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Abstract

Let FF = (Fi,...,F,) : C* — C" be a polynomial mapping. By the multidegree of F' we mean
mdeg F' = (deg Fi,...,deg F,,) € N™. The aim of this paper is to study the following problem
(especially for n = 3): for which sequence (d1,...,dn) € N" is there a tame automorphism F of
C™ such that mdeg F = (d1,...,dn)? In other words we investigate the set mdeg(Tame(C")),
where Tame(C™) denotes the group of tame automorphisms of C".

Since mdeg(Tame(C")) is invariant under permutations of coordinates, we may focus on the
set {(d1,...,dn) : di <--- < dp} Nmdeg(Tame(C™)).

Obviously, we have {(1,dz2,d3) : 1 < da < ds} N mdeg(Tame(C?)) = {(1,d2,d3) : 1 < do
< d3}. Not obvious, but still easy to prove is the equality mdeg(Tame(C?))N{(2,dz2,d3) : 2 < d2
<ds} ={(2,d2,d3) : 2 < d2 < da}.

We give a complete description of the sets {(3,d2,d3) : 3 < d2 < dz}N mdeg(Tame(C?))
and {(5,d2,ds) : 5 < ds < d3} N mdeg(Tame((CS))‘ In the examination of the last set the most
difficult part is to prove that (5,6,9) ¢ mdeg(Tame(C?)). To do this, we use the two-dimensional
Jacobian Conjecture (which is true for low degrees) and the Jung—van der Kulk Theorem.

As a surprising consequence of the method used in proving that (5,6, 9) ¢ mdeg(Tame(C?)),
we show that the existence of a tame automorphism F of C* with mdeg F' = (37,70,105) implies
that the two-dimensional Jacobian Conjecture is not true.

Also, we give a complete description of the following sets: {(p1,p2,ds) : 2 < p1 < p2 <
ds, p1, p2 prime numbers } N mdeg(Tame(C*)), {(di,d2,d3) : di < da < d3, d1,d2 € 2N + 1,
ged(di,d2) = 1} N mdeg(Tame(C?)). Using the description of the last set we show that
mdeg(Aut(C?)) \ mdeg(Tame(C?)) is infinite.

We also obtain a (still incomplete) description of the set mdeg(Tame(C?®)) N{(4,d2,d3) : 4 <
ds < d3} and we give complete information about mdeg F~! for F € Aut(C?).
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Pamieci Profesora Andrzeja Piotra Zieliniskiego

0. Introduction

The object of principal interest in this paper is the multidegree (i.e. the sequence of
the degrees of the coordinate functions) of a polynomial automorphism of the vector
space C™. Let us mention that in the Scottish Book (|33 Problem 79]) Mazur and Orlicz
posed the following question: “If F' = (F},...,F,) : C" — C" is a one-to-one polynomial
map whose inverse is also a polynomial map, is each F; of degree one?” In other words,
they asked whether every polynomial automorphism of C™ has multidegree (1,...,1).
The answer to this question is obviously “‘no”, and in the Scotish Book itself one can
find the following example: let 1 < ¢ < n and a = a(Xy,...,X;-1, Xix1,..., Xpn) €
(C[Xh SN 7X1'—17Xi+la ce ,Xn]. Then

E:C'>(x1,...,20) — (1, ., Ti—1,T; + 0, Tig1,...,Tpn) € C"

is a polynomial automorphism with multidegree (1,...,1,dega,1,...,1). A map as above
is called an elementary polynomial map. Taking finite compositions of such elementary
maps and elements of the affine subgroup Aff(C"), i.e. the group of polynomial automor-
phisms F' = (Fy,..., F,) : C" — C" such that deg F; = 1 for all i, we get automorphisms
called tame.

In 1942 Jung [9] proved that each polynomial automorphism of k?, where k is a field of
characteristic zero, is tame. Later, in 1953, van der Kulk extended Jung’s result to fields
of arbitrary characteristic. Since then several authors have given other proofs of that
result: Gutwirth [12] in 1961, Shafarevich [46] in 1966, Rentschler [42] in 1968, Makar-
Limanov [32] in 1970, Nagata [36] in 1972, Abhyankar and Moh [I] in 1975, Dicks [6] in
1983, McKay and Wang [29] in 1988. The stronger statement, also called the Shafarevich—
Nagata—Kombayashi theorem, saying that the group of all polynomial automorphisms of
k? is the amalgamated product of the affine subgroup and the subgroup of de Jonquiéres
automorphisms over their intersection, can be found in [23], [I7], [36], [6], [2] and without
proof in [46].

From the result of Jung and van der Kulk it also follows that if (di,dz) is the multi-
degree of an automorphism of C2, then d; | dy or do | d; (see Subsection .

Tame automorphisms are closely related to the problem of embedding of affine alge-
braic varieties. For example, in the proof of the famous Abhyankar—-Moh—Suzuki theorem,
saying that every embedding of a line in C? is rectifiable (i.e. a composition of the standard
embedding C > x ~ (2,0) € C? and an automorphism of C?), tame automorphisms play
a prominent role. This result, formulated in algebraic terms as follows: if f(T), g(T') € k[T
and k[f(T), g(T)] = Ek[T], then either deg f(T") | deg g(T) or deg g(T") | deg f(T), was used
by Segre [45] to “prove” the Jacobian Conjecture. The problem of embeddings of affine
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6 M. Karas

algebraic varieties was also considered by Jelonek [I3] 14} [I5], Kaliman [I6], Srinivas [52]
and Craighero [5].

Since Jung and van der Kulk proved their theorem, many authors have tried to prove
or disprove the similar result for dimension n > 3, but without any results. The most
famous candidate for a so-called wild automorphism (i.e. one that is not tame) was
proposed by Nagata in 1972. It took more than thirty years to prove that the Nagata
automorphism

0:C3 3 (2,y,2) = (x+ 2y(y* + 2x) — 2(y* + 22)%,y — 2(y* + 22),2) € C?
is indeed wild. This remarkable result was obtained by Shestakov and Umirbaev [49].
The two main ingredients in the proof of the above result are recalled as Theorems [2.6]
and (see Subsections and . These two theorems are also basic tools in our
considerations concerning multidegrees of tame automorphisms of C3.

The paper is organized as follows. In Section [I] we fix notation, recall basic definitions,
and discuss the multidegree of polynomial automorphisms of C? (see Subsection. The
discussion is based on the Jung—van der Kulk result. In Section [2] we recall the notion of
a Poisson bracket of two polynomials, and two theorems due to Shestakov and Umirbaev
(Theorems [2.6] and [2.14). They are the main tools used in the paper. We also prove that
the degree of the Poisson bracket is an invariant of a linear change of coordinates (Lemma
2.8). This is a new result. In this section we also explain in detail that an example of
a polynomial automorphism (Example due to Shestakov and Umirbaev does not
admit an elementary reduction, and recall a theorem from number theory (Theorem
that will be useful in some parts of the paper.

In Section [3| we collect some general results about multidegrees. Some of them were
already published by the author: Proposition Proposition and Corollary [18].
The other results in that section (except Theorem due to Kuroda) are new. The
most important results of that section are Proposition [3.2] Theorem and Lemma
0. 20

In Section Y| we discuss tame automorphisms of C* with multidegree of the form
(p1,p2,d3), 2 < p1 < pa < ds, where p; and ps are prime numbers, and more generally,
coprime odd numbers. In both cases we give a necessary and sufficient numerical condition
for (p1,p2,ds) to be the multidegree of a tame automorphism of C3. The results of that
section were already published by the author [19], and by the author and J. Zygadto [22].

Section [5| presents results due to the author [20]. They concern tame automorphisms
with multidegeree (3, ds,ds), 3 < do < ds.

The results of Sections [6] and [7] are new and concern tame automorphisms with mul-
tidegree (4,d3,ds), 4 < dy < d3 (Section @, and (p,ds,ds), 5 <p < dy < ds, where p is a
prime (Section . It is of interest that in showing that there is no tame automorphism of
C? with multidegree (5, 6, 9), we use the Jacobian Conjecture (actually the Moh theorem).
On the other hand, it is very surprising that the existence of a tame automorphism of
C? with multidegree (37,70,105) implies that the two-dimensional Jacobian Conjecture
is false (this is proved in Section [7)).

In Section |8 we present a result due to J. Zygadto [54], and in the last section we give
new results on the multidegree of the inverse of a polynomial automorphism of C2.
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1. Notation, basic definitions and two-dimensional case

1.1. Notation. We assume that 0 € N, and we denote by N*, Z*, C*, respectively, N\{0},
Z\ {0}, C\ {0}. By C[X;, ..., X,] we denote the polynomial ring in n variables over C.
In particular, X1,...,X,, denote variables, and z1,...,z, denote coordinates in C". We
will work over the complex field C, but all results remain valid over any algebraically
closed field of characteristic zero.

For any f € C[Xy,...,X,], deg f denotes the usual total degree of f. We say that f is
homogeneous if f is a sum of monomials of the same degree. We denote by f the leading
form of f, i.e. the homogeneous part of f of the maximal degree. Of course, deg f = deg f.

Moreover, ged(dy,...,d,) and lem(dy,...,d,) denote the greatest common divisor
and the least common multiple of dy,...,d,, respectively.

1.2. Examples of polynomial automorphisms. First of all, recall that a polyno-
mial mapping F : C* — C" is a mapping whose coordinate functions F;, where F =
(Fy,..., F,), are polynomials. By a polynomial automorphism of C™ (later, just automor-
phism) we mean a polynomial mapping F : C* — C™ such that there exists a polynomial
mapping G : C"* — C” with FFoG = Go F = idcn. We then also say that F' is invertible.
The group of all polynomial automorphisms of C™ is denoted by Aut(C").

Polynomial automorphisms play a prominent role in affine algebraic geometry [33] 47].
Typical problems are the Jacobian Problem |3} 4} [9, 23], 36 37, [38], B9 [40], existence of wild
automorphisms [8, [49] 50} 5], the inverse formula [28], (29, [30, 5] or stable tameness [48)].

There are some special kinds of polynomial automorphisms of C™:

o Affine polynomial automorphisms, i.e. polynomial automorphisms F = (Fy,..., F,)
such that degF; = 1 for ¢ = 1,...,n. The set of all such automorphisms will be
denoted Aff(C™); it is a subgroup of Aut(C").

e Linear automorphisms, i.e. affine automorphisms F' : C* — C™ such that F(0,...,0) =
(0,...,0). This is of course the same as the general linear group, denoted GL,,(C).

e Elementary automorphisms, i.e. maps of the form

F:C"> (.’1,‘1,...,37”) — (,CCl,...,LL'Z'+f(a?1,...,$i71,$i+1,...7$n),...,.’L‘n> eC”
for some i € {1,...,n} and f € C[Xy,...,X;_1,X;11,...,X,]. One can easily see that

F_l(xla"'vxn) = (xlv'”vxi - f(wlw"vxi717xi+17" '7$n)7"~7xn)~
e Triangular automorphisms, i.e. maps of the form

F:C'> (fﬂl, Ce ,xn) — (l‘l,xg + fl(l‘l), ey Ty fn_l(xl, Ce ,’l,’n_l)) c (Cn, (11)
where f; € C[X1], f2 € C[X1,X3],..., fan1 € C[X1,..., Xp—1]. One can check that F'
is invertible and

T Z1

. 9 xo — fi(x1)
F x3 — Yz — fa(z1, 22 — fi(z1))
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We will also say that F' is triangular if F' is of the form (|1.1) after some permutation
of variables.
e De Jonquiéres automorphisms, i.e. mappings of the form

xr1 a1, —‘y—f1($2,...,l‘n)
i) agx9 +f2(£63,...,$n)

F:C"><¢ . . eC”, (1.2)
T ATy + fn

where a; € C*, f; € C[X;41,...,Xy] forall 1 <i<n—1and f, € C. We then write
F € J(C™). As for triangular mappings, one can check that if F' € J(C"), then F is
invertible. Also, one can verify that J(C™) is a subgroup of Aut(C").

e Tame automorphisms, i.e. compositions of a finite number of affine and triangular
automorphisms. Sometimes a tame automorphism is defined as a composition of a finite
number of affine and elementary automorphisms, or as a composition of a finite number
of affine and de Jonquiéres automorphisms. One can check that all these definitions
are equivalent.

To end this section, recall that for any polynomial mapping F' : C* — C™ we have
the C-homomorphism F* : C[X3,...,X,] — C[X,..., X,] defined by

F*:C[X1,...,Xn]3h—hoF eC[Xy,..., X,

and for any C-homomorphism @ : C[Xy,..., X,] = C[Xq,..., X,] we have the polyno-
mial mapping ®, : C* — C™ defined as

D, :C"> (x1,...,xn) = (Fr(x1, ..., Zn)se ooy Frp(xy, ..., 2,)) € CT,
where F; = ®(X;). Moreover, recall that (F*), = F,(®.)* = ®, and F, is an automor-
phism if and only if F* is a C-automorphism of C[X7, ..., X,]. Thus one can translate

the notions of affine, linear, elementary, triangular and tame automorphisms of C" into
the language of C-automorphisms of C[X7,...,X,,].

1.3. Degree, bidegree and multidegree. Let F' = (F},...,F,) : C* — C™ be any
polynomial map. By the degree of F', denoted deg F', we mean the number
deg F' = max{deg F1,...,deg F}, },
and by the multidegree of F', denoted mdeg F', we mean the sequence of natural numbers
mdeg F' = (deg Fy,...,deg F},).

For n = 2 the multidegree is called the bidegree, and denoted bideg (see e.g. [7]).
For a fixed n € N, we will also consider the mappings

deg : End(C") 3 F—~degFF € N, mdeg: End(C") > F — mdegF € N",

where End(C™) denotes the set of all polynomial mappings C* — C™.
One of the main goals of this paper is to obtain a description of the sets

mdeg(Aut(C")), mdeg(Tame(C™)) C N".
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If n =1 the answer is
mdeg(Aut(C')) = mdeg(Tame(C')) = {1}.

The description for n = 2, based on a theorem of Jung and van der Kulk, will be given
in the next subsection. The question for n > 3 is much more complicated, and will be
investigated in the rest of the paper. The very first result in this direction says that
(3,4,5) ¢ mdeg(Tame(C?)) [I8]. The next results obtained by the author [19} 20, 22] are
also included.

Since for any (Fi,..., F,) € Aut(C") we have degF; > 1, i =1,...,n, and since for
any permutation o of {1,...,n} and any sequence (dy,...,d,) € N* we have

(di,...,dn) € mdeg(Tame(C")) < (dg(1),---,dy(n)) € mdeg(Tame(C™))

and
(di,...,d,) € mdeg(Aut(C")) < (do1),---,dy(n)) € mdeg(Aut(C")),

in our considerations we can always assume that 1 < d; < --- < d,. In other words, we
will consider the sets

mdeg(Tame(C™)) N {(dy,...,dn):1<dy <---<d,} CN"

and
mdeg(Aut(C™)) N {(dy,...,dy) : 1 <dy <---<d,} CN".

1.4. Jung and van der Kulk result. Before giving a description of the set
mdeg(Tame(C2)), we recall the following two classical results.

ProposITION 1.1 ([7, Cor. 5.1.3]). Tame(C?) is the amalgamated product of Aff(C?)
and J(C?) over their intersection, i.e. Tame(C?) is generated by these two groups and if
7 € J(C?)\ Aff(C?) and \; € Aff(C?)\ J(C?), then Ty oA 0+ 0T, 0\, 0Tyt does not
belong to Aff(C?).

Let us here recall the definition of an amalgamated product, following [43].

DEFINITION 1.2. Let G be a group and let A, B be two subgroups with C' = AN B. We
denote by ® (resp. ¥) a complete set of representatives of the left coset space A/C (resp.
B/C) subject only to the restriction that the representative of C itself is the neutral
element of G. We say that G is an amalgamated product of A and B over C if every
element g € G can be written uniquely as g = wo101%2 -+ - Yn_1Unpny for suitable
neN po,....,0n € P, Y1,...,0, € ¥, v € C, where only ¢g, ¢, and v may be the
neutral element.

The second result is the following

COROLLARY 1.3 (|7, Cor. 5.1.6]). Let F = (Fy, Fy) € Tame(C?) with bidegF = (d1, d2).
Let h; denote the homogeneous component of F; of degree d;. Then:
(a) d1|d2 or d2|d1.
(b) If deg F' > 1, then we have:
(i) if d1 < da, then hy = chfllz/d1 for some c € C,
i) if do < dy, then hy = chP % for some ¢ € C
( ) f Y 2 Y
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(iii) if di = da, then there exists A € AfF(C?) such that deg Fy > deg Fy, where
F = (Fl,FQ) = )\OF

From the above corollary we obtain
mdeg(Tame(C?)) N {(dy,ds) : 1 < dy < dp} C {(dy,d2) € (N*)?: dy | dy}.
Since for d; | dy and
FL:C?3 (z,y) — (@ +yM,y) € C%  F:C?5 (u,v) — (u,v+u®/%) e C?
F; 0 Fy is a tame automorphism of C? with mdeg(F, o F}) = (dy,ds), we see that
mdeg(Tame(C?)) N {(dy,d2) : 1 < dy < do} = {(dy,ds) € (N*)? : dy | dy}.

To obtain a description of the set mdeg(Aut(C?)), we also need the following result
due to Jung [9] and van der Kulk [23].

THEOREM 1.4 (Jung—van der Kulk, see e.g. [7, Thm. 5.1.11]). We have Aut(C?) =
Tame(C?). More precisely, Aut(C?) is the amalgamated product of Aff(C?) and J(C?)
over their intersection.

Using Theorem [I.4] we of course obtain
mdeg(Aut(C?)) = mdeg(Tame(C?)),
and so
mdeg(Aut(C?)) N {(d1,d2) : 1 < di < do} = {(d1,ds) € (N*)? : dy | do}.
A crucial result, used in the proof of the Jung—van der Kulk result, is the following
lemma and the notion of elementary reduction.

LEMMA 1.5 (see e.g. [7, Lem. 10.2.4]). Let f,g € C[X,Y], f,g # 0, be homogeneous
polynomials such that Jac(f,g) = 0. Then there exists a homogeneous polynomial h such
that:

(i) f=c1h™ and g = coh™ for some integers ny,ny > 0 and ¢1,c9 € C*.
(ii) h is not of the form chi for any c € k*, any ho € k[z,y] and any integer s > 1.

Recall that an automorphism F = (Fy,...,F,) admits an elementary reduction if
there exists an elementary automorphism 7 : C* — C” such that for G = (G1,...,Gy) =
7o F' we have

mdeg G < mdeg F,
ie.
degG; < degF; foralli=1,...,n, degG; <degk; for some i.
We then say that G is an elementary reduction of F. One can easily notice that F
admits an elementary reduction if there exists ¢ € {1,...,n} and a polynomial g €
C[Y3,...,Y,_1] such that
deg(F; — g(F1,..., Fic1, Fig1,..., Fy)) < deg F.
We will also need the following generalization of the above lemma.

PROPOSITION 1.6. Let f,g € C[Xq,...,X,] be homogeneous, algebraically dependent
polynomials. Then there exists a homogeneous polynomial h € C[X1, ..., X,] such that:
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(i) f=c1h™ and g = coh™ for some integers ni,na > 0 and c1,c9 € C*.

ii is not of the form chf for any ¢ € C*, any hg € 1,..., Xp] and any integer

ii) h ¢ t of th hg Cc* h Clx X d int
s> 1.

One can obtain the above result using Lemma 2 in [53].

2. Main tools

2.1. Poisson bracket and degree of polynomials. In this section we present the first
main tool which we will use in our considerations: the Poisson bracket of two polynomials
and a theorem that estimates from below the degree of a polynomial of the form h(f, g),
where f,g € C[X4,...,X,] and h € C[X,Y].

We start with the definition of a *-reduced pair.

DEFINITION 2.1 ([49] Def. 1]). A pair f,g € C[X1,...,X,] is called *-reduced if
(i) f,g are algebraically independent;

(ii) f,g are algebraically dependent;

(iii) f ¢ C[g) and g ¢ Cf].

Moreover, we say that f, g is a p-reduced pair if f, g is a *-reduced pair with deg f < degg
and p = deg f/ged(deg f,deg g).

One may ask whether p can be equal to 1 for a p-reduced pair f,g. The answer is
given by the following

PRrROPOSITION 2.2. If f, g is a p-reduced pair, then p > 1.

Proof. If f,g is p-reduced, then f and g are algebraically dependent. This means, by
Proposition that there is a homogeneous polynomial h such that
f=ah! and g=pr™
for some «, 8 € C* and I,m € N. Assume that p = deg f/gcd(deg f,degg) = 1. Then
l|m,andsog = ~f forr = m/l and v € C*. This contradicts condition (iii) of Definition
2T =
For any f,g € C[Xy,...,X,] we denote by [f, g] the Poisson bracket of f and g, i.e.

the formal sum

S (20 0 or ey

£ 0X; 0X; 0X; 0X; eI

1<i<j<n
where [X;, X;] are formal objects satisfying the condition
[Xi,Xj] = —[Xj,Xi] for all Z,]
We also define
deg [X;, X;] =2 foralli=j,

deg 0 = —oo and

_ Of 99 Of 99\ .
deg [f, 9] = é??f‘gndeg{(axi X, X, axi)[X“ J]}'
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Since 2 — co = —o0, we have
_ of dg  9f dg
deg[f.g] =2+ max deg (axi X,  0X; 0X;)’
and hence
deg [f,g] < deg f +degyg. (2.1)

Another inequality involving the degree of a Poisson bracket will be a consequence of
Proposition below, in which H means the Jacobian matrix (not necessarily

quadratic) of the mapping (Fi,...,F.) : C* — C".
PROPOSITION 2.3. If Fi,..., F. € C[Xy,...,X,], then
o(Fy,..., F)
X1, X,)

One can deduce the above result from [27, Chap. X, Prop. 10]. The version for r = n
can also be found in [7, Prop. 1.2.9].

By Proposition and the definition of the degree of a Poisson bracket we obtain the
following remark.

rank = trdege C(F1, ..., F}).

REMARK 2.4. f,g € C[X;y,...,X,] are algebraically independent if and only if deg|f, g]
> 2.

We also have the following

REMARK 2.5. For any f,g € C[Xq,...,X,] the following conditions are equivalent:
(1) deg|f,g] = deg f + degg,

(2) f,g are algebraically independent.
Proof. Let
f=fo+t-+fas g=go+ -+ gm

be the homogeneous decompositions of f and g. Since

[f.9] =Y [fingi) = [fagml + > [firg)]

@] i<d or j<m
and
deg[fi,g;] < deg fi +degg; =i+j <d+m,

for i < d or j < m, it follows that
deg [f7g] =d+m & deg [fdagm} =d+m.

But, since f; and g,, are homogeneous polynomials of degrees d and m, respectively, by
the definition of Poisson bracket we have

deg [fa,gm] =d+m < [fa,9m] # 0.

The last condition, by Proposition [2.3] is equivalent to fg4, g, being algebraically inde-
pendent. =

Recall the following theorem due to Shestakov and Umirbaev.
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THEOREM 2.6 ([49, Thm. 2]). Let f,g € C[Xy,...,X,] be a p-reduced pair, and let
G(X,Y) € k[X,Y] with degy G(X,Y)=pg+7r, 0 <r <p. Then
deg G(f,g) = q(pdegg — degg — deg f + deg|[f, g]) + rdegg.

Notice that the estimate from Theorem [2.6]is true even if the condition (ii) of Defini-
tlonls not satisfied. Indeed, if G = Z ca; ;XY then, by the algebraic independence

of f and g,
deg G(f,g) = maxdeg(a; ; f'g’) > degy G(X,Y) - degyg
]

= (gp+r)degg > q(pdegg — deg f — deg g + deg|[f, g]) + rdegg.

The last inequality is a consequence of the fact that deg[f, g] < deg f + degg.

Notice that the above calculations are also valid for p = 1 (when the pair f, g does
not satisfy the condition (ii) of Definition p may be equal to one).

Thus we have the following proposition.

PROPOSITION 2.7. Let f,g € C[X,...,X,] satisfy conditions (1) and (iil) of Definition
2] Assume that deg f < degg, put

_ deg f
ged(deg f, degg)’
and let G(X,Y) € C[X,Y] with degy G(X,Y) =pg+7r, 0 <r <p. Then

deg G(f,9) > q(pdegg — degg — deg f + deg[f, g]) + rdegg.

2.2. Degree of a Poisson bracket and a linear change of coordinates. This
section is devoted to showing the following lemma saying that the degree of a Poisson
bracket is invariant under a linear change of coordinates.

LEMmMA 2.8. If f,g € C[Xy,...,X,] and L € GL,(C), then

deg [L*(f), L*(g)] = deg [f, g],
where L*(h) = ho L for any h € C[Xq,...,X,].
We first show
PROPOSITION 2.9. If f,g € C[Xy,...,X,] and L : C* — C™ is any linear map, then

deg [L7(f), L"(g)] < degf, g].
Proof. It is easy to see that for every he C[Xy, ..., X,,] we have (here we allow L*(hq)=0
even if hg # 0)
[L*(W))a = L*(ha),

where the subscript d denotes the homogeneous part of degree d. We also have

[Jac” f7 Z Jac f/mgl

k+l=d+2
where
of/0X; 0f/0X;

ij _ XiX; =
Jac"(f,g) = Jac¥1 ¥ (£, g) = det {ag/axi 09/0%; |
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By the above equalities we have

[Jac™ (L*(f), L*(g))]a = Z Jac” (L*(f)i, L*(9)1)
S Jaet (L (). L a0). (2.2

k+l=d+2

Since for any h € C[Xy,...,X,] and r € {1,...,n} we have

oL*(h) _ d(hoL) _ <~ Oh

X, X, e (L) - asr,

where (a;;) is the matrix of the mapping L, it follows that
n Ofr n Ofk
D a)f(kr (L)-ari oy an(i(L) : arj]
n o n 9
Y1 s (L) rasi Yoy 55(L) - a;

Jac™ (L* (fx), L* (1)) = det [

o 9 ‘ 091 Y 6fk - Ogi }
- r;l aXT (L) e aX T‘SZI a aX (L) e
o [0k - g  Ofk g _
= 3 (G o R0 o D) - (e

- Z 7As(fkvgl)( ) QriQsj
= Z Jac"™® fkagl( ) am-asj+ Z Jacrs(fk,gl)(L)~aMasj

1<r<s<n 1<s<r<n

= Z Jacrs(fkagl)( cQriQsy — Z Jac™® fkagl( ) AsiQrj
1<r<s<n 1<r<s<n

= Z Jac" (fx, g1)(L) det { " a”}. (2.3)
1<r<s<n si Qsj

Now, by (2.2) and -, we have
(= Y Y e (g @ye [0

k+l=d+2 1<r<s<n
Z ( Z Jac”(fmﬂz))(L)det {a”: a”}. (2.4)
1<r<s<n  k+l=d+2 Asi Qs

Take any d > deg|[f, g]. Then

> Jac"(fr,g1) =0 (2.5)
k+i=d+2
for all pairs r, s satisfying 1 <r < s <n. Thus, by (2.4) and (2.5), we obtain
[Jac (L*(f), L*(g))]a = 0 (2.6)

for all 4, j. The above equalities (for all 4, j) mean that deg [L*(f), L*(g)] < d. Since we
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can take d = deg [f,g] + 1,deg[f,g] + 2, ... we obtain

deg [L*(f), L*(9)] < deg[f,g]. m (2.7)

Proof of Lemma , By the above proposition we only need to show that deg[L*(f),
L*(g)] > deg[f, g]. But f = (L~")*(L*(f)) and g = (L~")*(L*(g)). So applying Proposi-
tion to the polynomials L*(f), L*(g) and the mapping L~! we obtain

deg[f,g] = deg[(L™1)"(L*(f)), (L™)"(L*(9))] < deg[L*(f), L*(g)]. =

2.3. Shestakov—Umirbaev reductions. In this section we present the most remark-
able result of Shestakov and Umirbaev, Theorem [2.6] The notions of reductions of types
I-IV are crucial in this theorem. Thus we start with the following definitions (see [49] or

[50]).

DEFINITION 2.10. Let © = (f1, f2, f3) be an automorphism of A = C[X,Y,Z] such
that (for some n € N*) deg f1 = 2n, deg fo = ns, where s > 3 is an odd number,
2n < deg f3 < ns and f; ¢ C[fy, f5]. Suppose that there exists a € C* such that the
elements g1 = f1, g2 = fo — af3 satisfy the following conditions:

(1) ¢1,92 is a 2-reduced pair and deg g; = deg f1, deg go = deg fa;
(ii) the automorphism (g¢1,¢2, f3) admits an elementary reduction (g¢1,¢2,93) with
deg[g1, 93] < deg gz + degg1, ga].

Then we will say that © admits a reduction (g1,92,93) of type I. We will also say that
a polynomial automorphism F' = (Fy, Fy, F3) admits a reduction of type I if for some
permutation o of {1,2, 3}, the automorphism © = (F, o(1)s Fo(2); Fo(3)) admits a reduction
of type L.

Before proposing next definitions we present an example due to Shestakov and Umir-
baev of a tame automorphism of C* which does not admit an elementary reduction but
admits a reduction of type I.

ExXAMPLE 2.11. Let

Ti(z1, w0, 23) = (x1, T2 + 22, 23 + 22120 + 3),

Ta(y1, Y2, y3) = (6y1 + 6y2ys + v3, 4y2 + 43, s),

Ts(z1, 22, 23) = (21,22, 23 + 21 — 23),
L(uy,ug,uz) = (uy + ug, uz, us)

and
G:TgoTQOTl, F=Lod.

It is easy to see that
mdeg (73 o T1) = (9,6,3),

and because

(6y1 + 6yays +y3)” — (42 + y3)° = 36y + T2y102ys + 12015 — 12593 — 64y5
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and (provided that y; = 21, y2 = 22 + 27 and y3 = 73 + 22172 + 23)
129195 — 120292 = 1221 (x5 + 22120 + 29)% — 12(20 + 23)? (23 + 20129 + 23)2
= 12z32] — 122522 + lower degree monomials,
we have
mdeg(T3 0Ty 0T1) =(9,6,8) and so mdeg F = mdeg(L o G) = (9,6,8).

From the construction of F' it is clear that F' is a tame automorphism. Moreover,
it does not admit an elementary reduction. Indeed, if we put F = (Fy, Fy, F3) and as-
sume that (Fy — g(Fa, F3), F, F3), for some g € C[X,Y], is an elementary reduction of
(Fy, Fy, F3) then we must have

deg g(F», F5) = 9. (2.8)
But by Proposition 2.7, we have
deg g(F>, F3) > q(p-8 — 6 — 8 + deg [, F3]) + 8r, (2.9)

where degy g(X,Y) =gp+r, 0 < r < p, p=6/ged(6,8) = 3. Thus by (2.8) and (2.9)
and because p-8 — 6 — 8 + deg [Fy, F5] = 10 + deg [Fy, F3] > 12 > 9, we must have ¢ =0
and r < 1. Thus g must be of the form

9(X,Y) = go(X) + 1 (X)Y. (2.10)
Since 8NN(6+8N) = (), from (2.8) and (2.10) we obtain 9 = deg g(F3, F3) € 8NU(6+8N),
a contradiction.

Next, if we assume that (Fy, Fo—g(F3, F1), F3), for some g € C[X, Y], is an elementary
reduction of (Fy, Fy, F3) then we must have

deg g(F3, F1) = 6. (2.11)
But by Proposition 2.7
deg g(Fs, F1) > q(p-9— 9 — 8 + deg [F3, Fy]) + 9r, (2.12)

where degy ¢(X,Y) =gp+7r,0 <r <p, p=38/gcd(8,9) = 8. Because p-9 -9 — 8+
deg [F3, F1] = 55 + deg [F3, Fy] > 57 > 8, from and we obtain ¢ = r = 0.
This means that g(X,Y) = g(X) and deg g(F3, Fy) = deg g(F3) € 8N. However, 6 ¢ 8N.

Finally, if we assume that (Fy, Fy, F3 — g(F3, F1)), for some g € C[X,Y], is an ele-
mentary reduction of (Fy, F, F3) then

deg g(F», F1) = 8. (2.13)
As before, by Proposition [2.7]
degg(Fa, F1) > q(p-9—9— 6+ deg [F, F1]) + 9r, (2.14)

where degy g(X,Y) =gp+7,0<r <p, p=06/ged(6,9) = 2. In this case p-9—9—-6 =3
is not large enough for our purpose but deg [F5, F] is. Indeed,
8F1 8%1 8’&3 (92’1 82’3 821 2 62’2
= = 2 -3
8F2 o 8UQ 822

8(& - axz o 8932
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Thus, for 1 <i < j <3,
8F1 (9F2 8F1 BFQ 821 823 821
—_— == + 22 — 3z
Ox; Ox;  Ox; Oxy

v 2022 0

dx; ' Ox; ox; 20w, ) Oz,
82’1 823 82’1 (92’2 822
— +—+2z

(axj or, T on, 2 axj) 0z,

_<8Z18Z2_8Z1@Z2) (823822_823822>

(2.15)

81’1‘ 8£Ej 8:1:j 811
Since z1, 22, 23 are algebraically independent, by Corollary [2.3] for at least one pair i, j,

1 <i<j <3, we have
821 822 821 322

63% 81‘]' 6.13]‘ 61‘1

And since deg z; = 9, for that pair i, 7 we have

(92’1 62’2 (92’1 (92’2
2 >0, 2.1
deg Zl(axi Ox;j 8@3 8x1> 9 (2.16)
Of course we also have
821 62’2 821 822 621 822 82’1 622
deg 2y | ot 222 - ZEL 222 ) o (g 222 222 ZEL 222 2.17
° Zl(a . 0z; Oz, zm) = e (8% dz; oz, axz> (2.17)
Since moreover
322 o 8y2 8y3 823 - 8y3
8@- o 4(9!1/'2 + 22{3 5$i’ a$Z - 8951
and
degys = deg(wy +23) =2, degys = deg(zz + 2z 179 + 23) = 3,
it follows that
02 Oz 02 Dz _ (002 o Oys\Oys (104> o Oys)Ous
dz; 0x; Oz, O, ox; 0w, ) ox, oz; P ox; ) ow,
_4(9y2 0ys _ Oy2 Oys
8:51- ﬁxj 8xj 8%1
and so Ozy O Ozg O Oy O Oys O
Zo 0z3 Z2 0z3 Y2 OY3 Y2 0Y3
d = = =) =d LN A A R 2.1
8 <8m, Oxz; Oxj 8x1> eg(@xi Ox; Ox; axi) =3 (2.18)
Finally, by [£.15) @.19),
deg [Fy, F5] > 11. (2.19)

Now, using (2.19) and ([2.14) we find that
degg(Fy, F1) > q-14 4 9r. (2.20)
Thus, by (2.20) and (2.13), we have ¢ = r = 0. This means that g(X,Y) = ¢g(X) and
deg g(Fy, F1) = deg g(F>) € 6N, contrary to 8 ¢ 6N.
For more information about polynomial automorphisms which admit reductions of
type I see [25].
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DEFINITION 2.12. Let © = (f1, fa, f3) be an automorphism of A = C[X,Y, Z] such that
(for some n € N*) deg f1 = 2n, deg fo = 3n, 3n < deg f3 < 2n and f,, f3 are linearly
independent. Suppose that there exist «, 5 € C with (a, 8) # (0, 0) such that the elements
g1 = f1 — afs, go = fo — Bf3 satisfy the following conditions:

(i) g1, 92 is a 2-reduced pair and deg g1 = deg f1, deg g = deg fo;

(ii) the automorphism (g1, g2, f3) admits an elementary reduction (g1,¢2,¢93) with
deg [g1, 93] < deg gz + deg g1, g2].

Then we will say that © admits a reduction (g1, g2,g3) of type II. We will also say that

a polynomial automorphism F' = (Fy, Fy, F5) admits a reduction of type II if for some

permutation o of {1,2, 3}, the automorphism © = (Fo1y, Fo(2), Fo(3)) admits a reduction

of type II.

DEFINITION 2.13. Let © = (f1, f2, f3) be an automorphism of A = C[X,Y, Z] such that
(for some n € N*) deg f1 = 2n, and either

deg fo =3n, n <degfs <3n/2,

or
5n/2 < deg fo < 3n, degf;3=23n/2.

Suppose that there exist «, 8,7 € C such that the elements g1 = f1 — 8f3, g2 = fo —
vfs — af? satisfy the following conditions:

(i) ¢1,92 is a 2-reduced pair and deg g; = 2n, deg g = 3n;

(ii) there exists g3 of the form g3 = ofs + g, where 0 € C*, g € C|g1, g2|, such that
deg gs < 3n, deg g1, 93] < 3n + deg g1, g2].

If (o, 8,7) # (0,0,0) and deggs < n + deg|g1, g2], then we will say that © admits a

reduction (g1, ge,g3) of type III. On the other hand, if there exists p € C* such that

deg(g2 — pg2) < 2n, then we will say that © admits a reduction (g1, 92 — pga,gs) of

type IV.

We will also say that a polynomial automorphism F' = (Fy, Fs, F3) admits a reduction
of type III (resp. IV) if for some permutation o of {1,2,3}, the automorphism © =
(Fo1), Fr(2), Fo(3)) admits a reduction of type III (resp. IV).

Now, we can present the above mentioned theorem.

THEOREM 2.14 ([49, Thm. 3|). Let F = (Fy, Fy, F3) be a tame automorphism of C3. If
deg F + deg Fy + deg F5 > 3 (in other words, if F is not an affine automorphism), then
F admits either an elementary reduction or a reduction of one of types I-IV.

2.4. Some number theory. We will use the following result from number theory,
connected with the so-called coin problem or Frobenius problem.

THEOREM 2.15 (see e.g. [I0]). If di,da are positive integers such that ged(dy,d2) = 1,
then for every integer k > (dy — 1)(da — 1) there are ki, ko € N such that

k = kidy + kaods.
Moreover (dy — 1)(d2 — 1) — 1 ¢ d1N + dyN.
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The proof of the above theorem can be found in the number theory literature, but for
the convenience of the reader we give it here. In the proof we will write M (d;, dz) for the
minimal s € N such that {s,s+1,...} C d;N+ d3N. Let us mention that the so-called
Frobenius number (the maximal s € N such that s ¢ d;N+d3N) is equal to M (dy,d2) —1.

Proof. Without loss of generality we can assume that 1 < dy < ds. Indeed, if d; = 1,

then diN+dy;N =N and (dy — 1)(da — 1) = 0. Thus for any r = 1,...,d; — 1 there are
integers ki, ko, € Z such that

kl,rdl + kgﬂndg =T.

Since dy,dg, 7 > 0 and r < dy < dg, we have ky k2, < 0. Moreover, since (k1 — d2)d1 +
(ka,r+d1)dy = ki ,,d1+ko,da = 7, we can assume that ko, > 0. Notice that we can assume
even more, namely that ks, > 0 and k; , > 1 —ds. Indeed, let k; ,, k2 € Z be such that
k1 pdi+ ko rde =7, ko, > 0 and there are no k’Lr, k’Q,T € Z such that kji,,ﬂdl + ké,rd? =r,
kJQ,r > 0 and ké,r < k‘27,,«. Then, since (kl,r +d2)d1 + (k‘gnn —dl)dg = kl,rdl —|—]€27Td2 =7, we
have kg, —di <0 (since r < dy < do we actually have kg, —d; < 0). Thus k1, +dz > 0,
and so k1, > 1 —das.

It is easy to see that to show that any natural number k& > (d; — 1)(ds — 1) is in
d1N 4 dsN, we only need to show that

(dl — 1)(d2 — 1), (dl — 1)(d2 — 1) +1,..., (dl - 1)(d2 - 1) +dy —1 € diN+ dyN.
First,
(dl — 1)(d2 — 1) = (dg — 1)d1 —dy+1= (dg — 1)d1 —dy + k‘171d1 + ]{12,1d2
= (do — 14 ki1)di + (k21 — 1)d2 € diN+ doN,

because k11 > 1 —dy and kp; > 0. Similarly, we show that (di — 1)(d2 — 1) +1 =
(do—1)dy —da+2,...,(d1 —1)(do—1)+d; —2 = (da — 1)dy —do + (d1 — 1) € d1N+d,N.
To see that (d; —1)(da — 1) +d; — 1 € diN + d3N we write

(dl—1)(d2—1)—|—d1—1:d1d2—d1—d2+1+d1—1:(d1—1)d2.

Thus we have shown that M (dy,d2) < (d1 — 1)(dg — 1).

To prove that M (dy,ds) = (d1—1)(d2—1) it is enough to show that (d;—1)(de—1)—1 ¢
d1N+ d,N. Since (de —1)dy —dy = (d1 — 1)(d2 — 1) — 1 and lem(dy, d2) = dids, it follows
that

(k1 k2) € 72 - kudy + kado = (dy — 1)(do — 1) — 1} = {(do — 1 — Ida,ldy — 1) : | € Z}.
But {(d2 — 1 —ldg,ld; — 1) : | € Z} N"N? = (). This ends the proof. =

3. Some useful results

3.1. Some simple remarks. In this section we make some simple but useful remarks
about existence of automorphisms and tame automorphisms with given multidegree.

ProrosiTION 3.1 ([I8, Prop. 2.1]). If for 1 < dy < --- < d, there is a sequence of
integers 1 < 47 < -+ < iy, < n such that there exists an automorphism G of C™ with
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mdeg G = (d;,,...,d;, ), then there exists an automorphism F of C" with mdeg F =
(dy,...,dy). Moreover, if G is tame, then F can also be found tame.

Proof. Without loss of generality we can assume that m < n. Let 1 < j; < -+ <
Jn—m < m be such that {i1,...,9m} U {j1,. -, Jn-m} = {1,...,n}. Then, of course,
{i1,- - yim} N {J1,- -+, Jn—m} = 0. Consider the mapping h = (hy,...,h,) : C* — C"
given by
Tk for k € {i1,...,im},
hk($1,...,xn)= d { . }
g+ (z,)* for k€ {j1,.. ., jn-m}
Of course h is an automorphism of C" and deghy = di, for k € {j1,...,jn-m}-

Consider also the mapping g = (g1,...,gn) : C* — C™ given by
Gl(ui“...,uim) fOI‘]CZZ'l7
U, for k € {41, Jn-m}-

gr (U1, .oy uy) = {

Then g is an automorphism of C" and deg g, = di, for k € {i1,...,im}.

Now F = goh is an automorphism of C" (tame when G is tame) with mdeg F' =
(dl,... ;dn) u
ProOPOSITION 3.2 ([I8, Prop. 2.2]). If for a sequence of integers 1 < dy < --- <d,, there
isie€{l,...,n} such that

i—1
di =Y kjd; with k; €N,
j=1

then there exists a tame automorphism F of C™ with mdegF = (dy,...,d,).
Proof. Define h = (hy,...,h,):C* = C" and g = (¢1,...,9n) : C* — C™ by

Tk for k =1,
hi(z1, ..., xy) = d _
xp +axi* for k #4,
and
k1 ki_1 .
up +uqtoou, s, for k=4,

ULy eonyUp) =
gi(u ") {uk for k # 1.

It is easy to see that F' = g o h is a tame automorphism with mdegF' = (d;,...,d,). n
The above proposition implies the following result.

CoOROLLARY 3.3 ([I8, Cor. 2.3]). If1 < d; < --- < d, is a sequence of integers with
di < n—1, then there exists a tame automorphism F of C™ with mdeg F' = (d1,...,d,).

Proof. Let r; €{0,1,...,dy — 1}, for i = 2,...,n, be such that d; = r; (mod dy). If there
isan i € {2,...,n} such that r; = 0, then d; = kd; for some k € N* and by Proposition
[3:2 there exists a tame automorphism F' of C™ with the desired properties.

Thus assume that r; # 0 for all § = 2,...,n. Since d; — 1 < n — 1, there are i,j €
{2,...,n}, i # j, such that v, = r;. Without loss of generality we can assume that
i < j. Then d; = d; + kd, for some k € N, and by Proposition @ there exists a tame
automorphism F' of C™ with the desired properties. m
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The above corollary can be improved as follows.

THEOREM 3.4. If 1 <d; <---<d, is a sequence of integers with
dy <

ng(dla cee ;dn) N

then there exists a tame automorphism F of C" with mdegF = (dy,...,d,).

n—1,

Proof. Let d = ged(dy,...,d,). Then the numbers r,...,7, defined as in the proof of
Corollary satisfy r; € {0,d,2d,...,dy — d} for i = 2,...,n. Since the number of
elements of the set {0,d,2d,...,d, — d} is equal to
dy
L N |
ged(di, ... dy) — '

we can use the same arguments as in the proof of Corollary [3.3] =
Combining Theorem and Proposition [3.1] we obtain the following result.

COROLLARY 3.5. If for1 <d; < --- <d, there is a sequence of integers 1 < iy < --- <
im < n such that
dil
ged(diy, ..., d;,)
then there exists a tame automorphism F of C"™ with mdegF = (dy,...,d,).

Sm_17

3.2. Reducibility of type I and II. Now we will show that in our considerations we
do not need to pay attention to reducibility of type I and II.

LEMMA 3.6. Let (dy,da,ds) # (1,1,1), dy < ds < ds, be a sequence of positive integers. If
there is an automorphism (resp. a tame automorphism) F : C3 — C3 such that F admits
a reduction of type I or II and mdeg F = (d1, ds, d3), then there is also an automorphism
(resp. a tame automorphism) F :C3 — C3 such that F admits an elementary reduction
and mdegﬁ = (dy,d2,ds). Moreover, if F(0,0,0) = (0,0,0), then F can also be found
such that F(0,0,0) = (0,0,0).

Proof. Assume that F = (Fy, Fy, F3) admits a reduction of type I. By Definition m

there is a permutation o of {1,2,3} and o € C* such that the elements g; = Fyy,
g2 = Fy(2) — aFy (3 satisfy the following conditions:

(i) 91,92 is a 2-reduced pair and deg g1 = deg I, (1), deg g2 = deg F,(2);
(ii) the automorphism (g1, g2, Fir(3)) admits an elementary reduction of the form (g1, go,
93)-
For simplicity of notation (and without loss of generality) we assume that o = id(; 2 3}
Thus we can take F = (91,92, F3).
If F admits a reduction of type II we can use a similar construction to obtain an

automorphism F.
Since F' = G o I, where
x T
G:Cs{yp—=<y—azypecC® (for typel)
z z
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or
T T —az
G:C33{ys—=<y—pBzpcC?® (fortype Il
z z

F is tame if and only if F is tame. It is also clear that F(0,0,0) = (0,0,0) when
F(0,0,0) = (0,0,0). =

The above lemma also implies the following

PROPOSITION 3.7. Let (dy,ds,ds) # (1,1,1), di < da < ds, be a sequence of positive
integers. If there is a tame automorphism F : C3 — C® with mdeg F = (di, ds,d3), then
there is also a tame automorphism F : C3 — C? such that mdeg F = (dy,ds,d3) and F
admits either an elementary reduction or a reduction of type III or IV. Moreover we can
require that F(0,0,0) = (0,0,0).
Proof. Let F = (I}, Fy, F3) : C®> — C? be any tame automorphism with mdeg F' =
(dy,d>,ds) and let T': C® — C? be the translation given by

T: (C3 > (.’E,y,Z) = (.CL'— F1(0>7y _F2(0)7z_ FS(O)) € (CS'
Then obviously 7T o F is a tame automorphism of C? such that mdeg(T o F') = mdeg F =
(dq,ds,ds) and (T o F)(0,0,0) = (0,0,0). If T o F' admits either an elementary reduction
or a reduction of type III or IV, then we take F' = T o F. And if T o F' admits a reduction
of type I or II, then we can use Lemma 3.6 =

In particular Proposition says that reductions of type I and II are irrelevant for
our considerations. To be precise we formulate the following

THEOREM 3.8. Let (dy,ds,ds) # (1,1,1), di < ds < d3, be a sequence of positive integers.
To prove that there is no tame automorphism of C3 with multidegree (dy,ds,ds) it is
enough to show that a (hypothetical) automorphism F of C* with mdeg F = (dy, da, d3)
admits neither an elementary reduction nor a reduction of type III or IV. Moreover, we
can restrict our attention to automorphisms F with F(0,0,0) = (0,0,0).

To end this section, let us look again at Example If F is the automorphism from
that example, then mdeg F' = (9,6,8) or (6,8,9) after permutation of coordinates. This
automorphism does not admit an elementary reduction and admits a reduction of type I.
One can easily see that (in the notation of Example

TooTy=T; ' o L7 o F
is a reduction of type I of F. Moreover for F =L"10F we have
mdeg F= mdeg F'
and T3_1 o F is an elementary reduction of F.
3.3. Reducibility of type III. First of all notice that if 1 < d; < dy < d3 are such

that mdeg F' = (d1, d2, d3) for some automorphism F' that admits a reduction of type III,
then by Definition there is n € N* such that

dg(l) =2n
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and either
da(2) =3n, n< da(3) < 3TL/2,
or
5n/2 < do—(g) < 3n, dg(g) =3n/2
for some permutation o, of {1,2,3}. Since %n <2 < min{%n,?m}, we must actually

have
d2 =2n

and either
ds =3n, n<dy <3n/2,

or
5n/2 <ds <3n, d; =3n/2.

Thus we have the following remark.

REMARK 3.9. If an automorphism F of C? with mdeg F' = (dy, d2,d3), 1 < d; < ds < d3,
admits a reduction of type III, then

(1) 2|ds,
(2) 3|d1 or d3/d2 = 3/2

Because of the remark above it is natural to consider the situation of the following
lemma.

LEMMA 3.10. Let (di,ds,d3) # (1,1,1), di < ds < ds, be a sequence of positive integers
such that ds/da = 3/2. If there is an automorphism (resp. a tame automorphism) F :
C3 — C3? such that F admits a reduction of type III and mdeg F = (d, d2,d3), then there
is also an automorphism (resp. a tame automorphism,) F:C3 — C3 such that F admits
an elementary reduction and mdegf = (d1,ds,ds). Moreover, if F(0,0,0) = (0,0,0),
then F can also be found such that F(0,0,0) = (0,0,0).

In the proof of this lemma we will use the following result.

LeEMmMA 3.11 (J50, Cor. 4]). If an automorphism (g1, gz, g3) is a reduction of type III of
an automorphism (f1, fo, f3), then

deg g1 + deg g2 + deg g3 < deg f1 + deg f2 + deg f3.

Proof of Lemma . Assume that F' = (Fy, Fy, F3) admits a reduction of type III.
By the above considerations, the conditions of Definition [2.13| must be satisfied for the
automorphism 6 = (f1, fa, f3) = (Fs, F3, F1). Also by Definition there are n € N* and

O[,B,’)/ € (Ca (Oé, Bﬂ7> 7é (0’ 07 0)7 such that the elements g1 = fl _Bf?n g2 = f2 _’Yf?) _af??
satisfy the following conditions:

(i) g1,92 is a 2-reduced pair and deg g; = 2n,deg go = 3n;
(i) there exists g3 of the form g3 = of3 + g, where 0 € C*, g € Clg1, g2], such that
deg g3 < 2n,deg g1, 93] < 3n + deg[g1, g2);
(iii) deggs < mn + deglg1,g2]-
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Let us notice that apart from g3 = o f3 + g, we can also take g3 = f3 + %g =fs+yg,
with g = 2g € Clg1, ga].

Since in our situation, i.e. d3/dy = 3/2, we have dy = 2n, d3 = 3n and hence deg Fy =
deg f1 = 2n = degg; and degF3 = deg fo = 3n = deggs, the lemma above yields
deggs < degfs = degFy = dj. This means that the automorphism (g1, g2, f3), and
hence F = (F1,91,92), admits an elementary reduction. Of course mdeg(Fy, g1,92) =
mdeg(Fl, FQ, Fg)

Since F = T5 0Ty o F', where the mappings

x T
T, :C33¢yp— y — Bx eC?
z 2z —yr — ax?
and
x z+9(y,2)
T,:C*>yp— y cC?
z z

are triangular automorphisms, F is tame if and only if F' is tame.
Since deg Fi > 0, also degg > 0, and hence g=g—a for all @ € C. Thus we can
assume that g(0,0) = 0. Then F'(0,0,0) = (0,0,0) when F(0,0,0) = (0,0,0). m

By Lemma [3.10] we also have the following result.

PROPOSITION 3.12. Let (dy,ds,ds) # (1,1,1), di < ds < d3, be a sequence of positive
integers such that d3/dy = 3/2. If there is a tame automorphism F : C3 — C? such that
mdeg F' = (dy, dz,d3), then there is also a tame automorphism F:C3 - C3 such that F
admits either a reduction of type IV or an elementary reduction and mdeg F= (dy,da,ds).
Moreover we can require that ﬁ(0,0,0) =(0,0,0).

Proof. As in the proof of Proposition we consider the automorphism 7" o F. Then we
have three cases: (I) T o F' admits a reduction of type IV or an elementary reduction;
(IT) T o F admits reduction of type III; (IIT) T o F' admits a reduction of type I or II. In
the first case we put F=ToF , in the second case we use Lemma and in the third
case we use Lemma [3.6l =

The above proposition means that whenever ds/ds = 3/2, reductions of type I, IT and
IIT are irrelevant for our considerations. More precisely, we have the following

THEOREM 3.13. Let (dy,da,ds) # (1,1,1), di < do < ds, be a sequence of positive
integers such that ds/de = 3/2 or 31 dy. To prove that there is no tame automorphism of
C3 with multidegree (dy, dz, d3) it is enough to show that a (hypothetical) automorphism F
of C? with mdeg F' = (dy, da,d3) admits neither a reduction of type IV nor an elementary
reduction. Moreover, we can restrict our attention to automorphisms F : C> — C3 such
that F(0,0,0) = (0,0,0).

Proof. Take any F € Tame(C?) with mdeg F = (d1,da,ds). By Theorem we can
assume that F admits either an elementary reduction or a reduction of type III or IV.

If F admits a reduction of type III, then by Remark and by the assumptions we
have ds/ds = 3/2. Thus we can use Proposition "
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3.4. Reducibility of type IV and Kuroda’s result. In the previous sections we have
proved that from our point of view reductions of type I and II are irrelevant. The same
is true for reductions of type III under an additional assumption (see Theorem .

The following result due to Kuroda says that reduction of type IV is also irrelevant
for our aim.

THEOREM 3.14 (|26, Thm. 7.1|). No tame automorphism of C* admits a reduction of
type IV.

Thus we have the following

THEOREM 3.15. Let (dy,ds,ds) # (1,1,1), di < da < d3, be a sequence of positive inte-
gers. To prove that there is no tame automorphism F of C* with mdeg F = (dy, do, d3) it
is enough to show that a (hypothetical) automorphism F of C3 with mdeg F = (dy, do, d3)
admits neither a reduction of type III nor an elementary reduction. Moreover, if we ad-
ditionally assume that ds/de = 3/2 or 31 dy, then it is enough to show that no (hypothet-
ical) automorphism of C3 with multidegree (dy,ds,ds) admits an elementary reduction.

In both cases we can restrict our attention to automorphisms F : C3 — C? such that
F(0,0,0) = (0,0,0).

Proof. The proof is similar to the proof of Theorem [3.13] =

3.5. Reducibility and linear change of coordinates. Now we make some remarks
that will be useful in considerations of some special cases. The main result of this section
says that we can restrict our attention to automorphisms whose linear part is the identity
map.

LEMMA 3.16. If an automorphism (Fy, Fy, F3) admits an elementary reduction, then so
does (Fy, Fy, F3) o L for every L € GL3(C).

Proof. Without loss of generality we can assume that (Fy, F, F5) admits an elementary
reduction of the form (Fy} — G(Fy, F3), Fa, F3). It is easy to see that (Fy o L — G(Fy o
L,F30L),Fo0L,F50L) = (F — G(Fy, F3), Fy, F5) o L is an elementary reduction of
(Fl,FQ,Fg) oL = (F1 OL7F2 OL,F3 OL). n

We also have the following obvious lemma.
LEMMA 3.17. For every mapping F : C* — C™ and every L € GL,,(C) we have
mdeg(F o L) = mdeg F.
Combining the above two lemmas we obtain the following result.

THEOREM 3.18. For every sequence of positive integers (dy,...,d,) # (1,...,1), if there
is a tame automorphism F : C" — C" such that F' admits an elementary reduction,
F(0,...,0) = (0,...,0) and mdeg F' = (dy,...,d,), then there is also a tame automor-
phism F :C" — C" such that F admits an elementary reduction, mdegﬁ =(di,...,dp),
ﬁ(O, ...,0)=1(0,...,0) and the linear part of F, is equal to idcn.

Proof. Let L be the linear part of F. Since F' € Aut(C"), we have L € GL,(C). The
linear part of F o L~! is equal to idce. We also have (F o L=1)(0,...,0) = F(0,...,0) =
(0,...,0). m



26 M. Karas

3.6. Relationship between the degree of the Poisson bracket and the number
of variables. The main result of this section is Lemma [B.20] below. We start with the
following

LEMMA 3.19. Let f,g € C[Xy,..., X,] be such that
f=Xi+fot-+fi, g=Xot+gat-+gm,

where f;, g; are homogeneous forms of degree i. If deg[f, g] = 2 and f does not involve X;,
where 1 > 2, then g does not involve X; either.

Proof. The assumption deg[f, g] = 2 implies that for all 1 < k < < n we have
deg JacX*X1(f, ) < 0.
In particular,
deg Jac™ ¥ (f,g) <0,
but
af 0g af 09  Of 0g

X1X; . S A—
Jac (fvg) - 8X1 aXZ 8X1 3X1 8X1 aXl

Thus deg % < 0. In other words if ¢ involves X; then X; occurs in the linear part of g.
But this contradicts the assumptions. m

Now we are in a position to prove the following lemma that is one of the main ingre-
dients in proving, for instance, that (5,6,9) ¢ mdeg(Tame(C?)).

LEMMA 3.20. Let f,g € C[Xy,...,X,] be such that
f=Xi+fat-+fi, g=Xot+ga+-+gm,
where f;,g; are homogeneous forms of degree i. If deg [f, g] = 2, then f,g € C[X1, X3].

Proof. Without loss of generality we can assume that [ < m. Let ¢ > 2 be arbitrary. Let
us notice that

[JacX X (£, )1 = Jac™ X (X1, go) + Jac™ X (fa, Xo) = ggs_
and ,
Jac™2 X (f,g)l1 = Jac™*¥i (X1, go) + Jac™* X (fo, Xp) = _07_{(2-’

where [Jac™*X!(f, g)]4 is the homogeneous part of degree d of Jac***!(f, ). But the as-
sumption deg [f, g] = 2 means in particular that [Jac*'~(f, g)]1 = 0 and [Jac*2%(f, ¢)]s

= (0. Thus we obtain
092 0f2

ax, ~ % ax, =%
and so fs, g2 do not involve Xj. It follows that
[Jac™ 4 (f, g))2 = Jac™ ¥ (X1, gs) + Jac™ ¥ (fo, go) + Jac™ ¥ (f3, Xo)

d93
0X;

= JachX" (Xl, gg) =
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and
[Jac™>¥ (f,g)]2 = Jac™>™ (X1, gs) + Jac™"(f2, g2) + Jac™ ™ (f3, X2)
. dfs
— X2X; X = —
Jac (fg, 2) 6XZ .

Since deg [f, g] = 2 implies [Jac®* ™ (f, g)]2 = 0 and [Jac®**(f, g)]2 = 0, we see that

993 _ 0 Ofs _ 0

0X; T 00X, ’
and so fs, g3 do not involve Xj.

Proceeding inductively, when we know that fo,..., fi—1,92,...,9,—1 do not involve X,
we obtain
[Ja’CXIXi (fa g)}n,1 = JaCX1Xi (Xl,gn) et JaCX1Xi (fnv XQ)
. Ogn

and

[Fac™ X (f, g)ln—1 = Jac™ ¥ (X1, gp) + - + Jac™> % (£, Xo)
Ofa
0X;’
By the assumption deg|[f, g] = 2, as before we find that f,, and g, do not involve X;.

Therefore f does not involve X;. To deduce that g does not involve X; either, we can use
Lemma [3.19] =

= JacX2Xi (fn,X2) =

By similar arguments one can prove the following
THEOREM 3.21. Let f,g € C[X1,...,X,] be such that
f=Xi+fot+fi, 9=Xo+tg2+-+gm,

where f;, g; are homogeneous forms of degree i. If deg[f,g] = d < min{l,m}, d > 2, and
firgi, fori=1,...,d =1, do not involve X,., where r > 2, then f and g do not involve
X,

The results of Lemma and Theorem [3.21| can be generalized as follows.
THEOREM 3.22. Let f,g € C[X1,...,X,] be such that

f=fit+fot+--+fi, 9g=g1+g2+" " Gm,

where f;, g; are homogeneous forms of degreei. If f1, g1 are linearly independent, deg[f, g]
=d <min{l,m}, d > 2, and f;, g;, fori=1,...,d — 1, do not involve X,., where r > 2,
then f and g do not involve X,..

Proof. Letls,...,l,—1 € C[Xy,...,X,—1,X,11,...,X,] be linear forms such that fi, g1,
l3,...,lp—1 are linearly independent. Then fi,91,l3,...,l,—1, X, are also linearly inde-
pendent. Let L = (f1,91,03,..,ln_1,X,) : C* — C". Of course L,L~! € GL,(C),
and by Lemma deg[f o L7, go L™ = deg|f,g] = d. One can also check that
(foL™Y)y = Xi,(go L7Y); = Xy and that (fo L™1);,(go L71);, fori=1,...,d -1, do
not involve X,.. Thus by Theorem foL ' goL=! do not involve X, either. And
one can easily check that the same is true for f = (foL ) oL and g= (9oL !)oL. m
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4. The case (p1,pe,d;) and its generalization

4.1. The case (p1,p2,ds). Here we investigate the set
{(p1,p2,ds) : 3 < p1 < pa <ds, p1,pz prime numbers } N mdeg(Tame(C?)).
The complete description of this set is given in the following theorem.
THEOREM 4.1 ([I9, Thm. 1.1]). Let d3 > p2 > p1 > 3 be integers. If py and ps are
primes, then (p1,pa,ds) € mdeg(Tame(C?)) if and only if d3 € p1N + poN.

Proof. If d3 € p1N+psN, then by Proposition [3.2] there exists a tame automorphism F €
Tame(C3) such that mdeg F' = (p1, p2, d3). Conversely, let d3 ¢ p1N+poN and assume, to
the contrary, that there are tame automorphisms F of C3 such that mdeg F' = (p1, p2, d3).
By Theorem [3.15 we only need to show that such automorphisms do not admit an elemen-
tary reduction or a reduction of type III. Since ps > 3 is a prime, 2 { ps. Hence by Remark
no automorphism F of C?* with mdeg F' = (p1, p2, d3) admits a reduction of type III.

Assume, to the contrary, that there is an automorphism F = (Fy, Fy, F3) of C? with
mdeg F' = (p1, p2, d3) that admits an elementary reduction. Notice that, by Theoremm

ds < (p1 —1)(p2 — 1). (4.1)
Assume that

(F1, Io, Fs — g(Fh, F2)),
where g € C[X,Y], is an elementary reduction of (Fy, Fz, F3). Then we have deg g(F1, F»)
= deg F3 = d3. But, by Proposition

deg g(Fi1, F2) > q(p1p2 — p1 — p2 + deg [F1, Fo]) + 7pa,
where degy g(X,Y) = gp1+r with 0 < r < p;. Since Fi, F» are algebraically independent,
deg [Fy, F5] > 2 and so
p1p2 — p1 — p2 +deg [, Fo] > pip2 —p1 —p2 +2 > (p1 — 1)(p2 — 1).

This and imply that ¢ = 0, and that

p1—1

g(X,Y) =" gi(X)Y".
=0

Since lem(p1, p2) = p1p2, the sets
PN, p2 + 1N, (p1 = 1)p2 + ;1N

are pairwise disjoint. This yields

p1—1
deg ( Z gz(Fl)Fg) = max (degFidegg; +ideglFy),
im0 1=0,...,p1—1
and so
p1—1
ds = deg g(F1, Fo) € | (rps + p1N) € piN + poNN,
r=0

a contradiction.
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Now, assume that
(F1, F> — g(F1, F3), F3)

is an elementary reduction of F' = (Fy, Fy, F3). Since d3 ¢ p1N + poN, we have p; 1 ds
and ged(p1,ds) = 1. This means, by Proposition that

deg g(F1, F3) > q(p1ds — d3 — p1 + deg [F1, F3]) + rds,

where degy g(X,Y) = gp1 +7 with 0 < r < p;. Since p1ds —ds —p1 +deg [F1, F3] > p1ds—
2d3 > d3 > po and since we want to have deg g(Fy, F3) = ps, we conclude that ¢ =r = 0.
This means that g(X,Y) = g(X), and so ps = deg g(F1) € p1N, a contradiction.

Finally, if we assume that (Fy — g(Fs, F3), Fa, F3) is an elementary reduction of
(Fy, Fy, F3), then we obtain a contradiction in the same way as in the previous case. m

COROLLARY 4.2. We have

{(p1,p2.ds) : 3 < p1 < pa < ds, p1,p2 primes } N mdeg(Tame(C?))
= {(p1,p2,d3) : 3 < p1 < pa2 < ds, p1,p2 primes, dg € piN + poN}.

4.2. Some consequences

THEOREM 4.3 ([19, Thm. 3.1]). Let p2 > 3 be a prime and ds > pa be an integer. Then
(3,p2,d3) € mdeg(Tame(C3)) if and only if d3 & {2p2 — 3k 1k =1,...,[p2/3]}.

Proof. Since ps > 3 is a prime, ps = r (mod 3) for some r € {1,2}. It is easy to see that
if d3 > po and d3 = 0 (mod 3) or d3 = r (mod 3), then d3 € 3N+ psN. Thus, by Theorem

2.15,

2(p2 —1) = 1#0,r (mod 3).

Take any ds such that py < ds < 2ps — 3 and ds # 0,7 (mod 3). Since ds < 2ps — 3
and d3 = 2ps — 3 (mod 3), we see that ds ¢ 3N + p3N, because otherwise we would have
2ps — 3 € 3N + poN, contrary to Theorem Thus

{ds €N | d3 > p2,d3 ¢ 3N+ poN}t = {d3 € N | po < d3 <2ps — 3,d3=2p> — 3 (mod 3)}
={2py— 3k | k=1,...,[p2/3]|} =
THEOREM 4.4 ([19, Thm. 3.2]).
(a) Ifds > 17, then (5,7,d3) € mdeg(Tame(C?)) if and only if
ds #8,9,11,13,16, 18, 23.

(b) If ds > 11, then (5,11,d3) € mdeg(Tame(C?)) if and only if

dy #12,13,14,17, 18, 19, 23, 24, 28, 29, 34, 39.
(¢) Ifds > 13, then (5,13,d3) € mdeg(Tame(C?)) if and only if

dy # 14,16,17,19,21, 22, 24, 27,29, 32, 34, 37, 42, 47.
(d) Ifds > 11, then (7,11,d3) € mdeg(Tame(C?)) if and only if
ds # 12,13, 15,16, 17, 19, 20, 23, 24, 26, 27, 30, 31, 34, 37, 38, 41, 45, 48, 52, 59.
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Proof. This is a consequence of Theorems and For example to prove (a), by
Theorems and we only have to check which numbers among 7.8,...,23 =
(5—1)(7—1) — 1 are elements of the set 5N + 7N. u

4.3. Generalization. Here we generalize Theorem

THEOREM 4.5 ([22, Thm. 2.1]). Let d3 > da > dy > 3 be integers. If di and ds are odd
and ged(dy,ds) = 1, then (dy,ds, d3) € mdeg(Tame(C?)) if and only if d3 € diN + daN.

Proof. The proof is a modification of the proof of Theorem As before, if d3 € diN +
dsN, then by Proposition there is a tame automorphism F of C3 such that mdeg F' =
(dl, dg, dg)

Moreover, as in the proof of Theorem [£.1] we only need to show that no automorphism
F of C? with mdeg F = (di, da, d3) admits an elementary reduction when dz ¢ d;N+d,N.
As before, suppose otherwise.

If we assume that (Fy, Fa, F3 — g(F1, F2)), where g € C[X,Y], is an elementary re-
duction of (Fy, Fy, F3), then we can proceed exactly in the same way as in the proof of
Theorem F11

Assume that (Fy, F» — g(Fy, F3), F3) is an elementary reduction of (Fy, Fy, F3). Since
ds ¢ d1N + d3N, we have d; Td3, SO
- ng(dl, dg)
Since d1, is odd, we also have p # 2. Thus by Proposition [2.7]

degg(Fl, Fg) > q(pd3 —d3 — dj + deg [Fl, Fg]) + rds,

where degy g(X,Y) = gp + r with 0 < r < p. Since p > 3, we see that pds — ds — dy +
deg[Fy, F5] > 2d3 — dy + 2 > d3. Since we want to have deg g(Fi, F3) = da, it follows
that ¢ = r = 0, and hence ¢(X,Y) = g(X). This means that do = degg(F1) € d1N,
contradicting ged(d;,ds) =1 and 1 < d;.

Finally, if we assume that (Fy; — g(Fs, F3), Fs, F3) is an elementary reduction of
(Fy, Fy, F3), then we obtain a contradiction as in the previous case. m

P > 1.

COROLLARY 4.6. We have

{(dy,do,d3) : dy < dy < d3, dy1,da odd and ged(dy,ds) = 1} N mdeg(Tame(C?))
= {(d1,d2,d3) : di < dy < ds3, dy,dy odd and ged(di,dy) = 1, d3 € diN + doN}.
4.4. The set mdeg(Aut(C?)) \ mdeg(Tame(C?)). In this subsection we say a few words
about relations between mdeg(Tame(C?)) and mdeg(Aut(C?)). Obviously,
mdeg(Tame(C?)) C mdeg(Aut(C?))

and, more generally,
mdeg(Tame(C")) C mdeg(Aut(C™)).
The question is whether the inclusion is strict. In dimension two the answer is negative

due to Jung [9] and van der Kulk [23]. Namely we have
mdeg(Tame(C?)) = mdeg(Aut(C?)) = {(d1,dy) : dy | dy or da|dy}.
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Let us notice that the result of Shestakov and Umirbaev [50] about wildness of Nagata’s
example does not imply a positive answer in dimension three. The problem is that Na-
gata’s example is of multidegree (5,3,1) € mdeg(Tame(C?)). In spite of that, the answer
is positive. Actually we will show that mdeg(Aut(C?)) \ mdeg(Tame(C?)) has infinitely
many elements.

Let
N:C? 3 (z,y,2) = (x 4+ 2y(y* + 22) — 2(y* + 22)?, y — 2(y* + 22),2) € C3
be Nagata’s example and let
T:C33 (x,y,2) — (2,y,2) € C>.
We start with the following lemma.

LEMMA 4.7 (|22, Lem. 3.1]). For alln €N we have mdeg((ToN)")=(4n—3,4n—1,4n+1).

Proof. We have T o N(z,y,z2) = (z,y — 2(y? + zz),2 + 2y(y? + z2) — 2(y% + 2z2)?), so
the assertion is true for n = 1. Let (fpn, gn,hn) = (T o N)™ for fp,gn,hn € C[X,Y, Z].
One can see that g% + h1f; = Y2 + ZX, and by induction g2 + h,, f, = Y? + ZX for any
n € N*. Thus

(fn+1,gn+1a hn+1) = (T o N) © (fn,gna hn)

= (hnagn - hn(.gr% + hnfn)7 fn + 2971(9721 + hnfn) - hn(gi + hnfn)2)
= (hns 9o = ha(Y? + ZX), fo + 290 (Y? + ZX) = ha(Y? + ZX)?).

So if we assume that mdeg(f,, gn, hn) = (4n — 3,4n — 1,4n + 1), we obtain

mdeg(fnt1,gnt1, hng1) = (dn+1,(4n+1) +2,(4n+1) +2-2)
=M4n+1)-3,4n+1)—1,4n+1)+1). =

By the above lemma and Theorem we obtain the following
THEOREM 4.8 (|22, Thm. 3.2]). For every n € N the automorphism (T o N)™ is wild.

Proof. For n =1 this is the result of Shestakov and Umirbaev [49, [50]. So assume that
n > 2. The numbers 4n — 3,4n — 1 are odd and ged(4n — 3,4n — 1) = ged(4dn — 3,2) = 1.
Since 4n — 3 > 2, we see that 4n + 1 ¢ (4n — 3)N + (4n — 1)N. Hence, by Theorem
(4n —3,4n — 1,4n + 1) ¢ mdeg(Tame(C?)) for n > 1. This proves that (T o N)" is not a
tame automorphism. m

Let us notice that we have also proved that
{(4n —3,4n — 1,4n + 1) : n € N,n > 2} C mdeg(Aut(C?)) \ mdeg(Tame(C?)).
This gives the following result.

THEOREM 4.9 (|22, Thm. 1.1|). The set mdeg(Aut(C?)) \ mdeg(Tame(C?)) is infinite.
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5. The case (3, ds,d3)

In this section we give a complete description of the set
{(3,d2,d3) : 3 < dy < ds} N mdeg(Tame(C?)).
This description is given by the following

THEOREM 5.1 ([20, Thm. 1.1]). If 3 < dy < ds3, then (3,ds,d3) € mdeg(Tame(C?)) if
and only if 3| dy or ds € 3N + daN.

Proof. By Corollary if 3| ds or d3 € 3N + doN, there exists a tame automorphism
F : C? — C? such that mdeg F' = (3,dz,d3). Conversely, assume that 3 { dy and d3 ¢
3N + d3N.

Since 3 t da, we have ged(3,dz) = 1. Hence Theorem implies that for all & >
(3—1)(da — 1) = 2dy — 2 we have k € 3N + dyN. Thus, since ds ¢ 3N + daN, we have

ds < 2dy — 2. (51)

By Theorem it is enough to show that automorphisms F' of C? with mdeg F' =
(3,d3,ds3) do not admit an elementary reduction or a reduction of type III. Notice also
that, since d; = 3 and dy can be even, we cannot use Remark [3.9 to infer that automor-
phisms F' of C? with mdeg F' = (3,dz, d3) do not admit a reduction of type IIL

Assume that an automorphism F = (Fy, Fy, F3) : C* — C? with mdeg F = (3,dz, d3)
admits a reduction of type III. Then by Deﬁnitionthere is a permutation o of {1,2,3}
and n € N* such that deg F;(1) = 2n, and either

deg FO-(Q) =3n, n< deg Fa(3) < 3n/2, (52)

or

5n/2 < deg Fy2) < 3n, degF,3) = 3n/2. (5.3)
Since 3n < 2n < min{2n, 3n}, we have d; = 2n and either
ds=3n, n<3<3n/2,

or

5n/2 < ds <3n, 3=3n/2.

Thus n =2 and so 5 < d3 < 6, that is, d3 = 6. This contradicts d3 ¢ 3N + d;N.

Now, assume that (Fy, Fy, F5 — g(F1, F3)), where g € C[X,Y], is an elementary re-
duction of (Fy, Fy, F5). Then degg(Fy, F3) = degF5 = ds. Since ged(3,d2) = 1, by
Proposition 2.7 we have

degg(Fl,Fz) Z q(3d2 — d2 -3 —|—d€g [Fl,FQD + ng,

where degy g(X,Y) = 3¢+ r with 0 < r < 3. Since Fy, F are algebraically independent,
deg [F, F5] > 2 and so 3dy —dy —3+deg [Fi, F3] > 2da—1. Then implies ¢ = 0. Also
by we must have r < 2. Thus g(X,Y) = go(X) + g1 (X)Y. Since 3NN (dy + 3N) = 0),
we deduce that deg g(Fy, Fz) € 3NU (d2 + 3N) C 3N + d3N, contrary to assumption.
Now, assume that (Fy, F» — g(F1, F3), F3) is an elementary reduction of (Fy, Fy, F3).
Then deg g(Fi, F3) = da. Since d3 ¢ 3N + d3N, it follows that ged(3,ds) = 1. Then by
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Proposition 2.7] we have
degg(Fl, Fg) Z q(3d3 — d3 -3+ deg [Fl, Fg]) + 7”d3,

where degy ¢(X,Y) = 3¢+r with 0 < r < 3. Since 3d3—d3—3+deg [F1, F3] > 2d3—1 > da,
we infer that ¢ = 0. Since also d3 > dy (because d3 > dy and d3 ¢ 3N+ dyN), we see that
r =0. Thus ¢(X,Y) = g(X), and deg g(F1, F5) = deg g(F1) € 3N, a contradiction.

Finally, assume that (Fy —g(Fy, F3), Fy, F3) is an elementary reduction of (Fy, Fs, F3).
Then deg g(Fs, F3) = 3. Let
"~ ged(dy, ds)’
Since d3 ¢ 3N + d3N, we obtain ds t d3, and hence p > 1. By Proposition

deg g(Fy, F3) > q(pds — do — d3 + deg [F1, F3)) + rds,

where degy g(X,Y) = gp+r with 0 < r < p. Since d3 > 3, it follows that » = 0. Consider
the case p > 3. Then pds — do — d3 + deg [F1, F5] > d3 + deg [F1, F5] > 3. Thus we must
have ¢ = 0. Hence g(X,Y) = ¢g(X), and 3 = degg(Fs, F3) = degg(Fs) € doN. This
contradicts da # 3 (we have assumed that 3 ds).

Consider now the case p = 2. Since p = 2, we have, for some n € N, ds = 2n and
d3 = ns, where s > 3 is odd. Since also dy > 3, it follows that n > 2. This means that
ds — dy > 2, and 2d3 — d3 — dg + deg [F1, F3] = d3 — do + deg [Fy, F3] > 4 > 3. Thus, also
in this case we have ¢ = 0. As before this leads to a contradiction. m

p

COROLLARY 5.2. We have

{(3,d3,d3) : 3 < dy < d3} Nmdeg(Tame(C?))
= {(37d2,d3) 03 S d2 S dg7 3|d2 or d3 € 3N+ dzN}

6. The case (4,dy, d3)

In this section we give a partial description of the set
{(4,dq,d3) : 4 < dy < d3} N mdeg(Tame(C?)).

This description will be given separately for four cases: (I) dg,ds both even, (II) da,ds
both odd, (III) ds even and dz odd, (IV) d3 odd and d3 even.
6.1. The case (4,even,even). This is the easiest case, summarised as follows.
THEOREM 6.1. For all even numbers dz > da > 4, (4, da,d3) € mdeg(Tame(C?)).
Proof. Since all numbers 4,ds,ds are even, we have gcd(4,d2,ds) € {2,4}. Thus
4/gcd(4,d2,ds) < 2 and we can use Theorem "
6.2. The case (4,0dd,odd). In this subsection we give a complete description of the set

{(4,dg,d3) : 4 < dy < ds3, da,d3 € 2N + 1} N mdeg(Tame(C?)).
We will show the following
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THEOREM 6.2. Let d3 > da > 4 be odd numbers. Then (4,ds,ds) € mdeg(Tame(C?)) if
and only if ds € 4N + daN.

Proof. By Proposition [3.2] it is enough to show the “only if” part. Thus, assume that
ds ¢ 4N + dN. Since ds is odd, we have ged(4, d2) = 1, and so, by Theoremm
dy < (4—1)(ds — 1) = 3ds — 3. (6.1)
By Remark [3.9 and Theorem it is enough to show that no automorphism F =
(Fy, Fy, F3) of C? with mdeg F = (4, da, d3) admits an elementary reduction.
Assume, to the contrary, that (Fy, Fo, F5 — g(F1, F2)), where g € C[X,Y], is an ele-
mentary reduction of such an F. Then
degg(Fl,Fg) = d3. (62)
By Proposition [2.7
degg(Fl, Fz) > q(pdg —dy — 4+ deg [Fl, FQ]) + rdo, (63)

where degy g(X,Y) =pg+ 1,0 <r < pand p=4/ged(4,ds) = 4. Since pde — dy — 4 +
deg [Fy, F5] = 3dy — 4 + deg [Fy, F»] > 3d2 — 2, by (6.1)—(6.3) we have ¢ = 0 and r < 2.
This means that g(X,Y) is of the form

9(X,Y) = go(X) + 1(X)Y + g2(X)Y?.

Since the sets 4N, dy + 4N and 2ds + 4N are pairwise disjoint (because lem(4,ds) = 4ds),
it follows that
ds = degg(Fl,Fg) € 4N U (dz + 4N) U (2d2 + 4N)
This contradicts d3 ¢ 4N + daN.
Now, assume that (Fy, Fy — g(F, F3), F3) is an elementary reduction of F. Then
deg g(F1, F3) = da. (6.4)
But, by Proposition 2.7 we have
deg g(F1, F3) > q(pds — d3 — 4 + deg [Fy, F3]) + rds, (6.5)
where degy g(X,Y) = pg+ 7,0 <r < p and p = 4/ged(4,ds) = 4. Since d3 > da > 4,
we see that pds — d3 — 4 + deg [F}, F5] > 2d3 > d. Hence by (6.4]) and (6.5), ¢ = r = 0.
This means that g(X,Y) = ¢g(X) and so dy = degg(F1,F;) = degg(Fy) € 4N. This

contradicts the assumption that ds is odd.
Finally, assume that (Fy — g(Fs, F3), Fa, F3) is an elementary reduction of F. Then

degg(FQ, Fg) =4. (66)
By Proposition 2.7]
deg g(F1, F3) > q(pds — d3 — d + deg [F, F3]) + rds, (6.7)

where degy g(X,Y) =pg+ 7,0 < r < p and p = do/ged(ds, d3). Since dz > 4, by
and we have r = 0. Since also 2 { d2 and dy t ds (because d3 ¢ 4N + d2N), we
conclude that p = dy/ged(de, d3) > 3 and pds — d3 — da + deg [Fo, F3] > d3 > 4. Thus
q = 0. Then we obtain a contradiction as in the previous case. m
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COROLLARY 6.3. We have

{(4,ds,d3) : 4 < dy < d3, da,d3 € 2N + 1} N mdeg(Tame(C?))
={(4,dz2,ds3) : 4 < dy < ds, da,d3 € 2N+ 1, d3 € 4N + d3N}.
6.3. The case (4,even,odd). We start with two examples (or rather two series of ex-
amples).
EXAMPLE 6.4. Since
(X+ 2" =22 +3XZ28 +3X* 7'+ X3, (Y +2° =22 +2YZ° + V2,
we see that
deg[(Y + Z%)* — (X + Z%)3] = 9.
Thus, for any k € N,
deg [(Y + Z2%)? — (X + ZY3)(X + ZYF = 9 + 4k.

This means that
mdeg(Fz 0 Fy) = (4,6,9 + 4k),

where

Fi(z,y,2) = (x+ 24 y+252), Flu,v,w) = (u,v,w+ (v — u3)uk)
EXAMPLE 6.5. Since

(X + 23 =272 +3X28 +3X27% + X3,

(Y +3X2°+ 252 =2 +3X2° +2Y Z° + 9X?Z* +3Y X2 + Y2,

it follows that
deg[(Y + 32X 2%+ Z°) — (X + Z*)*] =17,
and
deg [(Y + 32X 2% + Z°)% — (X + Z*)*|(X + Z*)F = 7 + 4k.

Thus we have
mdeg(Fy o Fy) = (4,6,7 + 4k),

where
Fi(z,y,2) = (z+ 2" y+ 3222 +2%,2),  Fo(u,v,w) = (u,0,w+ (v — u)u®).
Combining the above examples and Theorem we obtain the following
PROPOSITION 6.6. For any integer d3 > 6 we have (4,6, d3) € mdeg(Tame(C?)).
In the same manner one can prove
PROPOSITION 6.7. For any integer dz > 10 we have (4,10, d3) € mdeg(Tame(C3)).
Using Corollary we obtain

PROPOSITION 6.8. For k = 1,2,... and any integer d3 > 4k we have (4,4k,d3) €
mdeg(Tame(C3)).

The next proposition gives partial information about multidegrees of the form (4, 4k+
2,ds3), where k = 3,4,... and d3 > 4k + 2.
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PROPOSITION 6.9. For any integers k > 3 and d3 > 5k + 1 we have (4,4k + 2,d3) €
mdeg(Tame(C?)).

Proof. Let us notice that

2k+1 2% + 1
4\2k+1 __ L r78k+4—4l
(X + 2% _Z( l >XZ
=0
and
k 2 k
(V27 + Y X'z ) —y2 oy 27 4 2% 42y Y a Xz
=0 =0
k
+ 27T Z alez4k+2—4l
=0
2k

+ Z ( Z alCLm)XSZSk+4_4S.

s=0 I+m=s,l,me{0,..., k}

We will consider the cases r =k —1,k,k+ 1 and k 4 2. Thus we have:

deg2YZ" < k+3<bk+1,
deg Z*" < 2k +4 < 5k +1,

k
deg2Y » a X'ZH¥P 4 <4k 43 <5k +1,
=0

k
deg2Z" Y " a)X'Z* 274 <5k — 2 < 5k + 1.
1=2
This means that the only summands of the polynomial

k
2
(X 4zt (Y Y azXlZ“k““”) (6.8)
1=0
of degree greater than or equal to 5k + 1 are:

(1 - ag)28k+47

[(2k+1
( 1—'_ >2a0(l1:|X28k,

[/2k +1
( 2+ >—(2a0a2+a%)]X2Z8k4,

[/2k+1
( i ) — (apak + arag—1 + - - + ap_1a1 + agag) | X* 2,

2@0 Z4k+2+r

and (only in the case r = k + 2)
2a1 X Z4F 727
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Since we can recursively solve the following system of equations (notice that we can take
apg = 1):

1—a(2):0,
2k +1
< 1—'_>—2(L0a1:0,
2k +1
( 5 >(2a0a2+a%)0,
2k +1
( i ) — (apag + arak—1 + - -+ ag—1a1 + agag) =0,

it follows that we can choose ag, a1, ..., ax; so that the degree of the polynomial is
equal to

deg(2a0Z* 2Ty = 4k 4+ 2 4.

Taking »r = k — 1,k,k + 1 and k + 2 we obtain polynomials of degree equal to 5k + 1,
5k + 2,5k + 3 and 5k + 4, respectively.
Now, it is easy to see that taking

k
F(z,y,2) = (x +z2hy+ 2"+ Z a2 z),
1=0
G(U7U7w) = (U,U,’LU + (u4k‘+1 . U2>’U,q)7
where ¢ =0, 1,..., we obtain

mdeg(Go F) = (4,4k + 2,4k + 2 + r + 4q).

Since for any d3 > 5k + 1 we can find r € {k — 1,k,k 4+ 1,k + 2} and ¢ € N such that
4k 4+ 2 + r 4+ 4q = d3, the result follows. =

6.4. The case (4,0dd, even). In this subsection we give an almost complete description
of the set

{(4,dy,ds) : 4 < dy < ds, da € 2N+ 1, d3 € 2N} N mdeg(Tame(C?)).
Namely we have the following result.

THEOREM 6.10. If do > 5 is odd and d3 > do is even such that d3 — ds # 1, then
(4,da, ds) € mdeg(Tame(C3)) if and only if d3 € 4N + daN.

Proof. If d3 € 4N + d3N, then by Proposition (4,da,d3) € mdeg(Tame(C?)). Con-
versely, assume that ds ¢ 4N + dyN. Since ds is odd, by Remark and Theorem
it is enough to show that no automorphism F = (Fy, Fy, F3) : C* — C?® with
mdeg F' = (4, ds, d3) admits an elementary reduction.

Assume that (Fy, Fy, F5 — g(F1, F2)), where g € C[X,Y], is such a reduction. Thus

ngg(Fl, FQ) = d3,
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and by Proposition
deg g(F1, F2) > q(pdy — do — 4 + deg [Fy, F3]) + rd,
where degy g(X,Y) =pg+ 7,0 <r < pand p =4/gcd(4,ds) = 4. Since d3 ¢ 4N + dyN
and ged(4,ds) = 1, we have (as in the proof of Theorem [6.2))
d3 < 3dy — 3. (69)
Thus we can repeat the arguments from the corresponding case in the proof of Theorem
to obtain a contradiction.
Now, assume that (Fy, Fy — g(F1, F3), F3) is an elementary reduction of F. Then
deg g(F1, F3) = da, (6.10)
and by Proposition 2.7]
degg(Fl,Fg) > q(pd3 —d3 — 4+ deg [Fl, FQ]) + rds, (6.11)
where degy ¢(X,Y) = pg+7,0 <r < pand p=4/ged(4,ds) = 2 (because d3 is even and
ds ¢ 4N+d,N). Thus pds—dz—4+deg [Fy, F3] > d3—2. But by the assumptions ds—ds > 0
is an odd number different from 1. So dy < d3—3, and then pds —dy —4+deg [Fy, F2] > ds.
Consequently, by (6.10) and (6.11), ¢ = 0. Since also r = 0 (because ds > d2), we see
that g(X,Y) = g(X), and so
dy = deg g(F1, F3) = degg(F1) € 4N.
This contradicts the assumption that ds is odd.

In the last case we can repeat the arguments from the corresponding case in the proof
of Theorem "

COROLLARY 6.11. If do > 5 is odd and do = 3 (mod 4), and d3 > dy is even, then
(4,da, ds) € mdeg(Tame(C3)) if and only if d3 € 4N + daN.
Proof. Notice that if d3 — dy = 1, then 4|d3. Thus d3 € 4N + d3N and by Proposition
(4,ds, d3) € mdeg(Tame(C?)). In the case d3 — do > 1, we can use Theorem "
By the above corollary, to complete the description of the set

{(4,d2,d3) : 4 < dy < d3, dy € 2N + 1, d3 € 2N} N mdeg(Tame(C?))

it is enough to consider the triples of the form @
(4,4k + 1,4k +2) for k=1,2,...

Moreover, using the arguments from the proof of Theorem [6.10] one can show
PROPOSITION 6.12. Let k € N*. If there exists a tame automorphism F of C3 with
mdeg F' = (4,4k + 1,4k + 2), then there is also a tame automorphism F = (Fy, Fy, F3)

of C3 with mdeg F = (4,4k + 1,4k + 2) that admits an elementary reduction (Fy, Fy —
g(F1, F3), F3) for some g € C[X,Y]. Moreover, for such F we have deg [Fy, F5] < 3.

(*) Recently, the author proved that (4,5,6) ¢ mdeg(Tame(C?)) [21]. The method developed
in |2I] seems to be useful in other cases. For example, the author believes that, for k =1,2,...,
we have (4,4k + 1,4k + 2) ¢ mdeg(Tame(C?)). He also believes that this can be proved by the
above mentioned method.
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Using arguments from the proof of Theorem [7.3|one can also show that deg [Fy, F3] = 3
when k < 25.

7. The cases (p,ds, d3) and (5, ds, d3)

7.1. The general case. Now we generalize, in a sense, the results of the section ‘The
case (3,ds,ds)’. This generalization is not complete. The first, general result is

THEOREM 7.1. Let 2 < p < dy < d3 be integers, and let p be a prime. If

(1) d3/d2 # 3/2, or
(2) d3/d2 = 3/2 and d2/2 >p—2,

then (p,dq,d3) € mdeg(Tame(C?)) if and only if p|dy or d3 € pN + daN.

Proof. By Corollary if p|ds or ds € pN+dsN, then there exists a tame automorphism
F : C3 — C? such that mdeg F' = (p, da,ds). Conversely, assume that p { dy and dz ¢
pN + daN and (1) or (2) holds.

In particular p < dy < d3. By Theorems [5.1] and we can assume that p > 3.
Indeed, for p = 2, by Corollarywe have (2,ds, d3) € mdeg(Tame(C?)) for all integers
2 < dy < ds. Also the condition 2|dy or d3 € 2N + d3N is satisfied for all integers
2 < dy < ds. For p = 3 we simply use Theorem So assume that p > 3. By Theorem
it is enough to show that no automorphism F = (Fy, Fy, F3) : C* — C?® with
mdeg F' = (p, ds, ds) admits an elementary reduction (notice that 31 p).

Assume, to the contrary, that there is such a reduction. Since p { da, we have
ged(p,d2) = 1. So by Theorem we have k € pN+ daN for all k > (p — 1)(d2 — 1) =
pde —da — p+ 1. Thus

ds <pdy —dy—p—+1, (71)
since d3 ¢ pN + daN.

Assume that (Fy, Fy, F3 — g(F1, Fy)) is an elementary reduction of (Fy, Fy, F3). Hence
deg g(F}, Fy) = deg F3 = d3. Since ged(p, d2) = 1, we see that p/ged(p,ds) = p, and so
by Proposition [2.7]

deg g(F1, F) > q(pdz — d2 — p + deg [F1, F]) + rda,
where degy g(X,Y) = pg+r with 0 < r < p. Since Fy, F5 are algebraically independent,
deg [F1, F3] > 2 and pds —ds — p+deg [F, Fa] > pda —da — p+ 2. Then by it follows
that ¢ = 0. Thus

9(X.Y) = 3 (XY,
1=0

Since lem(p, d3) = pda, the sets
pN7d2 +pN7 ) (p_ 1)d2 +pN

are pairwise disjoint. So
p—1

deg (Zgz(Fl)Fg) = _max_ (deg [ degg; +ideg F?)

=0 1=U,...,p—
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and
p—1 p—1
dy = deg g(F1, Fy) = deg(z gi(Fl)Fg’) € |J(rds + pN) C pN + doN,
=0 r=0

a contradiction.
Now assume that (Fy, F» — g(F1, F3), F3) is an elementary reduction of (Fy, Fy, F3).
Since d3 ¢ pN + d3N, we have p { d3 and ged(p, d3) = 1. Hence by Proposition
deg g(F1, F3) > q(pds — ds — p + deg [F1, F3]) + rds,

where degy g(X,Y) = gp+r with 0 < r < p. Since pd3—ds —p+deg [F1, F3] > pds—2d3 >
3ds > ds and since we want to have deg g(Fy, F3) = ps, we conclude that ¢ = r = 0. This
means that g(X,Y) = g(X), and so

dy = deg g(Fy, F3) = degg(F1) € pN C pN + doN,

a contradiction.
Finally, assume that (F; —g(F, F3), Fy, F3) is an elementary reduction of (Fy, Fy, F3).
Thus we have deg g(F3, F3) = p. Let

4
b ged(da, d3)”

Since d3 ¢ pN + daN, we see that do { d3, and so p > 1. By Proposition
deg g(Fy, F3) > q(pds — do — d3 + deg [F, F3]) + rds,

where degy g(X,Y) = ¢gp+r with 0 < r < p. Since ds > p (because d3 > da > p), we see
that » = 0. Consider the case p > 3. Then pds —dy —ds +deg [F1, F3] > ds+deg [Fy, F3] >
p. Thus we must have ¢ = 0. Hence ¢(X,Y) = g(X) and

p =degg(Fy, F3) = deg g(F2) € doN.

This contradicts do # p (we have assumed that p 1 da).
Now, consider the case p = 2. Then, for some n € N*, dy = 2n and d3 = ns, where
s > 3 is odd. Consider first the case s > 3. Then

2d3 — dg, — d2 + deg [Fl, F3] = d3 — dz + deg [Fl, F3]
= (5 - 2)n+ deg [Fl,Fg] > do > p.
Thus we have ¢ = 0. As before this leads to a contradiction.
Now, consider the case s = 3. This is the case when we use the second statement of

the assumption (2). Since d2 = 2n and ds = 3n, we see that d3/dy = 3/2. Hence (1) is
not satisfied. Thus, the assumption (2) is satisfied and so n = d3/2 > p — 2. Hence

2d3 — d3 — dy + deg [Fy, F3] = d3 — d3 + deg [F}, F3]
>n+2>p.

So, also in this case we have ¢ = 0. As before this leads to a contradiction. m

For small prime numbers p the above theorem gives, for example, the following results.
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COROLLARY 7.2.

(a) If (5,da,d3) # (5,6,9) and 5 < dy < d3, then (5,da,d3) € mdeg(Tame(C?)) if and
only if 5| da or ds € 5N + daN.

(b) If (7,dg2,d3) ¢ {(7,8,12),(7,10,15)} and 7 < dy < ds, then we have (7,dz,ds) €
mdeg(Tame(C?)) if and only if 7|dy or d3 € TN + daN.

(¢) If (11,da,ds) ¢ {(11,12,18), (11,14,21), (11,16, 24), (11,18,27)} and 11 < dy < ds,
then (11,dg,ds) € mdeg(Tame(C?)) if and only if 11|dy or d3 € 11N + daN.

(d) If (13,da,ds) ¢ {(13,14,21),(13,16,24), (13,18,27), (13,20,30), (13,22,33)} and
13 < dy < ds, then (13,da,d3) € mdeg(Tame(C?)) if and only if 13|dy or d3 €
13N + doN.

Proof. One can easily check that, for example, for p = 11 the only triples of the form
(11,ds2,d3) with 11 < dy < d3 that satisfy neither condition (1) nor (2) of the above
theorem are (11,12,18),(11,14,21),(11,16,24) and (11,18,27). m

The point (a) of the above corollary yields an almost complete description of the set
{(5,da,d3) : 5 < dy < d3} N mdeg(Tame(C?)). (7.2)

The only thing that we do not know yet is whether (5,6,9) is an element of this set.
One can, of course, notice that 9 ¢ 5N 4 6N. In the next section we show that (5,6,9) ¢
mdeg(Tame(C?)), completing the description of the set (7.2).

7.2. Tame automorphism of C3 with multidegree equal (5, 6,9) and the Jacobian
Conjecture. Our main purpose in this section is to prove the following result.

THEOREM 7.3. There is no tame automorphism of C* with multidegree (5,6,9).

Before we give the proof of the above theorem we recall some positive results about
the Jacobian Conjecture in dimension two. In the proof of the theorem we use one of
such results but for completeness we recall a little more.

The first one is the following result due to Magnus [31].

THEOREM 7.4 (Magnus, see also [7, Thm. 10.2.24]). Let F = (P, Q) be a Keller map
(i.e. such that Jac F = 1). If ged(deg P,deg Q) = 1 then F is invertible and deg P =1 or

deg@Q = 1.
The next, also due to Magnus, is the following corollary of the above theorem.

COROLLARY 7.5 (Magnus, see e.g. [7]). If F = (P, Q) is a Keller map and deg P or deg Q
is a prime number, then F is invertible.

Later Applegate, Onishi and Nagata improved the result of Magnus.

THEOREM 7.6 (Applegate, Onishi, Nagata, see e.g. [3, ] or [7]). Let F = (P, Q) be a
Keller map and d = ged(deg P,deg Q). If d < 8 or d is a prime, then F is invertible.

The last result we recall here is due to Moh [34].

THEOREM 7.7 (see also [7]). Let F : C?> — C? be a Keller map with deg F < 101. Then
F is invertible.
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Now we can give the proof of Theorem

Proof of Theorem . By Theorem it is enough to show that no (hypothetical)
automorphism F of C3 with mdeg F' = (5, 6,9) admits an elementary reduction. Moreover,
it is enough to show this for automorphisms F = (Fy, Fp, F3) : C3 — C3 such that
F(0,0,0) = (0,0,0).

Assume that (Fy, Fy, F3 — g(F1, F»)), where g € C[X,Y], is an elementary reduction
of F. Then

deg g(F1, Fy) = deg F3 = 9. (7.3)
By Proposition
deg g(F1, F2) 2 q(5-6 — 6 — 5 + deg [F1, F3]) + 6r, (7.4)

where degy g(X,Y) = 5¢ + r, with 0 < r < 5. Since 5-6 — 6 — 5 + deg [F1, Fb] >
19 + deg [F1, F3] > 9, by (7.3) and (7.4) we have ¢ = 0. Also by (7.3) and (7.4]) we have
r < 2. Thus g(X,Y) = go(X) + Ygo(X), and since 5NN (6 + 5N) = (), it follows that

9 = degg(Fl,Fg) € 5N U (6 + 5N),

a contradiction.
Now, assume that (Fy, F» — g(F1, F3), F3) is an elementary reduction of (Fy, Fy, F3).
Then

degg(Fl, F3) = deg F2 = 6. (75)
By Proposition [2.7]
deg g(F1, F3) > q(5-9—9 — 5+ deg[F1, F3]) + 9r, (7.6)

where degy ¢(X,Y) = 5¢ + r, with 0 < r < 5. Since 59 — 9 — 5 + deg[F}, F3] >
31 + deg [F1, F5] > 6, we have ¢ = r = 0. This means that g(X,Y) = g(X), and so

deg g(F, F2) = deg g(Fy) € 5N,

a contradiction.
Finally, assume that (F} —g(F, F3), Fy, F3) is an elementary reduction of (Fy, Fy, F3).
By Theorem [3.15] we can also assume that F'(0,0,0) = (0,0,0). We have

deg g(Fy, F3) =degF1 =5 (7.7)
and by Proposition 2.7]
deg g(Fa, F3) > q(p-9—9 — 6+ deg [Fy, F3]) + 9r, (7.8)

where degy g(X,Y) = gp+r, with 0 < r < p and p = 6/gcd(6,9) = 2. By and
, r=0.

Consider the case deg [Fa, F5] > 2. Then p-9—9—6+deg [F2, F3] = 3+deg [F3, F3] > 5,
and then by and we see that ¢ = 0. Thus in this case, we have g(X,Y) = g(X),
and so deg g(Fy, F3) = deg g(Fz) € 6N. This contradicts ((7.7]).

Now, consider the case deg [F», F3] = 2 (since F», F3 are algebraically independent, we
have deg [Fs, F3] > 2). Let L be the linear part of the automorphism F. Since F'(0,0,0) =
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(0,0,0), the linear part of F o L™! is the identity map idcs. Thus

Fyo L' = Xy + higher degree summands, (7.9)

F30 L™' = X3 + higher degree summands.
Since, by Lemma [2.8]

deg[Fyo L™t F3o0 L7 = deg [Fy, F3] = 2,
it follows, by Lemma [3.20] that

FyoL ' F3o0L™! € C[Xy, X3].
But deg [Fy o L™, F3 0 L™1] = 2 means that
Jac(Foo L™ F3o L71) e C*

(of course we consider here Fy o L™1, F3 0 L1 as functions of two variables X», X3). By
Lemma we have deg(Fy o L™!) = 6,deg(F53 o L™1) = 9. Then, by Theorem the
map (Fy o L7, F30 L71) : C? — C? is an automorphism. But 6 9 contradicts the
Jung—van der Kulk theorem (see Theorem and Corollary . L]

By Theorem and Corollary (a) we obtain the following result.

COROLLARY 7.8. We have

{(5,dy,ds) : 5 < dy < d3} N mdeg(Tame(C?))
= {(57d2>d3) 15 <dy < dg, 5 | dy or ds € BN + dgN}

7.3. The case (p,2(p—2),3(p—2)). In the same manner as we proved Theorem one
can show the following

THEOREM 7.9. Let p > 5 be a prime such that p < 35. Then (p,2(p — 2),3(p — 3)) ¢
mdeg(Tame(C3)).

Proof. Since 3(p — 2) < 101, one can use Theorem and repeat the arguments from
the proof of Theorem [7.3] =

By the above theorem and Corollary [7.2] we obtain
COROLLARY 7.10. We have
[{(7,do,d3) : 7 < dy < d3} N mdeg(Tame(C?))]\ {(7,8,12)}
= {(7,d2,d3) 17 <dy <ds, 7|d2 or ds € TN + dgN}

The above corollary means that in order to obtain a complete description of the set
{(7,dg,d3) : 7 < dy < d3} N mdeg(Tame(C?)) we “only” need to know whether (7,8,12)
€ mdeg(Tame(C?)).

To end this subsection notice the following result.

THEOREM 7.11. The Jacobian Conjecture for dimension two implies that for every prime
p > 5 we have (p,2(p — 2),3(p — 2)) ¢ mdeg(Tame(C3)).

Proof. If we assume that the Jacobian Conjecture for dimension two holds true, then one
can repeat the arguments from the proof of Theorem [73] m
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COROLLARY 7.12. If there is a tame automorphism F of C* with mdeg F' = (p,2(p — 2),

3(p — 2)), where p > 35 is a prime, then the Jacobian Conjecture for dimension two is
false.

Proof. This is a consequence of Theorems [7.9) and [7.11] =
In particular we have

THEOREM 7.13. If there is a tame automorphism F of C3 with mdeg F = (37,70, 105),
then the two-dimensional Jacobian Conjecture is false.

8. Finiteness results

Let us consider the set
T = {(dy,....dn) € (N)" :dy < - < dy, di = a, dy = b} \ mdeg(Tame(C™)).

Of course, by Jung—van der Kulk’s result, Té’zb) = {(a,b)} if a 1 b, and T(1(,217) =0 if albd.
Thus #be) <1< +oo forall 1l <a<b We will show that also for n > 3 the set T;Z)
is finite. For n = 3 this result is due to Zygadtlo [54].

THEOREM 8.1. For all integers 1 < a < b the set T( b is finite. Moreover,
7% c {(a,b,d3) : d3 < lem(a,b) — 1},
where r = min{b — 1, (a — 1)(|b/a| + 1)}.

The original proof of the above theorem due to Zygadlo can be found in [54], but we
give here another, simpler proof. It is based on the proof of Proposition [6.9] but there
are also similarities to the proof in [54].

Proof. First of all notice that without loss of gen erahty we can assume that 1 < a < b.
Indeed, if a = 1, or a = b, then by Proposmon we have T(3b = (). Thus up to the end
of the proof we assume that 1 < a < b.

Let d = ged(a,b). Then a = da, b = dg, where E,g € N* are coprime. We have
lem(a, b) = ab/ged(a, b) = ab = ba. Let us notice that

5~
~ b ~
X a\b _ l rab—la )
(X + 29 Z(JXZ (8.1)
=0
and
lb/a)
<Y+Zp+ 3 axiz la)
=0
lb/a) [b/a)

i(f) Y + 27)° (Zaxzb la) - +(Zalxzb la) . (82)

=0
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If we take p < b, then

deg {i( ) (Y + 27)° (%Jalx 7"~ la) } <p+b@a—1),

s=1

and since ZPT%(@=1) can be obtained in the above polynomial in only one way, we actually
have (provided that ag # 0)

a [b/a] =
deg [Z (Z) Y + Zp)s( Z aleZb_la)a s} =p+bla—1). (8.3)
s=1 =0
In the following, we will take p € {1,...,b—1} such that p+b(a—1) € {lem(a,b) —r,
., lem(a,b) — r + (a — 1)}. This is possible, because b(a — 1) + 1 < lem(a,b) — r and
lem(a,b) — r+ (a — 1) < lem(a, b) = ba.
Now, using f we find that the summands of degree greater than p+b(a—1),
in the polynomial
[b/a)
(X + 29 — (Y+ZP+ > ax'z’- l“)
1=0
are

(1-a§)z",

()= ()]
() @) ()t ozn,

and for k =3,...,|b/a],

() -( % ) - (e o vz

lit-+lg=k,l;<k

—_

Thus we can recursively choose coefficients ao, ..., a|,/4) so that all expressions in the
brackets above are equal to zero. Since also in the polynomial

a R b—la
(X + 2% ( Z wX'Z )

there are no summands belonging to C[Z] \ C (provided that ag = 1), we have

b/l
deg (X + z%) - <Y+Zp+ Z X'z la) } —p+b(@—1).

Now, let d3 > lem(a, b) — r be arbitrary. Then there are p € {1,...,b— 1} and ¢ € N
such that p+b(a—1) € {lem(a,b)—r,...,lcm(a,b)—r+(a—1)} and d3 = p+b(a—1)+qa.
By the above considerations we obtain

deg(G o F) = (aa ba d3)a
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where
Lb/a]
F(z,y,2) = (z + 2%y + 2P + Z ala:lzb*l“,z)
1=0

Gu,v,w) = (u,v,w + (u® —v®)ud). =

COROLLARY 8.2. Forn € N, n > 3, and all integers 1 < a < b the set Ti}? s finite.
Moreover,
7% < {(a,b,ds,...,dn) € (N)" i ds,...,dy < lem(a,b) — 1},
where r is defined as in Theorem [8.1]
Proof. If for some ¢ € {3,...,n} we have d; > lem(a,b) — r (actually we can think that

i = n, because d3 < --- < d,) then by Theorem there exists a tame automorphism
F : C? — C? such that mdeg F' = (a, b,d;). Now we use Proposition "

9. Multidegree of the inverse of a polynomial automorphism of C?

In [44] Rusek and Winiarski proved that deg F~! < (deg F')"~! for all automorphisms F
of C™ and hence deg F~! = deg F for n = 2. Here we give complete information about
mdeg F~1 for F' € Aut(C?).

9.1. Multidegree and length of automorphisms of C2. Here we establish the rela-
tions between the multidegree of a given automorphism of C? and its length (Theorem
[9.5). We start with the following technical (cf. [11, Lem. 2])

LEMMA 9.1. If (P,Q) € Aut(C?) is such that deg P < deg Q, then there is a polynomial
f € C[T] with deg f > 1 such that:
(1) deg(Q — f(P)) < deg P if deg P > 1,
(2) deg(@ — £(P) =1 if deg P~ 1.
Proof. Since deg @ > deg P > 1, we have deg @ + deg P > 2 and Jac(P, Q) = 0 (because
Jac(P,Q) € C*). By Lemmal[L.5]
P=ah™, Q=ph"

for some «, 8 € C*, n1,ns € N* and some homogeneous polynomial h € C[X,Y]. Since
deg P | deg Q, we have n; |ny and so Q = clﬁkl for some ¢; € C* and k; = ny/ny. Now
deg(Q — c1 P*) < deg @, and if deg(Q — ¢, P*1) < deg P or deg(Q —c; P**) =deg P =1,
then we are done. And, if deg(Q — c¢; P**) > deg P or deg(Q — c¢; P**) = deg P > 1, then
we can repeat the above arguments for @) — ¢; P*1 and P to obtain ¢ € C* and ky < ky
such that Q — ¢y Pk = CQ?’CZ. Then

deg(Q — ¢; P™ — ¢, P*?) < deg(Q — ¢; P*)

and we can proceed inductively. m

Now we can prove the following (cf. [IT, Thm. 1])
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PROPOSITION 9.2. If F € Aut(C?), then there is a number | € N (possibly zero), affine
automorphisms L1, Lo of C? and triangular automorphisms T4, ..., T} of the forms

T;: C*3 (v,y) = (z,y + fi(x)) €C* fori=1,3,..., (9.1)
T;: C?* 3 (2,y) = (z+ fi(y),y) € C* fori=2,4,...,

with deg f; > 1, such that
F=ILy0Tjo---0Tj0Lj.

Moreover, the number | is unique, and one can require that T;, i = 1,...,1, are of the
form for even i and of the form for odd 1.
Proof. Let F = (Fy, F3). If deg F} = deg F5 = 1, then F is an affine mapping and we
have F' = Ly o Ly for Ly =id¢g2 and Ly = F.

If deg Iy = deg Fy > 1, then Jac(F1, Fy) = 0 (because Jac(Fy, Fy) € C*). Thus, by
Lemmal|l.5

Fy=ah™, F,=ph"
for some o, € C*,n € N* and some homogeneous polynomial h € C[X,Y]. Let
La(z,y) = (z + (o/B)y,y) and
(G1,Go) =Ly ' o F.

Then deg Gy = deg F» (actually Go = F) and deg G; < deg Ga. Hence we can assume
that deg Fy # deg F», and without loss of generality that deg Fy < deg F» (if deg Fy >
deg F, then for (G1,G2) = Ly* o F, where Ly(x,y) = (y,z), we have deg G; < deg Gs).

By Lemma we obtain a polynomial f € C[T], deg f > 1, such that for T} (x,y) =
(z,y + f(x)) and (G1,Gz) = Ty * o F we have deg G2 < deg G or deg Gy = deg Gy = 1.
In the second case (G1,G2) is an affine map and for L; = (G1,G2) we have F =Ty 0 Ly,
so we are done. And in the first case we can use Lemma [9.1] once again and proceed
inductively.

Thus we can assume that F' = ZQ o Tl 0---0 fl o El, where Zl,iz € Aff(C?) and i

are of the forms (9.1)), (9.2). Let us set

o T for odd 1,
’ Lo TH_l_i oL for even [,

LyoL for even l

El for odd I, ZQ for odd I,
L= ~ L
LolL, forevenl,

where L(z,y) = (y, ). Then one can check that FF' = LyoTjo---0Tj 0 Ly.
To see that [ is unique it is enough to notice that L o Tj o L € J(C?) \ Aff(C?),
j=1,3,...,and T; € J(C?) \ Aff(C?), j =2,4,..., and so
F:EQO"'OLO(LOTgOL)OLOT2OLO(LOTloL)O(LOLl)
is the amalgamated representation of F' for suitable sets ® and ¥ (see Definition
Proposition [1.1}and [, Cor. 5.1.3]), where
~ Zg for even [,
Ly=1"
Lyo L for odd [.
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To see that the last statement holds true, one can write
F=(LyoL)o(LoTjoL)o---o(LoTyoL)o(LoLj). m

DEFINITION 9.3 (see e.g. [I1} p. 612]). Let F' € Aut(C?) be a polynomial automorphism.
The number [ from Proposition [9.2] is called the length of F' and denoted length F.

In what follows we will use the following numerical object.

DEFINITION 9.4. Let k € N* and let k = p{" ---p®" be its prime decomposition. Then
we denote by [(k) the number ag + - -+ + «;..

Obviously, I(k1ke) = l(k1) + I(k2) for all k1, ks € N*, and I(k) > 1 for k > 1.

THEOREM 9.5. Let F' € Aut(C?). Then:

(1) if length F =1, then mdeg F € {(1,d), (d,1),(d,d)}, where 1 < d,

(2) iflength F' = 2, then either mdeg F' € {(dy,d2), (d2,d1)} with 1 < dy < da, dq|d2, or
mdeg F' = (d,d) with [(d) > 2 (in particular d > 1 is a composite number),

(3) if length F' > 3, then either mdeg F' € {(dy,ds), (da2,d1)} with 1 < dy < da, dy|ds,
I(dy) > length F — 1, or mdeg F' = (d, d) with l(d) > length F.

Proof. (1) Since length F = 1, we have F' = Ly o T o Ly, where Ly, Ly € Aff(C?) and

T is of the form T : C? > (x,y) + (x,y + f(x)) € C? with deg f > 1. Thus mdeg(T o
Ly) = (1,d), where d = deg f, and then one can easily check that mdeg(LyoT o L) €

{(17d)7 (d’ 1)’ (d7 d)}'

(2) Since length F' = 2, we have F' = Ly o Ty o T} o Ly, where Ly, Ly € Aff(C?) and
T1,Ts are of the form

Tl :(CQ > (l‘7y) — ($7y+ fl(x)) € (CQa T2 : (CQ B (l‘,y) = (LU + f2(y)vy) € (C27

with deg f1,deg fo > 1. Thus mdeg(T; o L;) = (1,deg f1), and then mdeg(75 o T} o L)
= (dg,dy), where d; = deg f1, do = deg fo - deg f1. Since deg f1,deg fo > 1, it follows that
l(d2) = l(deg f1) + l(deg f2) > 2. Now, one can easily see that mdeg(Lyo Ty 0T 0 L) €
{(d1,dz), (d2,d1), (d2, d2)}-
(3) Since I = length F' > 3, we have F = LyoTjo---0T} 0 Ly, where Ly, Ly € Aff(C?)

and T71,...,T; are of the form

T;: C* 3 (2,y) = (z + fi(y),y) € C?
for even i, and

T;: C* 3 (2,y) = (z,y + fi(z)) € C°

for odd ¢, with deg f; > 1 for ¢« = 1,...,l. Now, one can easily check that (see also [7]
Lem. 5.1.2])

l -1
_,deg f;,[Ti—; deg f;) f l
mdeg(Tyo--- 0Ty o L1) = (H{fll egfj’ngzl eg f;) for even I,
(Hj:l degfj7Hj:1 degf]) for odd I.

Let

l -1
dy =[[degf; and dy =]]deg};.
j=1

j=1
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Then mdeg(Tjo---0Ty o Ly) = (dy,ds) for odd I, and mdeg(T;0--- 0Ty o Ly) = (da,dy)
for even [.
Since deg f; > 1 for i =1,...,1, we have

I(dy) > I(deg f1) 4 --- 4+ I(deg fi—1) > 1 — 1,

and
I(d2) = I(deg f1) + -+ -+ I(deg f1) > L.

Of course, as in the previous case, we have
mdeg(LQ oljo---0Ty0 Ll) € {(dl, d2)7 (dQ,dl), (dg, dg)} n

THEOREM 9.6. Let F € Aut(C?) be a polynomial automorphism with mdeg F = (dy,ds),
dy < dy. Then length F < min{i(dz),1(dy) + 1}.

Proof. This is a consequence of Theorem [9.5] w
9.2. The case of length 1. Here we consider the situation when length F' = 1. Because
of Theorem this simple situation is described by the following result.

THEOREM 9.7. Let F € Aut(C?), where length F = 1 and mdeg F € {(1,d), (d,d)} with
1 <d. Then

Proof. Since length F' = 1, we have F' = LyoT oLy, where T is a triangular automorphism
of the form T : C% > (z,y) — (x,y + f(x)) € C? with deg f > 1, and Ly, Ly € Aff(C?).
Notice that deg f = degT = deg F' = d. Thus mdeg(T ' o L; ') = (1,d). Now, it is easy
to see that

mdeg F~' = mdeg(L;' o T ' o Ly') € {(1,d),(d,1),(d,d)}. m

The following two examples show that all possibilities described in the above theorem
are realized.

EXAMPLE 9.8. Let d € N\ {0,1}. Put
Fo=T, F,=TolLy,, F.=TolL,

where T'(z,y) = (z,y + 2%), Ly(z,y) = (y,x) and L.(z,y) = (z + y,y). One can check
that

mdeg F,, = mdeg F}, = mdeg F. = (1, d),
mdeg F,; ' = (1,d), mdegF, ' =(d,1), mdegF," = (d,d).
EXAMPLE 9.9. Let d € N\ {0,1} and put
F,=L,oT, Fy=L,oToL,, F.=L.oToL,.,
where T, Ly, and L. are as in the previous example. One can check that
mdeg F,, = mdeg F;, = mdeg F,. = (d, d),
mdeg F, ' = (1,d), mdegF, ' = (d,1), mdegF, ' = (d,d).
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9.3. The case (d;,d2). Here we investigate the situation when mdeg F' = (dy,ds), di #
dy and length F' > 1. Of course, without loss of generality, we can assume that d; < ds.
Because of Theorem the situation is described by the following two theorems.

THEOREM 9.10. Let F € Aut(C?), where length F = 2 and mdeg F' = (dy,dy) with
1<di <ds, dy |d2 Then

mdeg F~! € {(da,ds/dy), (da/dy,d3), (da, d2)}.

Proof. Since length F' = 2, we have F' = Ly o Ty 0T} o Ly, where 11,715 are triangular
(and non-affine) automorphisms and Li, L € Aff(C?). We can assume that T} and 75
are of the form

Ty :C? 3 (z,y) = (x+ fi(y),y) €C?,  Ty:C? 3 (z,y) = (z,y + fo(x)) € C%

Then mdeg(Ty o Ly) = (deg f1,1) and mdeg(To 0Ty 0 L) = (deg f1, deg f2 - deg f1). Thus,
we have deg f1 = dy and deg fo = dy/d;. Now one can easily check that

mdeg(Ty ' o Ly') = (1,deg f2) = (1, da/dy),
mdeg(Ty ' o Ty "o Ly ") = (deg f - deg f1,deg f2) = (d3, d2/d1).
Since F=' = Ly o Ty o Tyt o Ly, the result follows. =

The following example shows that all possibilities described in the above theorem are
realized.

EXAMPLE 9.11. Let dy,d2 € N be such that 1 < dy < da, dyi | d2. Put
T :C? 3 (2,y) = (x+yh,y) €C?  Ty:C?3 (z,y) — (z,y +2°) € C?,
where § = dy/d;, and
F,=T50T1, Fy,=T0T10Ly,, F.=1Ty0T;0L,,
where Ly(z,y) = (y,z) and L.(z,y) = (z,y + ). One can check that
mdeg F,, = mdeg F}, = mdeg F. = (dy, d2),
mdeg F,; ' = (ds,dz/dy), mdegFy " = (dz/d1,dp), mdegF, " = (dz,ds).

THEOREM 9.12. Let F € Aut(C?), where length F' > 3 and mdeg F = (dy,ds) with
1 <dy <ds, dq |d2 Then

mdeg F~! € {(da,dz/a), (da/a,ds), (da,d3) : a € Ar},
where Ap ={a:1<a<d, a|dy,(d1/a) > length F' — 2}.
Proof. Let | = length F. Then F' can be written in the form
F=1ILyoTjo---0T, oL,

where Ti,...,T; are triangular (and non-affine) automorphisms and Li, Ly € Aff(C?).
We can assume that T; are of the form

T;: C? > (x,y) — (x + fi(y),y) € C*  for odd 4,
T, : C* 3 (z,y) = (z,y + fi(x)) € C* for even i.
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Now, one can check that

1 -1
_.d LTS d i) for odd [
ndeg(Tyo -0 Ty o Ly) = {(H;:f 8 /i1l desfy) forodd
(IT;=1 deg f;,I1;=, deg f;) for even I.
In both cases we have
l -1
[[desfi =d2 and []desf; = di.
j=1 j=1
Let a = deg f;. Since T; are not affine, deg f; > 1. Since also [ > 3 (in other words,
l—1>1), ais a proper divisor of di and I(d;/a) = I(deg fo---deg fi—1) > 1 — 2.
Now, one can check that

mdeg(T{ o+ 0T} ( H deg f;, H deg fj) (da, da /).

Since F~' = L' oT; o 0T ' o Ly, the result follows. m
Also in this case all possibilities are realized, as the following example shows.

EXAMPLE 9.13. Let dy,ds € N be such that 1 < dy < da, dy | da, and let I <I(dy)+1 be
an even number. Assume also that a is a proper divisor of d; such that I(dy/a) > 1 — 2.
Take positive integers ao, ..., a;—1 such that

di=a-ay - -a;_1.

Such integers exist, because I(d1/a) > | — 2. Now put:
T, :C? 3 (z,y) — (x +y,y) € C?,
Ty : C? 5 (z,y) — (z,y + 2%2) € C?,
Ty :C? 3 (z,y) — (z+y*,y) € C%

Ti1:C? 3 (2,y) = (x+y"t,y) € C
Ty :C? 5 (z,y) — (z,y +2°) € C,
where § = da/d;. Also set
F,=To---0Ty, F,=To0---0oTyol,, F.,=T0---0T;0L,,
where L, and L. are defined as in the previous example. One can check that
mdeg F, = mdeg F, = mdeg F. = (d1,d2), lengthF =1.
It is also easy to see that
mdeg F, ! = (dg,d2/a), mdegF, ' = (dz2/a,d2), mdegF, "' = (da,ds).
In a similar way one can obtain an example when [ is odd.
The following example shows an application of Theorem [9.12)

EXAMPLE 9.14. Let F € Aut(C?) be such that mdegF = (60,120). Since [(60) =
(22 -3 -5) = 4, we have length F' < 5.
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If length F' = 3, then
Ap = {2,3,5,4,6,10, 15,12, 20, 30},
and so, by Theorem [0.12]
mdeg F~1 € {(120,60), (120, 40), (120, 24), (120, 30), (120, 20),
(120,12), (120,8), (120, 10), (120, 6), (120, 4), (60, 120),
(40,120), (24, 120), (30, 120), (20, 120), (12, 120).
(8,120), (10, 120), (6, 120), (4, 120), (120, 120)}.
If length F' = 4, then
Ar =1{2,3,5,4,6,10,15},
and so, by Theorem
mdeg F~! € {(120,60), (120, 40), (120, 24), (120, 30), (120, 20),
(120,12), (120, 8), (60, 120), (40, 120), (24, 120),
(30,120), (20, 120), (12,120), (8, 120), (120, 120)}.

If length F' = 5, then
Ar ={2,3,5},

and so, by Theorem [0.12]
mdeg F~1 € {(120,60), (120, 40), (120, 24), (60, 120), (40, 120), (24, 120), (120, 120)}.

Moreover, by the previous example, all the listed possibilities are realized.

9.4. The case (d,d). Using similar arguments to those in the proof of Theorem
one can prove the following

THEOREM 9.15. Let F' € Aut(C?), where length F' > 2 and mdeg F = (d, d) with 1 < d.
Then
mdeg F~! € {(d,d/a), (d/a,d),(d,d) : a € Ar},
where Ap ={a:1<a<d, a|d,l(d/a) > length F — 1}.
Also in this case all the possibilities are realized, as the following example shows (this

example is a modification of the example given after Theorem [9.12)).

EXAMPLE 9.16. Let d € N and [ > 2 be an even number such that [ < (d). Assume also
that a is a proper divisor of d such that I(d/a) > I — 1. Take positive integers as, ..., q
such that

d=a-ay---q.

Such integers exist, because I(d/a) > | — 1. Let Ty,...,T;—1 be defined as in Example

[0:13] and put

Ty :C? 3 (z,y) = (z,y + ™) € C2
Also set
F,=LoTjo---0Ty, Fy=LoTjo...0Ty0lL,, F.=LoTjo---0Tj0L,,
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where Ly(x,y) = (y,2), Le(z,y) = (x,y+2) and L(x,y) = (x+y,y). Then one can check

that

1
2]

4]

[5]
[6]

(7]
18]
9]

[10]
[11]

[12]
[13]
[14]

[15)
[16]

[17]
[18]
[19]

[20]

mdeg F, = mdeg F, = mdeg F. = (d,d), length F' =1,
mdeg F; ' = (d,d/a), mdegF; ' = (d/a,d), mdegF,"' = (d,d).
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