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Abstract

We develop various asymptotic relations between the Riemann zeta function ¢(s) and the inter-
polation errors of Lagrange and Hermite interpolation to functions like |y|® and y*™ log |y|. We
show that the interpolation nodes of these interpolation processes include zeros of Gegenbauer
and Hermite polynomials and polynomials with equidistant zeros. Similar results are valid for
the Dirichlet beta function 5(s) as well. So the results of the monograph serve as the bridge be-
tween the theory of zeta functions and polynomial interpolation, one of the most studied areas
of analysis.

Several applications of major asymptotics to properties of zeta functions are presented. In
particular, we develop new criteria for ((s) = 0 and S(s) = 0 in the critical strip. Other applica-
tions include construction of universal exponential sums (in the spirit of Voronin’s universality
theorem), limit summary formulae for {(s) and B(s), and new combinatorial representations for
Bernoulli and Euler numbers.
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1. Introduction

In this monograph we combine results from several areas of analysis, such as polynomial
interpolation, approximation theory, orthogonal polynomials, and theory of zeta func-
tions, to obtain asymptotic formulae for two zeta functions: the Riemann zeta function
¢(s) and the Dirichlet beta function 5(s). Applications include new criteria for {(s) = 0 or
B(s) = 0 in the critical strip {s € C: 0 < Res < 1}, construction of universal exponential
sums, and new combinatorial representations for the Bernoulli and Euler numbers.

The asymptotic behavior of ((s) and S(s) (as one of L-functions) is well-studied as
Im s — oo (see for example [49, Ch. 1], [43], Ch. 7], and [27], Ch. 6]). However, asymptotic
representations of these functions for a fixed s, other than the definitions

N N
C(s):=Y_n"*+o(1), Bs)=> (-1)"2n+1)"" +o(1), (1.0.1)
n=1 n=0
as N — oo, are not known. Here, Res > 1 for ((s) and Res > 0 for 5(s).
We obtain asymptotic formulae of the following types:

1. Pointwise asymptotics.
2. Asymptotics in L, ,,-spaces, where p € (0,00) and w is a weight.
3. Asymptotic summation formulae.

In asymptotics of the first type, we express the zeta functions through the interpolation
errors of Lagrange or Hermite interpolation of even degree N to functions like |y|* and
y*log |y| for each fixed y € R\ {0}, as N — oo. Asymptotic summation formulae
are corollaries of pointwise asymptotics. In addition, pointwise asymptotics are used to
obtain asymptotic formulae in L, ,,-spaces. So the results of the monograph serve as the
bridge between the theory of zeta functions and polynomial interpolation, one of the most
studied areas of analysis.

To establish these asymptotics, we introduce and study special classes of polynomials
of even degree IV, whose zeros along with the origin serve as the interpolation nodes and
allow pointwise and L,, ,,-asymptotics for the zeta functions. In particular, Gegenbauer
and Hermite polynomials, polynomials with equidistant zeros and Williams—Apostol poly-
nomials belong to these classes.

In Chapter [2] we discuss new integral formulae for the interpolation errors, starting
with a fairly general case of polynomial interpolation to functions f(y) = fT i"_(i), where
T C Cis a set and p is a complex-valued measure on T (Section . We provide more
details for a subclass of functions of the form f(y) = [, ‘Z‘i (;;), yeR (Section. Finally,
in Sectionwe establish explicit interpolation formulae for special functions f ;. (y) :=

6]



1. Introduction 7

ly|*(sgny)! log” |y|, where s € C, I =0,1and v = 0, 1,.... Results of Chaptergeneralize
and extend integral interpolation formulae by Hermite [26], Bernstein [5, pp. 92, 98],
Lubinsky [38], and the author [19] 20] 2T, 23].

The idea of transition from interpolation formulae for fs;, to asymptotic represen-
tations for the zeta functions is explained in Remark Development of this idea and
applications are discussed in Chapters

The first step in this direction is made in Chapter [3| where asymptotic properties
of special sequences of polynomials are discussed. In Section three classes Py, P35,
and P%* of polynomial sequences {Pan+d}%_;, d = 0,1, are introduced and some of
their properties are studied. Examples of sequences from these classes, including Gegen-
bauer, Chebyshev, Hermite, Williams—Apostol, Laguerre polynomials and polynomials
with equidistant zeros, are provided in Section [3.2] Asymptotic formulae for weighted
L,-quasinorms, p € (0,00), of polynomials from Section are established in Section
[3:3] Some special cases of these asymptotics for Gegenbauer and Hermite polynomials
were obtained by Aptekarev, Buyarov, and Degeza [3].

For {Pan1+4a}S5_ € Py, four families of pointwise asymptotic relations between the
zeta functions and the interpolation errors with nodes at zeros of y!~*IpPk, +q(y), where
d=0,1and k = 1,2, are obtained in Section [4.2| For example, if

Pani1(y) = Ganya(y )/(G2N+1) 0), Ax=>0,

is the normalized Gegenbauer polynomial of degree 2N + 1, then for every y € R\ {0}

and —1 < Res < 2N —2,s#1,3,...,

dcos(sm/2)(1 = 27°)I'(s)Gan 11 (y)
T(2N + N>~ Gy, ) (0)y

as N — oo, where Ly interpolates |y|*~! at zeros of G3y,,(y)/y and Lan(0) = 0.

Similarly, for y € R\ {0} and m =1,2,...,

lyI* = = Lan(y) = - ()1 +O((Ny)™?))  (1.0.2)

y*™ log |y| — Lan (y)

(=)™ (1 =272 N (2m)!Gan 4 (y) o
= _ v T )\)2’”(G§\N+1)’(O)y ¢C2m+1)(1+O0O((Ny)™©)) (1.0.3)
as N — oo. Actually, more explicit forms of the remainder terms in and (| -
are presented in Section {4
More asymptotic relatlons are given in Sections[4.3|and [£.4] In particular, asymptotlc
summation formulae for the zeta functions that hold in a broader domain than

are established in Section [4.4] For example, for Res > —1, s # 1, 3,.

7.(.s+1/2 \/N B 2N
(s) = —5— = Saw (DR
2cos(sm/2)(1 —2=9)(s) 2 = N —k
+ O((log N)max{Q,Res}/N)’
as N — oo. Asymptotic representations for ((2m + 1) and B(2m), m = 1,2,..., are

presented in Section [4:4] as well. In particular, asymptotic formulae for Catalan’s constant
B(2) are given.
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In Section L,-versions of ((1.0.2)) and (|1.0.3)) are obtained. New L,-criteria for zeros
of {(s) and 5(s) to be in the critical strip are established in Sections [5.3| (for p = 00) and

(for 0 < p < ). For example, if Ty is the Chebyshev polynomial of the first kind
of degree 2N and L,y (y) interpolates |y|® at the zeros of yTiy (y) for 0 < Res < 1, then
the following statements are valid:

a) ((s) =0 if and only if for any p € (1/2, 00),
¢ f and only if f
1 1/p
Oy /NResHHP < ( / [y L4N(y)>|pdy) < Cp/NTesHIHUE,
—1

(b) ¢(s) # 0 if and only if for any p € (1/2, 00),

1 1/p
Cy/ R+ < ( [ 1wt = ol dy) < Cy/NReHL,
—1

Here, C;, 1 <14 < 4, are positive constants independent of N. We believe that L,-criteria
for ¢(s) = 0 and for ((s) # 0 in Sections and are the first ones in terms of the
Hermite interpolation error. Special cases of these results for Lagrange interpolation were
discussed in [23]. There are numerous other criteria that have been developed for the last
150 years in connection with the celebrated Riemann hypothesis (see the survey [12]).

Three more applications are presented in Chapter [6] The first of them is related to
the universality theorem by Voronin [53]. Combining this result with asymptotic rep-
resentations for the zeta functions, we construct in Section [6.1] universal “exponential”
sums, whose shifts along the imaginary axis can approximate continuous functions on the
disk |s —3/4] <r, s € C, r € (0,1/4), that are analytic and nonvanishing in the interior
of the disk. Real analogues of this result for continuous 27-periodic functions on [0, 27)
and continuous functions on [—1, 1] that do not have sign changes on the corresponding
intervals are valid as well. New proofs for the functional equations for {(s) and 3(s) and
new combinatorial formulae for the Bernoulli and the Euler numbers are presented in
Sections [6.2] and [6.3] respectively.

Finally, we note that the choice of two zeta functions ((s) and 3(s) is based on the
method developed in this monograph. The question as to whether asymptotic formulae
obtained here can be extended to all Dirichlet L-functions remains open.

NoOTATION. Throughout, C, Cy, Cs, ... denote positive constants independent of essen-
tial parameters. Occasionally we indicate dependence on, or independence of, certain pa-
rameters. In particular, C'(a,b,c,...), Ci(a,b,c,...), Co(a,b,c,...),... denote constants
that depend on (a,b,c,...). The same symbol does not necessarily denote the same con-
stant at different occurrences.

We also use the generic notation of the set N of all positive integers, the set R of all
real numbers, and the set C = R 4 ¢R of all complex numbers.

Let Dps(a) := {z € C : |z —a] < M} be the open disk of radius M centered at
a € C,and Dys(a) := {2 € C: |z —a] < M} be the closed disk. Let P, be the set of
all univariate algebraic polynomials of degree at most n, n = 0,1,.... In addition, |z]
denotes the floor function of x € R; and for v < 0, we set 1/v! := 0 and f*)(z) := 0.



2. Integral formulae for the interpolation error term

In this chapter we establish explicit formulae for the interpolation error term for some
classes of functions in fairly general settings.

2.1. General formula. In this section we extend the Hermite integral formula to
Cauchy-type integrals.

2.1.1. Definitions and historic remarks. Let
m

‘Un+1(2) = (z_zl)kl(z_zQ)k2 "-(Z_Zm>km7 ka =n+1, (2'1'1)
p=1
be a polynomial from P41 with complex distinct zeros z, of multiplicity &,, 1 < p < m.
It is well known [54] Sect. 3.1] that for any system of complex numbers

(¥ M<j<hy, 1<p<m

there exists a unique polynomial P, (z) € P,, such that Py(ﬂ;l)(zp) = 'yi(,jfl), 1 <j <k,

—1)

1 < p < m. In particular, the numbers 'y,(,j can be defined as

VO =D 1 f(z), 1<j<kp1<p<m,

by values of a function f(z) = Dof(z) and its “derivatives” D,_1f(2), j > 2, whose
definitions can differ from the mainstream ones. In this case we say that the interpolation
polynomial P, (z) = P,(z, f,wn+1) interpolates f at zeros z, of wy41 of multiplicity k,,
1<p<m, Y " ky=n+11fk, =1,1<p <m, that is, m = n + 1, the polynomial
P, is called the Lagrange interpolation polynomial to f at the nodes {zp};fill. Otherwise,
P, is called the Hermite interpolation polynomial to f at the nodes {zp};":l with the
corresponding multiplicities {k,}7", Z;nzl kp=n+1.

The integral formula for the interpolation error term f(z) — P,(z) is well known for
analytic functions f and derivatives D;_1f(2) = fU=1(z). Let f be analytic inside of a
closed rectifiable Jordan curve I" and let f be continuous on I'. In addition, we assume
that all zeros z,, 1 < p < m, of w,41 are inside of I'. Then Hermite [26] (see also [54]
Sect. 3.1]) proved the following integral formula:

f(z) = Pu(z, fywn+1) = wnt1(2) /
r(t

211

f@®)

= 2)wnta(t)

dt, (2.1.2)

which holds for every z inside of I'.

Bernstein [5, pp. 92, 98] was the first author who extended this formula for Lagrange
interpolation to the nonanalytic function f(y) = (1 — y)*, s > 0, on [—1,1]. Various
versions of Bernstein’s result were discussed by the author [19] 20 211 23]. Lubinsky [38]

19l
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eq. (18)] found the explicit error formula for f — P, where
* d\a)
= — 2.1.3
o= | e (213)
is a real-valued even functlon defined on [—1, 1]\ {0}, and A(a) is an increasing function on
(0, 00) such that 0 < [ dMa) — 0. If n is an odd positive integer and W1 (y) = Tna1(y)

1+a2
is the Chebyshev polynomial, then Lubinsky [38, eq. (18)] showed that P, € P, _; and

for y € [-1,1] \ {0},
_ _(_1y(n+1)/2 - dA(a)

F0) = Palo . T) = ()T ) [ g
In this chapter we extend the integral representations (2.1.2]) and (2.1.4)) to more general
situations and apply them to the special function |y|*(sgny)’ log” |y|, where s € C,1 = 0, 1
and v € N. Here, we discuss an integral representation for f — P, in a general setting.

Let T' C C be a closed set and let u be a finitely additive complex-valued measure
on T" with the total variation v,. If T"is a bounded set, then for every continuous function
F : T — C the Riemann-Stieltjes integral [, F'(t)dpu(t) exists. If T' is unbounded, then
for every continuous function F': T — C we define

/TF(t) du(t) := lim F(t) du(t), (2.1.5)

R—oo TNDgr(0)

(2.1.4)

provided that the limit exists.
Let Z C C\ T be an infinite set and let T', Z, and p satisfy the following condition:

/@ﬁﬁ<m,zez (2.1.6)

T |t — 2]

REMARK 2.1.1. Note that condition (2.1.6) implies existence of the integral [, i“ ? for
all z € Z. In addition, since (t — z)~! is a continuous function on T', condition is

trivially satisfied if T" is a bounded closed subset of C.

For given sets T, Z and all measures p satisfying (2.1.6)), we define the class I(T\, Z)
of all functions f : Z — C of the form

£(z) = / dut) (2.1.7)

Tt_Z

Next we define the “derivatives” of f by

Dyaf(e) = (1 - [ O

Obviously, Dof = f. Existence of D;_1f(z) for all z € Z and j = 1,2,... follows
from and the trivial estimate [t — 2|77 < (d(z,T))' 77|t — 2|71, where d(2,T) :=
infrer |2 — 7] > 0 is the distance from z to T'. Note that, in most applications, D;_; f(z)
coincides with the actual derivative fU~1)(z2).

j=1,2,...,z€Z (2.1.8)

2.1.2. General theorem

THEOREM 2.1.2. Let f € I(T,Z), where T, Z, and p satisfy (2.1.6), and let z, € Z be
zeros of multiplicity ky, 1 < p < m, of polynomial (2.1.1)). Then there exists a unique
polynomial P, € P,, interpolating f at the nodes z, of multiplicity k,, 1 < p < m,
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> gt kp =n+1, such that

_ wn+1(t) — wnt1(2) »
Pu(2) _/T Al ), sez (2.1.9)

and
dp(t)
f(z) — Py(2) = wn z/—,
( ) ( ) +1( ) " (t—Z)LU»,H_l(t)
Proof. We first consider the special case of f(z) = (t —2)7', t € T, z € Z, that is, the
measure g in (2.1.7) is the Dirac delta function with support in {¢t}. Note that ¢t # z,,
1< p<m,since TNZ = (. Then the function

zeZ. (2.1.10)

1 t) —

Poi(z) = __wnn(®)_ @nnlt) Zwnial2) (2.1.11)
t—z (t—2)wpy1(t) (t — 2)wnt1(t)

is a polynomial of degree at most n with complex coefficients, depending on t. Namely,

if wy1(2) = ZZI& cq2%, then

n—r

Pau(2) = an(z Cotri1(t1/on i1 (1))

r=0 ¢=0

_ Z(Z cwﬂzq) (t" fwonsr (1)). (2.1.12)
r=0 ¢=0
It is easy to verify, by (2.1.11)), that P, interpolates (¢ — 2)~! at z, of multiplicity k,,
1 <p<m [B4, Sect. 3.1], that is,
P (z) = (1) G- Dt —2) 7, 1<j<k,1<p<m. (21.13)

Indeed, let P} ; € P, be the unique polynomial that satisfies (2.1.13) with P, ; replaced
by P ,. Hence the polynomial (t — 2)P;,(2) — 1 of degree at most n + 1 has zeros
at zp of multiplicity k,, 1 < p < m, Ez;l kp, = n + 1. Therefore, for all z € C and
t;é Z15R2y -5 2m,y
(t—2)P;+(2) =1 = C(t)wns1(2),

where the constant C(t) = —1/w,11(t) is found by evaluation of this identity at z = t.
Hence P ,(2) = Pp4(2)-

Next, we notice that the rational functions ¥, (t) := t" /wy+1(t) are continuous on T
and

[V-(t) < Clt— 2|7t 0<r<n, teT,

where C' is independent of ¢ and r. Therefore by (2.1.6), ¢, is p-integrable on T, 0 <
r < n. Hence by (2.1.12), the coefficients of P, ; are p-integrable on T' and P,(z) :=
fT P, +(z) du(t) is a polynomial from P, satisfying the identities

Pr(Lj_l)(Zp) _ / Pr(gtfl)(zp) du(t), 1<j<k,1<p<m. (2.1.14)
T

Further, integrating (2.1.13) with respect to du(t) and taking account of (2.1.8)), we
conclude that P, interpolates f at z, of multiplicity k,, 1 < p < m. Finally, integrating

(2.1.11)) with respect to du(t), we arrive at (2.1.9) and (2.1.10). m
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2.1.3. Examples of classes I(T, Z)

ExAMPLE 2.1.3. T is a closed rectifiable Jordan curve, Z is a domain with boundary T,
and du(t) = (1/(2m1)) f(t)dt, where f : T — C is a continuous function. Then the Hermite
formula (2.1.2)) holds for z, € Z, 1 < p < m.

EXAMPLE 2.1.4. T is a directed path in C, Z = C\ 7. Then a function f € I(T, Z) given
by is called the Cauchy transform of the measure u, and it plays an important role
in complex analysis. Some contemporary problems related to this integral are discussed
in [52, 40, 511, 29, B0).

EXAMPLE 2.1.5. T = [a,b], Z = {z € C: Im z > 0}, p is a bounded increasing function
on [a,b]. Then f € I(T,Z) if and only if (i) f is analytic on Z; (ii) Im f(z) > 0 on Z;
(iii) f is analytic and positive on (—oo,a) and f is analytic and negative on (b, 00). This
description can be found in [31, Theorem AG6].

EXAMPLE 2.1.6. T =R, Z = {z € C: Im z > 0}, p is a bounded increasing function
on R. Then f € I(T,Z) if and only if (i) f is analytic on Z; (ii) Im f(z) > 0 on Z;
(iii) sup, >4 [yf(iy)| < oo. This description can be found in [T} Sect. 3.1].

One more special case of Theorem for T =R and Z = iR\ {0} is studied in
Section 2.2

2.2. Interpolation formulae for 7= R and Z = iR\ {0}. In this section we discuss
an important special case of Theorem [2.1.2

2.2.1. Special case. Our applications of interpolation formulae are based on a special

case of (2.1.10) when T'=R and Z =R\ {0}.

Here and in what follows, we slightly change notation from Section[2.1] Let us consider
the class I(R) of all functions f : R\ {0} — C of the form

fly) = /R th(Z, (2.2.1)

where p is a complex-valued function of bounded variation on every interval of R. To

ensure the convergence of the integral in (2.2.1)), we assume that p in (2.2.1)) for f € I(R)
satisfies either the condition

dv,(t)

which is equivalent to (2.1.6)), or the condition
dv,,(t
o</ () _ g=1,...,m (2.2.3)
r [t

for some r € N. It is obvious that (2.2.3) implies (2.2.2)), that is, (2.2.3) is a more
restrictive condition than ([2.2.2)).

Note that by the definition of the variation of a singular function, the improper
Riemann-Stieltjes integral in (2.2.3)) can be defined as

dv,, (t dv,,(t
/ vu():: lim/ U’L(), q=1,...,r.
R [t §—0t Jig>s  [t]9
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Hence if (2.2.3]) holds, then

v, (t
lim / w®) o o1 (2.2.4)
5—0+ Ji<s  [t]2

We first discuss differentiability and continuity properties of functions from I(R).

2.2.2. Differentiability and continuity properties
PROPOSITION 2.2.1. Let f € I(R).

(a) If p satisfies (2.2.2), then f is infinitely differentiable on R\ {0} and, for y € R\ {0},
; du(t) .

O(y)=ifjt [ 2 =01, 2.2.5

1w =95t [ =0, (225)

(b) If v satisfies (2.2.3)) for some r € N, then f is (r — 1)-differentiable on R and ([2.2.5))

holds for y € R and j =0,1,...,7 — 1. Moreover, f"=1) is continuous on R.

The proof of Proposition [2:2.1] is based on two lemmas. In the first one we provide
three elementary estimates. Let us set for z € C\ {0} and r € N,

o2 =1 (1427, (e = (L) — 1) 4
LEMMA 2.2.2. (a) If 2 € C and 0 < |z| < 1/2, then

[1r(2)] < C1(r)l2], (2.2.6)
where Cy(r) < 227+3,
(b) If z=ih, h € R\ {0}, then
lor(2)| < Ca(r)|z/(1 + 2)], (2.2
[vr(2)] < C3(r)|z/(1 + 2)], (2.2.8)

where Ca(r) < r2"~1 and Cs(r) < r(r+1)27 2.
Proof. We first estimate |¢,(z)|. For an imaginary z = ih, we have
(2] < ’ N o [t P v 1
T+ z|rer (14 72)0r-1/2 L+ z]7er 2 ("7 7]
Since (,7,)/("7") =r/(1+1) <rfor0<1<r—1, follows from with

Co(r) < r2r—t
Next, let z € C\ {0}. Then

Ge(z) = (1+2)" ZQG) - <z 1 1)>zl = 2(1+ z)”i(l +1) (’;i;) A (2.2.10)

=0

If 0 < |z] < 1/2, then it follows from (2.2.10) and the estimate (’;:[21) <2l for0<i<
r — 1 that

(2.2.9)

eI <12 sup 1 (] et

[2|< 1=0

<222 sup Zl-l—l 2]t < 223z,
l21<1/2 125
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Hence (2.2.6) holds. If z = ih, h € R\ {0}, then from (2.2.10) we obtain

r—1 r+1 1
_s(+1 T
2] < || sup Zi L DI
1+z|rer (14 72)0—D/2
r—1 r+1 l
1| 2 —o(1+1) |7
<ot T 2|5 = T,(ll”)l (2.2.11)
T€R =0 ()17l
Since (I+1)(75,)/("7") =r(r+1)/(1+2) < r(r+1)/2for 0 <1 <r—1, [2:2.8) follows
from (2.2.11) with C3(r) <r(r +1)2"72. =
In the next lemma we estimate an integral.
LEMMA 2.2.3. If for some r € N, u satisfies the condition
dv,,(t
/R Tgl() < 0, (2.2.12)
then for h € R\ {0},
dvM
)= |h |/ T e = ol (2.2.13)

as h — 0.

Proof. We split the integral into two ones

(] o ) Lo B

= I7(h) + I;(h). (2.2.14)

Next by ,
}1112% I3 (h) =0, (2.2.15)

and by (2.2.12)),

< VInl dvu(t) ﬁ/ dnlt) _ o), h o, (2.2.16)

iH>vAE It [t["
Finally, (2.2.13) follows from relations fm L]

Proof of Proposition (a) We first note that all the integrals on the right-hand side
of exist, by condition @ . Let us prove by induction. Assume that f is
n-differentiable on R \ {0} and (2.2.F)) holds for j = n. Note that our assumption is valid
for n =0, by (2.2.2). Then for any fixed y € R\ {0} and any h € R with 0 < || < |y|/2,
we obtain, by Lemma [2.2.2)(a),

fDy+h0) -y / dp(t)
—i" (n 4 1)!
(

A r_ iy)n+2
( ) du(t)
(t _ Zy)n+2
< Cy(n+ V)l /R (tzﬁg‘w —o(1), h—0,
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where C1(n + 1) is the constant from (2.2.6). Hence (2.2.5)) holds for j = n+ 1, y # 0.
Thus f is (n + 1)-differentiable on R \ {0}. This proves statement (a).

(b) In view of (a), it suffices to prove (b) for y = 0. We prove this by induction. Let
f satisfy (2.2.3)) for some r > 2. We assume that f is n-differentiable at zero and

n n dp(t
FM(0) =i n‘/ tnil), 0<n<r-—2 (2.2.17)
Note that (2.2.17) is valid for n = 0, by (2.2.3)). Using (2.2.8)) for z = ih, h € R\ {0}, we
obtain
FOR) = FM(0) du(t)| _ zh dv,(t)
W =" (n+1)! sy ¢n+1 RE

dv,(t)
< Cg(’n + 1 ’I’L"h|/ ‘t|”+2 t2M—(‘f— h2)1/2 = Cg(’I’L + 1)7’L'In+2(h), (2218)

where C5(n + 1) is the constant from (2.2.8). Since I,,42(h) = o(1) as h — 0, by (2.2.3)
and Lemma [2.2.3] we obtain (2.2.5) forj =n+1and y =0 from (2.2.18).

It remains to prove that f("~1) is continuous on R. Using ([2:2.7) for z = ih, h € R\{0},
we obtain

£ )~ 700 |—r—1k/m(—) w0

dv,,(
<@ |h|/ T tzihQ 5 = OV (R) = of1),

as h — 0, by (2.2.3) and Lemma[2.2.3| =

2.2.3. Interpolation theorems. We first discuss Hermite interpolation at nonzero
nodes.

THEOREM 2.2.4. (a) Let f € I(R), where pu satisfies condition (2.2.2)), and let y1, ..., Ym
be distinct points from R\ {0}. Set

Hypa(9) = (y—y)" o (g —ym)*™, D kpy=n+1. (2.2.19)
p=1
Then there exists a unique polynomial Ly(y) = Ln(y, f(y), Hn41(y)) € Py interpolating

f at the nodes y, of multiplicity k,, 1 <p <m, szl kp =n+1, that is,
LY V() =9 (y), 1<j<ky,1<p<m, (2:2.20)
and such that, for y € R\ {0},

Hyyi(—it) — Hypa ()
/ t_zy n+1( ) (2.2.21)

In addition, for y € R\ {0},
f(y) = La(y) = qu(y)/]R = iy;lﬁffil(—it)' (2.2.22)

(b) If u satisfies condition (2.2.3)) for r = 1, then identities (2.2.21)) and (2.2.22)) hold for
all y € R.
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Proof. Proposition [2.2.1a) shows that in the special case of T =R and Z =R \ {0},
the “derivatives” D;_1f, 7 =1,2,..., defined in , coincide with the corresponding
derivatives of f. Thus statement (a) of the theorem follows from Theorem[2.1.2Jfor z, = iy,
1 <p<m, 2z =iy, Pu(2) = Lu(y), wnt1(2) = " Hog1 (y), wnpr (8) = " Hy g (—it).
To prove statement (b), we first note that condition for r = 1 trivially implies

(2:2.2). Therefore, (2.2.22) holds for all y # 0, by statement (a) of Theorem [2.2.4]

Next, f is continuous at zero, by Proposition [2.2.1] mb ). Further, since

|Hypr (—it))| <H|yp| kr < o0,
p=1

the function p; defined by dp;(t) := du(t)/Hp41(—it) satisfies the condition
[ vt < .
R

Then the integral on the right-hand side of ([2.2.22)) can be expressed as [, dt“ 1(;) and

it is continuous at zero, by Proposition b). Finally letting y — 0 on both sides of
(2.2.22)), we see that (2.2.22) holds for y = 0 as well. Identity (2.2.21)) for y = 0 follows
from (2.2.22)) and (2.2.1)). =

THEOREM 2.2.5. Let y1 =0 and ya, ..., Ym be distinct points from R\ {0}. Set

Hp1(y) = v" (v —v2)" . (y — ym) ™™, Z kp =n+1. (2.2.23)

IffelI®R ), where p satisfies (2.2.3) for r = ki, then there exists a unique polynomial
L,(y) = La(y, f(y), n+1( )) € Py interpolating f at the nodes y, of multiplicity ky,
1 <p<m, Ep:l » = n+ 1, that is, (2.2.20)) is valid, and such that for all y € R

identities (2.2.21)) and (2.2.22)) hold.

Proof. Let Satisfy condition for r = ki. Assume first that y, # 0, 1 <p < m,
and y # 0. Since 1mphes , we obtain, by Theorem a),

fy) = Lu(y)
o i+ du(t)
w=w) v =u) /R(t—z‘y)(t—z‘yn’ﬂH?_2<—it—yp)kp' (2224

Then the function ps deﬁned by the relation

*dp(t)
(t = iy) [Tpma (=it — yp)™r
satisfies the condition fR [t]77 dvy, (1) < 00, 1 < j < ki, by (2.2.3 . Therefore, Proposition

b) shows that the function F(y;1) := [ ‘Z“i(yt from I(R) is (k1 — 1)-differentiable on

dpuz(t) :==

R and F(*1=1)(y,) is continuous on R.
Using Proposition b) again, we see that the integral on the right-hand side of
(2.2.24]) can be expressed as

k1 du(t) B gkt

/R (t —iy)(t —iy1)*r Hglzz(—it —yp)e (k1 — 1)!F(k171)(y1)-
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Thus for any fixed y # 0 and fixed y, € R\ {0}, 2 < p < m, the right-hand side of
is a continuous function of y; on R. Next we show that for fixed nonzero y, y2,v3, - - - Ym,
the interpolating polynomial L, (y) = L, (y,y1, Y2, - -, Ym) is a continuous function of y;
on R as well. To prove that, we use the classic representation

m kp
Lu(yse i) = 305 FI @) L (001, ), (2.2.25)
p=1j=1
where L ;, 1 < j < k,, are fundamental polynomials of Hermite interpolation at y, of
multiplicity kp, 1 < p < m. Explicit expressions for L, ; were found by Hermite [26];
namely, if H,,11(y) is defined by (2.2.19)), then for 1 < j <k,, 1 <p <m,

_ _ Hrp1(y) (y—yp) "7
Ly i (Ys Y1y s Ym) = G- -, )kp_]+1{ o (0) }(yp) : (2.2.26)

where {(y — y,)*/ Hn+1(y)}gz§; 9 denotes the Taylor polynomial of degree k, — j for the
function (y — y,)* /H,+1(y) at yp, 1 <p < m.

Since Ly, 1 < j < kp, 1 < p < m, are continuous functions of y; on R and, by
Proposition b) f(J D(y1), 1 < j < ki, are continuous functions of y; on R as well,

we conclude from ) that L, (y) = Ln(y,y1,--.,Ym) is a continuous function of y;
on R. Thus letting Y1 — 0 on both sides of (2.2.24]), we arrive at

) T i+ dp(t)
W) = La(y,0, 42, ym) =y 1)1;[2(9 u) /(tfzy)tkln o (=it — yp)*r
du(t)
= n+1(y)/R(t_iy)Hn+1(—it) (22.27)

for y # 0, where H,, 1 is defined in ([2.2.23)).
It remains to show that (2.2.27) holds for y = 0. Indeed, f(0) = Ln(O) and

dp(t) dv,,(

ka k1 H

o[ it T it — gy | = O T s S
:Clyl’““llkl( ) = o(1) (2.2.28)

asy — 0, by (2.2.3)) and Lemma 3l Therefore, (2.2.22)) holds forally € Rand y; = 0. =

2.2.4. Even and odd functions. Here, we discuss interpolation formulae for even and
odd functions from I(R). Representations for even and odd components of f € I(R) are
given by the formulae (y € R\ {0})

dp(t tdp(t ) du(t  tdue(t L[ tdp(t
f(y):/ (-):/zu()2+zy/2()2:/ 2 (2)+Zy/ 2 (2)’
Rt—ly ]Rt +y Rt +y 0 t +y 0 t"'y

where

pe(t) = M(t) + p(=t), ,U/o(t) = :u(t) - ,u(—t), te [07 OO)
On the other hand, if f: R\ {0} — C is an even function of the form

)= [ 5 yer\0) (2.2.20
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then
fly) = %/R iu(@, y € R\ {0}. (2.2.30)
If f:R\ {0} — Cis an odd function of the form
< d
s =i [ G5 yer\o), (2:2:31)
then ) p
s =g [ vemio) (2:2.32)

These two implications come from the fact that, by (2.1.5)),
M M
[ g [ o D [ )
R —00

21y Meus) 241y 0 Je 2142 oy Bt
respectively. Formulae and show that the functions (2.2.29) and (2.2.31])
belong to I(R).
Let us denote by I,(R) or I,(R) the subclasses of I(R) of all even or odd functions of
the form (2.2.29) or (2.2.31)), respectively.
Condition , which guarantees existence of the integral in , can be replaced

by the following conditions:

)

¢ dv,(t)
R 2.2.
0</O t2+y2<oo’ y € R\ {0}, (2.2.33)
if f e I.(R), and
0</oo dont) oy eR\ {0} (2.2.34)
0 t2+y2 ) y ) .

if f € Iy(R). Conditions (2.2.33) and (2.2.34)) guarantee the existence of the integrals
in (2.2.29) and (2.2.31)), respectively. Note that each of these conditions is weaker than
(2:22). For example, setting du(t) = t*dt, t € (0,00), in and (2.2.31)), we see
that conditions and are equivalent to —2 < Res < 0and —1 < Res < 1,
respectively, while for du(|t]) = |t|* sgntdt, t € R\ {0}, in (2.2.30) and ([2.2.32)), condition
is equivalent to —1 < Res < 0 (see also (2.3.1)) and (2.3.2) below).

THEOREM 2.2.6. Let f € I.(R) or f € I,(R), where u satisfies condition or
, respectively. Let n 4+ 1 be an even positive integer and let x1, ..., %, be distinct
points from (0,00). Then f is infinitely differentiable on R\ {0}, and there exists a unique
polynomial L,—1 € Pp_1 if [ € I.(R), and there exists a unique polynomial L, € Py, if
f € I,(R), interpolating f at £z, of multiplicity k,, 1 < p < m, 221:1 kp, =(n+1)/2,
such that

f) = Lu—1(y) = Hyy1(y) /Ooo - ytzgif/;fj-l(_it)7 y e R\ {0}, (2.2.35)
if f €I.(R), and
F0) = L) = was() [ iy R} (2239

if f € I,(R). Here, H,y1(y) = [[)L, (y* — x)™.
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Proof. The proof uses combination of techniques from those of Theorems [2.1.2] and

a). However, we cannot derive (2.2.35) and (2.2.36) directly from (2.2.22)) since
conditions on g in Theorem are weaker than in Theorem a).

We first show that any function f € I.(R) or f € I,(R) is infinitely differentiable on
R\ {0} and for j =0,1,...,

f9(y) = /OOO %((F +y2) Htdu(t), yeR\ {0}, (2.2.37)

if f e I.(R), and
F9(y) = /OO fdj- (y(t* +y*) " Hdu(t), y R\ {0}, (2.2.38)
o dy

if f € Iy(R). We prove this statement by induction. Formulae and are
valid for j = 0, by the definition of the classes I.(R) and I,(R). Assume that these
formulae hold for j = n. Let y € R\ {0} and h € (0, |y|/2) and let f € I.(R). Then using
the Mean Value Theorem, we easily obtain the estimate

"y +n) — ™)
h

- Dn+17e(y)'

o0
< h/ max
0 z€lyy+h]

where D; ., 7 =0,1,..., denotes the right-hand side of (2.2.37)). Next (see [24} eq. 0.432]),

dn+1

(2 +2%)7)

preres tdu,(t), (2.2.39)

g L(n+1)/2]
e (G R B I DO e R D
q=0

< Cn)(t? + 22)~ /2 < O(n) (2 4 22) 7Yz, (2.2.40)

where ¢,(n), 0 < ¢ < [(n + 1)/2], are constants independent of ¢ and z. Combining
condition with estimates (2.2.39)) and (2.2.40)), we see that the left-hand side of
is o(1) as h — 0T. A similar estimate holds for h € (—|y|/2,0) as well. Therefore,
f is (n + 1)-differentiable on R \ {0} and holds for j =n 4+ 1.

When f € I,(R), a similar reasoning shows that f is also (n + 1)-differentiable on

R\ {0} and (2.2.38) holds for j = n + 1 if we notice, by (2.2.40), that

dn+1 m

(@A) o D (@ )7

dz"
< C(n)(t2 + 227z

dn+1

z

AT

Thus any function f from I.(R) or I,(R) is infinitely differentiable on R\ {0} and for
j=0,1,..., representation (2.2.37)) or (2.2.38)) holds.

Next we consider the special functions f(y) = Re(t —iy)~! and f(y) = i Im(t —iy) 1,
t € R,y € R\ {0}, from I.(R) and I,(R), respectively. Note that the measure x in
and for these functions is the Dirac delta function with support in {¢}.
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Rewriting [2.1.11) for z, = izp, 1 < p <m, z = iy, wny1(2) = "7 Hy11(y), where
Hya(y) =11 1(y — 22)*», we obtain

1 Hyp1(y) _ Hy 1 (—it) — Hyq1(y)

L, = — — - — = - - 2.2.41
) = T Ui Haa (i)~ (i) Hoor (—i0) 2241)
Since H,,41(—it) is a real-valued polynomial, from (2.2.41)) we obtain
3 tH11(y)
Lptre(y) := RelL, = — -
#Re(y) e Ln.i(y) t2+y? (24 y?)Hpqa(—it)
(82 + y?) Hppa (—it) -
. iy iyHni1(y)
Lytim(y):=i¢Im L = —
n,t,I (y) 71m n,t(y) t2+y2 (t2 +y2)Hn+1(—zt)

(8% + y?)Hpp1 (i)
Note that L, ¢ re(y) is an even polynomial of degree at most n — 1 and Ly ;1m(y) is

an odd polynomial of degree at most n. Next, if Hy,41(y) = Z((IZJBI)/Q c24y%9, then from

(2.2.42)) and ([2.2.43|) we deduce
(n—-1)/2 (n—-1)/2—r
L.t el Z ( 3 02q+2r+2(—1)q+1(t2q+1/Hn+1(—it)))y2’“7 (2.2.44)
q=0
(n—1)/2 (n—1)/2—r

Ln,t,Im(y):i Z ( Z 62q+2r+2(—1)q+1(t2q/Hn+1(—it)))y2r+1. (2245)
=0

Further, the rational functions ¢,(t) := 24/ H,,11(—it) > 0 are continuous on R and

sup (1) < C{H*+ 237, 0<qg< (n—1)/2,
te[0,00)

where C is independent of ¢ and g. Therefore, t1,(t) is p-integrable on [0, 00) if condition
2.2.33) holds, and 1),(t) is p-integrable on [0, 00) if condition holds. Thus by
2.2.44) or ([2.2.45)), Lyt re(y) or Ly, ¢.1m(y) is a polynomial of degree at most n — 1 or n,
respectively, with coefficients p-integrable on R that depend on ¢, if conditions
or (2.2.34), respectively, hold. Moreover, Ly, ; re(y) or Ly, 1,1m(y) interpolates t(t? +y*)~!
or iy(t? +y?)Laty= j:a:p of multiplicity k,, 1 < p <m, Z;n:1 k, = (n+1)/2 (see the
proof of Theorem

Then L, _1( fO n.t,Re(Y) dp(t) or Ly, ( fo n.t,im (¥) dpu(t) is a polynomial
from P,_q or Pn, and it mterpolates fel ( ) or f € I,(R), respec‘clvely7 at £z, of
multiplicity k,, 1 < p < m,> 7" k, = (n+1)/2. Integrating (2.2.42) or (2.2.43) with
respect to du(t), we arrive at (2.2.35]) or (2.2.36)), respectively. =

REMARK 2.2.7. In the special case of f € I.(R), where p is an increasing function
satisfying (2.2.33]), and for Lagrange interpolation at the Chebyshev nodes (that is,
Hp+1 = Typ41) on [—1,1] \ {0}, Theorem was proved by Lubinsky [38, eq. (18)].

Actually, Lubinsky established relation (2.1.4)) for even functions f of the form f(y) =
fOO dX(a)

0 Trap? 0 < ly| < 1, where X is a nonnegative Borel measure on [0,00) satisfying
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0< [,° ‘3‘_(52) < oo. Nevertheless, making the substitution a = 1/¢, we see that f € I.(R)

with du(t) :== —tdA(1/t), where p satisfies the condition 0 < [ tt‘iﬁﬁ) < 00, which is

equivalent to (2.2.33]) when 0 < |y| < 1. Some special cases of Theorem for Lagrange
interpolation were obtained in [23].

2.3. Interpolation formulae for functions |y|*(sgny)’ log” |y|. Asymptotic represen-
tations for the zeta functions are based on the integral interpolation formulae obtained
in this section.

2.3.1. General nodes. Historically, the function |y|® plays an important role in La-
grange interpolation and polynomial approximation; see for example [5] [6], [19] 20} 38, 21],
where further references are given.

Here, we discuss integral formulae for the Hermite interpolation error term in the case
of the function

Fsi(y) = |y|* (sgny)' log” |yl

where s € C, I =0 or [ =1, and v is a nonnegative integer.

It is well known [24], eq. 3.241.2] that for —1 < Re s < 0, the following representations
hold:

s 2sin(sm/2) [ 5T dt sin(sm/2 t|* sgntdt

ylF = — ( /)/ T (sm/2) [ [t sgntdt y£0,  (231)
™ o t*+uy ™ R t—1y
2 cos(sm/2) /OO todt icos(sm/2) [ |t|®dt
y = — = - 0. 2.3.2
ly|* sgny - N - iy Yy # (2.3.2)
Hence setting

pso(t) = —sin(sm/2)/(n(s + 1)), (2.3.3)
ps1(t) := —icos(sm/2)/(m(s + 1))|t|** sgnt, (2.3.4)

we see that fs 00 € I(R) for p(t) = pso(t), and fs1,0 € I(R) for p(t) = psa(t), -1 <
Res < 0. Note that ps 0 and s, satisfy condition for —1 < Res < 0.

Let 1, .. ., ym be distinct points from R\ {0}; let H,11(y) = (y—y1)** -+ (y—ym)*m,
Zg;l kp=n+1. Then, by Theorem@(a), there exists a unique polynomial L, (y, fs.1,0(y),
Hpt+1(y)) € P, interpolating fs;0, where [ = 0 or [ = 1, at the zeros y, of H,y; of
multiplicity k,, 1 < p < m, Z;’;l kp, =n + 1, such that for -1 < Res < 0 and y # 0,

s sin(sm/2) / |t]® sgnt dt
= Ln ) S7H’I’L = _7Hn X — 2.3.5
|yl (¥, [91°; Hnt1(y)) - +1(y) i (D (2.3.5)

and

lyl*sgny — Ln(y, [y* seny, Hnt1(y))
icos(sm/2 t|° dt
=L ) [ (236)
. o (0= i) o (—i0)
If s does not satisfy the condition —1 < Res < 0, then f; ;o do not belong to I(R) for
I =0, 1. Nevertheless, the following theorem holds:
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THEOREM 2.3.1. Identities (2.3.5) and (2.3.6|) hold in the following cases:

(a) -1 <Res<n+1,yeR\{0}, and y, € R\ {0}, 1 <p < m;
(b)0<Res<n+1,yeR, andy, e R\ {0}, 1 <p<my
()0<ki—1<Res<n+1l,yeR, andy; =0, y, € R\ {0}, 2<p<m.

To prove the theorem, we first discuss some properties of the integral

[t|*(sgnt)! dt
1 = [=0,1 2.3.
l(sa y) /]R (t _ Zy)HnH(—zt) ’ Oa ) ( 3 7)

where H, 4 is the polynomial (2.2.19)) and y, € R, 1 <p < m.

PROPOSITION 2.3.2. (a) For each fized y € R\ {0} and fized y, € R\ {0}, 1 < p < m,
the integral I;(s,y) is analytic on S, :=={s € C: -1 <Res < n+1},1=0,1, and the
following formulae hold for s € Sy,:
dL(s,y) [ |t]°(sgnt)! log? |t| dt i

dsi Jo (t—ip)Hop (i) 77
(b) For each fired y € R\ {0}, y1 = 0 and fized y, € R\ {0}, 2 < p < m, the integral
Ii(s,y) is analytic on Sy, :={s € C:0<k1—1<Res <n+1},1=0,1, and formulae
hold for s € Sy i, -
(c) For y = 0 and fized y, € R\ {0}, 1 < p < m, the integral I;(s,y) is analytic on
Sr:={seC:0<Res<n+1},1=0,1, and formulae hold for s € S}.

Proof. Let us set

L, 1=0,1. (2.3.8)

|t|*(sgnt)! log? |t| dt
g (t—iy)Hppa(—it) 7
If so € Sy, y € R\ {0} and y, € R\ {0}, 1 < p < m, then the following estimates hold:

o tReso|log t|7 dt Loopee
\I',z(so,y)|§2/ " =2 / +/
! o (4 y)2IL, (2 + y2)ke/? 0 1

e -1l , o0 ,
< 2<<|y H |yp|kp) /0 tRes0 1ogl (1/t) dt +/ tReso—n=2]50J tdt>
p=1

1

Lii(s,y) = j=0,1,...,01=0,1.

<Ci(Wy1, - Ym)i(Reso+ 1)+ (n+1—Resg) 71, (2.3.9)

where C is independent of j.
If sop € Spgy, vy € R\ {0} and y1 =0, y, € R\ {0}, 2 < p < m, then similarly to
(2.3.9) we obtain

> tResokllog ¢]7 dt
11,1(s0,y)| < 2/
J 0 (t2—|—y2)1/2 Hzlzz(tz_'_yg)kpm

i -1 [l . o0 .
gz((|y|Hyp|’%> /0tR“U—’fl1ogﬂ(1/1t)dt+/1 tReSO_"_2log7tdt)
p=2

< Co(y, Y2y Ym)j (Resg — k1 +1) 771+ (n+1—-Resg) 1), (2.3.10)

where C5 is independent of j.
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Finally, for y = 0 and y, € R\ {0}, 1 < p < m, we obtain
11;1(s0,0)| < Cs5'((Reso) ™"+ (n+1—Resp) 71, (2.3.11)

where Cj is independent of j.
Next, for any so that belongs to one of the sets Sy, Sy x,, S, we replace |t|® with its
Taylor expansion in a small enough neighborhood of sy and obtain, by (2.3.9)—(2.3.11]),

o0

|t|SO sgnt Y log? |t](s — s0)? I;1(s0,9)(s — s0)?
(s dt = ’ . . 2.3.12
v /Z PG et R S (2312
Therefore, I;(s,y) is analytic in this neighborhood of s¢. Moreover, it follows from ([2.3.12)
that d/I;(s,y)/ds?|s=s, = L i(s0,y). Thus (2.3.8) is established in all cases of the propo-
sition. m

Proof of Theorem[2.3.1] (a) Identities (2-3.5) and (2.3.6) hold for —1 < Res < 0, while
their left-hand sides are analytic on C and their right-hand sides are analytic on —1 <
Res < n+ 1, by Proposition [2.3.2a). Thus (2.3.5) and (2.3.6)) are valid for —1 < Res <
n+ 1.

We cannot prove statements (b) and (c) by applying Theorems (b) and
respectively, since the functions p = ps0 and p = ps 1 from (2.3.3) and (2.3.4) do not
satisfy condition for any » > 1 and any s € C. However, the proofs of these
statements are similar to those of Theorems [2.2.4(b) and

(b) If 0 < Res < n+ 1, then the function p; defined by

dpa () = [t]* (sgn )+ Hyppa (—it) dt

satisfies the condition [, d”’l‘tl‘(t) < o0. Then the function Il(s y) = Jr dtmz(t) defined in
- belongs to I(R), where p; satisfies condition ) for r = 1. Therefore Ii(s,y)
is contlnuous at y 0 by Proposition [2.2.1|(b). Note that by statement (a) of Theorem
1} identities and (2.3.6) hold for 0 <Res <n+1,y € R\{0}, and y, € R\ {0},
1 S p < m. Letting y — 0 on both sides of (for I = 0) and (for I =1), we
conclude that (2.3.5) and (2.3.6) are valid for all y € R.

(c) Assume first that y, # 0, 1 < p < m, and y # 0. Then by statement (a),

s s sin(smw/2 L "
Y1* = Ln(y, [y*, Hny1(y)) = —%(y — )" [T —wp)™
p=2
ik |t|® sgnt dt
X . _ o . 2.3.13
L e @19

Next, since 1 < k; < Res+ 1 < n+ 2, the function pe defined by

dus(t) = [t|° sent/ H —it —y,)*r dt
satisfies the condition [, dv“zfj(t) < o0, 1 < j < k. Therefore, Proposition [2.2.1(b)
shows that the function F(yi) := [ (Z“ i(t) from I(R) is (k1 — 1)-differentiable on R

and F*1=1(y) is continuous on R. Using again Proposition M(b), we see that the



24 2. Integral formulae for the interpolation error term

integral on the right-hand side of (2.3.13)) is equal to
,ifk‘lJrl
(ky — 1)!

Thus for a fixed y # 0 and fixed y, # 0, 2 < p < m, the right-hand side of (2.3.13) is a

continuous function of y; on R.

Further, it follows from identities (2.2.25) and (2.2.26)) that L, (y,|y|®, Hnt1(y)) =

Ln(y,y1,Y2, - - -, Ym) is a continuous function of y; on R as well. Hence letting y; — 0 on
both sides of (2.3.13)), we arrive at

FE=D ().,

|y|S - Ln(y707y2a s aym)

sin(sw/2) . 1T k / ik |t|® sgnt dt
- _ y y— yp,) i - . 2.3.14
e U D A T s ol
for y # 0. It remains to show that (2.3.14]) holds for y = 0. Indeed,

|O|S - Ln(oa 0,927 ce 7ym) = O’

and
/ |t]® sgnt dt <9 |k1 /00 (Res—ki gy
- T - =2y
g (t—iy)th Ty (=it — yp)*e o (B +y?) 2Tt +yp)h/?

X ﬁ 1 1 tRes—kl dt oo R )

< 2ly| 1(( y) / 7+/ fRes—n— dt)
L) Jo e T,
1 JRes—k
t Ldt

kl j—

<yl (CI/O (CERDIE + 02) =o(1),
as y — 0, since

1 jRes—k V 1yl 1

t Lt

|y|k1/ < |y|k1—1/ tRes—kl dt + ‘y|k1—1/2/ tRes—kl dt = 0(1)7
o (24y?)1/2 0 Iyl

as y — 0. Thus (2.3.14)) is valid for y = 0. Therefore, statement (c) is established for |y|*,
while for |y|® sgny it can be proved similarly. m

I

ly

As a corollary of Theorem @, we obtain interpolation formulae for fg; ,.
COROLLARY 2.3.3. Let v be a positive integer. Then the formulae

ly|* log” |y| — Ln(y, ly* log” |y|, Hni1(y))

_ Hen ) NS (Y 1 910 i (s 4 o |t|* log” 1 |¢| sgnt dt
- m Z<q>( /27 sinl(s + a)r/ 2)/]1@ (i) Hoa (it 231D

q=0
ly|* log” |yl sgny — Ln(y, ly|* log” [y| sgny, Hn11(y))

[t]° log” ™7 |¢t|dt

= _MZ (’;) (7T/2)qCOS((S+CI)7T/2)/R (t —iy)Hpi1(—it)’ (2:5.16)

q=0

hold in cases (a)—(c) of Theorem [2.3.1]

Proof. Proposition shows that both sides of identities ([2.3.5)) and (2.3.6]) are analytic
functions of s in cases (a), (b), and (c) of Theorem 2.3.1] (for y = 0 in case (c), both sides
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of (2.3.5) and (2.3.6) are identically zero). Then using relations ([2.3.8)) of Proposition
2.3.2) we differentiate v times both sides of (2.3.5) and (2.3.6)) with respect to s and

arrive at (2.3.15) and (2.3.16) in cases (a)—(c) of Theorem "
2.3.2. Symmetric nodes. Since f;;, are either even or odd functions, formulae (2.3.5)),

, , and can be simplified for symmetric nodes.

In the following corollary we consider interpolation formulae only for functions f;s .0,
fs.1,05 fam,0,1, and fom+11,1, where m = 0,1,..., and for even (statement (a)) and odd
(statement (b)) polynomials H, 1. Some of these identities will be used in Chapter |4 to
obtain asymptotic representations for the zeta functions.

COROLLARY 2.3.4. Let x1,...,xp be distinct points from (0,00) and let N and kp, 1 <
p < M, be positive integers. Then the following statements hold:

(a) Let

M
n=2N-1, Huy(y)=Gan() =W -0, Gan(0)#0,

M
Hn+1( ) GQN Zt NH t2 )k”, ka:N'
p

Then for each of the functions fs 0,0, fs,1,0, fom,0.1, and fom41,1,1 there exists a unique
polynomial Ly, € Py, (L, = Lan_2 € Pan—_o for even functions and L, = Laon_1 € Pan—1
for odd ones) interpolating the corresponding function at x,, of multiplicity k,, 1 <p<M,
such that for y € R\ {0},

9I° — Lo ol ol*, Gon () = ~ 22272 g, )
X/OO £ di - —2<Res<2N —-1,5#0,2,...; (2.3.17)
o (2 +y2)Gan(it)’ ’ R
lyl° seny — Lon—1 (3 lyl° seny, Gan () = 22D 6wy
x/oo Bl CRes<2N,s£1,3..; (2.318)
) @5 D)Gon (i)

y*™ log ly| — Lan—2(y, y*™ log |y|, Gan (y))
* gEmilgg
= (-1)"Ha / ,
O™ G W) [ A )
y*" M log |y — Lan—1(y, y*" " log |y|, Gan (y))

:( )m+1yG2N( )/OO t2m+l gt _
o (P +y?)Gan(it)

(b) Let

Il
<
—=
—~
<
o
|
8
SRS
S~—
e
ke

n=2N, Hn+1(y) = yGQN(y)

M M
Hypa(—it) = Gon(it) = (-D)N [ +22)%, > k,=N.
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Then for each of the functions fs0.0, fs1,0, fom,0,1, and fami1,1,1 there exists a unique
polynomial L, € Py, (L, = Loy € Pan for even functions and L, = Lan_1 € Pan_1 for
odd ones) interpolating the corresponding function at the origin of multiplicity 1 and at
+x, of multiplicity k,, 1 <p < M, such that for y € R\ {0},

; s 2sin(sm/2
[y|* — Lan (y, [yl°, yGan (y)) = %yQGQN(y)
/Oc o dt 0<Res<2N+1,s#2.4 (2.3.21)
X —, < Res < +1,s 4,000 3.
o (P +y?)Gan(it)
s s 2 cos(sm/2
ly|*sgny — Lan—1(y, |yl sgny,szzv(y))=MszN(y)
x/oo £ dt 0<Res<2N,s#1,3 (2.3.22)
—, ] , 8 IS T 3.
o (B2 +y?)Gan(it)
y*™ log |y| — Lan (v, y*" log |y|, yGan (y))
= (—=1)"y*Gan( )/Oo e dt m=1,2 N;  (2.3.23)
- Yy 2N Y 0 (t2+y2)G2N(lt)’ — Lyay.ey ) <.

2m—+1

v log ly| — Loy —1(y, y*" " log |y|, yGan (v))
t2m+1 dt

- (—1)m+1yG2N(y)/0 (t2 + 42)Gan (it)’

Proof. We first prove relations (2.3.18]) and (2.3.20). Using (2.3.6|) from Theorem a)
for H,41 = Gan, y € R\ {0}, and —1 < Res < 2N, we obtain

=0,1,...,N—1. (2.3.24)

. s _ Tioos(s/2) / [4° dt
vl*seny = Lan—1(y, [yl" seny, Gan(y)) = e N e
—icos(sm/2) . /R t|t|® dt , /R [t]° dt )
- 2n () Rl_{rio( @1 2)Gan @) Y T 2 Gan (D)
2 cos(sm/2) /°° % dt
= G .
w VW) G

Thus (2.3.18) is valid. Next similarly using (2.3.16)) from Corollary for s =2m + 1,

m=0,1,...,N —1, and v = 1, we obtain

Y2 log y] — Lon—1 (3,5 log lyl, Gan (9) = — =" G (v) / I
2 r (t — iy)Gan (it)
(_1 m—+1 |t|2m+1 dt

= ——yG :
g vl /R (2 + y2)Gan (it)
Hence (2.3.20]) follows.
All other identities are corollaries of (2.3.18) and (2.3.20). Indeed, since Loy_; in

(2.3.18) and ([2.3.20f) are odd polynomials, the following implications are valid: (2.3.18]
=([2.3.22)) and (2.3.20)=(2.3.24)). Next, multiplying both sides of (|2.3.18)) by y, using the
identity

Lon (v yf(y): yGan(y) = yLan-1(y, f(y), Gan (y)) (2.3.25)
for suitable odd functions f satisfying the condition yf(y)|y=0 = 0, and replacing s with

s — 1, we arrive at (2.3.21)). We can obtain similarly (2.3.23) from (2.3.20) and (2.3.25)).
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Finally, replacing s with s+2 in ([2.3.21)), dividing both sides by y2, and using the identity

Lon (y, ygf(y)a yGan(y)) = y2L2N72(ya f(y), Gan(y)) (2.3.26)

for suitable even functions f satisfying the condition y?f(y)|,—o0 = 0, we arrive at .
We can obtain similarly from (2.3.23) and (2.3.26)).

It remains to prove identities (2.3.25)) and (2.3.26)). Indeed, let f be an even function
which is (k, — 1)-differentiable at z,, 1 < p < M, Y00 k, = N, and y2f(y)],—0 = 0.
Then the polynomial

Lon-2(y, f(y), Gan (y)) = Lan-1(y, f(y), Gan (y))
interpolates f at +x, of multiplicity k,, 1 < p < M, 224:1 k, = N. Next, for each +z,
and 0<j<k,—-1,1<p<M,
(& /dy") (y* F (@) y=sta, = wpf V) (Fap) £ 22, f97 D (Fap) +(G — DI (Fp)

= :EIQ?Lé]J\)I—Q(ixp) + ijpL(zjj\?—lé(ixp) +i0 - I)L;jj\?—Q)z(izp)

= (& /dy’) (¥’ Lon—2(y))y=rs, -
Therefore, the polynomial y>Loy_2(y, f(y), Gan(y)) € P, interpolates y*f(y) at £z, of
multiplicity kp, 1 <p < M, 21 k, = N, and, in addition, it interpolates y° f(y) at the
origin of multiplicity 1. Hence ([2.3.26) follows. Identity (2.3.25)) can be proved similarly. =
REMARK 2.3.5. Note that an identity like (2.3.17)) for s > 0 and Lagrange interpolation
was established by Bernstein [5l, p. 98] who used (2.1.2]) and the Cauchy theorem to prove
his result. Various versions of Bernstein’s identity were found by the author [19, 20} 211, 23].

In particular, the case of 0 < Re s < 2N and the Chebyshev nodes was discussed in [21].
A similar identity for s > 0 and the Chebyshev nodes was found by Lubinsky [38] as a

corollary of (2.1.4]).

REMARK 2.3.6. In Section we shall use the following integral representations for {(s)
and 3(s) (see Proposition [4.2.1)):

o] ts—l
or = ; 2.3.2
()8(s) /O it Res>0; (2.3.27)
oo ts—l
1—2"°% = ; 3.
2(1—27°)I'(s)¢(s) /0 pr—— dt Res > 1; (2.3.28)
2175(1 = 2179 (s + 1)¢(s) = / tiz dt, Res> —1; (2.3.29)
o cosh”t
oo ts
21750 (s + 1)¢(s) :/ ——dt, Res>1. (2.3.30)
o sinh”¢

On the other hand, for any increasing sequence {Gn}%_, of positive numbers with

limy_00 By = o0, formulae (2.3.21) and (2.3.23|) for large enough N can be written
in the form (Res >0, s #2,4,..., m=1,2,...):

o1~ Lax 0. ol 9Gan () = 222
N

><< A /°° -+l dt )

o Gan(@/By) By Jo (L+ 8/ Byy))Gon(it/Bn) )

Gan(y)

(2.3.31)
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71 m
2™ Log ly] — Lan (g, [y>™ 1og ly], yGan (1)) = 0" G (y)

R
><< < P ldt 1 > dt
0

onterr R e R e e ) S
The idea of transition from formulae (2.3.31)) and (2.3.32)) to pointwise asymptotic repre-
sentations for ((s) and §(s) is based on the following simple observation. Let { Pan+4} %%,
be a sequence of even or odd polynomials Poy g € Pon4q having all real and distinct ze-
ros and normalized by Pz(jf,)er(O) =1, N=1,2,...,d =0,1. In addition, we assume that
B4 Panya(z/Bn) = cos(z — dr/2)(1 + o(1)) as N — oo, uniformly in some complex -
neighborhood of zero, where limy o Yy = 00. Then setting Gapn (z) = y‘k"l“PQkI\,_ird(z)7
k=1,2,d=0,1, in and , we can show that under some conditions the
first integral on the right-hand sides of and approaches the corresponding
integral on the right-hand sides of 7 as N — oo, while the second integral
will serve as a part of the remainder.

Properties of polynomial sequences {Paniq}%_; are discussed in Chapter 3 Four
families of asymptotic formulae for ((s) and [((s) are presented in Chapter 4| More-
over, it is possible to extend these formulae to a broader domain compared with original

representations (2.3.27))—(2.3.30)).



3. Asymptotic properties of special sequences of polynomials

In this chapter we introduce special sequences of polynomials and study their asymptotic
properties. Here and in what follows, d denotes an index that takes the values of 0 or 1.

3.1. Three classes of special sequences of polynomials. In this section we discuss
properties of sequences of normalized polynomials with real zeros that satisfy certain
asymptotic conditions.

Let 8 = By = {Bn} %=1 and v = ) = {7n}F=; be increasing sequences of positive
numbers and § = d(g) = {0n}J—; a decreasing sequence of positive numbers, satisfying
the conditions ) ) . .

ngnooﬂN = ngnoo’yN = A}gnoo 0y = oo. (3.1.1)
3.1.1. Class Py(3,7,9). We first define our major class of special sequences of polyno-
mials. This class will be used in pointwise asymptotics for the zeta functions.

DEFINITION 3.1.1. Let II; = {Pon+4}%_; be a sequence of even (if d = 0) or odd (if
d = 1) polynomials Pyy g € Paniqg satisfying the following properties for N =1,...:

(C1) Real zeros: Pyniq has only real zeros of multiplicity 1.

(C2) Normalization: @

P (0)=1. (3.1.2)

(C3) Strong asymptotics: There exists a positive constant Cy independent of N and z
such that, for any z € C with |z| < vy,

cosh|z|, d=0,

sinh|z|, d=1. (3.13)

|ﬁj‘{, Pynia(z/08n) — cos(z — dn/2)| < Cion min{|z\2, 1} {

Then we write II; € Py = Py(5,7,9).
The following asymptotic property of zeros of Poniq € II; holds:

PROPOSITION 3.1.2. Let 0 < 21, n,d < 22,N,4 < -+ < ZN,N,d be positive zeros of a polyno-
mial Ponyygelly, N=1,2,...,II; € Pd(ﬁ,’y,é). Then

Nlim Bnzpnag=2p+d—1m/2, p=1,2,..., (3.14)
and
sup Onzpna < C(p,d), p=12,.... (3.1.5)
NeN
Proof. Property (C3) of Definition shows that for any M > 0,
A}iinoo BN Panta(z/Bn) = cos(z — dm/2) (3.1.6)

uniformly in the disk Dj;(0). Next note that the functions on both sides of (3.1.6)) are

(29]
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analytic in Dy, (0) and, in addition, all positive zeros of cos(z — dr/2) are Agp := (2p+d
—1)w/2,p=1,2,.... Then by the Hurwitz theorem [50} Sect. 3.4.5], for any p€ (0, 7/2)
and a fixed p = 1,2,..., there exists a number v = v(p,p) such that for all N > v, a
polynomial Pon4(2/08n) has the only zeroin each disk D, (Agm),1 < m < p,and moreover,
Pynya(z/Bn) has no zeros in (0, Aap) \ o=y Dp(Ad,m). Thus Bnzm na € Dp(Aam),
1 <m < p, and this proves . Finally, follows immediately from . L]
3.1.2. Class P}(5,7,9). The following class contains special sequences of polynomials
with explicit properties of their coefficients. This class will be used in Section [3.2] to show
that some special sequences of polynomials belong to Py(83,~,9).

DEFINITION 3.1.3. Let II; = {Pon+4}%_; be a sequence of even (if d = 0) or odd (if
d = 1) polynomials Pyn1q € Panyq with real distinct zeros of the form

N
—1)m
BY Pan+a(z/Bn) = Z (Q(mld)'MQm-kd,me*'d, N=1,2,..., (3.1.7)
m=0 ’

where the coefficients ponm4q4,n5, 0 < m < N satisfy the following properties:
(D1) Positwity: pamtan > 0,1 <m < N.

(D2) Normalization: pgn = 1.
(D3) Strong asymptotics: There exists a positive constant Cy independent of N with

sup  |pamta,n — 1] < Codn.
0<m<ryn

(D4) Boundedness:

sup sup figm4d,Ny = Co < c0.
N 0<m<yn

Then we write IT; € P5 = P4(5,7,9).
REMARK 3.1.4. Note that property (D1) follows from (D2) by Descartes’ rule of signs.

Some properties of polynomial sequences from P and a relationship between the
classes P}, and Py are discussed in the next two propositions. We use the following addi-
tional notation in these propositions: For an integer k > 0, ¢ € R, and a = {an}F_4,
let

ap = {aniptV—1, a—a:={any —a}F_1, aa:={aan}F_;.
In addition, we note that in the next proposition a sequence v = {yn}%_; may include
negative numbers. In order to define P} for such a sequence, we assume by the convention
that property (D3) is always true for negative vy .
The following proposition is helpful in constructing new classes P}, from existing ones.

PROPOSITION 3.1.5. The following two statements are equivalent:
(A) {PenvatRi=y € P5(8,7,0).
(B) For every integer s > 0,
(s) o0 " *
PoNtstla—s(2) c Pl se) (Blss2) Msy21 — L8/2],81s72)), d>s*,
Péfvﬂ‘stfgl)s*l(o) Nt Pl se) Bls/2i+1: Y ss2)41 = [8/2] = 1,815/2)41), d <,
where s* := s —2|s/2].
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Proof. Since statement (A) is a special case of (B) for s = 0, we prove the implication
(A)=(B). Assume that property (A) is valid. We first consider the case d > s*. Then

using expansion (3.1.7)), we obtain

d— ¢ (s
N+SLs/2J P2J\2+s+d—s* (2/BN+1s/2))

= (ﬁ]d\LH_S/QJP2N+2[s/2j+d(z/6N+[s/2J))(S)
_ (Nﬂsm (=)

(s)
E : 2m—+d

N
s (_1)m m+d—s*
:(—l)L/QJ E mu2m+2Ls/2j+d,N+Ls/2jz2 AT (3.18)

m=0

In addition, differentiating (3.1.8)) d — s* times, we obtain
s —s st+d—s*
ﬁN+|_s/2J P2(N++s+dls*(0> = (‘ULS/QJ H2|s/2]+d,N+|s/2]> (3.1.9)

since (d — s*)! = 1. Then (3.1.8)) and (3.1.9) imply the identity

d—s s
BNHS/QJ P2(J\2+s+dfs* (2/BN+1s/21)

s+d—s*
P2(N+s+dls* (0)

S e
_ Z - 2m+2|s/2]+d,N+|s/2] Z2m+d—s*. (3_1.10)
— (2m+d— ) pojssa)a,N+s/2)

m=0

Setting

Homtd—s* N = Hom+2|s/2]+d,N+|s/2]/H2|s/2)+d,N+|s/2)» O <m <N,
we see that u3,, .4 o n >0,0<m <N, and py ..y = 1. Moreover, it follows from

(D4) and the relation po|s/2)+d,n+|s/2] = 1+ O(dn4|s/2)) as N — oo that

* o, *
CG = Sup SUp flhyiq o N
N 0<m<N

< Csup sup Homtd,N+|s/2] < CCp < 00.
N 0<m<N+|s/2]

Finally, using property (D3), we obtain, as N — oo,
sup ‘lu’;m—l-d—s*,N - 1|
0<m=<yN4|s/2)—Ls/2]

< sup ([H2my2ls/2)+dN+1s/2) — U+ [12s/2)+d, N+ (s72) — 1))
0<m<yNy|s/2) —5/2]

~ H2|s/2|+d,N+]|s/2]
< 2020N+1s/2)/(L+ O(n 4 1s/2))) < COny(s/2)-

Thus the coefficients i3, , 4.« x, 0 < m < N, satisfy properties (D1)-(D4) for the class
Prd_s*l(ﬂLs/gj,yLs/Qj — |5/2],6|s/2)). Therefore, statement (B) holds for d > s*.
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The case d < s*, that is, d = 0 and s* = 1, can be proved similarly. Indeed, by (3.1.7)),

B o2 Pont o1 (2/ Bt 1s/2)) = (Panyolsj)s2(2/ B 1s2))
Ls/2]
N+[s/2]+1 (—1)m . (s)
= WN?m JN+|s/2]+1%
m=0
1)le/2l+1 Z 2m+1 ,M2m+2Ls/2J+2 Ntls/2)412 T (3.1.10)
Hence

s+1 <
6N+Ls/2j 2(N+2+1(0) = (- 1)L /2]+1

Next, it follows from ) and m that
s N
5N+Ls/zJP2(1v)+s+1(Z/ﬁzvﬂs/zJ) -y (D™ Ham+2(s/2)42.N+(5/2041 2m+1
PQ(]SVT3+1(O) 0 2m+ 1)1 pos/2)42,N+s/2)+1

The proof of the fact that the coefficients

H2|s/2]+2,N+|s/2]+1- (3.1.12)

Hom N = H2m42]s/2]+2,N+[s/2)+1/H2|s/2]+2,N+[s/2]+1, 0 <m <N,

satisfy properties (D1)—-(D4) for the class P (8s/2)4+1,7|s/2)+1 — [5/2] — 1,015/2)41) 18
similar to that in the case d > s*. Therefore, statement (B) holds for d < s* as well. m

PROPOSITION 3.1.6. If there exist constants h € (0,1) and C3 > 0 such that
BN < Cydy, N=1,2,..., (3.1.13)
then
P5(8,07,68) € Pa(3,7,9), (3.1.14)
where b = b(h) € (e/2,00) is the only solution to the equation (e/(2b))* = h.
Proof. We first note that (D2) implies (C2). Next, let {Ponya}3—; € P5(8,bv,6). Then

by B9,

B4 Pona(z/Bn) — cos(z — dm/2)

Py miay, 3o D" o
= ——————(pamyan — 12" T+ o Homtd, N2
| ’ | ’
= (2m+ d)! oy |1 (2m + d)!
ZOO (D)™ omta
m=|byn]|+1 ’
Further, taking account of the elementary estimate (y > 0)
e 2m-+d _
Y . 9 coshy, d=0,
H = E — < 1 1.1
d(y) ] (2m T d)‘ =~ mln{y ) }{Sinhy, d= 1, (3 6)

we deduce from properties (D2) and (D3) that
|[I1(2)] < sup  |pomtan — 1Ha(|z]) < CoonHa(|2])- (3.1.17)

1<m<byn
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In addition, it follows from property (D4) that

oo

LE)+LE<0+C) Y L

i [y |41 (2m + d)!

|2m+d

|Z‘2Lb'yNJ e |Z|2m+d
@loyw] +2)! Z= 2m+d)!

If 1 < |2| < v, then from (3.1.16), (3.1.18) and (3.1.13) we have

>2|_b’yNJ+2

< (14 Co)(2 +d)! (3.1.18)

elz|

Myw] £2 Ha(|z])

RO+ () < 1+ o)+
elz] \ 2 N
<arcoeta( 5] Halh <0+ aea)(5)  Hale)
< (14 Co) (24 d)!Cs6n Hy(|2]). (3.1.19)
If 0 < |z| < 1, then from (3.1.16)), (3.1.18) and (3.1.13) we obtain
[I2(2)] + [I3(2)] < (14 Co)(2 + d)!Cale/(2byn))**"™ Ha([2])
< (14 Co)(2+d)!C5(e/(2b))* Hy(|2|)
< (14 Co)(2+ d)!C5C36N Hy(|2]). (3.1.20)
Therefore, relations (3.1.15)), (3.1.16), (3.1.17), (3.1.19), and imply with
|z| <ynv and C1 =Cy + (14 Cy)(2+d)!C5(1 +C5). =
REMARK 3.1.7. We note that if condition holds and
{Panta}i=1 € Pa(B,bv,0),
then for any integer s > 0, large enough N, and for
s st bz
IN+1s/2) — (Ls/2] +1)/b, d <s,
where s* = s—2[s/2] and b s defined in Proposition[3.1.6] the following strong asymptotic
is valid:

ld—s"|  p(s)
BN isy2) PaNtstid— s*|(z/ﬁN+Ls/2j) cos®) (z — dr/2) ‘

(s+]d—s*]) "~ cos(sHld=s])
Bonstia—se(0) o8 (dr/2)

. . cosh|z|, |d—s*|=0,
< Gty minflo St 2P 197001

Inequality (3.1.21) follows from Propositions and the identity
cos® (z — dr/2) JcosCHA=5"D (—dr /2) = cos(z — |d — s*|7/2).

(3.1.21)

3.1.3. Class P3*(83,v,6, W, k). Finally, we define a class of special sequences of polyno-
mials associated with some weights w and an index k that takes the values of 1 or 2. This
class will be used for asymptotic formulae for the zeta functions in L, ,,-spaces.

DEFINITION 3.1.8. Let k = 1 or k = 2 and let W := {w(y, N)}3¥_; be a sequence of
even integrable weights on (—a,a), where a =1 or a = co. Let IIg = {Pan1a}3_, be a
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sequence of even (if d = 0) or odd (if d = 1) polynomials Pyniq € Panya, N =1,2,.. .,
satisfying properties (C1)—(C3) (that is, II € P4(5,7,9)). In addition, we assume that
the weights and the polynomials have the following properties:

(C4) w(0,N)=1,N =1,2,...,and the sequence {w(y/Bn, N)}_; converges uniformly
to 1 on any finite interval [-B, B] C (—o0,00) as N — oo.

(C5) There exists an even measurable function ¥(y) > 0, y € (—a, a), independent of N,
such that the following properties hold:

(C5.1) ¢ is continuous at zero and (0) > 1.
(C5.2) There exists a nondecreasing sequence of positive numbers an > 1 such that

|Panra(y)lw(y, N) < By*(y/an), N=1,2,..., ye(—a,a)
For a =1 we assume a,, =1, N =1,2....
(C5.3) There exist pg = po(k) and p; = p1(k), 0 < pg < p1 < oo, such that for all
p € (po,p) and any ¢ € (0,a), [y~ CTEIPYEP(y/ay)dy < oo.
(C5.4) For N =1,2... and each p € (pg, p1), where po(k) and p; (k) satisfy (C5.3),

a
[ Py atwut (e W)PPdy < oc.
0

Then we write I1g € Pi* = Pi*(5,v,0, W, k).
REMARK 3.1.9. For example the function 1 (y) = 1 satisfies properties (C5.1) and (C5.3)

with po = 0, p1 = 0 if a = 1 and pg = 1/(2 + kd), p1 = o if a = co. In addition,
(C5.2)=(C5.4) for this function if a = 1.

REMARK 3.1.10. If a weight w(y) = w(y, N) does not depend on N and w(y) is contin-
uous at zero with w(0) = 1, then property (C4) is trivially satisfied.

REMARK 3.1.11. In the next section we consider examples of nonempty classes Pq, P},
and P%* with certain 3, v, 6 and W.

REMARK 3.1.12. We remark that the polynomial sequence

Iy ={PaNta}N-1 = { (1 T Z m(ﬁNz)Qm) }Oo

N=1

satisfies properties (D1)—(D4) of Definition [3.1.3] “ 3| for any 3, ~, and 6. However, I1; ¢
P*%(53,7,9), since for N > 3 not all zeros of Ponyq are real. Indeed, it suffices to show
that the polynomial

1 (-
Only) =5, + m; @2m +d)!?
has less than N real zeros. Since the quadratic polynomial
-2y (=DN (N - 2)! (1 B y N y? )
(2N +d —4)! 202N +2d—-3) 8(2N +2d—1)(2N +2d - 3)

has no real zeros for N > 3, we conclude by Rolle’s Theorem that not all zeros of Qn
are real.
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3.2. Examples of sequences from the classes Py, P}, and P}*. Examples of poly-
nomial sequences presented here include normalized Gegenbauer, Chebyshev, Hermite,
Williams—Apostol, and Lommel polynomials and, in addition, normalized polynomials
with equidistant zeros.

We recall that d = 0 or d = 1 and K = 1 or k = 2. Here, we find some classical
representatives of the classes Py, P, and IP;*. In addition, if positive zeros zp n 4 of Pan44
can be found explicitly, we compute Pyy, ;(2pn.a) and Py 4(2p N.a)/ Pyniq(2p.N.d),
1<p< N, N =1,2,.... These computations are used in Section for asymptotic
summation formulae.

3.2.1. Normalized Gegenbauer polynomials on [—1,1]. For A>0and N =1,2,...,
we define

By = 2N + A +d, (3.2.1)
Panya(y) = Con4a(¥)/(Con1a) P (0)
N
ey 3 e A g
20I(N + A+ d) “= (2m +d)! (N —m)!
(see [17, Sect. 10.9]). Then by (3.1.7), (3.2.1)), and (3.2.2)),
NID(N +m+ A+ d)

0<m<N,N=12....
(3.2.3)

Hom+d, N = I'(N+X+d)(N—m) (N +\2+d/2)2m’

In addition, for N =1,2,..., we define a = ay := 1 and

w(y, N) o= (L= y*)V2 V0 () o= (L=y®) 70 po(k) = 0,p1(K) = 4/k. (3.2.4)

Then the following property holds for the normalized Gegenbauer polynomials Pon g on

[—1,1]:

PROPOSITION 3.2.1. Let v = {yn}_; be an increasing sequence satisfying the conditions
v = o(N¥?), Axy >Clog(N+1), N=1,2,..., (3.2.5)

and let 0 = {dn}F_, be a decreasing sequence satisfying the conditions

oy >3 /N2 O N=1,2,..., Jim oy =0. (3.2.6)

Then there exists a constant b > e/2 such that for the sequences = {Bn}F_, and W =
{w(y, N)}¥_, defined by (3.2.1) and (3.2.4), respectively, the sequence of polynomials

{Pon+a}F_, defined by belongs to Pg(B,b71v,8), P4(8,7,0), and Pi*(8,b~ 1,4,

Proof. We first verify properties (D1)-(D4) in Definition Property (D4) is satisfied
by (3.2.3) and the relations

Hom+d,N = (N+)\/2+d/2)_2mnﬁ (N—-v)(N+v+A+d)
v=0
N2+ N\ +d) B
= <N2+N(>\+d)+(A/2+d/2)2) =1

1<m< N,

)
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while properties (D1) and (D2) are trivially satisfied. Further, we note that there exist
constants Cy; > 0 and Cy > 0, independent of m and N, such that for 0 < m < N//2C1,

N2 —m?2+ (N-m)A+d) \"
pnsan 2 (ST RS 05 VLT 97
_ (1 ~m?+m(A+d) + (A/2+d/2)2>m
N2+ NA+d)+ (N/2+d/2)?
> (1= Cym2/N2)™ > e~ Com®/N?
Then using for 0 < m < vy = o(N?/3), we obtain

3 2
fomran = e IV > o=@ =1 — O(6y)

as N — oo. Hence supg<,, < (1 = fi2m+a,n) = O(dn) as N — oo, and this yields (D3).
Thus {Pon+d}F—1 € P5(B,7,0) since all zeros of the Gegenbauer polynomials are real
and distinct.

Next, the second condition in along with the first condition in yields the
estimate 6 >C(log®(N +1))/N?, which implies the inequalities log 1/6x <Cj log(N +1)
< Coyy. Thus setting h := e~ 2, we obtain dy > AV, N = 1,2,.... Therefore by
Proposition there exists b € (e/2,00) such that {Pon 4}, € Pa(B,0717,6).

Further, the weight w(y) = w(y, N) and the function ¢ (y) from satisfy proper-
ties (C4) (see Remark D and (C5.1). In addition, fcl y~ k(1 —92)=kp/4 gy < 00
for any ¢ € (0,1), where p € (0,4/k), k = 1,2. Thus properties (C5.3) and (C5.4) are
satisfied as well. Finally, we prove the inequality (with A > 0)

|Ponia(y)|(1 =y VA< ONTH1— 9?74, ye(-1,1), N=12,..., (3.2.7)

which establishes property (C5.2). We first note that for A = 0, Poy14 coincides with
the Chebyshev polynomial of the first kind (2N + d) 9Ty 4. Thus (3.2.7) is trivial for
A = 0. To prove (3.2.7) for A > 0, we use the following Bernstein inequality [48, Th.
7.32.3]:

max (1= 322Gy calw)] < NI, 2> 0. (3.2.8)
ye(—1,

Next, we note that for A > 0,

Nod N ATA+d—1
A\ @ () (=D)N29T'(N + A+ d) _ (-D)NN 1 1 5
as N — oo. Then (3.2.7) for A > 0 follows from (3.2.8) and (3.2.9). Thus property (C5.2)
is satisfied. Therefore {Pontq}35_1 € P (8,07, 0, W, k). m

3.2.2. Normalized Chebyshev polynomials on [—1,1]. The Chebyshev polynomials
of the first and second kind, normalized by (C2), are special cases of the normalized
Gegenbauer polynomials for A = 0 and A = 1, respectively, so Proposition [3.2.1] is valid
for them. Here, we include some additional formulae for Chebyshev polynomials, their
derivatives, and zeros.

Normalized Chebyshev polynomials of the first kind on [—1,1]. For N = 1,2, ..., we define
ay =a=1and
On :=2N +d, (3.2.10)
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Pon+a(y) = Cn o a)/(Con 1 a)' ™ (0) = (1) (2N + d) ™ Tonra(y)

= (=DM (2N + d)~%cos((2N + d) arccos y), (3.2.11)
w(y,N) = (1 - )/\/2_1/4’ Y(y) = (1- y2)_1/4’
po(k):=0, pi(k):=4/k (3.2.12)

Positive zeros (p=1,...,N, N=1,2,...):
(2p—Dm

p,Nod = CO8 e (3.2.13)
Deriatives (p=1,...,N, N =1,2,...):
(71)N+p+1(2N + d)lfd
Pinia(zpna) = — T , (3.2.14)
S N2d
(—1)N+PHL (2N + d)' =7 cos (jﬁf 1);
Py a(zp.n.a) = —5—Tm +2d (3.2.15)
SN INT24d
2 1)m
Pinalona) _ €05 o (3.2.16)
Pinia(zpna)  sin? (f]f]f;;

REMARK 3.2.2. For d = 0 and Pon(y) = Ton(y) the weight w(y, N) = 1 on [-1,1]
satisfies properties (C4) and (C5) of Definition with ¥ (y) = 1 and po(k) = 0,
p1(k) = oco. Therefore {Ton}3%_, € P*(5, b’ 7,5 W, k) with this weight, Sy = 2N, and
YN,ON, N =1,2 ... satisfying conditions ) and -

Normalized Chebyshev polynomials of the second kind on [—1,1]. For N = 1,2,..., we
define ay = a =1 and

By :=2N+d+1, (3.2.17)
Ponta(y) = Conya(®)/(Caniad) P (0) = (=N 2N + d+ 1) Uan1a(y)
= (=D)N(@2N +d +1)"%sin((2N + d) arccos y)/v/1 — 32, (3.2.18)
w(y, N) = (1=y*)"", gy) =1 —y*) ",
po(k) =0, pi(1):=4, pi(2):=2. (3.2.19)
Positive zeros (p=1,...,N, N =1,2,...):
P e p—_ (3.2.20)

2N +d+1°
Derivatives (p=1,...,N, N =1,2,...):

(—)NPHL QN 4 d + 1)1

Py alzp.n.a) = o : (3.2.21)
SN 5N a1
3(—)NTPHL N +d + 1)1 COSW
Pin+a(zp,Nd) = ——x tdil (3.2.22)
S 5N T

Py a(zp,n,d) _ 3 cos QNTZHI (3.2.23)
P21N+d(ZP,N7d) sin” %
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Note that formulae (3.2.14)—(3.2.16)) and (3.2.21))—(3.2.23)) can be easily verified by
straightforward calculation.

3.2.3. Normalized polynomials with equidistant zeros on [—1,1]. For N=1,2,...,
we define ay = a =1 and

Bn == (2N +d — 1)7/2, (3.2.24)

N 2
Payya(y) = y* H (1 - (222[15__11) y2>, (3.2.25)
(\/7 Lt y) (1 —y) 7)) (3.2.26)

w(y) L po(k) =0, pi(k):=ooc.
Positive zeros (p=1,...,N, N=1,2,...):

2p+d—1
=t 2.2
PNAT N Fd—1 (8.2.27)
Derivatives (p=1,...,N, N =1,2,...):
2p+d—1\*(=1)P22N-12N +d — 1)I(2N +d — 1)
Pynta(2p,N,d) = ( ) — . (3.2.28)
2N +d—1 (2N +d — 1)12pd ()
p! N+p+d—1 1
Bovsalnna) _on g ) S S (3.2.29)
P a(zp,n,d) ne=N—p+1
where
N _ (eN-1)! _
V@2l-1), d=0 e DL d=0
oN +d— 1= J Lz =), A o : 3.2.30
( ) {val(%), d=1, 2V NI, d=1. ( )

Note that the following asymptotic relation for the constant in (3.2.28) follows from
Stirling’s formula:

22N-1(2N +d — 1)! {2‘“ WDE g — o,

GN—DT
(2N +d - 1)l @N)! d=1,

2N1Z
_ N,1/22d727r1/27d22N(1 +0(1)), N —oco. (3.2.31)

We first prove the formulae for the derivatives.

LEMMA 3.2.3. Forp=1,...,N, N=1,2,..., relations (3.2.28) and (3.2.29)) hold.

Proof. By straightforward calculation,

d<P2N+d(y)> :*% ﬁ <1(%)2)

dy yd Y=2p,N,d =1 idp
2NN +d—1)2p+d—1) 1 . .
- (2N +d —1)!12 Il G-»G+p+d-1)

i=1,i#p
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(1PN TIQN 4 d—1)(p— DN — p)!(N 4+ p+d —1)!
2N +d—1)2(p+d—1)
(—1)P22N 12N +d — 1)(2N +d — 1)!

= . 3.2.32)
INFd—1 (
(2N +d = D)l2pd (5
Then (3.2.28)) follows from (3.2.32)) and (3.2.27)). Next we obtain
dz(PzNer(y))
dy2 yd Y=Zp,N,d
N 2 N 2
d 2N +d-1 2N +d—-1
a2 (Chret) 10 (5=) 7))
Y =i i=1, i) Y=2p,N.q
B 2<2N+d1>2 ﬁ <1 <2p+d1>2>
T N oprd—1 T\ d—1
p+d i=1,i#p i+d
N N 2
2N +d 2 d—1
8D (2id—1> 1] (1_<2§id—1>>
=1,j#p 4 i=1,i#j, i#p
B ﬁ (1_<2p+d—1)2>
i=1,i#p 2i+d—1
x (-2 2N +d-1Y’ +8(2N +d—1) i !
2p+d—1 i (2j+d—1)2—-(2p+d—1)
20N +d—1)2 & % +d—1
Sk S e H 1 (22—
2p+d-1 14 2i+d—1
=1, i#p
N N
1 1
(X e )
e =T AR A
N+p+d—1
d (P 1 d
=@N+d-1)4 (”Zd(y)) ( > —).
Y Yy Y=2p,N,d ‘n=N-—p+1 " p
Hence
Neptd—
L 4 (& (Panyaly) d ((Panya(y)
p TP y y y y vz

P2HN+d(Zp,N,d) 2d

Pynia(Zpna)  ZpNa
Therefore, (3.2.29) is established. m

Next, we prove the following property of the normalized polynomials Poniq with
equidistant zeros on [—1,1].

PROPOSITION 3.2.4. Let v = {yn}3_; be an increasing sequence of positive numbers
satisfying the conditions
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v = o(N1/?), A}im YN = 00, (3.2.33)
and let 0 = {dn}F_, be a decreasing sequence satisfying the conditions
Sy >7v%/N, N=1,2,..., th Sy =0. (3.2.34)

Then for the sequences § = {fAn}F_y and W = {w(y, N)}¥_, defined by (3.2.24) and
(3.2.26)), respectively, the sequence of polynomials { Pan+a 35—, defined by (3.2.25|) belongs
to Pa(B3,7,0), and P3*(B,7,6, W, k).

The proof is based on the following properties of Pon44:
LEMMA 3.2.5. (a) The following representations for Paynyq hold (z € C):
Ponia(z) = (2N 4+d —1)7/2) % cos((2N +d — 1)7wz/2 — dr/2)
y T(N(I+2)+ (d—1)2/2+ 29" (N(1 — 2) — (d — 1)z/2 + 2971)
I'?(N +24-1) ’
Ponra(y)w(y, N) = (2N +d — 1)7/2) "% cos((2N +d — 1)7y/2 — dr/2)

1
1 _ —1,1). 2.
<(1+0(505m)): a1y G230)
(b) If 65 \, 0 and vy = /Néy /" 00, then uniformly on the closed disk D., (0),
(2N +d = 1)7/2)"Poana(z/ (2N +d — 1)7/2)))
= cos(z — dr/2)(1 + O(6x min{|z|?,1})).  (3.2.37)
The constants O in (3.2.36]) and (3.2.37)) are independent of N, y and N, z, respectively.

Proof. Identity (3.2.35) is a combination of two known results in the theory of the gamma
function [16, egs. (1.2.8) and (1.2.9)], while the asymptotic relation (3.2.36) was proved
by Stirling’s formula in [20, Lemma 2(b)].

To prove (3.2.37)), we first note that (3.2.35)) implies the identity
(2N +d—1)7/2)%Pan1a(2/((2N 4+ d — 1)7/2))/ cos(z — dr /2)
=TI 3(N+29"YD(N + 297 4 2/7n) (N 4+ 2471 — 2/7). (3.2.38)
To find the asymptotic behavior of the right-hand side of (3.2.38) as N — oo, we need

asymptotic properties of the gamma function. Stirling’s formula [I6] eq. (1.18.1)] shows
that for M > 0 and w € C with M 4+ w — oo,

log I'(M +w) = (M 4+ w — 1/2) log(M + w)
— M —w+ (1/2)log(2m) + 1/(12(M + w)) + O(|M + w|~?),

which yields the following relations as M — oo and |w| = o(M?/3):

(3.2.35)

o L 1)
(M)
=(M+w-1/2)log(1 +w/M) —w+wlogM — m‘FOﬂMr%
= (M+U’1/2)(]\u; - 21;(;2 +O<|]\Zi[|§)> w+w10gM+O(Z|\Q;L)
= % —I—wlogM—i—O(']\u/}lj)
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Hence if |w| = o(v/M) as M — oo, then

W - M (1 + % + o('ﬁf)) (3.2.39)
Note that for a fixed w this asymptotic is well known [16, eq. (1.18.4)]. Then it follows
from that for |w| = o(v/M) as M — oo,

I2(M)I(M +w)['(M —w) =1+ O(jw|*/M). (3.2.40)
Next, we set M = N + 2971 — 0o and w = z/7 and take account of the relations

w| = O(yn) = o(VM),  |w*/M < C(3%/N)min{|2|*,1} < Oy min{|z|*, 1}

that are valid for z € D, (0), by (3.2.33) and (3.2.34). Then we obtain (3.2.37) from
(3-2.38) and (3.2.40). =

Proof of Proposition[3.2.4] Properties (C1) and (C2) of Definition [3.1.1] are satisfied triv-
ially. Next, property (C3) is satisfied because of Lemma [3.2.5[b). Therefore, { Pan+a}3—_;
€ Py(B,7,9). Since the function ¥(y) = 1 and numbers po(k) = 0, p1(k) = oo satisfy
properties (C5.1) and (C5.3) and, in addition, (C5.2) implies (C5.4) (see Remark [3.1.9)),
it suffices to verify properties (C4) and (C5.2) of Definition We first note that

w(0,N) =1, and for Sy given by (3.2.24),
w(y/Bn, N) = (1= y?/B3) /(L4 y/Bn) /"2 (1 —y/Bn)o/ 712

Then using the elementary estimates

et <1—t<et, eP<14t<eé, (3.2.41)
for t € [0,1/2], we obtain
(1=y*/BR) /" =14+ 0@*/Bx),  (L+y/Bn)¥/" 2 =1+ 0(y/Bn),
(1—y/Br)Y/ ™12 =1+ O(y/Bn),

where the constants O are independent of y and N. Therefore, for any [—B, B] C (—1,1),

supyer—p,5) IW(y/Bn, N) — 1| < C/By. Thus (C4) is satisfied. Next, from (3.2.36) we
obtain

sup |Panta(y)|w(y, N)

ye(=1,1)
cos((2N +d—1)my/2 — dm /2

<((2N+d— 1)7r/2)—d(1 + Cyes(l_llil) [cos(( +N(1 _)yé/)/ / )I)

<C(@2N +d-1)m/2)" ¢, (3.2.42)
that is, property (C5.2) is satisfied as well. Thus {Pon+4}%-1 € P5"(8,7,0, W, k). =
3.2.4. Normalized Hermite polynomials on (—o00,00). For N =1,2,..., we define

B = VAN +2d + 1, (3.2.43)
N

Ponialy) = H2N+d(y)/Hé§l\2+d(0) = N! z::() (2(;272), (N27mm)!y2m+d (3.2.44)
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(see [I7, Sect. 10.13]). Then by (3.1.7), (3.2.43)), and (B.2.44),
N!
Ham+d N = NN + dj2 + 1/4)m
In addition, we define @ = 0o and for N =1,2,...,
w(y, N) = eV /2, O(y) =1 =974, an := VAN + 2d,
po(k) := 2+ kd+k/2)7,  pi(k):=4/k.
Note that ay in is the (2N + d)th Mhaskar-Rakhmanov-Saff number for the
exponential weight e=¥"/2 (see [37, p. 124]).

Then the following property holds for the normalized Hermite polynomials P, 44 On
(700, OO):

0<m<N,N=1,2,.... (3.2.45)

(3.2.46)

PROPOSITION 3.2.6. Let v = {yn}3_, be an increasing sequence satisfying the conditions

v = o(NY?), 4n >Clog(N+1), N=1,2,..., (3.2.47)
and let 0 = {dn}F_, be a decreasing sequence satisfying the conditions
oy >7%/N, N=1,2,..., Jim oy = 0. (3.2.48)

Then there exists a constant b > e/2 such that for the sequences 8 = {Bn}F_; and W =
{w(y, N)}¥_, defined by (3.2.43) and (3.2.40)), respectively, the sequence of polynomials

{Pan1a}S_, defined by (3.2.44) belongs to Pa(3,b717,6), P%(8,7,0), and ]P’j;*(ﬁ,b_lfy,é7
W, k).

Proof. Properties (D1) and (D2) of Definition are trivially satisfied, while property
(D4) follows from (3.2.45)) and the relations

m—1
N —v
m — R — 1, 1<m<N. 2.4
H2m+d,N g<N+d/2+1/4>< sms (3.2.49)

Next, we have the inequality
1 — pomyan <Cm?/N, 0<m<CVN, N=12,..., (3.2.50)

where C and C; are independent of m and N. Indeed, by ([3.2.49), for 0 < m < C;V'N,
N=12,...,

N+1 +1

Thus (3.2.50) follows from (3.2.51). Since vy = o(N'/?), we obtain from (3.2.50) and
(13.2.48]) the estimate

Hom+d,N > <1 — m) > exp (— Nm ) >1-— CmQ/N. (3.2.51)

sup (1 — pamya,n) < Oy /N < Cy.
0<m<~yn

Therefore, property (D3) is satisfied, so {Pan+a}%_ € P5(8,7,9) since all zeros of the
Hermite polynomials are real and distinct.
Similarly to the proof of Proposition we conclude that (3.2.47) and (3.2.48) im-

ply (3.1.13) for some h € (0,1). Therefore by Proposition there exists b € (e/2, 00)
such that {Pan4a}¥_; € Pa(B,b71,0).
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Next we note that properties (C4) (see Remark [3.1.10), (C5.1), and (C5.4) of Def-
inition are satisfied trivially. Further, it is easy to see that for any ¢ > 0 and

p € (po(k), p1(k)),

/oo dy — a}v—Qp/ dy < 00
o YOI — 2R e T

Thus property (C5.3) is satisfied for po(k) = (2 + kd + k/2)7 Y, p1(k) = 4/k, k = 1,2.
Finally, we shall show that property (C5.2) is satisfied. Indeed,

.2 —1/2,1/2
su§|H2N+d(y)|e V21— y?/a% |V < Cay / h2fv+d, (3.2.52)
ye

where ay is defined in ([3.2.46) and honyq := [ H22N+d(y)e*yz/2dy. This estimate was

established by Levin and Lubinsky (see [34], [37, p. 147], and [35, p. 325]) for more general
exponential weights. To show that (3.2.52)) implies (C5.2), we note that

hynra = (VA22NHA(2N + a))1/2,
HSY, ,(0) = (~1)N (2N + d)12?/N!
(see [I7, Sect. 10.13]). Hence by Stirling’s formula,

(d)
[Hyn4q(0)]  2¢2(2N +d)!1/2 9d—1/2 \d/2-1/4

e = NN~ (14 0(1)) (3.2.53)
2N+d
as N — oo. Then it follows from (3.2.52)) and (3.2.53)) that
sup |P2N+d(y)|e_yz/2\1 —y?/d% |V < Cla;\,l/le/‘l_d/Q < CuN~Y2, (3.2.54)
ye

Thus property (C5.2) is satisfied. Therefore, { Pan1+a}5_1 € P5* (8,071, 6, W, k). u

3.2.5. Normalized Williams—Apostol polynomials on (—oo,00). The polynomials
of degree n (n =1,2,...) defined by the formulae

An(y) == (1/2)((y+0)" + (y—i)") = 1+ )" *Tuy/V1 + 4?)

=1+ yQ)n/2 cos(n arccot y), (3.2.55)
Wal®) = (=i/2((y + )™ = (y = )™*) = (L4320, 5/ T+ )
= (1+42) ™Y/ 25in((n + 1) arccot y), (3.2.56)

are called the Williams—Apostol polynomials of the first and second kind, respectively. The
polynomials W, of odd degree were introduced by Williams [56] in 1971 in connection with
a problem of asymptotic representations for ¢(2m) (see Remark below). Two years
later, Apostol [2] independently introduced W,, for odd n and studied their properties.
Polynomials A,, are special cases of two polynomial sequences introduced and studied
by Cvijovi¢ and Klinowski in the 1990s-2000s [I3] [I4], 15]. Note that all even or odd
polynomials of these sequences are reduced to A, and W,.

Normalized Williams—Apostol polynomials of the first kind on (—oo,00). For N = 1,2,...,
we define
On = 2N +d, (3.2.57)
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P = A AW (0) = (-1)N 2N +d)~%A
aN+d(Y) = Aantd(y) [Asn 4 4(0) = (=1)7 2N + d)"“Aanra(y)

N
=@2N+d)~* ) (-)" @Z j: Z) y?mtd, (3.2.58)

m=0

Then by (3.1.7), (3.257), and (8.2.59),
B (2N + d)!
Hem+d N = 9N " om)I(2N + d)2m+d’

In addition, we define a = co and, for « > 0and N =1,2,...,

w(y, N) == (1+¢*) V"2 yy) =1, an:=1,

0<m<N,N=12,.... (3.2.59)

M . (3.2.60)
po(k) = max{(20k + k)L, 2+ k), pr(k) = oo,
Positive zeros (p=1,...,N, N=1,2,...):
2p—)m
Zp.N,d ‘= cot (4]{/_7_’_22 (3.2.61)
Derivatives (p=1,...,N, N =1,2,...):
(71)N+p+1(2N+d)17d
P2/N+d(ZP7N7d) = . (2p—1)7\2N+d—2 (3262)
(sin IN+2d )
2(—1)N+PHL(2N + d — 1)(2N + d)! =9 cos Z22Um
P2HN+d(ZPvad) = . (2p—1)m\2N+d—3 L ) (3.2.63)
(sin INT2d )
P// 2 _ 1
Donvalopa) _ oy g1y 2= (3.2.64)

P2/N+d(ZP7N7d) 2N+d '
Note that formulae (3.2.62)—(3.2.64) can be easily verified by straightforward calculation.

Normalized Williams—Apostol polynomials of the second kind on (—oo,00). For N =
1,2,..., we define

By :=2N+d+1, (3.2.65)
Pona(y) = Wanta(y)/Wam 1 a(0) = (~1)¥ (2N +d + 1)~ Wanya(y)
N
2N +d+1
= (2N +d+1)¢ 1™ 2mtd 2.
N a1 52 (M T (3.2.66)

Then by (3.1.7), (3.2.65), and (3.2.66), for N = 1,2, ...,
B (2N +d + 1)
Hamtd N = ON —9m + 1)I(2N + d + 1)2m+d’

In addition, we define a = co and, for « > 0and N =1,2,...,

w(y,N) = (1 +y?) N 4270712 0 yy) =1, ay:=1,

0<m<N. (3.2.67)

X X (3.2.68)
po(k) := max((2ak + kd)™",(2+ kd)™"), p1(k) = 0.
Positive zeros (p=1,...,N, N=1,2,...):
. pm
Zp,N,d := COt N+ dil (3.2.69)



3.2. Examples of sequences from the classes P4, P}, and P}* 45

Derivatives (p=1,...,N, N =1,2,...):
(—)NH+PH (2N 4 d + 1)1

P2/N+d(ZP’N,d) = . pr 2N+d—1 ) (3270)
(Sm 2N+d+1)
2(—1)N+PHL (2N + d)(2N +d + 1) =% cos SN
Pyntalzpn.a) = N NEAEL - (3.2.71)
(sm 2N+d+1)
Py a(zp,n.d) 2pm
——T= - = (2N +d)sin —. 3.2.72
P5N+d(zp7N,d) ( ) 2N +d+1 ( )

Again, formulae (3.2.70)—(3.2.72)) can be verified by straightforward calculation.
The following property holds for the normalized Williams—Apostol polynomials Pyy 4
of the first and second kind on (—o00, c0):

PROPOSITION 3.2.7. Lety = {yn}3_; be an increasing sequence satisfying the conditions
v =o(NY2), ~An >Clog(N+1), N=1,2,...,
and let 0 = {dn}F_, be a decreasing sequence satisfying the conditions
oy >~%/N, N=1,2,..., A}iinooéN =0.

Then there exists a constant b > e/2 such that for the sequences § = {On}F_; and

W = {w(y,N)}F¥_, defined by (3.2.57) or (3.2.65) and (3.2.60) or (3.2.68)), respec-
tively, the sequence of polynomials { Pant+a}35—, defined by (3.2.58) or (3.2.66) belongs to
Pd(ﬁv b_l% 5)7 ]P):l(ﬂ7 v, 5)7 and IP:;* (/87 b_177 57 VI/) k)

Proof. Let us consider the polynomials of the first kind, that is, 8y and Ponyq, N =

1,2,..., defined by (3.2.57) and (3.2.58)), respectively. Properties (D1) and (D2) of Def-
inition are trivially satisfied, while property (D4) follows from (3.2.59) and the

relations

2m—+d—1
14
m = 1-— <1l, 1<m<N. 3.2.73
Hem+d,N Vl;[O ( 2N+d> m ( )

Next, property (D3) is satisfied since
1— pigmian <Cm?/N, 0<m<CVN, N=12,...,
which follows from ([3.2.73) and the estimates (0 < m < C1v/N, N =1,2,...)

B 2m-+d )
%;;j_dl) > e @M /N > 1 COm?/N.

Therefore, {Pan14}5_1 € P5(8,7,9) since all zeros of the Williams—Apostol polyno-

Hom+d,N = (1 -

mials are real and distinct.

Similarly to the proof of Propositions[3.2.1and [3.2.6, we conclude that { Py 4a}3—; €
Py(8,b= 1, 6) for some b € (e/2,00).

Next we note that by Remark properties (C5.1) and (C5.3) are satisfied for
p € ((2+ kd)~t,00). In addition, it is easy to see that the integral in property (C5.4) is
finite for p € ((2ak+kd) ™!, 00) (see also Theorem [3.3.13|below). So properties (C5.3) and
(C5.4) are satisfied for po(k) := max{(2ak + kd)~1, (2+ kd)~1}, p1(k) = co. In addition,
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since a > 0, property (C5.2) follows from (3.2.55)), (3.2.57)), and (3.2.60). It remains to
note that by (3.2.41)),

w(y/Bn, N) = (1+4*/(2N +d)*) N =427* = 1+ O(y*/N).
Thus property (C4) is satisfied. Therefore, {Pon1+q}3; € Pi*(8,b 17,0, W, k), and the

proposition is established for the Williams—Apostol polynomials of the first kind. For the
polynomials of the second kind the proof is similar. m

3.2.6. Normalized Lommel polynomials on (—o0,0). Let us set

Qan+a(y) == (/2T Ry ar1/2(y)

(=1)™@2N —m)II'2N —m+d+1/2) 5,4
m!(2N —2m)!I"(m + d + 1/2)22m+d

I
M) =

m=0
N
B (-D)™ (AN -2m+d)! g4
- 7; (2m + d)l (2N — 2m)i2iN—2mtd? (3:2.74)

where Ry, is a Lommel “polynomial” (it is a polynomial in 1/y; see [55], Sect. 9.61]).
Note that the last identity in is established by the Legendre duplication formula
for the gamma function.

For any = {0n}%_; and N =1,2,..., we define

Pan+a(y) = By Qan+a(Bny) / Q54 4(0)- (3.2.75)
Then the coefficients
(AN — 2m + d)!(2N)122™
AN+ 2N —2m)l
are found by (3.1.7), (3.2.74), and (3.2.75)). The following property holds for the normal-

ized Lommel polynomials Pop g on (—00,00).

1<m< N,

H2m+d,N =

PROPOSITION 3.2.8. Lety = {yn}3_; be an increasing sequence satisfying the conditions
v =o(N'Y?), ~Ay >Clog(N+1), N=1,2,...,
and let § = {In}¥-; be a decreasing sequence satisfying the conditions
oy >7%/N, N=1,2,..., NlilnooéN =0.
Then there exists a constant b > e/2 such that for any sequence 8 = {On}3_,, the
sequence of polynomials {Pan1a}35—, defined by belongs to P%(5,7,9).

Proof. It suffices to show that properties (D3) and (D4) are satisfied. Property (D4)
follows from the relations

ol UN o
d N = — % <1, 1<m<N, 2.
H2m+d,N H 4N—1/+d< m (3.2.76)

v=0
while property (D3) is a consequence of (3.2.76) and the estimates

AN — 4 2 2m 2m
H2m+d,N = <4NJTl+) > (1 — Z) > e~ 2m*/N >1-— Cm2/N.
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Since all zeros of Pay g are real and distinct [55, Sect. 9.71], the proposition is estab-
lished. =

REMARK 3.2.9. This example shows that for any § there exists a sequence {Pan44}3_;
that belongs to P%(53,7,d), where ¢ and y are defined in Proposition

3.2.7. Normalized Laguerre polynomials on (—o0,00). In this counterexample we
show that a sequence of classical even polynomials on (—oo,00) does not belong to
Po(8,7,0) for any 3, v and 6. For a > —1, a # —1/2, and N = 1,2, ..., we define
N m—1
—D)" [lymg (N =)
P P 2 Le(0) = I'(1 ( v=0 2m'

If there exist 3, v and § such that { Poan }3%_; € Po(5,7,0), then by property (C3), for any
M > 0, limy_.o Pon(2/Bn) = cos z uniformly on the disk Dj;(0). Then by a classical
theorem of complex analysis [50, Sect. 2.8], the mth coefficient of Pyn(z/8xn) converges
to the mth Taylor coefficient of cosz, m = 1,2,.... Therefore,

=12

g Ly eeey

) I'im+a+1)m! 1/m
i N/ By = ( o+ 1)(2m)! ) >

which is valid if and only if & = —1/2 (Hermite polynomials) and {8y }37_, satisfies the
condition limy oo N/B% = 1/4. Thus {Pan}35_; ¢ Po(S3,7,0). Note that

Jim Py (y/(2VN)) = I'(e+1)(y/2) " Ja(y)

(see [IT7, Sect. 10.12]).

3.3. Asymptotic formulae for L,-quasinorms of special polynomials. Here, we
establish asymptotics for weighted L,-quasinorms

a 1/p
(/ IyszN+d(y)w(y,N)lpdy> , 0<p<oo,

—a
of the normalized Gegenbauer, Chebyshev, Hermite, and Williams—Apostol polynomials
and polynomials with equidistant zeros introduced in Section These formulae are
used in Sections and for L,-asymptotics and Ly-error criteria for ¢(s) = 0 or
B(s)=0.

3.3.1. Technical lemma. The proofs of most of the asymptotic formulae in this section
are based on the following technical lemma:

LEMMA 3.3.1. For N=1,2,...,d=0,1, p € (0,00), g € (—1,00), X € R, the integral

/2 1/p
Fnapagx = </ lcos((2N + d + A)f — Arr/2)|P cos ™% @ sin? 9d9)
0

satisfies the asymptotic property

AN pEN.dpax = Adpg (3.3.1)
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where
1, d=0,0<p<oxcord=1, 0<p<l,
ANap = (logN)™, d=1,p=1, (3.3.2)
NYr=1 =1 1<p< oo,
(p/2+1/2)1(1/2 — dp/2)I(q/2 + 1/2)1"/"
W/2+ D02 = /A2 + YD
2/ml(p/2+ 1) (g/2 —dp/2+1)
Adgpg = ord=1 0<p<l1,
2/x, d=1, p=1,
21_1/”(wa|(sint)/t|pdt)1/p, d=1, 1<p<oo.

(3.3.3)

REMARK 3.3.2. It is known that for even positive p = 2m,

. 2m m
> /sint T 2m
j—— dt = ———M -1 v+m, 2m—1 )
/0 ( t ) 2(2m—1)!;( e m—v

This result can be found in [9 Excercise 22, p. 518], where it is attributed to Wolsten-
holme. The exact value of I, fo |(sint)/t|P dt, p > 1, is unknown for p # 2m. Various

properties of I, and I;/ P are discussed in [8].

To prove the asymptotic (3.3.1)), we use the following generalization of Fejér’s Lem-
a [I8]:

LEMMA 3.3.3 (J3, Lemma 2.1]). Let g be continuous and ﬂ-periodic on R and let f €
L1[0, 7). If v is a measurable and a.e. finite function on [0, 7], then

Jim wg(n9+fy(9))f(0)d9=(1/7r/ d9/ (0

n—oo 0

Proof of Lemma|3.53.1. We consider three cases.
CASE 1. Let d=0,0<p<oocord=1,0<p<1. Then
1 ™
FRapar= 5/ lcos(N@ + df/2 + \0/2 — A /2)|P cos~ P (0/2) sin?(0/2) df

Using Lemma “ 3| for g(0) = |cos|P, f(0) = cos~%(0/2)sin?(0/2), and () = df/2 +
A0/2 — A /2, we obtain

) 1 s ™ _ .
1\/1£noo AN apF N dpar = %/0 |cos 617 d9/0 cos~(0/2) sin?(0/2) df = Al . (3:34)
CASE 2. Let d =1, p = 1. Using the estimate

sup |1/sinf —1/6] < oo, (3.3.5)
0e(0,m/2]
we obtain for any e € (0, 7),

/2
FNi1gx= / sin((2N 4 1 + A)0)|(sin )" cos? 6 d6
0

w/2
= / |sin(2N0)|(sin )~ cos? 8 dh + O(1)
0
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TN
= / |sin 0|0~ cos?(0/(2N)) dd + O(1)
0
eN
_ / Isin 8]0 cos?(8/(2N)) d + O(1).
0
Hence

eN
1}\1;11 inf (log N)~! <min{1, cosq(s/2)}/ |sin 00" do + O(l))
—00 0

< 1}\1{11 inf (log N)*lFN’Lqu)\ < lim sup (logN)*lFN,lqu,)\

N—oo

N—o0

eN
< limsup (log N) ™! (max{l,cosq(€/2)}/ |sin 0]6~* d9+0(1)>. (3.3.6)
0
Taking account of the asymptotic for the Lebesgue constant [57), Sect. 2.12]
9 TN ) eN
Ly = 7/ sin 6~ do + O(1) = f/ Isin 00~ d0 + O(1)
™ Jo T Jo
= (4/7%)1log N + O(1), (3.3.7)

we deduce from (3.3.6) the estimates
(2/7) min{1, cos?(e/2)} < lﬁiélof (log N)*lFN’LLq,)\ < lim sup (logN)*lFN,LLqA

< (2/m) max{1,cos?(e/2)}. o (3.3.8)

Letting € — 0 in , we arrive at
JJim (log N) 'Fni1ga =2/7= A1, (3.3.9)
CASE 3. Let d =1, 1 < p < oo. Using Holder’s inequality and estimate , we obtain

/2 1/p
FNipgr = (/ [sin((2N 4+ 1 + X)0)|P sin™? 6 cos? 0d0>
0

/2 1/17
= (/ [sin(2N8)|P sin™P 6 cos? GdQ) +0(1)
0

1/p

/2
:< / |sin(2N9)|p9_pcosq9d9) +o()
0

1/p

TN
= <(2N)p1/ |sin @|PO~F cosq(G/(2N))d0> + O(1). (3.3.10)
0
Further, for any « € (1/p,1) we obtain

TN « TN
Jy = / |sin 8|PO~F cos?(0/(2N)) df = / +/ =Jy1+ JIna2. (3.3.11)
0 0 *

Then as N — oo,

TN
N2 < N*ap/ cos?(0/(2N))df < CN'~? = o(1), (3.3.12)
0
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and
sind|? sind|? sind|?

Ne
JN71 :/0 9 d9 /0 9 FNq(Q) d9+0(1) :A 9

where Fy 4(6) := cos?(6/(2N)) — 1 and the last equality in (3.3.13) follows from the
elementary estimates

gr[%ajs[(a |FNq( ) <C r[%axa |FN,\q\(9)|

d0+o(1), (3.3.13)

< Clq| , I[I(l)aX ](1 —cos(8/(2N))) 06%7&]3[<a] max{1, cos!?~1(0/(2N))}

< CN?*72 = o(1).
Collecting (3.3.11)—(3.3.13]), we see that

TN
(2N~ /0 I5in 076" cos?(0/(2N')) df

= (2N)P! /Ooo |(sin®)/0|P d§ + o(NP~1).  (3.3.14)

Finally, the limit relation (3.3.1]) for d = 1, 1 < p < oo follows from (3.3.10)) and (3.3.14)),
while (3.3.1]) for the other two cases is a consequence of (3.3.4) and (3.3.9). m

3.3.2. Normalized Gegenbauer polynomials on [—1,1]. Let us set
1, d=0,0<p<4,

N, d=1,0<p<1,

N/logN, d=1,p=1,

NP, d=1,1<p<4,

T(p/2+1/2)0(1 —p/4)1M" -
{F(p/2+1)r(3/2_p/4)} ; d=0,0<p<4,
Gap = {F(p/u1/z)r<1/z—p/z)r<1—p/4>r/p7 et

2yml(p/2+1)I'(3/2—3p/4)
2/, d=1,p=1,

(f22 |(sint) /t7 dt) 7, d=1,1<p<4.
Then the following theorem holds:
THEOREM 3.3.4. For A >0 and p € (0,4),
1 (1— yz)/\/271/4c/\ (y) [P 1/p
lim 7 g4, (/ 2N-+d ’ dy) =Ga,p-
N—oo PN/ Z/d(Cé\Ner)(d) (0) g
Proof. The proof is based on the following asymptotic formula as N — oo for the Gegen-
bauer polynomials with A > 0 and y = cosf, where C/N <0 <xw — C/N:

TN.dp ‘= (3.3.15)

(3.3.17)

A—1/2 C§\N+d(COS 0)
(Con4a)@(0)
_ 1+0(1))cos((2N +d+ N8 —7wA/2 O(1
:(—1)N(2N) d(( + ()) ((Sin1;9+ ) /)+Nsir(l3329

(sin §)

). (3.3.18)
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Here, o(1) and O(1) are constants independent of 6. Relation (3.3.18) follows from the
classical asymptotic formula for the Jacobi polynomials [48, eq. 8.21.18]

(sin 9)’\_1/2P2(]>\‘,:_1d/2’)‘71/2)(cos )
— 1
cos((2N +d +2)\)9 TA/2) 0(3)2 >’ (3.3.19)
sin'/2 0 N sin®/2 ¢
where C/N <6 <7 —C/N and N — oo. Indeed, if we take account of the relations

PO1/22-1/2) I'(2N +d+A+1/2)I'(2))

_ A
2N+d Y =TT TN +dt 2y Can+d®); (3.3.20)

(-1)N2ID(N +d+ )\)

= (2N + d)_1/22’\7r_1/2(

A 3.21
(Con+a)' ™ (0) I'(ANIL(N+1) ) (3.3.21)
then it follows that
(sin Wﬂhw
(Con4a)'9(0)
(~D)N(@N +d)"22 7" V2T (A + 1/2)T ()TN +d + 20)T(N + 1)
_ FENIEN +d+A+1/2)T(N +d+))
cos(@N+d+Nf—mA/2) , O(1) )
X ' ’ 3.3.22
( sint/2 0 Nsin3/20 ( )

Then (3.3.22)) implies (3.3.18]), by Stirling’s formula and the Legendre duplication formula.
Let now p € (0,4). Then

_ 1
(QINdp)l/p = </1 (1—y?)*? 1/4C§\N+d(y) ‘pdy> "
o -1 Y (Con+a)D(0)

= (2 /Om ((sme))“/2

Next, using the Bernstein-type inequality (3.2.7]), we obtain

C2)\N+d (cos 0)
cos? 0 (C3y1.4) D (0)

P 1/p
)sin@dﬂ) . (3.3.23)

1/N Cyry(cosb) P
J = in§)=1/2 2N+d in6do
N,d,p,1 /0 ((Sm ) -y (C§N+d)(d)(0) sin
1/N
< CN— / (sin )1 P/2dg < ONP/2=2=dp — o(N—P), (3.3.24)
0

In addition,

(2N) /Ol/N

p

cos((2N +d+ \)f —7\/2) sin 0 do

cosd @ sin'/2 0

1/N
< CN—dP/ (sin@)1P/2d9 = o(N~).  (3.3.25)
0

Further, we consider two cases.
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CAaseE 1. Let d=0,0<p<4ord=1,0<p<1 Wefirst split the integral In 4, from
(3.3.23)) into two ones and obtain the relations

/2 1/N
INdpz2 = / <Inap = / +/ = JINdp1 T INdp2s (3.3.26)
1/N 0 1/N

where Jy,q,p,1 is estimated in (3.3.24). Next, it follows from (3.3.18) that

™2 (1 4 0(1)) cos((2N + d + \)f — wA/2)

cosd fsin'/?

INdp2 = (QN)_dp/
1

/N
p

1
o) sinfdf, (3.3.27)

N cos? 0 sin®/2 0
where the second term under the integral is estimated as follows

i loP
2N) P de
(2N) /1/N NP (cos )4 (sin §)3p/2-1

w/3 do /2 do
< O NP+ / o dae / _dy
=C n GmoE T T (coso)

< OCN7PUTD(N3P/2=2 199 N + C)) = o( N~%), (3.3.28)

since min{2—3p/2+p(d+1),p(d+1)} > dp. Collecting now ({3.3.24)—(3.3.28]), we conclude
that for 0 < p < 1,

/2 |cos -7 P
Inap=(2N)~ d”(1+0(1))/0 | (((ii\;;)iz;ifgmi/z) do + o(N~%), (3.3.29)

while for 1 < p < 4,
1
TNy = (2N) (1 +0(1))
/2 |cos((2N +d + N — wA/2)P  \ P
do N~ 3.3.30
% </0 (cos 0)@r(sin §)r/2-1 > +of ) ( )
Applying Lemma to the integrals on the right-hand sides of (3.3.29) and (3.3.30)
for g=1—p/2, we find that for d =0,0<p<4ord=1,0<p<1,

lim (2N)V = Adpipye. (3.3.31)

N—o00

Thus (3.3.17) for these cases follows from (3.3.31) and (|3.3.23]).
CasE 2. Let d=1,1<p < 4. We split Iy, from (3.3.23] m differently

w/2—1/N? 1/N 7/2—1/N? /2
IN1p2 = / <Inap = / / /
1/N 7/2—1/N2

=Jnip1+IN1p2+ IN1ps3, (3.3.32)
where Jy,1,p,1 is estimated in (3.3.24). Next, (3.3.18]) yields
”/21/N2’ (1+ 0(1)) cos((2N + 1+ A\)f — 7A/2)

cosfsin'/? 0
o() ?
N cos 0 sin®/? 6

JN,I,p,Q = (ZN)_p/

1/N

sinfdf, (3.3.33)
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and, in addition,

(2N)” /WUN O
1N NP(cos#)P(sin §)3p/2-1

P /7\'/3 4o Jr/7r/21/N2 4o
- l/N (Sin@)gp/Q—l 7\'/3 (COS@)p

< CNYN-®/2H ) 1og N + Ntlog N 4+ N=P=Dy = o(N~1).  (3.3.34)

To estimate Jn 1 p,3, we use property (C3) of Definition which holds for the Gegen-
bauer polynomials with

By =2N+A+1, 6y=N"2log’N, ~y=IlogN, >0,
due to Proposition Then it follows from (3.1.3)) that

C2AN+1 (y)
y<C2)‘N+1)/(O>

which immediately implies the inequality

sup
ly|<1/N?Z

<

C£\N+1 (cos @)
cos (C2)\N+1)/(0)

sup
n/2—1/N2<0<m/2

<o

Hence
/2
INips <C (sin ) A~V/2PHL g < CN~2 = o(N 7). (3.3.35)
7/2—1/N?

We also need the following estimate:

/2 _ P
(2N)*p/ |cos((2N + 1 + Ao 27rf\/2)| &0
©/2—1/N? (cos 0)P(sin )P/2~

1/N? | p
<CONP / |Sm((27 s 91; NOW 19 < oN-2 = o(N1). (3.3.36)
0 Sin

Collecting now ([3.3.24), (3.3.32)—(3.3.36]), we conclude that

0, =@N) (1 +0(1)
/2 |cos((2N +d + \)0 — 7w\ /2)[P
) (/0 (cos 0)P(sin 9)r/2—1

Applying Lemma to the integral on the right-hand side of (3.3.37)) for ¢ =1 —p/2,
we deduce that for d =1, 1 < p < 4,

CNIANapIND , = Adpi-pso- (3.3.38)

1/p
de) +o(N~YP).  (3.3.37)

A}im
Therefore (3.3.17)) for this case follows from (3.3.38]) and ([3.3.23]). This completes the
proof of Theorem [3.3.4] m

REMARK 3.3.5. Aptekarev, Buyarov, and Dehesa [3, Theorem 2| found the asymptotic
behavior of (fil |ICA(y)|P(1 — y*) =12 dy)'/P as n — oo. Note that Theorem [3.3.4] for
d =0 and p = 2 follows from this result. '
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3.3.3. Normalized even Chebyshev polynomials of the first kind on [-1,1].
The corresponding asymptotic formula for the weight w(y, N) = (1 — 3?)~'/* follows
from (3.3.17)). Here, we consider the case of w(y, N) =1 and d = 0.

THEOREM 3.3.6. For any p € (0,00),

1 1/p /2 1/p
(/ [Ton (9)|P dy> = (2/ |cos(2NO)|P sin@d@) ,
—1 0

formula (3.3.39) follows from Lemma for A=d=0andg=1.n

3.3.4. Normalized polynomials with equidistant zeros on [—1,1]. Let { Pon+4}3_;
be the sequence of polynomials (3.2.25)) with the weight w(y, N) defined by (3.2.26]). Let
us set

Proof. Since

1, d=0,0<p< o0,
N d=1,0<p<1
= ’ ’ 34
TN.dp N/logN, d=1,p=1, (3.3.40)
NP, d=1,1<p< o0,
2I'(p/2 + 1/2)} L/p
_— , d=10,0<p< o0,
[wmp/z +1) !
20 (p/2 +1/2) 1/p
Eap = d=1.0<p<1 3.3.41
d,p [ﬁp+1/2f(p/2—|—l)(l—p) ) ’ D ) ( )
4/72, d=1,p=1,
@2/m)MP ([ |(sint)/eP )P, d=1,1<p < oc.
Then the following theorem holds:
THEOREM 3.3.7. For p € (0,00),
1 1/p
Jin 7y ([ et NP an) = e (3.3.42)
—00 1

Proof. First we split the integral

1 1
/ ly~*Panya(y)w(y, N)|P dy = 2/ ly ™ Panya(y)w(y, N)|P dy
1 0

1-1/vVN 1
= QIN’d’p = 2(/ +/ ) = 2(JN,d,p,1 + JN,d,p,2)~ (3343)
0 1-1/vVN

Next, it follows from the asymptotic formula (3.2.36) that
INap1 = (2N +d—1)r/2)"®

X /Oll/m‘ydcos((zjv +d—1)my/2 — dr/2) (1 + 0(1)>

= (14 ON"Y2)P(2N +d—1)x/2)"%®
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1-1/VN
X / ly~%cos((2N +d — 1)my/2 — dn/2)P dy
:ailxN”ﬂnn@N+df1npr®
X (/01 ly~cos((2N +d — 1)wy/2 — dr/2)|P dy + O(NW)). (3.3.44)
In addition, by inequality ,
INdpa2=ONTYH (2N +d —1)r/2)"%. (3.3.45)
Therefore, combining f we obtain
Inap=(1+O(NT2)P(2N +d - 1)m/2)" "

X (/0 ly=@cos((2N +d — 1)my/2 — dr/2)|P dy + O(N_l/Q)). (3.3.46)

It remains to note that as N — oo,

1
/|yﬂmq@N+d—1wwz—mqmw@
0

I'(p/2+1/2)

Val(p/2+1)
I'(p/2+1/2)

= N ETpz D0 )

(2/7T)10gN, d=1,p=1,

(wN)P=Y [ |(sint)/t[P dt, d=1,1<p < oo.

d=0,0<p< 0,

d=1,0<p<1, (3.3.47)

Indeed, in the case d = 0,0 < p < coord =1,0 < p < 1, we use Lemma [3.333} in
the case of d =1, p = 1, we use the asymptotic value of the Lebesgue constant; and the
case of d =1, 1 < p < oo can be easily established by straightforward calculation. Thus

(3-3.42) follows from (3.3.43), (3.3.46), and (3.3.47). m

3.3.5. Normalized Hermite polynomials on (—oo,00). Let us set

N—1/(2p) d=0,0<p<8/3,
e  JNVVER L g=10<p<],
TNdp =\ NV2/logN, d=1,p=1,
N1/(@p), d=1,1<p<8/3,

FHMmumwu—marm
T(p/2+)IB2—p/H ]

(3.3.48)

d=0,0<p<8/3,

) [r@/2+1/2rQ/2 —p/2)r —p/H1""
Hap = { 22T /7 T (p)2 £ 1) T(3/2 — 3p/4) } , d=1,0<p<1, (3.3.49)
2/7T7 d= ]., p= ]_7
(f< |(sint) /t[P at)V'®, d=1,1<p<8/3.

Then the following theorem holds:



56 3. Asymptotic properties of special sequences of polynomials

THEOREM 3.3.8. For p € (0,8/3),
e V" 2 Hon 1

lim T;{/'*d. (/ a
Noee Rl Y Hy, 4(0)
REMARK 3.3.9. For d = 0 this result is proved in [3, Theorem 3]. We shall use this fact
in the reasoning for d = 1.

The proof of Theorem is based on three technical lemmas. In the first of them
we discuss an estimate for the inverse of the function 6(y) = 2¢ + sin(2¢).
LEMMA 3.3.10. Let 6(p) := 2¢p +sin(2¢) : [0,7/2] — [0, 7] and let ©(0) : [0, 7] — [0,7/2]
be the inverse of 8. Then for p € [1,00),

O (0)pP(0) —4P10P = O(6%7P), 6 €0,

Proof. Note first that since '(¢) > 0 on [0,7/2), ¢(f) is a continuous and increasing
function on [0, 7] and ¢ (0) = 0. Next, since 0(¢) = 4o + O(¢?), ¢ € [0,7/2], it is easy to
conclude that

P 1/p
dy) =Ha,p- (3.3.50)

0(0) =0/4+0(0%), 6¢clo,n]. (3.3.51)
Hence for 6 € [0, 7],
HONE 1 !
er(0) P (24 2cos(2p(0)))pP(0) 0P
1 4r—1
T Acos2(0/4+ O(0%))(0/4+ O3 v
v e 0(6>77). m

T r(1+0(02) 1+ 062 6
Next, we find asymptotics of two integrals.
LEMMA 3.3.11. Let Aqp 4 be defined in (3.3.3):
(a) For N=1,2,...,d=0,1, p € (0,4), and § € [0,7/2), the integral
w/2
Ingp(d) = </ [sin((N 4+ d/2 + 1/4)(sin(2¢) — 2¢) + 37 /4)|P
5

1/p
x cos~ P psin’ P2 o dgo) ,

satisfies the limit property

SEI(I)lJr 1\}51100 )\N,d,pIN,d,p((S) = A;,pv (3352)
where An,qp 45 defined by (3.3.2) and
A% = Adpi-p/2, d=0,0<p<4dord=1,0<p<1,
.p 21V A 1, d=1,1<p<A.
(b) The following relation holds for 0 < p < 4:
1/p

/2
511%14_ Nlim </ sin((N + d/2 + 1/4)(sin(2¢) — 2¢) + 37/4)|P sin' ~P/2 <pd<p>
— —00 5

= Ao,p,1-p/2-
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Proof. To prove statement (a), we consider three cases.

CAsE 1. Let d=0,0<p<4ord=1,0<p<1. Then
/2
IR ap(0) = /6 lcos((N + d/2 + 1/4)(2¢ — sin(2¢)) — 7/4)[P cos™ % @ sin' P2 p dyp

:/7r lcos((N +d/2 +1/4)0 — w/4)[
0

x (cos p(8)) ™ (sin p(0)) 7P/ () x(0,5,) (0) dO, (3.3.53)

where (0) is the inverse of 6() = 2¢ —sin(2p) and x[o,s,] is the characteristic function
of [0,81], 61 := 26 — sin(26). Then using Lemma for g(y) = |cosy|P, and

V() =do/2+0/4—7/4,  f(6) = (cos p(0)) " (sin(0)) P/2¢' (6)x(0,6,)(6),
we obtain from

JimIa,(0) = (/) [ leosop ap | j(eoww))-dp(smso(f)))l—p/%’(e) a0

T w/2
= (1/7) / |cos 6|7 d@/ cos™ % psin' P2 p dp.
0 s

This establishes (3.3.52)).
CASE 2. Let d =1, p = 1. Using estimate ({3.3.5]), we obtain

w/2—0
Iny1(0) = / [sin(V (2¢ + sin(2¢)) + (3/4)(2¢ + sin(2¢)))| sin™! %) cos'/? pdyp
Oﬂ/275
= / |sin(N (2¢ + sin(2¢p)))|sin ™! @ cos'/? p dp + O(1)
0

= /7r/2(S |sin(N (2¢ + sin(2p))) |~ " cos?? o dp 4+ O(1). (3.3.54)
Next making th(()a substitution 8 = 2p+sin(2¢) in the last integral in and applying
Lemma [3.3.10] for p = 1, we obtain
In1a(0) = /Oﬂ_é1 [sin N6|¢' (6) (cos ()2 /2(8) d6 + O(1)
- /OHI Isin N0~ (cos 0(8))/2 d + O(1)

= /“N |sin 06~ (cos p(8/(2N)))*/2 do + O(1), (3.3.55)
0

where 7 := 2§ —sin(260) and p is any number from (0, 7 — d1]. Since the inverse function
©(0) is increasing on [0, 7], from (3.3.55) we obtain
uN

lin inf (log N)~* (COSUQ(QO(/L/Q))/ |sin )01 d0+0(1)>
— 00 0
< lgninf (log N) "'y 1.1(8) < limsup (log N) 'y 1.1(8)

N—oo

uwN
< limsup (log N)™* (/ |sin 6|6 df + 0(1)). (3.3.56)
0

N—o0
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Then the relations
(2/7) cos'/2(i(s/2)) < lignint (1og N)~I.1.1(8) < limsup (log N)~1.(6) < 2/
(3.3.57)
follow from and . Finally, letting ;# — 0 in , we arrive at
Nhinoo(logN)—llN,Ll(é) =2/m,
since ¢(0) = 0. This proves (3.3.52).
CASE 3. Let d =1, 1 < p < 4. We first note that by Holder’s inequality and estimate

, we obtain
x/2-6
Ingp(6) = (/0 [sin(V (2¢ + sin(2¢)) + (3/4)(2¢ + sin(2¢)))[?

1/p
x sin"P pcos! P2 dgo)
T/2—8 1/p
= (/ |sin( N (2¢ + sin(2¢)))[P sin™? @ cos' /2 d<p> +0(1)
0
T/2—8 1/p
= (/ |sin( N (2¢ + sin(2¢))) [P P cost P2 d<p> +0(1). (3.3.58)
0

Making the substitution 8 = 2¢ + sin(2¢) and applying Lemma [3.3.10} from (3.3.58]) we
have

T—01
IN71,p(5) = (4P—1/ |sinN9|p9_p(cos<p(0))1_p/2 d9)
0

1/p

+ o( ( /0 " i NOPO? P (cos o(0)) P/ d9> w) +O(1),  (3.3.59)

where §; := 26 — sin(20).
Next we show that

Ry = / " i NP O (cos o(0))1 P dB = o(NP) (3.3.60)
as N — oo. Indeed, for 10< p <3,
Ry < C/ﬂ_él |sin NO[P6> P df < C/W_él 6277 df = O(1), (3.3.61)
since [0, — &) = [(()),7'(/2 —§]. If p = 3, then ’
Ry < c/ﬂ_él sin NO|29~ 1 df < C/W_él |sin N0|/6 df < C'log N. (3.3.62)
Finally, if p > 3, ?chen i

T—01 1 N(m—0d1)
Ry <C / Isin NOJP627 4 — C NP3 < / Isin 0762 df + / Isin 0[P62 d9)
0 0 1

1 0
< CNP—3( / |sin 0[PP db + / 62~ d9> < CNP73, (3.3.63)
0 1
Therefore (3.3.60) follows from (3.3.61)—(3.3.63).
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It remains to compute the principal term in (3.3.59). For any « € (1/p, 1) we obtain

T—081
Inp(0) := 4p—1/ |sin NO|P6~7(cos (pw))l—p/z do
0

o N(7w—61)
= 4”1Np1(/ +/ >|sin0|p0p(cosg0(9/]\7))1p/2 do
0 [e3
— 4P INP Y Iy pn + I o), (3.3.64)
where

T—01
Inpa2 < N'7oP / (cos(0))17P/2dh < CN'~P = o(1) (3.3.65)
0
as N — oo. Further,
[} N&
INp1 = / |sin 6|P0~F df + / |sin [P0 P Fy ,(0) d + o(1), (3.3.66)
0 0

as N — oo, where Iy, := (cos ©(6/N))'=P/2 — 1, and by (3.3.51),
max |[Fy (0)] < C max |(cos p(0/N))1—P/2l _ 1]

0el0,N«] 0el0,N«]
< CP*(N*) < CN** 72 = o(1) (3.3.67)
as N — oo. Then (3.3.66]) and (3.3.67]) imply
INp1 = / |sin 6|P07F df + o(1), (3.3.68)
0

as N — oo. It follows from (3.3.58))—(3.3.60)), (3.3.64)), (3.3.65)), and (3.3.68|) that

N—o00
Hence (3.3.52) follows for p € (1,4).

This completes the proof of statement (a) of Lemma [3.3.11] The proof of statement
(b) follows that of Case 1 above. m

) 1/p
lim NYP~1Iy, () = 4171/P </ |sin0|p6’pd0> .
0

We also need an asymptotic formula for Hermite polynomials.
LEMMA 3.3.12. Let g1 € (0,7/2) be a fixzed number. For N =1,2,... and g1 < ¢ < /2,

e—(4N—&-2d+1)(cos2 cp)/2H2N+d((4N +2d + 1)1/2 cos @)/HQ(?\/)'+d(O)
= (=1 (1 +o(1))(4N) "2

x (sin((N + d/2 + 1/4)(sin(2¢p) — 2¢) + 37/4)(sinp) /2 + O(N7Y)),  (3.3.69)
as N — oo, where o(1) and O(N—1) in (3.3.69)) are independent of .
Proof. Using the Plancherel-Rotach asymptotic representation for Hermite polynomials
[48, Theorem 8.22.9(a)] and taking account of H§7\2+d(0) = (—1)N2¢(2N + d)!/N!, we
obtain
o~ (UN+2A0)(eos” )2 F, (AN +2d + 1)V cos ) /Hyy . 4(0)

— (_1)N2N+1/47d/2N!/(7T1/4(2N + d)'3/2)
x (sin((N + d/2 + 1/4)(sin(2p) — 2¢) + 37/4)(sinp) 2+ O(N7Y)),  (3.3.70)
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where ¢ € (e1,m —€1), €1 € (0,7/2). Then (3.3.69)) follows from (3.3.70)), by Stirling’s

formula. m

Proof of Theorem Throughout the proof we set ¢1 := arccos(1 — ¢). The following
relation was proved in [3], Theorem 3] in a more general setting (0 < p < 8/3):

2 1
' _ ) eV /2H a(y p /p B
J\rlfloo(4N)d/2 1/(2p) (/0 Wr()‘ dy) =271, ,,

Hy14.4(0)
where Hg,,, is defined by (8.3.49). In particular, relations (3.3.50) and (3.3.71)) are equiv-
alent for d = 0. So it remains to prove ford =1.
For any fixed € € (0,1), d = 0,1, and p € (0,4), by Lemmawe obtain

(3.3.71)

d/2—1/(2p) INVEL (=) e_y2/2H2N+d(y) ? e
(4N) et dy
0 Hyp4q(0)

= (14 0(1))(4N)%?

7/2| g—(4N+2d+1)(cos® ) /2 . AN 49 11/2 cos P 1/p
" (/ e 2(1;7)+d(( +2d+ 1) 2 cos ) singpdgp)
1 H2N+d(0)
™/2|sin((N + d/2 + 1/4)(sin(2p) — 2¢) + 37/4)
=(1+0(1)) / - /3
e (sin )

p

1/p
+O(NY singodgp) (3.3.72)

as N — oo. Then (3.3.72]) shows that
/ e 67?42/2H2N+d(2/) ‘pd )Up

d
HY., 4(0)

/2 1/p
= (1+0(1)) (/ [sin((V 4+ d/2 + 1/4)(sin(2¢) — 2¢) + 371'/4)|‘”(sin<,0)17’”/2 d(p)

€1

(AN)H/2-1/(20) (

0

+O(N™)
if pe[l,4), and

/\/4N+2d+1 (1—¢)

—y2/2 P 1/p
(4N)d/21/(2p)( e v/ H2N+d(y)‘ dy)

d
HLY, ,(0)

/2
=(1+o0(1)) (/ ISin((N + d/2 + 1/4)(sin(2) — 2) + 37 /4)|P (sin ) 7P/2 dyp

€1

0

1/p
courn)
if p € (0,1). Hence by statement (b) of Lemma |3.3.11

_ a2 1
lim lim (4N)%/2-1/(p) (/\/41\/ T2d+1 (1—¢) 6;//2Hmd(y)‘pdy> /p
— — 00 d

N 310 4(0)

=Aogpi-pr=2"""Ho,, 0<p<d4 (3.3.73)

0
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Next we deduce from (3.3.71]) and (3.3.73)) that
e V"2 Hyy a(y)

d
HLQ, ,(0)
(3.3.74)

Since supPy< N <o AN.dp < 00, Where Ay g4, is defined by (3.3.2)), from (3.3.74)) we obtain

lim lim (4N)%/2-1/(p)

P 1/p
(/ dy) =0, 0<p<8/3.
€0 N—oo VANT2d+1 (1—¢)

S —y?/2 P 1/p
lim lim (AN)*YCP) Ny 4 (/ M/Z?]\"Fd(y)‘ dy) =0,
e~0N—oo VINT2dTI (1-¢) dHQ(A;er(O)
0<p<8/3.
Hence for 0 < p < 8/3,
0ol a2
2 lim (4N)%~1/2)\0 / e ¥ ?Hynia(y)|”
— 00 ’p (d)
N Y Hyp 1 q(0)
VINF2AFT (1=2) | .y /2 p
=21lim lim (4N)%~ 1/2/\p / ¢V "Hanraly) / g)QN-’_d(y) dy
e—0 N—oco deQN—i-d(O)
oo —y%/2 p
+2lim lim (4N)%~ 1/2)\p dp/ % dy
e~0N—oo NP | N (1—e) yiHyp 4(0)
V4N +2d+1 (1—6) —y /2H P
=21lim lim (4N)P~1/2)\% e P Hanaly) dy,  (3.3.75)
e—0 N—oo ylHY (0)
2N+d

if the last double limit exists. We shall show below that it exists by direct computation.
Note that

NN 4 p = TR - (3.3.76)
To finish the proof of Theorem [3.3.8| we consider two cases.

CAsE 1. Let d=0,0<p<8/3ord=1,0<p< 1. Similarly to (3.3.72)), we deduce by
Lemma [3.3.12] that

/\/4N+2d+1 (1—¢)

—y2/2 P 1/p
<4N)d—1/(2p)< e v/ H2N+d(y)’ d )

0 de((Ji\;er(O)
™2 sin((N 4+ d/2 + 1/4)(sin(2p) — 2 3r/4) O(N—YHI|? . 1/p
= o[ | ety 4 G| )

as N — oo. This shows that

(4N)d71/(2p) </ B eiy2/2H2N+d(y) pd )l/p
—_— y
d
0 dHéJ\;-&-d(O)

/2
= (1+0(1)) (/ sin((N + d/2 + 1/4)(sin(2¢) — 2¢0) + 37 /4)["

€1

1/p
x (cos )~ (sin @)1 7P/ d<p> +O(N™Y
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if p€[1,8/3), and

/x/4N+2d+1 (1—¢)

—y2/2 P 1/p
(4N)d—1/(2p)< e v/ H2N+d(y)‘ d )

Yy HYY , 4(0)

/2
=(1+4+0(1)) </ [sin((N 4+ d/2 4+ 1/4)(sin(2¢) — 2¢) + 37 /4)P

€1

0

1/p
x (cos @)~ (sin ) P2 dp + O(Np))

if p € (0,1). Hence by Lemma |3.3.11

e—0 N—oo

/4N+2d+1(15) 61/2/2H2N+d(y)'p >1/p
— 1 d

dH(d)

2lim lim (4N)?~1/(2) (
2N+d(0)

0

) (p(p/2 +1/2)0(1/2 = dp/2T(1 = p/4) ) " e

VrI'(p/2+1)I'(3/2 — p/4 —dp/2)
Thus (3.3.50) follows from (3.3.75)) and (3.3.77]).

Note that within the argument for Case 1, we actually provide a new proof of (3.3.71))
when d = 0, by using (3.3.71) for d =1 and Lemmas [3.3.11| and [3.3.12]

CasE 2. Let d = 1, 1 < p < 8/3. In this case we set vy = (4N + 3)717% where
a € (1/2,3/5), and then split the integral over [0, v4N + 3 (1 — ¢)] into two integrals:

eV 2 Hon 1 (y)|"

/ VAN+3 (1—¢)
(4N)P=1/2)\R / ‘ dy
NLe Jo yHéNJrl(O)
_ p—1/2yp onVINTS AN+3(1-¢) e*y2/2H2N+1(y) P
= (4N) AN, p + 7 -| dy
o 0 N VANTS yH2N+1(0)
= Ing+ Ino. (3.3.78)

Then choosing vy = (4N + 3)71/2%¥2 5y = 43 /N < CN~2t2% and recalling that
BN = VAN +3 (see (3.2.43)), N = 1,2,..., we see that {Hon41(y)/Hjyn 1(0)}F-1 €
Py (3,b=1v,4), by Proposition Therefore using inequality ([3.1.3)), we obtain

sup Hon1(2/VAN +3) ’ < sup Han1(2/VAN +3) ‘ <c
lz2l<(@N+3)-a| (z/ VAN +3)H} 1 (0) | 7 |z)<(ans)-1/2+a| (2/VAN + 3)H} 1 (0)
Hence
Iny < (NP (O Hyy i (2/VAN +3) pdz
’ VINT3 o (/AN + 3)Hyy ., (0)
S CPNPTITONL L, =O0(N"%) =o(1), 1<p<8/3, (3.3.79)

as N — oo. Further by Lemma [3.3.12]
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I = (14 o(1)(4N) 2 An 1

</arccos uN e—(4N-‘,—3)(cos2 @)/2H2N+1 ((4N + 3)1/2 oS QO)
X
1 cos ‘PHéN-s-l (0)

P 1/p
sin d<p>

= (1 +o(1)AN1p

. /N sin((N +3/4)(sin(20) = 20) +37/4)  O(N"!)
. (sin 9)1/2 cos cos o

P 1/p
sin dcp)

= (14 0(1)An.1, (/amow |sin((V + 3/4)(sin(2¢) — 2¢) + 37/4)|”

€1

1/p
X (cos ) 7P (sin ) 7P/2 d(p) +O(My), (3.3.80)

where for 1 < p < 8/3,

arccos vy 1/p
My = )\N,LpN_l (/ cos™ P cpsinapdgo)

€1

1/p—1
<O N N P LU o0 yn-1 e N Z (1) (3.3.81)
P 1OgN7 p = 17 g

as N — oo. Next,

arccos vy 1/p
AN1p (/ ’sin((N +3/4)(sin(2¢) — 2¢0) + 37T/4) |p(cos ) P(sin <p)1_p/2 d<p>

€1

w/2 1/p
= AN, 1p </ ‘sin((N +3/4)(sin(2¢) — 2¢) + 37r/4) |p(cos ©) P (sin (p)l—p/2 d<p>

+0(Qn), (3.3.82)
where by Lemma [3.3.10)
/2
QN = AN1,p (/ |sin((V + 3/4)(sin(2¢) — 2¢) + 37/4) |p(cos ©)7P

ICCos v N

1/p
X (sin )t 7P/2 dcp)

arcsin vy 1/p
= Av1p ( / [sin((V + 3/4) (sin(2p) + 2¢)) | (sin ) 7 (cos )! 7/2 d¢>
1/p

CNflfa
< Cidna, ( / Isin(4N + 3)0]70~ d9>
0

CN™® 1/p
< CQ)\NJ,le’l/p (/ |sin @|PO~P d9> < C3N~*=0(1) (3.3.83)
0

as N — oo. Therefore collecting (3.3.78)—(3.3.83)), we arrive at

2 1
e Y 2Hyn 1 (y) pdy) /v

VAN+3 (1—¢)
/ yHéN-H (0)

(4N)1—1/(2p))\N’17p (2

0
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w/2
=(14o0(1)An1p <2/ |sin((N +3/4)(sin(2¢p) — 2¢0) + 37r/4) |p

€1

1/p
X (cos @) 7P (sin ) 7P/ d<p> +o(1) (3.3.84)

as N — oo. Finally, (3.3.50)) follows from (3.3.75)), (3.3.76) (3.3.84]), and Lemma|3.3.11
This completes the proof of Theorem |3.3.8 =

3.3.6. Normalized Williams—Apostol polynomials on (—o0,00). The following
theorem holds:

THEOREM 3.3.13. For a >0 and p € ((2a +d) ™!, 00),

=Dapa, (3.3.85)

2\—(N+d/2+a) p 1/p
NI T (/ S 4 4@ AQNH(y)‘ dy)
o R YAy 4 4(0)
_ . 14y )*(N+d/2+a+1/2)W2N+d(y) pd 1/p
T N N a7y (@ y
R Y Won14(0)
where Ty 4, is defined in (3.3.40) and
[F(p/Q +1/2)ap —1/2
I'(p/2+1)I'(ap) )
[F(p/Q +1/2)I(1/2 — p/2)T (ap + dp/2 — 1/2)} /p

)1/p
} , d=0,0<p< o0,

D p,a 20y/m I'(p/2 + 1)I"(ap) (3.3.86)
d=1,0<p<1,
2/7‘-7 d=1,p=1,
(J5~ [(sint /t|pdt)1/p, d=1,1<p< .

Proof. By definitions (3.2.55) and (3.2.58)) for the Williams—Apostol polynomials of the
first kind,

2\~ (N+d/2+a) P
R dA2N+d( ) R
/2 IN + d)0|P(sin )2op+dp—2
_ 22N +d) /0 [oos(2N + )COLd(:;n ) 9. (3.3.87)

Applying Lemma for A = 0, ¢ = 2ap + dp — 2 to the integral Fy ;o0 a4, 20 OD
the last right-hand side of (3.3.87)), we establish the theorem in this case.

Similarly, by (3.2.56)) and (3.2.66]), we obtain
/ (1+yz)—(N+d/2+a+1/2)W2N+d(y) ’pd
Y
d
R ydW2(N)+d(0)

cos((2N + d)arccot y) |”
yH(L+y?)e

dy

™/2 |sin(2N + d + 1)6P (sin §)2er+dp—2
cos 0

de

=2(2N +d+ 1)*dp/
0

= 2(2N +d+ 1)7dpF]Z\;/,d,p,2ap+dp—2,l'

Then by Lemma for A\=1, ¢ = 2ap + dp — 2, we arrive at (3.3.85)). m



4. Pointwise asymptotic relations between the
interpolation error and zeta functions

In this chapter we present pointwise asymptotic formulae for the zeta functions. Here
and subsequently, k£ denotes an index that takes the values of 1 or 2. We also recall that
d takes the values of 0 or 1. In addition, throughout the section we use the following
notation:

cosht, d=0,
ha(t) = {sinht, d=1, (4.0.1)
Dypn:={s€C:2N —2>Res > -2+ kd},
EN, =0N +yye ™. (4.0.2)
Note that if limy_ .o 6y = 0 and limy_.o Yy = 00, then for any 7 € R,
J\}gnoo En-=0. (4.0.3)

4.1. Estimates for integrals. Here, we establish estimates for some integrals that will
serve as remainder terms in asymptotic relations. In addition, we show that these integrals
are analytic functions of a parameter s.

THEOREM 4.1.1. Let {Pon+a}—q1 € Pa(B,7,9) for some sequences f = {On}F—q1, ¥ =

{YN}X= and § = {ON}FF_;, satisfying (3.1.1) (see Definition [3.1.1). Then there exists
Ny € N such that:

(a) For s € Dy n, N> Ny, andy € R,

| Aontd ks ()] ==

o] ts—l lkd 1 d
/ 1+t2/<ﬁNy>2(ﬁffvdeW(z’t/ﬁN)_h’;@)) t’

< C(9)EN Re s—(k-1)d- (4.1.1)
where C(s) is independent of y and N, and for any fized r > 0 and € > 0,
sup C(s) < o0. (4.1.2)

—2+4+kd+e<Re s<r
(b) For every y € R\ {0} and a fited N > Ny, the function Aaniark,s(y) is analytic in

s on Dd,k,N'

As an immediate corollary of Theorem a) and relation (4.0.3), we obtain the
following result:

(65]
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COROLLARY 4.1.2. If {Pon+a}_; € Pu(B,7,9), then

sup [Aontak,s(W)] < CEN Re s—h-1ya» N €N, (4.1.3)
ye

lim sup|Aentanks(y) =0. (4.1.4)
N —oo yER

To prove Theorem we need the following simple estimate:

LEMMA 4.1.3. Let {Pon+a}_q € Pa(B3,7,06). Then there exists Ng € N such that for all
N > Ny and any t € [0,vn],

.d 3 2
. i . 1 < Cén min{t ,1}’ (4.15)
By Panyalit/By)  ha(t) ha(t)
where C' is independent of t and N.
Proof. Using (3.1.3) for z = it, t € [0,vn], we obtain
|B% Panva(it/Bn) — i%ha(t)| < C16x min{t?, 1}ha(t), (4.1.6)
whence, for large enough N,
B Pen-va(it/B)] > (1/2)ha(?). (4.1.7)

Then (4.1.5)) follows from (4.1.6) and (4.1.7). =

Proof of Theorem|4.1.1. (a) We first prove (4.1.1)) for kK = 1. Let us assume that 2N —2 >
Res > —2+d. Then

oo tReS—l Zd 1
A sy < / : - dt
[Aenae(v) o 1+12/(Bny)? | B Ponvyalit/Bn)  ha(t)
YN es}
:/ +/ = Ii(y) + Lx(y). (4.1.8)
0 TN
Next, for —2 < Res < 2N — 2,
oo tResfl dt oo tRe s—1 dt
IQ(y) < . / — N = Ig,l(y) + 1272(];), (419)
vx BEIPanga(it/Bn)] Sy ha(t)

where by the asymptotic formula for the incomplete gamma function I'(u, z) (see [T
Sect. 9.2]),

o0
Iro(y) < C’d/ thes=le=t gt = Oyl (Re s, yn) < CaCa(s)yne s te V. (4.1.10)

TN
Here, Cy = 2 and C; = 2/(1 — e=21). However, to prove (4.1.2]), we need an estimate of

Cs(s) in (4.1.10). It is possible to show that
1-Res
Cals) < {m:aoc{?,1”(Res)71 e}, Res> 1,

4.1.11
1, Res < 1. ( )

Indeed, this inequality is trivial for Res < 1. For Res > 1 and vy > 2(Res — 1), we
obtain

00 00
/ tRe s=lo=t g4 — / (tRe S—le—t/Q)e—t/2 dt < 27]%65_16_'”\], (4112)
y

N TN
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while for Res > 1 and 71 < vy < 2(Res — 1),

(o)
/ tRes=le=tdt < I'(Res) < I'(Res)(yn /1) Re s~ tem =, (4.1.13)
YN

Then (4.1.11)) follows from (4.1.12)) and (4.1.13).

Further, if {z,, N,d}évzl are positive zeros of Pyn 4, then by the normalization property

(3-1.2),
o] tRcs_l dt
La(y) :/ dTTV (42 2
v V], (82 (BN zp,n,a)® +1)
T2 (33 /(B 2 .a)? + 1) /oo Res—1 gy
B B | Pan+a(ivn /BN)] N H;iis/%+1(t2/(ﬂsz,N7d)2 +1)
[Res/2|+1
Res—2|Res/2|—2 .
<yt T (R 4 B2 ) [ (BN Pavralivn /BN)). (41.14)
p=1

Here, ngl :=1 (for —2 < Re s < 0). Next, it follows from inequality (3.1.5)) of Proposi-
tion that

sup sup Bnzp,n,a < C3(|Res/2]). (4.1.15)
1<p<|Res/2|+1neN

In addition, by (4.1.7), for N > Ny we have
B% | Ponalivn /Bn)| = (1/2)ha(yw) < (C7t/2)e™™, (4.1.16)

where Cp = 2 and C; = 2/(1 — e~2"). Therefore, combining (4.1.14)) with (4.1.15) and
(4.1.16)), for N > Ny we obtain

() < Corfi*(1+ C3([Res/2) /7)1 /2016w,

Thus
Ir1(y) < Cs(|Res/2])yRese™m, (4.1.17)
Note that for any fixed r > 0,
sup  C5(|Res/2]) < oc. (4.1.18)
—2<Res<r
Then (4.1.9)), (4.1.10), and (4.1.17)) imply an estimate
L(y) < Co(s)yRese™™ —2 < Res < 2N — 2, (4.1.19)
where, by (4.1.11]) and (4.1.18)), the constant Cs(s) < Ca2(s) + C5(|Re s/2]) satisfies
sup  Ch(s) < o0 (4.1.20)
—2<Res<r

for any fixed r > 0.
It remains to estimate I;(y). If Res > —2 + d, then for N > Ny, by Lemma [4.1.3]

7 ) YN R 1 id 1 d
< t e s— _ t
1v) < /o B% Pantalit/Bn)  ha(t)
[e'e} tRe s+1
< Croy / 4t < CsI'(Res—d+2)dy, (4.1.21)
o ha(?)
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where C7 and Cs are independent of s and N. Thus (4.1.1) for £ = 1 follows from
(4.1.8), (4.1.19), and (4.1.21) for s € Dy 1 n, while (4.1.2)) is a consequence of (4.1.20))
and (4.1.21)).

To prove (4.1.1) for k = 2, we note that

o0 tRes—d—1 74 1
A <4 _ - dt,  (4.1.22
| AN +d,2,5 (V)] 2/0 1+12/(Bny)? | B Panyalit/Bn) hd(t)’ ( :
where
.d 1
Ay = supt? ! - + ‘
27 B Panyalit/Bn) — ha(t)
1 td

< sup( + > < 2. 4.1.23
SONTIL, (12/(Bvzpn)2 +1) - halt) e

Finally, the integral on the right-hand side of (4.1.22)) can be estimated by (4.1.8)), (4.1.19),
and (4.1.21)) with s replaced by s — d. Therefore for Res > —2 + 2d,

|A2N+d,2,s(y)| < C(S)g;:/,Re s—d>

where C(s) satisfies (4.1.2]). This proves statement (a) for k = 2.
(b) Let =2+ kd < Res < 2N — 2, where N > Ny. We first estimate the integrals

- oo 5 110gpt de _ 1
Aps(y) = /0 1+12/(Byy)? <ﬂde2kN+d(’Lt/ﬁN) hg(t)>dt

1 0o
— / +/ :[1 +IQ, p:(),l,..., (4124)
0 1

similarly to the proof of statement (a). Indeed, using Lemma we have
1 tRe s—d(k—1)+1 logp(l/t)
ha(t)

1
<y / tRes=hdt1l100P(1/t)dt = C1p!(Res — kd + 2) P71, (4.1.25)
0

dt

‘11| < AkC5N/
0

where A7 =1, Ay < 2 (see (4.1.5) and (4.1.23))), and C is independent of p and s.
Next taking account of (4.1.15]), we obtain

I / tRes=1logP t dt +/°° tRes=1logP t dt
) v olos tat
LIS 2/ Byana? +1) ha(t)

= H(ﬂNzV,N,d)Z/ tReS*ZNfllogptdt+Cg/ tRes=2N=11o0P ¢ dt
v=1 1 1

< C3p!(2N — Res) P (4.1.26)

where Cy = Co(N) and C3 = C3(N) are independent of p and s. Thus relations (4.1.24)—
(4.1.26]) imply the estimate

1A, s(y)] < CpY((Res —dk +2)"P~' + (2N —Res)™"™ ), p=0,1,..., (4.1.27)

where C' is independent of p and s.
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Let so € Dgj n. Then we replace t*~! in the definition of Aoy 4ak, s with its Taylor
expansion in a neighborhood of sy and obtain, by (4.1.27)),

0o t5071 logp t zkd 1
A s — o : ) a I
IN+d,k, /o pgo P+ 2/ (Bny)?) (s = s0) <5J’§,dP§N+d(lt/ﬁN) h’j@)) !

o Aps(y) »
zpz_;)p!y(s—so) )

Therefore, Asntak,s is analytic in s in a neighborhood of sg € Dg n. This proves
statement (b). m

4.2. Asymptotic relations for ((s) and 3(s). In this section we present our major
pointwise asymptotic relations between the zeta functions and the interpolation errors of
Lagrange and Hermite interpolation to functions like |y|* and y?™ log |y|.

The Riemann zeta function is defined by the series ((s) := Y>>~ ,n~* for Res > 1. It
is well known that ((s) can be extended to an analytic function on C\ {1}.

The Dirichlet beta function 3(s) := .2 ((—1)"(2n+1)"* is defined for Re s > 0 but
can be extended analytically to a function on C. It is a Dirichlet special L-function with
the character x modulo 4 defined by

x(n) = {<_1)(n D2, modd, 0,1,....
0, n even,

The functions ((s) and 3(s) are closely related, and they have similar properties. We
define the “generalized” zeta function by

L ﬂ(s)v d =0, k:]_,
Can(s) = {g(s), d=0,k=2ord=1, k=1,2. (4.2.1)

An integral representation for (g x(s) is given below (see also Remark [2.3.6]).

PROPOSITION 4.2.1 (see [16], Sect. 1.12]). For Res > 1 — k(1 — d),
o] t8+k—2

Curlo)anle) = | Tt (1.2.2)

0
where hg is defined by (4.0.1)) and
Od,k:(S) — 217(1@‘71)5(1 _ 2k7571)d(372k)+k71[1(5 +k— 1)

In particular,
Co.1(s) =2I(s), Ci1(s) =2(1—-27)I'(s),
Coa(s) =2"5(1 = 21" I(s + 1), Cia(s) =2 I'(s+1).
REMARK 4.2.2. It is easy to see that Cy x(s) defined by are analytic functions in

s for Res > 1 — k(1 — d). Moreover, the function Cy($)Cq4,k(s) from Proposition
can be extended to an analytic function on the domain

Dgr:={s€C:Res>—-1—-k(l—-d),s#1—-k(1—-d)}. (4.2.4)

Indeed, we first note that Cy (s)Ca x(s) is undefined at several exceptional points s = sq
from this domain, where so1 = —1, sp2 = —2,1, and s11 = 0. Then Cqx(s)Cqr(s) is

(4.2.3)
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analytic at each s € Dy, s # Sq, since (g x(s) and Cy(s) are analytic on this set. It
remains to define this function at the exceptional points as the finite limits

Cak(8d.k)Cak(Sa k) = Sgglk Car(s)Car(s), d=0,1,k=1,2,

which exist due the well-known properties of I'(s), 8(s), and ¢(s).

We now recall two interpolation formulae (2.3.21]) and ([2.3.23)) that hold for every
y € R\ {0},

1" — Lan (o ol wGon ) = 22202 )
x/oo et 0<Res<2N+1,s5#24,... (4.2.5)
o (1+(t/y)?)Gan(it)’ ’ T
y*™ log ly| — Lan (y, 4™ log lyl, yGan (y))
t2m71 dt

— (_1)mG2N(y)/O (1+ (t/9)?)Gan (i)’

where Goy is an even polynomial of degree 2N with all real zeros, Gon(0) # 0, and
Lo interpolates a function at the origin of multiplicity 1 and at the zeros of Gapn of the
corresponding multiplicities.

Let us assume that {Pon14}3_; € Pa(B,7,96) and choose Gopn (y) = y‘deQkN+d(y)
with multiplicities k of all nonzero interpolation nodes. Then replacing N with kN and s
with s+k(1—d)—1 in ([£:2.5)), we deduce that for every y € R\{0} and 2kN —k(1—d)+2 >
Res>1—-k(l1—d), s+ k(1—-d)—1#2,4,...,

[y Loy (y, [y OO R ()

m=1,...,N, (4.2.6)

2sin((s + k(1 — d) — 1)7/2)i* Phy.a(y) [ k=2 gy
_ : / o (12)
T Y o (1+(t/y)?) 2N+d(7’t)
In addition, from (4.2.6)) we obtain

y*" log ly| — Lawn (y, 5™ log lyl,y ™" Pyn a(y))
Pk? ] t2m+k‘d71 dt

= (—1)mkd QN:j(y) / = m=1..kN. (428)

Yy o (I+(t/y)?) Py, q(it)

Combining now (4.2.7)) and (4.2.8) with Proposition and Theorem we obtain

our major asymptotic.

However, before stating this result, we need to define

Lok (y) := Logn (v, |y\s+k(17d)717yfdeszNer(y))

for Res + k(1 —d) — 1 < 0 since the function |y|*T#*(1=9~1 is undefined at the origin. We
recall that for Res + k(1 —d) —1> 0,

2N
Lokn(y) = Z |2p,,al TR D T (y)
p=1

2N
+(k-D(s+k(1—d)—1)) |2

p=1

sERA=d) =275 () (4.2.9)
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is the Lagrange (for k& = 1) or Hermite (for £ = 2) interpolation polynomial of degree
2kN that interpolates the function |y[*+t*(1=9)~1 at the origin of multiplicity 1 and at the
zeros {zp N4 12]51 of y~¥Pyn1a(y) of multiplicity 1 (if £ = 1) or 2 if (k = 2). In the above
formula, I, and [, 1 < p < 2N, in are the corresponding fundamental polynomials
of Lagrange or Hermite interpolation.

Here and in what follows, we define Logn for Res + k(1 —d) — 1 < 0 by as
well, that is, Logn(0) = 0. Certainly in this case, Loy is not the interpolation polyno-
mial for |y|5'*"“(1_d)_1 anymore, though we use the same notation. Actually, Logy is the
corresponding interpolation polynomial for the function

|y|sTRA=D=1 g 20,
0, y=0.

THEOREM 4.2.3. Let {Pan1a}_q € Pa(8,7,9). Then there exists N1 € N such that the
following statements are valid:

(a) For anyy € R\{0} and for —=1—k(1—d) < Res < 2N—k—1, s+k(1-d)—-1#0,2,...,
N Z Nl;

ly|HRA=D=1 Loy (y, [yt RO y_deszNw(y))

. N "
_ 2sin((s + fﬁu_i))_l DT/2) 01 5) o) 220t ®)
TN Y
_ 2sin((s + k(1 — d) — D)7/2) Ponya(v) /OO R dt
m(Byy)?sy T Vo (L2 (Bay)2)RE()

. 2sin((s + k(1 — d) — 1)7/2) Py a(y)

Ty 0-1 AoNtd,k,st+k—1(Y), (4.2.10)
where
SUP [ Aot ks k-1 (U)] < CUIEN Rest(h-1)1-a) (4.2.11)
Yy
and for any fized r > 0 and € > 0,
sup C(s) < oo (4.2.12)

—1-k(1—d)+e<Res<r
(b) For anyy € R\ {0} and m=1,...,N,

y*™ log |y| — Lorn (y,y*™ log |y|, y " Py 1 a(¥))
(=) Cap(2m 41— k(1 —d))Cap(@m + 1 — k(1 — d)) Poya(y)

om kd
N Yy
(_l)nz pszer(y) /oo t2m+k’d+1 dt
(Byy)263™ ykd Sy (L+12/(Bny)?)hk(t)
Py ia(y)
+C %ﬂzmrcmzm%d(y)a (4.2.13)
where
sup [Aan+d k2m+kd (V)| < CEN 2t a- (4.2.14)

yeR
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REMARK 4.2.4. We recall that €Y is defined in (4.0.2) and for any 7 € R, limy 0 €,
=0 by (4.0.3)). In addition, we note that on the right-hand side of (4.2.13)),

B(2m), d=0,k=1,
Car@m+1—k(1—d)=¢@m—1), d=0,k=2, (4.2.15)
C2m+1), d=1k=1,2.

In particular, (4.2.15) shows that in the case of m =1, d = 0, k = 2 in Theorem b)
we can use the agreement of Remark to define

Car(m+1—k(1 —d))Car(2m+1—Fk(1—d))=Co2(1)((1)
= lim Co,2(5)¢(s) = log 2.

Finally, we remark that each of the asymptotic formulae (4.2.10) and (4.2.13]) contains
the principal term with Cy x(s)Cax(s), the integral term, and the remainder term. The
remainder term is estimated in and . Estimates of the integral term
and various representations for the zeta functions based on the asymptotics and
(4.2.13)) are presented in Sections and Chapter

Proof of Theorem [4.2.3, We first note that for 1 — k(1 —d) < Res < 2N — k — 1,

ikd /oo ts+k—2 dt _ de /oo ts+k—2 dt
o L+ /Y Pna(it) BT (L +2/(Bny)?) Ponyalit/Bn)

1 > =2 dt
= eTR(—d)-1 </0 ( +A2N+d,k,s+k1(y)), (4.2.16)
N

L+t2/(Bny)?)hi(t)
where, by Theorem a), for =1 — k(1 —d) <Res<2N —k—1, N > Ny,

Slelg |AoNtd ks +k—1(Y)] < C(S)SE,Re s+(k—1)(1—d)> (4.2.17)
Yy

and for any fixed r > 0 and € > 0,

sup C(s) < 0. (4.2.18)
—1—k(1—d)+e<Res<r

Next by Proposition 4.2.1] for 1 — k(1 —d) < Res <2N —k —1, N > Ny, we obtain

/°° tsth=2 gy _/°° ts+k—2dt_ 1 /°° t5tk qt
o (L+t2/(Bny)2)Rk) — Jo hki(t) Byy)? Jo (1+12/(Bry)?)RE(L)

1 > t5tk dt
= Cak(s)Can(s) — (Buv)? /o T 2/ Bry) D) (4.2.19)

Ifs+k(l—d)—1=2m, m=1,..., N, then combining and (4.2.19)) with (4.2.8]),
we arrive at ([£.2.13)). Since follows from ([.2.17), statement (b) of Theorem [4.2.3]
is established.

Next, combining ([.2.16)) and ([{.2.19) with (4.2.7), we arrive at for 1-k(1—d)
<Res<2N —k—-1,s+k(1—-d)#0,2,..., N > Np.

To show that holds in a larger domain

Djyn={s€C:-1-k(l-d)<Res<2N—k—1,s+k(1-d)#0,2,...}
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for N > N, we notice that for a fixed y € R\ {0}, both sides of equality are
analytic functions in s on Dy . v Indeed, it follows from that the left-hand side of
is an entire function in s. Next, by Remark the function Cg x(s){q.x(s) is
analytic on the domain D, defined by . Therefore it is analytic on D, x C D,
while for large enough N, Aon4.k,s+k—1 i analytic in s on D, , by Theorem M(b)
It remains to note that the integral [~ Wk;ﬁ’;)%
—1—-k(1 —d) <Res.

Therefore, equality can be extended to all s € Djyn: N = Ni. In addi-
tion, estimates (4.2.11)) and (4.2.12) follow from (4.2.17) and (4.2.18)), respectively. This
completes the proof of Theorem n

is an analytic function in s for

REMARK 4.2.5. Note that Theorem [£:2.3] can be used to establish asymptotics for the
interpolation errors

Aly) = f(y) = Lorn-2(y, f ),y Ponsa(®)),
since by (|2.3.26)),
Aly) =y *(f(y) — Larn (9, F (), " Py pa(v)- (4.2.20)
Here, f(y) = |y|sT*(0=D=1 Res > —1 — k(1 —d), or f(y) =y*™logly|, m =1,2,....
4.3. Some corollaries. Simplified pointwise asymptotics are presented in this section.
The following corollary is a direct consequence of Theorem

COROLLARY 4.3.1. Let {Pon4+4}3_1 € Pa(B3,7,6) and Res > —1—k(1—d). Let {yn }T_,
be a sequence of positive numbers such that limy o, Byyn = T for some T € [0,00|. Then
for large enough N the following statements hold:

(a) Let T = 00. Then for s+ k(1 —d)—1#0,2,...,
yfv+k(1—d)—1 _ LQkN(yN, |y‘s+k(17d)71, yfkd+1P2kN+d(y))

_ 2sin((s + k(1 — d) — 1)7/2) Py 4(yn)

St k(l—d) 1 wa—— (Cak(8)Cak(s)
™ N yN
+O0((Byyn) ) + O(EN Rest(k—1)(1-a)))s N — o0, (4.3.1)
where the constants C1(s) and Ca(s) in O((Byyn) ™2 and O(EN Re st (k—1)(1—a))» TESPEC-

tively, satisfy the property
sup max{C1(s), Ca(s)} < o0 (4.3.2)
—1-k(1—d)+e<Res<r

for any fixed r > 0 and € > 0. In addition, for a fitedm e N, 1 <m < N,

ya logyn — Lown (yn, y*™ log ly|, y " Phy_a(y))

_Co” P’fNﬂjcny) (Coan(@m+1— k(1 — d))Cap(2m + 1 — k(1 — d))
N YN

+O0((Bnyn) ") + O(Ex amra)), N =00, (4.3.3)
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(b) Let 0 < 7 < 00. Then for s+ k(l—d)—1+#0,2,...,

s+k(1—-d)—1

Yn = Lorn (yn, [yl TFO= D=1y~ PR ()
2sin((s + k(1 —d) — 1)7/2) Piy.a(yn)
- stk(l—d)—1 : +kd Cak(s)Cak(s)
BN YN

stk gy .
_/0 7(72 )Rk (1) + O(|7 — Bnyn|) + O(gN,Rcs+(k1)(1d))>v N —oo, (4.3.4)
d

and for a fited m e N, 1 <m < N,
A" logyn — Lakn (yn, y* " log lyl, y ' Py a(v))
_ (=™ P2’cN+d(yN)

2m kd
BN YN

] t2m+1+kddt
— ————— +O(|7— O(&x N . 4.3.5
| i - O =B+ OlEiane) ). N =0 (439

(c) Let 7=0. Then forRes >1—k(1—d) and s+ k(1 —d) —1#2,4,..., as N — o0,

(C’d7k(2m +1-— k‘(l — d)){d,k(2m +1-— k(l — d))

k(1—d)— —d)— _
T Loy (g Jy ROy TR PE ()

P2kN+d(yN) *
- m (O(SN,Re s+ (k=1)(1—d))
N N
O((Byyn)Resth=d=-1y " 1 _k(1—-d) <Res <3 —k(1—d),

+ { O((Bnyn)?log(1/(Bnyn)), Res=3—k(1—d), , (4.3.6)
O((ﬁNyN 2), Res >3—]€(1—d)

and for a fitedm € N, 1 <m < N, as N — oo,

ya" logyn — Larn (yn, 4™ log lyl, y ™"+ Pyy 1 a(y))
Py va(yn) ( {O«ﬂNyN)z log(1/(Bnyn)), m=1 )
— O(EX gmra) + ’ ’ . 4.3.7
YR (ERzmea) O((Bnyn)?), m=23,... ( )
Proof. Statements (a) and (b) follow immediately from Theorem [{.2.3] To prove state-
ment (c), we first note that by Proposition m

1 o0 tstk dt
Cai(8)Cak(s) — (ﬂNyN)Q/O (1+t2/(Bnyn)?)hE(t)

> tsrh=2 q¢

-/ . . (438)
o (1+2/(Byyn)?)hg(t)

Denoting the right-hand side integral of (4.3.8)) by I, we obtain for 1 —k(1—d) < Res <

3—k(1—ad),

I < Res—i—k(l—d)—l/

0o 25Res—‘,—k(1—d)—2 dt s o
——————— = C(Bnyn)Fee 1D (4.3.9)

Next, for Res > 3 — k(1 — d),

[In| < (5NZUN)2/O

[e] tRe s+k—4 dt

O C(Byyn)®. (4.3.10)
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Further, for Res = 3 — k(1 — d), and large enough N,
t1+kd dt

lIn| < (5N?JN)2/0 (Brnyn )2 +t2)hk( )

s ([ f )

< (Buy 2/Ww tdt +/ @+/w dt )
NI\ e E i P R (MO

= (Bnyn)*((log2)/2 + log(1/Bnyn) + O). (4.3.11)
Then ([£.3.6) and ([4.3.7) follow from statements (a) and (b), respectively, of Theorem
and from relations f. m
In particular, for a fixed y > 0, we can set yy =y, N =1,2,.... Since limy_. Onyy = 00
and limy_, SJE’RG st (h—1)(1—d) = 0, by , from Corollary a) we obtain

COROLLARY 4.3.2. Let {Pon+4}_; € Pa(B3,7,6) and let Res > —1 — k(1 — d) and
s+k(1—d)—1+#0,2,.... Then fory >0,

stk(1—d)—1 —d)— e b(l—d) -1  —
hm B ) (y* A=D1 Loy (y, [y =D =1y ML P ()

= (2/m)sin((s + k(1 — d) — 1)7/2)y " Ply a(¥)Car(s)Car(s), N —oo. (4.3.12)

REMARK 4.3.3. Special cases of Corollaryfor areal s >0, s+k(1—-d)—1#0,2,...,
have been discussed in several publications. Bernstein [5l, p. 99] in a weaker form and more
recently the author [T9] in the present form established for d =0, k =1, and
Pony = (—1)NTyn. In the case of d = 1, k = 1, and Poyy1 = (—1)V (2N +2) " 1Usn 1,
relation was proved in [19], while for d = 1, k = 1, and Poyy1 = (-1)V(2N
+ 1)_1T2 N+1, it was recently established by Revers in [46]. For polynomials Pyn 4 with
equidistant zeros and d = 0,1, k = 1, Theorem 2 in [20] can be derived from Corollary
by using asymptotic and identity . Special cases of this result for
s—d=1and s —d = 3 were established earlier by Byrne et al. [I0] and Revers [43],
respectively.

In the case of a complex s with Res > 0, s # 0,2,..., a weaker version of relation
m ford=0,k=1, Poy = (—1)N Ty, was obtamed in [21]. A different asymptotic
for ((s) with ys+t*(1=9=1 replaced by a Lommel’s function was found in [23].

For some Poniq and yy = y, N = 1,2,..., we can simplify (4.3.1) and (4.3.3) by
finding the asymptotic value of Pynyq(y). This is discussed in the next corollary.
COROLLARY 4.3.4. (a) Let Pan4a(y) :== Conq(y )/(CQNer)(d)(O) be the normalized Ge-

genbauer polynomial (see (3.2.2)) and let y € (0,1) be a number such that (arccosy)/m is
irrational. Then there exists a subsequence {Np}p2; such that

pllngo(il)kNp(2Np)s+k71(ys+k(1fd)fl — Lok, (v, |y|s+k(1—d)71’y*kd+1p2kNp+d(y)))

_ 2sin((s + k(1 — d)
(- y?)

k:/l)W/2)Cd,k(5)Cd,k(S)> Res>—1-k(1-d), (43.13)
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and form=1,2,...,

Jim (=1)"% (2N, ) (P og y — Lakw, (v, log |yl y™* T Py 1a(v))
_ (=Hm
o ykd(l _ yQ)k)\/2
(b) Let Pon(y) = Ton(y) be the Chebyshev polynomials of the first kind. Then for every

€ (0,1), there exists a subsequence {N,}52; such that (4.3.13)) and (4.3.14) are valid
ford=X=0.

Cur@m+1—k(1—d)Car@m+1—k(1—d). (4.3.14)

Proof. Let y € (0,1) be a fixed number and let y = cos 8. Then by the asymptotic formula

(13.3.18) for A > 0,

Cé\N+d(y)

(Cona)(0)
_ (—1)¥2n)d ( (14 0(1)) cos((QZ.V;i— d+ N0 —m\/2) O(i) )
sin” 6 N sin*1 ¢

as N — oo. If 8/ is irrational, then the sequence {2n(N6/7m — |[NO/7 )}, is dense

n [0,27), by the generalized Dirichlet theorem [IT], Sect. 8.1]. Therefore there exists a
subsequence {Np}o2y such that lim, .o cos((2N, +d + \)0 — 7A/2) = 1. Thus
and ([£.3.14)) follow from ([4.3.1)) and (4.3.3)), respectively, if we set yn =y and recall that
OBy =2N + A+d, N =1,2,.... This establishes statement (a).

Ifd = 0 and Pan(y) = Ton(y) = cos(2N6), where 8/m = r/l is a rational number, then
choosing N, = pl, we obtain Toy,(y) = 1, p = 1,2,.... Taking into account statement

(a), we see that (4.3.13) and (4.3.14) are valid for d =X =0 and any y € (0,1). =

4.4. Asymptotic summation formulae for zeta functions. Here, we discuss more
asymptotic relations, which follow from Corollary a). In particular, a number of
explicit summation formulae for zeta functions are given in Corollary [£.4.4 We first
prove the following general result.

THEOREM 4.4.1. Let {Pon1a}X—y € Pa(B3,7,6) and let {zp n, d} _, be the set of all

positive zeros of Ponya, N =1,2,.... Then the following statements hold:
(a) Fork=1, -2+ d<Res<2N —2,s—-d#0,2,..., and Cq1(s) # 0,
5 1
™ S d PaNd *
§) = —— + O(ENRes); 4.4.1
Ca,1(s) sin((s — d)7/2)Can(s Z < P ralzpn, d) (ENRes) ( )

where the constant Cs(s) in O(E'X,VRCS) satzsﬁes the property
sup  Cs(s) < oo (4.4.2)
e<Res<l—e
for any € € (0,1/2).
(b) Fork=1and m=1,2,...,

Ca,1(2m +d) = B + O(EN2mtd) (4.4.3)

2(_1)7n+1 2m i ZZQ)TX]J’_dd_l log Zp,N,d
~ (o , n"N
Ca1(2m +d) et oN-+a(Zp.N.d)
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(c) Fork=2, -34+2d <Res<2N —3,s—2d+1#0,2,..., and Cy2(s) # 0,

o ™ s—2d+1
Caa(s) = sin((s — 2d + 1)7T/2)Cd,2(8)ﬁN )

N /" /
s —2zp.N.aP: z F. Z
X Zzs—1 p,N,d 2N+d( p.N.d)/ 2N+d( p.N.d) +O(€J>:/,Res—d+1)7 (4.4.4)
p=1

pNd le%v+d<zp,N,d)

where the constant Cy(s) in O(EY ge_ay1) Satisfies the property
sup  Ca(s) < o0 (4.4.5)
e<Res<l—e

for any € € (0,1/2).
(d) Fork=2andm=1,2,...,m>1—d,
2(_1)m+1 9 N 9 _
) 2d— 1) = m m-+2d—2
Ca2(2m + ) Ca2(2m +2d—1) N —1 “p.N.d
(2m+2d—1— Zp,N,szl/N+d(Zp,N,d)/PQIN+d(Zp7N,d)) log zp,n,a +1
Pé?v+d(zp7N,d)
+ O(EN 2mya)-  (44.6)

Proof. It follows from Corollary [4.3.1(a) that for —1 — k(1 —d) < Res < 2N —k — 1,
s+k(1—d)—1+#0,2,..., and for any sequence {yn }%_; of positive numbers such that
limy o0 BnYyn = 00, the following asymptotic relation holds:

X

ﬁ]sVJrk(lfd)fl(y]quLk(lfd)*l . szN(yNa |y|s-~-k(1—d)—17 y—kd+1P21cN+d(y)))

“kd
Yn PZkNer(yN)

_ 2sin((s + k(1 —d) — 1)7/2) (Car(s)Car(s) + O((Bryn) ™)

T
+ O(EN Re st (k-1)(1-a)))s  (4.4.7)
where O(E5 re 54 (k—1)(1-a)) 15 independent of yx and the constants C1(s) and Cz(s) in

O((Bvyn)~2) and O(Ex g, SJr(kfl)(lfd)), respectively, satisfy property (4.3.2). Next, for
each N we can find yn 1 > 0 such that

(Bay)*TRA=D=1 (R PR ()] < ENRest(k-1)(1-d)» Y = YN1- (4.4.8)
Further, let

2kN 2kN
s+k(1—d)—1 _
D L () = Y Aty P a(0) = S Bul,
p=0 p=0

where Bopn i # 0 because y_dP2N+d(y) has 2N zeros. Then for each N we can find
yn,2 > 0 such that

s+k(l1—d)—
el (1=d) 'Lown (y) Aok i

y=RPYy L 4 (y) Bokn i

kN _

— ’AQkN’k + szl AQkN_P,k?y P . A2kN,k:
N -

Boknk + 3y Bakn—p iy Bokn k

< gltf,Reer(kfl)(lfd)’ Y 2> Yn,z2- (4.4.9)
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In addition, we choose yn 3 > 0 such that

(Bny) ™ < ExRestb-1)(1-a) Y = YN3- (4.4.10)
Setting now yy = max{yn1,yn,2,Yn,3}, we see that (4.0.3) and (4.4.10)) yield

li =
NE)HOO BNyn = o0

Therefore collecting relations (4.4.7) - (4.4.10)), we obtain

Canls) = — T Aok
2sin((s + k(1 —d) — 1)7/2)Cq,k(s) Bogn,k
+ O(EN Re st (k-1)(1-a))> (4.4.11)

where the constant C(s) in O(Ey g, S+(,€_1)(1_d)) satisfies the property
sup C(s)<C  sup Jsin((s + k(1 —d) — 1)7/2)Car(s)| P < oo  (4.4.12)

e<Res<l—e e<Res<l—e¢
for any € € (0,1/2). Then properties (4.4.2) and (4.4.5) follow from (4.4.12)). To prove
statements (a) and (b) of Theorem it remains to find the ratio Ay i/ Bakn k-
If £ =1, then we use the Lagrange interpolation formula
N

f(zp,N,a)yGan (y
Lon(y, f(),yGan () = D (zp.1v.0) o ) : (4.4.13)
p=—N, p£0 (y = 2p,N,d)2p,N,dGo N (2p,N,d)
where Gan (y) := ¥y~ *Pan1a(y) and z_p na = —2p.n.d, 1 < p < N, are negative zeros of

Pon+q. Note that holds for f(y) = |y|*~¢, —2+d < Res < 2N—2,5—d # 0,2, ...,
even in the case of —2 + d < Res < d when f is discontinuous at the origin (see the
corresponding agreement after formula (4.2.9)). It follows from that the leading
coefficient of B3 Loy (y, f(y), yGan (y)) is

N

Asna(f) = BgN,lﬁfv‘d Z S (zp.n.d) (4.4.14)

—d-‘rl / ’
N, p#£0 “p,N, dP2N+d(ZP7N,d)

where By 1 is the leading coefficient of y_dP2N+d(y). Hence
N

AN gsd 3 |2p,v,al* " (381 2p,v,a) 7
Bona N & Pin+a(Zp.N.d)
s 1
= 24357¢ __ZpNd (4.4.15)
Z P2/N+d Zp,Nd)

Thus (4.4.1)) follows from (4.4.11)) and (4.4.15), and statement (a) is established.
If k = 2, then we use the Hermite interpolation formula (see [26])

N

yGin (Y)
Lan(y. f(),yGon () = Y ﬁ
— N p0 Y p,N,d
. (f(z ) ( 1  y—znNd Gin(zna)y — vaN,d)>
. 2p,N,dGin (2p,N,d) Zp%,N,dGEQN(ZP,N’d) 2p,N.dG5n (2p,N.d)

/ —
N f (Zp7N,d)/(2y Zp7N»d)>’ (4.4.16)
2p,N,dG5y (2p,N,d)
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where Gon (y) =y~ Pan+q(y). Note that (£.4.16)) holds for f(y) = |y[*~29F!, -3 +2d <
Res < 2N —3,s—2d+1#0,2,... (see the corresponding agreement after (4.2.9)). It

follows from (£4.16)) that the leading coefficient of 35 2 Lyn(y, f(y), yG3n(y)) is

N
~ f(zp,N,d)
A4N,2(f) — B4N72/6S 2d+1 <_ 4V,

N Z z;,N,dGlzzN(zp,N,d)

p=—N, p#0
G// /
3 f(zp,N,d)/ggN(Zp,N,d) L (fg»Nﬁd) > (4.4.17)
2p,N.dG5y (2p,N,a) 2p,N,dG5y (2p,N,d)
where Byy o = B2y , is the leading coefficient of y—2¢ P2 y). Then (4.4.17)) yields
; 2N,1 IN+d
N
Asn 2 _ 255—2d+1 Z 1 5P2/N+d(2p,N,d) - Zp,N,dP2HN+d(Zp7N,d) (4.4.18)
Ban2 N o pN.d Py a(2p.N.a)

Thus (4.4.4) follows from (4.4.11]) and (4.4.18]), and statement (c) is established.

The proof of statements (b) and (d) follows that of statements (a) and (c). Similarly to
the proof of asymptotic (4.4.11]), we can prove the relation (m =1,2,...,m > k(1—d)/2)

(*l)mﬂ Aéka N
- =+ O0(Enamaa)s (4419
Curx(2m+1— k(1 —d)) Bornr (ENomya) (4.4.19)

where A3, y ;. is the leading coefficient of B2 Loin (v, f(y), yGEx (y)). Next we note that
formulae (4.4.13)) and (4.4.16)) hold for f(y) = y*™log|y|, m = 1,2,.... Therefore, using
(4.4.14) for k =1 and (4.4.17)) for &k = 2, we obtain

Cd7k(2m +1-— k(l — d))

A§N,1 om al ;%Tdd_llog Zp,N,d
= 232 , : (4.4.20)

Bon 1 — Pyn i a(zp,N,d)

* N
A4N,2 — 9g2m 2m+2d—2
B =26y “p,N.d

AN,2 =

y ((2m+2d—1)log zp,N,a+1)Pyn 1 4(2p,N,a) —2p,N,a108 2p, N a P x4 a(2p,N.a) (4.421)

P a(zp,N.a)

Thus statements (b) and (d) follow from (4.4.19)—(4.4.21)). This completes the proof of
Theorem B4l »

REMARK 4.4.2. One of the conditions on s in statements (a) and (c) of Theorem [£.4.1]
is Cyr(s) # 0. Note that if Res > =1 — k(1 —d) and s+ k(1 —d) — 1 #0,2,..., then
Co.1(s) # 0 and C1 2(s) # 0, while the solution set for C1 1(s) = 0 is {(27n/log2)i}o>

and the solution set for Cpa(s) = 0is {1+ (2mn/log2)i}se _ .
REMARK 4.4.3. Note that for N =1,2,..., the following identities hold:
N 2m+d—1
—elNd g 1<m<N, (4.4.22)
=1 P2N+d(ZP,N’d)
N
2m+2d—2 2m+2d—1— Zp,N,dPQHN+d(Zp7N,d)/P21N+d(Zp,N,d) -0 4.4.93
Z “p,N.d P2 = (4.4.23)

=1 2N+d(Z:D7N,d)
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if 1 <m < 2N. Indeed, y*™ — Lo (y, y*™, y F* 1Py 4(y)) = 0 for all y € R. Then
the leading coefficient of Logn is 0, and combining this fact with and ,
we arrive at (4.4.22)) and (4.4.23]).

In particular, if Ponyq is the normalized polynomial with equidistant zeros, we de-
duce from (3.2.27), (3.2.28) (3.2.29), (4.4.22), and the following combinatorial
identities:

N
2N +d—1
(—1)P+1< +d )(Qp +d—1)t=l =0 1<m<N, (4.4.24)
N-p
p=1
N 2
2N +d—1
z ( + ) (2p+ d — 1)2m+2d-2
N-—p
p=1
N+p+d—1
x ((2p+d71) Y in- (2m+2d71)> =0, l1-d<m<2N. (4.4.25)
n=N—p+1

Note that for d = 1 identity (4.4.24) is known [44] Sect. 4.22, #34].

Below we obtain special asymptotic summation formulae for the zeta functions by
applying Theorem to Chebyshev polynomials, polynomials with equidistant zeros,
and Williams—Apostol polynomials with explicit formulae for their zeros.

To find the convergence rate in these asymptotics, we need to estimate &, . by choos-
ing vy and dy, N = 1,2,.... We begin with the Chebyshev polynomials. For any
e € (0,2/3) we choose yy = N¢ and dy = N~2¥3 N = 1,2,.... Since the Cheby-
shev polynomials {Pon1q}%_, of the first and second kinds are special cases of Gegen-
bauer polynomials with A = 0 and A = 1, respectively, Proposition shows that
{Pan+a}f=1 € Pa(B,C(e)y,0). Then

Ens=06n+ke N < Ci(e, 7) N7 (4.4.26)

For the polynomials with equidistant zeros { Pan1+4}35_;, we set vy = log(N + 1), oy =
N~ log?(N + 1). Then {Pan1q}3_, € Py(B,7,6), by Proposition s0

Ex e = 0N + ke < C3(r)N ! (log N)maxi27), (4.4.27)
Finally, setting vy = N€ and 6y = N~1*2¢ N = 1,2,..., ¢ € (0,1/2), for Williams—
Apostol polynomials { Pany14}%_; of the first and second kinds, we see that

{P2N+d}%:1 € Pd(ﬂa 0(5)77 6)5
by Proposition [3.2.7] Then
Exny < Cale, T)NTIT2e (4.4.28)

Therefore, using Theorem estimates (4.4.26)—(4.4.28)), identities (4.4.24)), (4.4.25)),

s /
and the corresponding formulae for 2, .4, Pyy 4 4(2p,n,4), and

Pyxya(zp.n.a)/ Ponya(Zp,n.d)

from Section 3.2, we obtain by straightforward calculation the following explicit asymp-
totic formulae for (4 ,(s). We recall that the constants Cq x(s) are defined in (4.2.3]).
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COROLLARY 4.44. Let Res > -1 —k(1—d), s+ k(l—d)—1+#0,2,..., Cqr(s) #0
and letm=1,2,..., m > (k—1)(1 —d), where d = 0,1 and k = 1,2 are indices. Then
the following limit formulae for (41 (s) hold with the convergence rate of O(N=2%3¢) ¢ €
(0,2/3), for Chebyshev polynomials, O(N~*(log N)*~) for polynomials with equidistant
zeros, and O(N~112) ¢ € (0,1/2), for Williams—Apostol polynomials. Here, sy :=
max{2,Res + (k — 1)(1 — d)}. In addition, the constants C(s) in the remainder term

satisfy the property
sup C(s) < 0 (4.4.29)

algResglfsl
for any €1 € (0,1/2).

(a) Normalized Chebyshev polynomials of the first kind:

Car(s) = il lim (—1)N*L(2N + d)*~?

sin((s — d)m/2)Cq,1(s) N—oo

N —1
8 ; ( 4N+2d SN 2qr (4430

2(71)m : N+1 2m+4d—1
Gaalom ) = s s i (1) N +d)

N 2m-+d—1
Xp; < 4N—|—2d SN F2d 8% N gag (A8

€2(8) = G 9t D)n/2)Can(e) AN D

X i <cos M)Sl ((s + 1) cos? % - s), (4.4.32)

2(=1)"
Cd 2(2771 + 2d — 1)

3 (s Y (ot T )

2p—-Dm ,(2p—Drm
x log cos N Tod S UNTod ) (4.4.33)

Ca2(2m+2d—1) = Jim (2N + d)?m+2d-2

(b) Normalized Chebyshev polynomials of the second kind:
Cd,l(s) =

sin((s — d):/Q)Cd 1(s) J&il)noo(_l)NH@N +d+ 1)t

N s—1
—1)ptt _ 2 Pr 4.4.34
X;( ) (COS2N+d+1 ONtdt1 (4.4.34)

-y .
I S| 1 +1 IN +d 1 2m+d—1
Ca1(2m +d) Nl—rgo( )TN+ d+)

N o 2m+d—1 o
+1 in2
X E (—=1)? (cos 2N+d+1) L | log cos

Ca1(2m+d) =

pT
4.4.35
= 2N +d+1’ ( )
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Yis
lim (2N +d+1)%!
Sn((s — 24+ Dr/2)Canle) A BN +d+ D)

N s—1
. 9 pT 2 pT
Z I 7 ((s+ =z 4.4.
x <C082N+d—|—1> st 2N+d+1((5 3) cos IN +d+1 5)’ (4.4.36)

p=1

Cd,2(8) =

2(=1™
Caz(@m+2d—1) N

Cao(@m+2d—1) = Jim (2N +d + )2m+2d-2

N o 2m+2d—2
X;<0082N+d+1)

.2 pm 2 pm

—_— 2 2d 42 — — (2 2d -1
X sin 2N+d—|—1<<( m + 2d + 2) cos N+ dr1 (2m + ))
pr . g pm

) L2 PT . 4.4.37

x logeos o —sin 2N+d+1> ( )

(¢) Normalized polynomials with equidistant zeros:

7.(.5—4—1/2
Gaa(s) = sin((s — d)m/2)Cy1(s)25+Hd=2
VN & 2N +d—1
. v _1\p+1 _ s—1
X lim oon ;( 1) ( N—p )(2p+ d—1)*"1  (4.4.38)
( )m 2m+d—1/2 ) \/N
2 = lim
Ga1(2m + d) Ca1(2m + d)22m+2d-3 NUo, 92N
N
2N +d—1
x Y (=1)rtt ( N+_dp )(Qp +d— 1) " og(2p +d —1), (4.4.39)
p=1
7rs+1
Ca2(s) = lim

sin((s — 2d + 1)7/2)Cy 5 (s)25+24=3 Nooo 24N

X ZN: <2N+d_1> (2p+d-— 1)3_1((2p+d— 1) Nﬂidill —s), (4.4.40)

p=1 n=N-—p+1
(_1)m7.r2m+2d71

2 2d —1) =
Caz(2m + )= Coa@m + 2d— D)2Emiia

N 2
N ON +d—1 o424
2 d_l m—+2d—2

( N_p )(p+ )

N+p+d—1
X (((Qp +d-1) >~ —(2m+2d— 1)) log(2p+d —1) + 1). (4.4.41)
n=N-—p+1

Note that in these formulae we use the expression for the constant in (3.2.28)) asymptot-
ically stmplified by (3.2.31)).
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(d) Normalized Williams—Apostol polynomials of the first kind:

sin((s — )77:/2)001 1(s) 1\}31100(—1)1\7+1(2N+d)571

st 2N+d—s—1
S (R b Ry (P L
" ; ( 4N +2d SN T+ 24 . (4.4.42)
2(_1)m i N+1 2m+4d—1
Gaa(2mtd) = = s T (<)Y N o+ dfr

N 2 d—1 2N —2m—1
1yl o 2P mr N ks "
Z: "IN +2d AN +2d

Caa(s) =

(4.4.43)

N
. ™ . s—1 (2p — 1)7T
C4a) = St =2 T T AN + 3 (eos BT

) (2p _ 1)7_(_ AN+2d—s—3 ) (2p . 1)7_[_
L ko 22N +d —1)cos? LT 4.4.44
. (Sm AN +2d N +d=1cos” ooy =9 ) 44D

2(—1)m
Cd 2(2m + 2d — 1)

N 2m~+2d—2 4N —-2m—2
%3 (cos B2 LT T (g 2=
L\ AN 2d AN +2d

B o 2p— D)7 (2p -7
X ((2(2N +d—1)cos UIN 120 (2m+2d — )) log cot AN 2d +1). (4.4.45)

Cap(2m+2d —1) = Jim (2N + d)Fm+2d=2

(e) Normalized Williams—Apostol polynomials of the second kind:

sin((s - d):/Q)Cd 1(s) I&ijnoo(fl)NH(QN +d+1)57!

N pr s—1 pr 2N+d—s
17+ (cos —— LT T L 4.4.4
x D (-1 < 2N+d+1> (Sm2N+d+1> , (44.46)

Cd,l(s) =

p=1
GV N1 Pt Ny
Ca1(2m+d) = G @m T d) Jim ()M EN +d + 1) 2(_1)13
pr 2m+d—1 ) pr 2N —-2m " pr
X (cos 2N+d+1> (Sln 2N+d+1> log cot Nt AT (4.4.47)
N s—1
Ca2(s) = sin((s — 2d +7r1)7r/2)0d72(s) ]\}iinoo(QN +d+ 1)1 pz:; (cOS 2Nf7:i+1)

o AN+2d—s—1 .
in ———— 22N +d z_ 4.4.48
X(Sln2N+d+1> (( + d) cos SNt dTl s), ( )
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2(-1)™ 5 _
lim (2N +d + 1)?m+2d=2
Cd2(2m+2d—1) Nllgo( ta+ )

N pr 2m—+2d—2 pr 4N —-2m
X;<C082N+d+1) <Sm2N+d+1>

X <(2(2N + d) cos? 2]\7—7-)77;—1—1 —(2m+2d — 1)) log cot

REMARK 4.4.5. Using the identity [44, Sect. 4.2.2, #25]

N
S (1Pt ep+d—1)t <2N +d— 1)

p=1 N-p

Cd72(2m + 2d — )

pT

— _11). (444
2N+d+1+> (4.4.49)

22N P(s) sin((s — d)7/2) /°° sin?N+d-1¢ it
i 0 ts ’
where the integral on the right-hand side is convergent for N > 1 and Re s > d, we obtain
from the following limit integral representation'

5=1/2 p2N+d-1
Ca1(s) = e Ad (35 _1) @ =1 ngnoo \F/ dt, Res > d.

REMARK 4.4.6. Another limit formula:
N

¢(n) = (7/2)" lim N™"Y cot"(pr/(2N + 1)), (4.4.50)
N—o00 =1
was established independently by Williams [56] and Apostol [2] for even positive inte-
gers n. Apostol [2] states that (4.4.50) is valid for odd n > 1 as well.

REMARK 4.4.7. Setting d = 0 and m = 1 in formulae (£.4.31), (£.4.35), (£.4.39), (.4.43),
and (4.4.47)), we can obtain new limit representations for Catalan’s constant (y1(2) =
B(2). In particular, it follows from (4.4.39) that

N
VN (—1)PHt <2]<rv_pl> (2p — 1) log(2p — 1).

B(2) = —7*/? lim

p=1

In general, formulae (4.4.31)), (4.4.33), (4.4.35), (4.4.37), (4.4.39), (4.4.41)), (4.4.43),

(4.4.45)), (4.4.47), and (4.4.49) give various limit representations for ¢(n) and 3(n), where

n > 1 is an integer. In particular, these results imply new limit representations for the
Bernoulli numbers Bs,, and the Euler numbers Es, (see Section [6.3| for definitions).




5. Asymptotic relations between the
L,-interpolation error and zeta functions

In this chapter we obtain asymptotic representations for the zeta functions in the L,-
metric. We recall that d and k are indices that take the values of 0,1 and 1, 2, respectively.

5.1. L,-asymptotics for the integral term. The right-hand side of each asymptotic
in (4.2.10) and (4.2.13)) contains the principal term with (g4 1 (s), the integral term, and the
remainder term. In this section we find the L,-asymptotic behavior of the integral term.
Note that if {(s) # 0, then this term is the second remainder term, while for ((s) = 0 it
becomes the principal term.

Let

. . PQICN_i_d(y) >~ tSJrk
IN,k(y) = ﬂ;V+k(1—d)—1(6Ny)2ykd /o (1+ t2/(5Ny)2)h§(t) a

where hy is defined in (4.0.1]), be the integral term from (4.2.10]) or (4.2.13)) without the
constant. Then:

THEOREM 5.1.1. Let {Ponya}—y € PF*(5,7,9, W, k) and let Res > —1 — k(1 — d), and
€ ((kd +2)7", (maxc{0, — Res — k(1 — ) + 1)) 1 (po(k).ps (k).

where po = po(k) and p1 = p1(k) are numbers from properties (C5.3) and (C5.4) of

Definition [3.1.8 Then

fim GO [ o NPy = 1 (5.1.1)

N—oc0
v > | cos(y — drm/2) |**
I = Id,k:,s,p = - a
—oo )
Here, a =1 or a = oo (c¢f. Definition[3.1.8)).
Note that if p € (0,00), then (Res + k(1 —d) — 1)p+ 1 > 0 if and only if p <
(max{0, — Res—k(1—d)+1})~1. To prove the theorem, we need some technical estimates.

LEMMA 5.1.2. ForRes > —1—k(1—d) and F(y) == [~ %, the following state-

where

o0 5tk gt P
— | dy < . 5.1.2
L g w612

ments hold:
(a) Fory € (0,1],

Re s+h(1—d)—1 N
|F(y)|SC+C1{y » Res+k(1-d)-1£0, (5.1.3)

log(1/y), Res+k(1—d)—1=0.

(85]
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(b) Let H(y) be continuous on (0,00) and K € (1,00] be a fixzed number or K = co. Let
H and K satisfy the conditions

sup y "|H(y)| <A, sup |H(y)| <A (5.1.4)
y€(0,1] ye(1,K)

for some A > 0. Then for (kd +2)~! < p < (max{0,—Res — k(1 —d) +1})~!
K
/ y~ P\ H (y)F(y)|P dy < CAP. (5.1.5)
0

Proof. (a) For y € (0,1] we obtain

‘F(y)| < /OO ﬂ < i/y tReS+kdt +/1 tRes+k—2dt +/<x>tRes+k_2dt
“Jo (PPH2)RER) T w2 )o hE@) B 1 o

Re s+k(1—d)—1 _ _
< CoyRes+h-d-1 4 & {y » Res+k(l—d)—1# 0’} +Cy.  (5.1.6)

*Vog1/y, Res+k(1—d)—1=0,

Then (5.1.6) yields (5.1.3).

(b) Using (5.1.3) and (5.1.4), we obtain

/OK y " PIH (y) F I”dy—/ /

= Ap/ |F(y)[ dy+AP/ y~kdp=2p /°° {Res+k gy
' o (14 (t/y)?)hk()
Hence ) follows. m

Proof of Theorem We first note that the double integral I'* defined by (5.1.2)) is
convergent. This fact follows from Lemma b) for H(y) = cos®(y — dr/2), A =1,
and K = oo. Next, we consider two cases.

p

dy < CAP.

CaAse 1. Let p € (0,1]. Then for any fixed B € [1, min{yy,afn/2}], where N is large
enough, we obtain

I(N) = pEesHHI-D=Dpt1 / ()" (5, NP dy

afn
1(\1;{es+k(17d)*1)17/ \Ix 1k (u/ B )w* (y/ B, NP dy
0
< /B cosly — dr/2)[* /mts*kdt”

=/, yd 0 (y2+t2)h§(t)

aBn 1 o0 tRC s+k dt p
+ /B BN Pana(y/Bn)w* (y/ B, NP y+kd)p (/0 1+ (t/y)%h’é(t)) dy

kp ’N
b [ 108 P o)) — cost(y — a2 )

/°° t5tk gt ”d
o L+ /wAri0] Y
= IN1(B) + In2(B) + In3(B). (5.1.7)

" (y /By, N)dy

X
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To estimate the integrals in (5.1.7), we need, firstly, the relations (p > 0)

wkp(y/ﬁN,N) =1+ o(1), sup wkp(y/ﬂmN) =1+o0(1), N — oo, (5.1.8)
y€[0,B]

where o(1) in the first relation is independent of y € [0, B]. These follow from property
(C4) of Definition Secondly, we need the inequality

BY | Pan+a(y/Bn)w(y/Bn, N) < (y/(anBn)), vy € (—aBn,aBn), (5.1.9)

from property (C5.2) of Definition where ¢ > 0 is an even function on (—a,a)
independent of N that satisfies properties (C5.1)—(C5.3), N =1,2,....
Then it follows from the first relation in (5.1.8)) that, as N — oo,

/°° t5tk qt
o (y2+t2)hk()

[ee] [e%e} s+k p
= (o)1 = (o) [ eosty —am/ 2| [t
(5.1.10)

p

B kp
cos(y —dm/2
(y — dn/2) W

yd

In:i(B)=(1+ 0(1))/0

where the last integral term does not exceed Cy(1 + o(1))/B+kdP=1  Therefore, as
N — o0,

(14 0(1)I* — C1(1 + o(1))/BEH*IP=L < [y | (B) < (14 o(1))I*, (5.1.11)

where C is independent of B and N but o(1) depends on B.

Next, by property (C5.1) there exists u € (0,a/2) such that v is bounded on [0, 2.
Since ay > 1, we conclude that ¢ (y/(anxfn)) is bounded on [0, u8y] by a constant
independent of N. Since B € [1, afy], inequality and the second relation in
yield

aBn wkp
PP (y/(anfBn))
Ina2(B) < Cy / T yCrkdp dy

uBN afn
—02</ / ) Co IN21—|-IN22) (5.1.12)
up

where Cs is independent of N and B. Then

aBn
In2i < sup  P*P(y/(anfBn)) / y~ TRDe gy < 3/ pETRIPTL (51.13)
y€[0,uBn] B

where Cj is independent of N and B, and for py(k) < p < p1(k),

_ 1 a/an WFP(y) dy 24+kd 1
s < (1/5@+HRdp-1y 7/ LV g, g2tk 5.1.14
N2,2 S ( /51\/ )Ne% ag\%+kd)p—1 w/an y(2+kd)p =Cif ( )

where C4 is independent of N and B. Note that in the case a = ay = 1 the last
inequality in follows from property (C5.3) of Definition and in the case
a = oo it follows from properties (C5.1), (C5.3), and L’Hospital’s rule. Indeed, if a = oo
then is trivial for supyeyany < 00, since by property (C5.2), infyenan > 1. If
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limpy_, o0 any = 00, then

a/an 1 kp a/z 1 kp
b [Ty L[

2+kd)p—1 24kd)p = 2+kd)p—1 21kd)p —
NeNangr )P wian  YEROP TS 2 (2+kd)p ue  yErkde

since for A := (24 kd)p—1 >0,
a/z , kp

lim —/ % AL 0) (™ — a™H).
m

z—00 Z
/z Yy
Collecting relations ([5.1.12)—(5.1.14]), we obtain

In2(B) < Cs(1/BEHkdp=1 4 g g(thdp=ly (5.1.15)

where Cj is independent of N and B.
Further, Property (C3) of Definition [3.1.1] m yields the estimates

o 8% Pan+a(y/Bn) — cos(y — dn/2)| < Co(B) min{y? 1}oy,  (5.1.16)

yre%ix ‘ﬂNP2N+d(y/ﬁN) + cos(y — dm/2)| < C7(B), (5.1.17)

since B € [1,7yy]. Then taking account of (5.1.17) and the second relation in (5.1.8)), we
obtain, as N — oo,

In3(B) < Cs(B,k)(1+0(1))
« /B %P2N+d(y/ﬁN)kd— cos(y — dn/2) | /‘X’ stk qt pdy, (5.1.18)
0 Y o (2 +y2)hg(t)
where Cg(B,1) =1 and Cs(B,2) = C?(B). Next, we apply again Lemma b) to the
integral on the right-hand side of (5.1.18) for K = B and H(y) = 8% Panta(y/Bn) —
cos(y—dm/2), where H satisfies condition (5.1.4) with A = C4(B)dy, by estimate (5.1.16).

Hence (j5.1.5)) yields

Ins(B) < (1+0(1))Co(B)3%, < Cro(B)5%. (5.1.19)

Then combining ((5.1.7), (5.1.15) and (5.1.19) with the right inequality in (5.1.11)), we
obtain

I(N) < I* 4 o(1)I* + C5/BErdP=1 /ﬂ@*’“”p‘l + C1o(B)o%,.

Further, for any € € (0,1) we choose B = ¢!/(1=(2+kd)p) and then find Ny = Ny (e) such
that for all NV > Ny,

max{o(1)I*, (min{yy, aBy/2})'~ Ctkdr g\=CThdr o (B)§PY < e/4. (5.1.20)
Hence B € [1,min{vyy,al8n/2}] and we arrive at the upper estimate
I(N)<TI*4+¢e, N> Ny(e). (5.1.21)
A similar lower estimate
I(N)>I*—¢e, N> Ny(e), (5.1.22)
follows from the inequality

I(N) > Ina(B) — In2(B) — In3(B),
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estimates (5.1.15)), (5.1.19), (5.1.20), and the left inequality in (5.1.11]). Since € is an
arbitrary number from (0, 1), inequalities (5.1.21)) and (5.1.22) yield (5.1.1) for 0 < p < 1.

CASE 2. Let p € (1,00). The proof in this case follows that of Case 1 if we use Minkowski’s
inequality instead of the integral triangle inequality for 0 < p < 1. To prove (b.1.1)) in
this case, we use the inequalities

INP(B) — INB(B) — INH(B) < IMP(N) < IN?(B) + IN5(B) + IN5(B),  (5.1.23)
and an analogue of :

(14 o(INI*VP — (14 0(1))/B*HFd=1/P < Illv{f;(B) < (14 o0(1))I*/P, (5.1.24)

which follows from . Analogues of and are also valid in the fol-

lowing form:

INE(B) < C5(1/B2Rd=1p g/ grrkd=t/e), (5.1.25)
IVB(B) < Cy(B)(1 + o(1))éx. (5.1.26)

Then the estimates

e e < [YP(NY < VP4 VP N > Ny (e),

follow from ([5.1.23)) - ([5.1.26)), and ([5.1.20)). This completes the proof of Theorem "

The following corollary is an immediate consequence of the theorem:

COROLLARY 5.1.3. Let s, p, and {Pan1a}35—, be as in Theorem[5.1.1| Then

a 1/p
( / |17V,k(y)wk(y,N)|pdy> < gy Resth=d)=1+1/p) (5.1.27)

—a

where Res + k(1 —d)—1+1/p > 0.

REMARK 5.1.4. The constant [* = I, . defined by (5.1.2) can be evaluated explicitly
in some cases of p = 1 and s € R. In particular,

o0 o0 ts+1
I = ——dtd
0,151 /,oo /0 (y% 4 t2) cosht 4

cos Yy
=4I'(s+1)B(s+2), s>-1, (5.1.28)
oo ) o] ts+2
Ioe1= cos ——dtd
0,2,s,1 [m y/O (y2 +t2)COSh2t Y
=27 (1 =27 (s +2)¢(s +2), s> -2, (5.1.29)
%) . 2 0o s+2
siny 5t
I, . = ——dtd
B /oo( y > /0 (02 + 2)sinhZt ¥
=727 (s = 1)I'(5)¢(s), s>0. (5.1.30)

Indeed, taking into account the integrals (¢ > 0)

* cos?y (1 +e2) *  sin?y T 1—e 2
s p W= ’ a2 W=l ’
Lo YE A 2t oo Y2(Y2 +12) t 2t
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we arrive at (5.1.29) and ([5.1.30)). To prove (5.1.28]), we first evaluate

° |cosy| /2 = 1 sinh2¢ [7/2 cosy
dy = dy = s A
/_Oo y? + 12 Y /_ﬂ/2COS yk:Z_OO y2 4 (t + km)? 4 t /_W/Q cosh 2t — cos 2y Y
_ sinh2tarctan(((cosh 2t — 1)/2)71/2)  2coshtarctan(1/sinht)
- t((cosh2t —1)/2)1/2 N t '

] 9 [ee] ts-‘,—l
5161 = 2/0 t* arctan(1/sinh t) dt = —/0 dt

s+1 cosht
Thus (5.1.28) is established.

In addition, we remark that the constant I, ., for s > —1, s # 0,2,..., was intro-
duced by Nikol’skii [42] who proved the asymptotic

lim n* " E,(la — @), -1,y = 2(|sin sw/2|/m) 51 .4 (1 — a?)tV2 0 e (~1,1),

n—oo

Hence

where E,,(f)r,[-1,1] is the error of best approximation to f by polynomials of degree n
in the integral metric on [—1,1]. He also proved (5.1.28]) for odd positive s. Bernstein
[7] extended (5.1.28) to all s > 0. Using Bernstein’s idea from [7], we showed above that

(5.1.28)) holds for all s > —1.

5.2. L,-asymptotic representations for zeta functions. In this section we discuss
asymptotic representations for |((s)| and |G(s)| through the interpolation errors in the
weighted Ly,-metrics.

5.2.1. General theorem

THEOREM 5.2.1. Let {Pan4a}—1 € P (B,7,0,W,k). Then the following statements
hold:

(a) Let Res > =1 —k(1—d), s+ k(1 —d)—17#0,2,..., Cqx(s) #0, and let
€ ((kd + 2)_17 (max{0, —Res — k(1 —d) +1})"1) N (po(k), p1(k)) (5.2.1)
as in Theorem [5.1.1] In addition, let

e 1/p
Nlinooﬁl/p(/ |y_de§N+d(y)wk(yvN)pdy> =00 (5.2.2)
If Car(s) #0, then
‘Cd,k(s)‘ = 4 m 6Res+k (1—d)—

2sin((s + k(1 —d) — 1)7/2)[|Ca x(s)| N—
a s —d)— s —d)— — 1/
y (L2 [y HRA=D=1 — Lopn(y, |y[sHPO=D=1 y=kdHlph  (y))[PwrP(y, N) dy) '?

a 1
(*, 1y~ Pl o (y)wk(y, NP dy)"'*

(5.2.3)
(b) Let 0 < Res < 1 and let p satisfy condition (5.2.1)). In addition, let

a 1/p
. 1 * _
lim BNPEN Re st (b-1)(1-a) (/ ly ™ Py a(y)w* (y, N) PP dy) =0.  (5.24)

N—iy —a
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If Car(s) =0, then
T hm Rcs+k(1fd)71+1/p
2lsin((s + k(1 — d) — 1)7m/2)| N—oo' N

a 1/p
x < |[y[TFRO=D=Y — Lo (y, ly| TR D=1 =kt pE ()| wk? (y, N) dy>

—a

=k, (5:25)
where I, ., is defined in (5.1.2)).

(c) Let m=1,2,..., m > (k—1)(1 —d), and let p € ((kd +2)~1,00) N (po(k),p1(k)). If
condition (5.2.2) is satisfied, then

1
: 2m
lim By
— 00

T Carmt1—k(1l—d) N
a m m _ 1
y (. [y*™ log|y| — Lok (y, y*™ log ly|, y~*+1 Phy , 4 (1)) [Pwk? (y, N) dy) "/
a 1 :
(*, [y Pk, y(y)wh(y, N)[P dy)*?

Proof. We first note that [, |y=" P}y ,(y)w"(y, N)|Pdy < oo by property (C5.4) of
Definition[3.1.8] Next, Theorem[5.2.1]follows from Theorems[f.2.3|and [5.1.1]and Corollary

Indeed, relation ([5.2.3)) is an immediate consequence of relations (|4.2.10: , (4.2.11),

(5.1.27), and (5.2.2); in turn, (5.2.5) follows from (4.2.10), (4-2.11), (5.1.1), (5.1.2), and
(5.2.4); finally, (5.2.6) is a corollary of (4.2.13), ([#2.14), (5.1.27)), and (5.2.2). =

Note that the condition m > (k—1)(1—d) in Theorem[5.2.1]c) and subsequent corollaries
(see also Theorem [4.4.1(d) and Corollary [4.4.4) rules out the case of m =1, d =0, k =2
for the representation of {(1).

Further, we discuss special cases of Theorem for polynomials Pypy 44 studied in
Sections 3.2 and 3.3.

Cd7k(2m +1-— k‘(l - d))

(5.2.6)

5.2.2. Examples
EXAMPLE 5.2.2 (Normalized Gegenbauer polynomials on [—1,1]). We have
Ponta(y) = Consa®)/(Conia) P(0), Bn =2N+A+d, w(y, N) = (1—y*)M*"1/4,

N=1,2,..., A>0, a=1, pok)=0, pi(k)=4/k.
For N =1,2,..., we choose
YN = N¥, e €(0,2/3), (5.2.7)
On =73 /N2 = N"23% € (0,2/3). (5.2.8)

Then (5.2.7) and (5.2.8) show that conditions (3.2.5) and (3.2.6) are satisfied and by
Proposition {Pynia}_, € P (B,C(e)y,6, W, k). In addition, (5.2.7) and (5.2.8)

yield

N2 <& = 0n +yhe N < Ci(e) N7 (5.2.9)
Further, it follows from Theorem that condition (5.2.2)) is satisfied if and only if
Am NYP [ 1nanmp =00,  p € (po(k), p1(k)). (5.2.10)
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In addition, combining Theorem [3.3.4] with (5.2.9)), we conclude that condition (5.2.4)) is
satisfied if and only if there exists € = e(p) € (0,2/3) small enough such that

lim NYP=243@) iry =0, p e (po(k),pi(k)). (5.2.11)

N —o0
We recall that 7,44 in (5.2.10) and (5.2.11)) is defined by (3.3.15) for ¢ € (0,4).
Next, it is easy to see that ([5.2.10|) holds if
(0,4), d=0,k=1,
pel, =301, d=1k=1, (5.2.12)
(072)7 d:O,l,k:2,

and (5.2.11)) holds if
1/2,4), d=0,k=1,

( )

(1/3,4) d=1,k=1,
(1/2,2), d=0,k=2,
(1/3,2), d=1,k=2.

pe s (5.2.13)

Therefore taking account of Theorem [3.3.4] again, we obtain the following special case of
Theorem for the Gegenbauer polynomials.

COROLLARY 5.2.3. (a) Let Res > —1—-k(1—d), s+k(1—d)—1#0,2,..., Car(s) #0,
and let

p € ((kd+2)7", (max{0, —Res — k(1 —d) +1})~") N 1j,, (5.2.14)
where the interval 17, is defined in (B-212). If Cai(s) # 0, then
T
|Ca,k:(3)]

~ 2fsin((s + k(1 — d) — 1)7/2)[|Car(5)[Gaup
X A}im (2N 4+ X+ d)Re S+k(17d)717_N,d,kp

1
> (/ | |y|s+k(1—d)—1 _ L2kN(y7 |y‘s+k(1—d)—1,y—kd+1
-1

1/p
X (Cona)/(Con1a) P (0)F)P(1 - yQ)(A/Zl/“)k”dy) : (5.2.15)

where Gq 4 is defined in (3.3.16) for g € (0,4).
(b) Let 0 < Res < 1 and let

pe ((kd +2)71 (max{0,—Res — k(1 — d) + 1})71) N 13%
where the interval 175 is defined in (5.2.13). If Cax(s) = 0, then

il lim

1
% (/ | |y|s+k(1—d)—1 _ LQkN(y; |y‘s+k(1—d)—1,y—kd+1
-1

(2N+/\+d)Rcs+k(1fd)fl+l/p

1/p
X (Con4a()/ (Con ) D(0)F)[P (1 — y?) M2 1Ak dy) =1;}" . (5.2.16)

where 17, ., is defined in (5.1.2).
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c) Letm=1,2,..., m > — —d), ana let p € +2)7 7,00 . en
Let 1,2 k—1)(1—d), and let kd+2)"' 00) N 15, Th

1
- lim (2N + X +d)*™
C’dyk(2m +1-— k(l — d))gd,kp NE%O( ) TN,d,kp

1
X (/ ly*™ log |y| — Lokn (y, y*™ log |y, y 4+
—1

Cd7k(2m +1-— k‘(l — d))

1/p
><(C§N+d(y)/(C3N+d)(d)(0))’“)|p(1—y2)W21/4)’“’dy> . (5.217)

EXAMPLE 5.2.4 (Normalized even Chebyshev polynomials of the first kind on [—1, 1]).
The corresponding asymptotics for the weight (1 — y?)~'/* follow from Corollary
Here, we consider the case of w(y, N) =1 and d = 0, that is,

Pon(y) =Ton(y), By =2N, w(y, N)=1, N=1,2,..., a=1, po(k) =0, p1(k) = oc.
Choosing vy and dx as in (5.2.7) and (5.2.8)), we see that
{Tan} =1 € P37 (8,C(e)v, 6, W, k),

by Remark Next, Theorem shows that condition (5.2.2)) holds for all p €

(0,00). In addition, Theorem and estimates (5.2.9) show that condition (5.2.4)
holds for all p € (1/2, 00).Therefore, the following corollary follows from Theorems [5.2.1]

and 3.3.6
COROLLARY 5.2.5. (a) Let Res > —1 —k, s+ k—1%#0,2,..., Cox(s) # 0, and let
p € (1/2, (max{0,— Res — k+ 1})71). If (o.x(s) # 0, then

‘CO,k(8)| = 2|sin((8 + k- 1)7‘(‘/2)| |CO,k(s)|g;ckp

1 1/p
x lim (QN)R”““(/ [yl = Logn (y, [yl y Ty () 1P dy> . (5.218)
—1

N—o0

where G is the constant on the right-hand side of (3.3.39).
(b) Let 0 < Res < 1 and let p € (1/2,(max{0,—Res —k+1})71). If Cax(s) = 0, then

T
li IN Re s+k—1+1/p
(s k=72 AN

1 1/p
(/ |y|s+“L%N<y,|ys+’“l,yTQkN(y))wdy) —pYr o (5:219)
1

(c) Let m=1,2,...,m> (k—1)(1 —d), and let p € (1/2,00). Then
_ 1
- Cox(2m+1-k)G;,

Cox(2m +1—k)

1 1/p
< lim <2N>M(/ |y2mlog|y|—L%N@,y?mlogw,yT§N<y>>|pdy)  (5.2.20)
1

N—o0

ExXAMPLE 5.2.6 (Normalized polynomials with equidistant zeros on [—1,1]). We have

N 2
2N +d—-1
_.d (N Ta— L o _ _
Pmd(y)—yp][l(l (Bs=t) #). v =N +a- v
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w(y, N) = (v/ (L= g2)((1 + ) T¥(1 — y)'v)@N+d-1/2) 71

N=12..., a=1, po(k)=0, pi(k)=oc.
Setting 7 := Res + (k — 1)(1 — d), we choose for N > Ny,
N :=1log(N + 1) + (7 — 2) loglog(N + 1), (5.2.21)
CN~'og?(N +1) < 6x :=v%/N < C1Ntlog?(N +1). (5.2.22)
Since v = {yn}§F=n, 18 an increasing sequence and § = {dn}J—_p, is a decreasing

sequence for large enough No, we can choose vy and dy for 1 < N < Nj such that « and
0 are increasing to oo and decreasing to 0, respectively. Next, (5.2.21)) and (5.2.22]) show

that conditions (3.2.33]) and (3.2.34)) are satisfied and by Proposition|3.2.4} {Pan1+4}F_; €
Pi*(68,v,6, W, k). In addition, (5.2.21) and (5.2.22) yield

CN~'log?(N +1) < ENr=0n+ye N < CiN~'log*(N +1). (5.2.23)
Further, similarly to the proof of Corollary we note that it follows from Theorem

that condition ([5.2.2)) is satisfied if and only if

I&im Nl/p/T;[)d’kp =00, pe€(0,00). (5.2.24)

and it follows from Theorem and ((5.2.23) that condition (5.2.4) is satisfied if and
only if

Jim NYP1og®(N +1)/Tharp =0, p € (0,00). (5.2.25)

We recall that 75 ; , in (5.2.24)) and (5.2.25)) is defined by (3.3.40) for ¢ € (0,00).
Next, it is easy to see that ([5.2.24)) holds if

N (0,00), d=0,k=1lord=0,1, k=2,
= 2.2
pE Jd,k: {(07 1], d= 17 k= ]_7 (5 6)
and ([5.2.25) holds if
*k (1700)7 d:O7k:1a27
pE Jd,k = {(1/2’00)’ d=1,k=12 (5227)

Therefore, the following corollary for polynomials with equidistant zeros follows from

Theorems [(5.2.1] and B.3.7

COROLLARY 5.2.7. (a) Let Res > —1—-k(1—d), s+k(1—d)—1+#0,2,..., Cax(s) #0,
and let

p € ((kd+2)7", (max{0,~ Res — k(1 —d) + 1})7") N Jj 4, (5.2.28)
where the interval Jj, is defined in (5.2.26). If Ca,x(s) # 0, then
T

|Ca.k(5)]

= 20sin((s + k(1 — d) — D)7/2)|[Cak(5)|Earp
x lim (2N +d — L)r/2)Resth-d=1x

N—o0

1
X (/ [y RO D=Y = Lo (y, [yl THO D=1 =kt Pl P
-1 1/p
x whP (y, N) dy> . (5.2.29)
where &4 4 is defined in (3.3.41) for ¢ € (0, 00).
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(b) Let 0 < Res < 1 and let
€ ((kd+2)7", (max{0, —Res — k(1 —d) + 1})~") N J %,
where the interval J7% is defined in (5.2.27). If Cax(s) = 0, then

™

2fsin((s + k(1 —d) — D /2)| N
1 1/p
. (/1 |y TRO=D=L — Loy (y, |y TR D=L Rt pE ) Pw? (y, N) dy)

=137 . (5.2.30)

Jim (2N +d - 1)7/2)Re s+k(1=d)~1+1/p

where I, is defined in (5.1.2)).
(c) Letm=1,2,...,m> (k—1)(1 —d), and let p € ((kd +2)~*,00) N Ji - Then

1
lim (2N +d— 1)7r/2)2m7'}§,7d7kp

2 1-k(1—-d)) =
Cd,k( m+ ( )) C’d,k(2m+1—k(l— ))gd kp N—oo

1 1/p
X(/ |y2mlog|y|—L%N(y,y%logIyl,y_’“d“Pz’“NH)lpwkp(y,N)dy> . (5.2.31)
—1

EXAMPLE 5.2.8 (Normalized Hermite polynomials on (—oo,c0)). We have
Ponyaly) = H2N+d(y)/H2((]1\3+d(O)v By = VAN +2d+1, w(y,N)= e V2,
ay =V4AN +2d, N=1,2,..., a=o00, polk)=2+kd+k/2)"", pi(k)=4/k.

We recall that {an}37_; is a sequence of the Mhaskar-Rakhmanov-Saff numbers for the
exponential weight e v /2, Next, we choose for N =1,2,...,

N = N¢, e€(0,1/2), (5.2.32)
Oy =% /N=N"12" <cc(0,1/2). (5.2.33)

Then (5.2.32]) shows that conditions (3.2.47)) and (3.2.48]) are satisfied and by Proposition
{Ponia}_, € P5E(B,C(e)v,0, W, k). In addition, (5.2.32) and ({5.2.33) yield

N7 <gf =N +yne N < Ci(e) N7 (5.2.34)
Further, it follows from Theorem [3.3.§| that condition (5.2.2) is satisfied if and only if
1\}1m Nl/(Qp)/T** =00, pE (po(k),p1(k)). (5.2.35)
— 00

In addition, combining Theorem with (5.2.34)), we conclude that condition (5.2.4)
is satisfied if and only if there exists e = ¢(p) € (0,1/2) small enough such that

lim NVEPZIRE®) g =0, p € (po(k), pr(k)). (5.2.36)

N—o0

We recall that 737, .. ¢ € (0,8/3) in (5.2.35)) and (5.2.36]) is defined by (3.3.48).
Next, it is easy to see that (5.2.35)) holds if

2/5,8/3), d=0,k=1,
2/7.1, d=1k=1,
1/3,4/3), d=0, k=2,
1/5,4/3), d=1,k=2,

(
pEKy,: E (5.2.37)
(
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and (5.2.36) holds if

(1,8/3), d=0,k=1,
(1/2,8/3), d=1,k=1,
(3/4,4/3), d=0,k=2,
(3/8,4/3), d=1,k=2.
Therefore, taking account of Theorem [3.3.8] again, we obtain the following special case of
Theorem for the Hermite polynomials.

COROLLARY 5.2.9. (a) Let Res > -1 —k(1—d), s+k(1—d)—1#0,2,..., Car(s) #0,
and let

pe Ky, = (5.2.38)

p € ((kd+2)7", (max{0,— Res — k(1 —d) + 1}) ") N K}, (5.2.39)
where the interval Kj, is defined in (5.2.37)). If (ax(s) # 0, then
T

|Ca,k (5)]

~ 2fsin((s + k(1 — d) — D)1 /2)[ [Car(5) [ Harp
Xth (4N+2d+ 1)(Res+lc(1—d)—1)/27_;;:d’kp (/ ||y|s+k(1—d)—1 — Loin
— 00 R

1/p
—d)— _ d —py?
X (y, [yl A=D1 =k (B o a(y) JHS 9 g (0))F) [Pe P /2dy> , (5.2.40)

where Hq,q s defined in .
(b) Let 0 < Res < 1 and let

p € ((kd+2)7", (max{0,~ Res — k(1 —d) + 1}) ") N K7,
where the interval K% is defined in . If Car(s) =0, then

™
li AN + 2d 1 (Res+k(1—-d)—1+4+1/p)/2
(s R —d) — r/2) pm AN +2d+1)

s —d)— s —d)— — d
X ( / yls D=1 Loy (y, [y O D=1y L (Hy () HES (0)F) [P

_ 2/2 /p *1/p
xe P 2dy) =1 (5.2.41)

dk,s,p’
where 15 ., is defined in .
(c) Letm=1,2,...,m > (k—=1)(1 —d), and let p € ((kd +2)~",00) N K. Then
_ 1
Car(2m+1—k(l—d)Hakp

x lim (AN +2d+ 1) 784 1 (/ ly?™ log |y| — Lokn
R

N—o00

Cae(2m+1—k(1—d))

1/p
2
X (y,y°™ log [y, y " (Hanya(y)/H%, 4(0)F)[Pe P /Qdy) . (5.2.42)

ExAMPLE 5.2.10 (Normalized Williams—Apostol polynomials on (—oco, 00)). Polynomials
of the first kind:
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Panialy) = Aon+a(y)/ASK . a(0), By =2N +d,
w(y, N) = (1+y*)N-4272  a>0,ay=1,N=12,..., a = o0,
po(k) = max{(20k + kd) ™', (kd +2)"'},  pi(k) = co.
Polynomials of the second kind:
Pania(y) = Wan1a(y)/Wan4a(0), By =2N +d +1,
w(y’ N) = (1 + yQ)_N_d/Q_a_l/Z’ (63 Z 07 aN = 17 N = 1’ 2’ R a = m’
po(k) = max{(2ak + kd) ™', (kd +2)"'},  pi(k) = co.

The proof of the following corollary for the Williams—Apostol polynomials Pay 4 of
the first and second kinds follows that of Corollary if we use Proposition [3.:2.7) and
Theorems [(£.2.1] and B3T3
COROLLARY 5.2.11. (a) LetRes > —1—k(1—d), s+k(1—d)—1#0,2,..., Car(s) #0,
a >0, and let

p € ((kd+2)7!, (max{0, —Res — k(1 —d) +1})"1) N Ji kN ((20k + kd)~!, 00),
where J ;. is defined in (5.2.26)). If Cax(s) # 0, then

T . Re s+k(1—d)—1
= 1
)| = ST+ kT = ) = D DNCan () Py ¥ e N

X TN dkp </R | |Z/|S+k(1_d)_1 — Logpn(y, |y|s+k(l_d)_1ay_kd+1P2’€N+d)|p

1/p
x wP (y, N) dy> ,  (5.2.43)

where 7Y 4 45 4 € (0,00), and Dy,q,o are defined in (3.3.40) and (3.3.86)), respectively.
(b) Let 0 < Res < 1, a >0 and let

p € ((kd+2)7"!, (max{0,—Res — k(1 —d) + 1})~") N J3%5 N ((2ak + kd) ™", 00),
where the interval J3i7 is defined in . If Car(s) =0, then

™ lim Re s+k(1—d)—1+1/p
2|Sln((8 =+ k(l — d) — 1)7T/2)| N—oo N

1 1/p
x (/ |y RO — Loy (y, |y TR D=1 =Rt pE ) Pwh (y, N) dy)
1

=13} P (5.2.44)

where 1y, ., is defined in (5.1.2).
(c) Let m = 1,2,..., m > (k—1)(1 —d), a > 0 and let p € (max{(2ak + kd)~!, (kd
+2)7'},00) N T . Then

1
. 2m, __*
lim 6N TN,d,k‘p

om+1—k(l—d)) =
Can(2m+1 = k(1 —d)) Can(@m+1— k(1 — d))Dgpp.a N—oo

1 1/p
X(/ |y2m10g|y|—szN(y,y2mlog|yl,y’“d+1P2’“N+d)Ipwkp(y7N)dy> . (5.245)
—1
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5.3. Interpolation L..-error criteria for (g x(s) # 0 and (o x(s) = 0. New criteria
for zeros of ((s) and B(s) to be in the critical strip are discussed in this section.

5.3.1. General L.,-error criterion. Let ITy = {Pan}3F_; € Po(8,7,0) and let W =
{w(y, N)}¥_; be a sequence of even continuous weights on [—1, 1] or (00, 00). We consider
the following conditions on I1y and W:

(i) w(0,N) =1, N =1,2,..., and the sequence {w(y, N)}¥_, converges uniformly
to 1 in a neighborhood of zero.

(il) supjy<q [Pon(y)|w(y, N) < Ci(w).
(iii) The following estimate for the error of best polynomial approximation in the weight-
ed uniform metric holds:

Boon (ly1* 71 (—a, @) == inf s [[y T = Qarn (y)|w" (y, N)
Q2N EP2kN |y|<a

> Cy(w, k) By s,

Here, a = 1 or a = oo and the constants C; and C5 are independent of N. Then the
following theorem holds:

THEOREM 5.3.1. Let 0 < Res < 1 and let Iy and W satisfy conditions (i)—(iii). Then
Cok(s) # 0 if and only if there exist a constant Cs5 = Cs(s,IIp,W,k) € (0,1] and a
sequence of points yy € (0,a), N =1,2,..., satisfying the properties:

(A) limy 00 BNYN = 0.
(B) We have
[N = Lorn (s [y yPan () [w" (yw, N)

> Cs Sup Y1757 = Lopn (g [y~ y Poy () [w® (y, N).
yi<a

The following criterion for p x(s) = 0 is obviously equivalent to Theorem m

THEOREM 5.3.2. Let 0 < Re s < 1 and let IIy and {w(y, N)}¥_, satisfy conditions (i)—
(iii). Then Co.x(s) = 0 if and only if for any constant Cy € (0,1] there exists a constant
Cs such that the set

Sncy ={y €[0,a) : [y"* 7 = Loun (v, [y1"* 1, y P () Jw(y, N)

>Cy st : ly* ™ = Loen (y, [y* ™", y Pan () lw(y, N)}
y€([0,a
satisfies the property Sn.c, < [0,Cs/08n].

Proof of Theorem [5.3.1] Necessity. Let Iy and W satisfy conditions (i) and (ii) and
let Cox(s) # 0. We first show that condition (i) implies the existence of a sequence
yn € (0,a), N =1,2,..., such that

Jim Byyy =oo,  lim yy =0, (5.3.1)
and, in addition, there exists Ny € N such that
nglf\/o | Pon (yn)|w(yn, N) > 1/4. (5.3.2)
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Indeed, setting
oy = min{ By, v, (1/2)log(1/0x)}, N=1,2,...,
we see that by , the sequence
_[1)2, 1< N <Ny,
e {QWLUN/(%)J/BM N> Ny,

satisfies property (5.3.1). Here, N is chosen so that yy € [0,1/2] C (0,a), N =1,2,....
Moreover, by (3.1.3)), there exists N > Ny such that

|Pon(yn)| > 1 — Coy exp(Bayn) > 1—Coy> >1/2, N> N,. (5.3.3)
Next, by condition (i) and (5.3.1), there exists a positive integer N5 such that

Then (5.3.2)) follows from (5.3.3) and (5.3.4) for Ny = max{Na, N3}. Therefore, there

exists a sequence {yn }3_, with the required properties.
Next, using Corollary |4.3.1)(a) and inequality (5.3.2), we obtain, as N — oo,

BTN = Lorw (yws [y y Pay () [w® (yw, N)
> C(s)|Pan (yn)[w* (yn, N)|Co,k(5)Co,k (5) + o(1)] = C(s, k)[Cou(s)| > 0. (5.3.5)
Further, we use statement (a) of Theorem and condition (ii) to show that

BRETFEL sup |[y[*H T — Logn (v, y1* ™1, yPoy () [w (y, N)

lyl<a
< 00s) sup [P0 ) s (o) [ b
~ 5 N
lyl<a N lyl<a 0 (1 + t2/(6Ny)2)h§(t)
0o tRes+k—2 dt
< C/ — g < o0 (5.3.6)
0 hg(t)

Finally, property (B) follows from (5.3.5) and (5.3.6)), while property (A) follows from
G31).

Sufficiency. Let IT, and W satisfy conditions (ii) and (iii). If a sequence {yn}3_; has
properties (A) and (B), then by Corollary a) and by (ii),

ok (s)] = Cls,k) Jim BNy — Loy (yw, [y y P )1/ Pon (y)|
> C(s, k) liminf By — Loy (yws [y y Py W) [w® (v, N). - (5.3.7)
Using now property (B) and condition (iii), from we obtain
o,k (s)] = Climinf Gy — Logy (ywv, [yl* 1 yPoy () lw* (v, N)
> Clim inf pres k=L By n ([yl* TR, (—a, @) e > Colw, k) > 0.
Thus (o x(s) # 0. This completes the proof of Theorem n

REMARK 5.3.3. The above proof shows that the additional condition
A}im yn =0
can be included into property (A) of Theorem m
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5.3.2. Special L,.-error criteria. To apply this theorem to special polynomials and
weights, we consider the following simple condition that can replace condition (iii) in

Theorem [5.3.7k
(iv) By > ON, N =1,2,....
PROPOSITION 5.3.4. Condition (iii) follows from (i) and (iv).
Proof. Tt follows from (i) that there exists 6 € (0,a), independent of N, such that
inf,c(_s.5 w(y, N) > 1/2. Then
E2kN(|y|s+k_17 (_a" a))w’Q > 2_kE2kN(|y|s+k_1’ (_6’ 5))1
= o kgRestk=lp  v(y|*t* 1 (-1,1))1.  (5.3.8)

If we use an estimate

Eapn(ly[*T* 71, (=1,1))1 > ON~(RestD (5.3.9)
(see [21 Lemma 2]), then (iii) follows from (5.3.8), (5.3.9)), and condition (iv). m

EXAMPLE 5.3.5 (Normalized Gegenbauer polynomials on [—1,1]).
Pox(y)=Cin()/Cin(0), Bx=2N -+, w(y, N)=(1-y)? N=12..., 1>0.

Conditions (i) and (iv) are satisfied. Condition (ii) is satisfied as well, by (3.2.7). There-
fore, by Proposition the criteria of Theorems and are valid for these
polynomials.

EXAMPLE 5.3.6 (Normalized Chebyshev polynomials of the first kind on [—1, 1]).

Py =Ton(y), OBn=2N, w(y,N)=1, N=12,....
Conditions (i), (ii), and (iv) are satisfied and the criteria of Theorems and are
valid for these polynomials.
EXAMPLE 5.3.7 (Normalized Hermite polynomials on (—oo, —00)).
Piy = Hon(y)/Han(0), By = VAN +1, w(y,N)=e ¥/2[1—y?/AN|, N=1,2,....
Conditions (i) and (ii) are satisfied; the latter follows from (3.2.54)). To prove that condi-

tion (iii) is also satisfied, we use a special case of Theorem 8.1.1(a) from [22]:

2(3/2)(Res+k—1) lim N(Re3+k—1)/2E2N(|t|s+k_1’(_Ooaoo)>exp(*t2)

N—oo

= inf supl|t|*T* 1 — g1 ()] >0
it sup =41 — (1) >0,

where B; is the class of all entire functions of exponential type < 1. Hence by the
substitution ¢ = \/k/2y, we arrive at the inequality

|s+lc—1, ( (Res+k—1)/2 _ ClﬁX’(Re s+k—1).

Eorn(ly —oQ, OO))eXp(—ky2/2) > CN™

Thus property (iii) is satisfied. Therefore, the criteria of Theorems and are

valid for the Hermite polynomials.

REMARK 5.3.8. Note that the weights w(y, N) for the Gegenbauer and Hermite polyno-
mials in those examples are different from (3.2.4) and (3.2.46)).
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5.4. Interpolation L,-error criteria for (g x(s) # 0 and (4 %(s) = 0. In this section
we discuss Ly-versions of the interpolation error criteria for zeros of the zeta functions to
be in the critical strip.

5.4.1. General L,-error criterion

THEOREM 5.4.1. Let {Pon1a}3F_q € P5*(B,7,0, W, k) and 0 < Res < 1. In addition, let
p satisfy condition (5.2.1) and let both conditions (5.2.2) and (5.2.4)) be satisfied. Then
the following statements hold:
() Ca,k(s) # 0 if and only if

Clﬂ;](Re s+k(1—d)—1)

s —d)— s —d)— — 1/
_ (L |y TEA=D=1 — Lopn (y, |y HRA=D=1 y=kdt1ph () |["w"? (y, N) dy) "

>~ a B 1/
(S, ly*aPEy o (y)wk (y, NP dy) "
S Cgﬁ;,v(Re s+k(17d)71). (541)

(b) Cak(s) =0 if and only if

CSﬂ;](RC s+k(1—d)—14+1/p)

a s+k(1—d)— s —d)— _ 1/
(L2 Iyl =D=t — Loy (y, [y|sHRA=D =1 y=kdHLpE () [Pw? (y, N) dy) P
a _ 1/
(J°, ly=*aP (y)wh (y, NP dy) ™"
< C4ﬂ;/(Res+k(1—d)—l+l/p). (542)

Proof. Theorem follows immediately from Theorem Indeed, if (4x(s) # 0,

then (5.4.1)) follows from Theorem [5.2.1)(a). If inequalities (5.4.1)) hold, then assuming that

Ca.x(s) = 0 and using Theorem b), we see that relation (5.2.5) contradicts (5.4.1))
because of condition ((5.2.2)). This proves (a). Statement (b) can be proved similarly. m

5.4.2. Special L,-error criteria. Special cases of Theorem are discussed below.

<

EXAMPLE 5.4.2 (Normalized Gegenbauer polynomials on [—1,1]). Let 0 < Res < 1 and
Ponta(y) = Consa®)/(Cania) P(0), By =2N+A+d, w(y, N) = (1—y*)M*71/4,
N=1,2,..., )\ZO, Cl:l, po(k/’):O, pl(k):4/k.

It is established in Section 5.2 that for the Gegenbauer polynomials, all three conditions
(5.2.1), (5.2.2), and (5.2.4)) are satisfied for

p € Lugs = ((kd+2)7", (max{0,— Res — k(1 —d) + 1}) ") N I}, N I;%,

where the intervals IZE,I« and I;fk are defined in (5.2.12)) and (5.2.13)), respectively. It is
easy to see that

(1/274)a d:O,k'Zl,

) (1/3,1], d=1k=1,
fars =1 (1/2,2), d=0,k=2, (5:45)

(1/3,min{2, (1 — Res)™1}), d=1,k=2.

Then the following special case of Theorem [5.4.1] holds for the Gegenbauer polynomials:
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COROLLARY 5.4.3. Let 0 < Res < 1 and p € Iy s, where Iy s is defined by (5.4.3)),
and let Ty g kp @5 defined by (3.3.15). Then:

(a) Ca,x(s) # 0 if and only if

ClN_(Re s+k(1_d)_1)7—]§1d N
;& Rp

1 1/p
= (/ 1||3/|5+k(1’d)’1—L2kN(y, y|TRA=D=L =R L pE ()] (1—y?) 2Dk dy)

< CQNf(Re‘FHS(lfd)fl)Tﬁldk )
- »@,KPp

(b) Cak(s) =0 if and only if
C3N_(Re s+k(1—d)—14+1/p)

1 1/p
< (/ L [y =D — Lopn (y, [y RO D=Ly Rt pE () [P (1—y?) /2 Dk dy)

< C4N7(Re s+k:(17d)71+1/p).

EXAMPLE 5.4.4 (Normalized even Chebyshev polynomials of the first kind on [—1, 1]).
Let 0 <Res <1 and

PQN(y) = TQN(y)a 61\’ = 2N7 w(y’N) =1,
N=1,2,..., a=1, pok)=0, pi(k)=c0.

It is established in Section 5.2 that for these polynomials, all three conditions ([5.2.1)),
(5.2.2), and (5.2.4) are satisfied for p € (1/2,00).

COROLLARY 5.4.5. Let 0 <Res <1 and p € (1/2,00). Then:
(a) Cak(s) # 0 if and only if

1 1/p
Cy N~ (Resth—1) < (/ y[" 1 = Logn (v, lyI* 1 y Ty () [F dy)
—1

< CQNf(Re s+k—1) )

(b) Cak(s) =0 if and only if

1 1/p
Cy N~ (Resth=1+1/p) < (/ [y = Lopn (y, [y y Ty ()| dy)
1

< C4N—(Re s+k—14+1/p) )

EXAMPLE 5.4.6 (Normalized polynomials with equidistant zeros on [—1,1]). Let 0 <
Res <1 and

N 2

2N +d—1

Panya(y) = y* H (1 - <2p—|—d—1> y2>7 By = (2N +d—1)n/2,
p=1

w(y, N) = (v I = 92)((1+ ) (1 — ) ) VD)7 N2
a=1, pO(k) =0, pl(k) = 00.



5.4. Interpolation Ly-error criteria for (41 (s) # 0 and (a,k(s) =0 103

It is established in Section 5.2 that for these polynomials, all three conditions (5.2.1)),
(5.2.2), and (5.2.4)) are satisfied for
p € Jan,s = ((kd+2)7", (max{0,—~ Res — k(1 —d) + 1}) ") N J; . N 3%,

where the intervals Jj, and J77 are defined in (5.2.26) and (5.2.27)), respectively. It is
easy to see that

(1, 00), d=0,k=1,

(1/271]a dil,kil,
= 4.4
ok =9 (1, 00), d=0,k=2, (5.44)

(1/2,(1 —Res)™Y), d=1,k=2.

Then the following special case of Theorem holds for the polynomials with equidis-
tant zeros:

COROLLARY 5.4.7. Let 0 < Res < 1 and p € Jq,s, where Jqp s is defined by (5.4.4)),
and let 7Y 4 1, be defined by (3.3.40). Then:

(a) Ca,x(s) # 0 if and only if

ClN_(Res—i_k(l_d)_l)(T;(] 4 kp)_l

1 1/p
: </ l“y\”’““’d)’l — Lokn (y, [y TRO=D=1 gL PE () [P0t (y, N) dy)
< C2N7(Re s+k(1—d)—1) (Tjtf,d,kp)il'

(b) Cak(s) =0 if and only if

CSNf(Re s+k(1—d)—1+1/p)

< (/1 |y TR — Loy (y, [y TR D=1 =k PE ()| wkP (y, N) dy>1/p
< C4]:71—(Res+k(1—d)—1+1/p)_
ExAMPLE 5.4.8 (Normalized Hermite polynomials on (—oo,00)). Let 0 < Res < 1 and
Pansa(y) = Honva(y)/Han+a) D(0), By =V2N+2d+1, w(y,N)=e¥/2
N=12,..., a=o0, polk)=1/2, pi(1)=4, pi(2)=2.

It is established in Section 5.2 that for the Hermite polynomials, all three conditions
(5.2.1), (5.2.2), and (5.2.4) are satisfied for

pE€ Kaps = ((kd+2)7", (max{0, —Res — k(1 —d) + 1})"") N K} , N K%,

where the intervals K, and K77 are defined in (5.2.37) and (5.2.38), respectively. It is
easy to see that

(178/3)7 d=0,k=1,

(1/2,1], d=1,k=1,
Kirps= 5.4.5
ke = (3/4,4/3), Q=0 k=2, (5.45)

(3/4,min{4/3,(1 —Res)™1}), d=1,k=2.
Then the following special case of Theorem [5.4.1] holds for the Hermite polynomials:
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COROLLARY 5.4.9. Let 0 < Res <1 and p € Kq,s, where Kqp s is defined by (5.4.5)),
and let T ; 1, s defined by (3.3.48). Then:

(a) Ca,x(s) # 0 if and only if
Cle(Re s+k(1—-d)—1)/2 (T]t/*d kp)il

sy

1/p
%) —d)— — _ 2
: </’y|s+k(1 DY — Lo (g, [y RO D70y =M B () [Py 2 d?/)
R

< CzN—(Re s+k(1—d)—1)/2(7_]x§]*d k:p)_l‘
(b) Cakx(s) =0 if and only if

C3N—(Res+k(1—d)—1+1/p)/2

1/p
: </R|l/|s+k(1 D1 — Lo (y, [yl O D=1 g M PE () [Fe /Zdy)
S C4N7(Res+k(17d)71+1/p)/2'

ExAMPLE 5.4.10 (Normalized Williams—Apostol polynomials on (—oco,00)). Polynomials
of the first kind:

Ponya(y) = Aonta(y)/Aon+a) P (0), By = 2N +2d,
w(y, N) = (1 +y?) N2 >0, ay=1 N=12,...,
a=o00, po(k)=max{(2ak +kd)"", (kd+2)"'}, pi(k) = oco.
Polynomials of the second kind:
Pan+a(y) = Wonta(y)/Wan+a) P (0), By =2N +2d+1,
w(y,N) = (1 +y>)~N-4/27e"12 >0, ay=1, N=12,...,
a=o00, po(k)=max{(2ak +kd)"", (kd+2)""}, pi(k) = oo.

It is established in Section 5.2 that for the Williams—Apostol polynomials, all three con-
ditions (5.2.1)), (5.2.2)), and (5.2.4)) are satisfied for p € Jy 5 N ((2a + d)~!, ), where
Ja ks is defined in .

COROLLARY 5.4.11. Let 0 <Res <1 andp € Jyr s N ((2a+d)~1,00). Then statements
(a) and (b) of Corollary with f_ll replaced by fR hold for the polynomials of Fxample
£4TI0




6. Other applications

In this chapter we present three more applications of asymptotic relations for the zeta
functions.

6.1. Universal exponential sums. A number of universal functions and sequences
(mostly in the form of divergent power series) that allow approximation of functions
from a variety of classes have been introduced in analysis for the last 100 years (see the
survey [25]). However, all these universal objects have not been given in the explicit form,
with one exception. In 1975 Voronin [53] discovered the following remarkable result on
universal translates of {4 (s) along the imaginary axis:

THEOREM 6.1.1. Let 0<r <1/4 and let g(s) be continuous on the disk D,.(3/4) :== {s€C :
|s — 3/4] < r} and analytic in the interior of D,.(3/4). If g(s) # 0 in the interior of
D,.(3/4), then for any € > 0 there exists a real T =T (e, g,7) such that

max |g(s) — Car(s +1iT)| < e. (6.1.1)
s€D,(3/4)

Theorem [6.1.1]for {q x(s) = ¢(s) was proved in [53]. Voronin mentions in [53] that the
analogue of this result holds for any Dirichlet L-function (in particular, for ¢4 x(s) = 5(s)).
The proof of this extension of Voronin’s theorem can be found in [4]. Further extensions
and improvements of Voronin’s theorem can be found in [4, 28, B82] B9 47, 33| [41]. In
particular, Theorem is valid if D,.(3/4) is replaced with a compact K C {s € C :
Res € [3/4—r,3/4+ 7]} [4, B9, 41].

The following real version of this result easily follows from Theorem [6.1.1
COROLLARY 6.1.2. Let 0 <r < 1/4 and let f : R — R be a continuous, nontrivial, and

2m-periodic function on R. If f does not have sign changes (that is, f(t) >0 or f(t) <0
on R), then for any € > 0 there exists a real T = T'(e, f,r) such that

e |£(t) — ReCar(3/4 + ret +iT)| < e. (6.1.2)
€10,27

Proof. We first assume that f(t) = ao/2 + > ,_,(ax coskt + by sinkt) is a nontrivial
trigonometric polynomial of degree at most n with real coefficients. Then the function

g(s) == ao/2+ > (ax —iby)(s —3/4)r™F, s =3/4+pe", 0<p <,
k=1
is continuous on D,.(3/4) and analytic in the interior of D,.(3/4). In addition,
f(t) =Reg(3/4 +re™). (6.1.3)

[105]
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Next, g(s) # 0 in the interior of D,.(3/4) since Re g(s) # 0 due to and the integral
representation for the harmonic function Re g(s). Therefore, g satisfies all conditions of
Theorem ) follows from and .

To prove the corollary for any continuous, nontrivial, and 27-periodic function f that
does not have sign changes on [0, 27), it is sufficient to approximate f by a trigonometric
polynomial that does not have sign changes on [0, 27). For example if f(¢) > 0 on [0, 27),
then for any € > 0 there exist n = n(g, f) and a trigonometric polynomial @ of degree at
most n such that Q(t) > f(t) and max,c(g2x) |f(t) — Q(t)| < /2 (see [36] p. 96]). =

Combining Theorem with asymptotic representations for (4 (s), it is possible to
find several families of universal sequences of exponential sums whose shifts along the
imaginary axis can approximate a continuous function on D,(3/4) that is analytic and
nonvanishing in the interior of the disk. Real versions of these results follow from Corollary
[6.1:2] In particular, two of these universal sequences, generated by
5(S)a d=0,
Ca1(s) = {

=), =1,
are presented below.
COROLLARY 6.1.3. Let us set (N =1,2,..., d=0,1)

2N
sin((s — d)m/2)(1 — 279)41(5)22N+s+d-1

N
2N +d—1
_1)pt1 92 _1)s—1
x ) (1) (N_p )(p+d )

p=1

Ry a(s) :=

If 0 < r < 1/4 and g(s) is a continuous function on D,(3/4) that is analytic and
nonvanishing in the interior of the disk, then for any e > 0 there exist T = T(e,g,7) € R
and No = Ny(g,g,7) such that for any N > Ny,

max |g(s) — Rn,a(s+iT)| <e. (6.1.4)
s€D,(3/4)
Proof. Using formula (4.4.38]) from Corollary c), we obtain
Ca1(s) = Rn.a(s) + O(N~tlog? N), 3/4—r <Res<3/4+r, (6.1.5)

where the constant C(s) in O(N~'log® N) is independent of N and satisfies the property

SUP3/4—r<Re s<3/44r C(8) < 00, by (4.4.29). In other words, asymptotic (6.1.5) holds
uniformly on the strip {s € C: Res € [3/4—r,3/44r|}. Then choosing T'(¢/2, g, r) from

Theorem such that (6.1.1) holds with ¢ replaced by €/2, we can find Ny(e/2,g,7)
from (6.1.5)) such that

|§d71(s + ZT) — RN,d(S + ZT)| < 8/2, N > Nj.

Hence (6.1.4) follows from (6.1.1]). m

Using Corollary instead of Theorem [6.1.1] we can similarly prove the following real
result:

COROLLARY 6.1.4. Let 0 <r < 1/4 and let f : R — R be a continuous, nontrivial, and
2m-periodic function on R. If f does not have sign changes on R, then for any e > 0 there
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exist T =T(g, f,r) and Nog = No(e, f,r) such that for any N > Ny,
_ it |
onax |f(t) — Re(Rn(3/4+re" +iT))| < e.
Making the substitution = cost and using Corollary we immediately obtain
the following result:

COROLLARY 6.1.5. Let 0 < r < 1/4 and let h : [-1,1] — R be a nontrivial continuous
function on [—1,1]. If h does not have sign changes on [—1,1], then for any € > 0 there
exist T =T(e, h,r) and Ny = Ny(e, h,r) such that for any N > Ny,
lril‘z?i |h(z) — Re(Ry(3/4 4+ rxz +iry/1 — a2 +iT))| < e.

REMARK 6.1.6. Using other formulae for (q(s), 0 < Res < 1, from Corollary [£.4.4] it is
possible to find other special universal sums, while the general ones can be obtained from
statements (a) and (b) of Theorem[d.4.1] One more source for universal sums is asymptotic
(4.2.10), which generates the universal exponential sums for each fixed y € R\ {0} and
{Pan+a}%-1 € P4(B,7v,6). An important role in all these processes is played by the
uniform estimates , , and for the constant C(s) in the corresponding
remainder term.

In addition, we note that Corollary is valid in the more general case of the disk
D,.(3/4) being replaced with a compact K C {s € C:Res € [3/4 —,3/4+r]}.

6.2. Functional equations for zeta functions. Here, we show that functional equa-
tions for zeta functions ((s) and (3(s) follow from asymptotic representations for these
functions.

THEOREM 6.2.1. (a) For s € C\ {0,1}, the following Riemann’s equation holds:

C(1—s) =2"5775I(s) cos(sm/2)((5). (6.2.1)
(b) For s € C, the following functional equation holds:
B(1 —s) = (2/m)°T'(s)sin(s7/2)5(s). (6.2.2)

Proof. We first need some technical estimates. For a > b > 0 and o > 0, # € R, the
following inequality is valid:

|ao¢+iﬁ - ba+iﬁ| S aa(a/b - 1)(|6| + Oé). (623)
Indeed,
@9 — 48] < aJai® — 4]+ (® — b°) < a*|Bllog(a/b) + aa(afb— 1), (624)

Then (6.2.3)) follows from (6.2.4]). Next setting a = x, b = sinz, x € (0,7/2], we obtain
from (6.2.3), for « > 0, 8 € R,

|z0FP — (sinz) | < Oz (x/sinz — 1) < Cy2?te, (6.2.5)
where C and C} are independent of z. Next, (6.2.5) immediately implies the estimate
|z~ (@0 _ (sing) =P < Ca?, 2 €(0,7/2],a>0,3€R, (6.2.6)

where C is independent of x. Further, setting

a+if=1-—s, Res<l, x=2p—1)x/(4N), p=1,...,N,
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from (6.2.6) we obtain

1—s _ 14+Res
1 @ | e

(2N)1=5 (sin (2174;\[1)77)1*5 (2p—1)t—s| — N2 ’
where C is independent of p and N.
To prove statement (a), we use relation (4.4.32)) for d = 0:

w251 1
((s) = cos(sm )1 — (s 7 1) ngnoo@N) Hy(s), —1<Res<0, (6.2.8)

where
N -1
2p — 1 9 (2p — 1)7r
§ 1 RSl A
(cos ) ((s + 1) cos N s

p:1
<cos 2p — Um ) 1<(s+1)sin2(2p4;\rl)7r - 1)

é( 2p71 > 1((8+1)<3082(2P4N1)7T1>. (6.2.9)

Next, we approximate (2N)*~1Hy(s) by the sum

(6.2.7)

Hy(s):

In(s) == —(2/m) % Z(2p —1)*7!, —1<Res<0. (6.2.10)

Then using , we obtain
2p—1)m —s
‘ (S-i—l)COSQ%—l s(2/m)t

(2N)1=s (sin Z2Dm)y = (2p — 1)1~

| O @t | e (g, o= D)
(2N (sin 22-0m) T~ (2p— 1)1 AN
2p7 1 1+Res

go%, (6.2.11)

where C' is independent of p and N. It follows from (6.2.9)—(6.2.11)) that for —1 <Re s <0,
N
(2N)* " Hy(s) = In(s)| < C Y (2p — 1)'"TRe/N? < ONFes, (6.2.12)

Therefore combining (6.2.8) with (6.2.12]), for —1 < Re s < 0 we obtain

N

—n2 7 (2/m) lim > (2p - 1)*!

Cs) = cos(sm/2)(1 —21=5)(s+ 1) N=oo £

s oo

T 1 T
- _cos(Sﬂ'/Q)(l —21=5)I'(s) pz (2p—1)1=s COS(SW/Q)Ql—SF(s)C(l —5).

S

=1
Thus equation (6.2.1]) is valid for —1 < Re s < 0. To complete the proof of statement (a),
it is sufficient to use analyticity of ((s) for s € C\ {1}.
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The proof of statement (b) is similar, if we use relation (4.4.30) for d = 0. We have

T
=T lim 2N)*'H; )
6(8) 25111(87‘(/2)['(5) Ngnoo( ) N(S)a < Res < 07
where
s—1
1(s) == (=N +1 (2p — D)m . (2p—1)m
HY(s) = Z i (COS4N sin “=—
N .
— Y (s G2 T) T B
p=1 4N 4N

Next, we approximate (2N)*"1H% (s) by the sum

N
Ij(s) = (2/m)' > (=P (2p—1)*"",  —1<Res<0.
p=1
Then using (6.2.7)), we obtain
cos (2104;\’1)# ~ (2/7T)1_S s (2p — 1)1+Res.
(2N)1_5(sin 7(21’4;\]1)”)1_8 (2p— 1)t |~ N2
Hence
|2N)* T Hy(s) — Ix(s)] < CNRes —1 <Res <0,
and

r2/m)i & - (m/2)"
= Cptiop— 1)t = A ).
A8) = Ssn(em /2 (o) Nﬂnoo;( =1 sn(sm /2T () L)
Therefore, (6.2.2)) is valid for —1 < Res < 0, and due to analyticity of 3(s) on C,
statement (b) is established. m

6.3. Combinatorial representations for Bernoulli and Euler numbers. Asymp-
totic formulae for ((2n) and 5(2n + 1) lead to new combinatorial representations for the
Bernoulli numbers

Boy, :=2(—=1)""1(2n)!(27)"2"¢(2n), n=0,1,..., (6.3.1)
and the Euler numbers
Eo, :=2(—=1)"(2n)!(2/7)*" ' B3(2n +1), n=0,1,.... (6.3.2)
THEOREM 6.3.1. Forn=0,1,..., the following formulae hold:
(=1)n+1

BZn =

(I 21220 + 120 [ (27 + 1)

- m+1 L (2r 4 1)20rmtl
x Y (- ( )(2m+1) > H o T (6.3.3)

m=0 m=nTr=

B, V" Z(_l)m<2n+1
m=0

2o
(2n+1) n—m/

0

“r (2 + 1)2rm
) > HO BoT (6.3.4)
—o Xr,m=nT
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where the second summation in (6.3.3) and (6.3.4)) is taken over all nonnegative integral

solutions ag m, . - . , Otn.m to the equatwn Z _o Or,m =M, provided that ay, ym :=0,0<m <n.
Proof. To prove | -, we use and the limit relation m for d = 0:
1 2n
2n—1
By, = 71 Epye—T J\}gnoo(QN) SNn, (6.3.5)
where D 5 D
—QNZCOan 1 ;V) —2n+1) ;CO 2n+1%

2g—1

Using the Fourier expansion for (cosy)??~%, ¢ € N, we obtain by straightforward calculation

2n —1 2m —1)2p — 1)w
SN = 92n— 322( ) ( ij\rp )

p=1m=1
N n+1
2n+1 2n+1 2m—-1)2p— 7
o 20 () o
— m+1 n-— 1) 1
22n 2 Z ( —m /) sin (277;;\[1)71’
n+1
2n+1 (_1)m+1( 2n+1 ) 1
22n+1 — n—m-+1 sin (2171;1)77
1 " 2n+ 1\ (2m + 1)2
_ m—+1
- (2TL + 1)22n+1 Z (_1) (TL _ m) (2m+1)7 (636)
m=0 sin "=

Then it follows from (6.3.5)) and (6.3.6]) that

_ o on+1\ (2m+1)?
1 _ 21 2n 2 1 24’ILB n = 1 1—-2n _1 m+1

— n—m
n —1 n 2n+1
. . . —3n _1\ym+1 2
= ([T@i+v)  lmy= > () (n—m)(2m+1)
=0 m=0
< 11 sm(2p+1y—< H2J+1)
O<p<n pF#EM j=0
om+1 (3n)
y Z 1ym+ ( n+ > 2m +1) ( sin(2p + 1)y ) . (6.3.7)
0<p<n, p#m v=0

It remains to use the generalized Leibniz theorem

(3n)
H sin(2p + 1)y)y3:0

0<p<n, p£m 1 . n
= (2a7 m+1)
- 2 " [ sin@p+ 1)y), =
am Sor_o(ar m+1)=3n Hr:0(2ar m T+ 1) 20
(—1)"(3n)! (2 4 1)20nn+1
T m+l 6.3.8
om + 1 2 HO o T 655)

> Qrm=

where . m := 0, 0 < m < n. Thus (6.3.3)) follows from and (6.3.8]).
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We prove (6.3.4) similarly. Indeed, using (6.3.2)) and (4.4.30) for d = 0, we obtain

Ey, = n(2/m)? ! ]\}iirlm(—l)N+1(2N)2"57v7n, (6.3.9)
where
S 20 20— D) (2~ D)
* +1 — : —
SN = 1;( 1)P i sin i
N n
2n 2m@2p—-1)m\ . (2p—1)m
2n p+1
e (( ) 22( ) ) Py
p=1
N
_ 2n 2p (2p-1m
=9 2n P+1
() 55
p=1
n N
2n . 2m+1)(2p—1)rm
—1)P*t
+mz_1(n m); ot sin 2t D0
m | (2m —1)(2p — D
+1 — —
( m) Z —1)P" sin AN )
p=1
_ (—1 S e (73) (2 + 1)
22n+1 — (n +m+ 1) oS (27741—]&-\[1)71— .
Then using this relation and (6.3.9), we obtain
- 2 2m + 1
E2n — 27277, hm y72n Z(l)m< n ) ( m + )
y—0 = n— (n+m+1)cos(2m + 1)y

n—m

_ 1 . _on - m(2n+1
_W;%y Z( 1) ( )(2m+1) H cos(2p + 1)y

m=0 0<p<n, p#m
1 - 2n +1
2 1
(2n—|—1)22"2n'§::o <n—m>(m+ )
(2n)
X ( H cos(2p + l)y) . (6.3.10)
0<p<n, p#m v=0

It remains to note that by the generalized Leibniz theorem,
(2n) (2 1) 20r,m
I  cos2p+ 1)y) =(-1)"@2n)! > H T . (6.3.11)
y=0 204r m
0<p<n,p#m " Qrm=nT=0

where oy = 0, 0 < m < n. Thus (6.3.4) follows from (6.3.10) and (6.3.11]). This
completes the proof of Theorem n

REMARK 6.3.2. Note that the following well-known relations between the Bernoulli and
the Euler numbers:

n—1
2n 2n —1
Bgn = m]io ( 2] )EQj, n = 172,...7 (6312)
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= 2n \ 4% — 2%
E2n: — ( . )BQ, n = 172,...7 6.3.13
; 2j — 1 2j ! ( )

can be proved by representation (4.4.38). Indeed, it follows from (6.3.1), (6.3.2), and
[@4.38) for d = 1 and d = 0 that

N
= ﬁn i \/N p+1 2N 2n—1
Bon = G — g2 0 2 ;H) Nl )@ (63)
VNS (2N -1 .
EQ”*4INIE“OO2TN;(*1) N_p>(2p1) . (6.3.15)
Next,
— N
2n—1 N —
p+1 9p — 1)2
Z( 2j >Z (N >< )
j=1 p=1
al ON — 1\ 2=t /on — 1
= p+1 - . 2j
> <N—p)§< i )m )

Further, combining (6.3.14)) and (6.3.15) with (6.3.16]), we obtain

n—1
2n 2n —1
42n _ 22n Z < 2] >E2j

=0

_ 8yan . VNE <2n—1)zN: p+1(2N )(2p—1)2j

42n 22n N—ooo 22N

Jj=1 p=1

ain VN N( )p+1( 2N )( p)2 L = By,

= im
42n — 220 NTo 22N f
p=

This proves (6.3.12)). Relation (6.3.13]) can be proved similarly.
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