1. Introduction

The present work is devoted to the study of the t-deformed free probability. The notion
of the t-deformation of a measure and of a convolution, inspired by the conditionally free
convolution of Bozejko, Leinert and Speicher [Bol, BS2, BLS], was first introduced in
the papers by Bozejko and Wysoczanski [BW1, BW2]. We propose for the t-deformed
free probability the name of Kesten probability, justified by the fact that the measure
arising in the corresponding central limit theorem is, for a suitable choice of parameters,
exactly the spectral measure of a random walk on the free group with a finite number of
generators, as discovered by Kesten in [K] (see also [PS]).

In the second chapter we recall the necessary definitions and basic facts from prob-
ability, especially relating to the Cauchy transforms and their reciprocals, as they are
needed for analytic descriptions of the convolutions in question. In the next chapter we
gather the definitions of the t-deformation of measures and of the t-deformed free con-
volution [¢] and relate them to the free, conditionally free and boolean cases. We present
the R transform, which linearizes the convolution [ We then recall two fundamental
limit theorems, the central limit theorem and the Poisson limit theorem. We recalculate
the Cauchy transform of the Poisson limit measure from first principles, as the limit of
convolution powers of uy = (1 - %)50 + %51, and then get the explicit form of the
measure from a result of Saitoh and Yoshida on the corresponding orthogonal polynomi-
als. We then discuss the infinite divisibility with respect to the convolution [z, and we
establish a Lévy—Khinchin formula. We conclude the third chapter by proving that for
t > 0 all probability measures p have the Nica-Speicher property, that is, one can find
their convolution power u* for all s > 1. This behaviour is similar to the free case, as in
the original paper of Nica and Speicher [NS], and different from the boolean case (when
t = 0) for which the property is satisfied for all s > 0.

In the fourth chapter we construct generalized Brownian motions, parametrized by
a pair (¢,q), 0 < ¢t < 1, =1 < ¢ < 1. Such a process is a family of operators w(r),
7 € R, in an appropriate noncommutative probability space. To construct it we first
consider a Fock-type Hilbert space on which we define the creation and annihilation
algebra generated by the creation and annihilation operators ¢*(h) and ¢(h), h € H = K¢,
where X is a real Hilbert space and K¢ its complexification. We show that the vacuum
state o(a) = (£2,af2) on this algebra is determined by a function on pair partitions of
an ordered set. We note that from the form of this pairing prescription it follows that
the Gaussian elements w(k) = c*(k) + c(k), k € X — K¢, are Kesten-distributed for
q = —1 and are g-gaussian as ¢ — 0. We then get the process by identifying X with
L*(R) and defining w(7) = w(x[o,r)), Where x[or) is the characteristic function of the
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6 t.. Wojakowski

interval [0,7). Later in that chapter we present a link between the Kesten-distributed
generalized Brownian motions and the reduced free product of Voiculescu. The last part
of the chapter is devoted to the calculation of the explicit form of the Mehler kernel
for the Kesten measure and to a discussion of its positivity. The Mehler kernel, when
positive, defines a classical Markov process, which can be seen as a classical version of
the generalized stationary Brownian (Ornstein—Uhlenbeck) process. Moreover, we notice
that for those values of the parameter ¢ for which the kernel is not positive, it is impossible
to construct the second quantization functor.

The fifth chapter is devoted to a generalization of the t-deformation of the free convo-
lution H to the t-deformation of the free product x. We first notice that the construction
of the conditionally free product can be adapted to give the definition of a ¢-product
of algebras of polynomials in one variable, together with their corresponding states. We
then show by a combinatorial approach that we can define products for states on algebras
in many noncommutative variables arising in the above way, and that they are positive
definite. We conclude this chapter by generalizing a recurrence formula for moments of ¢-
deformed measures to a recurrence formula for moments of t-deformed states on algebras
in many noncommutative variables.

The author wishes to thank Prof. Marek Bozejko for guidance, encouragement, en-
thusiasm and patience. This work was partially sponsored by the European Research
Network “Quantum Probability with Applications to Physics, Information Theory and
Biology”, HPRN-CT-2002-00279, the European Commission Marie Curie Host Fellowship
for the Transfer of Knowledge “Harmonic Analysis, Nonlinear Analysis and Probability”,
MTKD-CT-2004-013389 and the KBN Grant No 1P03A 01330.

2. Noncommutative probability

The present work is concerned with a particular construction in the general framework
of noncommutative probability theory.

In classical probability the fundamental object of study is the triple ({2, X, P) where
{2 is a sample space, X the o-field of events and P a probability measure on ({2, ). The
random variables are real-valued measurable functions. The distribution of a random
variable X is the measure pux defined on the Borel subsets of the real line given by
px(B) = P(X~1(B)) for all Borel sets B. The expectation of a random variable X is
thus the expectation of the distribution pux .

The random variables form a commutative algebra A on which one can define the
expectation functional E associated to the probability measure. To determine the dis-
tribution of a random variable X one can look at its higher-order moments, that is, the
values of the expectation functional E at X™ € A. The moment sequence, when all
moments are finite, can determine the measure uniquely or not. This distinction was
addressed for instance in [Ak]. Although various sufficient conditions are known, there is
no explicit characterization of measures determined by their moment sequences. The suf-
ficient condition most important to us is the compactness of the support of the measure.
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In noncommutative probability the starting point is the above algebraic property
of the random variables. The fundamental object of study is the algebra of random
variables together with an expectation functional; they need not arise from any triple
(2, X, P). What is more, one can consider noncommutative algebras. Thus, one defines
a noncommutative probability space to be a pair (A, ) where A is a unital complex
*-algebra and ¢ a linear positive functional such that ¢(1) = 1. A noncommutative
random variable is simply an element X € A. We shall almost always consider self-adjoint
random variables X = X*. By the distribution we then understand the moments ¢(X™),
n=0,1,.... Since the sequence of moments is positive definite, there exists a probability
measure 4 on the real line such that ¢(X") = { ™ du(z). In most of what follows we shall
assume that the algebra A is a C*-algebra, as a result the moment sequences generated
by the expectation functional will correspond to measures with compact support. In
this way the probability measure associated to any self-adjoint random variable from the
algebra will be uniquely determined.

An essential concept in classical probability is independence of random variables and
convolution of probability measures, which is the distribution of the sum of independent
random variables. These notions can be carried over to the noncommutative framework,
they are known there as tensor independence and classical convolution. However, several
other kinds of independence together with corresponding convolutions were described:

e free independence together with the free convolution H, introduced by Voiculescu
[V1, V2]; those concepts can be traced back to the paper [Av],

e boolean independence and boolean convolution W, introduced by Speicher and
Woroudi [SW]; they are closely related to the regular free product representation
of free product groups of Bozejko (see [Bo2, BLS]),

e conditionally free independence together with the conditionally free convolution
of pairs of measures, introduced by Bozejko, Leinert and Speicher in [BLS, BS3];
see also [Bol]. The free and boolean cases are contained in this approach through
an appropriate choice of the second measure of the pairs.

Before we recall the above notions and discuss the deformations of which the ¢-deforma-
tion of this paper is a prominent example, we need some preliminaries. A good and
more comprehensive introduction to noncommutative probability can be found in [HP]

or [VDN].

2.1. Basic notions. In the present work we shall be working with probability measures
on the real line, the set of which we shall denote by Prob(R). Let us recall some of the
basic definitions and facts that we shall need in the sequel. Since all the theorems and
facts presented in this section are well known, we omit the proofs.

2.1.1. Orthogonal polynomials. Let p € Prob(R) be a measure with finite moments of
all orders, that is, for all k € N,
mu(b)] = | § o* du(a)] < oo,

— 00
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which we denote by u € Prob(™ (R). For such a measure we can define the corresponding
orthonormal polynomials by the classical three-term recurrence formula [Ak]

po(z) =1, pi(z) =2 — ao,
(2.1)
(33 - an)pn(z) = bnpn—&-l(x) + bn—lpn—l(l')a
where we call the numbers a,,b, € R, b, > 0, n = 0,1,..., the Jacobi coefficients.
Symmetric measures with moments are characterized by the property a, = 0. The

orthonormal polynomials satisfy the relation

| pi@pe(@) du(@) = 6.
supp ()
Most measures we will consider have compact support; such measures are uniquely deter-
mined by their moments. In that case the corresponding orthonormal polynomials form
an orthonormal basis of the space L?(u).

2.1.2. Cauchy transforms. The most important tool to handle probability measures in
noncommutative probability is the Cauchy transform.

DEFINITION 2.1. Let p € Prob(R). Then the Cauchy transform of p is defined by

Gu(z) = S iﬂf(a;) for z € C*.

PROPOSITION 2.2. The Cauchy transform G, (z) is analytic in the upper half plane and
takes values in the lower half plane, G, : CT — C~.

There is an important link between the Cauchy transform of a measure with finite
moments of all orders and the corresponding recurrence coefficients of orthogonal poly-
nomials. For such . € Prob™ (R) the Cauchy transform can be written in the form of

a formal continued fraction:

1
GH(Z) = )\ ’
0

zZ—ag—
A1

A2
z—ag— =

zZ— a1 —

where )\, = (b,)? and the coefficients a,, are the same as in the recurrence formula (2.1).

If p has compact support, which we denote p € Prob(® (R), the continued fraction
converges to the Cauchy transform (for proof see [C, Chapter III, Section 4]); moreover,
we have the following theorem ([C, Chapter IV, Theorem 2.2]):

THEOREM 2.3. A measure u € Prob(R) has compact support if and only if the coeffi-
cients a; and \; are bounded.

The Cauchy transform G, (z) is also related to M, (2), the generating function of the
moments m,, (k):

26(3) = Mule) - gmu<k>zk.
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An important operation on measures that is well reflected in Cauchy transforms is the
dilation.

DEFINITION 2.4. We define the dilation of a measure u € Prob(R) by a factor A by
setting Dy (u)(A) = u(A~1A) for all Borel subsets A C R.

We then have
1 z
GDA(:U')(Z) = )\2)\0 - XGH<X>
z— Aag — Fe\
1
A2\

zZ— Aay —

zZ— Aag —

The moments of the measure 1 can be calculated from the coefficients of the continued
fraction with the use of Theorem 5.1 of [AB|:

THEOREM 2.5. For a probability measure i with compact support we have

mu(n)= > I 2y II aas)

wENCy 2(n) Bjem Bren
|B)|=2 |Byl=1
where NCi 2(n) is the set of noncrossing partitions of {1,...,n} such that for = €

NCy 2(n) its blocks B; € m have one or two elements, |B;| is the cardinality of the
block Bj, and d(Bj) is its depth.

DEFINITION 2.6. A partition of the ordered set A = {1,...,n} is a set of blocks B; C A
such that B;NB; = 0 if i # j and |JB; = A. A crossing in a partition V = {By,..., By, }
occurs if for some 1 < 7 < m and k,l € B,k < there exists B; and r,s € B;,r < s
such that k < r <l <sorr <k < s <. A partition is called noncrossing if it has no
crossings. In a noncrossing partition one defines the depth of a block B; as the number
of blocks enveloping B;, that is, d(B;) = #{B; | 3r,s € B;, r < B; < s}.

2.1.3. Reciprocals of Cauchy transforms

PROPOSITION 2.7. The reciprocal of the Cauchy transform F,(z) =1/G,(z) : Ct — C*
s analytic in the upper half plane.

Complex functions mapping analytically the upper half plane into itself are called Pick
functions. An elementary introduction to this subject can be found in Chapter 2 of [D],
a more detailed treatment is in [AG|. For our purposes, the most important property of
Pick functions is the Nevanlinna integral representation theorem.

THEOREM 2.8 (Nevanlinna). A function F(z) is a Pick function if and only if there exist
a,b € R with b > 0 and a finite positive measure o such that

o
1+ 22
F(z) = b d .
(2) “*Zﬂ{ox_z o(x)

Moreover, a,b and o are uniquely determined.

It is also possible to easily characterize reciprocals of Cauchy transforms in the class
of Pick functions.
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THEOREM 2.9 (Nevanlinna). A function F(z) is the reciprocal of the Cauchy transform
of some probability measure i € Prob(R) if and only if it is a Pick function and b =1
in the Nevanlinna representation:

F(z)=F,(2) =a+2z+ S lir_zZZdQ(z).

2.2. Free probability. We are now in a position to define the most prominent type
of noncommutative probability, the free probability. To define independence in classical
probability one passes through conditions on sub-o-fields, it is thus natural that in the
noncommutative theory one starts with subalgebras.

DEFINITION 2.10. A family of subalgebras A; C A is called free if

(2.2) plar---an) =p(a1) - plan) =0
whenever p(a;) =0, a; € Ay, j =1,...,nand iy # iz # -+ # ip.

Two random variables are called free if they belong to two distinct free subalgebras.
For measures p and v with compact support, their free convolution p B v is defined
as the distribution of X +Y € A where X,Y € A are free and have distributions p
and v respectively. To this concept there corresponds the notion of the free product of
noncommutative probability spaces. Given (Aq, p1) and (Asg, ¢1) we define A = A1 %A as
the free product with amalgamation of units, that is, the x-algebra generated by the unit
and words of the form a’fb{1 ...alrbin where ay € Ay, by € Aa, kyig, jr € N, i, jr > 0,
i1,Jn > 0. The state ¢ = @1 * o is defined so as to satisfy the relation (2.2). Then
we have |4, = p;, the algebras A; naturally embedded into A are free, and if X € Ay,
Y € Ay then m,, @, (n) = p((X +Y)").

Since the measure u H v depends only on the measures p and v, it is essential to
be able to describe it only in terms of p and v. This is done with the use of the R-
transforms RIEE(Z), RB(2), the analogues of the logarithm of the Fourier transform in
classical probability. If we define

(2.3) Ri'?(z) = G;l(z) —1/z,

where G;l(z) is the right inverse of G,(z) with respect to composition of functions, we
have

(2.4) R, (2) = R2(2) + RE(2).

G, '(z) and R;‘?(z) are well defined in some neighbourhood of zero. We can thus write

the above equation in an alternative form

1

(2.5) Gu(z) = CCRGL)

Moreover, since Ri'?(z) is analytic, it can be treated as a series >, Rﬁa(k +1)z*. The
coefficients R% (k) can be calculated by the results of Speicher [S1] from the combinatorial
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moment-cumulant formula

k
23]
(2.6) mu(m)= Y TIR(m)D,
TENC(n) i=1
T=(m1,...,Tk)

where NC(n) is the set of noncrossing partitions of {1,...,n}, m;, i = 1,..., k, are blocks
of the partition 7, and |m;| is the cardinality of the block. Equivalently, one can start
with reciprocals instead of Cauchy transforms and define

@u(z) = F;Il(z) -z

getting a similar linearity relation ¢,m,(2) = ¢.(2) + ¢, (2). Moreover, this approach
extends to measures with unbounded support and with infinite moments; one only has
to find an appropriate domain for z. This has been done by Maassen [Ma] for the case of
measures with finite variance and by Bercovici and Voiculescu without this assumption
in [BV2]. Bercovici and Voiculescu prove that for any probability measure u € Prob(R)
and any a > 0 there exists 5 > 0 such that the function ¢, (z) is analytic in a domain of
the form

{z:]z| > B, Im(z) > 0, Re(z) < alm(z)}

and that such an analytic function determines a corresponding probability measure. Since
the sum of two such functions is again analytic in such a truncated angle for § large
enough, the corresponding measure is determined.

2.3. Boolean probability. The second well-known example of noncommutative inde-
pendence is the boolean relation.

DEFINITION 2.11. A family of subalgebras A; C A is called boolean-independent if
(2.7) plar-+-an) = plar) - plan)

whenever
ajGAij, 7=1...,n, aj#].eﬂ and 11#12##171

The boolean product has been introduced by Bozejko in [Bol, Bo2] and is known under
its name since the paper of Speicher and Woroudi [SW]. For our purposes the boolean
product (Aq,p1) *p (A, p2) can be thought of as a special case of the conditionally free
product (A1, p1, 1) *c (A2, @2, 12), where on the appropriate algebras we have ¢;(al @)
= «. This setup is enough for studying the distributions of sums of random variables.
In a full treatment of the boolean product and independence we would have to consider
algebras A; = A; & CT with artificially added units, together with states @i(oﬂ @ 0) =
a+ ¢(B) and wi(oﬁ @ B) = «; this is, however, beyond the scope of the present paper.

As in the previous constructions, the boolean convolution is best described in terms
of analytic functions. Let u, v € Prob(R), and let

1 1
(2.8) Re(2)=2— —=——, RI(2)=z- .
! Gu(2) Gu(2)
We know from [SW] that R}, (z) = R;;(2)+R,;(2). Speicher and Woroudi also show that

this definition works for arbitrary probability measures, possibly with infinite moments,
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due to the Nevanlinna theorem. Another important property arising from the Nevanlinna
theory is that every probability measure is infinitely divisible with respect to the boolean
convolution. The easiest proof of this fact is by showing that for any probability measure
p € Prob(R) and ¢ > 0 the function ¢R;;(z) is the boolean transform R} (z) of some
probability measure ;. Consequently, for any N € N we have p = py vy W+ & py/n,
where R (2) = (1/N)R}/(2). Moreover, for any i € Prob(R) we can define its t-th

H1i/N
boolean convolution power ;" for ¢ > 0 by requiring R (2) = LR} (2).

2.4. Conditionally free probability. The conditionally free convolution has been
introduced in the papers of Bozejko, Leinert and Speicher [BS2, BLS]. Similarly to the
free case, we start by looking at conditionally free subalgebras. Let A be a x-algebra with
two states ¢ and .

DEFINITION 2.12. We say that the subalgebras Ay, Ay C (A, ¢,v) are conditionally free
if they satisfy

(2.9) plar---an) = p(a1) - plan),
(2.10) V(a1 an) =1(ar) - ¢la,) =0
whenever

(211) 1/)((1]-):0, ajG.Ai]., j=1...,n and 1175%2747417“
where (2.10) means that the subalgebras are free with respect to the second state .

Consider random variables X € (A1, ¢,9), YV € (A, ¢,v). To each of them there
correspond two sequences of moments, with respect to the two states ¢ and 1, hence
two probability measures, X ~ (ux,vx), Y ~ (uy,vy). The pair of measures X +Y ~
(tx+y,vx4y) corresponding to the random variable X +Y is called the conditionally free
convolution of (ux,vx) and (uy,vy) and denoted (px+v,vx+y) = (ux,vx)d(py, vy),
where by (2.10) we have vxiy = vx BHry. As in the free case, if we are given two
noncommutative probability spaces (A1, ¢1,t1) and (Aa, p2,12), on A = Ay x As, the
free product with amalgamation of units, we can define states ¢ and v by requiring them
to satisfy relations (2.9)—(2.11). We denote this by (A, ¢, 1) = (A1, 01, 1¥1)*c (A2, 02, 12).
The natural embeddings of A; and A into A are conditionally free, p|a, = ¢, ¥|a, = ¥,
and if X € A1, Y € Ay then my, ., (n) = o((X +Y)") and m, ., (n) = (X +Y)").

The conditionally free convolution can also be described in terms of R-transforms.

Since the second measure of the pairs is convolved freely, it will be described by the free
transform RP(z). For the first measure one uses a different function dependent on both
measures; we denote it by W(z). We also use the equation (2.5) defining RP(z), thus
getting

1 1

CELGE) YT iEGe)

and if (u,v) = (p1,v1) € (ua, v2) then

R, (2) = (2) + B, (2),  Ry(2) = Rj(2) + R (2).

(2.12) Gu(z) =

1,V1
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As in the free case, the R-transforms can be written as power series
o0 o0
plel plel H H k
R, () =) Rl (k+1):"  Rl(z)=) RJ(k+1):",
k=0 k=0
and have corresponding combinatorial moment-cumulant formulae

k
(2.13) my(n) = > & (D,

TENC(n) i=1
T=(T1,...,Tk)

(2.14) mu(n)= Y II BEL(mh II &Y,

TENC(n) m; outer m; inner
T=(T1 5000,k )
where a block 7; is called inner when there exists another block m; with a,b € m; such
that a < p < b for all p € ;. All blocks which are not enveloped in such a way are called
outer. Equivalently one can say that the outer blocks m; have depth d(m;) = 0 and the
inner 7; have d(m;) > 0.

The above definitions are well established in the case of measures with compact sup-
port. Only recently, after the main part of the present work was completed, Belinschi [Be]
extended the theory of the conditionally free convolution to arbitrary probability mea-
sures. His approach, however, is not expressed in terms of R-transforms but uses the
subordination functions of Biane [Bi]. We know that for any probability measures vy, vy
there exist functions wy(2),ws(z) such that for all z € C\ R,

Guy (w1(2)) = Gu, (w2(2)) = Gu @1, (2)-
Belinschi proved that if (y,v) = (1, v1) € (p2, v2) and with the notation
he = Fe(z) —z  for all measures ¢,
we have
hu(2) = Ty (01(2)) 4 Py, (w2 (2)).

It seems likely that the above considerations will be extended to include a formulation
in terms of the R or ¢ transforms on appropriate domains, similarly to the paper [BV2]
in which the authors develop the case of arbitrary probability measures in the free case.

Since a number of our results are proved through properties of the transforms, we will
still need bounded support in most cases.

2.5. Deformations. Let T : Prob(R) — Prob(R). There are two ways of using such
a deformation of measures to define deformations of convolutions that we are interested
in.

The first uses the free convolution and is valid for any invertible map 7"
DEFINITION 2.13. The T-deformed free convolution [T]is defined by
(2.15) pMv =T TpBTv)

for any probability measures p and v.
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For the second one we need to assume that T maps measures with compact support
to measures with compact support, but no invertibility is required.

DEFINITION 2.14.
(pBrv, TpBTv) = (u, Tp)E (v, Tv)
for compactly supported p and v.
REMARK 2.15. The free convolution H in Definition 2.13 can be replaced by any as-

sociative convolution & (for instance by the classical convolution), producing another

associative convolution @(T). This is going to be the subject of a forthcoming paper.

We are interested mostly in transformations 7' preserving boundedness of support,
satisfying the Bozejko property of the following definition.

DEFINITION 2.16. A transformation T of probability measures has the Bozejko property
if whenever for probability measures u, v we write

&mn) = (T E (v, Tv),
then
(2.16) n=TE.
There are two reasons that such deformations are of interest; we gather them in the

following propositions.

PROPOSITION 2.17. For transformations with the BozZejko property the above defined con-
volution By is associative.

Proof. By associativity of the conditionally free convolution we have
(nBrv)Br { = (uBr v, T(pBrv))E(E TE) = (B v, TwBTv)EA(E, TE)
= (1, Tp) @ (v, Tv) @ (§, TE) = pBr (vBr ). m

PROPOSITION 2.18. If the transformation T with the Bozejko property is invertible, then
the convolutions and By coincide.

Proof. We have
pBrv=(uBrv, TuBTv) = (T (TpBTv), TuBTv) = u[Tv.

A problem of Bozejko was to find all transformations 7' with the Bozejko prop-
erty (2.16).

The first known example was the t-deformation treated in depth in the present paper,
introduced by Bozejko and Wysoczariski in the papers [BW1, BW2] and further studied by
the author in [W]. Its generalization, the (a,b)-deformation, was considered by Krystek
and Yoshida in [KY2]. Further examples, the so-called pure convolutions, were given by
Oravecz in [O1, O2]. Another attempt was the A deformation and its special cases, the
r and s deformations (see [Bo3, KY1, Y1, Y2]); however, in [BKW] it was proved that
this deformation has the Bozejko property only when it reduces to the identity or maps
all measures to gy, and that in other cases it leads to nonassociative convolutions. In the
papers [KW1, KW2] the authors introduce two more families of deformations, of which
one is invertible and based on ideas similar to the t- and (a,b)-deformations, whereas
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the other is not invertible, and uses measures infinitely divisible with respect to the free
convolution.

As mentioned at the beginning of this chapter, the classical convolution in the ordi-
nary probability theory, and the various canonical convolutions of the noncommutative
probability theory, that is, the classical, free, boolean and strongly and weakly monotonic
ones (not discussed in this paper, introduced in the work of Muraki [Mul]), arise as the
distributions of sums of suitably distributed random variables that are independent in
the corresponding sense. Speicher [S2] and Muraki [Mu2] proved that without further
assumptions on the algebras of random variables the above five notions are the only
possible.

However, it seems that to deal successfully with noncommutative random variables
it would suffice to limit ourselves to algebras of noncommutative polynomials in many
variables. The last chapter of the present paper is an attempt to substantiate this idea
in the case of the t-deformed probability. Only recently, a major step in this direction
for the general case has been made by Muraki [Mu3]. His idea is to derive a notion of
independence from the notion of Fock space, and to work with orthogonal polynomials
that are noncommutative. A reconciliation of the approach of Muraki and ours will be
the subject of a future work.

3. Kesten probability

The object of the present paper is to study some problems arising in free probability the-
ory around the concept of t-deformation of measures, convolutions, states and products.
It was introduced by Bozejko and Wysoczaniski in [BW1, BW2].

3.1. t-deformation of measures. We will use the language introduced in the previous
chapter to define the most fundamental idea in our study, the t-deformation of a measure.
Let t > 0. For a measure with compact support u € Prob'® (R) the Cauchy transform
has the convergent continued fraction representation with bounded coefficients:

1

Ao

A

Az
Z—ay — —

zZ—a] —

We define the t-deformed measure denoted Uyp or p; as the measure for which the con-
tinued fraction representation of the Cauchy transform is

1
GUtll«(Z) =

Ao

z —tag —
A1

A2

Z—a; — —

zZ— a1 —
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Since the recurrence coefficients remain bounded, U;u is again a compactly supported
measure and Gy, ,(z) is well defined for z € C*. The above definition seems intuitive
and instructive, but it is preferable to use the algebraic expression relating the reciprocals
of the above Cauchy transforms, since by the crucial observation of [BW1], U; thus defined
extends to all probability measures on the real line. Hence we make the following

DEFINITION 3.1. The t-deformation of a measure y € Prob(R) is the measure U;p
corresponding to the reciprocal of the Cauchy transform given by

(3.1) Fu,u(z) =tF,(2) + (1 —t)=z.
Let us recall the argument that allows this extension:

PROPOSITION 3.2. For all n € Prob(R) and t > 0 the function Fy,,(z) defined in (3.1)
is the reciprocal of the Cauchy transform of a unique measure pu; = U € Prob(R).

Proof. By the Nevanlinna theorem, for p there exist a € R and a positive finite measure
o such that

FUt#(z):tF#(z)—f—(l—t)z:t(a—kz—k [ Lt dg(:c)>+(1—t)z
=tatz+ | 1+_sz d(to)(x),

where ta and tp satisfy again the conditions of the Nevanlinna theorem. m
Let us also recall from [BW1] the basic properties that follow from this definition.

PROPOSITION 3.3. For any u € Prob(R) and t,s > 0 the following properties are satis-

fied:

o (Up)i>0 is a multiplicative semigroup: Ugs(Uy(p)) = Ust(p);
o dilations of measures commute with Up: Dy(U(p)) = Ur(Dx(1));

Uy and Uy for t > 0 are inverses of each other;

U () = 1 in the x-weak topology;
Ui is continuous in the x-weak topology: if n, — p then U(u,) — U(p).

Let us now see the action of U; on a couple of elementary examples.

EXAMPLE 3.4. Since for a single point measure §, we have Fs_ (z) = z — a, we get
Ut(éa) = 5ta-

ExXAMPLE 3.5. For a two-point measure w = pd, + ¢6p, p + ¢ = 1 we have

1 1
Gu,w)(2) = -
U (w)(2) #(2)4_(1_@3 (1—t)z+ 5 t q
—a+2+_b+z
p(z—b) +q(z —a) - M(z)

Coap(l—t)(z—b) +2q(1 —t)(z —a) +t(z —a)(z—b)  Wa(z)’
where the degrees of the polynomials Wi (z) and Wa(z) are 1 and 2, respectively. This
means that U;(w) is again a two-point measure Pds + Qdp and its Cauchy transform
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can be multiplied in the numerator and in the denominator by ¢, the reciprocal of the
coefficient of 22 in W(z), so that
_l’_

G = =
Ui (2) Ws(z) 2z—A z-B’
where P+ Q = 1 and A, B are the zeros of W5(z). This leads to the following solution:

cWi(z) P Q

A= %(b(l-ﬁ-q(—l-ﬁ-t))—&-a(q—i—t—qt)

+V—dabt + (b1 +q(-1+ ) +alg+t — qt))2),

B =5 (b1 + a1+ 1) + alg + 1~ q1)

— V—dabt + (b(1+ q(-1+1t)) +alg+t — qt))Q),

p_ 1 b(—1+4q+qt) —a(qg—t + qt)
= -4 ,
2 oV —dabt + (b(1 + q(—1+ 1)) +alg +t — qt))°

71 b(71+q+qt)fa(q7t+qt)
Q_ - — .
2 oV —dabt + (b(1 + q(—1+ 1)) +alg +t — qt))°

Note that the solution given on page 740 of [BW?2] is erroneous.

As observed by Bozejko and Wysoczanski in [BW2], the relation between the Cauchy
transform G, (z) and M, (z), the generating function of moments, allows the derivation
of a recurrence formula for the moments of the deformed measure Uy p:

(3.2) my,u(n) =tm,(n) + Z my,(k)my, . (n — k).

In particular, if the first moment m, (1) of the measure p vanishes, then also my,, (1) =0
and my,,(2) = tm,(2).

3.2. t-deformed free convolution. We are now in a position to define the t-deformed
free (or simply ¢-free) convolution.

DEFINITION 3.6. Given two probability measures pu, v € Prob(R) and ¢ > 0 we define
their t-free convolution as

pAv = Uy (Up) B (Upw)).

REMARK 3.7. The convolution [¢] is clearly associative, since
(n@Av)Bo = U (U, (Ure(Uypn B Uw)) B Uo] = Ui ye(Uppn B U B Uy o).

We would also like to be able to describe our convolution with the help of some trans-
form R(z) that would have the linearization property with respect to the convolution
[@. Since by the above definition Uy(n[@v) = (Usp) B (Uzv), a natural choice would be
RY(z) = R,Bi ,(2); however, for reasons that will become clear after the next section, on
the connection between the t-free convolution and the conditionally free convolution of
Bozejko, Leinert and Speicher [BLS], we prefer to multiply it by a factor 1/¢, thus getting
the following
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DEFINITION 3.8. The R(z) transform of a measure u € Prob(R) is given by
R( ) RUtu( )

This way we have the desired linearization property RMIV( z) = RE(z) + R9(z). We
can also define the ©!9(z) transform by ©9(z) = Touu(2).

EXAMPLE 3.9. Let us calculate the RHY(z) transform of the two-point measure considered
above.

R(z) = RUW( 2).

w

By definition of R® we get
_ 1
RU,w( ) GU,,lw(Z) -

z

where Ga}w(z) is the inverse of Gy, (z) with respect to composition of functions. To
calculate it we need to solve a quadratic equation. A straightforward calculation thus
gives

1+z—zq+tij:\/—42(1—q)+(—1—z+zq—t2q)2

:I:Gatlw (Z) = 22

It can be easily seen that Gy, (2) =9 00, so the branch of the square root in the definition

Z*)OO

of G(}tlw (z) is chosen so that Gl}tlw( ) —=0, that is,

1+z—zq+tzq—\/—42(1—q)+(—1—z+zq—t2q)2
2z ’

Gp,o(2) =

Consequently,

—1—|—z—zq+tzq—\/—42(1—q)+(—1—z—|—zq—tzq)2

(3-3) R(z) = 721

3.3. Connection with the conditionally free convolution. We can now recall the
following observation from [BW1] and give it an analytic proof:

THEOREM 3.10. Let o,n € Prob' (R) and (u,v) = (0,Uo) A (n,Usn). Then
(1, v) = (0,Ur0)@(n, Un) = (o[, Uro B Upn).

Proof. The equation v = Uzp B U;n follows trivially from the definition of the convolu-
tion [€. To prove u = g[f]n we shall look at the respective R-transforms. From (2.12)
and the definition of U; we have

thus

(3.4) ) = 1 (Gl = 1) = § BB,
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From (2.12) we can find the Cauchy transform of the measure pu:

Gule) = = Ut,g(GUtQEE U (2 )) n,U,n(GUrQEEUm( z))
_ 1
2= 1RE (Guemun(?) — 1RE,(Gu,emuin(2))
_ 1 B 1
; RU,QEEUtn(GUtQEEUm(Z)) a %( RUtQEEUm(GUthHUm(Z))) + (1 - %)Z
- % ’ GU,QEﬁlum(lz) (1 - %)Z B GUl/t(U‘QEEUm)(Z) = Gomn(2). m

REMARK 3.11. As we see in equation (3.4), the conditionally free transform Utu( )
is proportional to the free transform Rau(z) of the deformed measure U, u, similarly to

the {-free transform RW(z). This justifies the choice of the constant 1/¢ in Definition 3.8,

so that R(Z) = Um( z).

REMARK 3.12. From the preceding remark and equations (2.13) and (2.14) we get the
following moment-cumulant formulae:

k k
my(n) = >t Fne TR, (Iml) = > e RE(m)
TENC(n) i=1 TENC(n) i=1
T=(T1,...,Tk) T=(T1,...,Tk)

3.4. Connection with the boolean convolution. The boolean convolution of mea-
sures with compact support can also be seen to be a special case of the conditionally free
convolution, namely (u W v, dg) = (1, 90) [E(v,00). As a consequence of this and of the
continuity properties of the conditionally free convolution we know that if

t—0

0t — 0o, M =26, and (Cts0r) = (1, 00) A (v, 1)

then

Ct—>,uUz/ and atﬂ?&),

all convergences considered in the weak-+ topology.

The connection between the t-free convolution and the boolean convolution is twofold:

REMARK 3.13. First of all, the deformation U; is defined for all ¢ > 0, whereas the
convolution [¢] only for ¢ > 0, since it involves U; ;. However, if we let £ — 0 then for any

p, v € Prob'®(R) we have Uy, Uy 29 5, and by the above remarks
(, Upp) @ (v, Upv) = (@ v, Uy B Upw) =9 (pWw,dp).

We use this convergence property to extend the ¢-free convolution to the case t = 0, and
to say that [¢] interpolates between the free convolution H for ¢ = 1 and the boolean
convolution W for ¢ = 0.
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REMARK 3.14. Secondly, for any ¢ > 0 and pu € Prob(R), we have, from Definition 3.1
and equation (2.8),

W B A S
R (2) =tR;(z) =tz Gols) z Gon®) ™ Ry, ,(2),

which means that the U, transformation of a probability measure is nothing else than its
t-th boolean convolution power.

3.5. t-free central limit theorem. Let us now recall the fundamental observation of
[BW1], the central limit theorem.

THEOREM 3.15. Let u € Prob(R) be such that m,(1) = 0, m,(2) = 1 and let t > 0.
Then
Dy ympd- B Dy mp — ke

in the weak-x topology, where the limiting measure k; is related to the standard Wigner
measure w, appearing in the free central limit theorem, by r¢ = Uy 1D sw.

Proof. From the definition of the convolution [] we have

Dyyymp@- 0Dy mpr = Ury(DyyymUpn 8- B Dy mUsp).
Moreover, we know from (3.2) that my,, (1) = 0 and my,,(2) = t. We may thus use the
free central limit theorem to get

Dy zUpnB - B Dy zUipn == D s0. m

REMARK 3.16. The measure s for t = 1—1/(2N) where N € N appeared first in a paper
by Harry Kesten [K]|, where it is shown that this is the spectral measure of a random
walk on the free group with N generators.

DEFINITION 3.17. We shall call k; the Kesten measure with parameter ¢.

The Kesten distribution ; has been calculated for instance in [BW2]. It has a part
absolutely continuous with respect to the Lebesgue measure, denoted K;, and for ¢ < 1/2
a discrete part kK, with two atoms:

- 1 VAt — 2?2 d
Ry = % . —1 — (1 — t):L'2 X[—2v%,2v7 (l') X,

1—2t
t:m((s_l/m—l-(sl/m) fOI‘t<1/27

R

and its Cauchy transform in the continued fraction representation has the form

3.6. t-free Poisson limit theorem. The second important type of limit theorem is the
Poisson limit theorem, specifying the weak-x limit of uy = (1 — %)50 + %51 as N — oo.
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Let us first write in more detail the argument that allows the definition in [BW2] of the
t-free Poisson measure wgt) as one having constant cumulants (this relates also to the

conditionally free Poisson distribution of [BLS]).

THEOREM 3.18. Let A > 0 and puy = (1 - %)60 + %61. Then

A
1—2"

Jim R (2) = R, (2) =
— 00 lU‘N 71')\

Proof. For simplicity of notation set ¢ = A\/N. By the linearization property of the RH(z)
transform we have

RN (2) = NREZ (2).

By equation (3.3) of Example 3.9 we have

71+2726+t2’67\/742(176)+(7172+Z€7t26)2

—
REN () = 2zt
o _ 4z42(—1-2)(2—tz)
_ z—1— (_1 —2)2 —4z n ahtz 2¢/(=1-2)"—4z +O( 2)
N 2zt 2zt ¢ ¢
- 10,

1—=2
where the two terms in the second line are the first two terms of the Taylor expansion of
RN (2), considered as a function of €, around 0, and where O(€?) stands for the remainder

of the expansion. We thus have

— — 7>\
Rﬂ(;)(z) = NIEHOONRMN(z) =71 "
Let us note that % is the free R®-transform of the free Poisson measure 7\ (see
for instance [HP]). Thus, we have on one hand

t £A
RS, (2) = 77 = Ry, (2),
A

on the other hand, from the definition of the R transform we get
H
tRﬂ'(;) (z) = RU“T;t) (2),

and hence Utwg\t) = T, Which means that the ¢-free Poisson measure is a deformation

. t
of the free Poisson measure: ﬂf\)

measure 7T§\t) can now be done by calculating G

= Ul/th. Calculation of the explicit form of the
—1

Ul/tT"tA
Stieltjes inversion formula. We can get it another way by using the continued fraction

(z), inverting it and using the

representation of Cauchy transforms and by a result by Saitoh and Yoshida [SY]. We

know that )
Gﬂ't/\ (Z) =

tA
z—1tA —

tA

z— (A +1) - 5
z—(tA+1) - =
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and by the properties of U

Gﬂg\t) (Z) = GUl/tTFtA (Z) =
z2—A—

Y
z—(tA+1) -

X
2— (A1) - =

Note that although the transform G_(z) in [BW2| was calculated correctly, the corre-
A

sponding continued fraction forms (11.39) and (11.40) were erroneous. From the above
continued fraction representation we get the coefficients in the recursion formula for monic
polynomials orthogonal with respect to the measure wf\t):

po(xz) =1, pi(z)=2—A,
p2(x) = (z — (tA + 1))p1(z) — Apo (),
Prt1(z) = (2 — (AN + 1))pu(x) — tApn—1(2).

Saitoh and Yoshida considered measures orthogonalizing systems of orthogonal monic
polynomials defined by

qO(l'):C, ql(‘x):x_av
Gn+1(2) = (x — a)gn () — bgn-1(z).
It can be easily seen that for « = A\, a = tA+ 1, b = tA and ¢ = 1/t these relations
produce for n > 1 the polynomials p,(z) corresponding to the t-free Poisson measure
ﬂf\t). For n = 0 we get po(x) = tqo(x), but this does not spoil the orthogonality relations.

Saitoh and Yoshida calculate the unique probability measure v orthogonalizing the above
system of polynomials:

v=U+D,
where
fl@)=Q0=c)@—a)+(c=2)(a—a)(z—a)+ (a—a)+b?,
_ c\/4b — (z — a)?
dv(r) = T@) * Xla—2vb,a+2/)] (z) de,
and
0 if f(x) has no real roots,
dv(xz) = { max (O, 1— ﬁ)% if f(z) has one real root y = o + aﬁa,
w10y, + waby, if f(x) has two real roots y; and ya,

where

1 N <O be lyi — a|>
w; = max | 0, - :
V(e —a)? —4b(1 —c) ly;i — o ¢

We therefore get the absolutely continuous part of the ¢t-free Poisson measure, as well as
its discrete part:
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o VAN (1 -+ t))? .
™ = 2nz(1+ (—L+ 0)z + A — X X[tx+172\/§,t,\+1+2\/§]($) €Ly

() { max(0,1 — \)§p fort =1,
T =
A w10y, +wady,  fort #1.

3.7. t-infinite divisibility and ¢-free Lévy—Khinchin formula. We already briefly
mentioned the term “infinite divisibility” in the context of the properties of the boolean
convolution. Let us recall the definition:

DEFINITION 3.19. We say that a probability measure p is infinitely divisible with respect
to a convolution x if for every N € N there exists a measure py such that u = 3.

This can be rewritten equivalently in terms of R*-transforms: a probability measure
w1 is infinitely divisible with respect to a convolution x if for every N € N there exists
a measure jy such that R (2) = NR;, (2). In the case of the t-free convolution [] we
prefer to use the go(z) transform, since it allows us to treat measures with unbounded
support. We have an analogue of the free Levy—Khinchin formula:

THEOREM 3.20. A measure p s [t]-infinitely divisible if and only if there exist « € R and
a finite positive measure o such that for all z € CT,

Ool—i—zac
= do(z).
A =t | S del)

Proof. In the case of the t-free convolution a measure p is [¢Finfinitely divisible if for
every N € N there exists a measure py such that on some truncated angle domain
Piz) = Nl (2).
By a double application of the definition of the ¢ transform to the left and right hand
side of the above equation we get
1

1 0 T
n 00.u(2) = dlz) = NI, (2) = N : Plpn (2)5

hence, the measure p is [¢-infinitely divisible if and only if

PO (2) = Nog iy (2),
which is equivalent to B-infinite divisibility of Uz (all equalities hold on some truncated
angle domains). By the free Levy—Khinchin formula (see [Mal], [BV1] and [BV2]) the
measure Uyzp is freely infinitely divisible if and only if there exist @ € R and a positive
measure o such that for all z € CT,

T l4zz
&8
= d .
@ =a+ | ———dalx)
— 00
Hence -
1 1+ 22
_ H _
) = F et =at | T de(e),

where oo = &/t and o = p/t. =
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3.8. Hi-convolution powers of probability measures. Nica and Speicher [NS]
proved the following

THEOREM 3.21. For any probability measure i, possibly not infinitely divisible, and any
number s > 1 there exists a probability measure g such that

ps = pe,

which is understood as

O (2) = 50 (2)-

In the case of the boolean convolution, since all probability measures are infinitely
divisible, the same property holds for s > 0. We are interested in finding a similar result
for the case of the t-free convolution [¢]. Clearly, we could not expect such a property
only for s > sg, for some 0 < sy < 1, since then, by iterating the convolution power, we
would have the property for all s > 0. In fact, we have the following

THEOREM 3.22. For an arbitrary probability measure p € Prob(R) there exists a measure
tts € Prob(R) such that pn = p&* for s > 1.

Proof. By definition

: 1 1

Hs
)

where Ui = v € Prob(R), hence for s > 1 there exists a measure v, such that v = /]

which gives

L S m
; Pv (Z) = ZQOVS (Z) = SQO[t]l/tUS (Z)

We have therefore found a measure U, /,vs which has the required property (U /tus)s =pu
for s > 1. It is not possible to improve on s, since that would imply that the free
convolution version would also hold for s > 0, which is known to be false. m

4. Generalized Brownian motion

4.1. Introduction. In [BS3| Bozejko and Speicher consider the generalized Brownian
motions. Such a process is a family of operators w(t), ¢t € R, in an appropriate noncom-
mutative probability space. The construction of such processes usually follows several
steps. First we consider a separable complex infinite-dimensional Hilbert space H and a
unital x-algebra C(H) with generators c*(h),c(h) for all h € H satisfying the relations

c(af +bg) = ac*(f) +bc*(g),  (c(f))" =c"(f),
for all f,g € 3 and a,b € C. We call ¢*(h) creation operators and c(h) annihilation
operators, and the algebra C(XH) the creation and annihilation algebra. We also consider
a unital x-algebra A(X) generated by w(h), h € K, with the relations

wlaf +bg) = aw(f) + bolg),  w(f) = @)
for all f,g € K and a,b € R, where X is a real Hilbert space. A natural way to relate the
two objects above is to require the complex Hilbert space H to be the complexification of
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the real K, written H = K¢. Let k € K < H. Then the x-subalgebra of C(H) generated
by ¢*(k) 4+ ¢(k) is isomorphic to A(X). The algebra A(X) could be called the algebra of
increments, since if we identify X with L?(R,dxz) then the indicator functions x ) ()
are in L?(R) and the process w(t), t > 0, can be defined as w(x[+))- In order to turn
the algebras considered into noncommutative probability spaces we need yet to specify
states on both of them.

DEFINITION 4.1. A Fock state on C(JH) is a positive normalized linear functional g :
C(H) — C given by
(4.1) ol (f1) - (f)l = Y. t(V) [ (F f)- Qe 1),

VePa(n) (k,Hev

where the symbols #; € (1,%) indicate creation or annihilation, and @ is a two by two
matrix with Q(1,x) = 1 and 0 in all other entries:

0 1
a=(g o)
and where t is a function on the set of pair partitions, ¢ : Pa(n) — C.

DEFINITION 4.2. A Gaussian state gy on A(X) is a positive normalized linear functional
given by

(4.2) glw(f) - wf)l = DY (V) I (e f)-

VePy(n) (k,Hev
REMARK 4.3. The Gaussian state gy on A(X) is the restriction of the Fock state gy on
C(Xc) to the subalgebra A(X).

REMARK 4.4. Not every “pairing prescription” t(V') gives rise to a positive functional in
the above definitions. However, Gutd and Maassen proved in Theorem 2.6 of [GM] that
a function t(V) produces a positive Gaussian state gt if and only if it also produces a
positive Fock state g¢. We call such functions positive definite.

REMARK 4.5. The GNS representation associated to the pair (C(H), o¢) is a x-algebra of
creation and annihilation operators acting on a Hilbert space F¢(H) having a Fock-type
structure

Fo(H) = é K.
n=0

Conversely, we can start by defining an appropriate Fock-type space and then take as
C(H) the x-algebra generated by creation and annihilation operators on this Fock space;
we follow this approach later in this chapter.

When p; is indeed a state, the sequences o [w(f)k}, k=0,1,..., are moment sequences
of probability measures. One can consider measures only for f € X such that (f, f) =1,
since moments arising from other elements correspond to their dilations.

EXAMPLE 4.6. Various examples of positive definite “pairing prescriptions” t(V') have
been given, resulting in different probabilities:
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1. when t(V) = t((ll)(V) = ¢# (V)| 1 < ¢ < 1, where #I(V) is the number of
crossings in the partition V, the moments g¢[w(f)*], k = 0,1,..., correspond to
the g-Gaussian measure [BKS],

2. the case t(V) = tgc_(:,)t(V) = (1 —t)#V—cc(V) 0 <t <1, where cc(V) is the number
of connected components of the partition V', and #V the number of blocks of the
partition V, has been considered in [BS3]; the corresponding measure is known for
1—-t=1/N, N €N, and equals D\/l/—Ng B---H D\/l/—Ng where g is the standard
classical Gaussian measure,

3. when t(V) = t,_1(V) = t{<)(V) - tD(V) = (1 — t)#V—#ec(V) . (—1)#(V) the
moments gg[w(f)*], k = 0,1,..., correspond to the Kesten measure ;.

The fact that the function t, _1 (V') in point 3 above is positive definite is a consequence
of Corollary 1 of [BS3|, which states that the pointwise product of two positive definite
functions t1 (V) - to(V) is again positive definite. Our aim in the remaining part of this
section is to complete the results of [BS3] by presenting a detailed construction of the
corresponding Fock-type space. Moreover, by the above mentioned corollary, we may
consider the more general pointwise product t,(JI)(V) : t(lc,cZ(V) instead of the special case

I
(V) -t V).
DEFINITION 4.7. For a partition V' € Py(n) let

teq(V) = 6155(V) 60 (V) = (1 — )V eV g#10),

where #cc(V) is the number of connected components, #I(V') is the number of crossings
and #V is the number of blocks of the partition V,and 0 <t <1, -1 <¢g < 1.
PROPOSITION 4.8. The function t,,(V) is multiplicative, that is, if the partition V de-
composes into connected components (Vy, ..., Vi) then t, (V) =t (Vo) - - -ty o(Vi).

Proof. Since t;4(V) = tgc_cz(V) : th)(V) and both factors are multiplicative, so is their
product. m

4.2. Fock space. We shall construct our Brownian motion by first constructing a Fock
space on which we shall define appropriate operators.

DEFINITION 4.9. Let H be an infinite-dimensional separable complex Hilbert space. Let
us denote by Fj the algebraic Fock space consisting of a distinguished vector {2 and of
vectors of the form (f; ® - - ® fn, A), where n € N, f; € H, and A C {1,...,n — 1}
together with a pre-scalar product given by bilinear extension of

<Q, Q>t,q == 17
(2,(f1® @ fn, A))tq =0,
<(f1 ®"'®fn’A)7(gl ®"'®gmaB)>t,q

= Omn Z <fla gﬂ'(l)> T <fn7g7r(n)>(t - 1)(%—1)—#[AﬂBﬂb(‘n’)] ) q#l(ﬂ—)
TES,

where for 7 € S,

b(m)={r—k|1<k<r—1,7(By)=Bg} C{l,...,r—1}
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The sets attached to simple tensors can be visualized as interval partitions grouping the
elements of the tensor into interval blocks. The numbers in the sets indicate the tensor
symbol, counted from the right, on which one interval ends and another begins. This
notation may seem a little cumbersome, but allows for a very concise notation of interval
partitions of sets of different cardinality.

THEOREM 4.10. The bilinear form (). 4 is positive for 0 <t <1 and =1 < g < 1.

Proof. Fix n € N and set fz fi®- - @ f, € H®". We have to show that for all possible
choices of M € N, f1,..., far and Aq,..., Ay C{1,...,n — 1} we have

Mo Mo
L:= <Z(fivAi)aZ(fj’Aj)>t q =0
i=1 J=1 ’

We have

M
L= 37 3 {Fum() =)D #ananmlgh
i,j=1mesS,

M
— W= Y (e w1 - gy AT ] )

i,j=1m,0€Sy

~

where 7(f) denotes 7(f1 ®---® fn) = fr(1) @ ® frn). We know that the kernels
F,G,Hon{l,...,M} x S, given by

F((i,o),(4,m)) = (1 — t)f#[AmAjmb(g—lﬂ)]
G((i,0), (G.m)) = (a(f), m(f)),
H((i,0), (j,m) = ¢*' ")

are positive definite by [BS3], and so is their pointwise product. =

)

DEFINITION 4.11. To finish the construction of the space F we first divide the algebraic
Fock space Fy by the kernel of the pre-scalar product (,);, and take the completion of
the result with respect to the scalar product () 4.

4.3. Creation and annihilation algebra

DEFINITION 4.12. For each f € H let us define a creation operator ¢*(f) and an annihi-
lation operator ¢(f) by linear extension of

()2 =(f,0),
@@ [, A)= (O[O ® fu, AU{n}),
and
()2 =0,
C(f)(flv(z)) = <fa f1>“(27
()@@ f, A) =Y () A@ @ i@ ® fo, Als) - (1 — )70 g,

i=1
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where

_ 0 ifi=landn—-1€ A,
z(z,A){

1 otherwise,
A|i{A\{n—1} ifi=landn—-1€A,
AN{l,...,n—i} otherwise,
and with the usual convention that
L@ @fi® @fi=H0®fi1® fiy1® @ fn.
THEOREM 4.13. For alln, & € F and all f € H we have

(€ (I Et.g = (0, c(f)E)t,q-

Proof. Tt is enough to show for all n € N, all f1,..., fn,91,...,9n € F, all A C {1,...
,n—2}and all BC{l,...,n—1}

<C*(f1)(f2 ®®fnaA)v (gl ®"'®gn,B)>t,q
=((f2® @ fn, A),c(f1)(91 @ @ gn, B))t.q-

Let us calculate both sides:
LHS = <(f1®"'®fmAU{n_1})v(gl®"'®gmB)>t,q

= Z <fla gﬂ'(l)> e <f7la gﬂ'(n)>(1 - t)(n*1)7#[(AU{n71})ﬁBﬂb(7r)] . q#I(W)v
TESy

RHS =

(Frogid(fo® @ fu, Ay (1 @ @ G @+ ® g, Bl3))a,q(1 — )75 . g1

M:

=1

D (11902 902) -+ (fns Go () (1 — 1) 772 H#ANBLONOIF (8] gimliatl (o)
UES(I)

Il
NgE

where 57(111 is the set of all bijections from {2,...,n} to {1,...,4,...,n} and b(c) and
I(0) are defined by considering o in the canonical way as an element of S,,_;1. For given
i and o define w € S,, by 7(1) =i, 7(j) = 0(j). The assertion follows if

(43) (n—1)—#[(AUu{n—-1})NBNb(r)] = (n—2)—#[ANB|;Nb(o)] + 2(i, B)
and
(4.4) #I(m) =1i— 14 #I(0).

Condition (4.3) has been proven in [BS3]. To show (4.4) note that for o € Sffll and its
canonical counterpart o’ € S,,_1:

2,....n% —Z— {1,...,i,...,n}

| g

,...n—1 -7 {1,....n—1}
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the sets of inversions I(0) = {(k,I) | ¥ < I and o(k) > o(l)} and I(o’) = {(¥',1') |
k' <1 and o/(k') > o’(I')} are also in 1-1 correspondence, hence of the same cardinality.
Moreover, for 7 € S,, defined above we have I(w) = I(¢/)U{(1,1) |1 <l andi=0'(1) >
a'()}, thus #I(m) =#I(o)+i—1. =

DEFINITION 4.14. Let C(H) be the unital x-algebra generated by all ¢*(f), c(f) for f € H
and define on C(H) the state

0rq(a) = (£2,a82)14.

THEOREM 4.15. For alln € N and adll fy,..., fr, € H we have
0 if n odd,

(4.5)  orqglc" (f1) - (fn)] = Z tiq(V) H (fr, fi) - Qtr, 1)  if n =2,

VEP2(n) (k,1)eV

o=(5 )

Proof. A nonzero vacuum expectation is only possible if the number of creators equals

where

that of annihilators, hence the odd moments vanish. By an observation of Bozejko and
Speicher [BS3, p. 144], to prove the theorem it is enough to consider the case where the f;
form an orthonormal basis of H and where each f; appears exactly twice in {f1,..., far },
which means that in the sum only one term corresponding to a partition denoted Vj
survives. If for some 1 < i < m < 2r we have (f;, fx) = 0 for all j = 4,...,m and
k=1,...,i—1,m-+1,...,2r then by orthogonality and the definition of the creation
and annihilation operators we get

[#(fr) - B (fim)] (fi) - P (o) [P (fngn) - - €527 (for)]92
= [ (f1) - P (Fim )2, () - P (fm) Qg [P (famgn) - €27 (f2r)] 2

= 00,q(" (fi) - P (f)) [ (f1) -+ = (Fim) P (fongr) - - €2 (for) 12,

which means that the state t; ; is multiplicative. Thus, it is enough to consider the case
when V) is a single connected component; the general case will follow by multiplicative
extension. In such a case we have t;,(Vy) = (1 — )" 1¢#!("0) = RHS of (4.5). To
see that this is equal to LHS of (4.5) = o 4[c*(f1) - c*(fn)] we need to show that the
exponents of 1 — ¢ and of ¢ in t;,(Vp) = RHS will correspond to those coming from a
direct computation of LHS. The two exponents behave exactly as in models where only
one of them is present. The exponent of 1 — t is exactly » — 1, since each annihilation
operator apart from c¢(f;) gives a factor 1 — ¢. The exponent of ¢ is indeed equal to the
number of crossings of Vj: this follows from the corresponding result on the g-Fock space
considered in [BS1, Proposition 2|. =

4.4. Connection with the reduced free product. The next theorem gives a link
between the generalized Brownian motion considered in the present work and the reduced
free product of Voiculescu. However, we need to assume ¢ = —1 and use the notation

0t = Ot,—1-
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THEOREM 4.16. Let {¢; = c(fi),cf = c*(f:;) | i € N} denote a distinguished set of
generators of the unital x-algebra €° = ({c; = c(f;)}), for some orthonormal basis {f;}
of the underlying Hilbert space X, let t1,ty be real numbers with 0 < t1,to < 1 and
s1=1—1t1, s =1—1ts. Define s by

1 1 1 1— t1t

S=— 4= and t=1—-s5=—"12_
S S1 S92 an 2 — t1 — t2

Embed €° in C° % CO (free product with identification of units) via

cw,/iﬁ(cnﬂ/im(cn, c;fH,/ih(c:)ﬂ/ijz(c:)

and let o be the restriction of o;, * 01, to C°. Then o = g;.

Proof. We need to show that for all n € N and all 4(

49 auean(\ St [ mict) <f e f )

[ Ci1) ”Ci(n)}'

To do this we shall show the equality of free cumulants of the left and right sides of the
above equation. For a given state ¢ on a unital x-algebra B its multilinear free cumulants
r, are defined via the relation (a; € B)

(4.7 play---ap) = Z rolav,] - rolav,],

V={V1,....Vp}€P2(n)

where 7y [ay;,| = ry[ay,, ..., ay,] for V; = (v1,...,vs). Let us first consider the cumulants
of the right-hand side of (4.6), that is, of r,, [cg(l) . cg(n)]. For odd n this quantity van-
ishes, since by the defining equation (4.7) it is a sum of products of “shorter” cumulants,
at least one term in each of those products being of odd length, and cumulants of length
one are the original state, hence are zero on single creators and annihilators. Moreover,
since the moments of g; are expressed in Theorem 4.15 by a formula involving summation
over all 2-partitions, it can be seen by induction that the free cumulant can be obtained
from the following formula involving only connected pair partitions:

Tos [05(1)7 - -7C§<2r>] = Z t:(Vo) H (frs f1) - Q(tk 1)
VOZ{Vl ,,,,, VT}EPQ(QT) (k,l)GVo
Vo connected

- > s (=) T (e ) - QUeks )

Vo= {Vl ..... Vi }67)2 (27") (k,l)EVo
Vo connected

To evaluate the free cumulant of the left-hand side of the equation (4.6) we use the fact
that free cumulants linearize the free product:

S . S . S . s
Tou, *ot, |:<\/ 531(02(1)) + 1/ 82]2(65(1))> Yoy <H gh(cf(%)) + 1/ 52]2(65(%))>]
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Tgtl[\/ Gy ar ’<2T>} " Q'z{\/ - Vs Z(QT)}
S
(E) Fou [0y, > Ehgan) + (5) Tou, [y lan)

- Z §" (=1)# (Vo) H (frs f1) - QBk, 1) m

Vo={V1,...,V;: }€P2(2r) (k,1)EVo
Vo connected

4.5. Second quantization. An important subject in the study of the generalized Brow-
nian motions is the existence and properties of the second quantization functor. In the
previous section we considered the x-algebra A(X), generated by the Gaussian elements
w(k) where k € K and X is a real Hilbert space, together with a Gaussian state g given
by a pairing prescription t. Alternatively, we can consider the von Neumann algebra
I'(X) generated by the embeddings of w(k) = ¢*(k) + ¢(k) into the creation and annihi-
lation algebra C(XKc¢), together with the vacuum expectation Fock state g¢(-) = (§2,- 2);
given by the same pairing prescription t. The paper [R] studies the properties of the
algebra I'(X). When the Fock state is tracial, we have the following definition.

DEFINITION 4.17. Let KM, K be two real Hilbert spaces and 7' : K1) — K2 any
contraction. A unital trace preserving completely positive map I'(T') : (I'(K™M), (£2,- 2),)
— (D(K®)),(£2,-02);) is called a second quantization functor.

A detailed study of this notion can be found in [GM]. The most important result of
that paper is the existence of I" under the condition of multiplicativity of t and faithfulness
of ¢ for I'(I2(Z)). Tt is also proved that in the case of the Kesten type pairing prescription

t(V) =t 1 (V) =t{V) -t (V) = (1 — )#V#ecV) (C)#V) - gt <,

the corresponding vacuum Fock state ({2, £2); is tracial, and that the assumptions of the
existence theorem are satisfied.

In our calculations we consider a particular choice of the Hilbert spaces and of the
contraction in the above construction. Namely, we take the same one-dimensional Hilbert
space K = K = K@) and the simplest possible contraction T = e~ 7] = sI where
7> 0,0 < s < 1. The algebra I'(X) is L (supp(x¢), £¢)- Since the support of the Kesten
measure k; is compact, we have L% (supp(ky),x¢) C L2(supp(k¢), f¢). Any v € L?(k¢)
can be written as v(z) = Y-, axpr(x), where pi(z), k = 0,1,..., is the sequence
of polynomials orthonormal with respect to the Kesten measure x;. The action of the
operator I'(T) is

(4.8) I(T)y(z) = Z s* onpr (x)
k=0

The operator I'(T") can be expressed by a kernel, I'(T)y(z) = Sks(x,y)'y(y) dr(y), and
the kernel can be defined with the use of orthonormal polynomials:

= s*pi(@)pr(y)
k=0
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(see [J]). Moreover, if the function v is bounded, v € L*(k;) — L?*(ky), then from
Theorem 2 of [J] it follows that I'(T)~v(z) is also bounded, provided that the kernel is
nonnegative. Thus, the kernel, when nonnegative, defines an operator I'(T') : I'(X) —
I'(X). The requirement of complete positivity of I'(T) reduces in this case to positivity,
and in terms of the kernel to the question whether kg (x,y) is positive for x,y in the
support of x;. This choice of the Hilbert space and of the operator T' was meant as
a test case for the general problem of existence of the second quantization functor and
was carried out before the paper [GM] appeared. The results of Gutd and Maassen are,
however, limited to the case 0 < ¢ < 1. Our calculations, in addition to providing a closed
form formula for the kernel, show that it remains positive for 0 < ¢t < (1 ++/2)/2 and
is no longer so for greater ¢. This means that no second quantization functor can exist
in this case; it is also an answer to a question of Janson [J] on the existence of kernels
without the positivity property.

4.6. The Mehler kernel for the Kesten measure. We recall that the Cauchy trans-
form of the Kesten measure x; is the following:

Gl‘”w, (Z) =

We can therefore use the coefficients of the continued fraction to define the recurrence
coefficients of the orthonormal polynomials.

DEFINITION 4.18. Let us denote by p(x) the system of polynomials othonormal with
respect to uy given by the following recurrence relations:
po(z) =1, piz) ==z,
zpn () = ApPnt1(2) + An—1Pn-1(2),
where
1= Ao, Vi=XA=X =X 3= \g=---.

Hence
2 -1

pz(l’) = \/i

DEFINITION 4.19. We denote by k¢(x,y) the ¢t-deformed Mehler kernel

ko(z,y) =Y s* pr(@)pe(v),
k=0

and by k%(x,y), a = x,y, the shifted sums
Ko(y) = s pepa(@)pe(y),  kY(zy) = s"pe(@)pria(y).
k=0 k=0

We would like to see that the above series are convergent for any x,y € supp(r¢)-
The coefficients \j, of the recurrence relation for polynomials orthogonal with respect to
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the Kesten measure are constant for £ > 1, we may thus use the following boundedness
result proven in [N, Chapter 3, Theorem 12] for polynomials with convergent coefficients.

THEOREM 4.20. The sequence {|py(z)|} is uniformly bounded on any closed interval A C

(—2v/t,2V/1).

Moreover, we can explicitly calculate the values of pi(x) when x is one of the atoms
or one of the endpoints of the above interval, which is the support of the absolutely
continuous part of the Kesten measure.

LEMMA 4.21. For any t > 0, at the endpoints of the interval we have

po(2Vt) =1, p1(2vt) =2V, pr(2V1) = M\g_l)
—(k—1)

P2V =1, g2V = —2vi  pu(-2vi) = 2 (=1)F,

Vit

and for 0 <t < 1/2 at the atoms we have

)=t ) e () - A’

(=) (=) v (=)= (7))
P\ =1 P\ T aior PM\io T—i\vi—i/ "
Proof. Tt is a simple verification that the sequences py () satisfy the recurrence formulae
of Definition 4.18 for the appropriate values of z. m

THEOREM 4.22. The series ks(z,y), k¥ (z,y) and k¥Y(x,y) are convergent for all —1 <
s <1, x,y € supp(kt), t > 0.

Proof. First observe that the sequences py(z) when x is one of the atoms are bounded
whenever the atoms show up in the measure, i.e. for 0 < ¢ < 1/2. Hence, for —1 < s < 1
the series k,(z,y), k%(z,y) and k¥(z,y) are convergent for all x,y € (—2v/,2V/t) U
{=1/v/1—=1t,1/4/1 —t} (the discrete part appearing only when 0 < t < 1/2).

The remaining task consists in checking the case x € {+2V/t}, y € (—=2Vt,2V1) U
{-1/v/1—1,1/y/T —t} and also the case z,y € {£2\/t}. But in the first case, the
desired radius of convergence can be easily calculated from the Cauchy criterion, and in
the second case from the d’Alembert criterion. m

THEOREM 4.23. The Mehler kernel ks(x,y) for the measure k; is given by

(2= 1)(s*(t—1) —t —s(t—1)axy)
(s? = 1)%t + s(—zy — s*xy + s(2? + 7))

ks(z,y) =

for any —1 < s <1, z,y € supp(ky).
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Proof. We will use the recurrence relation defining the polynomials pi(x) to find rela-
tionships between the series ks(x,y), k% (z,y) and kY (z,y):

ZS pr(z

1.2 _ 2 _ 0
=1+szy+s % + > s p(@)piy)

k=3

_ st §2 (5172 - 1)@2 -1) - gk rpg_1() - "
= s+ Y (2t o))t

=1+sxy+s

22— 1)(y? -1 T
2¢+—Zskm1 z)pr(y Zsmz Pr(y)
\/Ek=3

t

2?2 —1)(y? - 1)
=1+ szy+ s> % Zs pr(x)pre1(y)—s Zs Pr(2) P2 (y)
t \[ k=1
(@2 -1y —1) sz ( y? — ST ~—
=1+soy+s "L Tyt — (@)pr+1(y)
t Vi e v I
_ 2i k ypr+1(y)
s7 ) s pk(%)( —pr(y)
Pt Vi
2( 2 1) 2 e o]
Y STy ST sy &
=1+4szy - ——+ = k(z,y) = —= > s pr(T)pr41(y)
C Vi Vi &
+5° ) st pr(z)pe(y)
k=1
s2(y? - 1) sy +s*y? sz —s%y
=1+ szy — s — — kY (x,y) + ?kq(z,y).
y t v ) + )
Hence
2 2 2,2 2
14+ sxy — 82 s (ytfl) _ smy+s‘y + sTr—s yké}(x,y)
(4.9) ks(,y) = = vt Vi
—s
and symmetrically
2 2 2 2 2
1+ szy—s?— = @ =1 _ swyts’e® 4 sy—s LEZ (x,y)
(@10) k(o) = I S ALY
—s
Moreover
(4.11) ZS Pr(z)pr+1(y)
k
=y+ sx + s
Y \/i Z Pr(2)Prt1(y)
V-1 yp(y) )
=y +sx + S T — Di—
vy ) (22— i)
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+—Z=9pk ZSPk z)pr—1(y)
2

—y+szl J‘% L U (Lt say) + % Z S pi(a)pi(y) — 5 Z i1 (2)pr(y)

sxy? —sr—y — sz Yy >
=y+ Y Y Yt so+ sZskp;H_l P (Y)

Vit

sxy? — sx —y — swy

k=0
=y+sr+ + ks(x,y) — sk¥(z,y).
y i (z,y) (z,y)

Solving (4.9), (4.10) and (4.11) for ks(x,y) we get the desired formula. m

:y—i—s:v

Sl &l

4.7. Positivity of the t-deformed Mehler kernel

THEOREM 4.24. The Mehler kernel ks(x,y) is nonnegative for all choices of 0 < s < 1,
z,y € supp(k), 0 <t < (1++/2)/2.

Proof. We use the fact that the kernel is symmetric, ks(z,y) = ks(y, z). We shall split
the proof into four cases: 1. both z and y are in the atoms; 2. one of them is in the
positive atom and the other in the continuous part of the support; 3. one in the negative
atom and the other in the continuous part; 4. both x and y in the continuous part.

1. When both z,y € {-1/v/1 —¢,1/y/1 — t} and the measure admits atoms, that is,
for 0 <t < 1/2, we get

(i) wr) -t

since t — 1 + st < 0, and

-1 1 s
b —— ——— ) =1 —2 >0
(x/l—t \/1—t> 1—t+st
2. When = 1/y/1 —t and y € [-2V/t,2V1], 0 <t < 1/2 we get
k ( 1 ) (1—38?)(s*(1—t)+t—sV1—ty)
s\ Y /—— Y| = 52 :
V-t t((82 —1)? Vi-tt - (tfl)t)
To check positivity we shall consider separately the numerator and denominator. Since

1 — 52 > 0, only the second factor of the numerator is relevant. This is a linear function

s2—s t+t
in y and assumes negative values for y > SV

We may ignore the positive factor ¢ in the denominator and the remaining part is a
quadratic function of y and assumes negative values for
s?2— s+t 1—t+s%t
sv/1—t <y< sv1—t
Since under the assumptions on s, y and ¢t we have
s2—s*t+t  1—t+s*
ST s/ioi

which means that for the relevant values of y both the numerator and the denominator

y <2Vt <

are positive, the positivity of the whole kernel is established in this case.
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3. When o = —1/y/T—t and y € [-2V/£,2V/1], 0 <t < 1/2 we get
k( -1 )_ (1—38?)(s*(1—t)+t+sV1—ty)

Y| = ) .
NG 2 2 s(A+s?)y | s%y? 2
1-t t((s —1)2+ BVi=Ta - S_)
By an argument similar to the previous point, the numerator is positive for all y >
y g 1% 1% ) p Yy

2, 2 . .
%, whereas the denominator assumes negative values for

(t—l—s2t s2t—s2—t>
y € .

t -1t

svVl—t svl—t

s2t—s%—t
sv1—t

both the numerator and denominator remain positive for all y € [~2+/, 2v/], hence the

But since

positivity is established.
4. When both =,y € [~2v/%,2V/t] and t > 0 we get
(1—sH)(=s2(t—1)+t+s(t—1)zy)

e e ]

ks(z,y) =

Observe that the denominator satisfies

(52174 -2 - Sy s<w2+y2>)>

t t t

(v 22 (25

s0 it is nonnegative. Denote by w(s,t, z,y) the second factor of the numerator:

w(s, t,z,y) = —(s2(=1+1)) +t +s(—1+t)zy = s>(1 — t) + s(t — 1)zy + t.

It remains to check when the polynomial w(s,t,z,y) is nonnegative. First assume that
t € (0,1). We shall prove nonnegativity of w in this case:

21 —t) +s(t— Dy +t>s*(1—t) +s(t — 1)4t +,

because since s(t — 1) < 0 the left hand side expression is the smallest for xy = 4t,
furthermore, evaluation of the right hand side at the lowest point of the parabola gives

4(t — 1)%¢2
s2(1—t) + s(t — 1)4t+t>t+% = (1-2t)* > 0.
Hence ks(x,y) is nonnegative in this case.
Now assume ¢ € [1,00). The minimum of the polynomial w(s,t, z,y) is attained at
one of the points when 2y = —4t, and since the coefficient of s? is negative, when s = 0

or s — 1. Then
w(0,t, —2vt,2v/t) =t > 0

and
1+

w(s,t, —2VE2V4) 3 42 4+ 4t +1>0 fort <

Hence, for t > (1++/2)/2 the kernel k,(x,y) admits negative values for some s,z,y
within the appropriate domain. m
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5. Multidimensional boolean cumulants

5.1. t-free product of states. From the previous considerations we know that the ¢-
free convolution of measures can be interpreted as a special case of the conditionally free
convolution of Bozejko, Leinert and Speicher [BLS]. However, the construction presented
in that paper consists of first constructing a conditionally free product of pairs of states
(D1, D2) = (1, p2) *e (v1,2) on A = Ay x Ay = C({X;, X2) for two given pairs of states
(p1, p2) on A; = C(X;) and (v1,12) on Ay = C(X>), and only then defining (41, ¢2) =
(p1, p2) Be (v1,v2) on C(X) by linear extension of (¢1, ¢2)(X") = (D1, P2)((X1 + X2)™).
Using those observations, we would now like to define the ¢-deformed free product of
states.

To this end we shall define a family of transformations Ut(n) acting on states on
algebras of polynomials in n noncommuting variables, such that for n = 1 we get the
transformation of measures U; discussed previously and that for

(5.1) (@,0) = i*:cl(ui7 Ut (i),

where p; are states on C (X;) and the second state ¥ is defined as the free product
(5.2) V= izl U(pi),

we have

(5.3) (@,9) = (&,U™ ().

We have the following assiociativity lemma, proved by Mlotkowski in [M}, Proposition 2]:

LEMMA 5.1. Assume that I =, I; is a partition of I. Then

jed
(5.4) *e (Ko (pi, Vi) = e (pi v3).-
jE€J i€l; i€l
Therefore, we also get
(5.5) (.UM () 5 (2,U™ (@) = (0,U"™(0)),

for the states W on C (X1,..., X,),@on C (X, q1,..., Xntm)and O on C (X1, ..., Xpim)-
This allows for the following

DEFINITION 5.2. We shall call the state © arising in equation (5.5) the t-deformed free
product of the states ¥ and &.

5.1.1. Boolean cumulants and interval partitions. Since we are dealing with algebras
of noncommutative polynomials in many variables, every f € C(Xy,...,X,) can be
written as a finite sum f =" «;, . ;, X -+ X;,. Linear functionals can thus be defined

on simple words Xj, --- X;, and then extended to the whole algebra.

1k

We now get to the details of the definition of the transformation Ut(n) and to the dis-
cussion of whether it produces states, i.e. positive functionals. In the previous chapters
we saw that the one-dimensional deformation of measures U; is the t-th boolean convolu-
tion power, which followed from the properties of the corresponding Cauchy transforms.
We shall see that U(™) can also be seen as a kind of boolean convolution power. We need

the following
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DEFINITION 5.3. Let 1 be a state on C(Xy,...,X,). Then we define the boolean R-
transform Rff on simple words X;, --- X;, by the relation

VeB(n)
V=(V1,..,Vi)
where B(n) is the set of interval partitions of the set {1,...,n}, that is, containing only

outer blocks, and Xy, = (Xy, _ 41+, Xu,,) if Vie = (vg—1 4+ 1,...,v). We shall denote
the interval (vg—1 4+ 1,...,vx) by [vg—1 + 1, vg].

DEFINITION 5.4. We shall call a state ¥ on C(X1,...,X,,) the t-th boolean product
power of some other state n on C(X4,...,X,), t € R, when

(5.6) Xy, - X)) = > tRY(Xy,) - tRF (Xy,).
VeB(n)
V=(Vi,..,Vk)
Following Lehner [L] we shall make use of the following definitions:

DEFINITION 5.5. A partition 7 is ¢rreducible if the elements 1 and n are in the same
connected component.

DEFINITION 5.6. The interval closure of a given partition 7 is the smallest interval parti-
tion T dominating 7, that is, for every block m; € 7w there exists an interval block B; € T
such that m; C B;.

In the following we will make use of the moment-cumulant relations for the condition-
ally free product, which involve summation over only noncrossing partitions. Thus we will
need the above definitions only in the noncrossing context, along with some properties
gathered in the following proposition:

PROPOSITION 5.7. Let w be a noncrossing partition of the set [1,n]. Then:

1. « is irreducible if the elements 1 and n are in the same block.

2. Any 7 can be decomposed into irreducible factors P;, i =1,... k.

3. Any such irreducible factor P; consists of blocks m;, € © such that \Jm;, = [r;, S
and exactly one of those blocks is outer and contains r; and s;, both the ends of
the spanned interval; we denote this block by outer(F;).

4. The interval closure of the partition 7 is the interval partition T with blocks
([r1 = L,s1],[re = 81+ 1,82],...,[r, 81 = n]) corresponding to the ends of in-
tervals spanned by the irreducible components.

Proof. Instead of a formal algebraic proof we shall present the notions and ideas on
diagrams. Let n = 10 and consider a noncrossing partition 7 of the set [1,10] such that
one of the blocks 7; of m contains both 1 and 10; it could be for instance
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where m; = (1,6, 10). The smallest interval partition dominating = must have an interval
block that dominates the block 7; containing the endpoints, hence ™ must be composed
of one block containing all the points:

I I I I I I I I I I
1 2 3 4 5 6 7 8 9 10 T

Conversely, since we are now dealing with noncrossing partitions only, if the smallest
interval partition dominating 7 is a one-block interval, there must be a block 7; in 7
containing both 1 and n, otherwise we have a situation like one of the following:

[ 1 1

1 2 3 4 5 78 9 10 9om
s o

1 2 3 4 5 708 9 10 om
| | | |

1 2 3 4 5 78 9 10 om

I I I I I I I I I I

1 2 3 4 5 6 T 8 9 10 @m

We have marked the outer blocks of all the partitions in bold line. Let irreducible
factors be the subpartitions consisting of one outer block together with all inner blocks
supported on points from between the ends of the outer block. As an illustration take
72 from the above examples. Clearly m = ((1,3,6),(2), (4,5),(7,9,10), (8)) and it de-
composes into P; = ((1,3,6),(2),(4,5)) and P, = ((7,9,10), (8)). Every such irreducible
factor is mapped into an interval in the interval closure.

It is also clear that summations involving all noncrossing partitions of an ordered set
can be written as composite summations, first over interval partitions w and then over
all noncrossing partitions 7 such that 7 = w.

5.1.2. Main theorem

THEOREM 5.8. For states p; on C(X;), i =1,...,n, and (P, ¥) = %11 (ps, Ue(p:)) we
have ®¥t = W, and write Ut(n) (P)=0.

Proof. The conditionally free product of states is linearized by the multilinear cumulants,
which for a pair (u,v) of states on C (X;) are defined through
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(5.7) viaa)= Y I wvil I Vil

TeNC(k) Vienm Viem
Vi outer V; inner
(5.8) wlar--ar)= Y [ ReVi] I nil
weNC(k) V,enm Vienm
Vi outer V; inner
where for a partition block V' = {v1,...,v;} we denote by r,[V] = r,[a,,, . .., a,,] the free
cumulant of the state v and by R, , [V] = Ry, , [y, , . . ., ay,] the conditional cumulant with

respect to the states 4 and v. In this definition we assumed a; € C(X;), j =1,...,k, and
we extend it to C (Xy,...,X,,) by putting r,[a1,...,ax] = R, a1, ..., ax] = 0 whenever
any a; ¢ C(X,).

We note that for the specific choice ay,...,ar = X; we have v(ay ---ay) = v(XF)
and p(ay -+ - ax) = u(XF) and the above equations (5.7), (5.8) define the same recurrence
relation as (2.13), (2.14) for linear cumulants, which means that r, [a1, ..., ar] = RE(k)
and R, , [a1,...,a) = V(k:) As a consequence, for (u,v) = (i, Us(1;)) we get

1
(5.9) RHhUt(Ni)[a'l’ ceey ak] = E TUt(Mi)[a17 ey ak]
for our specific choice aq,...,ar = X;.

The transforms corresponding to the conditionally free product (@,¥) are the sums
of the transforms corresponding to the pairs (u;, U(p;)), extended to C (Xq, ..., Xp):

(5.10) RV = Rq),‘p[avl, c. ,Clvj] = ZRHivUt(;ui)[avl’ vy avj],

(5.11) TV = Tw[0y, G, = ZTW (G s Qo]

and the moments with respect to the states (@,¥) are recovered through the moment-
cumulant formulae for the conditionally free product established in [BLS]:

(5.12) ¥ (ay = > I =~ II rv

TeNC(k) Viem V,emn
Vi outer Vj inner
and
(5.13) P(ay § II v II rv
TENC(k Vien V,em
V; outer Vj inner

To prove the assertion we only need to consider aj ---ay of the form X, ---X;, . For
this choice, all cumulants appearing in the right-hand sides of the above equations will
satisfy Ry = (1/t)ry, since they are sums of cumulants for which (5.9) holds. Let us now
group the noncrossing partitions 7 in the summation in (5.13), according to the structure
of their irreducible components, which is reflected by the interval partitions 7 arising as
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interval closures:

oXi..X)=> S I B [I m™

weB(k) weNC(k) Vien Viem
T=w V; outer V; inner
m
= E § H Router(Ci) H TVJ-
weB(k) =C1U---UC,, i=1 V;€C;
W=W1 5. y,Wim C; €NC(supp(w;)) Vj inner
Ci=wi
m
= > > - > [I Rowterccy 11
weB(k) C1€NC(supp(w1)) Cm ENC(supp(wm)) =1 V;€C;
W=W1,ee, Wi Ci=w Cm=wm V; inner

Set for convenience

Kg (wz) = Z Router(Ci) H Tv;-
C; eNC(supp(wi)) V;eC;

Ci=w; V; inner

Then

m

P(Xi, - Xy,) = > T Kaelw),
weB(k) i=1

W=W1 . Wm

41

ij.

which is exactly the expression (5.6) defining boolean cumulants, thus K¢ (w;) = RE (w;).

Transforming equation (5.12) in the same way as (5.13) above we get

V(X X) = Y [ Eelw),

weB(k) =1

W=W1,ee W
where
Ky (w;) = E Touter(Cy) H TV,
C;€NC(supp(w;)) V;eC;
Ci=w; Vj inner
hence

Ky (wi) = tKg(w;).
Thus tRZ(w;) = RE, which completes the proof. m

5.2. Recurrence formula for moments. Earlier in this work we mentioned a result

by Bozejko and Wysoczanski from [BW2] where the authors give a recurrence formula

for the moments of Uy (u):

n—1
(5.14) My, (uy(n) = tm,(n) + > my, ) (k)m(n — k).
k=1

We shall extend it to the states & and ¥. By factoring the “leftmost” (respectively
“rightmost”) interval term out of the product and grouping similar terms in the definition

of the boolean cumulants we get the following
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PROPOSITION 5.9. For any state n on C(Xy,...,X,) we have

(X, X)) = > J[RF @)

weB(k) i
k—1
= RY(ILK) + D Ry ([L DXy - Xa,)
j=1

k-1
= R ([1,K]) + ZU(Xn - X )RE ([ + 1, k).
j=1

If k=1 only RE([1]) survives.

THEOREM 5.10.

k—1
W(Xh T Xlk) = té(Xil e Xlk) + (t - 1) Z W(Xh t Xij )Q(Xz

j=1

g1

Proof. We apply Proposition 5.9 to the RHS of the above a number of times:
RHS = tRE([1, k])

k—1
+ Z th([l’j])@(X1J+1 e Xlk)
j=1

k—1
+ 3 (X, o X )ERE (0 + LK)
=1

k—2 k—1
=1 j=t+1

k—1
_ ZW(XA X)Xy, Xay)
j=1

— RP(LK)+ U, - X RE e+ L)
=1
(5.15) + 2}%5([17]'])@(&#1 X
(5.16) + kg(z (X, X )RE (04 1,3]) ) 2(X, - Xy
(5.17) _ igp(){il ...Xij)@(Xin X))
j=1

=w(X,, - X;,) =LHS

because by Proposition 5.9 the terms (5.15) and (5.16) cancel with (5.17). m
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