
0. Introduction

Let (X, d) be a metric space. We shall denote by CB(X) the family of nonempty closed

bounded subsets of X and by K(X) the family of nonempty compact subsets of X. On

CB(X) we have the Hausdorff metric H given by

H(A,B) := max{sup
a∈A
d(a,B), sup

b∈B
d(b, A)}, A,B ∈ CB(X),

where for x ∈ X and C ⊂ X, d(x,C) := inf{d(x, y) : y ∈ C} is the distance from the point
x to the subset C. A multivalued mapping T : X → CB(X) is said to be a contraction if
there is a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y), x, y ∈ X.
A multivalued mapping T : X → CB(X) is said to be nonexpansive if

H(Tx, Ty) ≤ d(x, y), x, y ∈ X.
A point x is called a fixed point of a multivalued map T if x ∈ Tx.
In 1969, Nadler [38] established the multivalued version of Banach’s contraction prin-

ciple by proving the existence of a fixed point of a contraction T : X → CB(X). Since
then the metric fixed point theory of multivalued mappings has been rapidly developed.

In 1972 Reich [41, 42] proved that if T : X → K(X) satisfies the contractive condition
H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x 6= y,

where k : (0,∞)→ [0, 1) is a function with the property
(0.1) lim sup

r→t+
k(r) < 1 for all t ∈ (0,∞),

then T has a fixed point.

Reich [44, 48] raised the question: If T satisfies the same contractive condition as

described above but takes values in CB(X), does T have a fixed point?

This question still remains open. However, the answer is yes provided either the in-

equality (0.1) holds also at t = 0 ([52], [37]) or k behaves near 0 like 1 − atσ ([10]) for
some a > 0 and σ ∈ (0, 1) and for all t > 0 sufficiently small.
The fixed point theory for multivalued nonexpansive mappings is, however, more

subtle. As a matter of fact, not many positive results have been obtained so far. In 1974,

Lim [30], using Edelstein’s [14] method of asymptotic centers, proved that a multivalued

nonexpansive mapping T : C → K(C) has a fixed point, where C is a nonempty closed
bounded convex subset of a uniformly convex Banach space. In 1990, Kirk and Massa

[27] showed that if a closed bounded convex subset C of a Banach space X has the

property that the asymptotic center in C of each bounded sequence of X is nonempty
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and compact, then every nonexpansive multivalued mapping T : C → KC(C) has a fixed
point, where KC(C) is the family of nonempty compact convex subsets of C.

Let C be a closed convex subset of a Banach space X. The inward set of C at x ∈ C
is given by

IC(x) := {x+ λ(y − x) : λ ≥ 0, y ∈ C}.
A multivalued mapping T : C → 2X is said to be inward (resp. weakly inward) on C if

Tx ⊂ IC(x) (resp. Tx ⊂ IC(x)) for x ∈ C.
Two remarkable theorems of Lim [32, 33] state that T has a fixed point either if T is a

weakly inward nonexpansive mapping from C to K(X), with X a uniformly convex

Banach space, or if T is a weakly inward contraction from C to CB(X), with X a

general Banach space. We shall extend the Kirk–Massa theorem to inward nonexpansive

mappings. Also, we shall give another proof of Lim’s theorem [32] by using an inequality

characteristic of uniform convexity [56].

Random fixed point theory for multivalued mappings is quite a recent topic. In 1977,

Itoh [22] established the random version of Nadler’s multivalued version of Banach’s

contraction principle. We shall further show that the fixed point set function of a random

contraction is measurable and thus the existence of a random fixed point is an immediate

consequence of the Measurable Selection Theorem (cf. [1], [7], [51]). We shall present

the random version of Lim’s theorem [30]. We shall also show that if T is a single-valued

random nonexpansive mapping in a uniformly smooth Banach space, then the fixed point

set function of T is measurable and thus T has a random fixed point.

Multivalued mappings find applications in various fields, e.g., control theory (see the

examples in Deimling [11]) and economics (see Yuan [60, Chapter 7]).

1. Multivalued contractions

In this chapter we first recall Nadler’s multivalued version of Banach’s contraction prin-

ciple. We then discuss Reich’s problem in Section 1.2. Partial answers to this problem will

be presented. In Section 1.3, we prove some fixed point theorems for non-self-contractions

which satisfy the weak inwardness condition. In the final Section 1.4, we discuss local

contractions in an ε-chainable metric space.

1.1. Nadler’s theorem. Let (X, d) be a metric space. Recall that CB(X) is the family of

nonempty closed bounded subsets of X, K(X) the family of nonempty compact subsets

of X, and H the Hausdorff metric on CB(X); i.e.,

H(A,B) := max{sup
a∈A
d(a,B), sup

b∈B
d(b, A)}, A,B ∈ CB(X).

Definition 1.1.1. A multivalued mapping T : X → CB(X) is said to be a contraction if
there exists a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y), x, y ∈ X.
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For a point x ∈ X, a sequence (xn)∞n=0 in X is said to be an orbit of T at x if x0 = x
and xn ∈ Txn−1 for all n ≥ 1.
Banach’s contraction principle was extended by Nadler [38] to multivalued contrac-

tions. (See also Covitz and Nadler [9].)

Theorem 1.1.2 (Nadler [38]). Let (X, d) be a complete metric space and T : X → CB(X)
a contraction. Then T has a fixed point ξ and for any given x0 and k, k < k < 1, there

is an orbit (xn) of T at x0 converging to ξ with the estimate

(1.1) d(xn, ξ) ≤
kn

1− k
d(x1, x0), n ≥ 0.

Since we shall use the estimate (1.1) in Chapter 3, we include here a brief proof of

Theorem 1.1.2.

Proof. Set λ := k/k > 1. Pick any x1 ∈ Tx0 and then recursively define xn ∈ Txn−1
for n ≥ 2 such that

d(xn, xn+1) ≤ λd(xn, Txn) ≤ λH(Txn, Txn−1).
Since H(Txn, Txn−1) ≤ kd(xn, xn−1), we see that

d(xn+1, xn) ≤ kd(xn, xn−1) ≤ . . . ≤ knd(x1, x0), n ≥ 0.
It then follows that

(1.2) d(xn, xn+p) ≤
p−1∑

i=0

d(xn+i, xn+i+1) ≤
kn

1− k
d(x1, x0), n, p ≥ 0.

Hence (xn) is Cauchy and convergent as X is complete. Let ξ be the limit. Letting p→∞
in (1.2), we obtain the estimate (1.1).

1.2. Reich’s problem. Let k : (0,∞)→ [0, 1) be a function with the property
(∗) lim sup

s→t+
k(s) < 1 for all t > 0.

Theorem 1.2.1 (Reich [41, 42]). Let (X, d) be a complete metric space and T : X →
K(X) satisfy the condition

(1.3) H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x 6= y,
where k : (0,∞)→ [0, 1) has property (∗). Then T has a fixed point.
In the above theorem, Reich weakened the contraction requirement. However, T is

assumed to take compact values. Reich thus proposed the problem below.

Problem. Does T have a fixed point if T : X → CB(X) satisfies the condition (1.3) of
Theorem 1.2.1 and k has property (∗)?
Though Reich’s problem remains unsolved, some partial answers have been obtained

(see [52], [37], [8], [10]; see also [24]).

Theorem 1.2.2 ([52], [37]). Let (X, d) be a complete metric space and T : X → CB(X)
satisfy the condition

(1.4) H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x 6= y,
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where k : (0,∞)→ [0, 1) is a function. If k has the property
(∗∗) lim sup

s→t+
k(s) < 1 for all t ≥ 0,

then T has a fixed point.

We here provide a simpler proof of Theorem 1.2.2 than those given in [52] and [37].

First we prove a lemma.

Lemma 1.2.3. Assume T : X → CB(X) satisfies (1.3) with k having property (∗). Then
for any x0 ∈ X there exists an orbit (xn) of T at x0 such that the sequence (d(xn, xn+1))
is decreasing to 0.

Proof. Take any x1 ∈ Tx0 and then pick, for n = 1, 2, . . . , xn+1 ∈ Txn such that
(1.5) d(xn, xn+1) ≤ [k(d(xn, xn−1))]−1/2d(xn, Txn).
(We have assumed xn 6= xn−1 without loss of generality, for otherwise xn−1 = xn and
xn−1 is a fixed point of T .) Since

d(xn, Txn) ≤ H(Txn−1, Txn) ≤ k(d(xn−1, xn))d(xn−1, xn),
it follows from (1.5) that

(1.6) d(xn, xn+1) ≤
√
k(d(xn−1, xn))d(xn−1, xn) < d(xn−1, xn).

So (d(xn−1, xn)) is decreasing. Let b be the limit of (d(xn−1, xn)). Taking limits in (1.6),

we obtain b ≤ √cb, where c = lim supr→b+ k(r). Hence by property (∗) we have b = 0.

Proof of Theorem 1.2.2. Let (xn) be as constructed in Lemma 1.2.3. By property (∗∗)
we have a δ > 0 and an a ∈ (0, 1) such that

k(t) < a2 for t ∈ (0, δ).
Let N be such that d(xn−1, xn) < δ for n ≥ N . It then follows from the first inequality
in (1.6) that for n ≥ N ,

d(xn, xn+1) ≤ ad(xn−1, xn) ≤ . . . ≤ an−N+1d(xN−1, xN ).
This implies that (xn) is Cauchy and hence convergent. Let ξ = limxn. Since xn ∈ Txn−1
for all n, taking the limit as n→∞ yields ξ ∈ Tξ and ξ is a fixed point of T .

Another partial answer to Reich’s problem was given by Chen [8].

Theorem 1.2.4 (Chen [8]). Let (X, d) be a complete metric space and T : X → CB(X)
satisfy the condition

H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x 6= y,
where k : (0,∞)→ [0, 1) has property (∗). Suppose in addition that T has the property :
(⋄) whenever Y is a closed subset of X such that Tx ∩ Y 6= ∅ for all x ∈ Y , we have

d(x, Tx ∩ Y ) = d(x, Tx) for all x ∈ Y .
Then T has a fixed point.
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We divide the proof of Theorem 1.2.4 into two lemmas. Let ε > 0 be given. Let l(ε)

be such that k̃(ε) < l(ε) < 1, where k̃ : (0,∞)→ [0, 1) is defined by
k̃(t) := lim sup

r→t+
k(r), t > 0.

By property (∗) we have a δ = δ(ε) ∈ (0, 1) such that k(t) < l(ε) for ε ≤ t < ε + δ. Let
ε̃ = ε+ 4/δ.

Lemma 1.2.5. Assume A is a closed subset of X such that

A ∩ Tx 6= ∅ for all x ∈ A.
Then inf{d(x, Tx) : x ∈ A} = 0.
Proof. Pick any x0 ∈ A and x1 ∈ Tx0 ∩ A. We then recursively define xn+1 for n ≥ 1
as follows (we may assume that xn 6= xn+1 for all n): xn+1 ∈ Txn ∩ A is chosen in such
a way that d(xn, xn+1) < d(xn, Txn) + εn, where

0 < εn < min{d(xn−1, xn)[1− k(d(xn−1, xn))], 1/n}.
(This is possible since by assumption we have d(xn, Txn) = d(xn, Txn ∩A) for all n.) It
then follows that

d(xn, xn+1) ≤ H(Txn−1, Txn) + εn ≤ k(d(xn−1, xn))d(xn−1, xn) + εn < d(xn−1, xn).
Let lim d(xn−1, xn) = d. If d > 0, we deduce by property (∗) that d ≤ dk̃(d) < d, a
contradiction. Hence d = 0. This implies inf{d(x, Tx) : x ∈ A} = 0.
Lemma 1.2.6. Assume A is a closed subset of X such that

A ∩ Tx 6= ∅ for all x ∈ A.
Then for ε > 0 there is x0 ∈ A so that

Ty ∩A 6= ∅ for all y ∈ B,
where B := {y ∈ A : d(y, x0) ≤ ε̃}.
Proof. Suppose there is no such x0 ∈ A. Then for all x ∈ A, there exists some y ∈ A,
d(y, x) ≤ ε̃, such that d(z, x) > ε̃ for all z ∈ Ty; in particular, d(x, Ty) ≥ ε̃.
Case 1: d(x, y) < ε̃− 4/δ. In this case we have
d(x, Tx) ≥ d(x, Ty)−H(Tx, Ty) ≥ ε̃− k(d(y, x))d(y, x) ≥ ε̃− d(y, x) ≥ 4/δ.
Case 2: d(x, y) ≥ ε̃− 4/δ. In this case we have
d(x, Tx) ≥ d(x, Ty)−H(Tx, Ty) ≥ ε̃− k(d(x, y))d(x, y) ≥ ε̃− l(ε)ε̃ = ε̃(1− l(ε)).

We thus conclude that inf{d(x, Tx) : x ∈ A} > 0. This contradicts Lemma 1.2.5.
Proof of Theorem 1.2.4. Pick a sequence (εn) which is strictly decreasing to 0. Let

ln = l(εn), δn = δ(εn) and let ε̃n be defined in the same way as before. Then by Lemma

1.2.6 we can construct a sequence of balls, (Bn), such that

(i) Tx ∩Bn 6= ∅ for all x ∈ Bn and n;
(ii) Bn is a subball of Bn−1 and the radius of Bn is εn.

Since diam(Bn) = 2εn → 0, we have
⋂∞
n=1Bn = {ζ} for some ζ ∈ X. By (i) this ζ is a

fixed point of T .



10 H. K. Xu

Remark. Chen’s condition (⋄) is very restrictive. Indeed, even constant mappings do not
always satisfy it, as shown in the example below.

Example. Let X = [0, 5] be equipped with the usual distance. Define a constant mapping

F by

Fx := [0, 1] ∪ [4, 5], x ∈ X.
Let Y = [1, 3]. Then we have Fx ∩ Y 6= ∅ for all x ∈ X. But for x = 3 ∈ Y we have
d(x, Fx) = 1 while d(x, Fx ∩ Y ) = 2. So d(x, Fx) 6= d(x, Fx ∩ Y ).
By Theorem 1.2.2 we know that to answer Reich’s problem, we can assume that

lim sup
t→0+

k(t) = 1.

Daffer, Kaneko and Li [10] showed that if k(t) behaves, near 0, like 1 − atσ for some
constants a > 0 and σ ∈ (0, 1), then T has a fixed point.
Theorem 1.2.7 ([10]). Let (X, d) be a complete metric space and T : X → CB(X) satisfy
the condition

(1.7) H(Tx, Ty) ≤ k(d(x, y))d(x, y), x, y ∈ X, x 6= y,
where k : (0,∞) → [0, 1) has property (∗). If k(t) ≤ 1 − atσ for some constants a > 0
and σ ∈ (0, 1) and all t > 0 sufficiently small : 0 < t ≤ t0 for some 0 < t0 < a−1/σ, then
T has a fixed point.

Proof. We may assume that the inequality in (1.7) is strict. (Otherwise we can replace

k with another function k1 > k which still satisfies property (∗) and which makes the
inequality in (1.7) strict. For instance, taking any a′ such that 0 < a′ < a, we have

1− atσ < 1− a′tσ for t > 0.) Next pick any x0 ∈ X and construct an orbit (xn) of T at
x0 such that

(1.8) d(xn, xn+1) < ϕ(d(xn−1, xn)), n ≥ 1,
where ϕ(t) := tk(t). This is possible since d(xn, Txn)≤H(Txn−1, Txn)<ϕ(d(xn−1, xn)).
(In the above construction of (xn) we assumed that xn−1 6= xn for all n ≥ 1. Indeed,
if xn−1 = xn for some n ≥ 1, then xn−1 is a fixed point of T and we are done.) Since
ϕ(t) < t for t > 0, the sequence (d(xn−1, xn)) is decreasing. Repeat the proof of Lemma

1.2.3 to see that lim d(xn−1, xn) = 0. Let ̺(t) = t(1−atσ). Then ϕ(t) ≤ ̺(t) on t ∈ (0, t0].
By Lemma 4 of [10], for any fixed τ ∈ (0, t0],

∞∑

n=0

̺n(τ ) <∞.

(Here ̺n is the nth iterate of ̺.) Let N be large enough so that d(xn−1, xn) < τ for

n ≥ N . It then follows from the monotonicity of ̺ and (1.8) that
d(xn, xn+1) ≤ ̺n−N+1(d(xN−1, xN )) ≤ ̺n−N+1(τ ), n > N.

This shows that ∑
d(xn, xn+1) <∞.

Therefore (xn) is convergent. The limit of (xn) is obviously a fixed point of T .
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1.3. Weakly inward contractions. Let C be a nonempty closed subset of a Banach

space X and T : C → 2X \ {∅} be a multivalued non-self-mapping with closed values.
Definition 1.3.1. T is said to be weakly inward on C if

(1.9) Tx ⊂ IC(x), x ∈ C,
where

IC(x) := x+ {λ(y − x) : λ ≥ 1, y ∈ C}
is the inward set of C at x and A denotes the closure of a subset A ⊂ X.
Remark. There is another kind of weak inwardness (see Deimling [11]): T is weakly

inward on C if Tx ⊂ x+ TC(x) for x ∈ C, where

TC(x) :=

{
y ∈ X : lim inf

λ→0+

d(x+ λy,C)

λ

}
= 0.

If C is convex, the two concepts coincide; however, if C is not convex, they are different:

IC(x) is, in general, larger than x+ TC(x).

Theorem 1.3.2 (Deimling [11]). Let C be a closed subset of a Banach space X and

T : C → 2X \ {∅} be a contraction with closed values such that each x ∈ C has a nearest
point in Tx. Assume T is weakly inward in the sense that Tx ⊂ x + TC(x) for x ∈ C.
Then T has a fixed point.

Deimling [11] asked whether the weak inwardness in the above theorem can be weak-

ened to the weak inwardness in the sense of Definition 1.3.1. Below is an affirmative

answer. But first let us state Caristi’s fixed point theorem.

Lemma 1.3.3 (Caristi’s fixed point theorem [6]). Let (M,d) be a complete metric space and

f :M →M be a mapping. If there exists a lower semicontinuous function ϕ :M → [0,∞)
such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)), x ∈M,
then f has a fixed point.

Theorem 1.3.4. Let C be a closed subset of a Banach space X and T : C → 2X \ {∅} be
a contraction with closed values such that each x ∈ C has a nearest point in Tx. Assume
T is weakly inward in the sense that Tx ⊂ IC(x) for x ∈ C. Then T has a fixed point.
Proof. First observe that the weak inwardness condition (1.9) that T satisfies is equiva-

lent to the condition

(1.10) Tx ⊆ x+ {λ(y − x) : λ > 1, y ∈ C} for all x ∈ C.
Next choose q ∈ (0, 1) and ε ∈ (0, 1) such that

k < q <
1− ε
1 + ε

.

Let

ϕ(x) =
1

q − kd(x, Tx), x ∈ C.

For x ∈ C, by assumption, we have some f(x) ∈ Tx satisfying
‖x− f(x)‖ = d(x, Tx).
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It follows from (1.10) that there exist λn > 1 and yn ∈ C such that
‖f(x)− (x+ λn(yn − x))‖ → 0 as n→∞.

Suppose T is fixed point free in C. Then we have an integer N ≥ 1 large enough so that
‖f(x)− (x+ λN (yN − x))‖ < εd(x, Tx).

Let

z =

(
1− 1
λN

)
x+

1

λN
f(x)

and

g(x) := yN .

This defines a mapping g : C → C. We now claim that g satisfies
(1.11) ‖x− g(x)‖ < ϕ(x)− ϕ(g(x)) for all x ∈ C.
Lemma 1.3.3 then implies that g has a fixed point, which contradicts the strict inequality

in (1.11) and finishes the proof.

So it remains to prove (1.11). As f(x) ∈ T (x) we have
d(g(x), T (g(x))) ≤ ‖g(x)− z‖+ d(z, Tx) +H(Tx, T (g(x)))

≤ ‖g(x)− z‖+ ‖z − f(x)‖+ k‖x− g(x)‖
= ‖yN − z‖+ ‖z − f(x)‖+ k‖x− g(x)‖.

Since

‖f(x)− (x+ λN (yN − x))‖ < εd(x, Tx),
we have

‖yN − z‖ =
∥∥∥∥yN −

(
1

λN
f(x) +

(
1− 1
λN

)
x

)∥∥∥∥ <
ε

λN
d(x, Tx).

Also,

‖z − f(x)‖ =
(
1− 1
λN

)
‖x− f(x)‖ =

(
1− 1
λN

)
d(x, Tx).

It follows that

ϕ(g(x)) =
1

q − kd(g(x), T (g(x)))

≤ ϕ(x) + ε− 1
λN (q − k)

d(x, Tx) +
k

q − k ‖x− g(x)‖

= ϕ(x)− 1− ε
q − k‖z − x‖+

k

q − k‖x− g(x)‖.

It remains to show

− 1− ε
q − k‖z − x‖+

k

q − k‖x− g(x)‖ < −‖x− g(x)‖

or equivalently

‖x− g(x)‖ < 1− ε
q
‖z − x‖ = 1− ε

λNq
d(x, Tx).
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In fact, by the choice of the integer N , we see that

εd(x, Tx) > ‖(f(x)− x)− λN (yN − x)‖
≥ ‖λN (yN − x)‖ − ‖f(x)− x‖ = λN‖yN − x‖ − d(x, Tx).

Thus by the choice of q we have

‖g(x)− x‖ = ‖yN − x‖ <
1 + ε

λN
d(x, Tx) <

1− ε
qλN
d(x, Tx),

as required.

The above argument can be used to prove a fixed point theorem for a multivalued

mapping which takes noncompact values. The result below is a slight improvement of

Theorem 4 of Mizoguchi and Takahashi [37].

Theorem 1.3.5. Let E be a closed subset of a Banach space X and T : E → 2X \ {∅} a
contraction with closed values. If , for any x ∈ E,

(1.12) lim inf
λ→0+

d((1− λ)x+ λz,E)
λ

= 0 uniformly in z ∈ Tx,

then T has a fixed point.

Proof. Take ε ∈ (0, 1) small enough so that (1− ε)/(1 + ε) > k and let

ϕ(x) =

(
1− ε
1 + ε

− k
)−1
d(x, Tx), x ∈ E.

Assume that T does not have a fixed point in E. Then dist(x, Tx) > 0 for every x ∈ E.
Hence from the assumption (1.12) we have a λ = λ(x) ∈ (0, ε) such that

d((1− λ)x+ λz,E) < 12λεd(x, Tx) for all z ∈ Tx.
Now choose z ∈ Tx such that
(1.13) ‖x− z‖ < 1

1− 12ελ
d(x, Tx).

Next we take y ∈ E such that
(1.14) ‖(1− λ)x+ λz − y‖ < 12λεd(x, Tx).
Define a mapping f : E → E by

f(x) := y.

It is easily seen that f is fixed point free on E; in fact, if f(x) = x for some x ∈ E,
then (1.14) implies that d(x, Tx) ≤ ‖x− z‖ < 12εd(x, Tx). Hence ε > 2, contradicting the
assumption ε ∈ (0, 1).
We now show that

(1.15) ‖x− f(x)‖ ≤ ϕ(x)− ϕ(f(x)) for all x ∈ E.
Indeed, setting u = (1− λ)x+ λz, we have

d(y, Ty) ≤ ‖y − u‖+ d(u, Tx) +H(Tx, Ty).
As T is a contraction, we get

(1.16) d(y, Ty) ≤ ‖y − u‖+ d(u, Tx) + k‖x− y‖.
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Since by (1.14),

‖u− y‖ < 12λεd(x, Tx) ≤ 12λε‖x− z‖ = 12ε‖u− x‖
and

d(u, Tx) ≤ ‖u− z‖ = (1− λ)‖x− z‖ = ‖x− z‖ − λ‖x− z‖ = ‖x− z‖ − ‖u− x‖
so that

‖x− y‖ ≤ ‖x− u‖+ ‖u− y‖ ≤
(
1 + 12ε

)
‖u− x‖ < (1 + ε)‖u− x‖,

it follows from (1.16) and (1.13) that

d(y, Ty) ≤ 1
2
ε‖u− x‖+ ‖x− z‖ − ‖u− x‖+ k‖x− y‖

= − (1− ε)‖u− x‖+ k‖x− y‖+ ‖x− z‖ − 1
2
ε‖u− x‖

≤ −
(
1− ε
1 + ε

− k
)
‖x− y‖+

(
1− 1
2
λε

)
‖x− z‖

≤ −
(
1− ε
1 + ε

− k
)
‖x− y‖+ d(x, Tx),

which implies (1.15). It then follows from Lemma 1.3.3 that f has a fixed point in E.

This contradiction concludes the proof.

Very recently T. C. Lim [33] removed the assumption that each x has a nearest point

in Tx, thus answering another question of Deimling [11].

Theorem 1.3.6 ([33]). Let C be a closed subset of a Banach space X and T : C → 2X\{∅}
be a contraction taking closed values. If T is weakly inward in the sense that Tx ⊂ IC(x)
for x ∈ C, then T has a fixed point.
Proof. Let k ∈ [0, 1) be the contraction constant of T . Pick l, k < l < 1, and ε ∈ (0, 1)
so that b := (1− ε)/(1 + ε)− l > 0. Assume on the contrary that T does not have fixed
points. Take z0 ∈ C and y0 ∈ Tz0 arbitrarily. Let Ω be the first uncountable ordinal and
γ an ordinal < Ω. Suppose zα, yα have been defined for all α < γ such that

(i) yα ∈ Tzα for α < γ,
(ii) zα 6= zα+1 for α < α+ 1 < γ,
(iii) bmax{‖zβ − zα‖, (1/l)‖yβ − yα‖} ≤ ‖yα − zα‖ − ‖yβ − zβ‖ for α, β < γ.

We next define zγ , yγ so that (i)–(iii) remain valid for all α, β < γ+1. We shall distinguish

two cases.

Case 1: γ has a predecessor γ − 1. In this case, since yγ−1 ∈ Tzγ−1 and T is fixed
point free, we see that ‖yγ−1 − zγ−1‖ > 0. By the weak inwardness of T we have zγ ∈ C
and λ ≥ 1 such that

‖yγ−1 − (zγ−1 + λγ(zγ − zγ−1))‖ ≤ ε‖yγ−1 − zγ−1‖.
This clearly implies that zγ−1 6= zγ and

‖zγ − zγ−1‖ ≤ (1 + ε)µγ‖yγ−1 − zγ−1‖, ‖zγ − xγ‖ ≤ εµγ‖yγ−1 − zγ−1‖,
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where µγ = 1/λγ and xγ = µγyγ−1+(1−µγ)zγ−1. Since H(Tzγ , T zγ−1) ≤ k‖zγ −zγ−1‖,
there is some yγ ∈ Tzγ such that
(1.17) ‖yγ − yγ−1‖ ≤ l‖zγ − zγ−1‖.
Thus

‖yγ − zγ‖ ≤ ‖yγ − yγ−1‖+ ‖yγ−1 − xγ‖+ ‖xγ − zγ‖
≤ l‖zγ − zγ−1‖+ (1− µγ)‖yγ−1 − zγ−1‖+ εµγ‖yγ−1 − zγ−1‖

≤ l‖zγ − zγ−1‖+ ‖yγ−1 − zγ−1‖ −
1− ε
1 + ε

‖zγ − zγ−1‖.

It then follows that

b‖zγ − zγ−1‖ ≤ ‖yγ−1 − zγ−1‖ − ‖yγ − zγ‖
and, from (1.17),

b

l
‖yγ − yγ−1‖ ≤ ‖yγ−1 − zγ−1‖ − ‖yγ − zγ‖.

For any α < γ − 1,
b‖zα − zγ−1‖ ≤ ‖yα − zα‖ − ‖yγ−1 − zγ−1‖ by (iii).

So

b‖zγ − zα‖ ≤ b(‖zγ − zγ−1‖+ ‖zγ−1 − zα‖) ≤ ‖yα − zα‖ − ‖yγ − zγ‖.
Similarly,

b

l
‖yγ − yα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.

So (i)–(iii) are valid for α, β < γ + 1.

Case 2: γ is a limit ordinal. We then have a strictly increasing sequence (γn) that

converges to γ. Set rn = ‖yγn − zγn‖. Condition (iii) then implies that (zγn) and (yγn)
are both Cauchy and hence convergent. Let zγ and yγ be their respective limits. Since

yγn ∈ Tzγn , we have a wn ∈ Tzγ such that ‖wn−yγn‖ ≤ l‖zγn−zγ‖. Thus wn−yγn → 0.
As yγn → yγ , we get wn → yγ and thus yγ ∈ Tzγ for Tzγ is closed. Now for α < γ, we
have γn > α for sufficiently large n, so

b‖zγn − zα‖ ≤ ‖yα − zα‖ − ‖yγn − zγn‖
and upon taking limits,

b‖zγ − zα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.
Similarly,

b

l
‖yγ − yα‖ ≤ ‖yα − zα‖ − ‖yγ − zγ‖.

Therefore, (i)–(iii) remain valid for all α, β < γ + 1. If α < α + 1 < γ + 1, then α < γ.

Since γ is a limit ordinal, α+ 1 < γ. So (ii) is also valid for α < α+ 1 < γ + 1.

By transfinite induction, zα, yα for α < Ω satisfying (i)–(iii) have been defined. Let

sα = ‖yα− zα‖. Since (sα)α<Ω is decreasing and bounded below by 0, it must eventually
be constant. If γ < Ω is such that sα = sβ for all α, β ≥ γ, then by (iii), zγ+1 = zγ ,
contradicting (ii). Therefore, T must have a fixed point.
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Remarks. (i) In Theorems 1.3.4–1.3.6, the contraction T is not assumed to take compact

values. The existence of fixed points of a compact-valued contraction T has been proved

already (cf. Reich [46, Theorem 3.4]).

(ii) Theorem 1.3.6 actually contains Theorems 1.3.4 and 1.3.5 as special cases. We

included the latter theorems to emphasize the role of Caristi’s theorem in the fixed point

theory for non-self-mappings. It is yet unclear whether Theorem 1.3.6 can be proved

without using transfinite induction. A proof which uses Caristi’s theorem would be of

interest.

1.4. Local contractions. Let ε > 0 be given. Recall that a metric space (X, d) is

ε-chainable if, for every pair x, y∈X, there exists a finite set of elements x = x0, x1, . . . , xn
= y in X such that d(xi−1, xi) < ε, i = 1, . . . , n. Such a finite set is called an ε-chain

linking x and y. The first result of this section shows that the ε-chainability of (X, d) im-

plies the ε-chainability of (K(X), H), where K(X) is the collection of nonempty compact

subsets of X and H is the Hausdorff distance on K(X).

Theorem 1.4.1. If (X, d) is an ε-chainable metric space, then so is (K(X), H).

Proof. Fix a y ∈ X and let Y = {y} ∈ K(X). Since ε-chainability is transitive, it
suffices to show that each A ∈ K(X) is ε-chainable in K(X) to Y ; i.e., there exists an
ε-chain in K(X) linking A and Y . We first show that this is true for a finite A. Towards

this, we make induction on n, the number of elements that A contains. If n = 1, A is a

singleton and the conclusion follows from the ε-chainability of X. Suppose now that the

conclusion is valid for all finite subsets A of X consisting of not more than n elements.

Let next A be a subset of X consisting of n+ 1 elements, say, A = {x1, . . . , xn+1}. Since
X is ε-chainable, there exists an ε-chain x1 = u0, . . . , um = x2 in X linking x1 and x2. It

is easily seen that the finite set

A, {u1, x2, . . . , xn+1}, . . . , {um−1, x2, . . . , xn+1}, {x2, . . . , xn+1}
forms an ε-chain in K(X) linking A and B := {x2, . . . , xn+1}. But by the induction
assumption, B is ε-chainable in K(X) to Y , and it follows that A is ε-chainable in K(X)

to Y . Now for a general compact A, we can find a finite family of subsets {Ak}nk=1 of A
such that A =

⋃n
k=1Ak and each Ak has diameter < ε. Pick for each k any xk ∈ Ak and

put C = {x1, . . . , xn}. It is then not hard to see that for each z ∈ A, d(z, C) ≤ diam(Ak)
for some k, 1 ≤ k ≤ n. It thus follows that
H(A,C) = max{sup

z∈A
d(z, C), sup

y∈C
d(y,A)} = sup

z∈A
d(z, C) ≤ max

1≤k≤n
diam(Ak) < ε,

which shows that A is ε-chainable in K(X) to C. However, we have shown that C is

ε-chainable in K(X) to Y . Hence A is ε-chainable in K(X) to Y .

Definition 1.4.2. Let (X, d) be an ε-chainable metric space. A mapping T : X → K(X)
is said to be a local contraction of Reich’s type if

H(Tx, Ty) ≤ k(d(x, y))d(x, y) for x, y ∈ X such that 0 < d(x, y) < ε,
where k : (0,∞)→ [0, 1) has property (∗) of Section 1.2.
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Theorem 1.4.3 (Xu [54]). Let (X, d) be a complete ε-chainable metric space and T :

X → K(X) be a local contraction of Reich’s type. Then T has a fixed point.
Remark. Theorem 1.4.3, a special case of the next result, provides an affirmative answer

to a question of Reich [41, p. 572]. It also improves upon Reich’s theorem [41, p. 571].

Theorem 1.4.4 (Xu [54]). Let (X, d) be a complete ε-chainable metric space and T :

X → K(X) satisfy the following condition: for any η, 0 < η < ε, there exists a δ > 0
such that

H(Tx, Ty) < η whenever η ≤ d(x, y) < η + δ.
Then T has a fixed point.

Proof. Let G : K(X)→ K(X) be defined by
G(A) :=

⋃

a∈A

T (a), A ∈ K(X).

Then it is not hard to see (cf. Reich [41]) that G has the following property: for 0 < η < ε,

there is δ > 0 such that

H(G(A), G(B)) < η whenever η ≤ H(A,B) < η + δ.
Hence G has a fixed point A ∈ K(X) by Proposition 1.4.5 below. Now since A = G(A),
T maps A into itself. It is easily seen that the contractive condition of T implies that

inf{d(x, Tx) : x ∈ A} = 0. Hence the compactness of A yields a point x ∈ A for which
d(x, Tx) = 0. Thus x ∈ Tx.
Proposition 1.4.5. Let (X, d) be a complete ε-chainable metric space and F : X → X
satisfy the condition: for each η, 0 < η < ε, there is a δ > 0 such that

(4.1) x, y ∈ X, η ≤ d(x, y) < η + δ ⇒ d(Fx, Fy) < η.
Then F has a fixed point.

Proof. We first show that

(4.2) lim
n→∞
d(Fnx, Fny) = 0 for all x, y ∈ X with d(x, y) < η.

In fact, since d(x, y) < η, it follows from (4.1) that the sequence {d(Fnx, Fny)} is
nonincreasing and hence convergent. Let r be the limit. Suppose r > 0. Noting that

r ≤ d(x, y) < ε, we have some δ > 0 such that
(4.3) u, v ∈ X, r ≤ d(u, v) < r + δ ⇒ d(Fu, Fv) < r.
For this δ, we can take an integer N large enough so that d(Fnx, Fny) < r+δ for n ≥ N .
Hence d(Fnx, Fny) < r for n > N by (4.3). This contradicts the fact that d(Fnx, F y) ≥ r
for all n ≥ 0. Hence (4.2) is proved.
Next we take an arbitrary z ∈ X and let z = z0, z1, . . . , zm = Fz be an ε-chain in

X linking z and Fz. Since d(Fnz, Fn+1z) ≤∑m−1k=0 d(F
nzk, F

nzk+1) and d(zk, zk+1) < ε

for 0 ≤ k ≤ m− 1, it follows from (4.2) that limn→∞ d(Fnz, Fn+1z) = 0. We now show
that {Fnz} is a Cauchy sequence. Suppose on the contrary that {Fnz} is not a Cauchy
sequence; then we can find two subsequences {ni} and {mi} of positive integers such that
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the sequence {(Fniz, Fmiz)} decreases to some t > 0. First choose 0 < a < 1 such that
at < ε and then 0 < δ < 34at such that

(4.4) x, y ∈ X, 12at ≤ d(x, y) < 12at+ δ ⇒ d(Fx, Fy) < 12at.
Let N be large enough so that d(Fnz, Fn+1z) < 13δ for all n ≥ N . Assume that i is so
large that ni > N and consider the finite sequence

d(Fniz, Fni+1z), d(Fniz, Fni+2z), . . . , d(Fniz, Fmi z).

Since the first term is less than 13δ, the last term is larger than t, and any two adjacent

terms differ by not more than 13δ, it follows that there exists some pi, ni < pi < mi, such

that

1
2at+

2
3δ ≤ d(Fniz, F piz) < 12at+ δ

and hence by (4.4) we have

(4.5) d(Fniz, F piz) < 12at.

But by the triangle inequality we get

d(Fni+1z, F pi+1z) ≥ d(Fniz, F piz)− d(Fniz, Fni+1z)− d(F piz, F pi+1z) ≥ 12at,
contradicting (4.5). This shows that {Fnz} is a Cauchy sequence. Set w = limFnz. Then
it is easily seen that w is a fixed point of F .

Remark. Proposition 1.4.5 is the local version of a theorem due to Meir and Keeler [36].

2. Multivalued nonexpansive mappings

This chapter is devoted to the fixed point theory for multivalued nonexpansive non-self-

mappings in Banach spaces. In Section 2.1 we recall some facts on asymptotic centers and

universal nets. A simpler and elementary proof to the Kirk–Massa fixed point theorem is

included in Section 2.2. Section 2.3 contains some fixed point theorems for multivalued

nonexpansive non-self-mappings. In particular, the Kirk–Massa theorem is extended to

a non-self-inward-mapping and, using an inequality technique in a uniformly convex Ba-

nach space, another proof to Lim’s theorem is given. A counterexample to a question of

Downing and Kirk is also included.

2.1. Asymptotic centers. Let K be a weakly compact convex subset of a Banach space

X and {xn} a bounded sequence in X. Define a function f on X by
f(x) := lim sup

n→∞
‖xn − x‖, x ∈ X.

Let

r ≡ rK(xn) := inf{f(x) : x ∈ K}
and

A ≡ AK(xn) := {x ∈ K : f(x) = r}.
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Definition 2.1.1. We say that r and A are the asymptotic radius and center of {xn}
relative to K, respectively. As K is weakly compact convex, AK({xn}) is nonempty,
weakly compact and convex.

Definition 2.1.2. Let {xn} and K be as above. Then {xn} is called regular with respect
to K if rK({xn}) = rK({xni}) for all subsequences {xni} of {xn}; further, {xn} is called
asymptotically uniform if AK({xn}) = AK({xni}) for all subsequences {xni} of {xn}.

The method of asymptotic centers plays an important role in the fixed point theory

of both single-valued and multivalued nonexpansive mappings, due to the fundamental

lemma below. (Some more information on uniform convexity and asymptotic centers can

be found in Goebel and Reich [18].)

Lemma 2.1.3 (Goebel [16], Lim [31]). Let {xn} and K be as above. Then
(i) there always exists a subsequence of {xn} which is regular with respect to K;
(ii) if K is separable, then {xn} contains a subsequence which is asymptotically uni-

form with respect to K.

Remark. If X is uniformly convex in every direction (especially uniformly convex), then

AK({xn}) consists of exactly one point so every regular sequence in such a space is
asymptotically uniform with respect to K.

We shall mainly work in the framework of a uniformly convex Banach space. Thus an

inequality characteristic of uniform convexity is useful to us. Recall that a Banach space

X is uniformly convex if

δX(ε) := inf

{
1− ‖x+ y‖

2
: x, y ∈ BX , ‖x− y‖ ≥ ε

}
> 0 for all ε ∈ (0, 2].

Proposition 2.1.4 (Xu [56]). Let X be a Banach space and r > 0 be a given number.

Then X is uniformly convex if and only if the norm ‖ ·‖ of X is uniformly convex on the
closed ball Br := {x ∈ X : ‖x‖ ≤ r}. That is , there exists a continuous strictly increasing
function g : [0,∞) → [0,∞), depending on r, with g(t) = 0 if and only if t = 0, such
that

‖tx+ (1− t)y‖ ≤ t‖x‖+ (1− t)‖y‖ − t(1− t)g(‖x− y‖), x, y ∈ Br, t ∈ [0, 1].

Proposition 2.1.5. Let X be a uniformly convex Banach space and E a closed co-

nvex subset of X. Assume (xn) is a bounded sequence in X and z = AE(xn). Then

AIE(z)(xn) = z and rE(xn) = rIE(z)(xn).

Proof. Write f(x) := lim supn→∞ ‖xn − x‖, r1 := inf{f(x) : x ∈ E} = rE(xn) and
r2 := inf{f(x) : x ∈ IE(z)} = rIE(z)(xn). It suffices to show that r1 = r2. It is obvious
that r2 ≤ r1. So it remains to show that r1 ≤ r2. To this end we apply Proposition 2.1.4
to get, for any r > 0, a continuous strictly increasing function g (depending on r) such

that

(2.1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− t(1− t)g(‖x− y‖), x, y ∈ Br, t ∈ [0, 1].
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It is clear that r2 = inf{f(x) : x ∈ IE(z)}; hence we have a sequence wn := z+λn(zn−z),
where λn ≥ 0 and zn ∈ E, such that f(wn) → r2. If λn ≤ 1 for infinitely many n, then
wn ∈ E and thus f(wn) ≥ r1 for these n. Upon taking the limit, we get r2 ≥ r1 and we are
done. So assume λn > 1 for all n. If (λn) has a bounded subsequence, still denoted by (λn),

we may assume λn → λ ≥ 1. Since (zn) is bounded, we may also assume zn ⇀ z̃ ∈ E.
(Here “⇀” denotes weak convergence) Thus, taking limits, we get wn ⇀ w̃ := z+λ(z̃−z).
In other words, we can write

z̃ =
1

λ
w̃ +

(
1− 1
λ

)
z.

Since f is weakly lower semicontinuous, we get

f(w̃) ≤ lim inf f(wn) = r2.
On the other hand, by convexity of f we get

f(z̃) ≤ 1
λ
f(w̃) +

(
1− 1
λ

)
f(z).

Since f(z̃) ≥ r1, f(z) = r1 and f(w̃) ≤ r2, it follows from the last displayed inequality
that r1 ≤ 1λr2 +

(
1 − 1λ

)
r1 and hence r2 ≥ r1. Finally, we assume λn → ∞. In this case

we can write

zn =
1

λn
wn +

(
1− 1
λn

)
z.

Let now r be large enough so that Br ⊃ {wn} ∪ {z}. Use the inequality (2.1) to get

f(zn) ≤
1

λn
f(wn) +

(
1− 1
λn

)
f(z)− 1

λn

(
1− 1
λn

)
g(‖wn − z‖).

Since f(zn) ≥ r1 and f(z) = r1, from the last inequality we get
(
1− 1
λn

)
g(‖wn − z‖) ≤ f(wn)− r1.

Let n→∞ to get
lim sup g(‖wn − z‖) ≤ r2 − r1 ≤ 0.

Hence wn → z and r2 = lim f(wn) = f(z) = r1.

If T is a non-self-mapping from E to K(X), we may not be able to assume the

separability of E and hence Lemma 2.1.3(ii) is not applicable. We therefore need the tool

of a universal net.

Definition 2.1.6. A net {xα} in a set S is called a universal net if for each subset U of
S, either {xα} is eventually in U or {xα} is eventually in S \ U .

The following facts are relevant ([25, p. 81]):

(a) Every net in a set has a universal subnet.

(b) If f : S1 → S2 is a map and if {xα} is a universal net in S1, then {f(xα)} is a
universal net in S2.

(c) If S is compact and if {xα} is a universal net in S, then limα xα exists.
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2.2. The Kirk–Massa theorem. Let E be a weakly compact convex subset of a Banach

space X and T : E → K(E) a nonexpansive self-mapping. For a fixed element x0 ∈ E
and an arbitrary integer n ≥ 1, the contraction Tn : E → K(E) defined by

Tn(x) :=
1

n
x0 +

(
1− 1
n

)
Tx, x ∈ E,

has a fixed point xn ∈ E. It is easily seen that

d(xn, Txn) ≤
1

n
diam(E)→ 0.

Let r and A be the asymptotic radius and center of {xn} with respect to E, respectively.
Since T is compact-valued, we can take yn ∈ Txn such that

‖yn − xn‖ = d(xn, Txn), n ≥ 1.
Since T is a self-mapping, we may assume that E is separable (otherwise, we can construct

a closed convex subset of E that is invariant under T , see [28]). Then by Lemma 2.1.3

we may assume that {xn} is asymptotically uniform. Take any z ∈ A; as Tz is compact,
we can find zn ∈ Tz satisfying

‖yn − zn‖ = d(yn, T z) ≤ H(Txn, T z) ≤ ‖xn − z‖.
Because of the compactness of Tz, we may also assume that {zn} (strongly) converges
to a point z̃ ∈ Tz. It then follows that

lim sup ‖xn − z̃‖ = lim sup ‖yn − zn‖ ≤ lim sup ‖xn − z‖.
This shows that z̃ ∈ A. Hence we can define a self-map T̃ : A→ K(A) by setting

T̃ z := A ∩ Tz, z ∈ A.
This map T̃ is in general neither nonexpansive nor lower semicontinuous. However, it is

upper semicontinuous, which is observed by Kirk and Massa in [27]. With this observation

they are able to prove Theorem 2.2.1 below by using the Bohnenblust–Karlin fixed point

theorem (cf. [61]) that is of topological rather than metric nature. We shall now give

an elementary proof in the sense that only the multivalued contraction principle (i.e.,

Nadler’s theorem) is involved.

Theorem 2.2.1 (Kirk–Massa [27]). Let E be a nonempty closed bounded convex subset

of a Banach space X and T : E → KC(E) a nonexpansive mapping. Suppose that the
asymptotic center in E of each bounded sequence of X is nonempty and compact. Then

T has a fixed point.

Proof. Since T is a self-mapping, we may assume that E is separable. As before, we

have an asymptotically uniform sequence (xn) in E such that lim d(xn, Txn) = 0. We

also have a sequence (yn) satisfying yn ∈ Txn and ‖xn − yn‖ = d(xn, Txn) for all n. Set
A = AE(xn) and r = rE(xn). We have already shown that

(2.2) Tx ∩A 6= ∅ for all x ∈ A.
Our idea here is that we do not consider the self-mapping T̃ x := Tx ∩ A of A since T̃
loses nonexpansivity. Instead, we view T as a non-self-mapping from A to KC(E). The
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advantage of this idea lies in that the nonexpansivity of T is kept and, moreover, a kind

of (boundary) condition (e.g. (2.2)) is satisfied.

Now for each integer m ≥ 1, define a contraction Sm : A→ KC(E) by

(2.3) Sm(x) :=
1

m
x0 +

(
1− 1
m

)
Tx, x ∈ A,

where x0 ∈ A is fixed. Then each Sm is a contraction which satisfies the (boundary)
condition

Sm(x) ∩A 6= ∅ for all x ∈ A.
As Sm is compact and convex-valued, by Lemma 2.3.2 of the next section Sm has a fixed

point vm ∈ A. The sequence (vm) satisfies
(2.4) lim

m→∞
d(vm, T vm) = 0.

Since A is compact, (vm) has a convergent subsequence, whose limit is clearly a fixed

point of T , due to (2.4).

2.3. Inwardness and weak inwardness. Let X be a Banach space and E a nonempty

closed convex subset of X. Recall that the inward set of E at x ∈ E is given by
IE(x) = {x+ λ(y − x) : λ ≥ 0, y ∈ E}.

A multivalued mapping T : E → F (X) is inward (resp. weakly inward) if Tx ⊂ IE(x)
(resp. Tx ⊂ IE(x)) for x ∈ E.
The first result of this section is an extension of the Kirk–Massa theorem to non-self-

mappings.

Theorem 2.3.1. Let E be a nonempty closed bounded convex subset of a Banach space

X and T : E → KC(X) a nonexpansive non-self-mapping which satisfies the inwardness
condition: Tx ⊂ IE(x) for x ∈ E. Suppose that the asymptotic center in E of each
bounded sequence of X is nonempty and compact. Then T has a fixed point.

Proof. Fix x0 ∈ E and define for each integer n ≥ 1 the contraction Tn : E → KC(X) by

Tn(x) :=
1

n
x0 +

(
1− 1
n

)
Tx, x ∈ E.

Then Tn satisfies the inwardness condition, i.e., Tnx ⊂ IE(x) for all x ∈ E. Thus by
Theorem 1.3.4, Tn has a fixed point xn ∈ E. By Lemma 2.1.3, we may assume that {xn}
is regular. Let yn ∈ Txn be as constructed as before, i.e., ‖xn− yn‖ = dist(xn, Txn). Let
{xnα} be a universal subnet of {xn} and define a function g by

g(x) = lim
α
‖xnα − x‖, x ∈ E.

Let

C := {x ∈ E : g(x) = r},
where r = infx∈E g(x). Then by assumption (see Proposition 6 of [27]), C is nonempty

and compact. The key to the proof is that the inwardness of T on E implies that

(2.5) Tx ∩ IC(x) 6= ∅, x ∈ C.
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Indeed, if x ∈ C, by compactness, we have, for each n ≥ 1, some zn ∈ Tx such that
‖yn − zn‖ = d(yn, Tx) ≤ H(Txn, Tx) ≤ ‖xn − x‖.

Let z = limα znα ∈ Tx. It follows that
g(z) = lim

α
‖xnα − z‖ = limα ‖ynα − znα‖ ≤ limα ‖xnα − x‖.

Hence

(2.6) g(z) ≤ g(x) = r.
It remains to show z ∈ IC(x). As Tx ⊂ IE(x), we have some λ ≥ 0 and v ∈ E such that

z = x+ λ(v − x).
If λ ≤ 1, then z ∈ E by the convexity of E, and hence, by (2.6), z ∈ C ⊂ IC(x) and we
are done. So assume λ > 1. Then we can write

v = µz + (1− µ)x with µ = 1/λ ∈ (0, 1).
By the convexity of g and by (2.6), we have

g(v) ≤ µg(z) + (1− µ)g(x) ≤ r.
Since v ∈ E, it follows that v ∈ C and thus z = x + λ(v − x) belongs to IC(x). Now we
have a nonexpansive mapping T : C → KC(X) which satisfies the (boundary) condition
(2.5). The lemma below shows that T has a fixed point in C.

Lemma 2.3.2. If C is a compact convex subset of a Banach space X and T : C → KC(X)
is a nonexpansive mapping satisfying the (boundary) condition

Tx ∩ IC(x) 6= ∅ for all x ∈ C.
Then T has a fixed point.

Proof. Fix an x0 ∈ C and define for each integer n ≥ 1 a mapping Tn : C → KC(X) by

Tn(x) :=
1

n
x0 +

(
1− 1
n

)
Tx, x ∈ C.

Then Tn is a contraction satisfying the same (boundary) condition as T does, i.e.,

Tn(x) ∩ IC(x) 6= ∅ for all x ∈ C.
Hence by Theorem 11.5 of Deimling [11], Tn has a fixed point xn ∈ C. Since C is compact,
we may assume xn → x ∈ C. Also, it is easily seen that

d(xn, Txn) ≤
1

n
diamC → 0 as n→∞.

Taking the limit as n→∞ yields d(x, Tx) = 0 and hence x ∈ Tx.
Remarks. (i) Lemma 2.3.2 is a special case of Halpern [19, Theorem 2] and of Reich

[43, Corollary 2.2]. Moreover, if T satisfies the stronger condition Tx ∩ IC(x) 6= ∅ for
all x ∈ C, Lemma 2.3.2 follows from a fixed point theorem of F. E. Browder (cf. [11]).
However, in our nonexpansive case, the proof is constructive.

(ii) Theorem 2.3.1 applies to Banach spaces which are uniformly convex or more

general k-uniformly rotund Banach spaces ([50]) since the asymptotic center of a bounded

sequence with respect to a bounded closed convex subset of such spaces is compact ([26]).
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However, Theorem 2.3.1 does not apply to a nearly uniformly convex Banach space since

in such a space, the asymptotic center of a bounded sequence with respect to a closed

bounded convex subset is not necessarily compact (cf. [28]). (Recall that a Banach space

X is said to be nearly uniformly convex (NUC) [21] if X is reflexive and if for any ε > 0,

there exists a δ = δ(ε) ∈ (0, 1) such that
{xn} ⊂ BX , xn ⇀ x, sep(xn) ≥ ε ⇒ ‖x‖ ≤ 1− δ,

where BX is the closed unit ball of X and sep(xn) := inf{‖xn − xm‖ : n 6= m}.)
The following result answers a question of Deimling [11, p. 161] in the positive.

Theorem 2.3.3. Assume X is a uniformly convex Banach space, E is a closed bounded

convex subset of X, and T : E → K(X) is a nonexpansive mapping satisfying the weak
inwardness condition:

Tx ⊂ IE(x), x ∈ E.
Then T has a fixed point.

Proof. As before, we fix an x0 ∈ E and define, for each integer n ≥ 1, the contraction
Tn : E → K(X) by

Tn(x) =
1

n
x0 +

(
1− 1
n

)
Tx, x ∈ E.

As it is easily seen that Tn also satisfies the weak inwardness condition: Tn(x) ⊂ IE(x)
for all x ∈ E, we deduce by Theorem 1.3.4 that Tn has a fixed point, denoted by xn. It
is also easily seen that

d(xn, Txn) ≤
1

n
diamE → 0 (n→∞).

We may assume that {xn} is regular and hence asymptotically uniform as the space X
is uniformly convex. Let z be the unique element of the asymptotic center of {xn} in E;
that is, z ∈ E is the unique minimizer in E of the function

f(x) := lim sup
n→∞

‖xn − x‖.

Let

r = f(z) = inf
x∈E
f(x).

Choose zn ∈ Tz satisfying
‖yn − zn‖ = d(yn, T z).

From the nonexpansiveness of T it follows that

‖yn − zn‖ ≤ H(Txn, T z) ≤ ‖xn − z‖.
Since Tz is compact, we may assume that {zn} strongly converges to a point z̃ ∈ Tz. It
follows that

f(z̃) = lim sup ‖xn − z̃‖ = lim sup ‖yn − zn‖ ≤ lim sup ‖xn − z‖;
that is,

(2.7) f(z̃) ≤ f(z).
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We shall show z̃ = z, which then finishes the proof. Towards this end we first note that

z̃ ∈ IE(z). Then by Proposition 2.1.5 and (2.7) we get f(z) = f(z̃). This means that z
and z̃ are both minimizers of f over IE(z) and hence z = z̃ by uniqueness. This is the

proof of Lim [32]. Below we give another proof which uses the inequality characteristic

of uniform convexity, i.e., Proposition 2.1.4.

As z̃ ∈ IE(z), we can find a sequence {λk} of nonnegative numbers and a sequence
{uk} of elements of E such that
(2.8) wk := z + λk(uk − z)→ z̃.
If λk ≤ 1 for infinitely many k, then wk ∈ E for these k and hence z̃ ∈ E. Therefore,
(2.7) shows that z̃ ∈ E is also a minimizer of f in E and hence z̃ = z by uniqueness.
Thus we may assume λk > 1 for all k. If {λk} has a bounded subsequence, then as
{uk} is bounded, we have, for some subsequence {ki} of positive integers, λki → λ and
uki ⇀ u ∈ E. It follows that

z̃ = z + λ(u− z)
reducing the case to the inwardness case that has been treated in Downing–Kirk [13],

Reich [44], and Deimling [11]. So we assume λk →∞. We then rewrite (2.8) as

uk = µkwk + (1− µk)z, where µk =
1

λk
→ 0.

Now let r be a number large enough so that the closed ball Br contains the sequences

{xn − wk} and {xn − z}. Apply Proposition 2.1.4 to get
f(z) ≤ f(uk) as uk ∈ E
= f(µkwk + (1− µk)z)
= lim sup

n→∞
‖µk(xn − wk) + (1− µk)(xn − z)‖

≤ µkf(wk) + (1− µk)f(z)− µk(1− µk)g(‖wk − z‖).
Hence

(1− µk)g(‖wk − z‖) ≤ f(wk)− f(z).
Taking the limit as k →∞ yields

g(‖z̃ − z‖) ≤ f(z̃)− f(z) ≤ 0 as f(z̃) ≤ f(z).
Since g is strictly increasing with g(0) = 0, we must have z̃ = z.

We conclude this section with a counterexample to a question of Downing and Kirk

[13] where they proved the following result.

Theorem D-K. Let E be a nonempty closed convex subset of a Banach space X and let

T : E → F (X) be an upper semicontinuous mapping satisfying the conditions :
(a) For x ∈ E, there exists δ = δ(x) > 0 such that , for k ∈ (0, 1),

y ∈ Bδ(x) ∩E ⇒ d(y, Ty) ≤ d(y, Tx) + k‖x− y‖.
(b) T1(x) ∩ IE(x) 6= ∅ for x ∈ E, where T1(x) = {z ∈ Tx : ‖x− z‖ = dist(x, Tx)}.

Then T has a fixed point.

They asked the following
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Question. If the inwardness assumption in the condition (b) of Theorem D-K above is

altered to T (x) ∩ IE(x) 6= ∅ for x ∈ E, does T have a fixed point?
The simple example below answers the question in the negative.

Example. Let X = R and E = [0, 1]. Define T : E → K(X) by
T (x) = {−1, 2} for all x ∈ E.

Then T is a constant and Tx ∩ IE(x) 6= ∅ for all x ∈ E as IE(x) = R for x ∈ (0, 1), or
(−∞, 1] for x = 1, or [0,∞) for x = 0.

2.4. Open problems. This section contains some open questions on fixed points of

multivalued nonexpansive mappings in Banach spaces.

Problem 1. Let X be a uniformly smooth Banach space, E a nonempty closed bounded

convex subset of X, and T : E → K(E) a nonexpansive mapping. Does T have a fixed
point?

Problem 2. In Kirk–Massa’s theorem (Theorem 2.2.1), T is assumed to take compact

and convex values. Does T have a fixed point if T is only assumed to take compact values?

Problem 3. Can Theorem 2.3.1 be extended to weakly inward nonexpansive mappings

T : E → KC(X)?
Problem 4. Characterize those Banach spaces X for which the asymptotic center of

each bounded sequence in X with respect to every closed bounded convex subset of X is

compact.

Problem 5. Let X be a uniformly convex Banach space and E a closed bounded convex

subset of X. Suppose T : E → KC(X) is a nonexpansive mapping satisfying the condition
Tx∩ IE(x) 6= ∅ for all x ∈ E (or even Tx∩ IE(x) 6= ∅ for all x ∈ E). Does T have a fixed
point?

Problem 6. Let X be a nearly uniformly convex (NUC) Banach space and E a closed

bounded convex subset of X. Assume T : E → KC(E) is nonexpansive. Does T have a
fixed point?

Remarks. (i) Problems 1 and 6 are indeed special cases of Problem 8 of Reich [48] which

asked if every nonexpansive T : E → K(E) has a fixed point, where E, a weakly compact
convex subset of a Banach space X, has the fixed point property for (single-valued)

nonexpansive mappings.

(ii) Problem 5 is related to Theorem 5.4 of Reich [42] in which the Banach space

X satisfies Opial’s condition: if a sequence (xn) ⊂ X weakly converges to x, then
lim inf ‖xn − x‖ < lim inf ‖xn − y‖ for y ∈ X \ {x}.

3. Random multivalued mappings

The main purpose of this chapter is to investigate the measurability of the fixed point

set function FT of a random multivalued mapping T . The measurability of FT is proved



Metric fixed point theory for multivalued mappings 27

in Section 3.2 for a random multivalued contraction T and in Section 3.3 for a random

multivalued nonexpansive T provided either I − T is demiclosed at 0 or the underlying
space X is uniformly smooth and T is single-valued. The existence of a random fixed

point of a random multivalued nonexpansive mapping is also proved in a uniformly convex

Banach space in Section 3.3.

3.1. Introduction and preliminaries. Let (Ω,Σ) be a a measurable space. This means

that Ω is a nonempty set and Σ is a sigma-algebra of subsets of Ω. (Throughout this

chapter we do not assume the existence of any probability on (Ω,Σ).) Let (X, d) be a

metric space. A multivalued mapping T : Ω → 2X \ {∅} is said to be (Σ)-measurable
(“weakly measurable” in Himmelberg’s terminology [20]) if, for any open set B ⊂ X, we
have

T−1(B) := {ω ∈ Ω : T (ω) ∩B 6= ∅} ∈ Σ.
Note that if T (ω) ∈ K(X) for all ω ∈ Ω, then T is measurable if and only if T−1(F ) ∈ Σ
for all closed subsets F ⊂ X. A measurable (single-valued) function x : Ω → X is called
a measurable selection of a measurable multivalued mapping T : Ω → 2X \ {∅} if, for
each ω ∈ Ω, x(ω) ∈ T (ω). Let M be a subset of X. An operator T : Ω ×M → 2X \ {∅}
is said to be a random operator if, for each x ∈ M , the mapping T (·, x) : Ω → 2X \ {∅}
is measurable. A measurable function x : Ω → M is called a random fixed point of a
random operator T if x(ω) ∈ T (ω, x(ω)) ∩M for all ω ∈ Ω. The fixed point set function
FT of a random multivalued mapping T : Ω ×M → 2X \ {∅} is given by

F (ω) ≡ FT (o) := {x ∈M : x ∈ T (ω, x)}, ω ∈ Ω.
Recall that when X is a normed space and M is a convex subset of X, a multivalued

mapping T :M → 2X \ {∅} is convex if its graph
Gr(T ) := {(x, y) ∈M ×X : y ∈ Tx}

is a convex subset of M ×X. Recall also that we say a multivalued mapping T : M →
2X \ {∅} is closed - (convex-, closed convex -, etc.) valued if, for each x ∈ M , the image
Tx has that particular property.

A multivalued mapping T : M → CB(X) is said to be demiclosed at 0 if, for any
sequences (xn), (yn) such that yn ∈ Txn for each n, the conditions xn ⇀ x and yn → 0
imply that x ∈M and 0 ∈ Tx.
The Kuratowski measure of noncompactness of a nonempty bounded subset E of X

is defined as the number

α(E) := inf{ε > 0 : E can be covered by
a finite number of subsets of X of diameter less than ε}.

A multivalued mapping T : M → 2X \ {∅} is called condensing if, for each bounded
subset E of M with α(E) > 0,

α(T (E)) < α(E).

Here T (E) :=
⋃{Tx : x ∈ E}.

Recall also that a set-valued operator T :M → 2X \ {∅} is said to be upper semicon-
tinous on M if the set {x ∈ M : Tx ⊂ V } is open whenever V ⊂ X is open, while T is
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lower semicontinuous provided T−1(V ) = {x ∈M : Tx ∩ V 6= ∅} is open in M for every
open set V in X. Next, T is continuous if T is both upper and lower semicontinuous.

Note that there is another kind of continuity for multivalued mappings T :M → CB(X).
Namely, T is said to be Hausdorff continuous if H(Txn, Tx)→ 0 whenever xn → x. It is
known that these two continuity concepts coincide if T is compact-valued. But in general,

Hausdorff continuity implies continuity, not vice versa. We say that a random operator

T : Ω ×M → 2X \ {∅} is continuous (contraction, nonexpansive, condensing , etc.) if, for
each fixed ω ∈ Ω, the (deterministic) multivalued mapping T (ω, ·) :M → 2X \{∅} is con-
tinuous (contraction, nonexpansive, condensing, etc.) We need the following propositions,

where X is a complete separable metric space.

Proposition 3.1.1 (Measurable Selection Theorem (cf. [1], [7], [51])). If T : Ω → 2X\{∅}
is a measurable closed-valued mapping , then T has a measurable selection (that is , there

exists a measurable (single-valued) fucntion x : Ω → X such that x(ω) ∈ T (ω) for
ω ∈ Ω).
Proposition 3.1.2 (Castaing’s characteristic theorem [7]). If f : Ω → 2X \ {∅} is a
closed-valued mapping , then the following are equivalent :

(a) f is measurable.

(b) For each x ∈ X, the function ω 7→ d(x, f(ω)) is measurable.
(c) There exists a sequence {fn(ω)} of measurable selections of f such that

cl{fn(ω)} = f(ω) for all ω ∈ Ω,
where clA denotes the closure of A in X.

Since |d(y,A) − d(y,B)| ≤ H(A,B)) for all y ∈ X and A,B ⊂ X, we deduce the
following result (see also Itoh [22]).

Proposition 3.1.3. Assume f(ω) is a closed-valued mappping and {fn(ω)} is a sequence
of measurable mappings. If limH(fn(ω), f(ω)) = 0 for all ω ∈ Ω, then f is measurable.
For the next two propositions (cf. [2, 22]), M is a closed bounded convex separable

subset of a Banach space X.

Proposition 3.1.4. A mapping f : Ω → 2X \{∅} is measurable if and only if it is weakly
measurable, i.e., for each x∗ ∈ X∗, the numerically-valued mapping x∗f : Ω → 2R \ {∅}
is measurable.

Proposition 3.1.5. Let T : Ω ×M → CB(X) be a random continuous (i.e., upper and
lower semicontinuous) operator. Then for any s > 0, the operator G : Ω → 2M given by

G(ω) := {x ∈M : d(x, T (ω, x)) < s}, ω ∈ Ω,
is measurable and so is the operator cl{G(ω)}, where the closure is taken under either
the strong or weak topology of the space X.

In recent years a lot of efforts have been made (cf. [3], [12], [15], [22], [23], [34], [40],

[45], [49], [53], [55], [56], [59] and references therein) to show the existence of random fixed

points of certain single-valued and set-valued random operators. The main objective of
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this chapter is to study the measurability of the fixed point set function of a multiva-

lued measurable mapping. More precisely, let T : Ω ×M → 2X \ {∅} be a measurable
multivalued mapping. Let F (ω) := {x ∈ M : x ∈ T (ω, x)} be the fixed point set func-
tion of the mapping T (ω, ·) : M → 2X \ {∅}. We shall show in the next sections that
F : Ω → 2M \ {∅} will be measurable either if T is a random contraction or if T is a
random nonexpansive mapping satisfying certain conditions.

If the fixed point set function F of T is measurable, then the existence of a random

fixed point of T is an immediate consequence of the Measurable Selection Theorem (Pro-

position 3.1.1). (Obviously, we need some mild conditions (e.g. continuity) to ensure that

the fixed point sets F (ω) of T (ω, ·) are closed.) From this point of view it is harder to
show the measurability of the fixed point set function F of T than to show the existence

of merely a random fixed point of T . Indeed, in Section 3.3 we shall prove the existence

of a random fixed point of a random nonexpansive multivalued mapping T in a uniformly

convex Banach space. However, we do not know if the fixed point set function F of T is

measurable.

The technique used to show the existence of random fixed points seems to be unsuita-

ble for verifying whether the fixed point set function is measurable. Indeed, there exists

a measurable multivalued mapping which has random fixed points but whose fixed point

set function fails to be measurable, as shown in the next example due to Christoph Bandt

(private communication).

Example. Let M = Ω = [0, 1] and Σ be the σ-algebra of Lebesgue measurable subsets

of [0, 1]. Let T : [0, 1] × [0, 1] → K([0, 1]), the family of nonempty compact subsets of
[0, 1], be given by

T (ω, x) =

{
[x, 1] if ω = x ∈ E,
{1} otherwise,

where E is a non-Lebesgue measurable set in M . Then, for any x ∈M and any interval
I ⊂M ,

T (·, x)−1(I) = {ω ∈ Ω : T (ω, x) ∩ I 6= ∅}
is either [0, 1] or at most a singleton; hence T (·, x) is measurable. Similarly, for each
ω ∈ Ω, T (ω, ·) is upper semicontinuous. Also, the fixed point set of T (ω, ·) is

F (ω) =

{
{ω, 1} if ω ∈ E,
{1} if ω 6∈ E.

It follows that x(ω) ≡ 1 is a random fixed point of T , while F is not measurable as
F−1([0, 1)) = E is not measurable.

Suppose that M is a weakly compact convex separable subset of a Banach space.

One of the approaches to show the existence of a fixed point for a random nonexpansive

multivalued mapping T : Ω × M → CB(M) is to approximate T by the multivalued
random contractions Tn : Ω ×M → CB(M) given by

Tn(ω, x) =
1

n
x0 +

(
1− 1
n

)
T (ω, x), ω ∈ Ω, x ∈M,

where x0 is a fixed element of M . Obviously, limn→∞H(Tn(ω, x), T (ω, x)) = 0 for all



30 H. K. Xu

ω ∈ Ω and x ∈M . However, the sequence {Fn(ω)} of fixed point sets of {Tn(ω, x)} does
not necessarily converge (in appropriate sense) to the fixed point set F (ω) of T (ω, x);

see [35]. This indicates that we cannot use the measurability of the fixed point sets of

the approximants to T to deduce the measurability of the fixed point set of T . Another

approach to tackle this problem is this: Set

Fn(ω) = cl

{
x ∈M : d(x, T (ω, x)) < 1

n

}
.

Then by Proposition 3.1.5, the continuity of T implies that Fn is measurable for each n.

Moreover, it is immediately clear that
∞⋂

n=1

Fn(ω) = F (ω).

So one can try to prove the measurability of F from this countable intersection of mea-

surable sets. We have

Proposition 3.1.6. If Fn(ω) is compact in (M,d) for all n and ω, then F is measurable.

Proof. The compactness of Fn(ω) implies that lim d(y, Fn(ω)) = d(y, F (ω)) for all

y ∈M (and even the stronger result: limH(Fn(ω), F (ω)) = 0), which in turn implies the
measurability of F by Propositions 3.1.2 or 3.1.3.

However, if the Fn(ω)’s are not compact, the above argument would fail; it is unclear

if Proposition 3.1.6 is valid without assuming compactness of the Fn(ω)’s.

3.2. Random contractions. Let us first recall Nadler’s theorem, the multivalued version

of Banach’s contraction principle.

Theorem 3.2.1. Let (M,d) be a complete metric space and T : M → CB(M) be a
multivalued contraction, i.e., there is a constant k ∈ [0, 1) such that

H(Tx, Ty) ≤ kd(x, y), x, y ∈M.
Then T has a fixed point ξ, and moreover , for any x0 ∈M and k, k < k < 1, there exists
an orbit (xn) of T at x0 which converges to ξ with the estimate

d(xn, ξ) ≤
kn

1− k
d(x1, x0), n ≥ 0.

Lemma 3.2.2. Let (M,d) be a complete metric space and S : M → CB(M) be a con-
traction: H(Sx, Sy) ≤ kd(x, y) for all x, y ∈ M , where k ∈ [0, 1) is a constant. For each
α > 0 set

Fα = cl{x ∈M : d(x, Sx) < α} and F = {x ∈M : x ∈ Sx}.
Then

H(Fα, F ) ≤
α

1− k .
Proof. Since Fα ⊇ F , we have

H(Fα, F ) = sup
x∈Fα

d(x, F ).
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For an arbitrary x ∈ Fα and ε > 0, we can choose an x1 ∈ Sx satisfying d(x, x1) <
(1 + ε)α. Starting from x0 = x, x1 ∈ Sx and k < k < 1, we can construct an orbit (xn)
of S at x such that

d(xn, ξ) ≤
kn

1− k
d(x1, x0) for all n ≥ 0,

where ξ ∈ F is the limit of {xn}; in particular, we have

d(x, F ) ≤ d(x, ξ) = d(x0, ξ) ≤
1

1− k
d(x1, x0) ≤

(1 + ε)α

1− k
.

Since ε > 0 and k ∈ (k, 1) are arbitrary, it follows that d(x, F ) ≤ α/(1− k), which implies
that H(Fα, F ) ≤ α/(1− k) as x ∈ Fα is arbitrary.
Theorem 3.2.3. Suppose that (M,d) is a complete separable metric space, (Ω,Σ) is a

measurable space with Σ a σ-algebra of subsets of Ω, and T : Ω×M → CB(M) a random
contraction, that is , for each x ∈ M , T (·, x) is measurable, and for each ω ∈ Ω, there
exists a number k(ω) ∈ [0, 1) such that

H(T (ω, x), T (ω, y)) ≤ k(ω)d(x, y), x ∈M.
Then the fixed point set function F of T given by F (ω) := {x ∈ M : x ∈ T (ω, x)} is
measurable (and hence T admits a random fixed point).

Proof. By Theorem 3.2.1, F (ω) is nonempty for every ω ∈ Ω. For each integer n ≥ 1, let
Fn(ω) = cl{x ∈M : d(x, T (ω, x)) < 1/n}.

It follows from Proposition 3.1.5 and Lemma 3.2.2 that each Fn(ω) is measurable and

H(Fn(ω), F (ω)) ≤ 1/((1− k(ω))n) → 0 as n → ∞. So F is measurable by Proposition
3.1.3.

Remark. The existence of a random fixed point for a multivalued random contraction

was proved by Itoh [22]. But he required that the function k of the Lipschitz constants

of T (ω, ·) be measurable. Here we have proved the measurability of the fixed point set
function F without assuming the measurability of k.

We conclude this section with a random version of Theorem 1.2.2.

Theorem 3.2.4. Let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω,

let (X, d) be a complete separable metric space, and let T : Ω×X → CB(X) be a random
mapping such that

d(T (ω, x), T (ω, y)) ≤ k(ω, d(x, y))d(x, y), ω ∈ Ω, x, y ∈ X, x 6= y,
where k : Ω × (0,∞)→ (0, 1) is a measurable function satisfying

lim sup
r→t+

k(ω, r) < 1, ω ∈ Ω, t ∈ [0,∞).

Then T has a random fixed point.

To prove the theorem we need the following lemma, which can be proved in the same

way as the proof of Proposition 4 in [22].

Lemma 3.2.5. Let Ω and X be as in Theorem 3.2.4. Assume v : Ω → X and S : Ω →
CB(X) are measurable. Then, for any measurable function r : Ω → (1,∞), there exists
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a measurable selection w(·) for S(·) such that
d(v(ω), w(ω)) ≤ r(ω)d(v(ω), S(ω)), ω ∈ Ω.

Proof of Theorem 3.2.4. Pick any measurable function x0 : Ω → X. Consider the
measurable mapping ω 7→ T (ω, x0(ω)) from Ω to CB(X). Apply Proposition 3.1.1 to get
a measurable selection x1(·) of T (·, x0(·)). Next apply Lemma 3.2.5 to get a measurable
selection x2(·) for T (·, x1(·)) satisfying

d(x1(ω), x2(ω)) ≤ [k(ω, d(x0(ω), x1(ω)))]−1/2d(x1(ω), T (ω, x1(ω))), ω ∈ Ω.
Continuing this way we construct a sequence {xn(ω)} of measurable functions xn : Ω →
X such that

(i) xn+1(·) is a measurable selection of T (·, xn(·)),
(ii) d(xn(ω), xn+1(ω)) ≤ [k(ω, d(xn−1(ω), xn(ω)))]−1/2d(xn(ω), T (ω, xn(ω))), ω ∈ Ω.

According to the proof of the deterministic case (Theorem 1.2.2) we see that for each

fixed ω ∈ Ω, {xn(ω)} converges to some fixed point x(ω) of T (ω, x(ω)). Thus we have a
mapping x : Ω → X. This x is measurable since it is the pointwise limit of the sequence
{xn(ω)} of measurable functions. Hence x is a random fixed point of T .

3.3. Random nonexpansive mappings. In this section we first show the existence of

random fixed points for a random nonexpansive multivalued mapping in a uniformly

convex Banach space. We then show some results on the measurability of the fixed

point set function F of either a random multivalued nonexpansive mapping or a ran-

dom condensing multivalued mapping.

Theorem 3.3.1. Let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω.

Let C be a nonempty , bounded , closed , convex and separable subset of a uniformly convex

Banach space X and T : Ω × C → K(C) a random nonexpansive multivalued mapping.
Then T has a random fixed point.

Proof. Let v ∈ C be fixed and define, for each n ≥ 1, Tn : Ω × C → K(C) by

Tn(ω, x) :=

(
1− 1
n

)
T (ω, x) +

1

n
v, ω ∈ Ω, x ∈ C.

Then Tn is a random contraction and hence has a random fixed point xn. Let (nα)

be a universal subnet of the net of positive integers (n). We then define a function

f : Ω × C → [0,∞) by
f(ω, x) := lim

α
‖xnα(ω)− x‖.

Since {xnα(ω)} is countable, we see that f is measurable. On the other hand, since X is
uniformly convex, C is also weakly compact. Thus there exists a unique point x(ω) ∈ C
which minimizes f(ω, ·) over C, that is,

f(ω, x(ω)) = inf
x∈C
f(ω, x) =: r(ω).

(This point x(ω) is referred to as the asymptotic center of the net (xnα(ω)) in C.) Ac-

cording to the deterministic case, for each fixed ω ∈ Ω, x(ω) is actually a fixed point of
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T (ω, ·). So it remains to verify that x is measurable. To this end, let (un) be a countable
dense subset of C. Thus we have

r(ω) = inf
n≥1
f(ω, un), ω ∈ Ω.

This indicates that r : Ω → R is measurable since f(·, un) is measurable for each n.
Next set, for each integer k ≥ 1,

Ak(ω) := {x ∈ C : f(ω, x) ≤ r(ω) + 1/k}.
It follows that Ak : Ω → 2C \ {∅} is measurable and for each ω ∈ Ω, Ak(ω) is a weakly
compact convex subset of C. It is also readily seen that

(3.1)
∞⋂

k=1

Ak(ω) = {x(ω)}.

Since C is separable, the weak topology on C is metrizable. Let dw be the metric on C

which is induced by the weak topology of C and let Hw be the Hausdorff metric induced

by dw. We now show that

(3.2) lim
k→∞
Hw(Ak(ω), x(ω)) = 0.

Indeed, since
⋂∞
k=1Ak(ω) = {x(ω)}, the limit above exists; we denote it by h(ω). If

h(ω) > 0, then observing

Hw(Ak(ω), x(ω)) = sup{dw(y, x(ω)) : y ∈ Ak(ω)},
we have for each k ≥ 1 some yk ∈ Ak(ω) such that
(3.3) dw(yk, x(ω)) >

1
2h(ω).

Since C is weakly compact, there is a subsequence (yk′) of (yk) converging weakly to

some y ∈ C; i.e., we have dw(yk′ , y) → 0 as k′ → ∞. This contradicts (3.3) and (3.2) is
thus verified. By Propositions 3.1.3 and 3.1.4, x(ω) is measurable.

Theorem 3.3.2. Let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω, let

C be a weakly compact convex subset of a Banach space X, and let T : Ω ×C → CB(X)
be a random continuous mapping. If , in addition, for each fixed ω ∈ Ω, I − T (ω, ·) is
demiclosed at 0, where I is the identity operator , and for each ω ∈ Ω, the (deterministic)
mapping T (ω, ·) : C → CB(X) has a fixed point , then the fixed point set function F of T
is measurable (and hence T has a random fixed point).

Proof. Set for each n ≥ 1,
An(ω) = {x ∈ C : d(x, T (w, x)) < 1/n}.

Then An(ω) is measurable by Proposition 3.1.5. For a fixed ω ∈ Ω, from the demiclosed-
ness of I − T (ω, ·) it follows that the fixed point set F (ω) of T (ω, ·) is weakly closed.
Thus

(3.4) F (ω) =

∞⋂

n=1

w-clAn(ω).

(Here w-clA denotes the closure of A under the weak topology.) Indeed, as An(ω) ⊇ F (ω)
for each n, it follows that

⋂∞
n=1w-clAn(ω) ⊇ F (ω). To show the reverse inclusion, suppose
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that there exists some x ∈ ⋂∞n=1 w-clAn(ω), but x 6∈ F (ω). Let dw be a distance on C
that produces the weak topology on C. Then we have dw(x,An(ω)) = 0 for each n. So

we can find for each n an xn ∈ An(ω) such that dw(xn, x) < 1/n. Furthermore, by the
definition of An(ω), we can select yn ∈ T (ω, xn) for which ‖xn − yn‖ < 1/n for n ≥ 1.
Now the sequence {xn} weakly converges to x, and {xn − yn}, with yn ∈ T (ω, xn) for
each n, converges strongly to 0. It then follows from the demiclosedness of I − T (ω, ·)
at 0 that 0 ∈ (I − T (ω, ·))x. Hence x ∈ T (ω, x). This contradicts the assumption that
x 6∈ F (ω). Thus (3.4) is proved. Since C is weakly compact, clAn(ω) is weakly compact
for each n. An application of Propositions 3.1.6 and 3.1.4 yields the measurability of F .

Remark. If the space X satisfies Opial’s property [39] (i.e., xn ⇀ x⇒ lim sup ‖xn−x‖ <
lim sup ‖xn − y‖ for all y ∈ X, y 6= x), then I − f is demiclosed at 0 (cf. [29], see also
[58]) provided f : C → K(C) is nonexpansive. So Theorem 3.3.2 applies to such a space.
All Hilbert spaces and lp spaces (1 < p < ∞) have Opial’s property, but it remains
an open question whether I − f is demiclosed at 0 if the space X is uniformly convex
(e.g. Lp[0, 1], 1 < p < ∞, p 6= 2) and f : C → K(C) is nonexpansive. (Note: The
answer for a single-valued nonexpansive mapping f is yes, which is the famous theorem

of Browder [4].) A remarkable fixed point theorem for multivalued mappings is Lim’s

result: If C is a nonempty closed bounded convex subset of a uniformly convex Banach

space X and f : C → K(C) is nonexpansive, then f has a fixed point. Theorem 3.3.1 is
the randomization of Lim’s theorem. However, it is unknown whether the fixed point set

function F in this case is measurable.

Corollary 3.3.3. Suppose X is a Banach space with Opial’s property , C is a weakly

compact convex separable subset of X, and T : Ω×C → K(C) is a random nonexpansive
mapping. Then the fixed point set function F of T is measurable and hence T has a

random fixed point.

Remark. The existence of a random fixed point of T under the assumptions of Corollary

3.3.3 was proved by Itoh [23]. Here we proved the stronger measurability result for the

random fixed point set function F of T .

Recall now that a multivalued mapping S : C → 2X is convex if the graph of S,
Gr(S) := {(x, y) ∈ C ×X : y ∈ Sx},

is convex. If S is convex, then it is easily seen that for any number r, the “level” set

{x ∈ C : d(x, Sx) < r} is a convex set in C. The following improves upon Theorem 3.2
of [12]. Also, the proof given here is simpler.

Theorem 3.3.4. Let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω, let

C be a weakly compact convex subset of a Banach space X, and let T : Ω ×C → CB(X)
be a random multivalued continuous (i.e., u.s.c. and l.s.c.) convex mapping such that for

each ω ∈ Ω, the (deterministic) mapping T (ω, ·) has a fixed point. Then the fixed point
set function F of T is measurable.

Proof. For each n ≥ 1 the set
Bn(ω) := {x ∈M : d(x, T (ω, x)) < 1/n}, ω ∈ Ω,
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is convex. Noting that the fixed point set F (ω) of T is closed and convex, we have
∞⋂

n=1

w-clBn(ω) = F (ω), ω ∈ Ω.

Now by weak compactness and Propositions 3.1.6 and 3.1.4, it follows that F (ω) is mea-

surable.

Theorem 3.3.5. Let C be a closed convex separable subset of a Banach space X and

T : Ω × C → CB(X) be a continuous condensing random mapping such that for each
ω ∈ Ω, T (ω,C) is bounded. Suppose also that for each ω ∈ Ω, the deterministic mapping
T (ω, ·) : C → CB(X) has a fixed point. Then the fixed point set function F of T is
measurable and hence T has a random fixed point.

Proof. As before, we set for each ω ∈ Ω and integer n ≥ 1,
F (ω) := {x ∈ C : x ∈ T (ω, x)} and Fn(ω) := cl{x ∈ C : d(x, T (ω, x)) < 1/n}.

Then F (ω) is closed and nonempty since T (ω, ·) is upper semicontinuous. Also, each Fn
is measurable by Proposition 3.1.5. We next show that for each ω ∈ Ω,
(3.5) lim

n→∞
H(Fn(ω), F (ω)) = 0.

Since {Fn(ω)} is decreasing and
⋂∞
n=1 Fn(ω) = F (ω), the limit on the left hand side of

(3.5) exists. Denote this limit by b(ω). Then we have

H(Fn(ω), F (ω)) = sup
y∈Fn(ω)

d(y, F (ω)) ≥ b(ω).

Thus for each n ≥ 1, one can pick a yn ∈ Fn(ω) such that
(3.6) d(yn, F (ω)) > b(ω)− 1/n.
Set D := {yn}. Since each yn lies in Fn(ω), i.e.,
(3.7) d(yn, T (ω, yn)) ≤ 1/n→ 0 as n→∞,
it follows that

α(T (ω,D)) ≤ α(D).
Therefore, α(D) = 0 for T (ω, ·) is condensing. This implies that (yn) admits a subsequence
(yn′) converging to some y ∈ C. By the upper semicontinuity of T , we deduce from
(3.7) that d(y, T (ω, y)) = 0. Hence y ∈ F (ω), which together with (3.6) yields b(ω) ≤
d(y, F (ω)) = 0 and (3.5) is verified. Now by Proposition 3.1.3, F (·) is measurable and
each measurable selection is a random fixed point of T .

Corollary 3.3.6 (A partial random version of Browder’s fixed point theorem [5]). Sup-

pose C is a nonempty compact convex subset of a Banach space X and T : Ω × C →
KC(X) is a random continuous mapping. Suppose in addition that either of the following

boundary conditions is satisfied :

(i) For each x ∈ ∂C, the boundary of C, and each ω ∈ Ω, there exist y ∈ T (ω, x),
u ∈ C, and λ > 0 such that

y = x+ λ(u− x).
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(ii) For each x ∈ ∂C and ω ∈ Ω, there exist y ∈ T (ω, x), u ∈ C, and λ < 0 such that
y = x+ λ(u− x).

Then the random fixed point set function F of T is measurable and thus T has a

random fixed point.

Proof. For each ω ∈ Ω, under either of the boundary conditions above, the deterministic
mapping T (ω, ·) : C → KC(X) has a fixed point by Browder’s fixed point theorem [5].
The conclusion then follows from Theorem 3.3.5.

Remark.We do not know if the conclusions of Theorem 3.3.5 and Corollary 3.3.6 remain

valid if the continuity of T is weakened to the upper semicontinuity of T . (Note that the

answer is yes for a deterministic mapping T .)

We conclude this section with a result for a single-valued mapping in a uniformly

smooth Banach space. Recall that a Banach space X is said to be uniformly smooth if,

for any ε > 0, there exists δ = δ(ε) > 0 such that

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖ for all x, y ∈ X, ‖x‖ = 1, 0 < ‖y‖ < ε.
It is known that X is uniformly smooth if and only if the norm ‖ · ‖ of X is uniformly
Fréchet differentiable; namely, the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists and is attained uniformly for x, y ∈ SX , the unit sphere of X.
Assume X is a uniformly smooth Banach space and C a nonempty closed bounded

convex subset of X. Let S : C → C be a single-valued nonexpansive mapping. For each
u ∈ C and integer n ≥ 1 we define the contraction Sn : C → C by

Snx =
1

n
u+

(
1− 1
n

)
Sx, x ∈ C.

Let xn be the unique fixed point of Sn. A result of Reich [47] states that the strong limxn
exists and

P (u) := limxn, u ∈ C,
defines a nonexpansive retraction from C onto F (S), the set of fixed points of S.

Lemma 3.3.7. If C is separable and {un} ⊂ C is a countable set dense in C, then {P (un)}
is dense in F (S).

Proof. Let y ∈ F (S). Since the retraction P : C onto−→ F (S) is nonexpansive, it follows
that ‖y − P (un)‖ ≤ ‖y − un‖ for all n, which implies the density of {P (un)} in F (S) as
{un} is dense in C.

Theorem 3.3.8. Let C be a closed bounded convex separable subset of a uniformly smooth

Banach space, let (Ω,Σ) be a measurable space with Σ a σ-algebra of subsets of Ω, and

let T : Ω × C → C be a (single-valued) random nonexpansive mapping. Then the fixed
point set function F of T is measurable and hence T has a random fixed point.
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Proof. Let {un} be a countable subset of C which is dense in C. For each pair of integers
n, k, let xn,k(ω) be the unique random fixed point of the random contraction

T kn (ω) :=
1

n
uk +

(
1− 1
n

)
T (ω, x), ω ∈ Ω, x ∈ C.

Let xk(ω) ∈ F (ω) be the strong limit of the sequence {xn,k(ω)} as n → ∞. By Lemma
3.3.7, {xk(ω)} is dense in F (ω), i.e., cl{xk(ω)} = F (ω) for every ω ∈ Ω. Therefore, F is
measurable by Proposition 3.1.2.
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