...,ay.
Proof. Note that the numbers ay, ..., a, are solutions of the equation B.(z) = —c. Put

¢ ‘
z) = el H(bj —2)+ cH(l —b;2).

Notice that P(a;) = ... = P(a¢) = 0. The polynomial P is of degree ¢ and has ¢ different
zeros. Then the polynomial

L 4 —
= H(gj —z) +CH(1 —Ejz) =0
j=1 j=1

has also £ zeros close to aq,...,ap for 51, . ,EZ sufficiently close to by,...,bs. m
The following result is a simple corollary of Proposition 2.4.

PROPOSITION 4.13. Let X and Y be complex manifolds and let F : X — Y be a holo-
morphic mapping. Assume that a:'Y — [0,00) is any function. Then

Es’g ol S E&'goF.
Moreover, if F is a holomorphic covering, then

Egg o F = Egeor.
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Proof of Theorem 4.10. Assume first that ¢y = 0. Then a3 ® as = 0, E&g‘l =0,
E8a1®a2 = 0 and, therefore,
3

E%H@az (z1,22) = max{Ego1 (z1), Bgo2 (22)},  (21,72) € X1 X Xo.

Hence, we may assume that aq, as # 0.

For the proof of the inequality “>”, consider the projections pr; : X7 x Xo — X7 and
pry ¢ X1 X X9 — Xy and use Proposition 4.13.

To prove “<”, fix (x1,z2) € X7 x Xa. Suppose that 8 € R is such that

maX{E%gq (1’1), Eggz (3]2)} < f.
It is sufficient to prove that
E§g1®0‘2(x17x2) < B.

By the definition there are holomorphic mappings f; : D — X; and fo : D — X, such
that fl(O) =T, fg(O) = T,

v n
Zlog|zj\ < B and Zlog lwj| < B,
=1 =1

where {z1,...,2,} C f; '(suppa1) and {wy,...,w,} C fy ' (suppaz), zj,w; # 0.
We may assume that f; and fo are such that v and p are minimal and that |z;| <
< z| and |wy] < .. < Jwyl.
Then

212 > Pz Y and  |wy...w,| > €Plw, M. 4.1
" w

For, if |21 ...2,| < €%|2,|” then we may consider the mapping f;(z,2), and we have a
contradiction with the minimality of v.

If |[21...2,] < |wi...w,|, we replace fi; with the mapping fi(z) = fi(tz), where
t=(lz1...2|/|wi...w,)"/Y. Then |z;/t| < 1, j =1,...,v, (use (4.1)) and

Z1 Zy
Hence, we may assume that
|21 2 = Jwy .. ow,| = C < €P.

Moreover, replacing fi(z) with fi(e=%2) and fy(2) with fo(e=%22), where 6,60y are
so chosen that eiz;...e"%z, = C and e2w;...e"%w, = C, we may assume that

2.z =wy..owy, = Cl
1;[<1’Z] )

We consider the Blaschke products

and
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We choose different w}, 1 < j < v, as close to w; as we want, such that 0 € {w},...,w,}.
Define
0T 2 WS
0 H
zZ) = 62 _—
) L] @z
]:1 J

Note that By '(—C) = {21, ..., 2y} We can find w}, ..., w/, such that G7*(—C) consists
of v different points z , 1 <7 < v, as close to z; as we want. Using Corollary 2.13,

let us replace the mapping f with f1 :D — X in such a way that fl( ) = f1(0) and
fl(zé) - fl(zj)a j=1..,v

Repeating this process for fo we may assume that for the Blaschke products By and
By the derivatives are equal to 0 neither on preimages of C' nor at the points z; or w;
respectively.

Let A be the union of the images of the singular points under the mappings B
and Bs. Note that neither 0 nor C' are in A. Let m be a holomorphic universal covering
of D\ A by D with 7(0) = C. There are liftings 11 and ¥9 mapping D into D such that
7T = By o = Byoy and ¥1(0) = 12(0) = 0. If 7=2(0) = {n1,7m2,...}, then f; oy and
f2 012 map 0 into z; and 23, and all points 7; into supp a; and supp o respectively.

By Theorem 4.2 we see that m is a Blaschke product. Thus

s N _
z)—]l;[lml 7z and ‘Hm‘ 7( =C <é’.

Since (f1 0 91, fo 01p2) maps D into X7 x Xa,

Egar0a; (z1,72) Zlog\ml <p =

Jj=1

5. Applications

5.1. The relative extremal function. Let us start with the following simple result.

PROPOSITION 5.1. Let X be a complex manifold and let ¢ : X — [—00,00) be an upper
semicontinuous function. Then

vy () :=sup{u(z) :uw € PSH(X), u < ¢}, zeX,
18 a plurisubharmonic function on X.

Proof. Note that v, < ¢ and, therefore, vy, < ¢* = . It is well known that v7 is a

plurisubharmonic function on X (cf. [20]). Hence, v, < v,. =
As an immediate corollary we get

COROLLARY 5.2. Let X be a complex manifold and let U C X be an open set. Then
w* (-, U, X)=w(-,U,X) € PSH(X).

Now, let us give the formula for the relative extremal function w(-, E, X), where E
and X are concentric balls with respect to a norm in C™.
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PROPOSITION 5.3 (cf. [20], Lemma 4.5.8). Let g : C* — [0,00) be such that q(tz) =
[t|g(x) for any t € C and x € C™. Then for any R,r with R > r > 0 we have

og q(z) } log+ q(z)

=——" —1, € ByR), (5.1)

w(x, Bg(r), B¢(R)) < max{l log I

R
log§ ’
where By(p) = {x € C": q(x) < ¢}, 0 > 0. Moreover, if logq € PSH(C"), then in (5.1)
we have equality.
Proof. Fix an xg € C". If q(x¢) < r, then xy € By(r). Therefore,
w(o, Bq(r), Be(R)) = —1.
Assume that q(xg) € (r, R). The function

(two)
R
log =
is subharmonic in the annulus A = D(R/q(z0)) \ D(r/q(x0)) (3*). Moreover,

limsupu(t) <0, se€dA.
Adt—s

u(t) = w(tzo, By(r), Be(R)) —

By the maximum principle for subharmonic functions v < 0 in A.
If log ¢ € PSH(C™), then from the definition of the relative extremal function we have
the inequality “>” in (5.1) and the result follows. m

THEOREM 5.4 (cf. [29]). Let X be a complex manifold and let E C X be any subset.
Then
w(z, B, X) =sup{w(z,U,X) : ECU open}, x¢€X.

In particular, if E is compact, then for any neighborhood basis Uy D Uy D ... of E we

have
w(z, B, X)= lim w(z,U;,X), zelX.
j—o0

Proof. Let u € PSH™ (X) be such that « < —1 on E. Fix an ¢ € (0,1). Then U, = {z €
X :u < =1+ ¢} is an open subset of X such that F C U.. Hence,
u
1——8 < (JJ('7 UE,X).
Therefore,
u(z) < (1 —¢)sup{w(z,U,X): ECUopen}, =z€X.
Taking € — 0, we obtain the required result. m

Using Corollary 1.14 and Theorem 4.1 we obtain the following product property for
the relative extremal function.

THEOREM 5.5. Let X; and Xo be compler manifolds of class P and let E, C X,
E5 C X5 be open or compact subsets. Then

(52) w((xl,mg),El X EQ,Xl X XQ) = max{w(xl,El,Xl),w(a:Q,Eg,Xg)},
(l’l,xg) S X1 X X2.
Proof. Using Theorem 5.4 we may pass from the open subsets to the subsets E;, j =1,2. m

(*%) Recall that w(-, B,(r), B4(R)) € PSH(B,(R)).
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5.2. Plurisubharmonic measure. Recall that for a complex manifold X and a subset
E of X, by the plurisubharmonic measure of E relative to X we mean w*(-, E, X). Here,
u*(z) = limsup,_,, u(y) is the upper semicontinuous regularization of a function u : X —
[—00, 00) locally bounded from above. Recall also that w*(-, E/, X) is a plurisubharmonic
function on X.

Then we have the following counterpart of Theorem 5.4 for the plurisubharmonic
measure.

PROPOSITION 5.6. Let X be a separable complex manifold and let E be any subset of
X. Then there exist open subsets Uj, j = 1,2,..., such that E C U;, Ujy1 C U;, and

w(z, B, X) = (lim w(z,U;, X))", zelX.
J—00

Proof. By Choquet’s lemma (%) there is a family of plurisubharmonic functions {v; }2,
C PSH(X) such that vy <0on X, v < —1lon E, and w*(-, E, X) = (sup vg)*. Take u; =
supg<; vk Then w*(, B, X) = (lim; . u;)*. Put U; := {z € X 1 uj(z) < -1+ 1/j}. =

For bounded domains in C™ we also have the following very useful result.

PROPOSITION 5.7 (cf. [1]). Let £2 be a bounded domain in C" and let E be any subset
of 2. Put E.:={x € Q2:w*(z,E,2) < —1+¢} (*), where ¢ € (0,1). Then
W*('7Ea “Q)
1-¢
Therefore, w(-, Ee, X) / w*(-, E, 2) as € \, 0.

Proof. Put N := {z € 2: w(z, B, 2) < w*(z,E,2)} and E := E\ N. It is well known
(see e.g. Theorem 4.7.6 in [20]) that N is a pluripolar set, i.e. there exists a negative
plurisubharmonic function v € PSH({2), v # —o0, such that N' C {z € 2 : v(z) = —o0}.

Let us show that w*(-, F, 2) = w*(-, E, 2). Since EC E, it follows that w*(-, E, 2) <
w*(-, E, 02).

Take an ¢ > 0 and u € PSH(£2) such that v < —1 on E and v < 0 on 2. Then
u = u+ev € PSH({2) is such that w < —1 on F and @ < 0 on (2. Hence, u <
w(-, B, 2) < w*(-,E,2). So, w*(-,E, Q) +cv < w*(-,E,2) on 2. Take ¢ — 0. Then
w*( E, Q) < w(,E,2) on 2\ {z € 2:v(x) = —oo} and w*(-, E, Q) < w*(-, E, 2)
on £2 (39).

Note that

< W('aEe, .Q) < w*(-,E, .Q) on 2.

w2, E,02) =w (2, B, Q) =w(z,E,Q) = -1, z¢ck.
Therefore, EcC E. and
w*(-,E, Q) =w*(-,E, 2) > w(-, B, Q).

(3") CHOQUET’S LEMMA (cf. Lemma 2.3.4 in [20]). Let X be a separable metric space and let
{uataca be a family of real-valued functions on X. Suppose that this family is locally bounded
Jrom above. Then there exists a countable subset B of A such that (Sup,e 4 ta)” = (Supgep up)”-

(®®) Note that E. is an open set.

(36) Use Theorem 2.9.2, Corollary 2.9.8, Corollary 2.9.10 of [20].
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Put u(x) := w*(-, E,02)/(1 —¢), x € 2. Note that u is a plurisubharmonic function
such that u <0 on 2 and u < —1 on E.. Hence, u < w(-, E;,2) on 2. m

For the plurisubharmonic measure we have the following product property.

THEOREM 5.8. Let {21 C C™, 25 C C™ be bounded domains and let By C 21, Ey C {2
be any subsets. Then

w (21, 22), BE1xEa, 1 X)) =max{w" (z1, E1, 1), w* (2, F2, {22)},  (x1,22) € 21 X (2s.
For the proof we need the following.

LEMMA 5.9. Let X1, Xo be complex manifolds and let By C X1, Es C Xo be any subsets.
Then

(53) max{w(xl,El,Xl),w(x2,E2,Xg)} S w((ml,x2),E1 X E27X1 X XQ)
< —w(wy, By, X)w(wo, By, Xo) < —w™ (21, By, X1)w™ (22, B2, X3)
for any (x1,22) € X1 x Xo.

Proof. Note that the first inequality is trivial. Let us show the second inequality. Fix
u € PSH(X; x X3) such that v < 0 on X; x Xo, u < —1 on E; x E,. Note that

u(+,29) Sw(s, B, X1) =w(, B, X1) - [~w(ze, B2, X5)], 2 € Es,
u(zy, - ) <w(s, B, Xo) = w(+, Eq, Xo) - [~w(z1, E1,X1)], 1 € Ej.
So,
u(zy, 22) < —w(z1, B1, X1)w(ze, B2, X2), (z1,22) € (E1 X X2) U (X1 x E»).
Fix z; € Ey. If w(zy, B, X1) =0, then
u(zy, e) < 0=—w(xy, B, X1)w(xe, By, X2), x5 € Xo.

Hence, we may assume that w(zy, E1, X1) # 0. Put v(z) := u(zy,2)/(—w(z1, E1, X1)),
z € X. Note that v € PSH(X3), v < 0. Moreover, v < —1 on Fs. So, v < w(+, By, X»)
on Xs. m

Proof of Theorem 5.8. Fix an € € (0,1). Then by (5.3),
w((x1,29), By X By, 21 X 25) < —(1—¢)?  on (Ey). x (Ey)..
So,
W ((z1,29), By X Eg, 21 x 25) < —(1—¢)*  on (E}). x (Ey)..
It follows that on (21 x {25,
w* (-, By X Eq, {21 X {29)
(1—-¢)?

<w(-, (Br)e X (Ea)e, $21 x (25) < w* (-, B1 X Ea, {1 X {2).

Therefore,
w*((a:l,xg),El X E27.Ql X QQ)
= lim w((l‘l,l’g), (El)s X (Eg)s, 91 X 92)

e—0

= g-l_{r(l) maX{W(xl, (El)sa Ql),(,&)(xQ, (EQ)Ev 02)}

= max{w*(xl,El, Ql),w*(x27E2, 92)}7 (331,332) (S Ql X 92. ]
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Theorem 5.8 for pseudoconvex domains {21, {25 was proved in [32]. The general case
is stated in [12]. The proof can be found in Blocki [1].

5.3. The pluricomplex Green function. For the pluricomplex Green function with
pole function a: we have the following equivalent definition.

PROPOSITION 5.10. Let X be a complex manifold and let o be a non-negative function
on X. Then
gx () = supfu(z) :u € PSH(X), u < inf a(p)gx ()}

and, therefore, gx (-, a) is a plurisubharmonic function on X.

Proof. Put ¢(z) := infyex a(p)gx(z,p) and v(z) := sup{u(z) : v € PSH(X),u < ¢},
p,x € X. Note that ¢ is an upper semicontinuous function on X and, therefore, v €
PSH(X). It suffices to show that gx(-,«) =v on X.

Let u € PSH(X), u < ¢ on X. Fix p € X. Then u < «a(p)gx(-,p) and, therefore,
v(p,u) > a(p). Hence, v(-,u) > a. So, u < gx (-, a) and, therefore, v < gx (-, ).

Assume that v € PSH(X), v <0 on X, and v(-,u) > a. Fix p € X. Then v(p,u) >
a(p) and, therefore, u < a(p)gx(-,p) on X. So, u < ¢ on X. Hence, u < v and, therefore,
gx(a)<wv. =

In this section we show that the pluricomplex Green function may be considered as
an infinitesimal version of the relative extremal function. More precisely, we have the
following (cf. [10]).

THEOREM 5.11. Let X be a complex manifold and let o : X — [0,00) be any function.
Assume that {(Uy, () }aex, @8 a family of local coordinates such that ¢, (U,) = P(1) and
Cz(x) =0. Then

(= logr)w(z, P(r,a), X) \, gx(z,q),

r—0
where
= J ¢'PE W), re(o,1).
yeX
Proof. Note that the case a = 0 is trivial. Hence, we may assume that a #Z 0. The proof
will be divided into 3 steps.

STEP 1. We show that for any r € (0,1) we have

(—logr)w(z, P(r,a), X) > gx(z, ).

Put
gx (1‘7 a)

u(z) = logr

Note that u is a negative plurisubharmonic function on X. Take x € PB(r, ). Choose
y € X such that x € ¢, ' (P(r'/*¥))) C U,. Then

u(a) < 90 @ @:0@) _ gp) (6@ (00@) _ ozl )

log |6y (=)l _
—logr —logr -

—logr
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Here, we use the formula (cf. [20])
gp) (@, (0,v)) = viog|lzl, e P(1).
Hence, we have the required inequality.
STEP 2. We show that
up(z) = (= logr)w(z, P(r,a), X), x€X,

is an increasing sequence of functions with respect to r € (0, 1).
Fix r < p < 1. Put

e X.

u(x) :== ur(z) ,
—logo
Note that u is a negative plurisubharmonic function on X. It suffices to show that u < —1
on P(op, ). Take x € P(r, ). Choose y € X such that = € Cy_l(P(rl/a(y))) C Uy. Then
(~log e, G '[P *®)), Uy)] _
—logo -

u(z) < -1

Here, we use Proposition 5.3.
STEP 3. Put
u(x) == }LH%(_ logr)w(z, P(r,a), X), =ze€X.
Fix y € X. It suffices to show that
u(z) < a(y)logl¢y(x)]|  for any = € U,

Note that u is a negative plurisubharmonic function. Fix z € U, \ {y} and take
7 < [I¢y(2)|*). Then

u(w) < (~log (e, B(r,0), X) < (~logr)u(e, G [Pratm )], 1)
= (~togr) WBISON _ )1 g, ).

—logr
Hence, u(-) < gx(,a). =

Using the method from [10], as a corollary of Theorem 5.11 we have the product
property of the pluricomplex Green function.

THEOREM 5.12. Let Xy and X5 be complex manifolds. Assume that for any open subsets
E1 C X1 and Ey C Xy we have the following product property:

w((z1,22), F1 X B9, X1 x Xo) = max{w(x1, F1, X1),w(x2, By, X2)}, (x1,22) € X1 x Xo.
Then for arbitrary functions a1 : X1 — {0,1} and as : Xo — {0,1} we have
gX1><X2((x17x2)7a1 ® a2) = max{gxl (xlaal)ngz(Z'QaOQ)}v (xlva) € X1 x Xo.

Proof. Suppose that {(Ujs,(jz)}zex, is a local coordinate centered at x such that
er(ij) = P(]-) and ij(x) = Oa J = ]-7 2. Then (Ulzl X UQIQ,Clzl X CQrg)a (’121,332) € Xl X
Xo, is a local coordinate centered at (x1,x2) such that (1., X Cog, (Ure, X Uss,) = P(1).
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Then
9x, x> (21, 72), 01 @ az) = }iﬂ%(* logr)w((z1,72), P(r, a1 ® az), X1 X Xa)
= ,,1.11%(_ IOgT)W((QZ17x2),q3(T, 041) X m(rv aQ)le X X2)

= }ii%(— log ) max{w(z1, P(r, 1), X1), w(ze, P(r, az), X2)}

= maX{gXl (5517061),9)(2(1‘2,0(2)}7 (x17x2) < Xl X XQ. n

As a corollary we get

COROLLARY 5.13. Let X7 and X5 be complex manifolds of class P. Assume that oy
X1 —{0,1} and oz : X9 — {0,1} are arbitrary functions. Then

9X1><X2((x17x2)7a1 0 0&2) = max{g)ﬁ (xlaal)ang(ana2)}7 (Il,l‘g) € X1 x Xa.

5.4. Polynomial hulls. Let K be a compact set in C™. The polynomial hull K of K
is defined as follows:

K= {z € C" : |p(x)| < ||p||k for any polynomial p : C* — C}.

We say that 2 C C™ is a Runge domain if for any compact set K C {2 we have Kcn.
For a Runge domain 2 C C" we have K = KO = KPSH?) (gee e.g. [24]), where

KPSHI?) — {2 € 2 u(z) < supu for any u € PSH(£2)}.
K

We have the following characterization of the polynomial hull.

THEOREM 5.14 (cf. Theorem 7.1 in [35], Theorem 7.4 in [25]). Let K be a compact set
in C™ and let xq € C™. Then the following conditions are equivalent:

(a) 2o € K;

(b) there exists a Runge domain §2 in C™ such that for any neighborhood U of K we
have w(xzo,U, 2) = —1;

(c) there exists a Runge domain 2 in C™ such that for any neighborhood U of K and
any € > 0 there exists an f € O(D, 2) such that f(0) =z and o(T N f~H(U)) > 21 —¢.

Proof. (a)=-(b). Take an open ball B containing K and z(. Suppose that xy € K. Then
zo € KPSH(B) Let U be a neighborhood of K in B and let ¢ = —yy. Then u = Ege is
a plurisubharmonic function in B. We have u = —1 on U. Hence, u(xg) = —1.

(b)=(c). Follows immediately from the definition of the envelope of a disc functional.
(¢)=(a). Let p be a polynomial. Then

1 1
(@) < 5 §lpo fldo < suplp| + —o(T\ f71(U))sup |P|.
7T’]I‘ U 2T (9]

Take U \, K and € — 0. Then |p(z)| < ||p||x- =

A more refined characterization of the polynomial hull of a compact set in C™ can be
found in [35].
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6. Concluding remarks

6.1. Envelope of disc functionals. For someone who works in the part of complex
analysis which is connected with pluripotential theory, the definition of envelope of a disc
functional is very natural. But one can give other possible definitions. From the point
of view of interpolation theory, probably, it would be natural to consider more general
types of envelopes. Namely, let X be a complex manifold and let H : O(D, X) — R be a
disc functional. Take different points z1, ..., 2, € D and points z1,...,z, € X and put

Eg(z1,...,7¢) = inf{H(f): f € O(D, X), f(z1) = x1,..., f(2) = 24}

6.2. Complex manifolds. As mentioned in the Introduction, it is still an open prob-
lem whether the envelope of the Poisson functional is plurisubharmonic on any complex
manifold.

Peter Pflug noted that any complex manifold of class P (and therefore, of class P)
has a countable basis. It is known that there exists a simply connected two-dimensional
complex manifold M which has no countable basis (cf. [2]). So, the complex manifold M
does not belong to the class P.

Proposition 2.3 shows a possible extension of the class ﬁ, so as to include complex
manifolds with non-countable base.

6.3. The Poisson functional on domains in C”. Dealing with general complex
manifolds, we introduced the notion of the integrally upper semicontinuous function.
Analyzing the proof of Theorem 3.5 more carefully one can show that for domains in C”
it suffices to assume only weak integral upper semicontinuity. More precisely, we have the
following interesting result.

THEOREM 6.1. Let 2 be a domain in C™. Assume that

(a) ¢ : 2 — [—00,00) is a weakly integrally upper semicontinuous function locally
bounded from above or
(b) ¢ is a superharmonic function on {2, v % oo.

Then Ege is a plurisubharmonic function on 2.

6.4. Holomorphically invariant pseudodistances. Lempert’s theorem. In this
section we present some results and definitions from the theory of holomorphically in-
variant families. As we shall see many properties of analytic disc functions are motivated
by the properties of holomorphically invariant families. This is the main point of this
section.

Let us start with the following basic result.

THEOREM 6.2 (Schwarz—Pick Lemma). Let f € O(D,D). Then

p(f(21), f(22)) < p(21,22), 21,22 €D,
where p := tanh™'(m) is the Poincaré distance and m(z,w) := |(z —w)/(1 — wWz)| is
the Mdébius distance. Moreover, if equality holds for some z1 # za, then it holds for all
21,29 € D.
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There are many ways of extending the above result to higher dimensions.
In 1927 Carathéodory [3] defined for any domain (2 in C™ the function

CQ(m7y) = sup{p(f(x), f(y)) : f € O(Q’D)}r T,y € §2.

We call ¢, the Carathéodory pseudodistance of §2. It is not difficult to see that it is really
a pseudodistance (37).

Note that ¢p = p and cqo,(F(x), F(y)) < cqo,(x,y) for any domains 2y C C™,
25 C C™, any holomorphic mapping F' : {2 — (25, and any points x,y € {2;. More on
the Carathéodory pseudodistance can be found in [17].

In 1967 S. Kobayashi [21] (see also [22]) defined the following pseudodistance:

N
ko(z,y) == inf{zgg(xj,l,xj) :N>1,z=x9,%1,...,ZN_1, N =Y € Q},
=1

where
ko(z,y) = inf{p(z,w) : there is f € O(D, 2) with f(z) =z, f(w)= y}, x,y € L.

We call kg the Kobayashi pseudodistance and E_Q the Lempert function of {2. One can
see that in a general domain {2 the Lempert function %Q is not a pseudodistance (i.e. it
does not satisfy the triangle inequality; see e.g. [17]).

From the Schwarz—Pick Lemma and from the definition it follows immediately that
kD = ED =D and

ko, (F(2), F(y) < ko, (2,9), ko, (F(x), F(y)) < ko, (z,y)

for any domains 2; C C™, {25 C C™2, any holomorphic mapping F' : {2 — {2 and any
points x,y € (2.

From these considerations we come to the definition of the (holomorphically) con-
tractible family of functions.

We say that d := (dn)0a domain incr, Where dg @ 2 X 2 — [0,00), is a (holomorphi-
cally) contractible family of functions if

dp = p,
do,(F(z), F(y)) <dg,(z,y) for any F'€ O(£21,§%),z,y € (1.

It is immediate from the definition that for a biholomorphic mapping F : 21 — (25 we
have the equality dg, (F(z), F(y)) = do,(x,y), z,y € 1.

As we have seen, the Carathéodory and Kobayashi pseudodistances, and the Lempert
function form holomorphically contractible families of functions.

In view of the Schwarz—Pick Lemma, the Carathéodory pseudodistance is the smallest
and the Lempert function is the largest among all holomorphically contractible families of

(37) Recall that d : 2 x 2 — [0,00) is a pseudodistance on §2 if it satisfies the following
conditions:
(i) d(z,z) =0, x € 12,
(ii) d is symmetric (i.e., d(z,y) = d(y,x), z,y € 2),
(iii) d satisfies the triangle inequality (i.e., d(z,y) < d(z,z) + d(z,y), z,y,z € 2).
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functions. Therefore, for any holomorphically contractible family of functions (do)occn
we have
co <do <ko.

Moreover, if dy, is a pseudodistance then d, < kg,.
We have the following properties of the pluricomplex Green function ([20], [17]):

(i) gp(z, w) = logm(z,y), z,w € D;

(ii) for any holomorphic mapping F' : {21 — (25, where £2; is a domain in C", j = 1,2,
we have

gQQ(F(aj)’F(y)) Sgﬂl(xay)a T,y € .

In other words, the family (gn)gn is a contractible family of functions, where g, :=
tanh ™! (e92).

In 1981 L. Lempert [28] proved the following deep result (see also [17]).
THEOREM 6.3 (Lempert theorem). Let {2 be a conver domain in C™. Then

Ccn = E_Q.

We see from the Lempert theorem that on convex domains any holomorphically con-

tractible family of functions may be defined in a unique way.

Using automorphisms of the unit disc, it is elementary to show that for the Carathéo-
dory pseudodistance we have

co(z,y) =sup{|f(y)| : f € O(2,D), f(z) =0}, x,y€eL
where cf, := tanh cp. We know that c, is the smallest holomorphically invariant function
on f2. Trying to make it “larger” we have to consider the supremum above over a larger
family of functions. It is well known that log | f| is plurisubharmonic for any holomorphic
function f. So, from this point of view we come immediately to the definition of the
pluricomplex Green function gg, given by M. Klimek.

Using again automorphisms of the unit disc, it is not difficult to see that

kb (z,y) = inf{t > 0 : there is f € O(D, 2) with f(0) =z,tc f*(y)}, x,y¢€ 2,
where E?z := tanh k.

We also know that EQ is the largest holomorphically invariant function on §2. Trying
to make it “smaller” it seems reasonable to take all the preimages of y in the above
definition.

In 1989 (38) E. Poletsky [36] defined the following function. Let {2 be a domain in C"
and let p be a point in (2. Define

go(ep)=inf{ > ord.(f)loglz|: f € OD, ), f(0) = z}.
z€f~1(p)
We see that g = Ega, where supp a = {p} and a(p) = 1. In a series of papers E. Poletsky
([36], [34], [35]) claimed the equality

g2 = go- (6.1)

(%) In 1989 the English translation of the book appeared. The Russian version was published
in 1986.
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Note that the equality go = gy is equivalent to the plurisubharmonicity of gg,. It seems
that the first complete proof of (6.1) was given in 1997 by the author [7].

The equality (6.1) may be considered as a generalization of the Lempert theorem to
all domains in C”.

We say that a family of holomorphically contractible functions d has the product
property if for any domains (21, 25 and for any points (z1, Z2), (y1,y2) € 21 X £22 we have

dQ1 X §25 (($1, IQ)) (yh y2)> = maX{dQl (Cll‘l, y1)7 sz (1‘27 y2)} (62>
It follows from the contractibility that the inequality “>” in (6.2) is always fulfilled.
One can show that the Lempert function, the Kobayashi and Carathéodory pseu-
dodistances have the product property (see [17], [19]). The proof of the product property
of the pluricomplex Green function for arbitrary domains, given by the author [8], is
similar in spirit to the proof of the product property of the Lempert function.
Recall also that all the contractible families of functions discussed above are contin-
uous with respect to increasing sequences of domains (see [17]). More precisely, for any
sequence of domains {§2;}52; C C", 2; C 2;41, 2 = U]Oil 2; we have (see e.g. [17])

do, —dg asj— oo,

where d = ¢, g, k or k. So, we see that the invariant functions considered behave like disc
functionals with respect to increasing sequences of domains (Theorem 2.1):



List of symbols

:= the field of complex numbers;

:= the field of real numbers;

= [—o0, );

:= the set of natural numbers (0 € N);

Dy :={z€C:|z| <71}, >0

D := Dy the unit disc in C;

D. := D\ {0};

T := the unit circle in C;

o := the arc length measure on the unit circle T;
Xy := the characteristic function of a set U;

Izl := \/|z1)2 + ... + |2nl?, . = (21,...,2n) € C";

Bn(z,r) :=={y € C" : ||y — z|| < r} = the Euclidean ball with center x € C" and radius r > 0;

C
R
R
N

B, := By (0,1);

|| := max{|z1],--.-,|2n|}, z = (21,...,2n) € C™;
Plx,r):={yeC":|ly—xz| <r}, r>0;

P(r) := P(0,r);

£ := the Lebesgue measure in C";

by, = L:Z”(Bn);

(a1 ® a2)(x1,22) := a1(z1)az(z2).

O(X,Y) := the set of all holomorphic mappings F : X — Y

O(X) := O(X,C);

(9(]]_]), X) := the set of all holomorphic mappings f : D — X which extend holomorphically to a
neighborhood of the closure D of D;

Awu:= the generalized Laplacian of a subharmonic function u;

PSH(X) := the set of all plurisubharmonic functions on X;

PSH™ (X) := the set of all negative plurisubharmonic functions on X;

gx (-, ) := the pluricomplex Green function on X with pole function «;
Py(x) := sup{u(z) : v € U}, € X, where Y C PSH(X);

u* := the upper semicontinuous regularization of u;

w(+, B, X) := the relative extremal function of a subset £ C X;;

w*(+, E, X) := the plurisubharmonic measure of a subset £ C X;

w(+,U, X) := the special case of the Poisson functional for an open subset U of a complex
manifold X;

9x (+,p) := the pluricomplex Green function with pole at p € X;

g9x (z; (p1,v1),...,(pN,VN)) := the pluricomplex Green function with poles at p1,...,py € X

and of weights v1,...,vn € (0,00), p; # pj, @ # j;

PB(r,a) = UyeX Cy_l [P(r'/*W))], where r € (0,1), {(Us, Cz) }ocx is a family of local coordinates
on a complex manifold X such that (;(z) = 0 and (. (Uz) = P(1);

£l := sup{|f(z)| : « € K}, where f: K — C;

(53]
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K := {z € C" : |p(z)| < ||p||x for any holomorphic polynomial p : C* — C} the polynomial
hull of a compact set K C C™;

KOX) .= {z € X :|f(z)| < ||fllk for any f € O(X)} the holomorphic hull of a compact set
K C X,

Eyr(x) := the envelope of a disc functional H;

§1 := the Poisson functional;

F2 := the Riesz functional;

§3 := the Green functional;

F4 := the Lelong functional;

5 := the Lempert functional;

ord; (f) := the multiplicity of a holomorphic mapping f : D— X at z € D

ICT(X ) := the class of integrally upper semicontinuous functions on a complex manifold X.
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