1. Introduction

The aim of this paper is to present the main results concerning free boundary problems for
nonstationary Navier—Stokes equations. We review free boundary problems for equations
of motion of both incompressible and compressible viscous fluids. The equations which
we consider here are derived and described for example by L. Landau and E. Lifschitz
[LanLif] or by J. Serrin [Ser].

A free boundary problem for equations describing the motion of a viscous fluid can
be formulated as follows: find a domain £2; C R™ (n = 2,3) with boundary S; = S; U So;
(S1 is a fixed part of S; independent of time t; So; is a free part of S;) as well as a
velocity vector field v = v(z,t) and pressure p = p(z,t) in the case of an incompressible
fluid (or a velocity v = v(z,t), density 0 = o(x,t) and temperature § = 6(z,t) in the
case of a compressible fluid), satisfying for x € 2;, t € (0,T), T > 0, the Navier-Stokes
system (or the compressible Navier—Stokes system) with the initial conditions 2;|;—¢ = (2,
V|t=0 = vp in 2 (additionally g|i=g = 00, 0|t=0 = 6o for the compressible fluid), the
Dirichlet boundary condition for v (and for  in the compressible heat-conducting case)
on S; X (0,7) and the Neumann type condition for the stress tensor (and for 6 in the
compressible heat-conducting case) on ;¢ 1) S2¢ x {t}-

Thus, in the most general case of a compressible viscous heat-conducting fluid the
equations under consideration are as follows:

(1.1) o[ve + (v - V)v] — div T(v, p) = of in Q7
(1.2) ot +div(pv) =0 in 7T,
(1.3) 0¢y (0 + v - V) — div(s0)
3
. [
+ Opg divo — B 4;1(1%%. + vj$i)2
— (v — p)(divew)? = or, in 27,

where T > 0, 2T = Useo,r) 26 x {t}, £2: C R™ is an unknown domain at time ¢ with
boundary S; = S1 U So; T = T(v,p) is the stress tensor given by

T(v,p) = {—pdij + 1(Viz; + Vjz,) + (v — ) divods; i j=1,... n-

Moreover, f = f(,t) is the force per unit mass, acting on the fluid; r = r(x, ) denotes
the heat sources per unit mass; p = p(p,0) is the pressure, s = (p,0) the coefficient
of heat conductivity, ¢, = ¢,(0,8) the specific heat at constant volume; v = v(p, 6) and
u = p(p,0) are the viscosity coefficients.

The functions s, ¢,, v, i are positive and v > (1/3)p.

(5]
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Equations (1.1)—(1.3) correspond to the conservation laws of: momentum, mass and
energy, respectively.
We complete equations (1.1)—(1.3) with the following initial conditions:

(1.4) Qilt=0 = £2,  Stlt=0 =S,
(1.5) V=0 =vp in £2,
(1.6) oli=o =00 in £,
(1.7) Oli=o =6y in 2.

We also complete system (1.1)—(1.3) with boundary conditions which differ in depen-
dence on the geometry of the domain (2; and its boundary S;. We consider in this paper
two kinds of free boundary problems with respect to the geometry of the domain (2;.

Problem I

This is the problem of describing the motion of an isolated mass of a viscous fluid bounded
by a free boundary. In this case 2, C R™ (n = 2,3) is a bounded domain with boundary
St - SQt (Sl - @)

We can imagine that such an isolated mass of a fluid can be for example a drop of a
liquid or a gas star. Therefore in what follows such problems will be called drop problems
for simplicity.

For a drop problem the following boundary conditions are assumed:

(1.8) T —oHn = —pon on ST = Useo,7) St x {t},
(1.9) v = —|$;| on ST,
(1.10) %2—9 =9 on ST
n
or
(1.10") %2—9 = 54(0, —0) on ST,
n

where 7 is the unit outward vector normal to S;; o is the constant coefficient of surface
tension; pg = po(x,t) is the external pressure; § = 6(x,t) the heat flow per unit surface;
», the coeflicient of outer heat conductivity; 6, the atmospheric temperature; ¢(z,t) =0
describes the boundary S;. In the two-dimensional case H denotes the curvature of S,
and if n = 3, H is the double mean curvature of S; expressed by

Hn = Ast (t)l‘,

where Ag, (t) is the Laplace-Beltrami operator on S;.

Two cases of boundary conditions (1.8) can be taken into account: with o > 0 and
with ¢ = 0. If 0 > 0 we say that the free boundary is governed by surface tension. In the
absence of surface tension, that is, if o = 0, condition (1.8) takes the form

(1.11) T = —po on ST.

Condition (1.9) is called the kinematic boundary condition. It means that the fluid par-
ticles do not cross the free boundary.
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In drop problems it is usually assumed that

(1.12) f=f+kVU,
where f = f(z,t) denotes the external force field per unit mass; k is the constant coeffi-
cient of gravitation, and U(x,t) = o, féyf’;)l dy is the self-gravitational potential.

The second term on the right-hand side of (1.12) is called the self-gravitational force. In
the case when it is taken into account, that is, in the case of & > 0, equations (1.1)—(1.10)
describe the motion of a viscous compressible heat-conducting, self-gravitating fluid.

The existence and stability results for Problem I are discussed in Sections 4 and 5.

Problem IT

This is the surface waves problem, i.e. the problem of describing the motion of a fluid
occupying a semifinite domain in R™ (n = 2, 3) bounded above by a free surface Ss; and
below by the fixed part of the boundary S, that is, by S7. In this case the domain (2; is
defined as follows:

O ={r= (2" 2,) ER" : 2/ e R" ', ~b(2)) < 2, < F(2',1)},

where b is a given function, and F' is an unknown function.
Its free boundary part is given by

Sor ={x = (2/,2,) ER": 2’ € R"} 2, = F(2/, 1)},
and the fixed part of the boundary is defined by
Si={reR": 2’ eR" ! 2, = bz}

Therefore, initial condition (1.4) takes the form

(1.13) Fli—o = Fo(2'), 2’ €¢R%
For a surface waves problem the following boundary conditions are assumed:
(1.14) TR — o HR = —po7i on 87 = U,e o) S2e < {t},
F -
(1.15) VM= ———t " on ST
V1+|VLF?

a9 - ~
(1.16) oo = 0 on ST,
or

00 ~
(1.16") Ko = 24(0q — 0) on ST,
(1.17) v=0 on S1 x (0,7),
(1.18) 0=20, on S1 x (0,7),

where 7 is the unit outward vector normal to S; in (1.14), ¢ > 0 or o = 0; 6, is the
temperature at Sy, V2, = V,; (1.15) is the kinematic condition in this case.

Moreover, in surface waves problems it is usually assumed that

(1.19) f=1-ges,
where f = f(z,t) is an external force field per unit mass, g denotes the acceleration of
gravity and ez = (0,0, 1).
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Thus, the second term on the right-hand side of (1.19) is the gravity.
The results concerning Problem II are presented in Section 6.

Apart from Problems I and II which are formulated in two- or three-dimensional cases,
one-dimensional free boundary problems can be studied for equations (1.1)—(1.3). In the
one-dimensional case the unknown domain {2; has one of the following forms:

Qy={reR:0<xz<y®t)} oo ={zeR:y() <z<y(t)},

where y(¢), y1(t) and yo(¢) are unknown functions. System (1.1)—(1.3) is then considered
together with initial conditions (1.4)—(1.7) and with boundary conditions (1.11), (1.9),
(1.10) or (1.17)~(1.18) and (1.9)—(1.11).

System (1.1)—(1.3) with initial and boundary conditions (1.4)—(1.10) in the case of
the drop problem or (1.5)—(1.7), (1.13)—(1.18) in the case of the surface waves problem
describes the motion of a general viscous compressible heat-conducting fluid. In the paper
we will consider some special cases of system (1.1)—(1.3).

1. Barotropic compressible fluid. This is a fluid with the state equation p = p(p). The
free boundary problem for such a fluid is described by equations (1.1)—(1.2) (where the
viscosity coefficients v and p depend only on p) with conditions (1.4)—(1.6), (1.8)—(1.9)
or (1.5)-(1.6), (1.13)~(1.15), (1.17).

The free boundary one-dimensional problem for such a fluid can also be examined.

2. Incompressible fluid. Assuming that ¢ = const (let for simplicity ¢ = 1) equations
(1.1)—(1.2) take the form of the classical Navier-Stokes equations

(1.20) v+ (v- Vo —vAv+Vp=f in 07,
(1.21) dive =0 in 27,

where p = p(z,t).
The incompressibility of the fluid is expressed by equation (1.21) which yields the
conservation of the measure of the domain (2, i.e.

(1.22) 12 =102| fort € (0,T).

From (1.22) it follows that incompressible free boundary problems can only be studied if
2, CR™ with n > 2.

Problem I for an incompressible fluid takes the form of system (1.20)-(1.21) with

initial conditions (1.4)—(1.5) and boundary conditions (1.8)—(1.9), where
T(v,p) = {Tij}ij=1,..... = {—P0ij + V(Vie; + Vju;) }ij=1,...n-

Existence, stability and asymptotic behaviour results for incompressible Problem I
are presented in Section 4.

One can also consider boundary condition (1.8) with the surface tension o depending
on the temperature. Such a problem is described in Subsection 4.1.3.

Incompressible Problem II consists of equations (1.20)—(1.21) together with initial con-
ditions (1.5), (1.13) and with boundary conditions (1.14)—(1.15), (1.17). The main results
concerning an incompressible surface waves problem are discussed in Subsection 6.1.

First results for free boundary problems presented above were local existence theo-
rems. The first local existence theorem was published in 1977 by V. A. Solonnikov [Sol4].
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This result concerned Problem I. A local existence theorem for Problem II was first proved
in 1980 by J. T. Beale [B1].

The following years brought other local existence theorems for equations of motion
of incompressible fluids. These results can be found in [Sol5, Sol7, Sol8, Sol12, LagSol,
Sol13, MogSol, All, Al2, T2, Terl, Ter2, MZajl, Scw, Wag]. Local solutions obtained
in all the above papers belong either to anisotropic Sobolev spaces or to Holder spaces.
Most of the papers give also the uniqueness of local solutions.

The next step in investigating free boundary problems for incompressible Navier—
Stokes equations was to obtain global existence theorems initiated in 1984 by the paper
of J. T. Beale [B2]. This paper was devoted to the motion of a fluid contained in a three-
dimensional infinite ocean, i.e. to Problem II. The first global existence result concerning
the motion of a fixed mass of a fluid bounded by a free surface S; appeared in the paper
of V. A. Solonnikov [Sol6]. The methods used to prove the global existence results in the
two papers mentioned above are completely different. Beale examined the surface waves
problem after transforming it to the equilibrium domain 2, = {z : 2’ € R?, —b(z') <
x3 < 0}, while Solonnikov applied Lagrangian coordinates and this way transformed the
considered drop problem to the initial domain f2.

Other global existence theorems can be found in [Sol8, Sol9, Soll0, Syl, TTan]. All
global existence results for incompressible fluids are obtained for initial data sufficiently
close to an equilibrium solution. Moreover, global existence is usually proved together
with the stability of the equilibrium solution.

For the case of an incompressible fluid some asymptotic results as ¢ — oo were proved
in [Sol9, Sol10, BNis].

The first free boundary problems for compressible viscous fluids were one-dimensional
problems; A. V. Kazhikov was the first mathematician who concentrated on those prob-
lems. In [Kazl] he proved a global existence and uniqueness theorem in a special case,
for the one-dimensional free boundary problem for equations of motion of a viscous com-
pressible barotropic fluid. He examined this problem in 2; = {z € R: 0 < z < y(t)},
t € (0,T), where y is an unknown function. His global existence theorem was obtained for
large initial data vy and pg. He also proved a regularity result for the solution obtained.

In [Kaz2] A. V. Kazhikov proved a similar result in the case of viscous compressible
heat-conducting fluid and under the assumption that 2; = {z € R: y1(t) < = < y2(¢)},
t € (0,T), where y; and yo are unknown functions. Other global existence and uniqueness
results for the one-dimensional case are presented in [Ok, M, Nag, FPadNov, D2-D4].

A further direction in the study of one-dimensional problems is the asymptotic be-
haviour of a global solution. This subject has been taken up in [Nag, Ok, D2-D4, M].
In particular, it follows from the above mentioned papers that the assumption of the
positivity of the external pressure is crucial to proving the asymptotic convergence of
solutions to corresponding stationary solutions.

The methods developed to study one-dimensional problems have also been applied in
proving global existence results in the spherically symmetric case. A spherically symmetric
model is convenient for example for astrophysicists in examining stellar structures. A
trouble with it is that the equations of motion written in spherical coordinates have a
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singular point at r = 0, the centre of the domain (2, which is assumed to be a ball of
a radius r(¢). For this reason the authors of papers [D1, D4, FBen, OkMak], concerning
the spherically symmetric case, simplify the model by assuming that at time ¢ the fluid
occupies the domain 2, = {z : R < |z| < r(¢)}, where R > 0 is a constant. Similarly to
the one-dimensional case all global existence results are obtained for large initial data.

As in the case of incompressible fluids, the first results concerning the general com-
pressible three-dimensional problem were local existence theorems initiated in 1981 by
the paper of A. Tani [T1]. This paper was followed in 1983 by the paper of P. Secchi and
A. Valli [SVal]. Other papers devoted to local existence and uniqueness theorems are [S1,
S2, S3, SolT1, SolT2, StZaj, Zaj2, Zaj3, Zaj5, ZZajl, ZZaj9, ZZaj11].

The first global existence theorems for equations describing the motion of compress-
ible fluids were proved by V. A. Solonnikov and A. Tani [SolT3] and independently by
W. Zajaczkowski [Zaj3, Zajd]. Both [SolT3] and [Zaj3, Zaj4] are concerned with the
barotropic case, but in [Zaj3, Zaj4] it is assumed that the pressure of the fluid has the
form p = ap”, where a > 0 and v > 1 are constants. A global existence result for the
more general form of pressure, i.e. p = p(p), has been obtained in [SolT3] and [ZZaj10].
Moreover, global existence theorems for viscous compressible heat-conducting fluids can
be found in [Z1-Z2, ZZaj6, ZZajl0, ZZaj16].

All the global existence results mentioned above are concerned with a fixed mass of
fluid bounded by a free surface, i.e. with Problem I . The only papers devoted to Problem
IT are [TanT] and [JinPad], but [TanT] merely signals the main results without giving
proofs.

It should be underlined that similarly to incompressible flows, all global existence
theorems for compressible fluids have been proved under the assumption that the initial
data are sufficiently close to an equilibrium state. Moreover, in the papers mentioned
above, the stability of the equilibrium state is also usually proved. [SolT3] also brings an
asymptotic result in the barotropic case.

Some characteristic features of free boundary problems for Navier—Stokes equations
are worth pointing out. First, notice that most of the existence results are obtained af-
ter transforming the free boundary problem to a problem in a fixed domain. The most
frequently used transformation connects Eulerian coordinates x with Lagrangian coordi-
nates &, which are defined as the initial data for the following Cauchy problem:

dx
dt

Hence, the transformation connecting x and £ coordinates has the form

(123) :/U(iv7t)7 1'(0) :é-? g = (617"‘7£n)'

¢
(1.24) p=¢+\uE ) d = X, (1),
0
where u(€,t) = v(X, (&, 1), ).
In ¢ coordinates Problems I and II have the unknown functions u, n(§,t) =
o(Xu(&,t),t), ¥(&,t) = (Xu(§,t),t) (v and ¢(&,t) = p(Xu(&,t),t) in the incompress-
ible case) in a fixed domain 27 = 2 x (0,T). For example equations (1.20)—(1.21) in
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Lagrangian coordinates take the form

(1.25) u —vViu+Vyug=g in 027,
(1.26) Vu-u=0 in 27

where Vi, = &20:, = (§ix;0¢,)j=1,...n, &ix, are the elements of the matrix &, which is
inverse to z¢ = I + Sto ug(&,t') dt’ and the summation convention over repeated indices is
assumed.

Most of the local existence and uniqueness theorems are obtained for free boundary
problems written in Lagrangian coordinates. These solvability results are obtained in
various spaces of more or less regular functions. However, considering equations (1.25)—
(1.26) it is apparent that the transformation (1.24) involves nonlinear terms. For this
reason we have to require the solutions to be so regular that

1/2 0 2 A
<T (§||u§\|Lm(m dt) < 0.
0

T

!/
(1.27) H (S)uf i,
Therefore, for free boundary problems for Navier—Stokes equations we cannot expect the
existence of solutions as weak as for initial-boundary value problems for Navier—Stokes
system in fixed domains. That is why for the considered problems we can obtain only
local existence theorems or global existence theorems for initial data sufficiently close
to equilibrium states. The exceptions are the one-dimensional and spherically symmet-
ric problems for which global existence theorems with arbitrarily large initial data are
proved.

Thus, there is always the question about the space of functions with the lowest possible
regularity, in which we can obtain the solvability of the above free boundary problems.
For example, the lowest possible regularity of a local solution of the three-dimensional
incompressible Problem I with o = 0 is such that u € W21(07T), g € W0(027) for r > 3
(see [Sol8] or Theorem 4.2 of this paper). Then obviously (1.27) is satisfied. However, in
the case of o > 0, the above function spaces for u and ¢ are insufficient to prove existence,
since the trace of Ag, (t)u on S does not exist for u € W2(£27), r > 3. For this reason,
the Lo-approach is applied. Thus, for both the incompressible Problem I and Problem
IT with o > 0, the sharp regularity of local solutions is such that u € Wy Fonlta/2 0Ty,
q € W21+a’1/2+a/2((2T), a € (1/2,1) (see [Soll3], [T2] or Theorems 4.5 and 6.2 of this
paper).

For comparison, for the general three-dimensional compressible Problem I (i.e. prob-
lem (1.1)—(1.3), (1.4)—(1.7), (1.8)—(1.10)) the lowest regularity of a local solution is such
that u, ¥ € W2 T/2(QT), e Wy T@2He/2(QTy A C([0, T); Wit (2)), a € [3/4,1)
(see [Z2], [ZZaj11] or Theorem 5.9 in Section 5), while in the case of a barotropic com-
pressible fluid it suffices to examine the solvability in the above spaces with o € (1/2,1)
(see [SolT2] or Theorem 5.1 in Section 5). The higher regularity of a local solution in
the general heat-conducting case is connected with the strong nonlinearities of the terms
0¢y(0,0)0:, div T(v, p) and div(3¢(p, 0)0). For constant c,, v, u, s it is possible to look for
a solution of problem (1.1)—(1.3), (1.4)—(1.7), (1.8)—(1.10) in spaces with a € (1/2,1).
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However, it should be mentioned that the methods used to prove global existence
sometimes force us to look for a solution in spaces of functions of a greater regularity
than in the proofs of local existence theorems.

Furthermore, it is worth mentioning that in the case of o > 0 the Hilbert spaces
VV22 Fonlte/2 Gore used, because existence theorems for linearized problems (both for
incompressible and compressible fluid) have been proved in such spaces. Then by using
the method of successive approximations, local solvability results in these spaces were
obtained for nonlinear problems. One could also examine the solvability of the linearized
problems and next of the nonlinear ones in the spaces w2 tonlta/ 2, r > 2, but this has
not been done so far.

As already stated above, global existence theorems for the two- or three-dimensional
Problems I and II are proved for initial data close to equilibrium states. For incompressible
motions this means that the initial velocity vy is assumed to be small. Moreover, for
problems with free boundary governed by surface tension it is assumed that the boundary
of the initial domain is close to a sphere of radius Ry = (% \Q|) "3 in the case of Problem
I or to a plane in the case of Problem II. Under the above assumptions, together with
the global existence of solutions, the stability of the equilibrium solution is also proved,
i.e. it is proved that the velocity v of the fluid remains small, the pressure is close to a
certain constant and the free boundary S; remains close to the same sphere or to the
same plane as the initial boundary S for all ¢ > 0.

Similarly to the incompressible case, global existence theorems for three-dimensional
compressible problems are also proved for initial data close to equilibrium states. For
example, under the assumptions that vy is small, the initial density oy and the initial
temperature 6, are close to certain constants, and the boundary S of the initial domain {2
is close to a certain sphere it is proved for the compressible heat-conducting drop problem
with surface tension that the velocity remains small, the density and the temperature
remain close to the same constants, and the free boundary remains close to the same
sphere for all t > 0.

One of the greatest difficulties of the free boundary problems considered lies in con-
trolling the free boundary. The differences in the ways of controlling free boundaries for
cases 0 > 0 and o = 0, respectively, are thoroughly described in Section 7 (see Subsec-
tions 7.3 and 7.4). Summarizing the considerations from Subsection 7.3, we notice that if
the free boundary S; is governed by surface tension, then we assume boundary condition
(1.8) which has the form of an elliptic equation. Then to prove that S; has the same
regularity as S for all £ > 0, and that it remains close to an equilibrium sphere for all
t > 0, we use the regularity properties of elliptic equations on S;.

In contrast, to control a free boundary without surface tension we cannot use bound-
ary condition (1.11). In this case proving global solvability relies on deriving a certain
differential inequality which implies that the norm of a local solution is majorized by a de-
creasing exponential function. This allows one to show that the shape of the free boundary
does not change much in time and to extend the solution step by step for all ¢ > 0.

The method of controlling the free boundary via a differential inequality is described
in details in Subsection 7.4. This method is applied in [Sol8] in the incompressible case
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and in [ZZaj10, ZZajl16, Zaj3] in the compressible case. In all these papers it is assumed
that the external force vanishes.

Finally, some open problems are worth mentioning. Namely, there are no global exis-
tence results for free boundary problems for equations of motion of self-gravitating fluids
bounded by a free surface without surface tension, both in the incompressible and com-
pressible cases. The only global existence theorem with the self-gravitational force taken
into account appears in the paper of V. A. Solonnikov [Sol10] and it refers to an incom-
pressible fluid with a free boundary governed by surface tension. However, since surface
tension helps to control the free boundary it seems essential to Solonnikov’s proof.

The difficulties connected with the self-gravitational force in drop problems are de-
scribed in Subsection 7.5.

This paper is divided into seven sections. In Section 2 we present notation, especially
concerning the function spaces used. In Section 3 we describe the results relating to the
one-dimensional and spherically symmetric cases. Section 4 reviews the existence results
for the motion of an incompressible viscous fluid drop. Some asymptotic results are also
presented. A special attention is given to the proofs of Theorems 4.7 and 4.8 since they
are the first global existence and stability theorems for the drop problems. Both of them
were proved by Solonnikov. Theorem 4.7 comes from [Sol8] and is concerned with the
incompressible problem without surface tension, i.e. problem (1.20), (1.21), (1.11), (1.9),
(1.4), (1.5). Theorem 4.8 coming from [Sol6] is a global existence and stability result for
the free boundary incompressible drop problem with o > 0.

Since some ideas from the proofs of the above theorems are used to obtain global
existence and stability results for free boundary compressible problems, the main steps
of these proofs are presented in Section 4 in a fairly detailed way.

Section 5 is devoted to the case of a compressible viscous fluid drop. In Subsection 5.1
existence theorems for the equations of motion of a barotropic compressible viscous fluid
are described. However, the main stress has been laid in Section 5 on the presentation of
the proofs of Theorems 5.11 and 5.14 which are global existence and stability theorems
for the general compressible problem with ¢ > 0 (i.e. problem (1.1)-(1.3), (1.4)—(1.7),
(1.8)—(1.10)). Theorem 5.11 was proved in [Z1]. Since the proof in [Z1] is very sketchy,
it is presented in Subsection 5.2 in detail. This proof is compared in Subsection 7.2 with
the proof of Theorem 4.8 in order to show differences and similarities in the approaches
to the compressible and incompressible problems.

In Section 6 the main results concerning surface waves problems can be found. In
particular, we describe the idea of the proof of global existence and stability for the
incompressible Problem IT with surface tension (see Theorem 6.5). The theorem comes
from [B2] and it was the first global existence theorem for free boundary problems for
Navier—Stokes equations. We also present a sketch of the proof of Theorem 6.6, which
was proved in [TTan], and which yields global solvability for problem (1.20)—(1.21),
(1.5), (1.13)—(1.15), (1.17) with the lowest possible regularity of solutions in the Lo-
approach.

Section 7 brings an overview of the problems presented in the previous sections. In
Subsection 7.1 we consider the influence of the geometry of the domain {2; on the approach



14 E. Zadrzynska

to the corresponding free boundary problem, that is, we compare the approaches to drop
and surface waves problems.

In Subsection 7.2 we compare the methods applied to obtain existence results for
incompressible and compressible problems. To this end we use the proofs of Theorems
4.8 and 5.11 presented extensively in Sections 4 and 5, respectively. We conclude that
most of the differences are due to the different natures of the continuity equations in both
cases, i.e. equations (1.2) and (1.21), respectively.

To obtain global in time existence of solutions we derive, as usual, some estimates for
the local solution of the problem considered. First, we use the conservation laws in order to
estimate the Lo-norms of the solution by norms of initial data. Next, we have to derive an
estimate of the solution in spaces in which we would like to have global solvability (these
spaces are determnied by local existence theorems) by the Lo-norms of this solution.

The most striking (though not only) difference between the incompressible and com-
pressible cases occurs in the way of obtaining the latter estimate. The method applied in
the incompressible case is relatively simple and bases on an estimate derived earlier for
the solution of an auxiliary linear problem in the proof of the local existence theorem.
This method, due to Solonnikov [Sol6], cannot be applied in the compressible case. The
main drawback here is the hyperbolic continuity equation (1.2). In the compressible case
we have to derive the lacking estimate independently of the estimates obtained earlier for
solutions of auxiliary linear parabolic problems. This missing estimate, which usually has
the form of a differential inequality, is connected with very long and arduous calculations.

On the other hand, we point out that the method used to prove a global existence
and stability theorem in the general compressible case is universal enough to be applied
also for incompressible motions.

Both Subsections 7.3 and 7.4 are devoted to the methods of controlling the free bound-
ary. In Subsection 7.3 we discuss the significance of surface tension in this respect, and
likewise for obtaining global solvability and stability results. Then in Subsection 7.4 we
describe in detail the way of controlling a free boundary which is not governed by surface
tension. We underline the role played by an appropriate differential inequality.

As already mentioned, there is no global existence result for Problem I with o = 0 and
k > 0 (i.e. with the self-gravitational force taken into account). The aim of Subsection
7.5 is to describe the case of o > 0 and k > 0 which was investigated in [Sol10] for the
incompressible motion, and at the same time to present the difficulties connected with
the case of 0 =0 and k& > 0.

The results obtained for free boundary problems for Navier—Stokes equations are
mainly existence and stability theorems. However, there are also some asymptotic results
which are presented throughout this paper. We summarize those results in the final
Subsection 7.6.

2. Notation

Let f = f(x1,...,2,) be a scalar-valued function defined on a domain 2 C R™. We
denote the gradient of f by Vf or f,, sometimes also 0, f. By f.. we denote the matrix

{fa:ixj }i,j:l,‘..m-
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Let now f = f(x1,...,2,) be a vector-valued function defined on 2 C R", i.e.,
f: 2 — R" m > 1 Then Vf or f, denotes the matrix {fi,}, where i = 1,...,m,
j = 1,...,n. Moreover, let X be any function space. We write f € X if f; € X for
t=1,...,n.

Let 2 C R™ be a domain with boundary S and let T > 0. Let X be a space of
functions defined on 2 or S.

We let C*([0,T]; X), k € NU {0}, denote the space of functions u : [0,7] — X with
the norm given by

k

ul|ow x) = sup
[[ull e o, 73;) ;Ogtg

dk

—-u(t

i

C*([0,7T]; X), 0 < a < 1, denotes the space of X-valued Holder continuous functions

with the norm

w(t) — u(t)||x
ooy = Nullosgomy + sup Ll ZuDllx
t,t’€[0,T],t#£t |t -t |

By C%(Q) (Q C R™ is a domain) we denote the space of functions u € C*(Q) such that
D% (0 < |o| < k) is bounded on @ with the norm

U = max sup |D%u(x)|,
Il @ = , max, sup D7ula)
where o = (01,...,0,) is a multiindex and D7 = 97! ... 07", OgF = 9% [Ogk.

Analogously, L,.(0,T; X), 1 < r < oo, is the space of functions u which are measurable

and such that the Lebesgue integrals Sg lu(t)||% dt are finite. The norm in this space is
defined by
T

fullzr o) = ( § ) )"
0

C'(£2) (where [ > 0 and [ is noninteger) denotes the Holder space of functions u defined
on {2 with the norm given by

DY — D7 /
(2.1) [ullcio) = Z sup |D7u(z)| + Z sup [DYu(z) / l_[z(x )|
i<l "2 R

3

where v = (71,...,7) is a multiindex.

Analogously, we let C!(£2) denote the Hélder space of functions u defined on {2 with
the norm (2.1).

If u € C'(£2) then u can be defined on S in such a way that the resulting function
belongs to C!(2).

The space C!(S) can be defined similarly to C!(£2) and C*(£2) by using local coordi-
nates and partitions of unity.

In what follows we shall use the notation: 27 = 2 x (0,7), ST =8 x (0,T), T > 0.

We denote by C’ll’l2(QT) (where 11,13 > 0 and [y, are noninteger) the anisotropic
Hélder space of functions u defined on £27. The norm in this space is given as follows:
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[l2]
22)  ullenazory= >  sup [Du(z,t)|+ > sup |Dju(x,t)]

lyl<[ty] (BDE2T j=0 (z.1)eNT
[£2] (=]
|DJu(z,t) — DYu(a’,t)| DI u(a,t) — DIPlu(a, )|
+ > sup z — /|- + sup TR ;

[yI=[ta]

where D} = &/, D) = ot...07 and v = (71, .+, Yn)-

In the case of integer [1, C'+:!2(07) is the space with the norm (2.2), where the third
term on the right-hand side of (2.2) is omitted. Analogously, in the case of integer l5 the
fourth term on the right-hand side of (2.2) is omitted.

Cli2(£2 x [0, T]) denotes the Holder space of functions u defined on 2 x [0,7] with
the norm (2.2).

The space C'+2(S7) is defined similarly by using local coordinates and partitions of
unity.

In Section 4 the space 5é+a(QT), where a, 8 € (0,1), 2 C R3, occurs. This is the
space of functions u with the finite norm

HuHCN%JrQ(_QT) = Sup

(:zz,t)GQT axz Cona/2(0T)
b s |u (x,t)—u(ac t) —u(x,t') +u(z, ')
vy oo Pl e

Next, W(£2),1 € R U{0}, 1 < r < oo, is the Sobolev-Slobodetskii space with the norm
[ullw: (o) defined by

L DYu(z) - Do)
@8 i = 30 Je@rds 30 13 T e

0<|y|<[l] 2 [vI=

where in the case of integer [ the second term on the right-hand side of (2.3) is omitted.
W!,..(£2) is the space of functions u € W} (§2') for any 2’ CC 2.

r,loc

The space W'(S), where S = 042, is defined in a standard way by means of local
coordinates and partitions of unity.
TL($2), 1 € Ry, denotes the space of functions u with the norm

i<[1/2]
Now, let us introduce the differences
Ai(h)u(z) = u(z + he;) — u(x),

where h € R, x € R™ and e;, i = 1,...,n, are the standard unit vectors. Then we define
inductively the m-difference

AP (h)u(w) = Ay (h)(A7( =Y ()" ejmu( + jhey),
7=0

where ¢, = m!/(j!(m — j)!).
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Similarly, we introduce the differences
AWule) = u(z +y) - ul@), =,y € R,
A™(yu(z) = M)A (g)u(z)).
Since A(z — y)u(y) = u(z) — u(y) we have

Az —y)uly) =Y A™((x —y) - euly) = Y AT (hu(y),
=1 =1

where h = (z — y) - e;.
Now, we define the Besov space B.(R") by introducing the norm

nsho A7)k u|m\ T
L+ ( \dan | da %) :
i=1 0 NG
where m >1—k;m, ke NU{0}, Il e R, & Z.
All norms [|lul| g1 (gny are equivalent for all m, k satisfying m > | — k (see [Gol]).
Moreover, the norms of BL(R"™) and W}(R") are equivalent for [ ¢ Z.
We also define the following norms:

lell B reny = [l

|A™ (2 — y)ou(y)|"\ /"
||“H§£.(R”) = llullz, @) + <H§n deSn dy |z — y[r =k '

where m > [ — k, 8’;u = Z|a|=k Dyu, and

(] r\ L/
|A(z — y)0y u(y)|
oy = el oy + ( § o § a0y
R’n Rn
The last norm coincides with the norm of the Sobolev-Slobodetskil space WYR™) given
by (2.3). Moreover, it can be shown that the spaces W!(R"), Wi(R"), BL(R™) and BL(R")
(with hg = 00) all coincide for I ¢ Z and have equivalent norms.
In many papers referred to in what follows, various imbedding theorems and inter-
polation inequalities in Sobolev and Besov spaces are used. One of the most applicable
lemmas is as follows.

LEMMA 2.1 (see [BesIIN]). Let l € Ry, p € Ry U{0} and 1 <r < g < oo. The following

imbedding holds:
WHR™) CWER"™)  forn/r—n/qg+o<l.

Moreover, the following interpolation inequality holds:

“Nullwi@wny +ce™"|

[ullwe @ny < €' lullz, &n)s

where Kk = (1/1)(n/r — n/q+ o).

The above lemma also holds for spaces of functions defined in domains {2 C R™ with
sufficiently regular boundary S.

WE(0,T; X), where [ is noninteger, 1 < r < oo, is the space of X-valued functions u
in W! with the norm defined by
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£ () — w3
T _ T X
||u||W7£(O,T;X) = HUHWTU](O’T;X) + S S It — t/|1+rl i dtdt’,

where [[ull, 0 o o = S0 §) I &eu®)l

We denote by W™ (02T), where I,m € R, U{0},1 < r < oo, the anisotropic Sobolev—
Slobodetskii space with the norm

(2.4) i ey = § (@ n dedt+ > | [Dyu(e, )" dodt
nr 0<|v|<[l] T
+ >\ IDiu, ) dudt
0<i<[m] QT

n Z SdtS S |DYu(x,t) — D)Yu(a’,t)|" de da’

lv=[llo 0o o — |0

LT DMy, z,t) — DMz, )|
+{ dz || D |t( t’)|1+’“(”t1[m(]) W gear
Q 00
In (24), D} = 0;, D] = 07*...97". In the case of integer I the fourth term on the
right-hand side of (2.4) is omitted, and in the case of integer m the fifth term is omitted.
The space W™ (ST), where S = 012, is defined in a standard way by using local
coordinates and partitions of unity.

Wé:Zz(QT), [ € R, denotes the space of functions u with the norm

T 2
S ||DgctuHL2(Q) d) 1 ’
0

||u||W2l:L/2(QT) = ||u||W2lvl/2(QT) + ( 12

lvl= [l]
€ (0,1), where D) , = 9/°0) ... 97", |v| = 270 + 71 + . .. +Yn. The above space occurs
in [Zaj2].
In Section 5 the following notation is used:

24a,l4+a/2 _
lll G202 =l s gy + T (el )

+ 3 1Dl o)) +5up [uC- DI
vy|=2

a2 —a
(lull gz ont T Hull%mm

S
where 0 < a < 1, Q € {2, 5}.
In Section 6, we denote by K!(§2 x (0,T)), I > 0, the space VV2 1/2(!2 x (0,7)). In
particular, if T' = oo, the interval (0, 00) is written as Ry.
(0)(9 x R ) denotes the subspace of K'({2 x Ry ) consisting of functions u so that
OFu(-,0) = 0 for 2k < | — 1. This space has the property that if u € K(O)(Q x Ry ) then

the extension of u by zero for ¢ < 0 belongs to K'(£2 x R).
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Let x be the characteristic function of the set {({,7) € RZ xR : [¢] < 1, || < 10}
Let Sir = {z € R®: 23 = 0}. Then
f(fo)(SlF X Ry) = {u:e 'ue Kip(Sir x Ry),
(1= x)u")" € K'(Sip x R),
(117 + ) "2xu"" € Ly(R* x R)},
where " denotes the space-time Fourier transform of w.

Let now w be a smooth increasing function such that w(t) =0 for ¢t <1 and w(t) =1
for ¢ > 2. Then

K'(S1p xRy) ={u: (1—w)u € K'(Sip x Ry), wu € Ko (Sir x Ry )}
The above definition is independent of the choice of w.
Also, the following interpolation lemma is used.
LEMMA 2.2 (see [BeslIN]). Let u € WE™(R™ x (0,T)), I,m € R. If ¢ >r and
- 1 1\1 11\ 1
= - — =)= o+ —-—=- =<1,
" ;<7+r Q>Z+< T q>m
then for all e € (0, 1),
1D D3l g x(0,1) < €' llutllyytom (g e (0.7 + €€ lull 2 x 0,7
where v = (Y1, -+ s Yn)-

The above lemma also holds for spaces of functions defined in domains {2 C R™ with
sufficiently regular boundary S.

3. One-dimensional and spherically symmetric free
boundary problems

3.1. One-dimensional case. In this section we will describe the results concerning the
one-dimensional free boundary problem for the compressible Navier—-Stokes system. It
has been discussed in [Kazl, Kaz2, Ok, M, Nag, D2-D4, FPadNov]. Below we present
separately the cases of a viscous barotropic fluid and of a general viscous fluid.

3.1.1. The motion of a barotropic viscous fluid. The relevant free boundary problem is
as follows:

(3.1)  o(vs +vvy) — pUge + e = of for 0 <z < y(t), t € (0,7),
(3.2) o +vos+0ov, =0 for 0 <z <y(t), te(0,T),
(33)  v|y=0=0 for t € (0,T),

dy(t
6a) PO 0.0, e Doy = =P forte (0.7),
(3.5)  v|t=o = vo(x), 0lt=0 = 0o(x) for 0 <z < y(0) =1,

where v = v(x,t) is the velocity, o = o(z,t) the density of the fluid, and y = y(t) the
unknown function; T > 0, p = 7 with v > 1 is the pressure; f = f(z,t) is the external
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force per unit mass acting on the fluid; P is the external constant pressure; p is the
viscosity coefficient and 0 < g1 < go(z) < 02 < 0.

Problem (3.1)—(3.5) has been examined by Kazhikov [Kazl] in the case of f =0 and
P = 0. The main results are a global existence theorem for large initial data vy and oy of
class W3 and a regularity result. Kazhikov uses Lagrangian coordinate ¢ defined as the
initial data for the Cauchy problem
(3.6) v _ v(x,t), x(0)=¢&.

Integrating (3.6) we get
¢
v=¢+uE )t = X, (6,1),
0
where u(€,t) = v(X,(£,t),t). In coordinates (&,t) problem (3.1)-(3.5) with f = 0 and
P = 0 takes the form

(3.7) nuy — pd (Jug)e + Jpe =0 for £ € 2,t€(0,T),
(3.8) ne +nJug =0 for £ € 2,t€(0,7T),
(3.9) ule=o = 0, for t € (0,7,

(3.10) pd (1, t)ugle=1 — p(1,t) =0 for t € (0,T),

(3.11) ult=o = vo(§), M=o = 00(§) for £ € 2,

where 7(¢, 1) = o(Xu(§,1),1), J(§,1) = &(§:1) = (1 + SZ ug(§,t)dt') " p=n7, v > 1,
2 =(0,1). Equation (3.8) implies

(3812) n(&.t) = oof€) exp | - | Juele ¢ at]

= 00(£) exp { - (1 + tS ug(&,t") dt”) _1u§(§, t') dt’}
0
t/

= ao(@exp{ ~ || (1+ Juels, e dt”)| | dt'} = eo(©) (&1,
0

s

Ol & Q= &+ Ol o+

Hence problem (3.7)—(3.11) can be rewritten as

(3.13) ous — p(Jug)e +pe = 0, £e, te(0,7),
t -

(3.14) Jen=(1+Juleryar)  cen teo),
0

(315) u|5:0 =0, t e (07T)7

(3.16) pJ (1, t)uele=1 — p(1,t) =0, te(0,7),

(317) u|t:0 = ’U()(é-), J‘t:() = 1, f S Q,

where p(,t) = 04 (£)J7(£,1),7 > 1.
The existence of a local in time solution of the above problem can be proved by the
method of successive approximations. This method will be presented in Sections 4-6 for
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two-and three-dimensional problems. Now, we formulate a global existence theorem for
problem (3.13)—(3.17) and we present a sketch of the proof. Both can be found in [Kazl].

THEOREM 3.1. If vg € W2(£2), g0 € W3(£2) and 0 < o1 < 00(§) < 02 < 00, then for
every 0 < T < oo there exists a unique solution of problem (3.13)—(3.17) with the proper-

ties: supg<i< [[u()lwp2) < K1, [Jugell o (or) + lutll pyory < Ka, supg<icr (il ,(2) +
| Jell Ly (2)] < K3, 0 <mg < J(&,t) < My < oo, where 27 = 2x(0,T), K; (i =1,...,3),
mg and My are constants.

Sketch of proof. The proof relies on deriving the above estimates with constants K7, Ko,
K3, my and My depending on the initial data, T, i and -y, but independent of the time
of local existence. Therefore the local solution can be extended to the interval [0, T].

STEP 1. Let v > 1. Multiplying (3.13) by u and integrating with respect to & yields

14l 1 1
(3.18) §E§Qou2d§+u§Jugd§:gp%df.
Hence
1 t 5 1
(3.19) sup §o0(&)u? (€, 1) d€ < [ o0()05(6) dé + —= {03 (§) d = C1 < 0.
0<t<T 0 TS

In the case vy =1,
1

1
< Voo@u(e 0y de + n] (€ (6, e =,
0 0

where w(&,t) = u(§,t) — % Sg 00(&") d¢’. This implies

(3.20)

N | =

1

1

(3.21) sup_§o0(€)u?(&,t) dé < C'(§ ao(€)uB(€) d + lloo 3, ) = Ca < ox.
0 0

STEP 2

LEMMA 1. There exist positive constants mo and My (mo < oo, My < 00) such that
(322) mo S J(f,t) S MOa

where mgy and My are constants depending on o1, 02,7, p, I and the right-hand sides of
(3.19) if v > 1 or (3.21) if v=1.

In order to get (3.22) one has to use the following equality for the function I(£,t) =
JY(&,t), which results from (3.13)—(3.14):

(3.23) a%[lnf(f, 0+ 03 (€§IE )| = % 00(Oleo(6) — (6. 1)

0

After some calculations the following form of I(£,t) can be obtained:
1
exp{(7/n) §, o(§")[u(¢’,t) — vo(¢")] d&'}

(3.24) I(6,) = " . .
L+ (v/m)eg (§) §y exp{(v/n) § 00(&")[u(&’,t) — vo(&")] d&'} dt!
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By using the inequality

1< s (Tew(@retenae) " (Joote )"
0
(

1
|Jeol€yute 1)
3

0<t<T 5
estimate (3.22) follows from (3.21) and (3.24).

STEP 3. Equality (3.18) and estimates (3.19), (3.22) in the case v > 1, and equality
(3.20) and estimates (3.21)—(3.22) if v =1 give

(3.25) lue|l £y 0ry < Cs.

STEP 4. Since J; = —J%ug, estimates (3.22) and (3.25) imply
¢l £, 0ry < Cy < o0

Moreover, by (3.23),

(3.26) sup || J¢||1,(2) < C5 < oo

0<t<T
Next, the following inequality is derived:

t 2 T1 2
1 1
(3.27) sup SJ ug — —0gJ7 dﬁ—l—gs Jug — —p dédt < Cg < o0,
0<t<T 3 1% 00 7 e

which together with the boundedness of J and g( yields
(3.28) sup |lugllp, (o) < C7 < oo,

0<t<T
Hence
(3.29) sup || J¢llz,(0) < Cs.

0<t<T

Furthermore, since (Jug — ip),g = %ut, inequality (3.27) implies
(330) HUtHLz(QT) < Cy < .

STEP 5. Estimate (3.27) also yields
T1

(3.31) \(Tuge + Jeue)? de dt < Cip < oo,
00

In view of (3.22), (3.25) and (3.26), from (3.31) it follows that

(3.32) ugell 1,0y < C11 < oo

All C; in the above estimates depend on the same quantities as mg and M. Estimates
(3.19), (3.21), (3.22), (3.26), (3.28)—(3.30), (3.32) give the assertion of the theorem. m

For more regular initial data vy and g the following regularity result is also proved
in [Kazl].

THEOREM 3.2. Let vg € C*t(2), 09 € CH2(02), 0 < a < 1 and let the following
compatibility conditions be satisfied: vy(0) = 0, (uvé’—793_196)|§:0 =0, (pvh—0)]e=1 =
0. Thenu € C?T1+2/2(Qx[0,T)), J € CHT1+/2(Qx[0,T)), J; € C1H/2(2x[0,T)).
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Sometimes it is convenient to write problem (3.1)—(3.5) in Lagrangian mass coordi-
nate. Assuming that S; oo(x) dz = 1, which means that the total mass of the fluid is equal
to 1, Lagrangian mass coordinate is given by

(3.33) ¢ =o', t)da’

0
and its inverse transformation is defined by

3

T = 55(5’,0 de’,

0
where B(£,t) = 1/n(€,t) is the specific volume and 7 denotes the density o written in
coordinate £. In coordinate (3.33) problem (3.1)—(3.5) takes the form

(3.34) up — (pug /T —ple =g for £ € 2,t€(0,7),
(3.35) Ty —ue =0 for £ € 2,t€(0,T),
(3.36) ule=o =0, (pug/vV—q)l¢e=1 =—P fort€(0,7),

(3.37) wlt=o = v9(§), Tlt=o = 1/00(&) for & € 02,

where u denotes v and g denotes f written in coordinate &, £2 = (0,1).

In [M] Mucha proves a global existence and uniqueness theorem for problem (3.34)—
(3.37) under the assumptions that 0 < g1 < go(x) < g3 < 00, Sé oo(x)de =1, p = ap",
a>0,v>1; P>0, f<0and f(&) = ¢'(¢&), where p € C3(R).

The solution obtained is such that T¢, ug € Loo((0,00); La(2)). Moreover, in [M] the
following asymptotic theorem is proved.

THEOREM 3.3. Let 1/09 € W3(£2), vo € W3(02), let |||, be sufficiently small and let
the above conditions on o, p, P and f be satisfied. Then u, € Wy (£2 x (0,00)) and

at

(3.38) 17— wllwz ) + llullwg o) < ce™,

where o > 0, w = o2 '(z) and 0. = 0¢(€) is the stationary solution of problem (3.1)—(3.5),
i.€. 0e salisfies

a96|y(00) =P,
y(o0)
S Oc(z)dx =1
0

The assumption that P > 0 is crucial to proving estimate (3.38).

The free boundary problem for system (3.1)—(3.2) with initial conditions (3.5) is also
considered in [Ok], where at 2 = 0 boundary condition (3.3) is assumed, and p is assumed
to vanish on the free boundary. Okada proves the existence of a global weak solution. A
similar problem in the spherically symmetric case has been examined in [OkMak]; it will
be described more thoroughly in Section 3.2.

3.1.2. The motion of a general viscous fluid. First, we will concentrate on the paper
of Kazhikov [Kaz2] which is concerned with the one-dimensional motion of a viscous



24 E. Zadrzynska

polytropic heat-conducting ideal fluid. Such a motion is described by the system

(3.39)  o(vi +vvy) — pvgr +pr =0 for yo(t) < x < y1(t), t € (0,T),
(3.40) o1 +voy +v;0=0 for yo(t) <z <y1(t), t € (0,7),
(3.41)  cp0(0; +v0,) — 30y — 2 4 pv, =0,  for yo(t) < x < yi(t), t € (0,T),
(342) (g — P)lamyity = —P(2) i=0,1, te(0,7),

(3.43) 91|x=yi(t) =0 1=0,1, t € (0,7),

dy; (t
(3.44) yd—t() = u(yi(t), 1) i=0,1, t € (0,7),
(3.45) V]i=0 = vo, Olt=0 =00, 0©li=0 = 00 for0<z <1,

where p = Rpf, 0 = 0(x,t) is the temperature of the fluid; R > 0 is the gas constant;
¢y, > 0 is the constant specific heat at constant volume; > > 0 is the constant coefficient
of heat conductivity, and y; = y;(t) (i = 1,2) are unknown functions.

Similarly to the barotropic case, problem (3.39)—(3.45) can be written in Lagrangian
coordinates as follows:

(3.46) oour — i(Jug)e +pe =0 for £ € 2,t€(0,T),

(3.47) Ji+ JPug =0 for £ € 2,t€(0,7),

(348)  oocoly — #(JUe)e — pJui +pue =0 for £ € 2, t € (0,T),

(3.49) pJue —p = —P(t) for£=0, £=1,t€(0,7),
(3.50)  Ye=0 for £ =0, &E=1,t€(0,T),
(3.51) Ult=o =vo, Jlt=0 =1, Vt=0 =09 for0<& <1,

where 2 = (0,1),9(&,t) = 0(Xu(&,1),1).
The main result of [Kaz2] is the following theorem analogous to Theorem 3.1 which
holds for the barotropic case with P = 0.

THEOREM 3.4. Let P =0, vge W3 (£2), 0o € W3 (£2), 00 € W3 (£2) and m,=min(infg 0o,
inf 0g) > 0, m* = max(supy, 0o, supg, o) < 0. Then for every 0 < T < oo there exists
a unique solution of problem (3.46)—(3.51) with the properties:

(3:52)  sup {Jlul®)llwy) + W Olwyca) + I @llza(2) + el o} < Ka,

(3.53) el oo ory + lueell Lyory + 19t Loy + 1P9eellny0ry < K,

where Ky, Ks are positive constants depending on the data and T. Moreover, n(€,t) > 0,
9(E,t) > 0 for (€,t) € 7.

Sketch of proof. As in the barotropic case, the local existence of a solution for a small
interval [0,¢o) can be proved by using the method of successive approximations. The proof
of Theorem 3.4 relies on obtaining estimates (3.52) and (3.53) which are derived for the
local solution with constants K4 and K5 independent of tg. Therefore, these estimates
are true for an interval [0, T], where T is arbitrary.

To obtain (3.52)—(3.53) it is assumed for simplicity that o9 = 1, p = ¢, = R = 1.
Then from (3.12) it follows that n(§,t) = J(&,t).
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STEP 1. From (3.46), (3.48), (3.49) the following conservation energy law is derived:

4

(3.54) o

1

S[ (&,1) + u 2(¢, )| de =0 for all t.
0

This yields

(3.55) 162, (2) + %HU( ) Zace) = 100llLico) + 5 ||vo\|%2(m = Ny < cc.

STEP 2. For n(&,t) the following formula analogous to (3.24) is obtained:
exp{§olvo(€') — (€ 1] d¢'}

L+ §0 006, t) exp{ [ [o(&) — u(¢’, )] de} dt

Relations (3.56) and (3.55) yield

(3.56) (&, t) =

-1

(3.57) M, (t) < N(l + N~ s (t) dt’) :

-1

(3.58) ma(t) > N7 (14 N M) at')

O ) &+ O ey

where M, (t) = supg<e<i1(§;t), my(t) = infoce<in(§,t), My(t) = supg<e<; 9(§51),
my(t) = infoce<1 9(&, 1), N = exp{vollr, () + lvollL.(2) + \/_||00HL1(Q)}

STEP 3. Next, it is necessary to show that mﬁ( ) is positive for all ¢ € [0, 7. To do this
we use (3.57) and the properties of the parabolic equation with the unknown function
1/9 which arises from (3.46) by dividing it by —9¥2. We prove that

(3.59) my(t) > ma(1+ Nit)™ >mg >0 forallte0,T],

where N1 = m, (N2 +4)/(4N), A\ = N?/(N? +4) < 1, mg = m.[l + N, T]~. Integrating
(3.59) gives

t
\mo(#)dt’ > N[(1+ Nyt)' = —1].
0

Hence from (3.57) it follows that

(3.60) M, (t) < N(1+ Nyt)**

STEP 4. Let ¢(&,t) = So (&',t) d¢’. Obviously, S ¢(&,t) d§ = 0. Therefore, for
any t there exists £ = 51( ) [0,1] such that ¢(£1(t),t) = 0. By using

(=]

3

| 1o 0)[/2sign o (¢, t)ger (¢, 1) de’
&1(t)

and inequality (3.58), the following estimates are proved:

lp(&, )% =

l\3|00

T1
(3.61) J Yt 0oz nagar < ¢ < oo,
00
(3.62) Sp.[[4(t)lzate) + 19(0) 2] < Ca < o0,

0<t<
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T
(3.63) | My(t)dt < €y < o0
0
Estimates (3.58) and (3.63) imply
(3.64) my(t) > N"H 1+ NC3) ' =n>0 foralltel0,T].
Next, inequalities (3.61), (3.63) and (3.64) give
T T
(3.65) X 19113, () < n~'C, S M3(t)dt < Cy < .
0 0

STEP 5. Now, the estimates for derivatives of u, 9 and 7 are derived. First, multiplying
(3.46) by u one obtains

T
(3.66) sup [Ju()lZy0) + | lue(®),0) dt < Cs < oo.
== 0
Next, multiplying (3.46) by [n(u¢ — ¥)]¢ and using (3.64)-(3.66) yields
T
(3.67) sup_ e (t) = 902, )+ | Nn(eue — De(®) 2, dt < Cos
0<t<T 5
Hence, by (3.46),
T
(3.68) Vs @)113 ) dt < Co < o0.
0
Moreover, by (3.67) and (3.62),
(3.69) sup._[ue(t) () < Cr < oo.
0<t<T

In view of (3.69), equation (3.47) gives the estimate

sup |[n:(t)|| L, 2y < Cs < oo.
0<t<T

Next, by using formula (3.56) one can calculate that

(3.70) sup_[e(t)l|a(e) < Co < oo.
0<t<T
Finally, estimates (3.67) and (3.70) give
T
S [uee ()17, () < Cro < oo
0

The constants C; (i = 1,...,10) in the above estimates depend on the initial data and T

STEP 6. In the same way the necessary estimates for the temperature are derived. The
uniqueness is proved in the standard way, by considering problem (3.46)—(3.51) for the
differences of two possible solutions. Thus, the assertion of the theorem follows. m

By means of differentiating equation (3.47) with respect to &, and equations (3.46),
(3.48) with respect to t, higher-order estimates for the functions u, 1, n are obtained.
These estimates yield the theorem below.
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THEOREM 3.5 (see [Kaz2]). Let the assumptions of Theorem 3.4 be satisfied. Moreover,
let vo € C*t2(0), 6y € C*(02), oo € C'T¥(N2), 0 < a < 1 and assume that the
following compatibility conditions are satisfied:

0y = pvy, — Roobly =0  for £ =0, £=1.
Then u € C*te1+a/2(Qx [0, T]), ¥ € C*Helt2/2(Q %[0, T)), n € CHe1+a/2(Q % [0, T]).

Nagasawa [Nag] examined problem (3.39)—(3.45) in the case P(t) > 0 for ¢ € [0, 00),
after writing it in Lagrangian mass coordinates (3.33). Assuming P € C'([0,)), vy €
C?*t(0), 0y € C?*T*(02),1/00 € C1T(£2) for some @ € (0,1) he proved a global existence
and uniqueness theorem with u € C2T*1+2/2(Q % [0,T)), 9 € C*+1+2/2(Qx[0,T]), v €
CHHol+a/2(9 %[0, T); uet, Oet, Ve € La(27), 5> 0 and ¥ > 0. The second important re-
sult of [Nag] is an asymptotic theorem. Under the additional assumption that Sgo |P'(t)| dt
< 00 he proved that the limits P = lim; .o, P(¢) and lim;_. o Sg P'(t) S(l) (&, 1) dEdt’ ex-
ist and the solution (u,d, ) converges to the stationary state (0,6,,v.) in W3 (£2)NC(£2)
as t — oo, where 0. and U, are positive constants given by

1 e} 1

1 ]. o — / !
eezCU+R{§(§v3+cveo+P<o>/go)ds+§)P<t>§v<s7t>d5dt}7
RO,
Te = —.
P

The assumption that P(t) > 0 for ¢ € [0, 00) is crucial to proving the asymptotic result.

Paper [FPadNov] is also concerned with the solvability of problem (3.39)—(3.45) but
in contrast to [Kaz2], Fujita-Yashima, Padula and Novotny prove the existence of a global
weak solution in the case when info<¢<q 00(§) > 0.

Several papers ([D1-D4]) are devoted to the evolution of stellar objects. In these pa-
pers various models of self-gravitating viscous heat-conducting fluids occurring in classical
astrophysics to describe the motion of gaseous stars are considered. The boundary of a
stellar structure is not known, so the problems considered by Ducomet are free boundary
problems. In [D2] he studies the simplified one-dimensional case. The problem written in
Lagrangian mass coordinates has the form

(3.71) up — (u% —p) = —G<§ - %) for € 2,te (0,T),
13

(3.72) Ty — ue =0, for £ € 2,t € (0,T),
9 u?
(3.73) ¥y — %<5§> + pue — p% =0 fore 2, te(0,T),
3

(3.74) u%—pz—P for £ =0,6 =1, ¢ € (0,T),
(3.75) %‘195 — M =0 for € =0, t € (0,T),
(3.76) %‘195 F M =0 for € =1, ¢ € (0,7T),
(3.77) uli=o = vo(§), V|t=0 = 0o(§),

Ult=0 = 1/00(§) for £ € 02,
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(3.78) (9,60,7,1/00,€)(1/2+&,1)

= (9,600,7,1/00,€)(1/2 = &,t)  for 0 <€ <1/2,t€[0,T),
(3.79) (u,v0)(1/2 + &,1)

= —(u,v9)(1/2 — &, 1) for 0 <¢<1/2,t€[0,T],

where as before 2 = (0,1), p = RY/v, —G({ — 1/2) is the gravitational term which is
chosen in such a way that £ = 1/2 is the symmetry centre for the slab; P > 0 is the
constant external pressure; A > 0 is a flux parameter; e is the internal energy.

In [D2] under the same assumptions on vy, 6y and gy as in [Nag] Ducomet proves a
global existence and uniqueness theorem analogous to the result of [Nag]. His methods
are similar to those used by Nagasawa and they take its origin in the papers of Kazhikov.

Next, using again the methods of Nagasawa, Ducomet proves that in the case of
A =0 and P > 0 the solution of problem (3.71)—(3.79) converges to the stationary state
as t — oo. The rate of convergence is exponential. If A = 0 and P = 0 the corresponding
stationary solution is unstable, and if A > 0 the solution tends to the singular limit (0, 0, 0)
which corresponds to the gravitational collapse of the slab into a plane with an infinite
specific volume. The case of a more general state equation is also examined in [D2].

In [D3] Ducomet considers a more general problem, describing the motion of a viscous
compressible heat-conducting reacting self-gravitating gas. The corresponding system
consists of (3.71)—(3.72) and the following equations (see [LedWal]):

2
u
(3.80) er + Qe + Upous — ugﬁ — X9, 2)=0 for&e R, te(0,T),

(3.81) 7, — (%Zg) +6(0,2) =0 for £ € 2,t€(0,T),
13

where e(7,9) = ¢,¥ + avd* is the internal energy; p(v,9) = RY/v+av?*/3 is the pressure;
a is the Stefan-Boltzmann constant; Z = Z(&,t) is the (unknown) fraction of reactant;
A >0andd > 0 are two “chemical” constants; the function ¢(8) is given by the Arrhenius
law: ¢(9) = AZWPe=F/BY; A B, B, E are positive constants; Q(7,9) = —x(7, )¢ /v
is the flux with the conductivity given by s = k1 4+ k20¥%; K1, ko and ¢ are positive
constants.

Together with boundary condition (3.74) the following boundary conditions are as-
sumed:

(3.82) Q=0 foré=0,6=1,¢¢€(0,T),
(3.83) Ze=0 for€=0¢=1,te(0,7).
To the initial condition (3.77) the initial condition on Z is added:
(3.8 o = 2o(6), €€ 0.

Moreover, together with condition (3.79) the following symmetry condition is assumed:

(3.85)  (9,00,7,1/00, 2, Z0)(1/2 +&,t) = (¥,00,7,1/ 00, Z, Zp)(1/2 — £, 1)
for 0<¢<1/2,te (0,T).
The following theorem is proved in [D4].
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THEOREM 3.6. Let vg € C?T(02),0p € C?*T*(02), Zy € C*t2(0), 1/00 € C1T(02), 0 <
a < 1. Assume that 6y, 0o, Zy are positive on [0,1] and that the compatibility conditions
between the boundary conditions and the initial data hold. Then for q > 4 and for every
0 < T < oo there exists a unique solution of problem (3.71), (3.72), (3.80)—(3.83), (3.77),
(3.84), (3.85) with the properties: u € C*+1+9/2(Q % [0,T]), 9 € C*1+2/2(9 % [0,T]),
Z € C¥reltal2(0 % [0,T]), v € CHel+a/2(Q x [0,T]), v, € C*Hoe/2(Q x [0,T)),
Ugr € LQ(QT), ’lggt S LQ(QT), th S LQ(QT)7 Uy € LQ(QT>, 9 > 0,v>0,72Z >0 on
[0,1] x [0, 00).

The proof is as usual based on conservation laws and a priori estimates which are
derived by using arguments from [Kaw] and [J].

Some partial results concerning the asymptotic behaviour of the solution of problem
(3.71), (3.72), (3.80)—(3.83), (3.77), (3.84), (3.85) are also given in [D4].

3.2. Spherically symmetric case

3.2.1. Spherically symmetric motion of a viscous barotropic fluid. Such a motion is stud-
ied by Okada and Makino [OkMak]. They consider an atmosphere surrounding a solid
star of radius 1 and mass M. The motion of the atmosphere is described by the system

2 2 M
(3.86) o(vy +vv,) +pr — u(vrr + SUr = —v) =27 fri1<r< ri(t), t € (0,7),

) 2
2

(3.87) Qt+”UQT+QUT+;Q’U:0 for 1 <r<r(t),te(0,T),

(3.88) vlp=1=0, 0lp=r,;) =0 for t € (0,7,

(3.89)  0lt=0 = 00(r), v|t=0 = vo(r) for 1 < r < rq(0),

where p = ap”, a > 0, 1 < v < 2. Problem (3.86)—(3.89) arises from (5.1)—(5.5) by
introducing spherical coordinates and assuming that the motion is spherically symmetric.

Now, by introducing Lagrangian mass coordinates given by
T

&= 471'5@(5, t)s? ds
1
and by assuming as before that the total mass M of the fluid is equal to 1, problem

(3.86)—(3.89) takes the form

1
(3.90)  wy + 4mripe — 167 u(r*nue)e + 2/1% + 5= 0 forée,te(0,T),
(3.91)  m + 4 (r*u)e = 0 for ¢ € 2,t € (0,T),
(3.92) wule=0 =0, nle=1=0 for t € (0,T),
(3.93)  nle=o =m0(§),  ule=o = uo (), for § € 2,

where u and 7 are the velocity v and the density p written in £ coordinates; r = [1 +

3 ¢ d /3 B
25 iis] " p=an?, 2=(0,1).
In order to prove global existence for (3.90)-(3.93) Okada and Makino discretize

this problem with respect to £. Thus, they obtain a sequence of approximate Cauchy

problems for systems of ordinary equations with respect to ¢ which are locally solvable by
the elementary theory of ordinary differential equations. Then they prove the existence



30 E. Zadrzynska

of a global solution of an approximate problem by deriving appropriate estimates for
the solution with constants on the right-hand sides independent of the time horizon
of the local solution. The derived estimates give the convergence of the approximate
solutions to functions u,n € Loo([0,T] x [0,1]) N C*([0,T]; L*(0,1)) such that nue €
Loo([0,T] x [0,1]) N C2([0,T]; Ly(£2)) for any T and such that (u,n) is a global weak
solution of problem (3.90)—(3.93). This global solution is obtained under the assumptions
that ug € C([0,1]), no € C([0,1]), no(§) > 0 for 0 < & < 1, no(1) = 0 and some other
assumptions concerning the initial data.

3.2.2. Spherically symmetric motion of a viscous heat-conducting fluid. Fujita-Yashima
and Benabidallah [FBen] consider the motion of a viscous heat-conducting ideal gas
which is symmetric with respect to the origin. They assume that the gas occupies the
domain between two surfaces: the rigid surface {|z| = rr} (rp > 0) and the free surface
{Ir|=r1(t)} (rr <71 < 00). If n =1 the motion is one-dimensional; if n = 2 the motion
is axially symmetric; if n > 3 the motion is spherically symmetric. Therefore the following
system of equations is considered:
1 1
(3.94) o(vt +vvy) — u<vw +(n— 1);1)7, —(n— 1)T—2v>
+ R(QG)T = of, forrp <r< rl(t)v te (07T)a

1
(3.95) o+ (ov)yr + (n — 1);91} =0, for rp <7 <ri(t), t€(0,7),
1
(3.96) o0cy,(0; + v0,) — 30, — (n — 1);0,«

1
+ Rob (v, + (n — 1);1})

12 1
=plv,+(n—1)-v| —4(n—-1)u -vv,
r r
1
—2(n—1)(n—2),u'r—2v2, for rp <r <ri(t), t € (0,7),
with the boundary conditions
(397)  vlp=rp =0 for t € (0,T),
(3.98)  Oplr=r, =0 for t € (0,7,
1 1
(3.99) {u(w +(n— 1);1}) —2(n — l)u';v - Rg&} =0 forte(0,7),
r=ry(t)

(3.100)  Oplp=p,1y =0 for t € (0,T)
and with the initial conditions
(3.101) V|t=o = vo(r), 0lt=0 = 00(r), 6Oli=0 = O0(r) for rr <r <ri(0),
where p = @u’ + ¢ ' >0 and ¢ > 0 are viscosity coefficients; ¢, is the constant

specific heat at constant volume, rp > 0.

As before, to prove global existence and uniqueness for problem (3.94)—(3.101) it is
useful to write it in Lagrangian mass coordinates. First, using the methods of Kazhikov
[Kazl, Kaz2], under the assumptions that the total mass of the fluid is 1 and that
ug, o € C*(2), ng € C(2), a € (0,1), f € C*([rr,0)), info<e<1m0(§) > 0,
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info<e<1 9o(€) > 0, uole=0 = 0, Vogle=o,1 = 0, [0 (rg ™ u0)e —2(n— 1)’ -0 — Rijg¥o][e=1
= 0, Fujita-Yashima and Benabidallah prove the global existence and uniqueness of a solu-
tion such that u, ¥ € C2t*1+2/2( % [0,T]), n € C1+1+2/2(Q x [0, T]). Here £2 = (0, 1);
ug, Yo, Mo are the initial data vg, Oy and gg, respectively, written in Lagrangian mass
coordinates; u, ¥, n are the velocity, temperature and density of the fluid written in
Lagrangian mass coordinates, and 1" > 0 is arbitrary.

Using the above global existence result and the argument of [FPadNov] Fujita-Yashima
and Benabidallah prove then the existence of a unique global weak solution. More pre-
cisely, they prove the following theorem.

THEOREM 3.7. Let no(§) > 0 for £ € £2, esssupgcec; no(€) < 00, nyt € Li(2), ug €
La(2), no*uoe € L2(£2), 0o € La(2), infoce<1 9o(€) > 0, f € C([rr, 50)) N Loo([rr, 00)),
F(s) = Sir f(s)ds' € Loo(frr,0)), nu > 2(n — 1)u'. Moieover, assume that there
exists § > 0 and Ky > 0 such that for almost every £ € §2 there exists an interval
1(&) with the properties: & € I(£), |I(&)] = 6, no(§) < Kano(&') for almost every &' €
I(€). Then for every 0 < T < oo there exists a weak solution of problem (3.94)—(3.101)
such that u € Loo(0,T; La(£2)), 9 € Loo(0,T5 La(82)), 1 € Loo(27); g, (n(p(r™tu)e —
RY))¢ € La(0,T; La(£2)); me, g’ > (1" M) € Loo(0,T5 La(82)); 1y *0e € La(0,T; La(2));
r € C(£2 x[0,T]) and for every t € [0,T] the function r(§,t) is strictly increasing with
respect to f, where T(gat) - 7’0(5) + Sf) U(g,t/) dt/a TO(S) = [T?’ + nsg W dg/]l/n’ g € ‘(_27
t € [0,00). Moreover, there exist constants Ji,Ja such that 0 < J; < Jo < oo and
J1 <n(&,1)/no(§) < Jo for almost every (€,t) € £2 % [0,T].

In [D1, D4] the three-dimensional spherically symmetric version of problem (3.71),
(3.72), (3.80), (3.81), (3.74)—(3.76), (3.83), (3.77), (3.84), (3.79) and (3.85) with a hard
core at r = rp is considered. By the methods of [Kazl, Kaz2| and [FBen] the global
existence and uniqueness of a classical solution is proved. This result is analogous to that
from [FBen] (for the case of the initial density and initial temperature greater than zero).
Moreover, the asymptotic behaviour of a solution is examined in [D4].

4. Two- and three-dimensional free boundary problems
for a drop of an incompressible fluid

This section is concerned with a free boundary problem for a drop of an incompressible
fluid. The problem is to find a bounded domain §2; C R™, n = 2,3, a velocity vector field

v =uv(z,t) (v=(v1,...,v,)) and a pressure p = p(z,t), satisfying the following system
with boundary and initial conditions:

(4.1) v+ (v-Vvo—vAv+Vp=f+kVU, z€, te(0,T),

(4.2) dive = 0, x € ,te(0,T),

(4.3) Tn — cHn = —po(x, )7, x € Sy, t € (0,7),

(4.4) v-T=—¢/|VP, x €8, t€(0,T),

(4.5) v(z,0) = vo(x), x € 2y =12,
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where T' > 0, 7 is the unit outward vector normal to the boundary S; = 9f2; ¢(x,t) =0
describes S; at least locally; f = f(x,t) is the external force field per unit mass; U(x,t) =
Sgt |z — y|~! dy is the self-gravitational potential; py = po(z,t) is the external pressure;
vg is the given initial velocity; {2 is the given initial domain; v, k and o are the constant
coefficients of viscosity, of gravitation and of surface tension, respectively.

By T = T(v,p) we denote the stress tensor of the form

(4~6) T(%P) = {Tij}i,j:l,...,n = {*p(sij + QVSij(’U)}i,j:l,...,m

where S(v) = {%(Uimj + Vjz,) }ij=1,..n is the velocity deformation tensor, and I =
{0i;}i,j=1,2,3 is the unit matrix.
Moreover, in the three-dimensional case H = H(z,t) is the double mean curvature of

St at the point x, which is negative for convex domains and which can be expressed as
(4.7 Hn = Ag, (t)x,
where Ag, (t) is the Laplace-Beltrami operator on S;.
Let S; be determined locally by o = x(s1,s2,t), (s1,82) € V C R?, where V is an
open set. Then
(18) 25,0 = g2 (972020 2 (a,5=1,2)
: t 8Sa 683 ’ 9 ’ )

where g = det{gas}a.p=1.2; Gos = 8‘951 : %, {g*P} is the inverse matrix to {gas}-

In (4.8) and in what follows we assume the summation convention over repeated

indices.
In the two-dimensional case H denotes the curvature of S;.
In view of equation (4.2) and the kinematic condition (4.4) the measure of §2; is
conserved, i.e.
[2:] = S dx = S dx = |0|.
2 Q

4.1. Local existence. The papers concerned with local solutions of various special
cases of three-dimensional problem (4.1)—(4.5) are [MZaj1, MogSol, Sol4, Sol5, Sol7, Sol8,
Sol13].

The most often applied method to prove local existence is to write problem (4.1)—(4.5)
in Lagrangian coordinates £ which are the initial data for the following Cauchy problem:

dx

(49) E :’U(.CL',t),J}(O) :ga 5: (51;52763)~
As in the one-dimensional case, integrating (4.9) we obtain a transformation which con-

nects Eulerian x and Lagrangian & coordinates:
t

(4.10) v=a(&t) =+ fuE ) dt = Xu(&1),

0
where u(£,t) = v(X,(&,t),t). From (4.4) we have 2, = {x € R? : v = X,,(§,1),€ € 2}
and Sy = {z € R? : 2 = X, (£,t), £ € S}. Problem (4.1)-(4.5) in Lagrangian coordinates
has the form

(4.11) u —vViu+ Vg =g+ kV,U, in 27 =02 x(0,T),
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(4.12) Vy-u=0 in 07,

(4.13) Tufiy — 0 AL () Xy = —qoTiy on ST =8 x (0,T),

(4.14) ult=0 = Vo in 02,

where q(§,t) = p(Xu(&,1),1), 9(§,1) = f(Xu(&,1),1), q0(§:t) = po(Xu(§;1),1), Mu(E,t) =
A(Xu(&,1),1), Vu = &0y, = (Gix,;06) =123, Tu(u,q) = —ql + Dy(u), Dy(u) =

V{02,608, uj + 0, &10¢, Ui tij=1,2,3, (Or, & are the elements of the matrix &, inverse to
ze =1+ S; ug(&,t)dt'), Uy(€,1) = §,, %, Jx, is the Jacobian of transfor-
mation (4.10); A, is given by (4.8).

4.1.1. The case of o = 0. Papers [MZajl], [Sol4] and [Sol8] are devoted to the case

o = 0. The results of all these papers are based on the solvability of the following
Cauchy—Neumann problem for the Stokes system:

(4.15) u —vAu+Vp=F in Q7T
(4.16) Vou=G in 27
(4.17) T (u, p)Tip = D on ST,
(4.18) Ult=0 = Vo in 2,

where Tig is the unit outward normal vector to S.
Existence theorems for problem (4.15)—(4.18) can be found in [MZaj2], [Sol3] and
[Sol8]. In particular, in [Sol8] the following theorem is formulated.

THEOREM 4.1. Let r > 3, S € W2 /", F € L.(Q7), G € W-(2T), G = V - R,
Re L.(27), Ry € L.(27), v € T/V,?*Z/T(Q)7 D e W,-lfl/r’l/zfl/(%)(ST). Assume also
that D|t—p = 0, G|t=0 = 0 and that the following compatibility conditions are satisfied:
(4.19) V-y=0 in §2,

S(Uo)ﬁo - ﬁo(ﬁo -S(Uo)ﬁo) =0 on S.
Then there exists a unique solution of problem (4.15)—(4.18) such that u € W2(0T),
p e WH(QT), p e Wy /2@ (ST). For this solution the following estimate is
satisfied:

(820) e gry + 0D [ully2-21n gy + Pl grry + [Plhya-s/maraos s,

< (T)(|F|

L@n) HIGlwroory H IR L, @y Hlvollyyz-2rm o) HIDllypr-1rm1r2-1/0 (gry),

where ¢(T) is an increasing positive function of T.

The proof of Theorem 4.1 is done in several steps. First, problem (4.15)-(4.18) with
F =0,G =0, vg = 0 is considered in the halfspace z3 > 0. By applying the Fourier
transform with respect to x71, o and ¢, this problem becomes a system of ordinary
differential equations which can be easily solved. There are two different ways to obtain
estimates of a solution of the latter system. One of them, applied by Solonnikov [Sol2],
relies on calculating explicitly the inverse Fourier transform of the solution and expressing
it in the form of potentials. Then it can be estimated in suitable norms. The second
method, probably simpler, is used by Mucha and Zajaczkowski [MZaj2] and relies on the
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direct estimation of this solution by means of the Marcinkiewicz multiplier theorem [Mar,
Mik].

Next, in the same way (by applying the Fourier transform) the existence of a unique
solution of the Cauchy problem with G = 0, vy = 0 is proved. The results obtained for
these two problems give the existence theorem and the appropriate estimate for problem
(4.15)—(4.18) with F'# 0, G # 0, D # 0, vo = 0 in the halfspace.

The existence of a unique solution in a bounded domain and estimate (4.20) are proved
by using the technique of regularizers. Therefore problem (4.15)—(4.18) is considered
locally in a neighbourhood of either an interior point or a boundary point. The boundary
neighbourhood problem (4.15)-(4.18) is transformed to a problem in the halfspace, for
which the estimates obtained earlier can be used.

A theorem analogous to Theorem 4.1 concerning the solvability of problem (4.15)—
(4.18) in Holder spaces is proved in [Sol3].

The solvability results for problem (4.15)—(4.18) and the method of successive approx-
imations are used to prove the existence of a unique solution to problem (4.11)—(4.14)
with ¢ = 0. The following problems are considered:

Otmi1 — VV Uyt + Vami1 = F(Xm(&,1), )

+ (Ve =V + (V= Vi, )gm + £V, U, in 27,
(4.21) V tmy1 = (V_— Vu,, ) Umn - in 2T,
T(wmt1, gm+1)00 = T(wm, gm) (R0 — N, )
+ [T(m, @m) — Tu,,, (W, @) 0w, — Po(Xu,, (§,1), 1), in or,
Upmt1]t=0 = Vo in £2,
wherem =0, 1,...1In (4.21), u,, and g,, are treated as given functions, and uy = 0, gy = 0.

By applying Theorem 4.1 to problems (4.21) Solonnikov [Sol8] proved the following
local existence theorem for the case without the self-gravitational force (i.e. for k = 0).

THEOREM 4.2. Assume that po = 0 and the function f(x,t) defined for x € R?, 0 <
t < Ty is bounded and satisfies the Lipschitz condition with respect to x. Let r > 3,
vy € WTQ_Q/T(Q), S e W2 and let compatibility conditions (4.18) be satisfied. Then
there exists a unique solution u € W21(Q1), g € WO (0T of problem (4.11)—(4.14),
where Th < Ty depends on ||”0HW3*2/7'(9) and sup | f(z,t)| (11 is a decreasing function of
these norms). In the case Ty = oo we have Ty — oo if the above norms tend to zero.

In the case of k > 0 and pg = const, the local existence theorem with the same regu-
larity of a solution as in Theorem 4.2 was proved by Mucha and Zajaczkowski [MZajl].

It should be underlined that the regularity of the local solution obtained in [Sol8] and
[MZaj1] is the sharp regularity for this problem in the L,-approach with r > 3.

In the two-dimensional case Theorem 4.2 holds with r > 2.

The local solvability of problem (4.11)—(4.14) in Holder spaces has been examined by
Solonnikov [Sol4], where by using the results of [Sol2, Sol3] the following theorem has
been proved.

THEOREM 4.3. Let k = 0, S € C?F*, vy € C**(2), f € C**/2(R® x (0,7)), f. €
Co22(R3 % (0,T)), po € C5H*(R3 % (0,T)), por € C5 *(R3 % (0,T)); o, 3 € (0,1). Then



Free boundary problems for Navier—Stokes equations 35

there exists a unique solution of problem (4.11)~(4.14) such that u € C*te1+e/2(QT"),
qE€ C};JFQ(QT/), where

(24a)/(1+a)

T = {t <T:c(1+ R(t)) )/ (+0) R()ec(+E®)
vy =min((1 - «)/2,6/2), §<1/8,

R(t) = [lvollo2+e @) + crll flloaarz@sx oy + callpoll e s 0,y

(t+1t7) <4},

c1 > 0 and co > 0 are constants independent of t.

4.1.2. The case of 0 > 0. Local existence theorems in the case of ¢ > 0 can be found in
[MogSol, Sol5, Sol7, Sol13, Scw]. Paper [Sol7] is a review of results concerning both local
and global existence for problem (4.11)—(4.14). Similarly to the case without the surface
tension the basis of proof of local existence is an existence result for the linear problem
(4.15), (4.16), (4.18) with the boundary condition

t
(4.22) T(u, p)Tio — o7 (no : ASSudt’) — D(a,t) on ST.

0

To obtain estimates necessary to prove existence it is convenient to project condi-
tion (4.22) onto the tangent plane and onto the normal direction to S. Then boundary
condition (4.22) can be written in the form
(4.23) vIIyS(u)mg = IIpD on ST,
t

(4.24) 7ip - Thg — o7 - Ag \udt' =7 - D on ST,
0

where IIyf = f —To(To - f)-

The solvability result for problem (4.15)—(4.16), (4.18), (4.23)—(4.24), obtained in
[Soll1] (see Theorem 1.1 of [Solll]), yields the existence of a unique solution of this
problem such that u € Wi T /2(QT) p e W&*2(2T), Vp € W?(0Q7), plgr €
W;+1/2’a/2+1/4(ST) (with « € (1/2,1)), satisfying the estimate

aa2 o aa2
(4.25)  Jluel oz + 3 |Dgul (5 +Z||ugi

lee|=2

Lo(027)

a,a/2 a,a/2)
+ lull oer) + 9 ”+||p|| P2 Il e/ g

a,a/2 —a
< T)IFNG"? + 1G g 100 + IR yoarers gy + TRl 1, c0m)

)

+ ||H0D||W;+1/2,a/2+1/4(sT) + ||D/||W;+1/z,a/2+1/4(sT)
_ —1/2,a/2—1/4
+ TP D' || yarm0 gy + 1D IG 227 4 flwg g ),

where it was assumed that g - D = D' + o Sé D" dt', and ¢(T) is a positive continuous
nondecreasing function of T

The general method of proof of this result is similar to the method applied in the
proof of Theorem 4.1. The differences in these proofs arise from the fact that necessary
estimates are derived in different Sobolev—Slobodetskii spaces.
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The existence theorem for problem (4.15)-(4.16), (4.18), (4.23)—(4.24) is applied to
prove the solvability of the following auxiliary linear problem:

(4.26) uy —vViu+Vyuqg=F in 27,

(4.27) Vw-u=G in 27

(4.28) vIIoIT,,Sy, ()T = ITpD on ST,
¢ t

(4.29) Mo - Tow (U, Q)T — 0Tig - Ay (L) S udt' = D'+ O'S D"dt" on ST,
0 0

(4.30) uli=0 = vo in 2,

where Sy (1) = ${0:,&0¢,uj + 00, Ex0e, i i j=1,2.3, Hwf = [ —Mw(Mw - [), Mw(é,t) =
n(Xw(&,1), 1), Xu(&t) =&+ Sgw(g,t’) dt’'; A, (t) is given by (4.8) with x = X, (€, ).

Using the method of successive approximations together with estimate (4.25) yields
the following theorem.

THEOREM 4.4 (see Theorem 1.2 of [Soll3)). Let a € (1/2,1), § € W3/*™ F ¢
W), VG € Wi (0T), D e Wi RePTYA(ST), pre Wit Re AT,
D" e W2 27N (GTY 4 e WA (Q). Let G=V - R, Re Ly(27T), R, e W*/*(0T)
and assume that the following compatibility conditions are satisfied:

Vv =G(£,0), vIIoS(vo)holees = IoD|i—o-

Moreover, assume that w € W22+a’1+a/2(QT)

and T1/2Hw||Wz+a,1+a/z(QT) < 0 with suf-
2

ficiently small §. Then there exists a unique solution of problem (4.26)—(4.30) such that

ue Wyt (Qm), g e Wy (QT), Vg € W2 (QT), qlgr € Wyt /2214 (gT)

and estimate (4.25) holds with ¢ = ¢/ + "T"2=/2|w(-,0)|wg(0); ¢ and ¢ are positive

continuous nondecreasing functions of T.

Now, Theorem 4.4 and the method of successive approximations imply the following
theorem, proved in [Sol13].

THEOREM 4.5. Let a € (1/2,1), S € W25/2+a, po =0, vg € WyT*(2) and the following
compatibility conditions are satisfied:

V-vg=0 in 2, viS(v)ng=0 onsS.

Assume that the vector field f(x,t) is continuously differentiable with respect to x in
R3x (0,Ty) and satisfies the Lipschitz condition with respect to x and the Hélder condition
with exponent B > 1/2 with respect to t. Then there exists a unique solution of problem
(4.11)—(4.14) such that u € WQZHX’HO‘/Q(QT/), q € W;’Q/Z(QT/), Vg € W;’a/2(QT/),
dlgr € Wy (ST)
and the norms of f and vyg.

, where T' < Ty. T' depends on the mean curvature of S

In the earlier paper of Solonnikov [Sol5] the local existence theorem (analogous to
Theorem 4.5) is formulated for the case without the self-gravitational force.

In [MogSol] Mogilevskii and Solonnikov prove local solvability for problem (4.11)—
(4.14) with pg = 0 in Holder spaces.
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Schweizer [Scw| obtains local existence and uniqueness for small initial data by ap-
plying the semigroup approach.

4.1.3. The case of o dependent on the temperature. Papers [LagSol], [Sol12] and [Wag]
are concerned with the local motion of a fluid bounded by a free boundary which is
under surface tension depending on the temperature. In this case the problem to solve is

as follows:

(4.31) vi+ (v-V)v—vAv+ Vp = f, x €, te(0,T),
(4.32) dive = 0, ze R, te(0,T),
(4.33) 0, + (v- V)0 — A0 = \|S(W)|? +7, z€ 8, te(0,T),
(4.34) Tn — o(6)Hn = V,0(0), x €8, t€(0,T),
(4.35) 00/0n + O = h, x €8Sy, t€(0,T),
(4.36) v-n=—¢:/|Ve|, x €S, te(0,T),
(4.37) V]t=0 = vo, O|i=0 = 6o, x € (2,

where 6 = 0(x,t) is the temperature of the fluid; s is the constant coefficient of heat
conductivity; A and 8 are positive constants; o(6) > o¢ > 0 is the coefficient of surface
tension which is a smooth function of 8; V,o = Vofﬂ% is the gradient of ¢ at the surface
Sy; f, r and h are given forces. Similarly to the case of o independent of the temperature
we have to rewrite problem (4.31)—(4.37) using Lagrangian coordinates. Then the above
problem takes the form

(4.38) u —vViu+Veg=yg in 27
(4.39) Ve u=0 in Q7
(4.40) 9y — #V20 — NS, (w)]? =7 in QT
(4.41) Tty — 0(9) Au(t) Xu = (V= Tu(Tiu - Va))o (@) on ST,
(4.42) Ty - Vo0 + 69 = hy on ST,
(4.43) ult=0 = vo, V|t=0 =00 in 2,

where 71(§, 1) = r(Xu (&, 1), 1), hi(€,t) = R(Xu(S, 1), 1)

By using the estimates for solutions of linear boundary-value problems derived in
[MogSol] and the method of successive approximations the following theorem is proved
in [Sol12].

THEOREM 4.6. Let 2 be a bounded domain with boundary S € C3+®, o € (0,1), and let
r=h=0, f€C%TI/2(R3%(0,T)), f, € CF)/2(R3 x (0,T)), where e € (0,1 —a).
For arbitrary 0y € C*t%(92), vo € C*+*(0) satisfying the compatibility conditions

V-vg=0 in 2, U(S(Uo)ﬁo - ﬁo(ﬁo 'S(’U(ﬂﬁg) = (V - noa%)d(eo) on S,
0

690/aﬁo+ﬁ90=0 on S,
problem (4.38)—(4.43) has a unique solution in the interval (0,T"), T' < T, with the
following differentiability properties: u € C2telte/2(OT") g ¢ C2telta/2(OT") ¢
CHe(1+0)/2(6T gq e C/2(QT"). The magnitude of T' depends on the norms of
the data vo, 09 and S.
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Local solvability of the above problem in Sobolev spaces is examined by Wagner [Wag].
He proves the local existence and uniqueness of a solution assuming that A =0, 8 = 0,
and that the forces f, r, h satisfy the conditions

Sfd:c:(x Srdxz ShdS.
Q4 2 St

Moreover, boundary condition (4.34) is replaced in his paper by
Tn — MaPrvé = 2Cr~ ! Pr Hr,

where Ma denotes the Marangoni number which gives the ratio of surface tension tractions
generated by temperature inhomogeneities at the surface to the dissipation and heat
conduction; Pr is the Prandtl number and Cr is the Crispation number.

The proof of the local existence in [Wag] is as follows. First, it is assumed that for
given data, a sufficiently smooth stationary solution has been found and by linearizing
around this solution, some estimates for the corresponding stationary problem are de-
rived. Next, by using the method of Rothe these estimates are carried over to estimates
for the nonstationary linear problem. Finally, by using the considerations for the non-
stationary linear problem and the Banach fixed point theorem, the nonlinear problem is
solved.

4.2. Global existence and stability. Global existence and stability theorems for the
three-dimensional problem (4.1)—(4.5) can be found in [Sol6, Sol8, Sol9, Sol10]. Moreover,
[Sol14] is concerned with global existence of solutions to problem (4.31)—(4.37).

4.2.1. The case of c = 0. Let 0 =0, f =0, po = 0, £k = 0. The following theorem is
proved in [Sol§].

THEOREM 4.7. Let r > 3, vy € W372/T(Q); let compatibility conditions (4.19) be satisfied
and assume that

S Vo -1 dé- = 07

2
where n = a+ b x &, and a and b are arbitrary constant vectors. If ||v0||W272/r(m <eg,

where € > 0 is a sufficiently small constant, then a solution of problem (4.11)—(4.14)
exists for allt > 0 and

(4.44) lullwz(q, b0y + ldllwrog, 0y + e < cllvollyz-2/m (g e

where Q41 =2 % (t,t+1),Grpp1 =S x (t,t+1),0>0 and

)

ta t’

: , : dn \Y"
I (S dt (S)Hq(f,t ) —a(&t =) s) h(mm) :
ty

Now, we present the main steps of the proof from [Sol8].

Proof of Theorem 4.7

STEP 1. The first step is to derive the following conservation laws satisfied by a solution
of problem (4.1)—(4.5):
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(4.45) S v-(a+bxx)de = S vo-nd¢ (momentum conservation law),
2 Q
d 2 .

(4.46) 7 S [v|*dz +vE(v) =0 (energy conservation law),

t

where E(v) = Zij:l Snt (g;] + 3—2)2 dx. Equality (4.46) and the Korn inequality

[vllw (a2, < cE(v),
which holds in view of (4.45), yield
(4.47) | (o2 do = § Jul? dg < e=2 | Juo|? d,
2 Q 7]
where p > 0 is a constant depending on v and c.
STEP 2. The following lemma holds.
LEMMA 1 (see Theorem 4 of [Sol8]). Let u € W2Y(02T), ¢ € WHO(0RT), qlgr €
erfl/r’l/%l/(%)(ST) be the solution of (4.11)—(4.14) satisfying
T T

dt’
(4.48) §) lullwz(a) dt + j;lg lullz, ) + fggé ||U\|W3(Q)m <9,
where § > 0 is sufficiently small, and let 0 < tog <tg+1<T. Then
(4.49) lull w210 + lallwioy + [@ay < A3 CDu|lL, oo
where Q(N\) = 2 >t<4<rt10 +Mto+1), A€ (0,1/2), GIA) = S x (to + A to + 1), Qo = Q(0),
lallza, oy = (52 ully gy )7

Proof. We multiply (4.11)—(4.14) by a function ¢y = ¢, (t) of class C*° such that {(t) =1
for t > to+ A, (\(t) =0 for t <tg+A/2and 0 < ((t) <1, [CA ()] < ed™, A e (0,1/2).
Then the functions uy = (yu and g\ = ()¢ satisfy a linear problem of the form (4.15)-

(4.18)
(4.50)  ux — vV2uy + Vagr = v(V2 = V)ur + (V — V) +uli(t) = F,
(4.51) V-uy=(V -V, ur=G,
(4.52)  T(ux, gx)Molees = T(ur, q2) (Mo — M) + [T(ur, @x) — Tulur, ar)|Rulees = D,
( ) uA\t:tO =0
Moreover, G =V - R, R= (I — &;)un.

In view of Theorem 4.1 the following estimate holds:
(454 uallwaa g + l9:lwoogon + @)oo

< a(lFlz, o) + 1GIwroqe) + 1Bz, (o) + 1PNy 1-1/m1/2-110 )

where Gg = G(0) = S x (to,to + 1).

Direct calculations by using (4.48) show that
(4.55) 1F L, (@o) + 1Gllwroig,) < dea(lluallyzog,) + IVarllz. o)
+esAHlullz, o2
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(4.56)  [[Dllyya-1/rarz-1r@n g,y < cad(luallwzr g, + laallwreq,) + larlao),
(4.57) [ Rell Qo) < cs0llurellz, o) + 5[52r/(r+3)HUHWTQ’O(Q(A/Q))
+ (e62) 2 lul o2,

where interpolation inequalities have been used.
Inequalities (4.54)—(4.57) yield, for sufficiently small ¢,

(4.58)  luallwz gy + laallwoq,) + larlco
< 2e103A " ullz, (@er/2)) + 261817 T ull 20 o2y + (c68) T Tl a2
To estimate the first and third terms on the right-hand side of (4.58), the following
interpolation inequality is used:
llullz, (2 < /‘6||U||W,2(!2) + 07’{73/2(1/271/7“)HUHLz(Q)
with kK = €1\ and k = e, respectively. Consequently,
(4.59) HUAHW,?’I(QO) + Hq/\HW,}’O(QO) + o],

< [2c1c381 + 21062/ 4 201552(065>_2T/(7‘+3)}H’U'”W,?‘I(Q()\/2))

+ e ATl L, o2y

< collullz1 gz +esA T ull 1y, o2
if we assume that 2cjczeq + 2¢1662/("43) 4 2¢16e5(cge) =2/ ("+3) < 4. Hence
U(N) < eoU(M2) 4+ csA™ 32 |1, (o),

where U(A) = [lullyy2.1 gy Therefore
(4.60) U\) < &U(N/2)
+ 08)‘_7/4+3/2T||UHL2,T(Q0)[1 +5027/4—3/2r 4.+ (6027/4_3/2T)j_1].

23/2r—7/4

Assuming that gg < estimate (4.60) yields, as j — oo,

4.61 U\ < ca AT
(4.61) (A < WHU”LQ,T(QM'

Now (4.59) and (4.61) imply the assertion of the lemma.

STEP 3. From Theorem 4.2 it follows that for ¢ sufficiently small there exists a solution
in the interval [0, 2] and moreover, the following inequality holds:

(4.62) HU||W,?~1(Qx(0,2)) + ||Q||W}=°(Qx(o,2)) + ldeo. < C9||UO||W3*2/T'(Q)'
Hence

2 2 dt/
(4.63) (S) ||U||W,?(Q) dt + ilgllgg HUHW,?(Q)W + ig ||UHLT(Q)

< CIOHUO”WTg—z/r(Q) < (5/27
if C10€ S 5/2

STEP 4. Now, it remains to show that the solution can be extended step by step, first
to the interval (2, 3], next to (3,4], etc. The proof is by induction.
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Assume that the solution exists for 0 < ¢ <1 (I > 2) and that condition (4.48) with
the constant §/2 is satisfied for 0 < ¢t <. As a consequence, the shape of {2; changes in
[0,1], I > 2, no more than it does in [0, 2]. Hence, the Korn inequality holds in [0, 1] with
the same constant as in [0, 2] and estimate (4.47) is satisfied for ¢ € [0,!]. Thus, Lemma 1
yields

(4.64)  [lullyz1 oy + ldllwrou) + [dew < enllvoll,@e™  for1 <j<i-1,
where QU) = 2 x (j,j+1), GY) =8 x (4,5 + 1).

Hence, by using the imbedding W21(Q@) c C([j,j +1]); W2~ */"(£2)) and by passing
to Eulerian coordinates we have

(465) H’U(CE, l) HW372/T'(QZ) S C12 ||’l)0||L2(Q)e*Nl.

Under the assumption that ¢ is sufficiently small, estimate (4.65) and Theorem 4.2 imply
the existence of a unique solution to problem (4.1)-(4.5) for x € 2, 1 <t < [+ 1,
with the initial condition v(z,1). This solution is such that v € W21(2; x (1,1 + 1)),
gV € WO (2 x (1,1 + 1)), where u® and ¢ denote v and p written in Lagrangian
coordinates & € (2;. Moreover, by (4.65) we get

l —pul
||u( )HWEI(QL) < 013HU||W372/7»(QZ) < 013612||’U()||L2(Q)e me
This way we have extended the solution to (I, + 1] and by the above estimate we have

Jllyy21 owy < crallvoll L,y ™
QW)
Hence, assuming that ¢ is sufficiently small we obtain

I+1 t ,
\ lullwaqe)dt+ sup lullz, @)+ sup S||u||W3(Q)d+l/2W <= forte(Ll+1).
l 1<t<I+1 I<t<i41 (t—1t) 2

Thus, condition (4.48) with the constant § is satisfied in [0, + 1]. This implies that for

0 sufficiently small, the shape of §2; changes for ¢t € [0,{ 4+ 1] no more than it does for

t € [0,1]. Hence, inequality (4.47) for t <1+ 1 and estimate (4.64) are satisfied.

It remains to show that inequality (4.48) with the constant 0/2 is satisfied for ¢ €

[0, + 1]. By (4.64) we get

I+1 l Jj+1

1/r
| lullwzcardt <3 () Tl o )

Jj=0 j

[«

l
< CQHUOHV[/f*Q/"(Q) + Cl4||UO||L2(Q) Ze_uj < Cl5||’U()||W372/T»(Q),

j=1
¢
la(&, DIz, < el 7 < (e15 + Dlvolyya-2/r (g
0
¢
dt’ »w
S”u”Wf(Q)W <2V c15l[vollyyz-2/7 gy
0

where 7/ = 7/(r — 1). Assume that ¢ is so small that [(2!/" 4 2)¢16 + 1]e < §/2. Then the
above estimates imply (4.48) with 6/2 in [0,{+1]. The proof of Theorem 4.6 is complete. m
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4.2.2. The case of o > 0. Now, we discuss the results of [Sol6, Sol9, Sol10, Sol14]. The
global existence of solutions to problem (4.1)-(4.5) in the case: ¢ > 0, k = 0, po = 0 is
proved in [Sol6]. The main result of that paper is the following theorem.

THEOREM 4.8. Let the assumptions of Theorem 4.5 be satisfied and assume that f = 0.
Assume that (2 is diffeomorphic to a ball and S is described by the equation

€| = R(w), wes,
where St is the unit sphere. Moreover, assume that
Iolly ey + 1B = Rollyygraresn, < &

where Ry = (3|02))'/3(4m)~1/3 is the radius of a ball of volume |02|. If & > 0 is sufficiently
small then problem (4.1)—(4.5) has a solution for all t > 0 such that §2; is diffeomorphic
to a ball and Sy is described by the equation |x| = R(w,t), w € S, t > 0. Moreover,

(4.66) sup [1B(-,t) = Rollyys/240 1) + sup lollvwz+= ()
+ sup [lvellwg (2, + sup P = qollyyr+e (o,
t>t, t>t,
< e(t)([lvoll ooy + IS| - 4 RY),
where t1 > 0, go = 20/ Ro,|S| is the area of S.

The general procedure used to prove the above thoerem is the same as in the case of
Theorem 4.7. However, there are major differences in details between the cases with and
without surface tension.

Proof of Theorem 4.8 (see [Sol6]).
STEP 1. First, by using estimate (4.25) the following inequality is derived:
(4.67) ||u||W§+“vl+“/2(QT) +llg - q0||W2a»a/2(QT)
+ Hq - q0||W21/2+Q’1/4+°‘/2(ST) + ||vq||W2D"°‘/2(_QT)
< C(”UOHWZlJra(Q) + ||H(7 0) + 2/R0||W21/2+”‘(S))’

where T' > 0 is the time of local existence. Moreover, it follows from the proof of Theorem
4.5 (see [Sol13]) that if € — 0 then T" — oo.

STEP 2. The following lemma is proved.

LEMMA 1. Let S; (t < T) be described by the equation |z| = R(w,t), w € S and let
the origin of coordinates coincide with the barycentre of (2;. There exists a constant
d € (0,1/2) such that if

(4.68) sup |R(w,t) — Ro| + sup |[VR(w,t)| < 6Ry  fort <T,
51 51
where V is the gradient on S, then
(4.69) V (R(w.t) = Ro)* + [VR(w,t)[*)dw < e1(|Si] — 47 RY),
S1

where ¢1 > 0 is a constant independent of § and Ry.
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STEP 3. The following equation is considered:
(4.70) H[R]) +2/Ry = h(w),
where H|R] is the double mean curvature of S; expressed in spherical coordinates.

LEMMA 2. Let o € (1/2,1) and let R € WS/HQ(Sl) be a solution of (4.70) satisfying
(4.68) with sufficiently small 6. If h € W§'(SY), u € (0,1), then

IR = Rollyz+u(s1y < callhllwg(sr) + sl R = RollLy(s1)-
If he Wy ™1 (SY), 1 € (0,1), then
(4.71) R — ROHW3+“1(51) > C4Hh||W21+“1(51) +csl|R — R0||L2(S1)'
The constants c3 and c5 may depend on HR||W;+3/2(31).
STEP 4. Asin the case 0 = 0 the conservation laws for momentum and energy are crucial
to the proof. In this case the conservation laws have the forms:

(4.72) %SU~(a+bxx)dm:0,
2
(4.73) 5;( S \U\Qda:+2a|5t|) +vE(v) = 0.

t

Integrating (4.72) yields
S ve(a+bxa)de= Sv0~(a+b><§)d§,
2 Q

and integrating (4.73) and then using (4.69) (under the assumption (4.68)) gives

(
20 ‘
474 | |u|2dx+a\|R—Ro||%V;(sl +v | B)dt’ < | vl dg +20(|S| — 4nR3).
2, 0 n

STEP 5. Now, the following estimate is derived for the local solution of (4.11)—(4.14) (see
Theorem 6 of [Sol6]):

(475) ||u||W22+a,1+a/2(Q(>\)) + ||q - q0||W2a,a/2(Q()\))

+IVallyyoarz gy T 118 = qollyyarzsasararz gy,

< ceA " (lullzo@e)) + IR = Rollo(srx(t0,1))5
under the assumption that 7'/ ||u||W2+a,1+a/2(QT/) < ¢ with ¢ sufficiently small. In (4.75),
2
Ae(0,1),t04+A<T,QN) =02 x (to+\T), GAN) =S x (to+\T), to > 0, s > 0.
Proof of estimate (4.75). The above estimate is analogous to estimate (4.49) which holds

for the case 0 = 0. To prove (4.75) we use the same function ¢, as before. Then the
functions uy = uly and ¢\ = (¢ — %’O)Q\ are the solution of the problem

(4.76) Urg — I/VZU)\ + Vaugy = ull in 27,
(4.77) Vau-uy=0 in 27,
(4.78) Iy IT,S,, (ux)m, =0 on ST,
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(479) ng -Tu(U)\,qA)ﬁu —onyg -

o, 25\ _
:JS ;CA(t)nOTu u’Q7RO m
0

Ay (tuy dt’

O ey o+

t/
+ )0 - A ()8 + O (t)Ti0 - Al (t) udt”
0
2 0
+ _CA(t/)a - (T - nu)] dt’
4 t
EO’ZSBldt/ on ST,
i=10
(4.80) Uzle—o = 0 in 2,

where A/, denotes the operator obtained from A, by differentiation of the coefficients
with respect to t.

For the solution (uy,gx) of problem (4.76)—-(4.80) inequality (4.25) is satisfied. To ob-
tain (4.75) it suffices to estimate the norms ||BiHW;_1/2,Q/2_1/4 By direct calculations
one can get

(CEDN

(481) ||U')\||W22+°‘11+0‘/2(_QT)+||qu ‘|W;‘“/2(QT)+HQ/\ ‘|W;‘“/2(QT)+Hq/\ HW20‘+1/2‘0/2+1/4(ST)

1 —3/4—a /2 -1
<c(A ||u||WQ’(’/2(Q(>\/2)) AT [ullzo@ory2) + A HDfu”W;_I/Q’a/2_l/4(G()\/2))

+ AT Deu| py o2y + AT YA DRl Ly a2
+ A7 1||q - 20/RO||W“*1/2=(¥/2*1/4(G(A/2)) + A 3/4- Ot/2||q - 20/RO‘|L2(G(>\/2)))'
To estimate ||¢ — 20/Ro||,(G(x/2)) the boundary condition 7, - Ty(u,q — 20/Ro)7, =
o(H 4 2/Ry) is used. Thus, applying an interpolation inequality we have

(4.82)  |lg —20/RollLoar2) < cllDeullyan2)) + ollH + 2/ RollLyaa/2)
T

<c[||D£u||L2 G0 /2)) (SHR ROHW%SUdt) 2}

to

T
a—1/2 1/2 9 9 1/2
< cl|Deull oz + & (SHR Rol 520 i) +ex 2 (TIR= Rolld,sn)

to to
where x is a sufficiently small constant. Next, using Lemma 2 from Step 3 and the
boundary condition yields

(4'83) ”R - R0||W§'/2+a(31) < C(HH[R] + 2/R0||W2f¥*1/2(31) + ”R - R0||L2(51))
< clllg = 20/ Rollyya-1/2(g) + [I1Deullyya-1/2(g) + (1R = RollLy(s1)-
Combining (4.82) and (4.83) we obtain
(4.84)  lla = 20/Rollzo(co2) < ek 2 (I Deullyya-1r2.0r2-108 g )
+ lla =20/ Rollyyo-1/2(gn /) + IDevll Loz + 572 1R = Rol (st xtro, 1)
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Taking into account (4.81), (4.84) and using appropriate intepolation inequalities to the
norms ||D5u||L2(G(>\/2)), ||DEU||W;—l/z,a/z—l/él(G(A/Q)), ||UHW;,Q/2(Q()\/2)) and
Hq — QU/RO||W2a—1/2,o¢/2—1/4(G()\/2)) we get

UA) <eUA/2) + Ce)A*(lull ooy + IR = RollLa(stx (t0,19)5

where s= (%—l—a)ﬁ—g, e<275, UN\)= ||U/||W22+o¢,1+a/2(Q(>\))+||q_20'/R0||W2<'+1/2,a/2+1/4(G(>\))
+ ||Vq||W;,a/z(Q(>\)) +lg— 20/R0||W;,Q/Q(Q()\)). Hence

C(e)A—®
1—23¢
The last inequality coincides with (4.75).

U < (lull ooy + 1B = RollLa(s1x (t0.19))-

STEP 6. Now define the differences u(®) (&, ) = ux (€, ) —ux(€,t—5), ¢ (€,1) = qr(€,1) —
qn(&,t — 5) (where s < tg, A\ = (T +t9)/2). The functions u(*) and ¢(*) satisfy a linear
problem which is implied by problem (4.76)—(4.80). Therefore, estimate (4.25) applied to
u(®) and ¢(*) and (4.75) yield the inequality

(485) ||U(5)||W22+a’1+a/2(Q()\)) + ||Vq(5)||W2°‘v"‘/2(Q()\)) + ||q(8)||W2D"(’/2(Q(A))

+ Hq(s) ||W21/2+a,1/4+a/2(6,(/\))

< er([lull o)) + 1R = Rollo(s1x k0, 7))) 8"

where 8 > 1/2. From (4.85) and the imbedding properties in Besov spaces we get the
estimate
(4.86) sup ||u||W22+0‘(_Q) + sup [lg— QOHW21+“(Q)
t <t<T’ t<t<T’
< es(l|ull a@o)) + 1B — RollLa(s1x(to,)))  for t1 > to.

STEP 7. Assume that ¢ is so small that problem (4.11)—(4.14) is locally solvable in the
interval (0,1) and estimate (4.67) holds. Then estimates (4.74), (4.75) and (4.86) imply

(487) Hv(z,t)||w21+“(()t) S Cog, te (th 1]
Moreover, estimates (4.71), (4.69) and (4.86) give
(488) ||R(w,t) - R0||W25/2+a(5,1) < c10¢, t e (fo, 1]

Estimates (4.87)—(4.88) enable extending the solution to the interval (1,2] if ¢ > 0 is
sufficiently small. Then it is shown by induction that in view of the estimates and relations
occurring in Steps 1-6 the solution can be extended for t > 0. m

In [Sol9] Solonnikov considers the same problem as in [Sol6], but he also studies the
asymptotic behaviour of the solution as ¢ — oo. He proves that under the assumptions of
Theorem 4.8 and assuming that SQ vo d€ = 0, the solution of problem (4.1)-(4.5) tends
as t — oo to a quasi-stationary solution of this problem which corresponds to a rotation
of the fluid as a rigid body around the axis parallel to the vector m = SQ(UO x &) d¢. The
free boundary then tends to an equilibrium figure.
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The two-dimensional case is analyzed in detail and it is shown that in this case the

equilibrium figure is the circle Soo = {2 : |z| = Ry}. Moreover, it is proved that
vV — Voo = a(T1, —T2), p—>poo=aj|x|2—|—i—a—2Rg as t — oo,
2 Ry 2

where a = 2b(TR§)™t, b = SQ vo - (€2, —&1) d€. The above convergence is uniform in z.
Moreover, the first derivatives of v with respect to x tend uniformly to the first derivatives
of Voo

The case when the self-gravitational force exists, i.e. when k > 0, is considered in
[Sol10]. The method used to prove global existence in this case is the same as for the case
k = 0. Under the assumption that f = 0 the momentum conservation law (4.72) holds,
and the energy conservation law takes the form

d 9 dzdy _
(4.89) dt( S |2 dz + 20S,| — é é |x_y) +vE(v) = 0.

Under the assumptions of Lemma 1 from the proof of Theorem 4.8, equality (4.89) and
the above-mentioned Lemma 1 yield the following estimate analogous to (4.74):

o~

(4.90) | [v)2 dz+(Cro+Cak) | (R(w,t)— Ro)?dw+Cs0 | [VR(w,t)2dw+v | E(v) dt

£ St S1 0
< | lvo[? dé + (Cao + C5k) | (R(w,0) = Ry)?dw + C | [VR(w,0)2dw,
Q Q st
where C; (i = 1,...,6) are positive constants; V is the gradient on S*.

It is proved that in this case estimates (4.75) and (4.86) also hold with ¢ replaced
by ¢ = q — kU, — 20/Ry + (4/3)7kR? and with the right-hand sides replaced by
CoA= ([ullaaon +HO+ B—Rol La(s x(toir 01V Rl s xt0.17) anl Co(ul o
+[|R = Roll £, (51 x (to, 1)) + IV R Lo (51 x (t0,7))» Tespectively. Thus, estimate (4.86) has the
following form in this case:

(4.91) sup ||U\|W2+a(g)+ sup ||Ut\|L2<rz)+ s 14" llwr+e (o)
t1<t<T
< Cs([lullzo(q 0))+||R R0\|L2<51x(to, +||VR||LQS1 (to,7))  for t1 > to.

Therefore, the proof of global existence in this case can be done in the same way as in

the proof of Theorem 4.8. Thus, under the additional assumption that S o Vod§ =0 the

assertion of Theorem 4.8 holds with p replaced by p’ = p — kU — 20/ Ro + (4/3)mkR}.
Moreover, it is proved in [Sol10] that

a?, 5 5 20

_(x1+$2)+R—0

4
5 fgkang

"u(:c,t)fang(:c) — 0, R(w7t) - T(w)a p(xvt) - poo(x):
as t — oo and

Qoo ={z € R®: |z| < r(z/|z])},
where n3(x) = (22, —21,0); a = b(SQ (22 + 23)dz)~1; b is such that SQ(UO x £)d¢ =
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(0,0,b); r = o(w) + Ry and p is the solution of the equation

o 4 dw’
(4.92) R (Ao +20) - kRS0 + kRY S§ o(w') oo TRk ek = F.
In (4.92),
g 20|Vo|? a® 3, o 2
F=—(fAo+Vf- Vo) ———= — -1 (0] +w
RO (f f ) \/g(’f’ + \/g) 2 ( 1 2)
4, ¢ 2o
—ko(Uso(rw) — §7TR0) - kr(SJ(l - s)@U(rw, s)ds

and k; is defined by the equation

b(4nRo +Qle)) = § Fdo — 7Qlel — 5 kF3Qlo)
Sl
where Q[o] = fRio SSI 0%dw — ﬁ 831 o’dw.

Moreover, in the above formulas V is the gradient and A is the Laplacian on S!;
g=r"+|Vr’, f = 2Roo + 0 + |Vol*)/(V§(Ro + /9)), Uss(w) = §, o —yl™"dy,
Ulwss) = § o — 472 dy, 2(s) = {la] < Ru(a/lal)}, Re = Ro + so.

As before, the above convergence is uniform in x or w. Moreover, the first derivatives
of v with respect to x tend uniformly to the first derivatives of v.,, and the first and
second derivatives of R tend uniformly to the first and second derivatives of r.

In [Sol10] Solonnikov examines the solvability of equation (4.92). It is shown that
if b is sufficiently small then there exists a solution ¢ € C°(S!) of (4.92). Moreover,
this solution is unique in the class of functions o € C?(S!) satisfying the inequality
supg1 |o| + supg: |Vo| < §Ry with sufficiently small 6 and some other conditions which
are consequences of the conservation laws.

Paper [Sol14] is devoted to the case of o depending on the temperature. The global
solvability of problem (4.31)—(4.37) in Holder spaces is proved. More precisely, Solonnikov
proves the following theorem.

THEOREM 4.9. Let 2 be a domain defined by the inequality |z| < R(w,0), w = z/|x| with
R € C3T(SY), a € (0,1), let the assumptions of Theorem 4.6 be satisfied and assume
that f = 0. Moreover, assume that

lvollc2t+e 2y + 100l c2te (@) + | R(+,0) — Rol[cata(sty < e.

Then for sufficiently small € there exists a solution of problem (4.31)—(4.37) with the prop-
erties: R € C3TB+a)/2(gl x (0,00)), Ry € CO?T*C+a)/2(gl x (0,00)), v €
CHa2+e)/2(Q®) Vp € C4/2(Q™), p € C1T(+0)/2( 350y " yhere Q° = {x € (2 :
t>0}, X ={xeS :t>0}

The general scheme of proof is the same as in the case of o = const. The crucial point
as usual are the conservation laws and their consequences. Moreover, assuming that the
solution of problem (4.31)—(4.37) is defined for ¢ € (0,%9 + 1) (where to > 0), estimates
for higher order derivatives of w, s, (where w = v — Voo, § = P — Poo, Voo and poo are the
same as above) are derived in the interval (g +1/2,%0+ 1) in terms of lower order norms
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of these functions in the interval (¢o,tp+1). To obtain these estimates Solonnikov uses the
theory of parabolic initial-boundary value problems developed in [Soll] and [LadSolUr],
estimates from [Mog] and [MogSol] and interpolation inequalities.

5. Three-dimensional free boundary problem for a drop
of a compressible fluid

5.1. The motion of a compressible viscous barotropic fluid. This section is de-
voted to the motion of a fixed mass of a viscous compressible barotropic fluid bounded
by a free surface. Such a motion is described by the following system of equations with
boundary and initial conditions:

(5.1) olve + (v-V)v] =divT(v,p) = o(f + kVU), ze 2y, te(0,T),
(5.2) ot +div(pv) =0, x €, te(0,T),
(5.3) TR — cHn = —po(z, t)7, z €S, te(0,T),
(5.4) v =—¢/|V, x €8, te(0,T),
(5.5) v(z,0) = vo(z), o(z,0)= go(x), x € =10,

where 2, C R? is a bounded domain at time ¢ which is unknown together with the
velocity v = v(z,t) and the density ¢ = g(x,t) of the fluid, T" > 0. Moreover, p = p(p)
is the pressure, U is the self-gravitational potential which has the following form in this
case:

(5.6) U(x,t) = |

£2¢

o(y,t)
lz—yl

and H is the double mean curvature of S; = 92, given by (4.7).
As before, by T = T(v, p) we denote the stress tensor which in the case of compressible
fluid has the form

(5.7) T(v,p) = {T3}ij=1.23 = {=pdi; + 20555 (v) + (v — p)di; div vl j—1.2.3,
where as in Section 4, S(v) = {S;;}i j=1,23 is the velocity deformation tensor, I =
{6:j}ij=1,2,3 is the unit matrix, and x4 and v are the constant viscosity coefficients such
that v > (1/3)p > 0.

The remaining quantities in problem (5.1)—(5.5) have the same meaning as in problem
(4.1)—(4.5) of Section 4.

Since the fluid is compressible, from the continuity equation (5.2) and the kinematic
condition (5.4) it follows that the total mass of the fluid is conserved, i.e.

(5.8) | o, t)de = | 00(€) d¢ = M,
2 2

where M is a constant.

5.1.1. Local existence. Local existence theorems for problem (5.1)—(5.5) can be found in
[SolT1, SolT2, StZaj, Zaj2, Zaj3, Zaj5]. In all these papers in order to prove the local
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existence of solutions, problem (5.1)—
are the initial data of problem (4.9).

Let u(§,t) = v(Xu(§,1),1), (€, 1) = o(Xu(&, 1), 1), Mu(&, 1) = N(Xu(€ 1), 1), qo(&,t) =
po(Xu(&,t),1), g&,t) = f(Xu(&,t),t), where X, (&,t) is given by (4.10). Then problem

(5.5) is rewritten in Lagrangian coordinates £ which

( 1)—(5.5) takes the following form in Lagrangian coordinates:
(5.9) nuy — pN o — vV, Vy - u+ Vup(n) = n(g + kV,U,)  in 27,
(5.10) N+ 1V -u=0 in 07,
(5 11) Tu(uap)ﬁu - UAu(t)Xu = *QO(gat)ﬁu on ST?
(5.12) uli=0 = vo, Nli=0 = 00 in £2,
where
n',t) ,
U,(&,t) = Ix, (e dE',
€0 =) s xa@ e

Tu(u,p) = —pI + Dy(u)
= {—p(n,0)0:; + (02, Ex0¢, uj 4 0z, E gy ui) + (V — )05V - U} j=1,2,3;
Vu, 4y and &, are defined in Section 4.
A local solution of the problem with the lowest possible regularity in the Ly-approach

is obtained by Solonnikov and Tani [SolT1, SolT2]. In [SolT2] they prove the following
theorem.

THEOREM 5.1. Let a€(1/2,1), SEWY*T™ v, e WEH(0), 0o e Wt (£2), infec 00(€)
> 0. >0, p € C3(Ry) and assume that f has continuous derivatives of order one and
two, po is three times continuously differentiable with respect to x and that f, f, satisfy
the Holder condition with exponent 5 > 1/2, and po, por satisfy the Lipschitz condition
with respect to t. Moreover, assume that the following compatibility condition is satisfied:

—p(o0)7o + (v — w)(V - vo)g + 2uS(vo)p = (0 HMg — pono) =0 on S,

where Ty is the unit outward vector normal to S. Then problem (5.9)—(5.12) has a unique
solution (u,n) € W% 1+Q/Q(.QT*) xC([0,T); Wt () nw, ™ 1/2+a/2(QT ) on a finite
time interval (0,T*), the length of which depends on the data, i.e. on norms of f, po, vo,
00 and on the mean curvature of S.

Sketch of proof. First, the following linear problem is considered:

(5.13) us — 0p H(pAu + vV divu) = F in 27,

(5.14) wlloS(u)mg = Ioby on ST,
t

(5.15) Mo - D(u)mg — oTg - ASSudt' =by, onST,
0

(5.16) Ult—0 = up in {2,

where D(u) = 2uS(u) + (v — p) divul, Iy is defined in Section 4. A solvability result
for the above problem is obtained. The method used to obtain the existence of a unique
solution for problem (5.13)—(5.16) is similar to the methods from [Sol5, Soll1, Sol13].
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Next, the following linear problem is studied:

(5.17) us — 05 H(uV2iu+ vV Vy -u) = F in 27,

(5.18) wITo I, Sy (w) Ty = ITpby on ST,
t

(5.19) o - Duy (W) — 070 - A () {udt’ =y on S7,
0

(5.20) ult=0 = ug in £2,

where I1,,D = D=7y (T D), Dy (1) = 20uS (w)+ (v —p) Vi ul, Sy (u) = ${0s, 60, uj+
O, E10e, Ui tij=1,2,3, T (&, 1) = (X (&, 1), 1) and X, (€,1) = €+ SO w(&, ) dt.
By using the solvability result for problem (5.13)—(5.16) and the Banach fixed point
theorem the following lemma is proved.
LEMMA. Let a € (1/2,1), S € VV22/3+067 00 € W3T%(0), 00 > Co > 0 and suppose that
TV g < 5,

where § > 0 is sufficiently small. Then for arbitrary F € W;’Q/Q(QT), ug € Wit (0),
by € Wyt /BOPTVASTY and by = o + o §y Bdt' with b € Wyt /3 2TVA(T) B e
V[/Qa_l/Q’O‘/Q_l/4 (ST) satisfying the compatibility conditions
pdloS(uo)mo = Ioby|i—o  on S,
Mo - D(ug)nig = b'|1=o0 on S,
problem (5.17)—(5.20) is uniquely solvable in W2T*(02T) and

24a,l4+a/2 a,a/2
(5:21) ull g™ 2 < eV G + uollyyzee )+ 101l ygsrr2rzars o
‘(a 1/2,a/2— 1/4))

)
+ ||b HWQ+1/2 /24174 (g + JHB‘

)

where ¢(T) is a nondecreasing function of T.

By using the fact that n(£,t) = 00(&) exp(— Sg Vo - udt) = Qo(ﬁ)J)_(i(g ,y and by
applying the above lemma together with the method of successive approximations, the
assertion of the theorem follows. m

Local solvability of problem (5.9)—(5.12) in the case of 0 = 0 and k > 0 is studied
by Strohmer and Zajaczkowski [StZaj]. By a method diffrent from that of Solonnikov
and Tani [SolT2] they obtain a local solution which is more regular than the solution
ensured by Theorem 5.1. Strohmer and Zajaczkowski consider first an auxiliary linear
problem in a bounded domain and prove by the Galerkin method the existence of a weak
solution of this problem. Next, they increase the regularity of the solution by applying
some regularization techniques.

Local solvability of problem (5.9)—(5.12) is also examined in papers of Zajaczkowski
[Zaj2, Zaj3, Zaj5], in various function spaces. All these papers are devoted to the case
with the absence of the self-gravitating force, i.e. kK = 0.

In [Zaj2] under the assumptions that oo € Wi (£2), vo € WiTH(2), f € CH(R? x
(0,T)), S e W2 1>3/2,1¢Zand 1/2 =n+3/4+k neNU{0}, e (0,1/4)
it is proved that there exists a unique local solution (u,n) of problem (5.9)—(5.12) in the
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case of o > 0. This solution is such that u € WleZ’l/ZH(QT), nE€ Wé;l’l/zﬂ/?((ﬂ) N
o((0, 7): 11+ (22).

In [Zaj5] using the results of [Zajl] Zajaczkowski proves local existence and uniqueness
of a solution (u,7) of problem (5.9)(5.12) such that u € Wy*(27), n € C([0,T]; I$(£2)),
ne € La(0,T;W3(2)), n € La(0,T; W4 (£2)). This result is obtained for o > 0, v,
00 € WE(2), 1/00 € Loo(£2), S € Wi/? and g € W21 (0T).

In [Zaj3] local solvability of problem (5.9)—(5.12) with o = 0 in similar function spaces
to those in [Zaj2] is examined.

5.1.2. Global existence and stability
The case of 0 = 0, k = 0 and pg = const. There are only two papers concerning the
case of 0 =0, pp = const and k = 0, i.e. [ZZaj10] and [Zaj3]. In both, the existence of a
global solution sufficiently close to an equilibrium state is proved. Moreover, the stability
of this equilibrium state is shown.

To define an equilibrium state consider the equation

(5.22) p(e) = po,
where p € C3(R,) and p’ > 0 for o > 0.

DEFINITION 5.1. Let f = 0. By an equilibrium state we mean a solution (v, ) of problem
(5.1)—(5.5) such that v = 0, p = . and 2, = (2, for t > 0, where g, is a solution of (5.22)
and {2, is a domain of volume |§2.| = M/ ..

Before formulating the main result of [ZZaj10] some notation should be introduced.
We set
Po =P —DPoy, 0Oo =0 0Qe; 00 = 00— Qe
2 2
p(t) = lv()]3,0,0, + oo ()20,0,

D(t) = |U(t)|§,1,(zt + HQU(t)HI%VQZ(Qt) + ||Qot(t)||12/v22(()t) + ||Qott(t)‘|%/v21((2t)a
t
(1) = {(v.07) s 9(t) <00}, WMD) = {(v.07): sup (1)) + [Pt d < oo,
- = 0

where

(5.23) ()

k@ = Y 0 Ollwi-sq)» 1€NU{0}, Q C R
i<l—k

Then the global existence theorem proved in [ZZaj10] is as follows.
THEOREM 5.2. Let f =0, p € C3(Ry) with p' > 0 for 0 > 0, (v, 05) € N(0), S € W2
and let the following compatibility condition be satisfied:
9{[D() — (ple) — po)}l—0 =0, i=0,1, ons.
Moreover, let the following assumptions be satisfied:
(5.24) ¢(0) <&
(5.25) lvoll3 ) + llesoll7, () < 6
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I > 0 is a constant such that p. —1 > 0 and 01 < 99 < 02, where 91 = 0e — 1, 02 = 0 +1;

\ oovo - (a+bx¢&)de =0,

Q
where a and b are arbitrary constant vectors. Then for sufficiently small constants € and
d there exists a global solution of problem (5.1)—(5.5) such that (v, 0,) € MM(t) fort >0,
S; € W25/2 fort >0 and

o(t) <ce fort>0,

where ¢ > 0 is a constant depending on 01, 02 and the form of p.

Sketch of proof

STEP 1. The first step is to derive the following inequality for the local solution to the
problem considered:

(5.26)  lull%ay, + 70113,
< (D) (l2oollivz 0y + lvollfvzco) + w0 @) + llue (017, (o))
where the spaces Ar o and Br g, are given by (5.79) and (5.80) below; T is the time of

local existence; 11 is a positive continuous increasing function of T. Inequality (5.26) is
derived by using Lemmas 3.5, 2.3 and Theorem 4.2 of [ZZaj9]. From (5.26) it follows that

t
(5.27) sup (') + S@(t’) dt' <c1p(0) fort <T,
0<t'<t ]

where ¢; > 0 is a constant depending on 7' and SOT Hv||€v23(91) dt.

STEP 2. For a sufficiently smooth local solution the following differential inequality can
be proved:

t
-
(5.28) d—f +c® <c3 (<P+S ||”||12/vg(nt/)dtl)
0

t
2
(14 (e I0s 0, ) |0+ callpoldyo)  fort<T.
0

where ¢; (i = 2,3,4) are positive constants depending on g1, 02, v, u, Sto H’UH%/Vg(Q )dt',
t/
|S|lyy5/2, T and the constants of imbedding theorems and Korn inequalities. Moreover,
2

@ is a function satisfying
(5.29) cso(t) <p(t) < cep(t) fort<T,
where c5, cg > 0 are constants depending on g1, g2 and the form of p.

STEP 3. Inequalities (5.27)—(5.28), assumption (5.24) with e sufficiently small and the
argument of Lemma 6.2 of [Zaj3] used to estimate the norm ||pg\|%2(9t) imply

(5.30) ?(t) < erp(0)e st fort < T,

where the positive constants ¢; > 1 and cg > 0 depend on the same quantities as cs,
C3, C4.
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STEP 4. The following lemma is proved.
LEMMA. If estimates (5.24) and (5.25) hold then
10117, (00 + 1001000 < coe” 4+ croe11d  fort < T,

where c19 and c11 are positive constants depending on 01, g2 such that

1 2 2 1 2 D1 o
o Wl el <3 | (074 52t ) o

< co(|[vlZ, 00 + 0ol ,00,)  fort <T;

p1 1S a positive function such that p, = (0 — 0v) S(l) ' (0e +8(0— 0e))ds = p1os; cg > 0 is
a constant depending on the same quantities as ca, c3, cq4. Moreover,

(5.31) Ipsll7,(,) < cr2(cog” + cr0¢116),
where c12 > 0 is a constant depending on 01, g2 and p.

STEP 5. Assumptions (5.24)—(5.25) and inequalities (5.27), (5.28), (5.31) yield, for suffi-
ciently small o and 9,
(5.32) P(t) <cee fort<T.
Moreover, by (5.29)

gp(t)gc—GE fort <T.

cs

STEP 6. The solution is extended step by step, first from [0,7T] to [T, 2T], next from
[T,2T] to [2T,3T] and so on. Estimate (5.32) allows us to extend the solution to [T, 2T7.
In order to extend the solution onto R, we have to verify step by step that both the

volume and shape of the domain {2; do not change much in time. To do this inequality
(5.30) is used. m

In an earlier paper [Zaj3] Zajaczkowski proves global existence of a solution close to
the equilibrium state determined by Definition 5.1 in the special case of p = ap?, where
a > 0, v > 1. Global existence and stability of the equilibrium state is proved in [Zaj3]
in spaces of functions of a greater regularity than in [ZZaj10]. More precisely, under
assumptions appropriately stronger than those of Theorem 5.2 it is proved that there
exists a global solution (v, ) of problem (5.1)—(5.5) such that (v,p,) € M(t) for t > 0,
S € W;/Q for ¢ > 0, where M(t) = {(v,ps) : SUPg<y<; P(t') + Sg &(t')dt’ < oo}, and
o(t) = [0(O)2 g, + IPo (D005 D) = [0(O) 1.0 + P (D) E 0.0

Although the proof in this case is also based on an appropriate differential inequality
which is similar to inequality (5.28), it is much more complicated than the proof of
Theorem 5.2.

The case of 0 > 0, k = 0 and pg = const. There are two papers concerning global
existence in this case, namely [SolT3] and [Zaj4]. Although the authors of the two papers
were working on them at the same time, the paper of Solonnikov and Tani was published
two years earlier, in 1992. Since the methods used in these papers are different, both of
them will be described here.
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First, we present the paper of Zajaczkowski. As in the case o = 0, assuming that the
initial data are sufficiently close to an equilibrium state it is proved in [Zaj4] that there
exists a global solution which remains sufficiently close to the equilibrium state at all
times. This result is obtained under the assumption that pg is a constant.

The definition of the equilibrium state introduced in [Zaj4] is as follows.

DEFINITION 5.2. Let f = 0 and let a functional dependence p = p(p) be given. By an
equilibrium state we mean a solution (v, g, {2;) of problem (5.1)—(5.5) such that v = 0,
0 = Oc, §2; = §2. for t > 0, where g. = M/|2.| and (2, is a ball of radius R,, which is a

solution of the equation
M 20
p = — +po.

aTR3 R,
Below, the following conditions will be assumed:
(5.33) f=0, po>0,
(5.34) p=ag’, a>0, ~v>1.

An essential role in the proof of global existence is played by the following lemma which
collects the conservation laws for problem (5.1)—(5.5).

LEMMA 5.1. Sufficiently smooth solutions to problem (5.1)—(5.5) satisfy

d 1,
53 4| | (ot eh(@) s i+ i
—I—gE(v) + (v — u)HdivaQLQ(Qt) =0 (the energy conservation law),

where E(v) = Zijzl(vmj + vjz, )% dx, | S| is the surface area of Sy and h(p) = S%d@.
Moreover,

d
(536) \ov-(a+bxa)dr=0

2 _
(the momentum and angular momentum conservation laws),

where a, b are arbitrary constant vectors, and
d
(5.37) s S oxdr = S ovdx.
2 2
The energy conservation law (5.35) yields

| =

1 — _
(5.38) 3 S ov? dx+S V(o) dx+pol$2¢[+0|S¢| < S 0005 df+s Y(00) d§+po|2|+0|S| = d,
2 2 (% 0

where 9(0) = ﬁg”.
Multiplying (5.38) by [£2;]7~! and using the Hélder inequality together with (5.8)
gives

1
y(1 ) + 512§ oo de + o (1S — amBD| 2P

o,
+7i l (If?t\”_l ét o dx — (ét de>w) <0,
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where
aM”
y—-1

(5.39) y(z) = pox” + oz V3 —dz "t 4

z = |0, = (36m)1/3, R, = (2| )1/3. Using the properties of the function (5.39) it is
shown that under some assumptions on the data pg, o, d, M, =, the volume of {2, does
not change much in time. In fact, the minimum points of (5.39) are determined by the
equation

(5.40) v () = [poye + co(y — 1/3)z*> —d(y — 1)]z7"2 = 0.

Viete’s formulas imply that there exists a unique positive root z¢ of (5.40).

To calculate y(xg) equation (5.40) is rewritten in the form

(5.41) w? 4+ 3qw + 2r = 0,

co(y—1/3 d(y—
+poy g = =, = —vo, po = LG vy = LD Let

where w = z1/3

D =7?+¢* = vy(vo — 2ud).
One of the three possibilities holds:

(5.42), if vy € (2u3,00) =I;, then D >0,
(5.42)4 if vy € (ud,2p3) = I,  then D <0,
(5.42)3 if vp € (0, 3] = I, then D < 0.
For vy € I; (i = 1,2, 3) the following functions %; are defined:
(5.43), coshipy = vo/ud — 1, where vy € I,
(5.43) coso = vo/us — 1,  where vy € I,
(5.43)3 coss =1 —vo/us,  where vy € Is.
Now, let (5.42); be satisfied. Then

~1, 3 U1 S0y
(5.44), y(zo) = — (v = 1) 'popy’ (2 cosh 3 1)

. |:2(COSh’(/}1 +1) - v-1 (2 cosh L 1) 2}
v—1/3 3

+aM7/(y = 1) = =Py (o, Y1, po,y) +aM? /(v — 1)
= - 451(#0, wlap()a Y, a, M)
Let (5.42)2 be satisfied. Then

P 3(v—1)
(5.44)- y(zo) = — (v — 1) popg’ (2 cos ?2 - 1)
2
2o 0 g (2o 1) |

+aM" /(y — 1) = =Ps(po, 2, po,7) + aM” /(v — 1)
- ¢2(M07¢27PO7%G,M)~
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In the case when (5.42)3 is satisfied, y(xo) is given by

(v=1)
Gt yleo) = — (=1 g [2oos (3 - 2 ) -]
Y

o2l 5) T}
+aM"/(y — 1) = —=Ps(po, 3, po,7) +aM” /(v — 1)

= — P3(po, V3, pos v, ay M).
The following lemma holds [Zaj4, Lemma 2.2].
LEMMA 5.2. Assume that the parameters pg, vy, Do, ¥, 6, M satisfy one of the relations:
(5.45); vo € Ii; 0 < Di(po, i, po, v, a, M) < do,
where i = 1,2,3, I; is defined by (5.42); and @; is determined by (5.44);. Then there exist
constants c¢1 and co independent of dy such that

sup yar |£2,] < 16, sup v S 0" dx < cy9,
2

where T is the time of existence of the solution of problem (5.1)—(5.5), 62 = ¢dy. Moreover,
if (5.45); is satisfied then

192:] — Q| <36 fort <T,

where
3 3 3
Q1 = 1 2cosh 2L -1 . Q2= 2c0s L2 1 . Qs =pd|2cos T_¥s\_4| "
3 3 3 3
Let |Q*| = maxt§T|Qt|, |Q*‘ = HliIl,5§T|.Qt‘7 @* = maxy<r Sﬂt 07 dz, and @* _

ming<p SQt oY dx. Lemma 5.2 implies that [£2%] — [£2,] < ¢16 and E* — 1), < 6. Let
|S,.| = 47 R2, where R, is determined by (47 /3)R2 = |(2,|. Then |S;|—|S.| > 0. Therefore,
estimate (5.38) yields

1 9 a —
(646) 5 §ov?det (] o dw =) +pollul - 12:]) + (1S - 15.)

1

<gJenider 2y (Vo3 de = 0.) +po12 = |2:1) + o(1S] - |5.).
0

In order to formulate the main result of [Zaj4] we set
p(t) = () 0.0, + Pe(®)30.0 + 01315, = o) +0(t)3 15,
where notation (5.23) is used. To prove global existence Zajaczkowski assumes that
(5.47) P(0) + [v(0)[F 0.0 <&,
where € > 0 is a sufficiently small constant; $(t) is a function satisfying the estimate
cap(t) <P(t) < csp(t) fort <T.

In the above inequality c4, ¢5 are constants depending on ¢, = ming ;<7 e, o(z,t),
0" = maxXycicrep, 0(7,t) and T is the time of local existence of the solution.
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The main result of paper [Zaj4] is the following theorem.

THEOREM 5.3. Let the assumptions (5.33), (5.34), (5.47) and the assumptions of Lemma
5.2 be satisfied. Let the constant parameters v, p,o, M, a, 7, po, |12],|S]| of problem (5.1)—
(5.5) be such that (5.45); implies the smallness of |Sy — Sy| for every t,t' > 0 and
let

(5.48) S 00vg dé < 61

2
Assume that oo € W3 (£2), vo € W(82) are such that

Voogds =0, oo~ (a+bx€)de=0,
2 2

N | =

where a, b are arbitrary constant vectors. Assume that S € W24+1/2, S is described by the
equation

€l = R(w), wes,
(St is the unit sphere) and {2 is diffeomorphic to a ball. Moreover, let
HH(-,O) + 2/Re||12/v22(51) <ei.
Assume also the following compatibility conditions:
Dg@f(’ﬂ‘ﬁ— oH7T + pomt)|i=0,s =0 for |a| +i < 2.

Then for sufficiently small dq, 01, €, €1 there exists a global solution of problem (5.1)—(5.5)
such that (v,p,) € M(t) fort >0, S; € VV;LH/2 fort >0 and

o(t) <e, HH(~7t)+2/Re||‘2/V22(Sl) <e fort>0,

t
where M(t) = {(v,ps) : SUPg<y<; Po(t) + So B()dt! < oo}, B(t) = [(b)2, o +
|p0(t>|§,0,(2ta Po =P — DPo-
Sketch of proof
STEP 1. Assuming that there exists a sufficiently regular local solution of problem (5.1)—

(5.2) and using Lemmas 5.1-5.2, assumption (5.48) and inequality (5.46), the following
estimate is proved:

(5.49) ||’UH%2(Qt) < 43,

where d3 = 03(dp,91) and 95 — 0 if 69 — 0 and é; — 0. Moreover, using some other
consequences of the conservation laws it is proveg that S} is described by the equation
|z| = R(w,t) for t < T, w € S, where R(w,0) = R(w) and

(5.50) sup [IR(1) = Rellf 1) < .

where d4 is a sufficiently small constant.

STEP 2. For a sufficiently regular solution of problem (5.1)—(5.5) a differential inequality
similar to (5.28) (with functions ¢, ¥ and & defined above) is derived.
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STEP 3. Local existence of a solution to problem (5.1)—(5.5) is proved. This solution is
such that (v, p,) € M(t) for t < T and satisfies
t
(5.51) () + \B(t') dt’ < co(e+e1 + da),
0
where €, €1 and 4 are the constants occurring above.

STEP 4. By using (5.49)—(5.51) the following estimate is derived:
(5.52) 1Pall2c00) < .

where 5 = 05(e, €1, 03,04) is an increasing function of its arguments.
STEP 5. The next step of the proof is to increase the regularity of the local solution.

Namely, it is shown that

2 2
(5.53) S loliws e, < clt)llvliyes o),

where T is the time of local existence and t; > 0.

STEP 6. By using the differential inequality obtained in Step 2, estimates (5.49)—(5.51)
and assumption (5.47), it is proved that

(5.54) o(t)<e fort<T.
Next, using estimates (5.49) and (5.52)—(5.54) yields
[H (1) +2/Rellfyz(s1) S €1 fort <T.
STEP 7. The solution is extended step by step to all ¢ > 0 by using the estimates derived
in Steps 1-6. =m

Notice that Theorem 5.3 is concerned with the case pg > 0. The case pg = 0 is also
considered in [Zaj4] and a global existence and stability theorem analogous to Theorem
5.3 is proved.

The paper of Solonnikov and Tani [SolT3] is concerned with the same problem as
[Zaj4] but they examine global solvability in the anisotropic Sobolev—Slobodetskii spaces
used in [SolT2] to prove local existence. Thus, they obtain a global solution of problem
(5.1)—(5.5) which has the lowest regularity in the La-approach. Paper [SolT3] is written
in a sketchy way. The main result of this paper is the following theorem.

THEOREM 5.4. Let ¢ > 0, k = 0, f = 0, po = 0. Suppose that the assumptions of
Theorem 5.1 are satisfied and that S is defined by the equation

€l =R(w), w=¢/[¢],
where R € W25/2+a(51). Assume also that
HUOH?/V;‘JFI(Q) + HQO - QeH?/V;H(Q) + ||R - Re”?/{/;*s“(sl) <e<l1,
where g, and R, are two positive constants satisfying the relation
p(oe) = 20/Re.

Moreover, let p'(0e) — p(0e)/(30e) > 0 and let assumption (5.58) below be satisfied with
sufficiently small 1. Then the time of local existence is an increasing function of 1/e
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which tends to infinity as € — 0. Moreover, if € is sufficiently small, then the solution
may be extended to the infinite time interval t > 0. The free surface Sy is determined by
the equation

|z — zo| = R(w, t),
where zo = Vi, V. = ({,00d8)"" {, 0ovo d¢, R(-,t) € W2a+5/2(5’1) for any t > 0 and
R(w) = R(w,0). As t — oo, the solution tends to a quasi-stationary solution of problem
(5.1)=(5.5) corresponding to a rotation of liquid as a rigid body about an axis which is

parallel to the vector SQ 0olvo X €] d§ = m and which is moving uniformly with a constant
speed V.

The existence of a quasi-stationary solution of problem (5.1)—(5.5) corresponding to
the rotation of the liquid as a rigid body about an axis which is parallel to the vector m
(it is supposed that it is the x3-axis) is proved in [SolT4]. The authors look for a solution
(Voo 00y 200) Of equations (5.1)—(5.2) independent of time which has the form

'Uoo($) = 5(1’2, *931,0) = 5[63 X f], e = 03,
where 3 is a constant;
1 (B e
Oco(z) =P ?\m\ + N,

where P(p) = Sil @ds, 01 > 0; N is a constant, ' = (z1, z2,0) and 2., is a domain

with boundary S, given by the equation
|| = Roo (z/|2]).
The unknown quantities 8, N and R, are determined by the boundary condition on S,
ie.
—1 ﬁQ /12 _
(5.55) oHo +p| P 7|ac “+N || =0,
where

1 1 1 2
Ho=|— AR +V -VRo — R )
> (Rm VR +[VR.2 /R +|VR>?  RLF|VR]®

is the double mean curvature of S.; V is the gradient and A is the laplacian on S*. More-
over, the above quantities are determined by the equation for the angular momentum,
ie. §, 00o(voo X x)dx =m = 00(vo x &) d€, which implies

(5.56) B\ 12/ Pos (@) de = m3 =,
oo

and by the equation for the total mass of the liquid
(5.57) | oc(@)dz =M,
oo

where M = SQ 00(§) d€.
The main result of paper [SolT4] is the following theorem.
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THEOREM 5.5. Let p(0) be a positive increasing function of class C*To(Ry), 6 € (0,1)
and let p'(0e) — ip(ge) # 0. For arbitrary v and M satisfying

(5.58) Y[+ M = M| < &1

with sufficiently small €1, there exists a unique solution (R, 8, N) € 6’2+5(Sl) xR xR
of (5.55)—-(5.57) satisfying the estimate

[Roo — Rellcotssny + |8 + [P7HN) = g < C(|y] + M — M,]),
where M, = %’/TREQQ, C > 0 is a constant.

In the above theorem C2+9(S1) denotes the subspace of C2+9(S1) consisting of rota-
tionally symmetric functions (i.e. functions depending on |w| = \/w? + w3 and w3) which
are even with respect to ws.

Now, we present a sketch of proof of Theorem 5.4.

Sketch of proof

STEP 1. Inequality (5.21) yields the following estimate for the local solution of (5.1)-
(5.5):

1,2t gy < T 000 51 gy 00— 06l 100 g+ IR0 = Bl 1),
where C1(T') is an increasing function of 7'.
STEP 2. A consequence of the conservation laws (5.35)—(5.37) and (5.8) is the estimate

1
(5.59) 3 S ov® dx + o0 S (IR — Re|* + |VR?) dw + ¢3 S (0 — 0¢)* dx
2 St 2

t
/1/ .
+ [gE(v) + (v —p leU”Z(@)] dt’
0

< | 0ovd de + cs0 | (|R(w,0) = Re|* + |[VR(w,0)[) dw + c6 | (00 — 00)? dé,
02 St 02

where the constants ¢; (i = 2,...,6) are independent of ¢.

STEP 3. By using the Korn inequality, the following estimate is derived:
(5:60)  lwlzan < Al +eshl( | 1R = Recldo + | I7lda),
St 2

where w = v — Voo, T = 0 — 0co. Moreover, by applying the methods from [Sol10], one
can prove

(5.61)  I7llwz (o) TIIB=Reollwy(s1) < colllwellr, (e +lwllwz e, + I(w- V)wllL,,))-
The constants ¢z, cg, ¢g in (5.60)—(5.61) are independent of v and ¢.

STEP 4. In order to obtain the estimate which plays a crucial role in the proof, new
coordinates y are introduced. They are connected with the coordinates x by the formula

(5.62) z(y,t) =y(1+2(y,1)), y€ Br ={y: [yl <R},
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where &(y,t) = (1/R.)(R((y/|y|),t) — Re) on the sphere Sg, : |y| = Re and for y € Bpg,,
d(y,t) is an extension of the above function such that

||q)(a t)||W§’+°‘(BRe) < CIO||®("t)||W25/2+O‘(SR€) < cllHR(':t) - R6||W25/2+0‘(S1)-
The transformation defined by (5.62) maps Br, onto (2.
Let w and 7 be w and 7 respectively, written in y coordinates. Then the following

lemma holds.
LEMMA. Let (w, 7, R — Rs) be defined for 0 <t < T and let
T
N2 [0, TR — Roo) = |0]|? 2ioisae + S 1712 140 dt+ sup [|@]2,1 40
o, T T 00 w2 (BE ) W, (Bg,) te(0,T) W2 (Bre)

~112 ~ 92 )
+ sup [T o + sup ||7¢llye + sup |R—R .
te(O’T)H v+ (B, oo I7ellws (5s,) te(O’T)H sollfyz+e(s)

2
La(oTswg/ e (s1)) =
where 0 is a small positive constant. Then
ND%,T[,[D7,7\:7R - ROO] < CIQ(HUOH%/V;-W(Q) + ”QO - Q€‘|$4121+Q(Q) + HR(vO) - Re||?/v25/2+a(51))7
where c12 is a constant independent of T .

The above lemma is proved by using estimates (5.59)—(5.61).

STEP 5. In this step we increase the regularity of v by means of the estimate
L2 < 2
S Oy S A s gy

where ty > 0.

STEP 6. Applying the above inequalities step by step infinitely many times yields the
boundedness of Ny, oW, T, R — Rso]. Moreover, it follows that w, 7 and R — R, tend to

zero ast — 0o. m

5.2. The motion of a compressible viscous heat-conducting fluid. In this section
we consider a free boundary problem for equations describing the motion of a general
compressible viscous heat-conducting fluid. The problem considered is given by the fol-
lowing system of equations and boundary and initial conditions:

(5.63)  olvy+ (v-V)v] —divT(v,p) = o(f + kVU), z € 2y, t€(0,T),

(5.64) o +div(gv) =0, x €y, te(0,T),
(5.65) ¢y (0 +v - VO) — div(32V0) + Opg divv
3
= 5D (v, + 032 = (v = ) (div)? = o, v e, te(0T)
ij=1

(5.66) Tn—ocHn = —pom, x €8, te(0,T),
(5.67) v-m=—¢:/|V9|, r €S, te(0,7),
(5.68)  »#00/0n =0, x €S, te(0,T),
(5.69)  v|t=o = w0, 0lt=0 =00, Oli=0 =160 in 02,
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where as before £2; C R? is a bounded unknown domain at time t; T > 0; o0 = o(z,t), v =
v(z,t) and 6 = O(x, t) are the density, velocity and temperature of the fluid, respectively;
» = x(p,0) is the positive coefficient of heat conductivity; r = r(x,t) denotes the heat
sources per unit mass; § = 0(z,t) is the heat flow per unit surface; py = po(z,t) is the
external pressure. Moreover, in this case the pressure of the fluid p, the specific heat at
constant volume ¢, and the viscosity coefficients v and p are functions of the density
and the temperature, i.e. p = p(p,0), ¢, = ¢,(0,0), v = v(p,0) and p = u(p,d). The
functions ¢, v, i are positive and v > % . The self-gravitational potential U, the stress
tensor T and the double mean curvature of Sy = 92 are given by (5.6), (5.7) and (4.7),
respectively.
In this case the mass conservation law (5.8) also holds.

5.2.1. Local ezistence. Local solvability of problem (5.63)—(5.69) has been examined in
[SVal, S1-S3, T1, ZZajl, ZZaj9, ZZajl11]. Just as in the case of an incompressible fluid and
a compressible barotropic fluid, we write problem (5.63)—(5.69) in Lagrangian coordinates.
Then it takes the form

(5.70)  nuy — divy Ty (u,p) = n(g + &V, Uy) in 27,

(5.711) e +nVy-u=0 in 27,

(5.72)  mep(n, 9)9s — Vi - (Vu0) = =Ipy (1, 9) Ve, - u

3
+ 5 D (G ey + &y - Ogui)? = (v = p)(Vu - w)? = mh in QT

ig=1
(5.73)  Ty(u,p)iy — cAy(t) Xy = —qoTiw on ST,
(5.74)  s(n, ), - V) =9 on ST,
(5.75)  ult=0 = vo, Nli=0 = 00, V|t=0 = bo, in £,

where h(f’t) = T(Xu(§7t)7t)v ﬁ(fat) = H(Xu(gat)vt)’ Tu(uvp) = {—P(Uaﬁ)@j +
11(1; 9) (O, EOg, 5 + O, € 0g, i) + (v(1,0) — pu(n, 0))05; Vi - u}ij=1,2,3, T = {dij }i,j=1,2,3,
divy, Ty (u, p) = {0z; k0, Tuij (U, p) Fi=1,2,3-

The first paper devoted to the local solvability of the above problem in the case of
o0 =0, k=0 and with boundary condition (5.74) replaced by

(5.76) 2Ty - V) + 22,0 = 2,9, on ST,

where s, = (£, t) is the external heat conductivity and ¥, = U.(£,¢) the external
temperature, was the paper of Tani [T1]. In this paper Tani, using the method of suc-
cessive approximations, proves local existence and uniqueness of a solution of problem
(5.70)—(5.73), (5.75), (5.76) in Holder spaces.

In [SVal] Secchi and Valli consider problem (5.70)—(5.75) in the case of constant
coefficients v, p1, » and 0 = k = 9 = 0. They prove local existence of solutions by using
the Schauder fixed point theorem. Therefore, the uniqueness result is given separately.
The existence theorem of [SVal] is as follows.

THEOREM 5.6. Let S be of class C*. Suppose that f € W22’1(B£"), r e W22’1(B£°) for
each R > 0, py € W23’3/2(B£°) with py € W21/4(0,T0;W21(BR)) N Lo (0, Ty; C*(BR)) for
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each R > 0 (where Bg = {z € R3 : |z| < R}), 1/4 < a < 1, p € C3(R?), ¢, € C3(R?),
vo € W3(92), 6 € W3(02), 00 € W3(R2) with mingc 5 00(§) = 0« > 0. Assume that the
compatibility conditions

6?[D(Uo)ﬁo = p(00,00)n0 + qo(&, 0)mol[s =0, |8 <1,
0¢ (060/0n)|s =0, |8 <1,

are satisfied. Then there exist T* € (0,1p), u € Wy (2T), 9 € W (QT"), n e
W30, T*; W3(£2)) N WZ(0,T*; W1 (82)) such that n > 0 in 2 x [0,T*] and a diffeomor-
phism X, € W3(0,T*; W3 (£2)) N W3(0,T%; La(£2)) (where X,, is given by (4.10)) such
that (u,¥,n, X,) is a solution of the problem in (P20

Moreover, Secchi and Valli [SVal] prove the following uniqueness theorem.

THEOREM 5.7. Let S be of class C'. Suppose that f € Li(0,T;Lip(Bg)), r €
Ll(OaT; Llp(ER))a pE Cl(Rz) with Py € Cl(R2)7 Cy € Cl(R2)7 Po € LQ(OaTaLlp(ER))
with Vpy € L1(0,T;Lip(BR)) for each R > 0 (where Lip(Br) denotes the space of Lip-
schitz continuous functions on Bg). Moreover, assume that n > 9, > 0 in 27, ¢, > ¢, >
0,det[Xy,] > ag > 0 in 27, X,(-,t) is injective in 2 for each t € [0,T]. Then the solu-
tion of the problem considered is unique in the class of functions n € Loo(£2T) with Ne €
L3(0,T; Loo(£2)), u € Loo(27) with ug € La(0,T; Loo(£2)) and uge € L1(0,T; Loo(£2));
¥ € Loo(27) with 9¢ € La(0,T; Loo(§2)) and Yee € L1(0,T; Loo(82)); Xu € Loo(27) with
Xug S LOO(QT) and Xuff € LQ(O,T; LOO(Q))

The methods of [SVal] are also applied in [S1-S3]. In contrast to [SVal] in [S3] problem
(5.70)—(5.75) with the self-gravitational force taken into account is considered. Moreover,
boundary condition (5.74) is replaced by (5.76) with s, being a positive constant. As in
[SVal], Secchi assumes that o = 0 and that the coefficients s, v, p are positive constants.
The local solution obtained in [S3] is less regular than the solution from [SVal]. More
precisely, assuming that S is of class C3; f, r € Lo(0,Ty; W4 (Bgr)) N Ly(0, To; C(BR)) for
each R > 0; p,c, € C2(R?), ¢, > 0; po, Ve € Wi/ *(0, To; W (Bgr)) N Loo (0, To; W2(Bg))
for each R > 0; vy, 00,00 € W3(£2); mingc 5 00(§) > 0 and assuming appropriate
compatibility conditions Secchi [S3] proves the existence of a local solution of problem
(5.70)—(5.73), (5.75), (5.76) such that u,d € Lo(0,T*; W3(£2)) N W3 (0,T*; W1(£2)), n €
W30, T*; W2(2)), nt € Loo(0,T*; W5 (£2)),n > 0in 2x[0,T], X, € W3 (0, T*; W3 (£2))N
W3(0,T*; W3 (£2)) for some T* € (0,Tp).

Papers [S1, S2] are devoted to a similar problem but additionally the effect of radiation
is taken into account. Therefore equation (5.72) is replaced by

_ 3 ac 3
(5.77)  ney(n,9)9 =V - 5V 0) + V, (4 ﬂ(n,ﬁ)nﬂ Vuﬁ)

3
,u .
= IpgVu - u+ne(n,9) + 5 > (Gey - Octty + &ay - Ocuii)® = (v = p) (V- w)® =0 in 07,
i,j=1
where s, v and p are assumed to be positive constants; a is the Stefan—Boltzmann
constant; ¢ is the light velocity; k = k(n,9) is the Rosseland mean absorption coefficient;
e = g(n, ¥) is the rate of liberation of nuclear energy. Moreover, boundary condition (5.74)
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is replaced by

(5.78) (% + 735(17’19)77

where s, is a positive constant.

In [S2] Secchi proves local existence of a solution of problem (5.70)—(5.73), (5.77),
(5.78), (5.75) with the same regularity as in [S3]. In [S1] uniqueness of this solution is
proved.

Papers [ZZajl, ZZaj9, ZZajl1] are also concerned with local solvability of problem
(5.70)—(5.75). In [ZZajl] a similar result to Theorem 5.6 is obtained for two cases: o = 0
and o > 0. As in [SVal] it is assumed in [ZZajl] that s, v, u are positive constants and
k = 0. The proof of the local existence is different from that in [SVal] because it is based
on the method of successive approximations.

dac 9 )aﬁ—l—%eﬂzo on ST,

0

In [ZZaj9], by using the methods of [StZaj2], local existence in the case of constant
positive coefficients s, v, u, constant pg, 0 = 0 and k = 0, is proved. This local solvability
is obtained in function spaces similar to [StZaj2]. The main result of [ZZaj9] is the
following theorem.

THEOREM 5.8. Assume that S € W25/27 vo € WE(92), 0y € W(£2), 00 € Wi(2), u (0) €
W), 9:(0) € W3(92), uu(0) € La(92), 944:(0) € La(£2) (where uy(0), ug(0), 94(0),
944(0) are calculated from equations (5.70) and (5.72)), up:(0) € W4 (£2), 90:(0) € Wi (£2),
uot(0) € La(£2),90::(0) € Lo(£2) (where ug and Yo satisfy problems (5.81) and (5.82)).
Let f € L2(0,T; Wg,loc(RS))a r € La(0,T; W31 (R?)); fr € La(0,T5 Wy (R?)), 1t €
Lo(0,T5 W3 10 (R®); fre € La(0,T; Lajoc(R?)), ¢ € La(0,T; Lajoc(R?)),0 € Ly(0,T;
WS,IOC(R3>) N C([o,T]; W2210€( %)), 0: € La(0,T; W22,100(R3))7 01t € Ly(0,T; W2110c( ),
p € C3(R?), ¢, € 02(R2) and assume that the following compatibility conditions are
satisfied:

0§{[Du(u) - (p(ﬁaﬁ) - pO)]ﬁu}lt:O =0, i=0,1, onl,

Oy - Vul)|i=0 = 0i0)4=0, i=0,1, on S.
Then there exists T* € (0,T) such that there exists a unique solution (u,d,n) € Ap« o X
Aps o x By« o of problem (5.70)-(5.75), where

(5.79) Ar-.o = By« o N La(0, T W3 (12)),
(5.80) Br-.o={we C([0,T*;W5(2)) : w, € C([0,T*]; Wy (£2)) N Lo (0, T*; W3 (£2)),
wye € C([0,T); Lo (£2)) N Lo(0, T*; W3 (2))}.

To prove the above theorem the method of successive approximations is applied. The
zero step functions, ug, Yo, 9, are chosen to satisfy the following problems:

(5.81) ugr — divD(ug) =0 in 27,
D(uo)o = (p(00,00) — po)Tio  on ST,
ugli=0 = vo in (2,

where D(Uo) = {M(uOiﬁj + Uojgi) -+ (I/ — u)dw div uO}i,j:l,Z,S;
(5.82) "901‘/ - %(907 HO)VE% = F‘(UO7 00, 90) in .QT,
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ng - V§190 = 50 on ST,
790|t:0 = 90 iIl Q,

where Ug(&,t) = (X, (&,1),t), the functions 32(0g,0y) and F(ug, 0,00) are such that
00 t=0 = 04¥]4=o and
Not +modivug =0 in 27
Molt=0o = 00  in £2.

Paper [Z2] is concerned with the case of ¢ > 0. The aim of [Z2] was to examine solvability
of problem (5.70)—(5.75) in the class of functions having the lowest possible regularity
in the Lo-approach. Thus, the general method of treating this problem is the same as
that used by Solonnikov and Tani [SolT2] for the barotropic case. However, these two
papers differ in details. As in [SolT2], in order to prove local existence, the method of
successive approximations is applied in [Z3]. Convergence of these approximations can be
proved under the assumption that o € [3/4,1). This assumption is stronger than in the
barotropic case, where it is sufficient to assume that o € (1/2,1) (see [SolT2]). The main
result of [Z2] can be formulated as follows.

THEOREM 5.9. Let a € [3/4,1), S € W/*™ vy € Wit¥(), oo € Wit¥(R), 6y €
Wy T(02), infecn00(€) > 0, p € C3(R?), ¢, € CAR?), v € C3(R?), u € C3(R?),
x € C3(R?); f € C3(R3xRy), r € C3(R*xR,), 6 € CL(R® xR, and let the following
compatibility conditions be satisfied:

H()]D)(’Uo)ﬁo =0 on S,
7o - D(vo) o = Mo - (P(e0,60) — po)T0 + 07 - As(0)€ on S,
ﬁo . Voo = 0|t=0 on S.

Then there exists T > 0 (depending on the norms of vo, 0o, 00, S) such that there exists
a unique solution (u,v,n) €W22+a’1+a/2(!2T) X W22+O"1+O‘/2(QT) x C([0, T); Wyt (2))n
W21+a’1/2+a/2(QT) of problem (5.70)—(5.75).

REMARK 5.1. In fact, it suffices to assume in Theorem 5.9 that f € C?(R3® x Ry), r €
C?’(R®xRy), 0 € C3(R® x Ry).

REMARK 5.2. An analogous theorem in the case of constant v, u and s has been proved
earlier in [ZZaj11].

REMARK 5.3. The assumption that « € [3/4,1) is connected with the strong nonlineari-
ties of the terms e, (n, 9)Yy, div, Ty (u,p) and V,, - (5V,09). If we assume that ¢,, v and
p are constants, then Theorem 5.9 holds for a € (1/2,1).

5.2.2. Global existence and stability

The case of 0 =0, k =0 and py = const. This case of problem (5.63)—(5.69) is examined
in [ZZaj2-7ZZaj4, 77aj6, ZZajl4d —Z7Zajl16]. In [ZZaj2-ZZaj4, ZZaj6] the above problem is
considered under the restrictive assumption on the form of the internal energy e = e(p, 6).
Namely, it is assumed that e = e(p, #) has the form

(583) 6(@, 0) - aOQa +E(Q’ 8)7

where ag > 0, a > 0, h(g,0) > h, > 0 and ag, «, h, are constants.
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Moreover, in all the papers mentioned above the following condition is assumed:

v, i, >, Py are constants and
(5.84)

z/>%u>0, x>0, ¢, >0; p,>0, pg>0 forp,0>0.

Gobal existence for problem (5.63)—(5.69) satisfying (5.83)—(5.84) is proved in [ZZaj6];
in the proof some results of [ZZaj2, ZZaj4] are used. The solution (v,8,, 0,) obtained
(where 0, = 0 — 6., 0, = 0 — 0c; 0 and o, are defined by (5.85) in Definition 5.3 below)
is such that supg_, .(|v(t") %,o,(zt, + |90(t/)|§70,9t, + ‘Qa(t/)%,o,nt,) + Sg(‘”(tl) 421,1,(4, +
|65 (t) il’gﬂ + oo (t') 3’0’%) dt’ < oo for all t > 0 (where the norms |f(¢)]; k¢ are given
by (5.23)) and Sy € W,/? for t > 0.

In [ZZaj16] the authors also prove global in time existence of solutions of problem
(5.63)—(5.69) which are sufficiently close to an equilibrium state. However, in contrast to
paper [ZZaj6] no restrictions on the form of the internal energy e are assumed. Moreover,
the regularity of solutions obtained in [ZZaj16] is lower than the regularity of solutions
from [ZZaj6].

The definition of an equilibrium state in this heat-conducting case with ¢ = 0 and

k = 0 is as follows.

DEFINITION 5.3. Let f =0, r = 6 = 0. An equilibrium state is a solution (v, 0, o, £2;) of
(5.63)—(5.69) such that v =0, 8 = 0., 0 = e, 2t = 2 for t > 0, where 0., g. are positive
constants satisfying the state equation
(5.85) P(0e,0e) = po
and (2. is a domain of volume |2.| = M/ge.
Now, introduce the notation:
Po =P~ Po; 0o =9596, 0 = 0 = L,
o(t) = |v(t)]20,0, +10:()]3.0.0, +105(t)]2,0,0,;
D(t) = [v(t)|3 1,0, + 101310, + 20Oz (0,
+ Hgot(t)”%/[/f(()t) + ||Qott(t)||%/vg(9t)v
N(t) = {(v,0s, 00) : ¢(t) < o0},
t
M(t) = {(U,HU, 0s): sup p(t') + S@(t’) dt' < oo}.
0<t'<t 0

The norms |f(¢)|x,1,o are given by formula (5.23).
The following theorem is proved in [ZZaj16].

THEOREM 5.10. Let (5.84) and the assumptions of Theorem 5.8 be satisfied. Let f =0,
r=0=0, (v,0,,0,) €N0), S € W25/2. Moreover, let the following assumptions be
satisfied:

(5.86) ¢(0) <&
I >0 is a constant such that oo —1 >0, 89 —1 >0 and

01 <00 <02, B1<by<0s,
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where 01 = 0, — 1, 02 =0+1,0, =0, —1, 0o =0, +1;

SQOUO'(a+bX§)d§=0,
)

where a and b are arbitrary constant vectors;

§oode =1

Q
Then for sufficiently small € there exists a unique global solution of (5.63)—(5.69) such
that (v,0,,05) € M(t) fort e Ry, S, € VVQS/2 fort e Ry and

o(t) <ce forteRy,
where ¢ > 0 is a constant depending on §2, 01, 02,01, 02,p, Cy, V, 1, 5¢.

Two inequalities are basic in the proof of Theorem 5.10. The first follows from the
proof of Theorem 5.8 and from Lemmas 3.5-3.6 and 2.3 of [ZZaj9]. Namely, for sufficiently
small time T of local existence, the local solution of (5.70)—(5.75) satisfies

(5.87) e, o + 190 12 o + 106113, < CL(T)P(0),

where Ar o, Br o are given by (5.79) and (5.80), and C is an increasing function of 7'
Inequality (5.87) rewritten in Eulerian coordinates yields, for ¢t < T,
t

(5.88) sup o(t') + | B() dt’ < Co(T)(0),
0<t/<t 5
where C5 is an increasing function of 7.

In the process of extending the solution step by step to all ¢ > 0, estimate (5.87) implies
step by step that ¢ and 6 remain in the intervals (o1, 02) and (6, 65), respectively, for
all t. Moreover, this estimate implies that for ¢ sufficiently small, the shape of {2, does
not change much for ¢ < T'. In order to extend the solution step by step and to control
the shape of the fluid, the following differential inequality is also used:

¢
dp 2 2
(5.89) S raP<c [¢(1 + 02 + Vvl g, dt | @ fort<T,
0
where c1, ¢y are positive constants depending on g1, 02, 01, 02, v, u, 3, ¢y, P, ||S||W5/2,
2
T and the constants from imbedding theorems and Korn inequalities (¢; and c¢o are
also nondecreasing continuous functions of Sg ||v||%v3(9 ) dt"). Moreover, @ in (5.89) is a
2 \34¢/

function satisfying the estimate
csp(t) <P(t) <cap(t) fort<T,

where c3, ¢4 are positive constants depending on o1, 02, 61, 02, i, 3, ¢y, p, [|S|ly5r2, T
2
and the constants from imbedding theorems.
Now, since ¢ is sufficiently small, assumption (5.86) and inequalities (5.88)—(5.89)
yield

=
(5.90) d—“: 4 s < 0.
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It follows from (5.90) that
(5.91) ?(t) <B(0)e " fort < T,

where ¢4 is a constant depending on the same quantities as ¢; and cs.

As in the barotropic case, inequalities (5.91) and (5.90) allow one to extend the
solution and to control the shape of 2;. Thus, if we assume that we have proved the
existence of a solution in an interval [0, (k — 1)T] for k > 2 and the estimate

<cre forxe 2, 0<t<(k—1T,

t
(5.92) z— £| = Hv(x,t’) dt’
0

with sufficiently small e, then thanks to (5.90), we can prove that estimate (5.92) also
holds for z € £2;, 0 < t < kT.

Moreover, if || SZ u(§, ') dt'||ws(2) < cse for 0 < ¢ < (kK —1)T then assuming that
¢ is sufficiently small and using inequality (5.90) we can prove the same estimate for
0 <t < kT (see Subsection 7.4).

The differential inequality (5.89) is derived in [ZZaj14].

Notice that in contrast to inequality (5.28) from the proof of Theorem 5.2 which has
been obtained for the barotropic case, the left-hand side of (5.89) consists only of the
“nonlinear term”. No La-norms occur on the left-hand side of (5.89), so there is no need
to estimate additionally the sum of the norms [|ps[7, o,y + 105117, 0, )-

Obviously, (5.28) could be replaced in the barotropic case by an inequality of the form
(5.89), which simplified the proof of Theorem 5.2.

The case of 0 > 0, k = 0 and py = const. Global existence of solutions to problem
(5.63)—(5.69) which are sufficiently close to an equilibrium state, in the case of capillary
fluids, is studied in [Z1-Z3, ZZaj3, ZZaj5, ZZaj7, ZZaj8, ZZajl2, ZZaj13] together with
the stability of the equilibrium state.

The definition of an equilibrium state in this case is as follows.

DEFINITION 5.4. Let f = 0, » = 6 = 0. By an equilibrium state we mean a solution
(v,0, 0, 12) of (5.63)—(5.69) such that v =0, 8 = 0., 0 = 0., 2 = 2 for t > 0, where
0e = (M/(4/3)TR2); (2, is a ball of radius R.; R. > 0 and 6, > 0 satisfy the equation
M 0 ) — 20
p<<4/3>sz’ ) TR

In [ZZaj3, ZZaj5, Z7aj7, ZZaj8] problem (5.63)—(5.69) under the restrictive assump-
tion (5.83) is examined.

Existence of a global solution and stability of the equilibrium state are proved in
[ZZaj8]. The approach to the global solvability in the above mentioned paper is similar
to that applied in the barotropic case in [Zaj4].

Papers [ZZaj5, ZZaj7] contain some auxiliary results, used in [ZZaj8]. In [ZZaj7] a
differential inequality, crucial to the proof of the global existence, is derived, while [ZZaj5]
is devoted to some consequences of the conservation laws used in [ZZaj8].
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The regularity of the global solution (v,0,,0,) obtained in [ZZaj8] is such that
SUPg ¢t o(t') + Sg St dt' < oo and S, € VV29/2 for all ¢ > 0, where

(5.93) wolt) = [v(t)|3 0,0, + oo ()[3,0,0, + 105(t)]30,0,;
(5.94) D(t) = ()3 1.0, + 10:(D)3 1.0, + oo (t)

0o = 0 — Qe, B = 0 — 0, and the norms |f(t)|x,: ¢ are given by (5.23).

2 .
3,0,82¢»

The paper [Z1] generalizes the result of [ZZaj8] in such a way that assumption (5.83)
is removed. The proof of global existence in [Z1] is very sketchy. Therefore, we present
below the global existence theorem of [Z1] together with its proof, which will be discussed
thoroughly. We assume the following conditions:

(5.95)  f=0, po>0,0>0;
(5.96)  17llEg, ox 0,000 + P14 85 (0,00 <9
and 6 € Ly (R? x (0,00)), where § > 0 is a sufficiently small constant;
(5.97) 01 < 00 < 02, 01 <0y <0y for all £ e 2,
where 01, 02, 01, 02 are positive constants;
(5.98) e <e(p,0) <ey forall g€ (p1,02), 0 € (01,02),
where 0 < e; < ey are constants;

(5.99) ¢, € C3(R?), pe C*(R?), e € C*'(Ry x Ry).

Just as in the barotropic case, the conservation laws are very important in the proof of
global existence. The energy conservation law has the following form in this case:

d v? —

The conservation laws (5.36)—(5.37) and the mass conservation law also hold in this case.
The energy conservation law and assumptions (5.98), (5.113) imply

el ov?
(5.101) = | ovdw+ | =5 dz + polf| + S|

% o, 2
vd < _
< SQO(EO +60> dé + po|2| +o|S| + S dt S 0(z,t)dr = d,
2 0 RS

where v = 8+ 1, 8 > 0 is a constant, eg = e(00,60), t < T, T is the time of local
existence.
As in the barotropic case, multiplying (5.101) by [§2;|® we get

e v
y(1)) + S [1207 § o7 do — (| odz)]
02 2 2
2
v
9217 | 0 dr +02:1°(1S,| ~ 4xR}) <0,
2¢
where

N N 3 1/3
y(z) = pox” + cox?1/3 — da 7 4 % M7, ¢=(36m)'/3, R, = (EL@) .
)
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We use the properties of y(z) to prove that under some assumptions on the data pg, o,
d, M, e1, 02, 7y, the volume of {2; does not change much in time. We proceed as in the
barotropic case. Namely, the minimum points of y(z) are determined by equation (5.41)
with d defined now by the right-hand side of (5.101). Since we consider y(x) for x > 0
we look for positive minimum points of y(x). Viete’s formulas imply that there exists a
unique positive root g of (5.41). We want to calculate y(z¢). In order to do this we have
to consider three cases (5.42)1—(5.42)3, one of which holds. For each of these cases the
function @; (i = 1,2, 3) has the form

— e
@i(:uO? 7/’2’;]90; Y, €1, 02, M) = dsi(ll’()a ¢i7p07 P)/) - _; M’Ya
93

where 1; are given by of (5.42); and (5.43);, and &; (i = 1,2,3) are defined in (5.44);.

In the case (5.43); we obtain

y(IO) = _éi(,u()a wiaPOa v, €1, 02, M)

It can be proved that if 0 < —y(xg) < dp with sufficiently small dg then the volume of 2
does not change much in time (see [ZZaj5]).

Therefore, we assume that the parameters pg, 1o, po, v, €1, 02, M satisfy one of the
relations
(5102)2 VOEIia 0<@i(:u07ql)iap07’\/7el7g27M)S(SO’
where 1 <17 < 3.

Moreover, assume that
(5.103) [142] = |£2e]| < 61
02 < _
(5.104) | g0y 6+ \ ooleo —er) de + o (1S — 4xR) + | dt | O(w,t) dw < 5,
Q 0 0 RS
where Ry is the radius of a ball of volume |£2], d2 € (0,1).
We introduce the spaces:

N(t) ={(v,00, 05) : p(t) < o0},

M(t) = {(v,@mgg) :sup o) —|—Sd5(t') dt’ < oo}7
0

0<t/<t

where (t) = po(t) + [v(t)[3 1 5,; ©o and P are the functions given by (5.93) and (5.94),
respectively.

THEOREM 5.11. Let the assumptions (5.84), (5.95)—(5.96), (5.99) with e, > 0 for p,6 > 0,
(5.103)—(5.104) and one of the conditions (5.102); be fulfilled. Let (v,0,,0,) € MN(0) and

(5.105) ©(0) < oy,
where oy € (0,1) and g, 0. and R, satisfy conditions of Definition 5.4. Let the following

compatibility conditions be satisfied:
D?@Z(Tﬁ —'aHﬁ+po@|t=o =0 onS |a+i<2,
Dgo;(n-VO0 —0)t=0=0 onS, |a]+i<2.
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Assume that | > 0 is a constant such that oo —1 >0, 0. —1 > 0 and (5.97)—(5.98) hold
with 01 = 0¢ — 1, 02 =0 + 1,01 =0, —1, 0o =0, +1. Let

(5.106) Voode =M, oocde=0, | oovods=0.
2 2 2

Moreover, assume that (2 is diffeomorphic to a ball and let S be described by |€| = R(w),
w € S (St is a unit sphere), where R satisfies

(5.107) IR = Rellfyy(s1) < 0o

Finally, assume that S € W;H'l/2 and

(5.108) [H(-,0) + 2/R6||?,V22+1/2(S) < ar.
Then for sufficiently small constants oy, e, and 8 (i = 0,...,3) there exists a unique
global solution to problem (5.63)—(5.69) such that (v,0,,0,) € M(t) fort € Ry and
(G+nT
(5.109) sup  po(t)+ | @(t)d <Gar  forj e NU{0},
JT<t<(G+1)T 5T

where T is the time of local existence defined by Theorem 4.2 of [ZZajl], ¢1 > 0 is a
constant. Moreover, Sy € VV24+1/2 fort € Ry, 2 satisfies condition (5.126) for t € Ry
and

(5.110) sup [|[R(-,t) — Rel® 1o o < Golay +8) + s,
£,>0 Wy (S1)

where the constant ¢o depends on 0 < t; < T.
Auziliary results for the proof of Theorem 5.11

PART 1. We start with an estimate for the local solution (u, 1, n) of problem (5.70)—(5.75)
such that (u,,n) € Wy2(27) x W2 (QT) x C([0, T); W3(£2)) and n, € C([0, T]); W2(£2))
N Lo (0, T; W3(82), it € La(0,T; W1(S2)). Local existence of such a solution is proved in
[ZZaj1]. To derive the estimate we write the system (5.70)—(5.75) with g = 0, k£ = 0, the
constant coefficients v, u, » and constant pg as follows:

(5.111) nug — divy, Ty (u, po) = 0 in 7
Not +NVy-u=0 in 7,
ncw(n, 9 Vor — Vi - (Vu05) = —Ipy(n,9)Va - u

3
1
+ 5 Z (5901 '8€uj +€l‘j 'agui)Q

ig=1
— (v = p)(Vu-u)? =nh in 7,
Ty (t, po)ity — o (H +2/Re)T,, =0 on ST,
Tiy - Vg =10 on ST,
uli=0 = V0, MNolt=0 = 060, Voli=0 = 050, in {2,

where p, = p — po — 20/Re; 050 = 00 — Oe, 050 = 0 — Oc; u, Vs, 15 denote v, 05, 05
written in Lagrangian coordinates & € (2.
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We can treat problem (5.111) as a linear problem with respect to u, ¥, and 7,. Then
from theorems concerning such linear problems (Theorems 3.6, 4.1 and Lemma 3.3 of
[ZZaj1]) we get the estimate

(5.112) HUH‘Q,V;J(W) + ||19‘7H?/V§'2(Qt) + anf”%’([o,t];wg(())) + H77<rt||20([o,t];wg(n))

2 2
+ 1n6tll7, 00wz 2)) + 1Moty 0,6ws (2))
< eM(T) [Hvoﬁyg(n) +llesollfz ) + 18000z (o) + 1201y ()

1902 O w2+ I, 0) + 2/ Rell2asm ) + NI 2 gy + T2 5 1253170,

T 2 912 1/2
1Dz ,:917,s) /
0

where ¢t < T, T is the time of local existence (depending on «1); oM is a positive
nondecreasing continuous function of T%; u;(0) and ¥,+(0) are calculated from system
(5.111).

PART 2. We also need some lemmas which yield estimates for the Lo-norms of v, 60,
and p,. These lemmas are consequences of the conservation laws of energy and mass.

Let (v,6,0) be the local solution of problem (5.63)—(5.69) which is guaranteed by
Theorem 4.1 of [ZZajl]. Assume

(5.113) 01 < o(x,t) < g9, O1 < O(x,t) <Oy forallze 2, tel0,T],

where T is the time of local existence.

LEMMA 5.3 (see Theorem 2.3 of [Z1]). Let conditions (5.95), (5.96), (5.98), (5.113) be
satisfied. Let dg € (0,1) be given. Assume that the parameters uo, vo, 5, €1, 02, M satisfy

one of the relations (5.102);. Then there exists a constant ¢y > 0 independent of dy (it
can depend on the parameters) such that

var |£2| < ¢16,
0<t<T

where varg<i<t |§2t| = supg<;<r 2| — info<i<r [£2], 52 = c3dp, ¢ca > 0 is a constant.
Moreover, in the case (5.102); we have
192¢| — Qi| <36  forte[0,T],
where Q; (i =1,2,3) are defined in Lemma 5.2, c3 > 0 is a constant.
The above lemma is analogous to Lemma 5.2 of this paper which holds for the

barotropic fluid. The proof of Lemma 5.3 is the same as the proof of Theorem 1 of
[ZZaj5] (see also Lemma 2.2 of [Zaj4]).

REMARK 5.4. For each 1 < i < 3 and for each §y there exist parameters v, d, po, o, M,
e1, o2 such that condition (5.102); is satisfied (see [ZZaj5].
For example, let vy = 2u3. Then
diy—1)  283(y—-1/3)* l_EU
2po 2792 Po
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and

opOy -1 [IBy-1D)T e
%=, 1>[ }

By =Dy - 9y
2 _ 3y 3y v
T Ay Q—q/g;gév i)1)l‘°’ (é> <1 B %) Cae (%) '

We see that lim,_;+ @2 = d — e; M > 0. On the other hand, assuming that 1/3<1we
get

=0  if M/os <1,

1iI_~r_1 Py ¢ —0 if M/oa > 1,
— 100 .

7 —€102 if M/ngl

Moreover, if we assume [/3 > 1 and M/ps > (1/3)3, we obtain lim,_, o $2 = —oc.
Therefore in this case for each dg we can find v such that 0 < @5 < Jg.

LEMMA 5.4. Let the assumptions of Lemma 5.3 be satisfied. Moreover, assume (5.104).
Then

H’U”%z(!}t) <d3 fort<T,

where d3 = ¢4(0 + d2); ¢q4 > 0 is a constant depending on 01, 02, 01,02, M, 3, d, po, o
and the form of internal energy e.

Proof. Let R, and R, be the radii of balls of volumes |£2;| and info<;<7 |2, respectively.
Then by Lemma 5.3,

|Qt|—irt1f|(2t| <c6, Ri—R.<cd for0<t<T,

where ¢ > 0 is a constant. Since |S;| — 47 R? > 0 we also have |S;| — 47 R > 0. Therefore,
using the conservation laws of energy (5.100) and of mass we get

2
v .
(5.114) S Y dx + X o(e(o,0) —e1) dx + po(|£2:] — Htlf|QtD +0(|S¢| — 47 R?%)

24 24
2
(% .
< § o0 de + § olelo. 60) — e1) dé + pol|2] — inf|2) + o(|S] — 4mR2)
[0} 0]
+ | at | (s, ¢) dt’ < (5 +35).
0 R3

This completes the proof. m
LEMMA 5.5. Let assumption (5.113) be satisfied. Then
(5.115)  llpolli, (e < eslellulfyss gr Hlullfyse gr) +ele, T)(lulZ, or) +ullz,or)]
and
(5.116)  llealZ, () + 10170, < eslellullfyss gor) + (e, Dllull,or)
+||Uw||L2 24) + HQMHLQ 2¢) + ||U||W2 (2¢) + ||QUHW2(Qt) + 1165 ||W2 2, )] fort <T,

where cs, cg > 0 are constants depending on 01, 02, 01, 02; € € (0,1) is a constant; c(e, T)
s a positive constant depending on € and T.
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Proof. Let wy be a solution of the problem
divw; =p, in $%,
5.117
( ) w; =0 on S;.
In view of Lemma 2.2 of [LadSol] there exists a solution of problem (5.117) such that
wy € W3 (82;) and
(5.118) lwillwy o, < ellpollzc,)-
Now, multiplying equation (5.63) by w; and integrating over {2; we obtain
1po 72 < elwilifys o, + @ NvelL ) + cllvalltyian + 1015 0,),

where € > 0 is a sufficiently small constant. Hence using (5.118) yields

(5.119) IPallL, 0 < clllvelZ, o) + Vel o) + [0l 2,)-
Next, let us rewrite equation (5.63) in the form
(5.120) olve + (v- V)v] = divD(v) + p,Vo, + gV, =0

and let wo be a solution of the problem

divwy = o, in (2,
5.121
( ) wy =0 on S;.
There exists wy € W4 (§2;) satisfying (5.121) and

(5.122) wallwz (o, < clloollLa(n)-

Now, we multiply (5.120) by ws and integrate over (2. In view of (5.113), the positivity
and continuity of p, we get

(5.123) ool (0, < ellw2llivy o, + c@)lvelz,a,)

+c(||”z||L2 o) T HHUJJHLQ 24) + ”v”W2 (24) + ”‘QUHWZ(Qt) + 1165 ”W2 2,) )s
where we used the integration by parts in S o Do Vosws dz.

The relation
Po = Pp0c + Pobo

(where the values of p, and pg are taken at a point (ge+s(0—0e),0e+s(0—0.)), s € (0,1))
implies
(5.124) 10511740y < clllpollZ, ) + oo lZ, ()

where c is a constant depending on 01, 02, 01, 0.
Therefore, taking into account (5.118), (5.119), (5.122)—(5.124) we have

(5.125)  lloallT, ) + 105012, < cllluell, o) + lv2lZ, 0,

+ HQUJJHLQ o)t ”v”W2 oy T ||«QUHW2(_Qt) + 6o ”W2 2) )
where we used the fact that the local existence is proved for T' so small that ¢; < |£,]| < &
for some positive constants ¢; and ¢s.

Now, using in (5.125) the interpolation inequality

S, luelfo ) < ellulifysegr) + cle, Dlullz, o)

we obtain (5.116).
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Estimate (5.115) follows by using in (5.119) the above interpolation inequality and
the inequality

2 2 2
OiltlgT ||u||W21(m < EHUHW;J(QT) + C(gvT)||u||L2(QT)' u

PART 3. In this part we use the momentum conservation law (5.36) and (5.37) to derive
an estimate for a function describing the free boundary S;.
We assume the following condition:
(5.126) {2 is diffeomorphic to a ball and S; is described by the equation
lz| = R(w,t), we S
LEMMA 5.6. Let condition (5.126) and the assumptions of Theorem 7.1 be satisfied for
t<T. Then for 0 <t,<t<T,

t t
(5127)  VIR(#) = R(,0)[s s, dt' < c7 HX lllFys g at'
te te
t t
+ S ||T]a||%4/23(9) dt’ + S ||190||€V23(n) dt,) +C(5)(||U|\%2(Qx(t*,t)) + ”qUH%z(QX(t*,t)))
t. ta

+(t = t)([H(,0) +2/Rellfyz(5) + sup [R(t') = Rell7,s1)) |,
2 o<t/<t

where € € (0,1) is a sufficiently small constant and the constant c; can depend on

\|R(~7t)HW§,+1/2(Sl). Moreover, for 0 <t, <t <T we have

t
(5.128)  JIIRC,#) = RC, O} ara/2 0, '
ty
t

t t
<es| | lulfyso dt + \ Inolivs o) dt + | 19650z o) dt’
£(2) 3(2) 3(2)
ta ta ta

+ (¢ =) (([H(,0) + 2/Reﬂivzuuz

AN 2
() +Ozltl;;t||R( ) = Rellz,0s1)|

where the constant cg can depend on ||R('7t)”W§’“/2(31)'
Proof. Applying Theorem 7.1 we obtain

¢ ¢

VIRCE) = RO O sis g0y 8 < 2[ SIRCE) = Rl s g0 A

ta .
(= E)IRC0) = Rell? sz 0
t
<[ JIHCE) +2/Re)2 50
ts

dt’ + (t = t.)(|1H(-,0) + 2/R6||?,V22+1/2

() (5)

+ sup ||R(-,t") — REH%2(51) for 0 <t,<t<T.
0<t'<t
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Hence, using boundary condition (5.66) we get (5.128). Estimate (5.127) is proved in the
same way. m

(51
constants a; (i = 1,2) are sufficiently small. In fact, for ¢ < T we can estimate
IBCOllyarsra sy < SR =Rl g+ R=Rellagsn +¢ (et T2 ulls om)-

Hence, by using Theorem 7.1, assumptions (5.96), (5.107), (5.108) and estimate (5.112),
for t < T and for sufficiently small €, a7, as and & we have

IR, D)l s/ g1, < cay? + () + {Re + [T (a1 +3)/?]} < 2¢R,.

REMARK 5.5. The constants ¢; and ¢g depend only on R, and ||§||Ws+1/z if the
2

Similarly for ¢t < T and w € S we obtain
R, D? = &' |Rw)[? = 2" T(a1 +8) = &'(Re — |R(w) = Rl (s1))? =" T(a1 +9)
> ¢'(Re — 2al/? — 8®al/?2 _ " T(ay +3) > %A’Rg,
if £, a1, ap and 0 are sufficiently small. Therefore
|\R(~,t)||W§+1/2(S1) >¢WR, fort<T.
In view of the above estimates we see that in fact the constants cg and ¢y depend only
on R..

To estimate |R(-,t) — R6||i2( g1y we need the following lemma analogous to Theorem
3 of [Sol6] (formulated in this paper as Theorem 4.7) which holds in the incompressible
case.

LEMMA 5.7. Assume that §2; satisfies condition (5.126) and suppose the origin coincides
with the barycentre of (2. Let o(x,t) be the density defined for x € 2y and set g, =
infycjo,7) inf, g o(x,t). Then if there exists a constant 0 € (0,1/2) such that

(5.129) sup |R(w,t) — Ry| +sup [VR(w,t)| < 6R,  fort € [0,T],
51 51

where Ry is the radius of a ball of volume |§2¢], i.e. Ry = (%L(M)l/g, then

(5130) | (IR, t) = Ri* + |VR(w,1)*) dw
Sl

< (18— 477) + /(22 (=01 d)” forte0.T)
024

where ¢y, c1g are constants which do not depend on S and R;.

Lemma 5.7 is analogous to Lemma 1 of Theorem 4.8 which holds for an incompressible
motion. However, in the incompressible case the only term on the right-hand side of
the estimate is ¢(|S;| — 4mR2), where Ry = (2[2])!/3. Thus, the second term on the
right-hand side of (5.130) is associated with the compressibility of the fluid.

The assumption that the origin coincides with the barycentre of (2; means that
S 0, 0T dx = 0 for t <7T. This last condition is implied by the assumptions: S o 00§d§ =0,

SQ 00V d§ = 0 and by the conservation laws (5.36)—(5.37).
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The proof of the above lemma depends on the formula
1Si| —anR? = | (RV/R+ [VR]” -
Sl
By the assumption that the origin coincides with the barycentre of {2; we have

S(Q—Q*)xdx—kg*(Sxdx— S xdx)zO,
@ 2 K(0,Ry)
where K (0, R;) is the ball with center 0 and radius R;. Hence

(o= owdr+ 7 | (BYw,t) — Ru(w) do =0,

Sl st
where v(w) = (cos 1 cos @3, sin 1 cos a, sin Ya); ©1, @2 are spherical coordinates.
The integral SSl(R R2 +|VRJ2 — R?)dw is estimated by using the above equality
and the equality
| (R (w,t) = R)dw =0,
Sl
which holds, since |§2;| = 37 R}.
In the incompressible case, the formula
|S¢| — 47 RS = | (RV/R? + |VRP -
Sl

is used together with the conditions

V(R w.t) = R} dw=0, |(R'w,t)— RYv(w)dw =0.
51 51
The second condition above means that the origin coincides with the barycentre of {2, in
this case.
Lemma 5.7 yields the estimate of ||R(w,t) — RtHW1 (s1y and therefore it is useful in
the next lemma which shows that if the data of the problem are sufficiently small then
supg<i<r |R(w,t) — Re ||W1 s1) is also small.

LEMMA 5.8. Let the assumptions of Lemma 5.4 be satisfied. Let e € C' (R xR4), e, > 0,
eg =cy, >0, v9 € W3(92), 0y € W3(£2), 0o € W5(£2) and let

(5.131) ||U0H%/V§(m + ||9oo||%4/23(9) + ||an|\%/vg(n) <€

where € € (0,1). Let assumptions (5.96), (5.103) and (5.106) hold. Moreover, assume
that £2 is diffeomorphic to a ball and S is described by

(5.132) €| = R(w), weS,

where R satisfies (5.107). Finally, assume (5.108) with o replaced by a constant & €
(0,1). Then for 2; (t < T) condition (5.126) is satisfied and for sufficiently small con-
stants 8q, 01, 04,0, aia, E, € we have

(5.133) sup [|R(-,t) = Rel[fy g1y < a2

0<t<T
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First, assuming smallness of £, &, §, d3 it is proved that condition (5.129) is satisfied.
Then (5.130) and inequality (5.114) yield (5.133) provided constants dg, 61 and d3 are
sufficiently small. Therefore as does not depend on g and &.

Proof of Lemma 5.8. By assumption (5.132) and by (4.10), condition (5.126) with R(w,t)
such that R(w,0) = R(w) is satisfied for €2 (t < T).

Using assumptions (5.131), (5.96), (5.106), (5.108), estimate (5.112) and the interpo-
lation inequality, for sufficiently small £, 6 and & we get

~ 2 g2 t
(R(,1) ~ B = BB <o fuar
0

=] + €]
t

< a1 | fullwya dt’ + el oo
0

Loo(92)

Similarly
t
VR(w,t) = VRW)| < &2 | [ullws (o) dt’ + c(e2) [ull o (20)-
0
Hence applying once again the interpolation inequality, for ¢ < T we obtain

(5.134)  |R(w,t) — R¢|® + |[VR(w,t)|?

~ - 3 1/3 3 1/3 2
< anfR = Rellygons gy + IR - Rell o +| (21240) - (el

t

+ea{lulyz o 0 + el
0

where ¢, €3 € (0, 1) are constants.
In view of Theorem 7.1, assumptions: (5.131), (5.96), (5.103), (5.106)—(5.108), esti-
mates (5.112), (5.134) and Lemmas 5.3-5.4, for t < T we get

|R(w,t) — R|* 4+ |[VR(w,t)|? < c13(e + €3)8 + crafaz + 3(8 + &) + c15(6 + 01 + 83),
where the constants ¢; (i = 13,14, 15) depend on T'. Since by (5.101) and (5.113),

M\ 3 1/3
BMANT _p (34 for t <T,
4T 09 4m po

for sufficiently small constants ¢, €3, ag, J, §; and d3 we obtain

sup |R(w,t) — Ry| + sup [VR(w,t)| <6R, fort<T,
S1 S1

where § € (0,1/2) is a constant. Then by Lemma 5.7 estimate (5.130) holds.
Now, we will estimate the terms on the right-hand side of (5.130). By (5.114) we get
(5.135) |Sy| — 4w R? < |Sy| — 4w R? < ¢16(6 + 82).

Now, consider

6(9’ 9) - e(Q*a 9*) = e@(@ 9)(9 - Q*) + 69(@ 9)<9 - 9*))
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where 0 = 0. + s(0 — 0x), 0 =0, + 5(0 — 0.), 0« = infycpom infxeﬁ,, o(z,t), 6, =
infycjo, 7y inf, gz, 0(7,t), s € (0,1). Since e, > 0, eg > 0 assumption (5.113), the above
relation and estimate (5.114) yield

(5.136) | (0= o) dw < c1z (6 + 62),
24
where ¢17 > 0 is a constant depending on 01, 02, 01, 82 and the form of e.
In view of (5.130), (5.135), (5.136), assumption (5.103) and Lemma 5.3, we get

sup [|R(-1) = RellZyy sty < 20 sup [[R(-1) = Rell3ps sr) + IS |1 B — Re[?)
0<t<T 0<t<T

< c18(6 + 01 + 02),
where ¢1g > 0 is a constant depending on 01, 02, 01, 02, €, po, 0, d, M. Assuming that ¢,
01 and 0o are so small that
c18(0 + 91 + 62) < ag
we obtain (5.133).
This completes the proof of the lemma. =»

Let us notice that in the case of ideal gas, i.e., when e = ¢, 0, p = Rpf (where ¢, > 0
is a constant and R > 0 is a constant) we have e, = 0, so we cannot apply Lemma 5.8.
However, replacing assumption (5.104) by a stronger one we obtain the following lemma.

LEMMA 5.9. Let p = age (where a > 0 is a constant). Let the assumptions of Lemma
5.4 be satisfied apart from (5.104). Let e € C1(Ry x Ry), eg = ¢, > 0, p, > 0 and let
assumptions (5.96), (5.106), (5.103), (5.131) be fulfilled. Moreover, assume that {2 and S
satisfy the same conditions as in Lemma 5.8 (with (5.107) and (5.108)). Finally, assume

2 o0 _
(5.137) | 90%0 d¢ + | (a0e (00, 00) — ore1) d€ + +0[|S| — 4n R3] + 3¢ | dt | B(s, 1) dt < 6.
2 (9] 0 R3

Then the assertions of Lemmas 5.4 and 5.8 hold.

Proof. Set p1 = apie;. By using Lemma 5.3 we get in the same way as in Lemma 5.4 the
following estimate:

v? 1 .

(5138) {0 drt — § (p(0.6) —pr) do + po(| 02| — inf |2]) + o (|Si] — 4n2)
2 2
2
vh 1 P1
< oo de + ~ (ploo,00) —pr) dé + )12 — |21

2 2

+po(|02] — inf |92:]) + o(|S| — 47 RZ) + S dt S O(s,t")dt’ < (6 + 82).
0 R3

Since

0 < p(0,0) = p(0+,0x) = p,(2,0) (0 — 02) + po(2.0)(0 — 0.) < p(e,0) — p1,
estimates (5.138) and (5.130) yield the assertion of the lemma. m

Lemma 5.9 is used instead of Lemma 5.10 in the proof of Theorem 5.12 (see below).
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PART 4. The next estimate shows an increase of regularity of the local solution. Such an
estimate is used to control the regularity of the free boundary S;.

LEMMA 5.10. Let (u,9,1) € Wy (QT)x W2 (2T)xC([0,T); W(£2)) with n, € C([0, T];
W3(£2)) N La(0, T; W3(2)) be the local solution of problem (5.70)—(5.75). Then for any
0<t1 <T,

(5.139)  sup lullfyse) + sup_ [[allfys 0
11 <t<T 11 <t<T B
< c(B) (K + 17185 moxey ) + 101285 @oxrs )

where K1 = |Jul|?

W42 (27T) + Hﬁ ||2

4 2 (QT)’
K =Ky + sup ||u||W§'(Q) + sup Hﬁo”%/vg((z)
0<t<T 0<t<T
2 2 2
+021£T 1m0 v o) + M0t 75 0,mw2 (2)) S not vy (2)»
¢(K) is a positive nondecreasing continuous function of K depending also on t;.

Inequality (5.139) is similar to the inequality from [ZZaj12] which was proved for the
local solution such that (u,d,n) € W22+a’1+0‘/2(QT) X W22+a’1+a/2(.QT) X W21+a’1/2+a/2(97§
N C(0,T); Wyt*(82)) (o € (3/4,1)) in the case of r = § = 0. The general idea of the
proof of inequality (5.139) comes from the paper of Solonnikov [Sol6], where the analogous
estimate is obtained for the velocity and pressure of an incompressible fluid.

REMARK 5.6. Choose the constant C' such that ¢(0) < C. Then by estimate (5.112) and
assumption (5.105) for sufficiently small a; and § we have c(K) < C.

PART 5. In the case of an incompressible fluid to obtain global existence it is sufficient
to use estimates derived for the linear problem and estimates similar to those of Parts
1-4 (see Sections 4 and 7). However, the nature of the equations describing the motion
of compressible fluids is such that we need another two estimates for the local solution
of problem (5.63)—(5.69).

First, we need the following energy type inequality which is derived in [ZZaj12]:

1d :
(5.140) - | (gv +p1 2+w93>d

24t Opo
o d t t
+ oo Voo Voo, at'-mvs, dtds -7+ cro ([0l o)) + 1002113000
St 0 0

< elleal i+ 165 1% ) +21 (03 >+H 1 (,0) +2/Rell, s))

La(£2:)
+ C20(HU||L2 o) T HT”L2(Qt) + ||9HL2(St))
+ ear (100 12,50 ) + 10 1250 ) 100ty + il 2a)

+ (leallfvg ) + 100z 2o 10 3y 34w ) + 101503 (20 (loallivz ) + 1067z ()]
2 ( 2 ( t) 2 (£2¢) 3 ($2¢) 3(£2:)
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where a € (1/2,1), € and &, are sufficiently small constants; c1g, cag and cg; are positive
constants depending on o1, 02, 601, 02; p1(0,0) = Sépg(ge + s(0 — 0e),0)ds, p2(0) =
S(l) pG(Qea 06 =+ 5(0 - 06)) ds.

We also need a differential inequality which gives the possibility of estimating the
highest norms of the solution by the following terms: the nonlinear terms consisting of
products of the highest norms of v, 6, 0, and the linear terms, i.e. the Ly-norms of these
functions and the norms of r, 8, H(-,0) +2/R., R(-,t) — R(-,0).

To obtain this inequality we derive first some auxiliary estimates by using both Eu-
lerian and Lagrangian coordinates. Some auxiliary estimates are derived in Eulerian co-
ordinates. These are energy-type estimates for (v,0,, 0,) (where (v, 0, o) is the solution
of problem (5.63)—(5.69)) and its time derivatives up to order three. The remaining aux-
iliary estimates are derived by using Lagrangian coordinates and considering problem
(5.70)—(5.75) locally.

Therefore, we introduce a family {£2;} of open sets such that 2 C Uiemun ;, where
(~2,» for i € M are interior subdomains and (~2, N 2 for i € N are boundary subdomains,
ie. (~22 C 12 for i € M and (~2z NS # O for i € N. With this covering of {2 we associate a
partition of unity {¢;} such that >, \Gi(§) =1for € 2,0<¢ <1, ¢ € S (12).

Assume that 2, N 2 is a boundary subdomain and Q(f) =1 for £ € w;, where w;
is a set such that w; C (2 Let s ew;, NS C Q ns = S Introduce local coordinates
connected with & by

(5141) Yk :Oék‘l(fl _ﬁl)v Q3 :nk‘(ﬁ)a k= 172737
where {ay;} is a constant orthogonal matrix such that §Z is determined by
y3:F(y17y2)7 |yj|<d7 j:172
with F'(0) =0, VF(0) =0, F' € W24+1/2. We assume that diam(£2; N £2) < 2d, where d is
sufficiently small. Next, we introduce functions u’,9" and 1’ by
u(y) = apu(€)le=eyy, k=123 9'(y) =9E)le=ew), 1Y) = 1(E)|e=¢ ()

where £ = £(y) is the inverse transformation to (5.141).
Further, we want to straighten the boundary, so we define new coordinates by

zj=y;, J=L12, 23=y3 ~ F(y),
leich will be denoted by z = ®(y), where F is an extension of F to R% such that
HF”WS(R?;) < c||FHW24+1/2(U) and U = {2’ = (21,22) € R? : |2j| < d, j = 1,2}. Let
Qi=0(2;N0), 5 =d(5).
Then |z;| < d, j = 1,2, for z € 2; and diam{2; < cd. Define
F@) = F'@ly=s-1 f € {ud.m).

Set V), = 12, 2i6, Vzi|e=x—1(2), where x(§) = @((y)) and y = () is defined by (5.141)

and write

10 = w(©)G(&), IV = 9.(OGE),  TE) =ne()G(E), €€ P i€ M
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i) =a(2)G(2), IP (=) =D (2)Gil2), () =T (2)C(e), 2 € Qi P €N,
where ((2) = C(§)]e=x—1(2)-

The functions u(? (5) s )(f) s )(f) for i € M satisfy in 2; a system of equations
implied by (5.111);-(5.111)3, while u(z)( ), s )( ), 17((7)( ) for i € N satisfy in ; a system
implied by (5.111)1—(5.111)3 together with boundary conditions (5.111)4—(5.111)5. Let
2 be one of the £,’s and let ¢ be one of (;’s. Moreover, let & = (U1, ug, us3), 507 7, be
the solution of the problem in 2. Then the problem in the interior domain (2 has the
following form:

nakt - VulTukl(aa 50) = VulBukl(u C) uk:l(u po)vuzC7 k= 17 2a 37
ﬁat""@evu'azgeu'vuc_na u'uC7

0o (1,900t — %V 205 + 0eps(0c, 0e) Vo - U
3

= 77% + |:g Z (gmxkaﬁmul + gmzlagmuk)Z + (V - M)(Vu . u>2 C

k=1
+ 0.p9(0c,0e)u - Vil + (Bepo(0e, 0e) — Upo(n,9))V,, - ul
— 2(V3(0y +2VuC - Vi),
where vl = 6&7 vuz = fmxlaém; ﬁo‘ = po‘(a ’ITL/ = hCa Bu(uac) = {Bukl(uvc)}k,lzl,Q,S =
{1V, ¢+ Vi, Q) + (v — p)dgiu - Vi i=1,2,3-
In a boundary subdomain the problem is as follows:
it — ViTi (T, Po) = —ViBr(,¢) — Tha(@,5)ViC, kb =1,2,3,
ot + 0V 1 = ot - VC — 7,V - T,
7/7\011(7/7\) ’3)’;9’0,5 - %627;0 + Gep{@,\(gev ee)v U
3
i+ [g S (it + Gul) + (v - ) (- 0)2 ¢
k=1

(5.142)

5.113) + 0epy (e, 0 ) - @ + (0epg(0e. 0e) — Up(7,0)V - ¢
' + 005 (06, 06) (V- U — V- ) — (V0,5 +2VC - V,),
t
T(@, po )it = 0 AGEC - i + UAgSEIdt’ -7+ B(a, O)n
0
t t 2
ol o r ~ L IS27\ A 0 _~
—a(wgudt v+ faarv g) A+ ol
0 0
v{§ =947V,
where V; = 82” = (V 1 )k=1,2,3; @@, ) = {Bu(a, Z)}k,l:l,z/:\s = {uﬁﬁkﬁlzﬁ- WViC) +

(v—p)driu- VC}kz 1,2,3, T(U Do) = {Tki (U, Do) } k=123 = {p(Vi+Viug)+ (v —p)0u V-
U — DoOkithi=123, 1 = N(z,t) is the vector 7, = (X, (&, t),t) written in z coordinates.
Notice that using the interpolation inequalities we obtain the estimates

1Fllws g < elFlyaorgs, +e@IFllL @, < e+ DIEl g,

and
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R0l s,y < lFlwavirz g, +clElfiorll, @, < cle+ A Flly sz,
where g = n(2’,0), 2’ = (21, 22) and the right-hand sides of the above estimates are as

small as we need if € and d are sufficiently small.
Moreover

1
a5 = = (V' 5 (ni-1)
ox ox

where {ggé} is the inverse matrix to {(ggz)~s}; (9a)ys = Bz Bz T £+ S u(z,t')dt’,

ga = det{(ga)qs}-
Now, introduce the function
3

(5.144) 2P(1) = > | (@1,10] 0 + 43,10} 01" + az10] 6, ") da

7=0 2,

30 YV 0ral DD + boa | DETL 2 + oo | DETD ) A d
i€EM 1<]al<3 5

+ 3§ (baal gD 2 + b5 | DT P + bsa| DEODS?) A de
1<]al<3 &,

+ 37§ (0ral DEOZTD 2 + bsa | DGO 2 + boo| DEOFIS 2 )Adg}
lal=1 g,

FY [ §@alDIaOP ¢ s DI + e DIIE )T d2
iEN 1<|a|<3 G,

+ > [ (canlD20TD + 50 DEOTY | + coa| DEOWP )T dz

1<]al<2 5,
+ 3 | (cral D2OFED + 50| DO} \2+09Q\D?831§S)\2)sz}
la]=1 g3,

and

§Da” dt'7 - SD‘J”() dt' J ds
0

@( _(2) Z |: S SB’Y 2528 252~
0

ieN §i 0<|a|<L2

> SD;% ald, dt’
0

0< ]| <

st

+ ds

D) ey

S

t

2
2 1y 2
>[5 et ar +2pzito c2ym| g

ZB7B
20 0

( A~ D&)A - DY)
1<]a|<2

.Dg,ag) - D2V )st

I<
Y

CE
@
u

_|_
M (Q)L’—'a 91)&’—:
3|

2
I
I

t t

o (- foar) (r-foar) o3 ofn ) as]

0 0 7 j=0

+
IS
ot
N ey

o
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In the above formulas a;; (i,j = 1,...,6) are positive continuous functions of ¢ and 6
depending also on v, u, s and the forms of p and ¢;; bo (i =1,...,6;1 < |a| < 3), bin
(=7,....9%]a=1),ca (t=1,...,3;1 < |a] <3), cia (1 =4,...,6;1 < |a|] <2), i
(t=17,...,9;|a| = 1) are positive continuous functions of n and ¢ depending also on v,
i, > and the forms of p and ¢,; d; (i = 1,...,5) are positive constants depending on o; A
is the Jacobian of the transformation x = x(§); J is the Jacobian of the transformation
z = x(2); {6P7} is a positive definite matrix, i.e. 55’77'57'V > co|T|?, where ¢y > 0 is
a constant, 7 = (71,72) € R% {¢”7} is the inverse matrix to {gs,} (98, = 6‘% . 68732)
provided S; is determined locally by x = x(s1, s2,t), (s1,82) € V C R% V is an open set.

Moreover, the summation over repeated indices is assumed.

The exact form of ¥ is given in [ZZaj7]. However, for the proof of global existence the
above form of this function is sufficient.

The following lemma is proved in [ZZaj7].

LEMMA 5.11 (see Theorem 3.13 of [ZZaj7]). For a sufficiently smooth solution of problem
(5.63)—(5.69) with f =0, k =0, the following inequality holds for t < T:

t
dp
(5.145) X+ < ey P(X)X(1+ X?) (X + @+ {1020, dt’)
0
¢ 2
2 /
+can (IIR(-1) — OO AT §vdt s
t
4
FURC) = RC Oz [ Joa [ ) + NG00+ 2/ el )
+eas (0117, ) + loa |7, 00 + 10617, 20) + IR(5 1) = R(,0)[17,51))
+Eaco6([|H (-, 0) + 2/ Re|[fy2(s) + 1R(, 1) = R(-, 0)[[Fys51)) + car F,
where

t

() = 72 o) + 0125 gonz, ) X(8) = w0l + {00 g o)
0
@ is given by (5.94), T is the time of local existence; coa > 0 is a constant depending
on 01, 02, 61, 02, u, v, 3, T; ¢; (i = 23,...,27) are positive constants depending on
the same quantities as coa and on T, S(? HUH%/VS(.Qt)dt’ ||S||W;+1/2, the constants from
imbedding lemmas and Korn inequalities; €2 > 0 is a small parameter; P is a positive
continuous increasing function.

The proof of Lemma 5.11 is very technical, so it is omitted here. Notice that some
terms of the function @(t) are expressed in Eulerian coordinates, while the others in
Lagrangian ones. This follows from the fact that in order to obtain inequality (5.145)
we have to derive some auxiliary differential inequalities. The following terms of @ are
connected with these inequalities. The terms expressed in Eulerian coordinates arise when
we derive estimates for (v, 0., 05) (Where (v, 0, ) is the solution of problem (5.63)—(5.69))
and the time derivatives of this solution up to order three.



Free boundary problems for Navier—Stokes equations 85

The terms written in Lagrangian coordinates are associated with the estimates of
spatial derivatives and mixed derivatives of the solution. Then we have to consider the
problem locally and to derive these estimates by using systems (5.142)—(5.143).

Now, after integrating (5.145) with respect to ¢ € (0,7') we obtain on the right-hand
side terms of greater regularity than the regularity of the local solution guaranteed by
Theorem 4.2 of [ZZajl]. For this reason we prove that we can increase the regularity of
the local solution. This result is formulated as follows.

LEMMA 5.12. Let S € W;H/2 and vy, By, 0o be such that (v,6,,0,) € (0). Let the
assumptions of either Lemma 5.8 or Lemma 5.9 be satisfied. Moreover, let

?(0) <&,
where € is the constant from (5.131). Then the local solution of problem (5.63)—(5.69)
(determined by Theorem 4.2 of [ZZajl]) is such that (v,04, 0,) € M(t) for t < T and
¢
(1) + Y 2(t') dt’ < cas(@(0) + [ H(0) +2/Rell} 21172,
0

+ sup [|R(-,t') = Rell7,(s1) + sup F(t'))
0<t/<t 0<t'<t

< cog(E+E+ g +6).
To obtain the above estimate we use inequality (5.112). First, by (5.112) and the
imbeddings
OSUP (||u||W3(Q + ||“1t||w2 @) < C(HUHW4 2n T ”UO”?/VQ?’(Q) T Hut(O)H%’Vzl(Q))
we get B
[0y + 0t 0 < CE+E+3) fort < T,
where c is independent of t.
By using the continuity equation (5.71) and inequality (5.112) we obtain the estimate
t
for  |looee(t )||%2(nt) + looe(t )sz(gt + oo (t )||W3 @y T SQ(”Qatt(t/)H%/Vl(Q )
§ oot () I3z ,y) dt'-

The estlmates of the remaining terms are obtained in such a way that we derive for
them step by step differential inequalities similar to the auxiliary inequalities leading to
(5.145). Then we integrate each of these inequalities with respect to ¢ and use (5.112) or
the inequality obtained in the previous step. For example, proceeding this way we first get

Vet ()T, (0, + IIQam( Nz + 0ozt ()70,

+X [ Vgt (¥ HWQ(Qt,) + [l0oaat (t /)H%Q(Qt,) + ||H<fmt(t/)”%/vg(9t,)) at'

0
t

ceg oatee (N3 0,0y + 0mat () g,y + 0mate (N 0,0

+ ||9axttt( )||L2(Qi,) + ||9amt(t’)||%v21(9t,) + Heffimtt(t,)”%rz(!?t/)) dt’
+cE+E+az+9),

where € > 0 is a sufficiently small constant. The remaining inequalities have similar forms.
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PART 6. Finally, we need

LEMMA 5.13. Let 2 be a domain such that 2 C 2 ={zx=£&+ Sg u(&,t)dt' - £ € 2}
and let u € WQQJFQ’IJFQ/Z(Qt)7 a € (1/2,1), be a function satisfying

< 4.

Loo(£2)

¢
H Sudt’
o Lo (92)

¢
+ H SU§ dt’

0
Let f = f(x,t) > 0 be a function which is integrable in £2;. Then for sufficiently small §
we have
fla,t)do < (1+cd) | g(&,1) dE + w(d),

2

where g(&,t) = f(x(&,1),t), ¢ > 0 is a constant and w is a positive function such that
w(d) — 0 asd — 0.

A

Proof. Since 15} C (2, for sufficiently small § we have 15} C 2. Set
t
A, = {ge Q:r=¢+\udl € fz}.
0

Then
\ F(a,t)dz = | g(&, )] de,
7] At
where J = det{xz¢}. Hence
| @ty de < (14 ) | g(&,0) de,
Q2 As
where ¢ > 0 is a constant, As = 2 U By, and By = {£ e 2\ Q2 dist(&,@f)) < 0}
Therefore
[ @ tyde < (1+¢0) [ g(e.t)de + (1 + o) | gle,1)de.
9] 2 Bs
This completes the proof. m

REMARK 5.7. Let £2 C R3 be such that 92, N 2 # 0 and 2, N 92 # 0. Then under the
assumptions of Lemma 5.12 we can prove that for sufficiently small §,

| fatyde<+e) | g€ t)de+w(o),
2,002 2N

where w(d) — 0 as § — 0 and ¢ > 0 is a constant.

Proof of Theorem 5.11. First, notice that inequality (5.112), the imbeddings W,"?(27) ¢
C(£2 x [0,T)), W3(£2) C C(£2) and assumptions (5.96), (5.105), (5.108) yield

(5.146) sup |u|? + sup [95]2 + sup |15 |> < ca9(y +9),
Qr QT QT
where cog > 0 is a constant depending on T and the constant czp = ¢(2,7) from the
inequality supqr |ul? 4 supgr [U5]* + supor (05> < eso([[ull? a2 pry + 1061202 r) +
Wy (027T) W5 (027T)

SUPo<t<T ||7lo||%v23(n))-
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Therefore, assuming that o and § are so small that
[cag (a1 —|—5)]1/2 <,
(where [ is the constant from the assumptions of the theorem) we get
(5.147) 01 <oz, t) <2, 61 <0<y forxel tel0,T)].

By the assumptions of the theorem, the assertion of Lemma 5.8 is satisfied. Moreover, by
Theorem 7.1 we have

(5.148) [IRC,0)=Rellyysvs/2 g0, < st HE, 042/ Rellyasara oy +esal R(, )= Rel s

Here, H denotes the double mean curvature of Sy written in the coordinates w, i.e. H(w,t)
= H[R] = H(z,t) (where H[R] is given by (7.28)). By Remark 5.5 the constants c3; and
c32 depend only on R..

Using boundary condition (5.66) rewritten in the form
(5.149) T(v,po)7 = o(H + 2/R.)T,
Lemma 5.10, estimate (5.112) and assumptions (5.96), (5.105), for ¢; < ¢ < T we have

(5:150) [|H () +2/Rell}a1/o g ) < cas( sup 1w 133 02)

+ sup (0o (B)lys ) + S [100 ()13 ()
t1 <t<T 0<t<T

< cza(aq +9),

where t; > 0 is arbitrary and c34 is a constant depending on ¢, and T By (5.148), (5.150)
and Lemma 5.8 we deduce that S; € W;H/Z for t <T and

(5151) sup ||R(,t) — Re||?ﬁ/;+l/2 S 031034(C¥1 +S) + C30009.

L <t<T (S1)

Therefore, Lemma 5.3 and estimate (5.151) imply that the volume and shape of £2; do
not change much for ¢ < T'. For this reason we can derive differential inequality (5.145)
with the constants ¢; (i = 22,...,27) independent of {2 for t < T.
Thus, Lemmas 5.11, 5.5, 5.6, 5.12 and estimate (5.159) below yield, for sufficiently
small o, ag and 9,
3 1 t t
(5:152)  B(t) + Jen | 2() dt' < s (§10ly o,y A + 1603, 0, At + [ F ) )
0 0
c

o~

0 0
+eso(etfully sz or) + (e, Dtullg,or) + csr(tE(1H (- 0) + 2/ Rellfyz s

+[[H(0) +2/Rellypz(s)) + ( sup [[R(t") = ReZ,(sn)
) 0<t'<t
+ (sup [|R(:,t') = Rell7,(51)%)] + 2(0),
0<t/<t

where the constants ¢; (i = 35,36,37) depend on the same quantities as the constants c;
(i=22,...,27).
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Integrating estimate (5.140) and using Lemma 5.5 and inequality (5.112) we obtain,
for sufficiently small ¢ and &y,
t t
(5:153) 92 () + ess( VIoldga,, @t + § 10021300, @)
0 0
t

< 39 |:8t||u||%}[/24’2(_QT) + C(&T)t”u“i?(QT) +S ”U”QLz(Qt/) dt'

0
¢ ¢
<0z, dt'] + csoBat|H(,0) + 2/ Rl ) + can | [IrlE o, ) dt
0 0
t t t
+ 181 sy 4 + (01 +8) (§ 1601330, At + Slleo iz, @) | + 0200),
0 0 0
where
1 C o ‘ ‘
e () = = S (gv2 + Egi + b2 93) dr + - Sg"‘;(xvdt’ ﬁ) (Svdt’ ﬁ) ds.
2 o, o 9;09 2 e o S~y 5 Ss

By using Theorem 7.1, an interpolation inequality and assumptions (5.107), (5.108) we
have

(5.154)  [H(-,0) +2/Rel}yz(s) < cazl|R = Rellfyssn)

<¢|R- Re||?,v24+1/2(51) +e(€)|IR ~ Re”zL?(Sl)

< EH(,0)+ 2/ Rl gy + i@ R = Relld 50, < 0+ eag()a,

()
where the constants c42 and c43 depend on R, and ||]§||W23+1/2(Sl).

Now, multiplying (5.153) by a sufficiently large constant c44 (so large that cqqczs >
¢35), then adding to (5.152) and using inequality (5.112), (5.154), assumptions (5.96),
(5.107), (5.108) and Lemmas 5.4 and 5.8, we get the following estimate for sufficiently
small a1, 6 and for t < T

t

(5:155)  B(t)+ 2 [ @(t) dt’ < tlessears + eas(3 + d + az)] + $(0) = 17+ B(0),
0

where

(5.156) G(t) = B(t) + carp® (1),

e € (0,1) can be chosen sufficiently small; ¢; > 0 (i = 45,46) depend on the same
quantities as cs5 and c4¢ depends also on e.

The form of the function 3 (0) implies
(5.157) carpo(0) < B2 (0) < caso(0),

where 5(2) is given by (5.144), c47, csg > 0 are the constants depending on g1, 02, 01, 62,
D, Cv, 1, v, 0. Hence, by (5.147) we also have

(5.158) carpo(t) <P () < cagpo(t)  for t < T.
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Moreover, assumption (5.105) and (5.154) imply
(5.159) 7(0) < (0) < caglag + ey + caz(e)as] < espar = ag,

if we choose c59 > ¢49 and €, a are sufficiently small.
Now, choose ¢5; > c50. Under the assumption that constants &, d3, ap and e are so
small that

(5.160) Ty + ap < csrou,

estimate (5.155) yields

t

A C22 / ’

(5.161) D(t) + 73@(15 ydt' < csioq for t < T.

0
Therefore, by (5.158),
(5.162) vot) < Loy fort <T.

Ca7
Now, we estimate once more ||H(-,t) —|—2/R6||?/Vg+1/2 for t; <t < T using now (5.161).
2

We obtain
(5.163) [H (1) + 2/ Rell? otz
2

(St)

S0) <esoaqp  forty <t < T,

where t; > 0 is the same as in (5.150) and cs52 is a constant depending only on the
constants c33, €22, ¢51 and C' from Remark 5.6.

In view of estimates (5.162) and (5.163) if we assume that «; is sufficiently small,
then the solution can be extended to the interval [T, 277.

Hence, for the local solution in [T, 2T estimate (5.112) holds. Namely, for sufficiently
small or; we obtain, for T' <t < 2T,

2 2 2
(5.164) Hu||W24a2(QTX(T7t)) + ||190||W24’2(Qt><(T,t) + ||T]‘7||C([T,t];W§’(QT))

ot L, isws oy + Mot Eqrgwzny + ot imws o)
< MW(T) [[lu(T)II3 + 0o (D)3 + 195 (T)II3
= w3 () T 1Mo\ L) lwg (o) o\ llwg(ar)

+ Hut(T)H%/Vzl(QT) + ”ﬂot(T)”?/VQl(QT) + Hh”%/[/zll(QTX(T’QT))

29112
171, ) dt>”2

2T
9112
+ H19||W23*1/2‘3/2*1/4(ST><(T72T)) + ( S t1/2
T

HIHCD) + 2Rl |

where ¢! is the same function as in (5.112) and u, 1,5, Y, h, ¥ are now v, 04, 05, 7, 0
written in Lagrangian coordinates {7 € Q2p, &p =€+ Sg u(€,t)dt, £ € £2.

Now, inequality (5.164), the imbeddings Wy (27 x (T,2T)) C C(£27 x [T, 2T]) and
W3 (27) C C(027) together with Lemma 5.3 and (5.151), assumption (5.96) and estimates
(5.162)—(5.163) yield
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sup  Jul’+  sup  [9o|P+  sup  |ne|* < cagl(esi/car + cs2)an + 6],
Qr X [T,27] Qr X [T,27] QX [T,2T]

where cag, c47, C51, C52 are the constants from (5.146) and (5.162)—(5.163), respectively.
Therefore, assuming that a; and ¢ are so small that

{029[(051/647 + 652)011 + g]}1/2 <1
we obtain
(5.165) 01 < o(x,t) < g2, 01 <0(z,t)<by forxed,tel[l 2T

In view of (5.165), (5.162) and the assumptions of the theorem, Lemmas 5.4 and 5.8 give
respectively

(5.166) 017, (0, < 03 fort < 2T

and

(5.167) sup || R(-,t) — Re||3v21(sl) < ay.
0<t<2T

Using, as before, Theorem 7.1, the interpolation inequality, (5.163) and (5.167) we get
(5-168)  [H(T) +2/Relliyz s,y < a2 RO T) = Rellfygsn)

< EIRCT) = Rellsinsn ) + VIR T) = Relld s,

SElH(T) +2/Rellf 202 g) + cas(@IR(T) = Rellf, 1)

< ecsa0n + caz(e)as,

where the constants c4o and cy3 are the same as in (5.154) and by Remark 5.5 they
depend only on R, and ||§||W23+1/2(Sl).

Moreover, by using (5.148), boundary condition (5.149), Lemma 5.10 and estimates
(5.164), (5.162), (5.163), (5.167) we get

sup  ||R(-,t) — Re||‘2/v4+1/2(51) < ca1c34((c51/car + cz2)a1 + 8] + czp0,
t1+T<t<2T 2

where c31, 32, ¢34 are the same constants as in (5.151).

To obtain the above estimate for T < ¢t < ¢; + T we assume that t; < 7/2 and we
choose t = T'/2 as the initial point. Then using estimates (5.148), (5.167) for T/2 <t <
3T/2, boundary condition (5.149), Lemma 5.10, inequality (5.164) with T replaced by
T/2 and Q27 replaced by 27/, (where u, ¥4, 1, denote v, 05, 0, written in Lagrangian
coordinates {7/2 € £27/2) and estimates (5.162), (5.163) we get

(5.169) T<Su<102T |R(-,t) — REH?/V;Jrl/Z(Sl) < cgicaal(csi/car + cs2)an + 8] + caaa.
<t<

Therefore, for a, o and ¢ sufficiently small, the volume and shape of §2; do not change
more in [T, 27 than they do in [0, 7.

Thus, we can use the differential inequality (5.145) which holds for the solution of
problem (5.63)—(5.69) for t € (T,2T) with the same constants ¢; (i = 22,...,27) as
before. Just as for the interval (0,7) we derive this inequality by using first the prob-
lem written in Eulerian coordinates, i.e. problem (5.63)—(5.69). Then in order to obtain
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some auxiliary estimates we use problem (5.70)—(5.74) in 27 x (T, 2T") which is now ex-
pressed in Lagrangian coordinates {7 € O27, &r = € + SOT u(§,t) dt. Now, V,, is defined
as Vy = &1z = (mej O¢r;)j=1,2,3, Where {1, denotes the inverse matrix to z¢,, and
x=E&r+ StT u(&r,t') dt’. We use problem (5.70)—(5.74) in order to obtain some auxiliary
local estimates. For this reason we have to use systems (5.142)—(5.143) which arise from
problem (5.70)—(5.74).

Since the domains {2 and 27 do not differ much, in order to obtain now systems
(5.142) and (5.143) we can take the covering of {2 together with the family of functions
{¢iYiemun- Thus, 27 C Uiemun 26 and 0 < ng < 375 von Gilér) < No for & € O,
where ng and Ny are sufficiently close to 1.

We derive inequality (5.145) with the function @4 (¢) which has the same form as
©(t). However, the integrals over (0,t) are now replaced by integrals over (T, t), and the
integrals over f\Zl and :S'\l (i € N) are replaced by integrals over ﬁTﬂ- = @T(fZi N 27)
and :S'\T,Z- = @T(fZi N St), respectively. @7 is the transformation which straightens §T’Z— =
(NZZ- N S7. We introduce local coordinates by

T

U = Qg (§Tz -6 - S w(B,t") dt/), k=1,2,3,
0

where § € ﬁl NS and {ag} is an orthogonal matrix such that §T’Z— is determined by
s = F(7,,7,), where F € Wy ™/% F(0) = 0, VF(0) = 0. We have the relations:

|G — o] < ess(|R(,T) = Rllp(sty + IVR(T) = VR|p_(s1y) for k,1=1,2,3

and

1 = Gllypasrrzg,y < csal|[R(ST) = EHW;H/?

() (st

where G(y1,y2) = F(U1,2)lg=x.(»)» X1 is the transformation connecting coordinates y
given by (5.141) and coordinates ¥; {a;} is the same orthogonal matrix as in (5.141).
Next, we introduce the coordinates z, = ¥, k = 1,2, and z3 = ;3 — F(¥), where F is
the extension of F' to R3 such that ||F||W25(Ri) < C“F||W;+1/2(U).

We denote by @1 the transformation such that z = &1 (7).

Now, consider the function ¥y (t) = By (t) 4 caap® (), where cyq is the constant from
(5.156). Since

Lo (£2)

T
H S wdt’
0 Lo (92)

T
+ HSUgdt/
0

T
1/2
<er(§llulsat) "+ clen)ull o) < iesion + cle1)ds,
0

the form of (), Lemma 5.13, Remark 5.7 and estimate (5.161) with sufficiently small
ay imply

Br(T) < [L+ essleallulhyzgom + IRGT) = Rlyaon o)

+c(e2)(lull oor) + |1 RCT) = Rl| 1y 50))9(T)
+esollH(T) + 2/ Rellwz(sp) + w(er, 0),
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where the constants ¢; (i = 55,56) depend on T £1, 2 are sufficiently small constants
and w(eq,d3) is as small as we need if €1 and J3 are sufficiently small.
Hence using Lemma 5.4 and estimates (5.161), (5.167)—(5.169) we get

(5.170) Up(T) < (1+ w)Y(T) + k2,

where k1 = k1 (€2,03,0, ) and ko = ka(e, ag, €1, 03) are constants depending also on a;
which are as small as we need if €, €1, €2, d3, § and «ay are sufficiently small.
Moreover, from the form of <p( )( t) and estimate (5.165) it follows that

(5.171) carB (1) < polt) < cusP ) (t)  for T <t < 2T,

where cy7, c4s are the constants from (5.157).

The function <p( ) has the same form as 7® but some terms of P
T

22 are expressed in
Lagrangian coordinates £&p € 27 and the integrals over Q are replaced by the integrals
over ﬁT,i-
Now, as before, Lemmas 5.11, 5.12, 5.5 and estimates (5.140), (5.165)—(5.167), (5.161),
(5.170) yield for sufficiently small a1, as, 9, 03, €, €1, €2,
t

(5.172)  p(t) + % Vo) at < (t = T)[ecas(esr/ear + es2)on
0

+ cag(6 + 63 + a2)] + ¢ (T)  for T <t < 2T,
where 2 and ¢; (i = 45, 46) are the same constants as in (5.155).
Now, we want to extend the local solution to the interval [2T",3T]. To do this we have

to prove that provided the constants €, 1, €2, d3, 9, g are sufficiently small, the following
estimate holds:

(5.173) Uy (T) < v,
where «q is the same constant as in (5.159).
First, notice that Lemmas 5.5, 5.11 and estimate (5.140) imply, for 0 < ¢, <t < T,

B(t') dt" < (t =t )7 + ¥ (t),

[ I

(5.174) D) + %2
t

where 7 is the same small constant as in (5.155). From the form of t(t) it follows that

t t
(5.175)  {@(t)dt' > esr | B(t) dt' ~ 058( H dt’
te te iEN t, (5

t

+ JIHC0)+ 2/ Rz s dt'),

o
where the constants cs7 and csg depend on the same quantities as c4g and cag.
Using the fact that 2 = R(w,t)w, w € S! and Lemma 5.6 we get

(5.176) H adt”|
€N t,

t
WG dt’ < es9 X |R(-t") — R('70)||%V§(Sl) dt’
t
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t

t
< coole § @) dt' + c(e) (10400, + P01} ) 4
t. t
(¢ = t)( sup IRC,¥) = Relli,sn) + IH(0) + 2/ Relliygs)))-
Now, taking into account (5.174)—(5.176), (5.166)—(5.167), (5.115), (5.112), (5.154) and
(5.105), (5.96) we obtain
¢
B) + o1 | D)t < conlt — )7+ (L),
t
where the constants cg1, cg2 depend on the same quantities as ¢; (i = 22,...,27). Hence
¢
(5177)  W(t) +cor \w(t))dt' <(t.) for all t, and ¢ satisfying 0 < t. <t <T,
t
where
_ co2y

W(t) = (1)
C61
Assuming that ¢g27/ce1 < g, by (5.177) and (5.159) we get
Y(t) < (Oéo - @)e_c‘”t fort < T.
C61
Therefore

B(T) < Ce27/ n (Oéo _ C627>6661T.
C61

Hence, by (5.170)
— Cce27Y Cce27Y
p(T) < (14 k1) {ﬂ + <a0 - ﬂ)e—cmﬂ + ko
Ce1 C61
Assuming that the constants e1,e2, 03, ag, 8, € are so small that
A+ 1) [_V ; ( - J)] T k2 < ao,
Ce1 Ce1
we get (5.173).
Now, in view of (5.173) estimate (5.172) yields

(5178)  Pp(t) + 22\ B(t) dt’

< (t — T)[€C45 (Zﬂ + 652)0(1 + 646(34- 03 + 042)] +ay forT <t<2T.
47

Therefore, assuming that the constants ¢, 6, d3, o are so small that
Tlecas(cs1/car + cs2)an + C46(3 + 03+ )]+ < csron

we get
t
Up(t) + 2\ ot dt' < cs1on  for T <t < 2T,
T
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where c51 is the constant from inequality (5.161). Hence by (5.171)
wo(t) < Cﬂal for T <t <2T
Ca7
and

sSup ”H(at) +2/REHI2/VZ+1/2
t+T<t<2T 3

< c520.
(s = G201

Moreover, as before, we have

sup ”R(vt) - Re”%/[/?l(sl) < ag.
0<t<3T
Thus, we can extend the solution to the interval [27,3T]. Continuing this process step
by step, the solution can be extended for all ¢ > 0 and inequalities (5.109)—(5.110) hold.
This completes the proof. m

REMARK 5.8. From the proof of Theorem 5.11 it follows that some estimates in the
interval [0, 7] hold with different constants than in [T, 27]. However, thanks to estimate
(5.173), the procedure of extending the solution to successive intervals stabilizes and
therefore in the intervals [T, (i + 1)T7] (i = 2,3,...) all the estimates used in the proof
hold with the same constants as in [T, 2T7.

REMARK 5.9. From the proof of Theorem 5.11 it follows that apart from (5.109)—(5.110),
the assumptions of the theorem also yield

EjT(jT) <cuop forjeN,
where ¢4 > 0 is the constant.

E]-T are functions having the same forms as v, but the appropriate terms of ﬂjT are
expressed in Lagrangian coordinates ;7 € (2,7 with the integrals over (0,t) replaced
by integrals over (jT,t), and the integrals over f\Zl and S’\l replaced by integrals over
ijTVZ- = @jT(ﬁi N £2;7) and §jT = d5jT((~2i N St), respectively. @ is the transformation
which straightens ngﬂ- = ﬁl NSr.

REMARK 5.10. The assumptions that SQ 00&d€ = 0 and SQ 00vo d§ = 0 are not restric-
tive, because we can always choose coordinates in which they hold (see the final part of

Subsection 7.6). Therefore, in fact they can be removed from the formulation of Theorems
5.11-5.13.

In the case e, = 0 the following theorem analogous to Theorem 5.11 holds.

THEOREM 5.12. Let e, = 0, p = ape, where a > 0 is a constant. Let the other as-
sumptions of Theorem 5.11 hold apart from (5.104). Moreover, let assumption (5.137) be
satisfied. Then the assertion of Theorem 5.11 holds.

Now, we shall consider the case of pg = 0 and f = 0. In this case the energy conser-
vation law has the form

d v? _
7 Sg 7—1—6 dz + 0S| —%SGCZSZO.
2 St
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Hence, assuming (5.98), (5.113) and using the mass conservation law we obtain

2
(5.179) L | ovdw+ | %dﬁaw
22 2 2

2 o0
< S QO(U?O +€0> d¢ +o|S| + S dt S 0(s,t)ds = do,
(] 0 R3

where 3 > 0, v = 3 + 1. Multiplying inequality (5.179) by [£2;|? yields

(5.180)  wo(l2u)) + 5 121" § 0 de — (' Qd“ﬂ
02 2, 2

2
v
+He2? § o7 do + ol 217(1Si] ~ 4xR) <0,
2y

where yo(2) = ez’ /3 — doa? 1 + (e1/05) M7, & = (36m)1/3.
Since the last three terms of (5.180) are positive it follows that yo(]2¢]) < 0. The
extremum points of yo(x) are determined from the equation

(5.181) yh(x) = [oe(y — 1/3)2? — do(y — )]z "2 = 0.
Equation (5.181) has the only positive solution
2o — {M} v
co(y—1/3)
which is the minimum point of yo(x). Since ¢o(y — 1/3)3@3/3 =do(y—1) we get

2 8(y-1)/2 L O e B Y
(5.182) —yo(zo) = g('y -1) v == (co) dy - —=M".

3 o5

The following lemma can be proved by using the argument of the proof of Theorem 1
from [ZZaj5].

LEMMA 5.13. Let po =0, f =0, 8 > 0 and let assumptions (5.98), (5.113) be satisfied.
Moreover assume that

(5.183) 0 < —yo(zo) < do,
where g > 0 is sufficiently small and —yo(xo) is given by (5.182). Then

var |£2| < ¢16,
0<t<T

where 62 = c3dy.
REMARK 5.11. From the analysis of the behaviour of the function

2 3(y—1)/2 1\~ 3(y—1)/2 ;(3v—1)/2 €1
F(y)==(y—-1) (=172 (= 2 (¢o)~ (v=1/ g™ - —=M"
3 3 05
it follows that for every dg we can find v and dy, o, M, ey, g2 such that condition (5.183)
is satisfied.
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In fact, putting 8 = v — 1 we obtain the function

GB) =F(B+1)= 2 D) ey
B)=FpB+1)= 3(1+%)35/2(ﬂ+§) <§> 0" 7 )
Hence limg_ o+ G(B8) = dy — esxM > 0. Now, assume that dy < ¢o. This implies that
[2] <1 and M < gy. Then we get limg_,o, G(3) = 0. Therefore, for every dy > 0 we can
find v such that (5.183) holds.

Thus, we can formulate the following theorem.

THEOREM 5.13. Let f =py =0, § > 0 and assume that condition (5.102); is substituted
by (5.183). Moreover, let the other assumptions either of Theorem 5.11 or Theorem 5.12
be satisfied. Then the assertion of Theorem 5.11 holds.

REMARK 5.12. The assertion of Theorem 5.13 also holds for pg # 0, because we can
replace in problem (5.63)—(5.69) p by D = p — po getting boundary condition (5.66) with
the external pressure equal to zero.

The local solution determined by Theorem 5.9 can also be extended to a global one
if we assume that « € (3/4,1) (see [Z2]). More precisely, the following theorem holds.

THEOREM 5.14. Let o € (3/4,1), e € CY (R4 x Ry) and let the assumptions of Theorem
5.9 hold. Let the assumptions (5.84), (5.95), (5.106) and (5.97)—(5.98) with the constants
01, 02, 01, 02 defined in Theorem 5.11 be satisfied. Let one of the conditions (5.102); be
fulfilled. Assume that either e, > 0 for g, 8 > 0 and (5.104) holds, or e, = 0, p = age
(a > 0) and (5.137) is satisfied. Moreover, assume that

||U0||€V21+a + H900\|W1+a @ T ||QUO||$/[/21+°‘(Q) <
and
H7"||c2 (R3x(0,00)) T H9||c3 (R3x(0,00)) = <.
Finally, assume that the function R describing S satisfies (5.107), S € W25/2+a and

VHC,0) + 2/ Rl o1/ g, < @

Then for sufficiently small oy, oo, 6 and 6; (i =0,...,3) the solution of problem (5.63)—
(5.69) exists for all t > 0 and the following estimates are satisfied:
1021wy + 10 Ol 2p1ee g + 0 OFgoe ) < Fron fort>0

and

loll?,, + 1165113,

STt 2 (0, x (GT,(j+1)T)
<cay  forte (JT,(j +1)T), j € NU{0},

STt 2 (0, x (GT,(j+1)T)

+loo |, Jhel/ 22 (0, ) (GT,(j+1)T) =

where T is the time of local existence and ¢1, ¢ > 0 are constants. Moreover, Sy € W, 5/2+a

fort e Ry and
sup [|R(-,t) — Rell?

t1>0

W/ (g1 < ¢z + g,

where ¢3, ¢4 > 0 are constants and the constant ¢z depends on 0 < t1 < T.
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The general idea of the proof is the same as in Theorem 5.11. However, some modifi-
cations are necessary. First, we replace Lemma 5.5 by

LEMMA 5.14. Let assumption (5.113) be satisfied. Then for 0 < t, <t <T we have

||q0||2L2(_Q><(t*,t)) <G5 g‘lu”?/(/;*'“’”“/z(Qx(t*,T)) +c(e, T — t*)HUH%z(Qx(t*,T))
t

2 2
+ sup_ [l ey § Nl o) 4t
and

H77<T||%2(Q><(t*,t)) + ||790H%2(9x(t*,t))

<G [EHUHivzzm,ua/z(Qx(t*’T)) +c(e, T - t*)Hu||%2(Q><(t*7T)) + ||u€||2L2(Q><(t*7t))
t

 W0oelZaaniean + 510 el § lulfiy o) @t

T
t t
2 2 / 2 2 ’
+, 5 ey o) § ey @+ sup 1ol o 19001y ]

where ¢, (&,t) = pe(N(€, 1), (&, t)); C5,T > 0 are constants depending on 01, 02, 01, 02;
€ € (0,1) is a constant; c(e,T) are positive constants depending on € and T.

The proof of the above lemma is similar to the proof of Lemma 5.5. The only difference
is connected with the fact that we cannot estimate supg<;<r ||ut||2L2(Q) in this case.
Therefore, we use the interpolation inequality

T

[ ol < el vnsars e ey + (6 T =t e )

ta
Lemmas 5.3, 5.4, 5.7, 5.13 and the inequality (5.140) are applied in the proof of Theorem
5.14 without any changes, while Lemmas 5.6, 5.8 and 5.9 require only slight modifica-
tions. Namely, in Lemmas 5.8 and 5.9 we assume that vg € Wy (£2), 6y € Wy t(92),

I+a 2 2 2 = =
00 € WyT%(§2) and HUO||W21+Q(Q) + ||9ao||W21+a(m + ||QUOHW21+Q(Q) < g, where z is suf-
ficiently small. Then the assertions of the lemmas hold. Lemma 5.6 is modified in such
a way that we obtain inequalities analogous to (5.127) and (5.128) for Si IR(-,t") —

t

R(.,o)\\§V§+a(Sl) dt’ and §, ||R(-,t') — R(-,0)

Next, using Lemmas 3.1-3.2 of [Z2] and Lemma 6.1 of [BurZaj| (see also Lemmas 2.1,
3.1, 3.2 of [ZZaj11]) we see that the following estimate analogous to (5.112) holds:

”?/Vj/““(sl) dt’, respectively.
a+2,0/2+1 a+2,0/2+1
(5.184) [”UH_(Qf / )+||190||§2t / )—|—||770||W21+a,1/2+a/2(gt)—i—oiltl/gt ||77‘7HW2,1+C‘(Q)]2
D 2 2 2 5
< @(T)(HUO||W21+a(Q) + H900\|W21+a(9) + ||Q‘70||W;+a(g) + | H(-,0) + 2/R€HW§“/2(S)

+ Hh”;/zawaﬂ(nj") + ||§H$/V;+1/2xa/2+1/4(57"))7
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where t < T, T is the time of local existence depending on «1; @ is a positive nondecreasing
continuous function.

Moreover, the estimate analogous to (5.139) is proved for the local solution determined
by Theorem 5.9. This estimate has the form (see [22], [ZZaj11])

2 . 2
(5185) tlsSgI;T ||u||W22+0¢(Q) + tlbgliIS)T ||19‘7||W22+°‘(_Q)

< c(K) (K7 + H7°||20123(R3x(0,oo)) + Hgnég(mx(o,m)))a

where K = Hu||‘2/v22+a‘1+a/2(QT) + H19<TH?,VZZ+@,1+0/2 K = Ky +supgci<r [l

2 +
(ery’ W, ()
SUPo<¢<T ”190”?4/21+a(9)+sup0§t§T ||770||‘2/VZl+a(Q)+||770||‘2/V21+a,1/2+a/2(QT)’ ¢(K) is a positive
nondecreasing continuous function of K depending also on t1.
Finally, instead of differential inequality (5.145) we use an inequality which is proved

in [ZZaj13]. This inequality written in a more general form is as follows:
(5.186)  o(t,2) + 622(||u||$/1/22+a’1+a/2(9><(t*,t)) + ”190H?/V;+a’1+“/2(9><(t*,t))
+ ”ng||$/V21+a’1/2+a/2(9><(t*,t)))
< c(t, Z1, Zo)lulll, ax ey + 1012 (2xtut)) T 190 170 (2x bty + ||hH3V;,a/2(QT)
T2 v maraisa o, + 121+ o) 2a25] + (1, 2),

where 0 < ¢, <t < T, ¢ =c(t,Z1,Z>) is a positive continuous nondecreasing function
with respect to its arguments depending also on g1, 02, 61, 02, ||SHW25/2+@ and the con-
stants from imbedding theorems; Cao > 0 is a constant; e; € (0,1) is a constant which
can be assumed sufficiently small and

Zl = ||u||‘2/V§+a‘1+a/2(Q><(t*,t)) + ||190‘|3/1/22+a’1+a/2((2><(t*,t)) + ||770'H?/VQIJrOhlﬂJra/?(QX(t*’t))7
Zs

2 2 2
o<teT el e ) + O?ET g oztlgT el )

a+2,a/2+1 a+2,a/241
[l 5227280 g, | (ot o/24 0]

t

Z3

2 + Hn0||$}V21+a,1/2+u/2(Qt) + Oiltl’p<t ||7’U||?/V21+D‘(Q)’

t
Z4 = (t - t*)HH<7O) + 2/R€H?/V2a+1/2(s) + S HR<7t/) - R(a O)||€I/25/2+0t(51) dt'.

1

The function ¢ satisfies the inequality

(;5(t, Q) < C(””(t)”%/vlﬁa(g) + ||190(t)‘|%/‘/21+a(9) + ||770(t)||?/(/21+a(9)

t
| Judt [, IHC 0+ 2/ Rellg ).
0

2
wite

where ¢ > 0 is a constant depending on g1, 02, 01, 02. The exact form of ¢ is given in
(ZZaj13).

Inequalities (5.184), (5.186) and (5.140) together with Lemma 5.14 and the assump-
tions of the theorem imply the following estimate:
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t
(5.187) D)+ 71 | D)t < 7, + Tea (t)7, + D(L),
t
where 0 < t, < t < T, G > 0 is a constant; Ge2(t.) = c(e,T — t.) is the constant
from Lemma 5.14; 7,, 7, are sufficiently small constants; ¥(t) = ¢(t, 2) + 1403 (t) (see
(5.156)) and similarly to c44 the constant ¢44 is chosen sufficiently large.
The constants Gg1, 7; and the function ¢ge depend on g1, g2, 01, 02, HS||W25/2+@ and
the constants from imbedding theorems.
The role of inequality (5.187) in the proof of Theorem 5.14 is the same as inequality
(5.177) in the proof of Theorem 5.11. Namely, it is essential in the process of extending
the local solution to a global one. In fact, the following lemma holds.

LEMMA 5.15. Assume that ¢ is a nonnegative continuous function defined in [0,T] and
satisfying for 0 < t, <t <T the inequality

t
(5.188) Y(t) + Cr | () dt' <y + Colta)rs + (),

ta
where C1 > 0 and 1, v2 > 0 are constants; Ca(t.) = w(T — ti) and w = w(t) is a
positive continuous function defined in (0,T]. Let C3 = sup,cip/omw(t). If ¥(0) < ao
and 1 + Cs7y2 < min(<%2 €1 Ty ) then there exists T/2 < Ty < T such that

2 4420, T
(5.189) Y(T1) < (1 —eo)ao,
where gy = min(%, 4+C;+CT1T)

Proof. Let 0 < T. < T be such that (T%) = inf,epo, )9 (¢). If 0 < T < T/2 then by
(5.188),

T

W(T)+Cy | p(t)dt <1 +w(T = T)ys +9(T)

T
and hence T
(T) < (1= Crg)9(Ts) +m + G
If C1(T/2) > 1 then ¢(T) < 31 + C37y2. If C1(T/2) < 1 then (T) < (1 — C1T/2)ag +
v + C372 < (1 — C1T/4)ag. Therefore (5.189) holds with Ty = T.

Now, assume that T/2 < T, < T. Then by (5.188),

T,
W(T) + Oy | () dt' < 31+ w(T)y +1(0),
0
and hence
(670} C’lT
<90 Ay = = Yo
P(Ty) < 1+ Ci(T/2) + 71+ Csy2 (1 7T ClT)aO + 71+ Csy

Therefore, the assertion holds now with T7 = T). This completes the proof. m
Now, we present the sketch of the proof of Theorem 5.14.

Sketch of proof. We proceed as in the proof of Theorem 5.11. First, inequalities (5.184),
(5.186) and (5.140) together with Lemmas 5.14, 5.4 and the lemmas analogous to Lemmas
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5.6 and 5.8 or 5.9 yield, for t < T,

— C22
(5.190)  ¥(t) + 7(”“” 24al+a/2 o + [|Ys || 2Haltal2 o + ||770|| Ltal/24a/2 (o)
< C456(O&1 + 5) + 6(6, T)63T + C46T[5 + 51(041 + 042)} + w(O)
=7+ 9(0),
where the constant ¢(e,T) depends also on §2, and the constants ag, €45, €46 depend on
the same quantities as the constants ¢g; and Ggo above.
As in the proof of Theorem 5.11 we get (see (5.154))
[H(-,0) + 2/R6H%/(/2f¥(s) < ezaq + Cz(es)an
Hence
(5.191) $(0) < Cyglan + 301 + Caz(e3)ae] < Cxoan = g,

if €50 > Ca9 and e3, o are sufficiently small. Hence assuming that ¢s; > ¢50 and €, €1, 6,
03 are so small that ¥ + ap < €511, we obtain

— Co2
(5.192)  (t) + (\Iulli@+a,1+a/2(m) F 9o llyyzrearvare g

=+ ”770” Lo, 1/2+a/2(9t)) <éesrap fort <T.
Therefore, by the imbedding W2+a’1+a/2(QT) C C([0, T]; Wat(£2)) we get

—(1
Bt 2,1y + 10 Oy + 0 (O ey < T for t < T

Hence
(2
(5:198)  ulT)IEysee )+ 0o T2 ey s + 1T 2 e g, ) < e,

where 0 < 77 < T and u, ¥,, 1, denote v, 0,, g, written in Lagrangian coordinates
§T1 S -QTl-

Now, the boundary condition (5.149) and inequalities (5.185) and (5.192) imply, for
t1 <t<T,

HH(7t) + 2/‘RE’”2 «1+1/2(S)

2 —
<l s lullizee i)+ s 100lfzee o) a2 ol q) < Esaon,

where t; > 0; ¢ > 0 is a constant dependmg on t1; Cs2 is a constant such that C[(¢51 +
Eéll))al + 8] < @901 and C(K) < C. Therefore, using Theorem 7.1 and Lemma 5.8 (or
5.9) we get

< 3 + cpan.

sup HR(vt) - Re||?4/25/2+a(51) =

t <t<T
This means S; € VV25 1274 for ¢ < T and the shape of S; does not change much in
[0, T]. To extend the solution outside [0,T] we derive inequality (5.187) with 7, = 03T
w(t) = c(e,,t) and with 7; = 7,(8, ¢, €1, €3, ) as small as we need if §, ¢, £1, €3, ay are
sufficiently small. Then for J, €, €1, €3, o and d3 so small that 7, +8upse (72,1 ¢(€, )72 <
min(ag/2, (¢e1Ta0)/(4 4+ 2¢61T)), estimate (5.191) and Lemma 5.15 imply
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(5.194) (1) < (1—ego)ay for T/2<Ty <T,

where g9 = min(1/2, (¢6:17) /(4 + 2¢61T)).
If o is sufficiently small then by (5.193) there exists a local solution in [T7,7 + T1].
It satisfies an inequality analogous to (5.186) with v(t) replaced by v, (t). The function
Y, (t) has the same form as 9 (t) but it is expressed in Lagrangian coordinates {7, € {27,
Using (5.194) and assuming that d3, 0, ay are sufficiently small, we get

ETI (1) < ap.

The argument for the above estimate is the same as in Theorem 5.11.
Hence repeating the above considerations we extend the solution to [Ts, T+ 7, where
Ty +T/2<Ty <Ty+T, and then step by step to R;. m

REMARK 5.13. Theorem 5.14 is formulated for the case of constant v, i and s, but it can
also be proved under the assumption that v, p and s are sufficiently regular functions of
o and 6 (see [Z2]).

REMARK 5.14. Since we prove step by step that the volume and shape of {2; do not
change much in time, in each step we obtain inequality (5.187) with the same constant
61 and the same function cgo.

6. Two- and three-dimensional surface waves problems

6.1. The motion of an incompressible fluid. The three-dimensional problem under
consideration is formulated as follows: find a domain £, = {z = (2/,23) € R?® : 2/ =
(71,22) € R2, —b(2') < 23 < F(2',t)}, a velocity vector field v = v(z,t) (v = (v1, v, v3))
and a pressure p = p(z,t) satisfying the system:

(6.1) ve+(v-Vo—vAv+Vp=f—ges, z€ te(0,T),
(6.2) dive =0, T €, t€(0,7),
(6.3) Tn — cHn = —poT, z € Sp(t), t € (0,T),
(6.4) v-ﬁ:\/%, x € Sp(t), t € (0,T),
(6.5) v=0, z € Sp, te€ (0,T),
(6.6) V|t=0 = vo(x), x € =1,

(6.7) Fli—o = Fo(2'), z’ € R?,

where g is the acceleration of gravity, ez = 1(0,0,1); Sp(t) = {2/ € R? : 23 = F(2/,t)} is
the free surface with unknown function F, V' = (9/0z1,0/0z2), Sp = {2’ € R? : 23 =
—b(2’)} and b is a given function; T is the stress tensor defined by (4.6); o > 0 is the
surface tension; pg is the atmospheric pressure which is a positive constant; 7 is the unit
outward vector normal to Sg(t) at x; H is the double mean curvature of Sg () at x given

’ H(z,t)=V"- (L>

VITIVEPE
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Problem (6.1)—(6.7) describes the motion of a fluid contained in an unbounded domain,
such as an ocean of infinite extent and finite depth.
The two-dimensional surface waves problem can be formulated analogously.

6.1.1. Local existence. Just as in the case of a fixed mass of a fluid bounded by a free
surface (see Sections 4-5) it is convenient to write problem (6.1)—(6.7) in Lagrangian
coordinates. Then assuming that p =5 — pog + gx3, problem (6.1)—(6.7) takes the form

(6.8) ug —vViu+Vuqg=nh in 27T,
(6.9) Vu-u=0 in 27,
(6.10) Tou(u, @)ty — 0Au(t) Xy = —gXyu 37, on Sk,
(6.11) u=0 on S,
(6.12) Ult=0 = Vo in £2,

where Q(gvt) = ﬁ(Xu(fa t)’t)7 h’(évt) = f(Xu(gv t)’t)v Sp = SF(O)

Local solvability of problem (6.1)—(6.7) is examined in [All, Al2, B1, T2]. The first
paper concerning problem (6.1)—(6.7) was the paper of Beale [B1], where the case of 0 = 0
was studied. Assuming f = 0, Beale examined local solvability of problem (6.8)—(6.12) in
the spaces H°(0,T; H'(£2)) N HY2(0,T; H°(£2)) which in fact coincide with the Sobolev—
Slobodetskii spaces Wé’l/z(QT). Beale proved local existence for problem (6.8)-(6.12)
using the theory of H*(0,T; X) spaces (where X is a Hilbert space) developed in [LMag].

As usual in order to solve (6.8)—(6.12) one has to consider an appropriate linear
problem which in this case consists of equations (4.15)—(4.16) and the following boundary
and initial conditions:

(6.13) 20[S(u)iag — (S(u)7o - o )7i0) = D in ST,
t
(6.14) —q+2vS(u)mg -y — 0 Ag S wdt' - mg
0
t
:b+aSBdt’ on ST,
0
(6.15) u=0 on SE,
(616) U,‘t:() = Vo in .Q,

where S(u) is as before, the velocity deformation tensor and 77y is the unit outward vector
normal to Sg.

In [T2] the following existence theorem for problem (4.15)—(4.16), (6.13)—(6.16) is
proved.

THEOREM 6.1. Let a € (1/2,1), 0 < T < oo and Sp, Sp € W23/2+a. Assume that
(F,G,vo, (b, D), B) € Wg/2(27 )Wy "2 (QT syt (@) Wy #1220 (s )
x WO H2e2mA(GTY and that G = V - R with R € Ly(27T), Ry, € W*/*(02T). More-

over, assume that the following compatibility conditions are satisfied:

V- Vo = G|t:0, D|t:0 = QU[S(Uo)ﬁo — (S(’Uo)ﬁo 'ﬁo)ﬁo]‘sl,, D- ﬁo = O, UQ|SB =0.
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Then problem (4.15)~(4.16), (6.13)~(6.16) has a unique solution u € W2 ' T/2(QT),
qc W;’Q/Z(QT), Vg e W;’Q/Z(QT),q € VVZO‘—H/2 a/2+1/4(512) which satisfies the inequal-
ity
lal g™ + llgls2 + 19l 52 + lallypr2217s 7,
< CUDYIEG + Gy sy + IRl
+ Tﬁa/2”Rt”L2(QT) + [ (b, D)||Wa+1/2’°‘/2+1/4(517;)

—« a—1/2
+ T2 bl 220057y + o IBIGE " + vollyaee o by
where C1(T) is a constant depending on T nondecreasingly and

2+a _ [e% «
(lull 552 = (el 50 + 7 (1DFulllsh)? + Z 1D ul?, o
[v|=2 [v|=0
(all§52)> = Tl o oy + Tl )

5 _
IBIGH? = 1By 557250, + T 1Bl ,sry  (0<8<1).

(£27)

The proof of Theorem 6.1 is closely related to the proof of Theorem 1.1 from [Sol12],
however, some arguments from [TItTan] are also used. Theorem 6.1 and the method of
successive approximations yield the following theorem proved by Tani in [T2].

THEOREM 6.2. Let Fo € Wo/*T™(R2), b € Wi*T™R?), a € (1/2,1). Assume that
F e W (R3 x (0,00)) N Lo (0,00, Ly (R3)), fo € WO(R3 x (0,00)), fo is Lipschitz
continuous in x and Hélder continuous in t with exponent 1/2. Moreover assume that
vg € Wot(82) and vy satisfies the compatibility conditions

V-vy =0, S(’Uo)ﬁo - (S(Uo)ﬁo . ﬁo)ﬁo‘sl, =0, UO|SB =0.

Then there exists a unique solution (u,q) to problem (6.8)—(6.12) such that u €
W22+O"1+°‘/2(QT*) and q,Vq € W;"O‘/Q(QT*), qe W20‘+1/2’°‘/2+1/4(S§*) for someT* > 0.

REMARK 6.1. In the case of ¢ = 0, a theorem analogous to Theorem 6.2 holds with the
assumption Fy € W5/2+O‘ (R?) replaced by a weaker one: Fy € W§/2+°‘ (R?).

In contrast to [B1], the regularity of the solution obtained by Tani [T2] is sharp, i.e.
lowest possible, which is admissible for this problem in the Lo-approach. In [B1], Beale also
first studies solvability of the above linear problem with ¢ = 0 and then by using the Ba-
nach fixed point theorem he proves that there exists T' > 0 such that problem (6.8)—(6.12)
has a solution with u € Wl l/Z(QT) € Wé,3/2’1/2,3/4(55)7 Vg € WéfZ’l/Zfl(QT). He
obtains this result under the assumptions that 3 <1 < 7/2, vy € Wzlfl(ﬁ); &3, the vertical
coordinate in (2, is in Wl 8/ ?(Sp) and appropriate compatibility conditions are satisfied.
Moreover, he assumes that 2 is the image of X' = {¢ = ((1,(2,(3) : —h < {3 < 0} under
the diffeomorphism h(¢) = ¢ + h(¢), h € C® and 9¢h — 0 as [¢] — oo for |af < 5.

In [B1] existence for arbitrary T' > 0 but for sufficiently small initial data in de-
pendence on T is also proved. This result is obtained in the same class of functions as
above.
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The two-dimensional case of problem (6.1)—(6.7) with ¢ > 0 and f = 0 has been
examined by Allain [All, Al2]. In this case 2 C R? is a domain bounded by Sp =
{(&1,862) € R?: & = ho(&1)} and Sp = {(&1,&2) € R? : & = h(&1)}. The papers of Allain
were written some years earlier than paper [T2] concerned with the three-dimensional
case. The main result of his papers is a local existence theorem. Under the assumptions
that 0 < o < 1/2, h € W20‘+5/2(R), vy € VVgHa(Q)7 V-vg=01in 2, vg = 0 on Sp
Allain proves that there exists T > 0 depending on {2, o and vg such that problem
(6.8)—(6.12) has a unique solution such that u € VVQQJFQ’HD‘/Q(QT)7 Vg € W;’Q/Q(QT),
g € WPV, T Ly (Sk)).

Teramoto [Terl, Ter2] studies the motion of a viscous incompressible fluid which flows
down an inclined plane under the effect of gravity. The fluid is bounded from below by a
fixed plane which is inclined at an angle 0 < ¢ < /2 to the horizontal plane. In order to
describe this problem Teramoto chooses the following orthogonal system of coordinates:
the x7 axis is in the direction of the greatest slope down the bottom, the xo axis is in a
direction such that the ;29 plane (x5 = 0) is parallel to the bottom, and the z3 axis is
upward from the z;x5 plane. In these coordinates the domain §2; occupied by the fluid at
time ¢ is defined similarly as before, but it is assumed that b(z’) = by, where by > 0 is a
constant. The motion of the fluid is described by the system (6.1)—(6.2) with f = 0, with
es in (6.1) replaced by v = (sing, 0, —cos ) and with conditions (6.3)—(6.7). Applying
the approach from [B1], Teramoto [Terl] obtains for ¢ = 0 a small time existence result
analogous to Beale’s result of [B1].

Paper [Ter2] is concerned with the case of o > 0. Using Beale’s idea from [B1, B2]
Teramoto transforms the domain 2; to a fixed domain 2, = {(z},2),24) € R3: -1 <
x5 < 0} and considers problem (6.1)—(6.7) in new coordinates xf, x4, x%. Denoting by
Fo, To, U, p and F the functions Fy, vg, v, p and F written in the new coordinates and
then using Beale’s approach, Teramoto proves the following theorem.

THEOREM 6.3. Assume R < 1/(2v/3 + 16), where R = 0oboVo/v (0o is the constant
density of the fluid, Vy = %%"bgg sin ). Let T > 0 be arbitrary, and assume that 3 <1 <
7/2. Then there exists § > 0 such that for Fy and Ty satisfying appropriate compatibility
conditions at x3 =0 and x3 = —1 and the estimate

1Follwsrz) + 0ol i-12 g,y <6,

the problem considered has a solution (v,p, F') such that F € W2H'1/2’l/2+1/4(IR2 x (0,T)),
v e WA (0T), vp e Wi PN 0T, pls,, € Wi¥/223/4R2 5 (0, T)), where Syp =
{z3 =0}

6.1.2. Global existence and stablity. Global existence theorems for problem (6.1)—(6.7)
are subjects of papers [B2, TTan, Syl]. All of them assume that f = 0. Moreover, [BNis]
brings an asymptotic decay rate for a global solution guaranteed by the existence result of
[B2], and [Nis] gives a review of results concerning free boundary problems for equations
of fluid dynamics including global existence theorems for problem (6.1)—(6.7).

Now, we will describe the results of [B2]. We formulate the global existence theorem
proved in [B2], using the notation K'(27) = W'/?(0T).
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THEOREM 6.4. Suppose that l, k and Ty are chosen with 3 <1 <7/2, k>0, and Ty > 0.
Moreover, let the following compatibility conditions be satisfied:

V-vg=0 in2={-ba) <z <Fo(a')},
{(vm@j + v0j,z; ) ttan = 0 on Sk,
vo=0 onSpg,

where “tan” means the tangential component. Then there exists § > 0 such that for Fy, v
satisfying

(6.17) |Bollwicrey + 00llyi-1/20g) < 6,
the following existence, uniqueness and reqularity statements hold:

(i) the problem (6.1)~(6.7) has a solution F, v, p, where F is in K't1/2(R? x R,),
and v, p are restrictions to the fluid domain $2; of functions defined on R® x R, with
ve K(R3xRy), Vpe K'"2(R3 x Ry), po F € K'"3/2(R2 x R,). Here (po F)(z/,t) =
p(a', F(2',1),1);

(ii) for any T > 0 this solution is unique in the class of F, v, p with F € K'T1/2(R? x
(0,7)) and v, p the restrictions to £2; of functions v € K'(R? x (0,T)), Vp € K'72(R3 x
(0,7)), po F € KI=52(R? x (0,T));

(i) the solution satisfies: F € K'FT1/2(R2 x (Ty,00)), v € K'TF(R3 x (T}, 00)),
Vp € K'HF=2(R3 x (T}, 0)), and po F € KHF=3/2(R2 x (Ty, 00)). In particular, if k > 2,
all the equations are satisfied in the classical sense fort > Ty.

To prove Theorem 6.4, first, the following linear problem is considered in [B2]:

(6.18) uy — vAu+ Vg = fo in (2,
(6.19) divu =0 in 02,
(6.20) Fy = ug on Sir,
(6.21) Uiy + U3y, = fi, 1=1,2, on Sir,
(6.22) q—2vuzy, — (9F —0 Ay F) = f3  on Sip,
(6.23) u=0 on 51,
(6.24) Uimo =0, Flimo=0 in 2,

where (27 is the equilibrium domain bounded by S1Fr = {3 = 0} and S1p = {z5 =
—b(2")}, Ay = 0%/0x2 + 0% /0x3.
The following theorem holds for problem (6.18)—(6.24) (see [B2]).

THEOREM 6.5. Suppose fo is given in KéO)Q(.Ql x Ry), I > 2 and not a half-integer,

and f; € K(lo)3/ (Sir x Ry), @ = 1,2,3. Then problem (6.18)—(6.24) has a solution

(F u, q), unique among finite energy solutions with F € KH_I/ (S1ipxRy),u e Kéo)(Ql X

R4),Vq e K ((21 xR4), q € Kl 8/2 (S1F xR4). With the indicated norms, the solution
satisfies

I(Fyu, @Il < Cll follgr—2 + [ (f1, fo5 f3) || k1-3/2)-
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Sketch of proof of Theorem 6.4. To apply Theorem 6.5, new coordinates are intro-
duced. In these new coordinates problem (6.1)—(6.7) is transformed to a problem in the
equilibrium domain 2, = {z : 2/ € R, —b(z') < 3 < 0}. Let F be an extension of F' to
21 x Ry. Then for each t the transformation ¢ : 21 — (2 is defined by

(6.25) (21, 29, 3, 1) = (21, 29, F + 23(1 + F/b(z"))).

Next, for u defined on {27, the function v is introduced by the relation

(6.26) v = iz ug/J = agjug,

where J = 1+ F /b4 F,, (1 +x5/b) is the Jacobian determinant of {%ic; }. Then by using

(6.26), problem (6.1)—(6.7) can be rewritten as follows:

(6.27) u — vAu+ Vg = Go(F,u,Vq) in 21 x Ry,
(6.28) divu =0 in ) x R,
(6.29) Uizg + U3y, = Gi(Fyu), i=1,2, on S1r x Ry,
(6.30) q—2vugg, —gF +0Ay F =Gs(F,u) on Sip xRy,
(6.31) F, = ug on S1p X Ry,
(6.32) u=0 on Sp X Ry,
(6.33) Ult=o = ug, Fli=o = Fo in £2;,

where ¢ = pot; G (z =0,...,3) are at least quadratic; up = v o %o, and ¥y = P|;—
with F replaced by FO € Wl+1/2((21) which is an extension of Fj.

The Banach fixed point theorem, assumption (6.17) and Theorem 6.5 yield a unique
solution (u, F, q) of problem (6.27)—(6.33) in the class of functions determined by Theorem
6.5.

To obtain assertion (i) of the theorem, the solution (u, F' g) is extended onto R3xR, to
functions u, F, g such that u € K (R3xR,), Vg e KI"2(R3xR,) and Fe K'R3>xRy),
VF € K'(R? x Ry), F, € K'(R? x Ry). Then the restrictions to ¥(£2;) of functions
0 = (aj;uj) o' and p = go ™! and the function F satisfy assertion (i) of the
theorem.

The next step of the proof is to show uniqueness of the solution. By using once again
a contraction mapping argument it is proved that the solution found is unique in a class
of functions of a slightly lower regularity.

The increase of regularity of the solution can be shown as follows. For given initial data
Fo € W(S1r), up € Wi 2(£21), 3 < 1 < 7/2, the unique solution of problem (6.27)-
(6.33) with the properties: F € K'"/2(S1p x Ry ), u € K{(2y x Ry, ¢ € K'™3/2(S1p x
Ry), Vg € K'=2(§2; xR, has been found. Hence, for almost all ¢, F(t;) € W2l+1/2(51p)
and u(t;) € Wi(£2;). Thus, half a derivative is gained in comparison to the initial data.
Now, one can stop at such ¢; and start again. This way one can construct a solution
such that F € K" (Syp x (t1,00)), u € KFY2(0) x Ry), ¢ € K'71(S1p x Ry), Vg €
K'=3/ 2(21 xR,), provided certain compatibility conditions are satisfied at ¢;. Uniqueness
implies that the new solution coincides with the previous one for ¢ > t;. Continuing the
above procedure, the desired regularity of the solution can be reached in a specified time,
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provided the initial data is sufficiently small. This yields the increased regularity of the
solution of problem (6.1)—(6.7). m

Tani and Tanaka [TTan] also prove global existence for problem (6.1)—(6.7) in the
case o > 0. Applying the approach from the papers of Solonnikov [Sol6, Sol8, Sol10] and
using Theorem 6.2 they prove the following theorem.

THEOREM 6.6. Let the assumptions of Theorem 6.2 be satisfied with f = 0. Moreover,
let Eo = [Jvollyyp+e o) + 0||F0||W25/2+Q(R2) < e with e sufficiently small. Then the solution
of problem (6.1)—(6.7) exists for allt > 0 and satisfies

sup (ol o,y + leelwg a + [pllwge o
ZUl1

+ 0||F||W25/z+a(R2)) < co(t1)Eg  for each t; > 0.
Sketch of proof

STEP 1. The first step is to derive the following estimate for the local solution guaranteed
by Theorem 6.2:

(634) E(07T*) = HU||W22+Q,1+(!/2(QT*) + ||VCIHW;,Q/2(QT*) + ||Q||W21/2+a,1/4+a/2(5T*)
< Cl(||vo||w21+a(n) + O-HFOHW;/Q-FD((RZ)) = Ey.
Moreover, T* increases unboundedly as Fj tends to zero.

STEP 2. Next, the following energy conservation law is derived:
d
(6.35) %( {102 de+20 { (VITIVZFP—1)de +g | |F]? d:c’) +vE®v) =0,
2 R2 R2
0 0 2
where V,» = (0/0x1,0/0x2), E(v) = Zij:l Snt (37; + g—xi) dx.
From (6.35) follows the equality

t

6.36) | [oPdz+20 [ (V1+VuFP=1)da' +g | [F]?da’ + v | E(v) at
0

2 R2 R2
=\ o2 dg + 20 { (VI+[VoFo2 = 1) da’ + g | |Fo[? da'.
2 R2 R2

STEP 3. The next step is to obtain estimates for a solution of the equation

(6.37) oV - (L) —gF =®&(2') onR2

V14 |V F|?

LEMMA 1. Let ¢ > 0 and F(-,t) € W25/2+°‘(R2) be a solution of (6.37) satisfying the
condition

||F||W23'/2+@(R2) <9é
with a sufficiently small J.
(i) If & € W Y2(R?), then

(6.38) [Elyyz/2+0 gy < Call@llya=1/2gay + €3l FllLae2)-
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(i) If & € WST2(R2), then
(639) ||FHW25/2+Q(R2) < C4||¢HW;+1/2(R2) + C5HFHL2(R2)'
The constants c3,cs may depend on HF||W§/2+&(R2).
The above lemma can be proved in the same way as Theorem 4 from [Sol6].

STEP 4. The following lemma can be proved.

LEMMA 2. Let u € Wi T 2(0T) g e W2 (QT), qlgr € Wy/ T/ 4Te/2(gTy pe
the solution of problem (6.8)—(6.12) satisfying

o(T) [l v ) <
with sufficiently small 61, where cg(T) is a given increasing function of T such that
c6(0) = 0.

(i) If o >0, then
U(/\) = Hu||W22+04‘1+a/2(Q()\)) + ||VQ||W;,a/2(Q(/\)) + ||q||W21/2+a,1/4+a/2(G()\))

< cr(llullza@eoy + I | a2 x(to.1)):
where A € (0,1), to+ A < T; Q(A) and G(N) are defined in Section 4 after formula (4.49).
Moreover, for t; > to,
640 sup (ulhwgeooy + lalhvgogey) < csllulla@on + 1Pl s o)
1

(ii) If o =0, then
U < co(T)(1Folly /240 gay + 1ull o @oy))

and

tliligT(”uHWéz*“‘(Q) +llallwzre @) < cro(DFollyr/2ra ey + 1wl La@o)))-
STEP 5. As in papers [Sol6, Sol8, Sol10] estimates (6.34), (6.36), (6.38)—(6.40), Theorem
6.2 and the procedure of extending the solution applied infinitely many times yield the
assertion of the theorem. m

The paper of Sylvester [Syl] is also devoted to global solvability of problem (6.1)—(6.7).
Applying the approach of Beale she proves a global existence theorem for the case o = 0.

Finally, the global existence and stability theorem for the two-dimensional motion of
a fluid flowing down an inclined plane is proved in [NTerW].

6.2. The motion of a compressible fluid. The only papers concerning such motion
are [TanT] and [JinPad]. Let 2, denote the same unknown domain as in Section 6.1.
The free boundary problem considered in [TanT] is to find (2, a velocity vector field v,
a density ¢ and a temperature 6 satisfying the following system of equations with the
boundary and initial conditions:

(6.41) olve + (v-V)v] —divT(v,p) = —o0gez, x € 2, te (0,T),
(6.42) ot + div(ov) = 0, T €, t€(0,7),
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(6.43) 0¢y (0 +v - VO) + Opgdivo
3
V- (2V0) — g (Vi; + Vja,)?
ij=1

— (v — p)(dive)? =0, x e, te(0,T),
(6.44) Tn — o Hn = —pon, x € Sp(t), t € (0,T),
(6.45) vl = \/%, x € Sp(t), t € (0,T),
(6.46) VO -7 = 524(00 — 0), z € Sp(t), t e (0,T),
(6.47) v=0, 0=0,, x€eSp, te(0,T),
(6.48) (1,0, 0)|t=0 = (vo(x),00(x), 00(x)), x € (2,
(6.49) Fli=o = Fo(2'), 7’ € R?

where T is the stress tensor given by (5.7); p = p(p, 0) is the pressure satisfying p, > 0,
po > 0; = p(o,0) and v = v(p,0) are the viscosity coefficients satisfying v > %;
¢y = ¢,(0,0) is the specific heat at constant volume; s = (g, 6) is the coefficient of heat
conductivity; sz, > 0 is the constant coefficient of outer heat conductivity and 6,, 6, are
positive functions.

Tanaka and Tani [TanT] formulate two theorems concerning problem (6.41)—(6.49),
but they do not prove them. They look for a solution near the equilibrium state (v, 8, g, F')

= (0,0, 0.,0), where 0. is a positive constant and g, = g.(z3) is determined by
e 0Oc
12 to) 220y g = 0, p(0e(0), 0e) = po.

The first result is a local solvability theorem. Tanaka and Tani claim that under the
assumptions that a € (1/2,1), b € W25/2+O‘(R2); vo, O — O, 00 — 0c € W3TH(0); Fy €
W3/ (R2); 0y — 0, € W32 T (RS x (0,7)), 0y — 0. € W3/*T%/42(5F), g9 > 0,
0y > 0, 8, > 0 and under suitable compatibility conditions, there exists T* > 0 such that
there exists a unique solution u, ¥ —0, € Wi t*3¥/2Fe/2(QT"y o e W2Totte/2(oT")
(where u, ¥, 1) denote v, 6, o respectively, written in Lagrangian coordinates) and

H(u, Y — 05)‘|W§+a,3/2+a/2(97~*) + ||'I7 - Qe||W22+(y,l+a/2(QT*)
< Cl(H(UO; 0y — 067 0o — Qe)HWf*"‘(Q) + ||F0||W27/2+Q(R2)
+ Hea — 96||W§+Q’Z+Q/Z(R3X(O,T)) + Heb — 95HW25/2+“’5/4+“/2(S£)) = CIEO,T*~

Moreover, T* — oo as Fyp« — 0. Next, they assert that for Fy = Ep o < € with ¢
sufficiently small, problem (6.41)—(6.49) has a unique solution (v,0, 0, F) for all ¢ > 0
satisfying

sgp(”(v,H—HE)HW;M(Qt)+||Q—Qe||W22+a(Qt)—|—HF||W27/2+Q(R2)) < coEy for every t; > 0.
t>t,

The paper [JinPad] of Jin and Padula is devoted to the periodic motion of a compressible
isothermal viscous gas in a domain 2, = {(z/,23) : 2’ € T2, 0 < a3 < F(2',t)}.
They consider system (6.41)—(6.42) with boundary conditions (6.44)—(6.45) on the free
boundary Sr(t) = {(z/,23) : 2’ € T?, 23 = F(2',t)}, with the following condition on Sp:
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(6.50) v=0, z€Sp=/{( 23):2 €T? x3=0},
and with the initial conditions

(6.51) Fli=o = Fo(a'), z' € T?,

(6.52) (v, 0)lt=0 = (vo(2), 00()), € 2= 1.

It is assumed that p = ap, where a > 0 is a constant.
The equilibrium state is here defined by

M
ve = 0, Qe = Q*e—(g/a)arg,’ F, = 2 In (]‘ + gQ )
g po| T2

with ST2 «(0,F.) Q¢ dx = M, where M = S 00 dz is the mass of the fluid which is conserved
in view of (6 42) and 0. = 22 (1+ = |T2‘)
Let 0o = 0 — 0e, Fng F, and
XT = {(”U, Qo Fa) HICAS Loo(OaT; W22(~Qt)) N L2(0 T W2 (Qt))’
00 € Loo(0, T; W3 (62:)) 0 Lo (0, T3 W3 (£2,)),
F, € Loo(0,T; W3 (T?)) N Ly(0, T; W3 (T?)),
N@) <1, |Fy| < Fo/4, |oo| < joe(3F:), 0 <t < T},
where N (t) = ||QJHW2(Qt) + ||”||W2(Qt) + ||F» HW3 (r2)- The main result of [JinPad] is the
following global existence theorem.
THEOREM 6.7. Let S = 02 be the graph of the function F. + Fy(z'), ' € T?. Let
(v0, 00, Fo) € WE(02) x W2(82) x W3(T?2) and let the following compatibility conditions
be satisfied:
v9=0 onxz3=0,
T(vo,a00)to = (cH(0) — po)ig ~ on x3 = Fy(a'),

Fo(z')
S S 00(z) drszds’ = M
T2 0
Moreover, assume that
(6.53) lvollwz2) + lleo — eellwz(o) + [1Fo — Fellwg(r2) <€

with € > 0 sufficiently small. Then problem (6.41)—(6.42), (6.44)—(6.45), (6.50)—(6.52) has
a unique solution (v, 05, Fy) € Xr for all T < 0o, satisfying the inequalities

ootz + 10wz + I1Fa s (r2)
< c(fleo = Q6||12/V22(Q) + ||U0||{2/V22(Q) + [|Fo — Fe‘|%4/§(T2))€7bt for t € (0,00)

and
t

VUloolfuzca,y + 1003z o,y + 1 Follivg rey) 4
0

< ellleo = eellfvz (o) + lvollivz () + 1Fo = Fellfyg(xe))  for t € (0,00),

with some positive constants b and c independent of t.
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The method of proof of Theorem 6.7 is similar to the methods applied for free bound-
ary problems discussed in Section 5 and relies on deriving an appropriate differential
inequality which allows extending the local solution for ¢ € R. Thus, to obtain global
existence for problem (6.41)-(6.42), (6.44)—-(6.45), (6.50)—(6.52) Jin and Padula assume
that the solution exists locally in X for some T > 0. Then they prove the inequal-
ity

(6.54) P+d<ci/p® fort<T,

d
dt
where

_ 2 2 2 2 2 2
e(t) = lloo iz 0 + 1wz, + 1F5vs ey + 100ty (0n + 106220 + 1F vz (2
P(t) = ||Qo||€v22(nt) + HUH%@(Q) + Hth?/VZl((Zt) + ”FH%/VZ?’(T?);

% and @ are certain functions equivalent to ¢ and @ respectively, i.e.

(6.55) 2P < p < 37,
(656) 645 S b S 055
for some positive constants ¢; (i = 1,...,4) which are independent of ¢.

Since @ > ¢, the differential inequality (6.54) together with (6.55)—(6.56) and the
assumption (6.53) yield the assertion of Theorem 6.7.
A global existence and asymptotic result for the linearization of the barotropic prob-

lem without surface tension about an equilibrium solution, i.e. problem (6.41)-(6.42),
(6.44)—(6.45) with o = 0, (6.50)—(6.52) can be found in [St].

7. Final discussion

7.1. Differences in approach to drop problems and surface waves problems. In
the previous sections we have described two different free boundary problems with respect
to the geometry of the domain (2, i.e. drop problems and surface waves problems. In a
drop problem, (2; is a bounded domain of R™ (n = 2,3) with boundary S;, all of which is
free. On the other hand, a surface waves problem is considered in an unbounded domain
2, C R™, the boundary of which consists of two parts: S1, the fixed part of the boundary
S¢, and Sy, the free part of S; depending on time t.

This difference in the geometry of §2; as well as in the nature of its boundary S; causes
some differences in the approach to the above mentioned problems. This is apparent
already in the first papers concerning the free boundary problems discussed, i.e. in Beale’s
paper [B2], the first one devoted to the global existence result for surface waves problem
(6.1)—(6.7), and in Solonnikov’s paper [Sol6], the first to bring a global existence theorem
for a drop problem.

Usually, the general approach to such free boundary problems is to transform a given
problem to a problem in a fixed domain. There are two possible such transformations.
One of them bases on introducing Lagrangian coordinates (4.10) and this way trans-
forming the problem to the initial domain. In the other, one transforms the problem
to an equilibrium domain. In [B2] Beale used the second method and as a consequence



112 E. Zadrzynska

examined the surface waves problem (6.1)—(6.7) with ¢ > 0 in the equilibrium domain
21 = {z:2' € R? —b(z') < z3 < 0}. He applied transformation (6.25) which is inti-
mately connected with the surface waves problems, i.e. with the special geometry of the
domain (2; and with the fact that one part of the boundary S; is fixed. In the case of
drop problems, starting from paper [Sol6], the transformation connecting Eulerian and
Lagrangian coordinates is usually used. Following [Sol6], most of the existence results for
drop problems both in the incompressible and compressible cases were obtained by using
at least partly Lagrangian coordinates.

Solonnikov and Tani [SolT3] applied transformation (5.62) which transformed the
drop problem (5.1)—(5.5) to a problem in the equilibrium domain Bgr, = {y : |y| < R.}.
However, it should be underlined that this transformation was used to obtain only one
estimate useful in the proof of global existence, i.e. the estimate from Step 4 of the proof
of Theorem 5.5. The other parts of the proof of Theorem 5.5 are based on using either
Eulerian or Lagrangian coordinates.

On the other hand, it turned out that surface waves problems are more “universal” to
treat because they can be considered equally easily in the equilibrium domain {2; and in
the initial domain 2y = (2. In fact, Tanaka and Tani [TTan] proved a global existence for
problem (6.1)—(6.7) with o > 0 (i.e. the problem studied by Beale) by using the approach
from [Sol6].

What is the difference between these two approaches to problem (6.1)—(6.7)7 The
most characteristic feature of Beale’s method is that thanks to transforming the problem
to the domain (2, it is possible to obtain immediately global existence and uniqueness
for the surface waves problem. It is only necessary to assume that the initial data are
sufficiently close to an equilibrium state and to use the Banach fixed point theorem. In
contrast to Beale’s approach, Solonnikov’s method applied to the same surface waves
problem (see [TTan]) relies on rewriting the problem in Lagrangian coordinates £ € 2
and proving first local existence and uniqueness by means of the Banach fixed point
theorem. This yields the existence of a solution in the interval [0, T]. Then one passes to
new Lagrangian coordinates £ € {27, i.e. one transforms the problem to the domain 2.
For such a problem the local existence of a solution is proved in the interval [T, 27]. This
way, the local solution is extended step by step to a global one. Obviously, this process of
prolongation is possible under the assumption that the initial data are sufficiently close
to an equilibrium state.

Finally, a very special surface waves problem is worth mentioning: the problem con-
sidered in the domain 2, = {(2/,23) : 2’ € T?, 0 < 23 < F(2',t)}. Thanks to such a
choice of the fixed part Sp of the boundary S; this problem can be examined in Eulerian
coordinates without transforming (2; to a fixed domain (see [JinPad]).

7.2. Differences in approach to incompressible and compressible problems. In
this subsection we want to compare the methods applied to examine solvability of in-
compressible problems with those used in the compressible case. We will concentrate
on the case of a fixed mass of a fluid bounded by a free surface, i.e. on a drop prob-
lem.
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The differences are already apparent in the proofs of local existence and they are
associated with the dissimilarity of continuity equations in the two cases. The gen-
eral method of proving local existence and uniqueness seems to be the same in both
cases. Namely, we consider several auxiliary linear problems for which we obtain ex-
istence and uniqueness. Then in order to obtain local existence for a nonlinear prob-
lem we usually use the method of successive approximations together with solvability
of an appropriate linear problem. However, in the incompressible case, in contrast to
the compressible one, the continuity equation is taken into account from the very be-
ginning, i.e. one has to consider first the Stokes problem (4.15)—(4.18) for which The-
orem 4.1 holds or problem (4.15)—(4.16), (4.18), (4.23)—(4.24) in the case of ¢ > 0.
If 0 = 0 then Theorem 4.1 is directly used to get local existence and uniqueness for
problem (4.11)—(4.14) (and so (4.1)-(4.5)). In the case of o > 0, the solvability result
for problem (4.15)—(4.16), (4.18), (4.23)—(4.24) is first applied to prove a local in time
existence and uniqueness for the linear problem (4.26)—(4.30) (see Theorem 4.4). Then
Theorem 4.4 is used to show local existence and uniqueness of a solution to problem
(4.1)-(4.5).

On the other hand, in the case of a compressible fluid, the continuity equation is at
first excluded from the considerations. Thus, to prove local existence, one has to consider
several auxiliary linear parabolic problems. The hyperbolic continuity equation (5.10) is
taken into account only when applying the procedure of successive approximations (see
for example Theorem 5.1).

In particular, for the most general compressible problem, i.e. problem (5.63)—(5.69)
with p, v, s depending on g and 6 we consider separately two kinds of auxiliary linear
parabolic problems. One of them is connected with the equation of motion (5.63) and the
other one with equation (5.65). After considering some initial auxiliary linear problems
we finally study the following parabolic problems (see [Z2]):

(7.1) nuy — divy Dy, (u) = F in 27,

(7.2) 11(1, ) oIS (u) T = IoGh in S7,
t

(7.3) 7o - Su (W) — 070 - Aw(t) {udt' =G on ST,
0

(7.4) ult=0 = vo in £2,

where w and n are given functions, D, (u) = 2u(n, ¥)Sy (uw) + (v(n,v) — p(n, 7)) div,, ul,
Sw(t) = £{04, 8106, wj+0u, k0, Ui Yij=1,2,3, divey Doy (w) = {84, kO, Duvij (1) }i=1,2,3; o,
I, My, Vi, A, are defined in Subsection 4.1, G5 = Gél) +0o Sg Gé2) dt’ and

(7.5) ney(n,7)0; — divyy (5¢(n,7)Vad) = K in 07,
(7.6) s(n,y)o - Vot = 9 on ST,
(7.7) V=0 = o in 2,

where w,y and 7 are given functions.

In [Z2] the author proves the local existence and uniqueness of a solution of problem
(7.1)~(7.4) such that uw € W2t /2(QT) o € (3/4,1) and u satisfies
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(7.8)  ullls >t <G (T, 11 /0|1 orys 1l ()

ENGE NG ygrzvessssera smy + 16 lyggravossssesas

F 16705 227 ol o))
where ¢, is a positive continuous nondecreasing function of its arguments.

The above result is obtained under the assumptions that: n € C([0,T]; W3 T*(£2)) N
Wy e/ 2H2(OTY e Log(Q7), v € WETIT2(QT) e W21 /2(QT) (where
T is sufficiently small in dependence on norms of 7, w, ) and under some other assump-
tions.

A similar result is derived in [Z2] for problem (7.5)—(7.7). The local solution of (7.5)—
(7.7) satisfies

2,a/2+1 -
(7.9) [0 < Gy (T, [1/mey (1.9 Lo omys 1160 (1:7) | Lo (27))
a,a/2 3
NG 4 18] a2 savars gy + 1600z e ),

where ¢, is a positive continuous nondecreasing function of its arguments.

Independently of problems (7.1)—(7.4) and (7.5)—(7.7), the continuity equation (5.71)

is considered. From (5.71) it follows that

t
(7.10) n= Qoexp(—svu-udt').

0
A local existence and uniqueness theorem for nonlinear problem (5.63)—(5.69) is proved
by using the method of successive approximations together with estimates (7.8)—(7.9)
and together with an appropriate estimate for 7 given by (7.10).

Now, we want to discuss differences and similarities occurring in the proofs of global
existence theorems in the incompressible and compressible cases. Assume that o > 0,
k = 0 and consider the main steps of the proof of Theorem 4.8 which yields global
existence and stability for the incompressible problem (4.1)—(4.5). As usual, the successive
steps of the proof rely on deriving some estimates for the local solution.

First, the conservation laws of energy (4.73) and momentum (4.72) are used to es-
timate the norms |[v||1,(e,) and [[R — Rollw;(s1) by the initial data. Here Ry = R, =

(%m\)l/g = (%|()t|)l/3 and R = R(w,t) is the function describing the free bound-
ary (see (7.25)). The remaining three estimates are obtained for a solution of problem
(4.1)—(4.5) written in Lagrangian coordinates, i.e. for a solution of (4.11)—(4.14). All of
them are derived by using only estimate (4.25) which holds for a solution of the auxiliary
linear problem (4.26)—(4.30). To derive the first of these estimates, i.e. estimate (4.67),
one has to treat the nonlinear problem (4.11)—(4.14) as the linear problem (4.26)—(4.30)
with w = w. Then (4.25) yields inequality (4.67) which is the estimate of the norm
Hu||W§+a,1+a/2(QT) (where T is the time of local existence) and of appropriate norms of g
by the norms of the initial data, i.e. by [[volyy1+a(q) + 1 H(-,0) + 2/Rollyy1/2+4 - Under
the assumption that

loollwgte oy + IR = Rollyyszragn, <,
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where R is defined by (7.24) and ¢ is sufficiently small, inequality (4.67) yields

1/2
(711) T Hu||W;+a,1+a/2 5,

(2r) =
where ¢ is sufficiently small in dependence on «.

The next step is to obtain an estimate of the norms of the local solution u and g,
determined by Theorem 4.5, by the Lo-norms of v and R — Ry. This is done by applying
again estimate (4.25) to the linear problem (4.76)—(4.80) which has the form of (4.26)—
(4.30) with w replaced by u and u replaced by uy = u(y, where ¢, € C*(R), (\(t) =
for t > to + A, (A(t) = 0 for ¢ < tg + A/2. As a result, inequality (4.75) is derived.
In the process of deriving inequality (4.75) one has to estimate some nonlinear terms
oty To do this inequality (7.11) is used and therefore the
right-hand side of (4.75) is only the sum of the Ly-norms of w and R — Ry, multiplied by
a constant which is a nondecreasing function of 7.

with respect to Hu||W2+a,1+a/2)(
2

The last estimate, i.e. inequality (4.86) showing the increase of regularity of the solu-
tion v and g—qo after some time, is derived by applying estimate (4.25) to a linear problem
having the form of (4.26)—(4.30) with unknown functions u(%) (€, ) = uy (£, ) —ux (€, t—s),

d® (&, 1) = gx (€, 1) —qr (€, t—s) and with w = u. Thanks to inequality (4.86) and Theorem
7.1 one can estimate the norm ||R — ROHWO/HQ(Sl) with a € (1/2,1) by the Ly-norms of
w and R — Ry, and this way control the free boundary of the fluid.

It is proved (see [Soll3]) that the time of local existence is sufficiently large if ¢ is
sufficiently small. Therefore choosing ¢ sufficiently small the local existence follows in the
interval (0, 1]. The solution can be extended to the interval [1,2] by using the estimates
described above. Continuing this process the solution can be extended for all ¢ > 0.

Together with global existence one obtains the stability of the equilibrium state. Thus,
the velocity of the fluid v remains small, the pressure remains close to 20/Ry and the
free boundary S; remains close to the sphere of radius Ry for all ¢ > 0.

Now, consider a general compressible problem (5.63)—(5.69) with ¢ > 0 and k = 0,
f = 0. To compare global solvability of this problem with the incompressible case we
will concentrate on the proof of Theorem 5.11 which is presented in Section 5. From that
proof we can see that to show global existence in this case, we need similar estimates as in
the incompressible case, although the global solvability results guaranteed by Theorems
4.8 and 5.11 are obtained in spaces of functions of different regularity. However, the way
of obtaining the above mentioned estimates for a compressible fluid is different due to
the different nature of the continuity equations in both cases.

As in the incompressible case, to obtain an estimate of the norm ||v[|z,(0,) we use the
energy conservation law (5.100). However, to be able to use it we have to prove first that
under some assumptions on the data, the volume of the fluid |£2;| does not change much
for t <T (see Lemma 5.3).

In a way similar to but more complicated than in the incompressible case we obtain
an estimate of || R — Re |l (g1) (see Lemmas 5.7-5.9), where R, is given in Definition 5.4.

The next difference is in the necessity of obtaining not only an estimate of the Ly-norm
of v but also estimates of g, and 6, in Ly(£2;) (see Lemma 5.5).
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Next, following the argument presented by Solonnikov for the incompressible fluid we
would like to derive an estimate analogous to (4.67), i.e. an estimate of the W24 2_norms
of u and ¥, together with an estimate of supg<;<r ||770||W§,Q)3—|— SUPg<i<T ||77.Ut.HW2z(Q) +
1Mot La0, 7wz (2)) + 1Motel| Lo 0,73w2 (2)) DY the sum of the W3-norms of the initial func-

tions v, 0s0 = 00 — Qc, 0o0 = 0o — B, the Wlnorms of u;(0), ﬁgt( ), the norms
T HD 3| 1/2
‘|H(-,O)+2/Re||W22+1/2 ||h||W§ 1(0T)) ||?9||W3 1/2.8/2-1/4( g1y and ( %LQ(S) dt)

Such an estimate is easﬂy obtained by using mequahtles which hold for problems (7.1)—
(7.4) and (7.5)—(7.7) and which are analogous to (7.8)—(7.9), i.e. the inequalities (see
2Zai1))

(712)  lullyazor) < < @3(T, 11 /nlp o) Nl (0r))

1
. {lF”Wf'l(QT) + HG1HW§—1/2,3/2—1/4(ST) + ||Gé )||W23_1/2’3/2_1/4(ST)

DZ,G vz D2 ,GY 1/
N (S D% +G1llL(s) dt) N (S | Pllzacs) d)
0 0

$1/2 $1/2

2
H1GE Nlya-1/21-17 gy + v0llwg () + e (0w )

and
— 1
(713)  Wollwazory < 4

N y IMCu\1], 7Y o (27T
Tl )

T 5 1/2
_ IDZ 9l o)

. {HKHW;‘I(QT) + ||19HW§’1/2’3/2’1/4(ST) + (S _ €7t1/2 2(5) dt)

0

Loo (£27)

ool + ||190t(0)||w21(9)]

where ¢; and ¢, depend also on higher norms of 7 and 7nc,(n,v). Notice that problem
(5.70)—(5.75) with ¢ = 0 and k = 0 implies the following problems:

(7.14) nug — div, D(u) = Vupo in 27,
(7.15) w(n, 9) oI, Sy (u) =0 on ST,
¢
(7.16) 7o - Dy (w) Ty — 0T - Ay Sudt’ =T * MuPo
0
+omg - (Au(t) — Au(0)€ + o (H(£,0) +2/R.) on ST,
(7.17) ult=0 = Vo in 2
and

(7.18)  ney(n,9)Vot — Vi - (2(0,9) Vo) = —Ipy(n,9)Va - u

3
+ % Z (&o; - Ocuy + &oy - Ocwi)® — (v — ) (Vo - uw)® + b in 02T,
=1
(719) %(’I’}, ﬁ)ﬁo . vu'ﬂg = 5 on ST,
(7.20)  Voli=0 = 50 in 0.
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Moreover,
(7.21) Nt + 1MV -u=0 in 27,
(722) na‘tzo = 0050 in £2.

From (7.21)—(7.22) it follows that
t
Mo = 000 — \divyudt’ fort <T.
0
Hence, for T sufficiently small we have

(7.23) JSup 170 lwz(2) +0211‘,1£T Mot llwz ) + 1Motl Lo, 73wz (2)) + 1Mote Lo 0,7w2 (2))

< G5 (Tl e 2m)) (l0oollwz ) + Ivollwz (o) + lullwaz o)),

where 55 is an increasing function of its arguments.

Now, treating problem (7.14)—(7.17) as the linear problem (7.1)—(7.4) with w = w,
and problem (7.18) -(7.20) as problem (7.5)—(7.7) with w = u, v = ¢ we obtain by using
estimates (7.12)—(7.13) and (7.23) the expected estimate, i.e. (5.112). The norms of 7,
1/1, ney(n,9), 1/ncy(n,9) occurring as the arguments of the functions ¢, (i = 3,4, 5) are
estimated by constants depending on the initial data (see [ZZajl]).

In a similar way to the incompressible case we can estimate the highest norm of
R—-R., ie., ||R— ReHW;H/? - To do this we use Theorem 7.1, estimate (5.139) from
Lemma 5.10 and Lemma 5.8.

(st

Inequality (5.139) is obtained by applying estimates (7.12) and (7.13) to the linear
parabolic problems having the forms of (7.14)—(7.17) and (7.18)—(7.20), i.e. to the prob-
lems with w = u and with the unknown functions u(®)(&,t) = uy(€,t) — ux(€,t — s) and
19((78)(5,15) = J,x(§,t) — Uon(&,t — s), respectively. As a result of inequality (5.139) we
obtain the estimates of sup,, ¢ |lullwz (o) and supy, <;<7 [[95 |lwz2(o) (where t1 > 0) by
the sum of the norms: ||ullys.2orys [9ollws2(or), I7llog @s xr,) and [[0]c4 @sxr,)- The
estimate of supg<;<7 |7 [lwz (), which is also necessary, is obtained from (7.23).

As in the incompressible case, estimates implied by the conservation laws and inequal-
ities (5.112) and (5.139) do not suffice to prove global existence. We also need an estimate
analogous to (4.75). Here appears the most striking difference between the incompressible
and compressible cases. Namely, in contrast to the incompressible problem we are not
able to derive the expected estimate by using the linear parabolic problems (7.1)—(7.4)
and (7.5)—(7.7) and the hyperbolic problem

N4+ nVe -u=0 in 07,
Ntlt=0 = 00 in {2,
taking as the unknown functions uy = ulx, 95 = ¥(x, nn = ¢y, and w = w.
The impossibility of repeating the argument of Solonnikov [Sol6] follows from the
nature of the continuity equation in this case and makes the compressible problem much

more complicated. The missing estimate in this case is the differential inequality (5.145).
It is derived in [ZZaj7] for the nonlinear problem (5.63)—(5.69) with f = 0, k = 0
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rewritten as a problem with the unknown functions v, g,, 8,. Obtaining inequality (5.145)
is connected with very long and arduous calculations.

Another difference is connected with the process of extending solutions to global
ones. This is more complicated in the general compressible case. Since the method of
extending the solution for the heat-conducting compressible problem with surface tension
is presented in detail in Section 5 (see the proof of Theorem 5.11) we only underline that
the main difficulty in extending the solution is associated with the function 1(t) given by
(5.156) and occurring in (5.155). Some terms of this function are expressed in Eulerian
coordinates, while others in Lagrangian coordinates ¢ € £2. Knowing that 1(0) < ag we
have to prove that 1/(T) < ag. Moreover, since passing from the interval [0, T to [T, 2T]
implies also passing from estimates in (2 for the functions u, ¥,, 7, to estimates in £2p
for v, ,, o, written in Lagrangian coordinates & € 27, the function v (t) is replaced
in [T,2T] by a function ¢4 (t) which has the same form as 1 (t) but its appropriate
terms are expressed in Lagrangian coordinates & € (2p. Therefore, we have to show that
1 (T) < ap, which is the main difficulty in the proof of global existence.

In contrast to the situation of a compressible fluid, in the incompressible case a func-
tion similar to t(t) does not appear in estimate (4.75) and this makes the process of
extending the local solution much easier.

It should be noticed that similar differences between the incompressible and compress-
ible cases to those described above exist for drop problems without surface tension (see
[Sol8], [ZZajl10], [Zaj3], [ZZaj14-15]) and for surface waves problems (see [B2], [TTan],
[JinPad]).

We have presented the main similarities and differences in the approach to incompress-
ible and compressible problems which are apparent in the existing papers connecting with
these problems. However, we wish to underline that the methods used to obtain global
existence and stability results for the general compressible free boundary problem are
universal enough to be applied likewise to incompressible problems.

7.3. Significance of surface tension in free boundary problems. In this subsection
we describe the role of surface tension in controlling the free boundary of a fluid.

Consider the free boundary problems (4.1)—(4.5), (5.1)—(5.5) and (5.63)—(5.69) with
k =0 and o > 0. As usual in the problems with o > 0 we assume:

(7.24) £ is close to a ball and S is described by the equation |¢| = R(w), w € S,

where S! is the unit sphere (see Theorems 4.8, 5.3, 5.4, 5.11-5.14).
Then from the relation (4.10) connecting Lagrangian and Eulerian coordinates it
follows that (2; is also close to a ball and Sy (¢t < T) is described by

(7.25) lz| = R(w,t), weSh
where R(w,0) = R(w) and T is the time of local existence.
The boundary conditions (4.3), (5.3) or (5.66) can be written in the form
2

1
(7.26) H + i = ;ﬁ -T(v,ps)m  on S,
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where in the incompressible case R, = Rg = (%\QDI/S, while in the compressible case
R, is given in the definition of an equilibrium solution (see Definitions 5.2, 5.4).

Using (7.25) condition (7.26) takes the form
(7.27) H[R] + 2/R. = h(w),
where H[R] is the double mean curvature of S; expressed in spherical coordinates, i.e.
(T 0 el )2
Rsin gy \ 0p1 sin po/R2Z+|VR[2  Op2 \/RZ+|VR|2) /R?+|VR]?

We see that the presence of surface tension on the free boundary S; implies that the
boundary condition on S; takes the form of the elliptic equation (7.27). Therefore, to
control the free boundary in this case (and as a consequence to extend the solution for
all ) we use the regularity properties of this elliptic equation. More precisely, we use the

(7.28) HIR]

following theorem.

THEOREM 7.1. Let R € W23/2+l(5’1), 1€ (1/2,1) be a solution of equation (7.27) satisfy-
mg

sup |R(w, t) — Re| 4 sup [VR(w, t)| < 0R,
st st
with sufficiently small 5. If h € W§(S1), s € [0,1], then
(7.29) [R = Rellyy2+: 51y < callbllwg(st) + 2l R = RellLy(s1),

where cq, ¢y are constants and co can depend on ||RHWz+3/2
2
and h € Wy t5(S1), s € (0,00), then

(51" Moreover, if R€ W22+S (Sh)

(7.30) IR — Re||wg+3(sl) < C3||h||w21+~*(51) +cal|[R = Rell 1, (s1),

where c3, c4 are constants and ¢y can depend on || R||yyz+s (g1
Inequalities (7.29)—(7.30) are proved in [Sol6] for s € (0, 1).

Proof of Theorem 7.1. Cover S' by a finite number of domains S’ having sufficiently
small diameters. Take a function ¢ = ((i) such that ¢ = 1 on S, ( = 0 on S\ s,
S’ c 8" and 0 < (¢ < 1. Next, set R, = R— R, R, = (R, and choose ¢° € S*. Then, by
applying the formula

]. 1 (R_Re)(R+Re)+ |VR|2

— _ = = A,
R R?2+|VR|? Re\/R?+I|VR]*(R.+ /R?>+|VR|?)

equation (7.27) takes the form of the following elliptic equation:

2 2

9’R OR
Ans(o * A (V== = F
> vé(@)a%awéJr; g =T

v,0=1
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where
2 ~ 2

O°R, 0C OR.

F= " (As(¢°) — Ays(e) 2)  As(p) 7=
~,6=1 0005 =1 9oy Ops

92 2 >3

0°¢ OR,

+ R, E A + E A - A
52 ’Y‘S 8()0 8806 ’Y:l( ’Y(QPO) W(SD))&OW

2
15]
FRY A (0) oo~ 2AC+ G,
=1 L

Spherical coordinates has been chosen so that sing; > c¢g > 0. Therefore A,s5,A,, A €
W21/2+Z(Sl), and these coefficients do not depend on Ry, ¢ = (¢1,¢2).

Let us extend these coefficients to R? (—oco < 1,2 < 00) in the same class of
functions and so that

sup [A5(¢) = Ays(°)] < e sup [A5(0) = Ays(9”)].
pER? peS”

The regularity theory of linear elliptic equations yields the estimate
||R*||W22+S(S”) < C(”F"W;(S”) + ||R*||L2(S”)) for s € [0,00)

In order to obtain (7.29) and (7.30) it suffices to estimate the terms of F.

Let first s = 0. First, consider the term Fy =) 35:1(1475(500) — A.yg(ga))%. We
) v
have

IFilas) < Z sup A(6) Ao | e

SC/\B Z HA75||W2Z+1/2(31)||R*||W22(S”)7
v,6=1
where 0 < 3 <1 —1/2 and A = diamS"” is sufficiently small.
Now consider Fy = 2 Zi)[;:l Ays5(9) ;Zf ‘356 We obtain
2
OR.
||F2||L2(S”) S c Z ||A’Y5((p)||w21/2+l(51) W
oyt vllLssm)
2
<e Y 4@y g El Ballwzsn + @Rl agsm),

v,0=1

where we have used the interpolation inequality from Lemma 2.1.
The other terms of F' are estimated in the same way. Therefore, assuming that A is
sufficiently small we get

(7.31) [Rellwz sy < callhlliaesey + 2l RallLocsy + el Bullwz (sr))-

Summing estimates (7.31) over all S" and assuming that e is sufficiently small we obtain
(7.29).
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Now, let s = 1. Then we have to estimate ||F|[yy; (). We have

F // < F 1" A 1
IRl sn < ¢|IFillzucs >+7521:up| L5(9) - (Zna@ D)
22: 0A,s 2R, }
i 1 0%a iz, (s l19040%6 |1, (sm)
2
o +2) 3 Nslly st IR lwges + @l Relzagsy:
v,0=1

where the last inequality holds for some p; and po.

The other terms of F' are estimated similarly. Therefore inequality (7.29) holds for
s=1.

Estimate (7.29) for s € (0,1) is proved in [Sol6]. For example, the norm [|F} ||y (r2)
is estimated in [Sol6] as follows:

ap N\ M2
IRy = DFilzaen + ( § 1AWF 00 o
]R2
2 52 1/2
~ 0?R. di
<ol 3 sl | IBelhwzes + HA(@— )]
7;1 Yo llw,+1/2(R2) 3 (R?) ]RS2 D005 La®?) |op|2+25
ap N\ V2
A A 2/p2 A A 2/p1
Hg:l 0%8905 Lane <R2)(S 1AW Ass ey | AW Assly o e )
where A()f = f(o+ ) — f(p), p2 > 1/s, 1/p1 =1 —1/ps. Using the fact that
2D 2
H 0"k <o ZE s =s—Up,
6@16@2 L2p1(R2) 8@18902 WQS’(]RQ)
and
2 2
(1§ 1A A3 | A A |w|2+28)
R2
1/p2 1/p1
v
< (§ 180 Al oo o) ( 1A Al ooy i
R2
< CHAV‘S”WZHI/Q(RZ)’ re(0,1), r/pa+(1—=1/2)/p1 = s,
we get
2
Fulbseey < e +2) 3 WAsalhyionrsgon 1l oegeny +0) 3 1R lscen
v,0=1 v,0=1

for sufficiently small A\ and ¢.
The other terms of F' can be estimated similarly. This way inequality (7.29) is proved.
Inequality (7.30) can be derived by using similar calculations. m
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Theorem 7.1 is essential to all proofs of global existence and stability for problems in
which §2; is a domain occupied by a fixed mass of fluid bounded by a free boundary with
surface tension. If we assume that S € Wit for some s > 0 and if we can prove that
for all ¢ > 0 the right-hand side of (7.30) is finite, we obtain by Theorem 7.1 the same
regularity of the boundary for all ¢ > 0, i.e. Sy € WQ?’“. Moreover, for data sufficiently
close to an equilibrium state we can usually prove that the free boundary S; remains
close to a ball of radius R, for all ¢.

Thus, Theorem 7.1 enables us to control the free boundary of the fluid. Obviously,
we have to find appropriate estimates of the terms occurring on the right-hand sides of
(7.29) and (7.30). The possibility of obtaining an estimate of |R — Rc||1,(s1) is always a
consequence of the conservation laws of energy, momentum and mass (in the compressible
case) or volume (in the incompressible case). Since the forms of the energy conservation
laws differ for different fluids, estimates derived for ||R — Rc||,(s1) are also different.
However, in all these cases it is assumed that the barycentre of the initial domain coin-
cides with the origin of coordinates. This assumption together with the assumption that
the momentum of the initial domain is equal to zero and together with the momentum
conservation law implies that also the barycentre of §2; for ¢ < T (T is the time of local
existence) coincides with the origin.

By (7.26) we see that in order to estimate the norms ||k s1) or ||h||W21+°'(Sl) we
need estimates of v and p,. Such estimates are derived in different ways in dependence
on what motion we consider. More details about these estimates are given in Sections 4
and 5.

For surface waves problems, a theorem analogous to Theorem 7.1 can be proved for the
function F'(2’,t) describing the free boundary in this case (see Theorem 6.7 of Section 6).
The function F' satisfies then elliptic equation (6.37).

7.4. How to control the free boundary in drop problems without surface ten-
sion? In this subsection we consider problems (4.1)—(4.5), (5.1)—(5.5) and (5.63)—(5.69)
with £ = 0, f = 0 and o = 0. In this case the Laplace—Beltrami operator Ag, (¢t) does
not appear in boundary conditions (4.3), (5.3) and (5.66). Therefore, we cannot use the
regularity properties of elliptic equations as in the case of ¢ > 0. Since we cannot apply
Theorem 7.1, the way of controlling the free boundary in such problems is quite different.
In the case of o = 0, the following differential inequality can be proved:

i,
(7.32) d—‘f tead<0 fort<T,

where T is the time of local existence; ¢; > 0 is a constant.
For a compressible heat-conducting fluid, = $(¢) is a function equivalent to
o(t) = )% 2 + 10Ol 2,) + lleo )% (2,
where X (§2;) is a certain function space, usually of Sobolev type; 8, = 0 — 0., 0, = 0— 0e;

(v, 0, p) is the local solution of problem (5.63)—(5.69); 6. and g, are the constants defined
in Definition 5.3. Moreover,

o(t) = [v()I3 (@) + 10O, + lloe O Z(2,):



Free boundary problems for Navier—Stokes equations 123

where Y (£2;) and Z(2;) are spaces such that
(7.33) D > cyp.
For a barotropic compressible fluid @ is equivalent to
p(t) = o) % () + llea Ol (),

where (v, 0) is the local solution of problem (5.1)—(5.5), . is the constant defined in
Definition 5.1. In this case

B(t) = [v()3- () + lloa Ol %(2,)-
Finally, for an incompressible fluid % is equivalent to o(t) = ||v(t)|\§(mt) and &(t) =
Hv(t)||§,mt), where v is the local solution of (4.1)—(4.5).
Thus, we have

(7.34) c3p(t) < P(t) <cap(t) fort <T,

where in the general heat-conducting case the constants csz, ¢4 > 0 depend on o1, 02, 61,
T .
02, p, v, 3, Cy, P, TSO ||v||‘2/V23(Qt) dt, and 01, 02, 01, 02 are positive constants such that

(7.35) 01 < o(w,t) < 02, Oy <O(x,t) <Oy forxzeytel0,T)]

The constant ¢; in (7.32) depends on the same quantities as ¢z and c4. It depends also

on [[Stll;5/2 and the constants from imbedding theorems and Korn inequalities which
2

depend on £2;, t < T.

Inequalities (7.32)—(7.34) imply

(7.36) ((ii—f +esp <0 fort<T.
Hence
(7.37) ?(t) <p(0)e =" fort <T
and
(7.38) o(t) < Z—;ﬂp(())e*%t for t < 1T
Moreover
t
(7.39) pt) +e\o(t)dt <p(0) fort <T.
0

In the incompressible case it suffices to take X (£2;) = L2(£2;) and Y (£2;) = W3 (§2;), which
follows from the general strategy applied to incompressible free boundary problems (see
Subsection 7.2). Then @(t) = p(t) = ||v(t)||%2(9t) and inequalities (7.32) and (7.36) follow
from the energy conservation law and the Korn inequality (see [Sol8] or Theorem 4.2 in
Section 4). However, the solvability of problem (4.1)—(4.5) is proved in spaces of functions
v(t) more regular than Ls(£2;) (see [Sol8]).

In contrast to the incompressible case, inequality (7.36) for compressible fluids is
obtained in the same function spaces in which the solvability of problems (5.1)—(5.5) or
(5.63)—(5.69) is proved (see [ZZajl0, ZZaj15], see also Section 5). In the compressible
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case, the spaces X (§2;), Y (£2;) and Z(£2;) with the lowest possible regularity of functions
v, 04, 0, are defined as follows:

no

(7.40) X(£2,) = {w: 10502 (g, < oo},
=0
2 .

(7.41) Y () = {w S 1050 sy < oo}
1=0

and

Z(f2) ={w: Hw(t)|\%/vg(nt) + ||wt(t)||%/vg(nt) + ||wtt(t)H%/V21(Qt) < oo}
Obviously, the method applied to prove global existence for free boundary compressible
problems can also be used to problem (4.1)—(4.5). Thus, we can derive inequality (7.32) in
the incompressible case with X (£2;) and Y (£2;) defined by (7.40) and (7.41), respectively.

Now, we will show that inequalities (7.37) and (7.39) allow us to control the free
boundary S if the data (0) is sufficiently small. We control the free boundary and extend
the local solution from [0, 7] to R step by step. First, assuming that the initial conditions
00, 0o and the equilibrium solution (g, f.) (see Definition 5.3) satisfy inequalities (7.35)
and moreover assuming that ¢(0) < € with e sufficiently small, we prove by using estimate
(5.87) (which holds for the local solution) that estimates (7.35) are satisfied for = € 2,
te[0,7].

Furthermore, the same inequality (5.87) yields, for ¢t < T,

o+

< o612 |ullag o < er(T)TH2EV2,

< CGHSudt’
0

t
. - ' d/
(742) |z —¢| < ‘(S)“(fvt) t W3 (92)

where c7 is an increasing continuous function of 7.

Therefore, assuming that S € WQE’/2 we see that Sy € T/V25/2 for t <T and by (7.42),
the volume and shape of £2; (¢t <T') do not change much if ¢ is sufficiently small. Hence
we can derive inequalities (7.32) and (7.36) with the constants ¢; and ¢s which in fact do
not depend on T' S(j; |\UH%V§(Q” dt and 2 for t < T, but depend on the other quantities
mentioned above.

Moreover, estimate (7.42) and inequalities (7.35) for z € 2y, t € [0,7], imply that if
we assume (7.34) for ¢(0) and B(0) with ¢z, ¢4 depending on g1, g2, 01, 02, i, v, ¢y, P, 7,
we obtain this estimate for ¢(¢) and P(¢) and all ¢ < T with the same constants cs3, ¢q4.

Hence, by (7.37) we get (7.38). As a consequence, we have

D(t) < cqe fort <T,

o(t) < C—4€ fort <T.
Cc3
Therefore, for sufficiently small € the solution can be extended to [T,2T]. Moreover,
the local solution satisfies in [T, 27 inequality (5.87) with ¢(0) replaced by ¢(T), with
(ur, V1o, Nyo) denoting (v, 0y, 0,) written in Lagrangian coordinates &r € 21 (i.e.
Er = €+ Sg uw(&,t') dt’) and with the norms of the spaces Ar o and Br o replaced by
those of Ar o, and Br .. The spaces Ar o, and By o,,., i € NU {0}, are defined as

T
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follows:

At 0 = Br.g,. 0 La(iT, (i + 1)T; W3 (2i7)),
Br.o,, = {w € O[T, (i + \)T); W3 (2ir)) :
wy € C([T, (i + DT]; Wy (i) N Lo (iT, (i + 1)T; W3 (2ir)),
wyy € C([iT, (i + 1)T); Lo (7)) N Lo (iT, (i + 1)T; W (1))}
for i € N and Ar o,, = Ar.0, Br.o,, = Br.o.
Namely, inequality (5.87) has the following form in [T, 2T7:

(7.43) lur Py, + 10761200, + WrollBr, < CL(T)AT).

Thanks to (7.43) we prove that estimate (7.34) holds for = € §2;, t € [0,2T]. Moreover,
we prove that the volume and shape of (2, change in [0,27] no more than they do in
[0,T]. In fact, by (7.39), (7.43), (5.87) and (7.38) we have, for sufficiently small ¢ and
t < 9T,

t

< CGH fute.tyar

t t
(7.44) |z —¢| = Hu(g,w dt'| < ng(g,w dt’
0 0

Loo(£2) — o W3(£2)
T 2T
< ao( Jule ) llwsco dt' + § (. )llws o) @)
0 T

< cgTH/? [c8(:§45(t’) dt’) + @IIWHAT,QT}
0

< cgTY?e1/? <CgC4 + C10(T)Z—4> < cgE.
3

It follows from (7.44) that for e sufficiently small the volume and shape of £2; do not change
much in [0,27]. Thus, we are able to derive the differential inequality for T < ¢ < 2T
with the same constant c¢; as before. However, it should be underlined that in order to
obtain (7.32) we partly use Lagrangian coordinates and therefore some terms of @ are
expressed in Lagrangian coordinates ¢ € (2, while the others in Eulerian coordinates.
For this reason, after passing to [T, 2T], we derive the differential inequality (7.32) for
a function @, which has the same form as @ but has appropriate terms expressed in
Lagrangian coordinates &7 € (27.

From the form of @ and from (7.44) it follows that @, satisfies estimate (7.34) for
T<t<2T.

Therefore the differential inequality for @, i.e.

d;’% +cP <0

implies (7.36), (7.37) and (7.39) for T' < ¢t < 2T with @ replaced by .
Moreover, if € is sufficiently small then

Pr(T) < (L+ en T2 ull ar, o )P (T).
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Hence, by (7.37) and (5.87)
1/2
— Cq —cs5T —csT
(745) (pT(T) < |:1 + c11 (cTC’l (T)é‘) :|C4€€ 5% = crocqce” BT < cye,
3

if we assume that € is so small that ci2e~ %7 < 1. By (7.45) and the inequalities (7.34)
and (7.37) written for @y, we obtain

(7.46) Dr(t) <cqe  for T <t < 2T,
(7.47) o(t) < 2—45 for T <t <2T.
3

Estimates (7.46)—(7.47) allow us to extend the solution to the interval [2T", 3T.
Continuing the above process, assume that there exists a solution in [0,IT], | > 3,
satisfying:

ey, + 10ime i+ Ii7ellEs g < CHD)QGT), G =0,...,1-1,

Pir(t) < cue for jT<t<(j+1)T, j=0,...,01—2,
o(t) < 2—45 for t < (I—1)T,
3

t
Bir(t) +a X (') dt' < Bp(jT) for jJT<t<(j+1)T,j=0,...,1—2,
§T

where u;r, V1o, njT7o denote v, 0,, o, written in Lagrangian coordinates ;7 € (2;7;
Por = P; P, has the same form as » and appropriate terms of ¥, are written in
Lagrangian coordinates ;7 € {2;7.

Assume also that the volume and shape of §2; change in [0, (I — 1)T] no more than
they do in [0, 7] and that

<g fort<(-1T
W3(£2)

H § u(&,t) dt’
0

with sufficiently small . From the above assumptions it follows that estimate (7.34) holds
with @ replaced by @,r for jT <t < (j +1)T, j =0,...,1 — 2. Moreover, the form of
P;r (j=1,...,1 —2) and the smallness of ¢ imply

Gir(T) < A+ euTllullara, VPG 0rGT), J=1....1-2

Hence, assuming that  is sufficiently small we obtain, for 0 <t <IT,

-7

o — €| = \§u<s,t’>dt’ <| §u<5,t’>dt’
0 0

Loo (£2)
t 1—2 (G+1H)T T
< ) dt < H ) dt! H ) dt!
_CGHSu(€ ) Wg(n)_cﬁ(z S w6t W§(Q)+ S w6, t) W2'3'(_Q)>
0 Jj=0 iT (-nT

-2 (G+1T

— 1/2
< T2 [Cg 3 ( [ o) dﬂ) + c9||u(l_1)T\|ATWQ(H)T}
Jj=0 iT
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1—2
c
< T2 [Cs (@;7(UT)) )24 ClO(T)_451/2:|

c
j=0 3

c
< CGT1/2{08 [B(0)(1 + croe™ T 4 22T 1 )]/2 4 clO(T)C—451/2}
3

1/2

< T1/251/2 C8Cy T ca oz
= (1 — cioe=csT)1/2 + c1o( >03 < CgE,

if € is sufficiently small in dependence on €.

Thus, the volume and shape of £2; change in [0, {T] no more than they do in [0, (I—1)T7.
These changes are as small as we want if we assume that £ is sufficiently small.

This way we can control the free boundary of £2; in the case of ¢ = 0. At the same
time, this way we can extend the solution to a global one.

The above method of controlling the free boundary and proving global existence in
this case is presented in [ZZaj15].

REMARK 7.1. In order to prove differential inequality (7.32) we proceed as in the case
of ¢ > 0, that is, we use systems (5.142) and (5.143) with ¢ = 0 in the boundary
condition. We use these systems step by step in the process of extending the solution to
R, . Therefore, if we want to prove the differential inequality in the interval [T, (k+1)T],
k > 1, we have to choose the covering of 2;r and the family of fuctions {(xr,itiemun
such that (x7; has the support in an appropriate domain of the covering.

In contrast to the case of o > 0 (see the proof of Theorem 5.11) we choose a covering
Uiemun 2e1,i of 27 such that
kT
Qi = {fkT Er S =6+ S wdt', € € f?i}, ieM,
0

and
kT

ﬁkT,z'ﬁQT: {fkTEQkTifkT=§+ S uwdt', £ € ﬁiﬂg}, ie N,
0
where |;c viun 2, is a covering of £2.

We prove the differential inequality for ¢ € [kT,(k + 1)T] in order to extend the
solution to the interval [(k+ 1)T, (k + 2)T]. Since we know that || SIST udt'||lyyg(o) <€ for
k > 1, we can associate with the covering UZ.G MUN ﬁkT’i the same family of functions
{Q} as with UiEMUN 07, _

In fact, assuming that € is sufficiently small we have supp (; C f247; and 0 < ng <
> iemun Gi(&rr) < No for Cer € 247, where ng and Ny are sufficiently close to 1.

Alternatively, we can take the family {Cir,itiemun such that Ceri(Eer) = G(Ekr —

kT . ~ ~
So udt'). Then obviously suppCrr,: C Pt and i yn Gi(Skr) = 1 for Ser € Qi ;.

7.5. Difficulties connected with the self-gravitational force in drop prob-
lems. Now consider problems (4.1)—(4.5) and (5.1)—(5.5) with & > 0. The only global
existence result with the self-gravitational force taken into account has been proved by
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Solonnikov [Sol10]; his paper concerns problem (4.1)—(4.5) with £ > 0 and ¢ > 0. The
assumption that o > 0 is essential because it enables control of the free boundary as we
now describe.

Assume that pg = 0, f = 0 and substitute p’ = p — 12'7”0 — k(U — Uyl|z|=rR,), Where
Ry = (%\QDl/g, Up(x) = S\y|<RO ny‘y‘, Uoljz|=r, = %Tng. Then problem (4.1)—(4.5)
takes the form

(7.48) v+ (v-V)v—vAv+ Vp' =0, x e, te(0,T),
(7.49) dive =0, Tz €y, te(0,T),
2 4
(7.50) T(v,p')n—ocHn = (k;U + R—U — gﬂkR(%)n, x €S, t€(0,7T),
0
(7.51) = —¢/|V, z€eS, te(0,T),
(7.52) v(:c, 0) = vo(x), x € {2
Rewrite boundary condition (7.50) as
2 1 k 4

. H _ = -7 - T — R 2 .

(7.53) + o n (v,p )1 . (U 37TR0)7 x € 5

Hence, assuming that condition (7.24) is satisfied (and hence also (7.25)), condition (7.53)
takes the form
2 1 -
— = h(w) + = (U(Rw) — Uy(Row)) = h(w), we S,
Ro g
where H[R] is the double mean curvature of Sy given in spherical coordinates by (7.28),
and h(w) = %ﬁ ' T(U7pl)ﬁ|$:Rw-

Equation (7.54) can be transformed to an integral-differential equation with the un-
known function R — Ry.

From the assumptions of [Sol10] it follows that R(-,t) € W§/2+a(51), a € (1/2,1)
and

(7.55) sup |R(w, t) — Ro| + sup |VR(w, )| < 6 Ry
St St

(7.54) HIR] +

with sufficiently small g, where t < T, T is the time of local existence. Hence, in view of
Theorem 7.1 the solution R of equation (7.54) satisfies the estimate

(756) HR - RO”W;J/2+<¥(31) < Cl||E||W21/2+a(S1) + CQHR - ROHL2(Sl)
< Cth||W21/2+‘>‘(Sl) + CIHU(Rw) - UO(RW)||W21/2+0‘(51)
+CQ||R_ROHL2(SI) fort <T.

The third term on the right-hand side of (7.56) can be estimated by using the following
lemma.

LEMMA 7.1 (see Lemma 2.4 of [Sol10]). Let R € W§/2+Q(Sl) and let (7.56) with 5< 1/10
be satisfied. Then

HU(R(.U) - UQ(Row)||W21/2+a(Sl) < 63(8;1113 |R - Ro‘ + S;llp |VR|) < C4HR - R0||W23/2+°‘(Sl)'
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Lemma 7.1 applied to (7.56), together with the interpolation inequality
1B = Rollyyar2+0 1) < €1[lR = Rollyys/240 g1y + c(e1) [ = RollLa(smy,
yields the estimate, for sufficiently small €1,
(757) ||R — R0||W25/2+a(sl) < C5||h||W21/2+a(S1) + CGHR — R0||L2(Sl)-

Estimate (7.57) has exactly the form of inequality (7.30). Thanks to this estimate we can
control the free boundary in time if we have estimates for the terms of the right-hand
side of (7.57). Solonnikov proved in [Sol10] that under the assumption |lvlly1+a () +
|R(w) — R0||W25/2+a(sl) < g, where ¢ is sufficiently small, the right-hand side of (7.57) is
also small for t; <t < T, t; > 0 (see inequalities (4.90) and (4.91) of this paper) and
S, e W for 0<t <T.

It seems that in the case of compressible fluid, the above method of controlling the
free boundary can also be applied, at least for barotropic fluids.

In contrast to the situation described above there are no global existence results for
the case k > 0 and o = 0, both for incompressible and compressible fluids.

Assume now that k& > 0, 0 = 0 and substitute in problem (4.1)-(4.5): p’ = p —
k(U — Uoliz|=R,)- Then problem (4.1)-(4.5) takes the form of problem (7.48)-(7.49),
(7.51)—(7.52) with boundary condition (7.51) replaced by

(7.58) T(v,p ) = k(U — Uoljz|j=r, )T, ® € Sy, t€(0,T).

The lack of an elliptic operator in equation (7.58) makes it useless for deriving an estimate
similar to (7.57). Therefore, it seems that the only way of controlling the free boundary in
this case is to do this by deriving differential inequality (7.32). However, so far attempts
of obtaining such an inequality have failed.

7.6. Final remarks. Most of the results on free boundary problems for Navier—Stokes
equations reviewed above are existence and stability theorems. However, in the previous
sections we also mentioned some asymptotic results. Much has been done in this field, in
the one-dimensional and spherically symmetric cases. The most characteristic feature of
the asymptotic results in the one-dimensional case is that all of them require the assump-
tion that the external pressure P (see boundary conditions (3.4) or (3.42)) is positive.
This assumption is crucial to the proofs of the asymptotic convergence of solutions of the
one-dimensional problems to stationary solutions.

In the two- and three-dimensional cases there are asymptotic results for incompressible
and compressible barotropic fluids. For drop problems such results have been obtained
by Solonnikov in [Sol9] in the case of an incompressible fluid with ¢ > 0, & = 0, and
[Sol10] for the incompressible case with ¢ > 0, k¥ > 0, and by Solonnikov and Tani
[SolT3] for the compressible barotropic case with o > 0, k = 0. All of these results are
similar, i.e. it is proved that as ¢t — oo a solution of a free boundary problem tends to a
quasi-stationary solution corresponding to a rotation of the fluid as a rigid body about
an axis which is parallel to the angular momentum vector. These asymptotic results
are obtained under the assumption that the initial angular momentum vector which is
equal to m = SQ(’UO x £)d¢ in the incompressible case and to m = SQ oo0(vg x &) d€
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in the compressible case, is sufficiently small. By the angular momentum conserva-
tion law, the angular momentum of the fluid remains small and equal to m for all
t > 0. Thus, v(z,t) — vo(z), R(w,t) = Rx(w) as t — oo and p(z,t) — peo(x) as
t — oo (in the incompressible case) or o(z,t) — poo(x) as t — oo (in the compress-
ible barotropic case). The above convergences are uniform convergences with respect
to z or w. Moreover, it is shown that the first derivatives of v with respect to = tend
uniformly to the first derivatives of v, and the first and second derivatives of R tend
uniformly to the first and second derivatives of R... In all the cases the rotational ve-
locity vs of the fluid is small in dependence on the smallness of |m| (see the end of
Section 4), and in the compressible barotropic case also in dependence on the small-
ness of |M — (4/3)7R2p.| (see Theorem 5.5). The pressure p. is the sum of two terms:
one of them is small in dependence on m and the other is a constant which depends
on the specific problem. Similarly, 0., in the compressible case is a sum of two such
terms. The function R, in each case has to be found from an equation implied by
one of the boundary conditions: (4.3) or (5.3). In the simplest two-dimensional case
with & = 0 it follows that R = Ry = (%”2‘)1/37 i.e. the domain {2, is the ball
|.’L‘| < Ro.

Now, we want to mention the asymptotic results for the surface waves problems
with o > 0. They were obtained by Beale and Nishida [BNis| for the three-dimensional
incompressible motion, by Nishida and Teramoto [NTer] for the two-dimensional motion
of an incompressible fluid flowing down an inclined plane under the influence of gravity,
and by Jin and Padula [JinPad] for a compressible flow. All of these results show the
asymptotic convergence of solutions in appropriate norms to equilibrium states together
with decay rates. For example, for the problem considered in [Jin Pad] this decay rate is
exponential (see Theorem 6.8).

We would like to end this paper with a general remark concerning all free boundary
drop problems with ¢ > 0. To derive some estimates useful for the proofs of global
existence as well as to examine the asymptotic behaviour of solutions of free boundary
drop problems it is usually assumed that the total initial momentum of the fluid vanishes
and that the barycentre of the initial domain coincides with the origin, i.e.

(7.59) Svodfzo, Sgdg:o
2 (9]

in the incompressible case, and

(7.60) {oovode =0, {ogde=0
Q Q
in the compressible case.

From the laws of conservation of momentum and barycentre and from (7.59) or (7.60)
it follows then that the total momentum of the fluid vanishes and the barycentre of the
fluid coincides with the origin for all ¢t > 0.

However, it turns out that assumptions (7.59) or (7.60) are not restrictive because by
applying the transformation

=x-Vt, V=v-V,
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where V = ﬁ SQ vo d€ in the incompressible case (see [Sol6]) and V = (SQ 00d€)~!
x {, 0ovo d€ in the compressible case (see [SolT3]), we obtain §, vy dé = 0 and {, eovf d€
= 0, respectively. Hence, the coordinates of the barycentre are conserved, i.e. S o ' dx’ =
§,cdE or § o, 0t d' = {,, 00€ d& and we can always place the barycentre of the initial

domain at the origin.
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