
1. Introdu
tionThe present work is devoted to the study of the t-deformed free probability. The notionof the t-deformation of a measure and of a 
onvolution, inspired by the 
onditionally free
onvolution of Bo»ejko, Leinert and Spei
her [Bo1, BS2, BLS℄, was �rst introdu
ed inthe papers by Bo»ejko and Wyso
za«ski [BW1, BW2℄. We propose for the t-deformedfree probability the name of Kesten probability, justi�ed by the fa
t that the measurearising in the 
orresponding 
entral limit theorem is, for a suitable 
hoi
e of parameters,exa
tly the spe
tral measure of a random walk on the free group with a �nite number ofgenerators, as dis
overed by Kesten in [K℄ (see also [PS℄).In the se
ond 
hapter we re
all the ne
essary de�nitions and basi
 fa
ts from prob-ability, espe
ially relating to the Cau
hy transforms and their re
ipro
als, as they areneeded for analyti
 des
riptions of the 
onvolutions in question. In the next 
hapter wegather the de�nitions of the t-deformation of measures and of the t-deformed free 
on-volution t and relate them to the free, 
onditionally free and boolean 
ases. We presentthe R t transform, whi
h linearizes the 
onvolution t . We then re
all two fundamentallimit theorems, the 
entral limit theorem and the Poisson limit theorem. We re
al
ulatethe Cau
hy transform of the Poisson limit measure from �rst prin
iples, as the limit of
onvolution powers of µN =
(
1 − λ

N

)
δ0 + λ

N δ1, and then get the expli
it form of themeasure from a result of Saitoh and Yoshida on the 
orresponding orthogonal polynomi-als. We then dis
uss the in�nite divisibility with respe
t to the 
onvolution t , and weestablish a Lévy�Khin
hin formula. We 
on
lude the third 
hapter by proving that for
t > 0 all probability measures µ have the Ni
a�Spei
her property, that is, one 
an �ndtheir 
onvolution power µ t s for all s ≥ 1. This behaviour is similar to the free 
ase, as inthe original paper of Ni
a and Spei
her [NS℄, and di�erent from the boolean 
ase (when
t = 0) for whi
h the property is satis�ed for all s > 0.In the fourth 
hapter we 
onstru
t generalized Brownian motions, parametrized bya pair (t, q), 0 < t < 1, −1 ≤ q < 1. Su
h a pro
ess is a family of operators ω(τ ),
τ ∈ R, in an appropriate non
ommutative probability spa
e. To 
onstru
t it we �rst
onsider a Fo
k-type Hilbert spa
e on whi
h we de�ne the 
reation and annihilationalgebra generated by the 
reation and annihilation operators c∗(h) and c(h), h ∈ H = KC,where K is a real Hilbert spa
e and KC its 
omplexi�
ation. We show that the va
uumstate ̺(a) = 〈Ω, aΩ〉 on this algebra is determined by a fun
tion on pair partitions ofan ordered set. We note that from the form of this pairing pres
ription it follows thatthe Gaussian elements ω(k) = c∗(k) + c(k), k ∈ K →֒ KC, are Kesten-distributed for
q = −1 and are q-gaussian as t → 0. We then get the pro
ess by identifying K with
L2(R) and de�ning ω(τ ) = ω(χ[0,τ)), where χ[0,τ) is the 
hara
teristi
 fun
tion of the[5℄



6 �. Wojakowskiinterval [0, τ ). Later in that 
hapter we present a link between the Kesten-distributedgeneralized Brownian motions and the redu
ed free produ
t of Voi
ules
u. The last partof the 
hapter is devoted to the 
al
ulation of the expli
it form of the Mehler kernelfor the Kesten measure and to a dis
ussion of its positivity. The Mehler kernel, whenpositive, de�nes a 
lassi
al Markov pro
ess, whi
h 
an be seen as a 
lassi
al version ofthe generalized stationary Brownian (Ornstein�Uhlenbe
k) pro
ess. Moreover, we noti
ethat for those values of the parameter t for whi
h the kernel is not positive, it is impossibleto 
onstru
t the se
ond quantization fun
tor.The �fth 
hapter is devoted to a generalization of the t-deformation of the free 
onvo-lution ⊞ to the t-deformation of the free produ
t ⋆. We �rst noti
e that the 
onstru
tionof the 
onditionally free produ
t 
an be adapted to give the de�nition of a t-produ
tof algebras of polynomials in one variable, together with their 
orresponding states. Wethen show by a 
ombinatorial approa
h that we 
an de�ne produ
ts for states on algebrasin many non
ommutative variables arising in the above way, and that they are positivede�nite. We 
on
lude this 
hapter by generalizing a re
urren
e formula for moments of t-deformed measures to a re
urren
e formula for moments of t-deformed states on algebrasin many non
ommutative variables.The author wishes to thank Prof. Marek Bo»ejko for guidan
e, en
ouragement, en-thusiasm and patien
e. This work was partially sponsored by the European Resear
hNetwork �Quantum Probability with Appli
ations to Physi
s, Information Theory andBiology�, HPRN-CT-2002-00279, the European Commission Marie Curie Host Fellowshipfor the Transfer of Knowledge �Harmoni
 Analysis, Nonlinear Analysis and Probability�,MTKD-CT-2004-013389 and the KBN Grant No 1P03A 01330.
2. Non
ommutative probabilityThe present work is 
on
erned with a parti
ular 
onstru
tion in the general frameworkof non
ommutative probability theory.In 
lassi
al probability the fundamental obje
t of study is the triple (Ω,Σ,P) where

Ω is a sample spa
e, Σ the σ-�eld of events and P a probability measure on (Ω,Σ). Therandom variables are real-valued measurable fun
tions. The distribution of a randomvariable X is the measure µX de�ned on the Borel subsets of the real line given by
µX(B) = P(X−1(B)) for all Borel sets B. The expe
tation of a random variable X isthus the expe
tation of the distribution µX .The random variables form a 
ommutative algebra A on whi
h one 
an de�ne theexpe
tation fun
tional E asso
iated to the probability measure. To determine the dis-tribution of a random variable X one 
an look at its higher-order moments, that is, thevalues of the expe
tation fun
tional E at Xn ∈ A. The moment sequen
e, when allmoments are �nite, 
an determine the measure uniquely or not. This distin
tion wasaddressed for instan
e in [Ak℄. Although various su�
ient 
onditions are known, there isno expli
it 
hara
terization of measures determined by their moment sequen
es. The suf-�
ient 
ondition most important to us is the 
ompa
tness of the support of the measure.



Probability interpolating between free and boolean 7In non
ommutative probability the starting point is the above algebrai
 propertyof the random variables. The fundamental obje
t of study is the algebra of randomvariables together with an expe
tation fun
tional; they need not arise from any triple
(Ω,Σ,P). What is more, one 
an 
onsider non
ommutative algebras. Thus, one de�nesa non
ommutative probability spa
e to be a pair (A, ϕ) where A is a unital 
omplex
⋆-algebra and ϕ a linear positive fun
tional su
h that ϕ(1) = 1. A non
ommutativerandom variable is simply an elementX ∈ A. We shall almost always 
onsider self-adjointrandom variables X = X∗. By the distribution we then understand the moments ϕ(Xn),
n = 0, 1, . . . . Sin
e the sequen
e of moments is positive de�nite, there exists a probabilitymeasure µ on the real line su
h that ϕ(Xn) =

T
xn dµ(x). In most of what follows we shallassume that the algebra A is a C⋆-algebra, as a result the moment sequen
es generatedby the expe
tation fun
tional will 
orrespond to measures with 
ompa
t support. Inthis way the probability measure asso
iated to any self-adjoint random variable from thealgebra will be uniquely determined.An essential 
on
ept in 
lassi
al probability is independen
e of random variables and
onvolution of probability measures, whi
h is the distribution of the sum of independentrandom variables. These notions 
an be 
arried over to the non
ommutative framework,they are known there as tensor independen
e and 
lassi
al 
onvolution. However, severalother kinds of independen
e together with 
orresponding 
onvolutions were des
ribed:

• free independen
e together with the free 
onvolution ⊞, introdu
ed by Voi
ules
u[V1, V2℄; those 
on
epts 
an be tra
ed ba
k to the paper [Av℄,
• boolean independen
e and boolean 
onvolution ⊎, introdu
ed by Spei
her andWoroudi [SW℄; they are 
losely related to the regular free produ
t representationof free produ
t groups of Bo»ejko (see [Bo2, BLS℄),
• 
onditionally free independen
e together with the 
onditionally free 
onvolution cof pairs of measures, introdu
ed by Bo»ejko, Leinert and Spei
her in [BLS, BS3℄;see also [Bo1℄. The free and boolean 
ases are 
ontained in this approa
h throughan appropriate 
hoi
e of the se
ond measure of the pairs.Before we re
all the above notions and dis
uss the deformations of whi
h the t-deforma-tion of this paper is a prominent example, we need some preliminaries. A good andmore 
omprehensive introdu
tion to non
ommutative probability 
an be found in [HP℄or [VDN℄.2.1. Basi
 notions. In the present work we shall be working with probability measureson the real line, the set of whi
h we shall denote by Prob(R). Let us re
all some of thebasi
 de�nitions and fa
ts that we shall need in the sequel. Sin
e all the theorems andfa
ts presented in this se
tion are well known, we omit the proofs.2.1.1. Orthogonal polynomials. Let µ ∈ Prob(R) be a measure with �nite moments ofall orders, that is, for all k ∈ N,

|mµ(k)| =
∣∣∣
∞\
−∞

xk dµ(x)
∣∣∣ <∞,



8 �. Wojakowskiwhi
h we denote by µ ∈ Prob
(m)(R). For su
h a measure we 
an de�ne the 
orrespondingorthonormal polynomials by the 
lassi
al three-term re
urren
e formula [Ak℄(2.1) p0(x) = 1, p1(x) = x− a0,

(x− an)pn(x) = bnpn+1(x) + bn−1pn−1(x),where we 
all the numbers an, bn ∈ R, bn ≥ 0, n = 0, 1, . . . , the Ja
obi 
oe�
ients.Symmetri
 measures with moments are 
hara
terized by the property an = 0. Theorthonormal polynomials satisfy the relation\
supp(µ)

pj(x)pk(x) dµ(x) = δj,k.Most measures we will 
onsider have 
ompa
t support; su
h measures are uniquely deter-mined by their moments. In that 
ase the 
orresponding orthonormal polynomials forman orthonormal basis of the spa
e L2(µ).2.1.2. Cau
hy transforms. The most important tool to handle probability measures innon
ommutative probability is the Cau
hy transform.Definition 2.1. Let µ ∈ Prob(R). Then the Cau
hy transform of µ is de�ned by
Gµ(z) =

∞\
−∞

dµ(x)

z − x
for z ∈ C

+.Proposition 2.2. The Cau
hy transform Gµ(z) is analyti
 in the upper half plane andtakes values in the lower half plane, Gµ : C+ → C−.There is an important link between the Cau
hy transform of a measure with �nitemoments of all orders and the 
orresponding re
urren
e 
oe�
ients of orthogonal poly-nomials. For su
h µ ∈ Prob
(m)(R) the Cau
hy transform 
an be written in the form ofa formal 
ontinued fra
tion:

Gµ(z) =
1

z − a0 −
λ0

z − a1 −
λ1

z − a2 −
λ2. . .

,

where λn = (bn)2 and the 
oe�
ients an are the same as in the re
urren
e formula (2.1).If µ has 
ompa
t support, whi
h we denote µ ∈ Prob
(c)(R), the 
ontinued fra
tion
onverges to the Cau
hy transform (for proof see [C, Chapter III, Se
tion 4℄); moreover,we have the following theorem ([C, Chapter IV, Theorem 2.2℄):Theorem 2.3. A measure µ ∈ Prob(R) has 
ompa
t support if and only if the 
oe�-
ients ai and λi are bounded.The Cau
hy transform Gµ(z) is also related to Mµ(z), the generating fun
tion of themoments mµ(k):

1

z
Gµ

(
1

z

)
= Mµ(z) =

∞∑

k=0

mµ(k)zk.



Probability interpolating between free and boolean 9An important operation on measures that is well re�e
ted in Cau
hy transforms is thedilation.Definition 2.4. We de�ne the dilation of a measure µ ∈ Prob(R) by a fa
tor λ bysetting Dλ(µ)(A) = µ(λ−1A) for all Borel subsets A ⊂ R.We then have
GDλ(µ)(z) =

1

z − λa0 −
λ2λ0

z − λa1 −
λ2λ1

z − λa2 −
λ2λ2. . .

=
1

λ
Gµ

(
z

λ

)
.

The moments of the measure µ 
an be 
al
ulated from the 
oe�
ients of the 
ontinuedfra
tion with the use of Theorem 5.1 of [AB℄:Theorem 2.5. For a probability measure µ with 
ompa
t support we have
mµ(n) =

∑

π∈NC1,2(n)

∏

Bj∈π
|Bj |=2

λd(Bj)

∏

Bk∈π
|Bk|=1

αd(Bj)

where NC1,2(n) is the set of non
rossing partitions of {1, . . . , n} su
h that for π ∈
NC1,2(n) its blo
ks Bj ∈ π have one or two elements , |Bj | is the 
ardinality of theblo
k Bj , and d(Bj) is its depth.Definition 2.6. A partition of the ordered set A = {1, . . . , n} is a set of blo
ks Bj ⊂ Asu
h that Bi∩Bj = ∅ if i 6= j and ⋃

Bj = A. A 
rossing in a partition V = {B1, . . . , Bm}o

urs if for some 1 ≤ j ≤ m and k, l ∈ Bj , k < l there exists Bi and r, s ∈ Bi, r < ssu
h that k < r < l < s or r < k < s < l. A partition is 
alled non
rossing if it has no
rossings. In a non
rossing partition one de�nes the depth of a blo
k Bj as the numberof blo
ks enveloping Bj , that is, d(Bj) = #{Bi | ∃r, s ∈ Bi, r < Bj < s}.2.1.3. Re
ipro
als of Cau
hy transformsProposition 2.7. The re
ipro
al of the Cau
hy transform Fµ(z) = 1/Gµ(z) : C+ → C+is analyti
 in the upper half plane.Complex fun
tions mapping analyti
ally the upper half plane into itself are 
alled Pi
kfun
tions . An elementary introdu
tion to this subje
t 
an be found in Chapter 2 of [D℄,a more detailed treatment is in [AG℄. For our purposes, the most important property ofPi
k fun
tions is the Nevanlinna integral representation theorem.Theorem 2.8 (Nevanlinna). A fun
tion F (z) is a Pi
k fun
tion if and only if there exist
a, b ∈ R with b ≥ 0 and a �nite positive measure ̺ su
h that

F (z) = a+ bz +

∞\
−∞

1 + xz

x− z
d̺(x).Moreover , a, b and ̺ are uniquely determined.It is also possible to easily 
hara
terize re
ipro
als of Cau
hy transforms in the 
lassof Pi
k fun
tions.



10 �. WojakowskiTheorem 2.9 (Nevanlinna). A fun
tion F (z) is the re
ipro
al of the Cau
hy transformof some probability measure µ ∈ Prob(R) if and only if it is a Pi
k fun
tion and b = 1in the Nevanlinna representation:
F (z) = Fµ(z) = a+ z +

∞\
−∞

1 + xz

x− z
d̺(x).

2.2. Free probability. We are now in a position to de�ne the most prominent typeof non
ommutative probability, the free probability. To de�ne independen
e in 
lassi
alprobability one passes through 
onditions on sub-σ-�elds, it is thus natural that in thenon
ommutative theory one starts with subalgebras.Definition 2.10. A family of subalgebras Ai ⊂ A is 
alled free if
ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an) = 0(2.2)whenever ϕ(aj) = 0, aj ∈ Aij
, j = 1, . . . , n and i1 6= i2 6= · · · 6= in.Two random variables are 
alled free if they belong to two distin
t free subalgebras.For measures µ and ν with 
ompa
t support, their free 
onvolution µ ⊞ ν is de�nedas the distribution of X + Y ∈ A where X,Y ∈ A are free and have distributions µand ν respe
tively. To this 
on
ept there 
orresponds the notion of the free produ
t ofnon
ommutative probability spa
es. Given (A1, ϕ1) and (A2, ϕ1) we de�ne A = A1⋆A2 asthe free produ
t with amalgamation of units, that is, the ⋆-algebra generated by the unitand words of the form ai1

1 b
j1
1 . . . ain

n b
jn
n where ak ∈ A1, bk ∈ A2, k, ik, jk ∈ N, ik, jk > 0,

i1, jn ≥ 0. The state ϕ = ϕ1 ⋆ ϕ2 is de�ned so as to satisfy the relation (2.2). Thenwe have ϕ|Ai
= ϕi, the algebras Ai naturally embedded into A are free, and if X ∈ A1,

Y ∈ A2 then mµX⊞µY
(n) = ϕ((X + Y )n).Sin
e the measure µ ⊞ ν depends only on the measures µ and ν, it is essential tobe able to des
ribe it only in terms of µ and ν. This is done with the use of the R-transforms R⊞

µ (z), R⊞
ν (z), the analogues of the logarithm of the Fourier transform in
lassi
al probability. If we de�ne

R⊞
µ (z) = G−1

µ (z) − 1/z,(2.3)where G−1
µ (z) is the right inverse of Gµ(z) with respe
t to 
omposition of fun
tions, wehave

R⊞

µ⊞ν(z) = R⊞

µ (z) +R⊞

ν (z).(2.4)
G−1

µ (z) and R⊞
µ (z) are well de�ned in some neighbourhood of zero. We 
an thus writethe above equation in an alternative form

Gµ(z) =
1

z −R⊞
µ (Gµ(z))

.(2.5)Moreover, sin
e R⊞
µ (z) is analyti
, it 
an be treated as a series ∑∞

k=0R
⊞
µ (k + 1)zk. The
oe�
ients R⊞

µ (k) 
an be 
al
ulated by the results of Spei
her [S1℄ from the 
ombinatorial



Probability interpolating between free and boolean 11moment-
umulant formula
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

k∏

i=1

R⊞
µ (|πi|),(2.6)

where NC(n) is the set of non
rossing partitions of {1, . . . , n}, πi, i = 1, . . . , k, are blo
ksof the partition π, and |πi| is the 
ardinality of the blo
k. Equivalently, one 
an startwith re
ipro
als instead of Cau
hy transforms and de�ne
ϕµ(z) = F−1

µ (z) − zgetting a similar linearity relation ϕµ⊞ν(z) = ϕµ(z) + ϕν(z). Moreover, this approa
hextends to measures with unbounded support and with in�nite moments; one only hasto �nd an appropriate domain for z. This has been done by Maassen [Ma℄ for the 
ase ofmeasures with �nite varian
e and by Ber
ovi
i and Voi
ules
u without this assumptionin [BV2℄. Ber
ovi
i and Voi
ules
u prove that for any probability measure µ ∈ Prob(R)and any α > 0 there exists β > 0 su
h that the fun
tion ϕµ(z) is analyti
 in a domain ofthe form
{z : |z| > β, Im(z) > 0, Re(z) < α Im(z)}and that su
h an analyti
 fun
tion determines a 
orresponding probability measure. Sin
ethe sum of two su
h fun
tions is again analyti
 in su
h a trun
ated angle for β largeenough, the 
orresponding measure is determined.2.3. Boolean probability. The se
ond well-known example of non
ommutative inde-penden
e is the boolean relation.Definition 2.11. A family of subalgebras Ai ⊂ A is 
alled boolean-independent if

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an)(2.7)whenever
aj ∈ Aij

, j = 1, . . . , n, aj 6= 1 ∈ A and i1 6= i2 6= · · · 6= in.The boolean produ
t has been introdu
ed by Bo»ejko in [Bo1, Bo2℄ and is known underits name sin
e the paper of Spei
her and Woroudi [SW℄. For our purposes the booleanprodu
t (A1, ϕ1) ⋆b (A2, ϕ2) 
an be thought of as a spe
ial 
ase of the 
onditionally freeprodu
t (A1, ϕ1, ψ1)⋆c (A2, ϕ2, ψ2), where on the appropriate algebras we have ψi(α1⊕β)

= α. This setup is enough for studying the distributions of sums of random variables.In a full treatment of the boolean produ
t and independen
e we would have to 
onsideralgebras Ãi = Ai ⊕ C 1̃ with arti�
ially added units, together with states ϕ̃i(α1̃ ⊕ β) =

α+ ϕ(β) and ψi(α1̃ ⊕ β) = α; this is, however, beyond the s
ope of the present paper.As in the previous 
onstru
tions, the boolean 
onvolution is best des
ribed in termsof analyti
 fun
tions. Let µ, ν ∈ Prob(R), and let
R⊎

µ(z) = z − 1

Gµ(z)
, R⊎

ν (z) = z − 1

Gν(z)
.(2.8)We know from [SW℄ that R⊎

µ⊎ν(z) = R⊎
µ(z)+R⊎

ν (z). Spei
her and Woroudi also show thatthis de�nition works for arbitrary probability measures, possibly with in�nite moments,



12 �. Wojakowskidue to the Nevanlinna theorem. Another important property arising from the Nevanlinnatheory is that every probability measure is in�nitely divisible with respe
t to the boolean
onvolution. The easiest proof of this fa
t is by showing that for any probability measure
µ ∈ Prob(R) and t ≥ 0 the fun
tion tR⊎

µ(z) is the boolean transform R⊎
µt

(z) of someprobability measure µt. Consequently, for any N ∈ N we have µ = µ1/N ⊎ · · · ⊎ µ1/N ,where R⊎
µ1/N

(z) = (1/N)R⊎
µ(z). Moreover, for any µ ∈ Prob(R) we 
an de�ne its t-thboolean 
onvolution power µ⊎t for t ≥ 0 by requiring R⊎

µ⊎t(z) = tR⊎
µ(z).2.4. Conditionally free probability. The 
onditionally free 
onvolution has beenintrodu
ed in the papers of Bo»ejko, Leinert and Spei
her [BS2, BLS℄. Similarly to thefree 
ase, we start by looking at 
onditionally free subalgebras. Let A be a ⋆-algebra withtwo states ϕ and ψ.Definition 2.12. We say that the subalgebras A1,A2 ⊂ (A, ϕ, ψ) are 
onditionally freeif they satisfy

ϕ(a1 · · · an) = ϕ(a1) · · ·ϕ(an),(2.9)
ψ(a1 · · · an) = ψ(a1) · · ·ψ(an) = 0(2.10)whenever(2.11) ψ(aj) = 0, aj ∈ Aij

, j = 1, . . . , n and i1 6= i2 6= · · · 6= in,where (2.10) means that the subalgebras are free with respe
t to the se
ond state ψ.Consider random variables X ∈ (A1, ϕ, ψ), Y ∈ (A2, ϕ, ψ). To ea
h of them there
orrespond two sequen
es of moments, with respe
t to the two states ϕ and ψ, hen
etwo probability measures, X ∼ (µX , νX), Y ∼ (µY , νY ). The pair of measures X + Y ∼
(µX+Y , νX+Y ) 
orresponding to the random variableX+Y is 
alled the 
onditionally free
onvolution of (µX , νX) and (µY , νY ) and denoted (µX+Y , νX+Y ) = (µX , νX) c (µY , νY ),where by (2.10) we have νX+Y = νX ⊞ νY . As in the free 
ase, if we are given twonon
ommutative probability spa
es (A1, ϕ1, ψ1) and (A2, ϕ2, ψ2), on A = A1 ⋆ A2, thefree produ
t with amalgamation of units, we 
an de�ne states ϕ and ψ by requiring themto satisfy relations (2.9)�(2.11). We denote this by (A, ϕ, ψ) = (A1, ϕ1, ψ1)⋆c(A2, ϕ2, ψ2).The natural embeddings of A1 and A2 into A are 
onditionally free, ϕ|Ai

= ϕ, ψ|Ai
= ψ,and if X ∈ A1, Y ∈ A2 then mµX+Y

(n) = ϕ((X + Y )n) and mνX+Y
(n) = ψ((X + Y )n).The 
onditionally free 
onvolution 
an also be des
ribed in terms of R-transforms.Sin
e the se
ond measure of the pairs is 
onvolved freely, it will be des
ribed by the freetransform R⊞

ν (z). For the �rst measure one uses a di�erent fun
tion dependent on bothmeasures; we denote it by Rc

µ,ν(z). We also use the equation (2.5) de�ning R⊞
ν (z), thusgetting

Gµ(z) =
1

z −Rc

µ,ν(Gν(z))
, Gν(z) =

1

z −R⊞
ν (Gν(z))

(2.12)and if (µ, ν) = (µ1, ν1) c (µ2, ν2) then
R

c

µ,ν(z) = R
c

µ1,ν1
(z) +R

c

µ2,ν2
(z), R⊞

ν (z) = R⊞
ν1

(z) +R⊞
ν2

(z).



Probability interpolating between free and boolean 13As in the free 
ase, the R-transforms 
an be written as power series
R

c

µ,ν(z) =
∞∑

k=0

R
c

µ,ν(k + 1)zk, R⊞
ν (z) =

∞∑

k=0

R⊞
ν (k + 1)zk,and have 
orresponding 
ombinatorial moment-
umulant formulae

mν(n) =
∑

π∈NC(n)
π=(π1,...,πk)

k∏

i=1

R⊞

ν (|πi|),(2.13)
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

∏

πi outer

R
c

µ,ν(|πi|)
∏

πj inner

R⊞
ν (|πj |),(2.14)

where a blo
k πi is 
alled inner when there exists another blo
k πj with a, b ∈ πj su
hthat a < p < b for all p ∈ πi. All blo
ks whi
h are not enveloped in su
h a way are 
alledouter. Equivalently one 
an say that the outer blo
ks πi have depth d(πi) = 0 and theinner πj have d(πj) > 0.The above de�nitions are well established in the 
ase of measures with 
ompa
t sup-port. Only re
ently, after the main part of the present work was 
ompleted, Belins
hi [Be℄extended the theory of the 
onditionally free 
onvolution to arbitrary probability mea-sures. His approa
h, however, is not expressed in terms of R-transforms but uses thesubordination fun
tions of Biane [Bi℄. We know that for any probability measures ν1, ν2there exist fun
tions ω1(z), ω2(z) su
h that for all z ∈ C \ R,
Gν1

(ω1(z)) = Gν2
(ω2(z)) = Gν1⊞ν2

(z).Belins
hi proved that if (µ, ν) = (µ1, ν1) c (µ2, ν2) and with the notation
hξ = Fξ(z) − z for all measures ξ,we have
hµ(z) = hµ1

(ω1(z)) + hµ2
(ω2(z)).It seems likely that the above 
onsiderations will be extended to in
lude a formulationin terms of the R or φ transforms on appropriate domains, similarly to the paper [BV2℄in whi
h the authors develop the 
ase of arbitrary probability measures in the free 
ase.Sin
e a number of our results are proved through properties of the transforms, we willstill need bounded support in most 
ases.2.5. Deformations. Let T : Prob(R) → Prob(R). There are two ways of using su
ha deformation of measures to de�ne deformations of 
onvolutions that we are interestedin. The �rst uses the free 
onvolution and is valid for any invertible map T :Definition 2.13. The T -deformed free 
onvolution T is de�ned by

µ T ν = T−1(Tµ⊞ Tν)(2.15)for any probability measures µ and ν.



14 �. WojakowskiFor the se
ond one we need to assume that T maps measures with 
ompa
t supportto measures with 
ompa
t support, but no invertibility is required.Definition 2.14.
(µ⊞T ν, Tµ⊞ Tν) = (µ, Tµ) c (ν, Tν)for 
ompa
tly supported µ and ν.Remark 2.15. The free 
onvolution ⊞ in De�nition 2.13 
an be repla
ed by any as-so
iative 
onvolution ⊕ (for instan
e by the 
lassi
al 
onvolution), produ
ing anotherasso
iative 
onvolution ⊕(T ). This is going to be the subje
t of a forth
oming paper.We are interested mostly in transformations T preserving boundedness of support,satisfying the Bo»ejko property of the following de�nition.Definition 2.16. A transformation T of probability measures has the Bo»ejko propertyif whenever for probability measures µ, ν we write

(ξ, η) = (µ, Tµ) c (ν, Tν),then
η = Tξ.(2.16)There are two reasons that su
h deformations are of interest; we gather them in thefollowing propositions.Proposition 2.17. For transformations with the Bo»ejko property the above de�ned 
on-volution ⊞T is asso
iative.Proof. By asso
iativity of the 
onditionally free 
onvolution we have

(µ⊞T ν) ⊞T ξ = (µ⊞T ν, T (µ⊞T ν)) c (ξ, T ξ) = (µ⊞T ν, Tµ⊞ Tν) c (ξ, T ξ)

= (µ, Tµ) c (ν, Tν) c (ξ, T ξ) = µ⊞T (ν ⊞T ξ).Proposition 2.18. If the transformation T with the Bo»ejko property is invertible, thenthe 
onvolutions T and ⊞T 
oin
ide.Proof. We have
µ⊞T ν = (µ⊞T ν, Tµ⊞ Tν) = (T−1(Tµ⊞ Tν), Tµ⊞ Tν) = µ T ν.A problem of Bo»ejko was to �nd all transformations T with the Bo»ejko prop-erty (2.16).The �rst known example was the t-deformation treated in depth in the present paper,introdu
ed by Bo»ejko andWyso
za«ski in the papers [BW1, BW2℄ and further studied bythe author in [W℄. Its generalization, the (a, b)-deformation, was 
onsidered by Krystekand Yoshida in [KY2℄. Further examples, the so-
alled pure 
onvolutions, were given byOrave
z in [O1, O2℄. Another attempt was the ∆ deformation and its spe
ial 
ases, the

r and s deformations (see [Bo3, KY1, Y1, Y2℄); however, in [BKW℄ it was proved thatthis deformation has the Bo»ejko property only when it redu
es to the identity or mapsall measures to δ0, and that in other 
ases it leads to nonasso
iative 
onvolutions. In thepapers [KW1, KW2℄ the authors introdu
e two more families of deformations, of whi
hone is invertible and based on ideas similar to the t- and (a, b)-deformations, whereas



Probability interpolating between free and boolean 15the other is not invertible, and uses measures in�nitely divisible with respe
t to the free
onvolution.As mentioned at the beginning of this 
hapter, the 
lassi
al 
onvolution in the ordi-nary probability theory, and the various 
anoni
al 
onvolutions of the non
ommutativeprobability theory, that is, the 
lassi
al, free, boolean and strongly and weakly monotoni
ones (not dis
ussed in this paper, introdu
ed in the work of Muraki [Mu1℄), arise as thedistributions of sums of suitably distributed random variables that are independent inthe 
orresponding sense. Spei
her [S2℄ and Muraki [Mu2℄ proved that without furtherassumptions on the algebras of random variables the above �ve notions are the onlypossible.However, it seems that to deal su

essfully with non
ommutative random variablesit would su�
e to limit ourselves to algebras of non
ommutative polynomials in manyvariables. The last 
hapter of the present paper is an attempt to substantiate this ideain the 
ase of the t-deformed probability. Only re
ently, a major step in this dire
tionfor the general 
ase has been made by Muraki [Mu3℄. His idea is to derive a notion ofindependen
e from the notion of Fo
k spa
e, and to work with orthogonal polynomialsthat are non
ommutative. A re
on
iliation of the approa
h of Muraki and ours will bethe subje
t of a future work.
3. Kesten probabilityThe obje
t of the present paper is to study some problems arising in free probability the-ory around the 
on
ept of t-deformation of measures, 
onvolutions, states and produ
ts.It was introdu
ed by Bo»ejko and Wyso
za«ski in [BW1, BW2℄.3.1. t-deformation of measures. We will use the language introdu
ed in the previous
hapter to de�ne the most fundamental idea in our study, the t-deformation of a measure.Let t ≥ 0. For a measure with 
ompa
t support µ ∈ Prob

(c)(R) the Cau
hy transformhas the 
onvergent 
ontinued fra
tion representation with bounded 
oe�
ients:
Gµ(z) =

1

z − a0 −
λ0

z − a1 −
λ1

z − a2 −
λ2. . .

.

We de�ne the t-deformed measure denoted Utµ or µt as the measure for whi
h the 
on-tinued fra
tion representation of the Cau
hy transform is
GUtµ(z) =

1

z − ta0 −
tλ0

z − a1 −
λ1

z − a2 −
λ2. . .

.
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e the re
urren
e 
oe�
ients remain bounded, Utµ is again a 
ompa
tly supportedmeasure and GUtµ(z) is well de�ned for z ∈ C+. The above de�nition seems intuitiveand instru
tive, but it is preferable to use the algebrai
 expression relating the re
ipro
alsof the above Cau
hy transforms, sin
e by the 
ru
ial observation of [BW1℄, Ut thus de�nedextends to all probability measures on the real line. Hen
e we make the followingDefinition 3.1. The t-deformation of a measure µ ∈ Prob(R) is the measure Utµ
orresponding to the re
ipro
al of the Cau
hy transform given by
FUtµ(z) = tFµ(z) + (1 − t)z.(3.1)Let us re
all the argument that allows this extension:Proposition 3.2. For all µ ∈ Prob(R) and t ≥ 0 the fun
tion FUtµ(z) de�ned in (3.1)is the re
ipro
al of the Cau
hy transform of a unique measure µt = Utµ ∈ Prob(R).Proof. By the Nevanlinna theorem, for µ there exist a ∈ R and a positive �nite measure

̺ su
h that
FUtµ(z) = tFµ(z) + (1 − t)z = t

(
a+ z +

∞\
−∞

1 + xz

x− z
d̺(x)

)
+ (1 − t)z

= ta+ z +

∞\
−∞

1 + xz

x− z
d(t̺)(x),where ta and t̺ satisfy again the 
onditions of the Nevanlinna theorem.Let us also re
all from [BW1℄ the basi
 properties that follow from this de�nition.Proposition 3.3. For any µ ∈ Prob(R) and t, s ≥ 0 the following properties are satis-�ed :

• (Ut)t≥0 is a multipli
ative semigroup: Us(Ut(µ)) = Ust(µ);
• dilations of measures 
ommute with Ut: Dλ(Ut(µ)) = Ut(Dλ(µ));
• Ut and U1/t for t > 0 are inverses of ea
h other ;
• Ut(µ)

t→1−→ µ in the ⋆-weak topology ;
• Ut is 
ontinuous in the ⋆-weak topology : if µn → µ then Ut(µn) → Ut(µ).Let us now see the a
tion of Ut on a 
ouple of elementary examples.Example 3.4. Sin
e for a single point measure δa we have Fδa

(z) = z − a, we get
Ut(δa) = δta.Example 3.5. For a two-point measure ω = pδa + qδb, p+ q = 1 we have

GUt(ω)(z) =
1

t
Gω(z) + (1 − t)z

=
1

(1 − t)z + t
p

−a+z + q
−b+z

=
p(z − b) + q(z − a)

zp(1 − t)(z − b) + zq(1 − t)(z − a) + t(z − a)(z − b)
=
W1(z)

W2(z)
,where the degrees of the polynomials W1(z) and W2(z) are 1 and 2, respe
tively. Thismeans that Ut(ω) is again a two-point measure PδA + QδB and its Cau
hy transform
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an be multiplied in the numerator and in the denominator by c, the re
ipro
al of the
oe�
ient of z2 in W2(z), so that
GUt(ω)(z) =

cW1(z)

cW2(z)
=

P

z −A
+

Q

z −B
,where P +Q = 1 and A,B are the zeros of W2(z). This leads to the following solution:

A =
1

2

(
b(1 + q(−1 + t)) + a(q + t− qt)

+
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))2

)
,

B =
1

2

(
b(1 + q(−1 + t)) + a(q + t− qt)

−
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
)
,

P =
1

2
+

b(−1 + q + qt) − a(q − t+ qt)

2
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
,

Q =
1

2
− b(−1 + q + qt) − a(q − t+ qt)

2
√
−4abt+ (b(1 + q(−1 + t)) + a(q + t− qt))

2
.Note that the solution given on page 740 of [BW2℄ is erroneous.As observed by Bo»ejko and Wyso
za«ski in [BW2℄, the relation between the Cau
hytransform Gµ(z) and Mµ(z), the generating fun
tion of moments, allows the derivationof a re
urren
e formula for the moments of the deformed measure Utµ:

mUtµ(n) = tmµ(n) +

n−1∑

k=1

mµ(k)mUtµ(n− k).(3.2)In parti
ular, if the �rst moment mµ(1) of the measure µ vanishes, then also mUtµ(1) = 0and mUtµ(2) = tmµ(2).3.2. t-deformed free 
onvolution. We are now in a position to de�ne the t-deformedfree (or simply t-free) 
onvolution.Definition 3.6. Given two probability measures µ, ν ∈ Prob(R) and t > 0 we de�netheir t-free 
onvolution as
µ t ν = U1/t((Utµ) ⊞ (Utν)).Remark 3.7. The 
onvolution t is 
learly asso
iative, sin
e

(µ t ν) t ̺ = U1/t

[
Ut

(
U1/t(Utµ⊞ Utν)

)
⊞ Ut̺

]
= U1/t(Utµ⊞ Utν ⊞ Ut̺).We would also like to be able to des
ribe our 
onvolution with the help of some trans-form R t

µ (z) that would have the linearization property with respe
t to the 
onvolution
t . Sin
e by the above de�nition Ut(µ t ν) = (Utµ) ⊞ (Utν), a natural 
hoi
e would be
R t

µ (z) = R⊞
Utµ(z); however, for reasons that will be
ome 
lear after the next se
tion, onthe 
onne
tion between the t-free 
onvolution and the 
onditionally free 
onvolution ofBo»ejko, Leinert and Spei
her [BLS℄, we prefer to multiply it by a fa
tor 1/t, thus gettingthe following



18 �. WojakowskiDefinition 3.8. The R t
µ (z) transform of a measure µ ∈ Prob(R) is given by

R t

µ (z) =
1

t
R⊞

Utµ(z).This way we have the desired linearization property R t

µ t ν(z) = R t
µ (z) + R t

ν (z). We
an also de�ne the ϕ t
µ (z) transform by ϕ t

µ (z) = 1
tϕUtµ(z).Example 3.9. Let us 
al
ulate the R t (z) transform of the two-point measure 
onsideredabove.

R t

ω (z) =
1

t
R⊞

Utω(z).By de�nition of R⊞ we get
R⊞

Utω(z) = G−1
Utω

(z) − 1

z
,where G−1

Utω
(z) is the inverse of GUtω(z) with respe
t to 
omposition of fun
tions. To
al
ulate it we need to solve a quadrati
 equation. A straightforward 
al
ulation thusgives

±G
−1
Utω

(z) =
1 + z − zq + tzq ±

√
−4z(1 − q) + (−1 − z + zq − tzq)

2

2z
.It 
an be easily seen thatGUtω(z)

z→0−→ ∞, so the bran
h of the square root in the de�nitionof G−1
Utω

(z) is 
hosen so that G−1
Utω

(z)
z→∞−→ 0, that is,

G−1
Utω

(z) =
1 + z − zq + tzq −

√
−4z(1 − q) + (−1 − z + zq − tzq)

2

2z
.Consequently,

R t

ω (z) =
−1 + z − zq + tzq −

√
−4z(1 − q) + (−1 − z + zq − tzq)2

2zt
.(3.3)3.3. Conne
tion with the 
onditionally free 
onvolution. We 
an now re
all thefollowing observation from [BW1℄ and give it an analyti
 proof:Theorem 3.10. Let ̺, η ∈ Prob

(c)(R) and (µ, ν) = (̺, Ut̺) c (η, Utη). Then
(µ, ν) = (̺, Ut̺) c (η, Utη) = (̺ t η, Ut̺⊞ Utη).Proof. The equation ν = Ut̺ ⊞ Utη follows trivially from the de�nition of the 
onvolu-tion c . To prove µ = ̺ t η we shall look at the respe
tive R-transforms. From (2.12)and the de�nition of Ut we have

R
c

̺,Ut̺(GUt̺(z)) = z − 1

G̺(z)
= z −

((
1 − 1

t

)
z +

1
t

GUt̺(z)

)
=

1

t

(
z − 1

GUt̺(z)

)
,thus(3.4) R

c

̺,Ut̺(z) =
1

t

(
G−1

Ut̺
(z) − 1

z

)
=

1

t
R⊞

Ut̺(z).
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an �nd the Cau
hy transform of the measure µ:
Gµ(z) =

1

z −Rc

̺,Ut̺(GUt̺ ⊞ Utη(z)) −Rc

η,Utη(GUt̺ ⊞ Utη(z))

=
1

z − 1
tR

⊞
Ut̺

(GUt̺ ⊞ Utη(z)) − 1
tR

⊞
Utη(GUt̺ ⊞ Utη(z))

=
1

z − 1
tR

⊞

Ut̺ ⊞ Utη(GUt̺ ⊞ Utη(z))
=

1
1
t (z − R⊞

Ut̺ ⊞ Utη(GUt̺ ⊞ Utη(z))) +
(
1 − 1

t

)
z

=
1

1
t · 1

GUt̺ ⊞ Utη(z) +
(
1 − 1

t

)
z

= GU1/t(Ut̺ ⊞ Utη)(z) = G̺ t η(z).

Remark 3.11. As we see in equation (3.4), the 
onditionally free transform Rc

µ,Utµ(z)is proportional to the free transform R⊞
Utµ

(z) of the deformed measure Utµ, similarly tothe t-free transform R t
µ (z). This justi�es the 
hoi
e of the 
onstant 1/t in De�nition 3.8,so that R t

µ (z) = Rc

µ,Utµ(z).Remark 3.12. From the pre
eding remark and equations (2.13) and (2.14) we get thefollowing moment-
umulant formulae:
mµ(n) =

∑

π∈NC(n)
π=(π1,...,πk)

t−#outer(π)
k∏

i=1

R⊞

Utµ(|πi|) =
∑

π∈NC(n)
π=(π1,...,πk)

t#inner(π)
k∏

i=1

R t

µ (|πi|)

3.4. Conne
tion with the boolean 
onvolution. The boolean 
onvolution of mea-sures with 
ompa
t support 
an also be seen to be a spe
ial 
ase of the 
onditionally free
onvolution, namely (µ ⊎ ν, δ0) = (µ, δ0) c (ν, δ0). As a 
onsequen
e of this and of the
ontinuity properties of the 
onditionally free 
onvolution we know that if
̺t

t→0−→ δ0, ηt
t→0−→ δ0 and (ζt, θt) = (µ, ̺t) c (ν, ηt)then

ζt
t→0−→ µ ⊎ ν and θt

t→0−→ δ0,all 
onvergen
es 
onsidered in the weak-⋆ topology.The 
onne
tion between the t-free 
onvolution and the boolean 
onvolution is twofold:Remark 3.13. First of all, the deformation Ut is de�ned for all t ≥ 0, whereas the
onvolution t only for t > 0, sin
e it involves U1/t. However, if we let t→ 0 then for any
µ, ν ∈ Prob

(c)(R) we have Utµ,Utν
t→0−→ δ0 and by the above remarks

(µ,Utµ) c (ν, Utν) = (µ t ν, Utµ⊞ Utν)
t→0−→ (µ ⊎ ν, δ0).We use this 
onvergen
e property to extend the t-free 
onvolution to the 
ase t = 0, andto say that t interpolates between the free 
onvolution ⊞ for t = 1 and the boolean
onvolution ⊎ for t = 0.



20 �. WojakowskiRemark 3.14. Se
ondly, for any t ≥ 0 and µ ∈ Prob(R), we have, from De�nition 3.1and equation (2.8),
R⊎

µ⊎t(z) = tR⊎
µ(z) = tz − t

Gµ(z)
= z − 1

GUtµ(z)
= R⊎

Utµ(z),whi
h means that the Ut transformation of a probability measure is nothing else than its
t-th boolean 
onvolution power.3.5. t-free 
entral limit theorem. Let us now re
all the fundamental observation of[BW1℄, the 
entral limit theorem.Theorem 3.15. Let µ ∈ Prob(R) be su
h that mµ(1) = 0, mµ(2) = 1 and let t > 0.Then

D1/
√

nµ t · · · t D1/
√

nµ
n→∞−→ κtin the weak-⋆ topology , where the limiting measure κt is related to the standard Wignermeasure ω, appearing in the free 
entral limit theorem, by κt = U1/tD√

tω.Proof. From the de�nition of the 
onvolution t we have
D1/

√
nµ t · · · t D1/

√
nµ = U1/t(D1/

√
nUtµ⊞ · · · ⊞D1/

√
nUtµ).Moreover, we know from (3.2) that mUtµ(1) = 0 and mUtµ(2) = t. We may thus use thefree 
entral limit theorem to get

D1/
√

nUtµ⊞ · · · ⊞D1/
√

nUtµ
n→∞−→ D√

tω.Remark 3.16. The measure κt for t = 1−1/(2N) where N ∈ N appeared �rst in a paperby Harry Kesten [K℄, where it is shown that this is the spe
tral measure of a randomwalk on the free group with N generators.Definition 3.17. We shall 
all κt the Kesten measure with parameter t.The Kesten distribution κt has been 
al
ulated for instan
e in [BW2℄. It has a partabsolutely 
ontinuous with respe
t to the Lebesgue measure, denoted κ̃t, and for t < 1/2a dis
rete part κ̂t with two atoms:
κ̃t =

1

2π
·

√
4t− x2

1 − (1 − t)x2
χ[−2

√
t,2

√
t](x) dx,

κ̂t =
1 − 2t

2 − 2t
(δ−1/

√
1−t + δ1/

√
1−t) for t < 1/2,and its Cau
hy transform in the 
ontinued fra
tion representation has the form

Gκt
(z) =

1

z − 1

z − t

z − t. . .
.

3.6. t-free Poisson limit theorem. The se
ond important type of limit theorem is thePoisson limit theorem, spe
ifying the weak-⋆ limit of µN =
(
1− λ

N

)
δ0 + λ

N δ1 as N → ∞.



Probability interpolating between free and boolean 21Let us �rst write in more detail the argument that allows the de�nition in [BW2℄ of the
t-free Poisson measure π(t)

λ as one having 
onstant 
umulants (this relates also to the
onditionally free Poisson distribution of [BLS℄).Theorem 3.18. Let λ > 0 and µN =
(
1 − λ

N

)
δ0 + λ

N δ1. Then
lim

N→∞
R t

µ
t N

N

(z) = R t

π
(t)
λ

(z) =
λ

1 − z
.Proof. For simpli
ity of notation set ǫ = λ/N . By the linearization property of the R t (z)transform we have

R t

µ
t N

N

(z) = NR t

µN
(z).By equation (3.3) of Example 3.9 we have

R t

µN
(z) =

−1 + z − zǫ+ tzǫ−
√
−4z(1 − ǫ) + (−1 − z + zǫ− tzǫ)

2

2zt

=
z − 1 −

√
(−1 − z)

2 − 4z

2zt
+

−z + tz − 4z+2(−1−z)(z−tz)

2
√

(−1−z)2−4z

2zt
ǫ+ O(ǫ2)

=
ǫ

1 − z
+ O(ǫ2),where the two terms in the se
ond line are the �rst two terms of the Taylor expansion of

R t
µN (z), 
onsidered as a fun
tion of ǫ, around 0, and where O(ǫ2) stands for the remainderof the expansion. We thus have

R t

π
(t)
λ

(z) = lim
N→∞

NR t

µN
(z) =

λ

1 − z
.Let us note that tλ

1−z is the free R⊞-transform of the free Poisson measure πtλ (seefor instan
e [HP℄). Thus, we have on one hand
tR t

π
(t)
λ

(z) =
tλ

1 − z
= R⊞

πtλ
(z),on the other hand, from the de�nition of the R t transform we get

tR t

π
(t)
λ

(z) = R⊞

Utπ
(t)
λ

(z),and hen
e Utπ
(t)
λ = πtλ, whi
h means that the t-free Poisson measure is a deformationof the free Poisson measure: π

(t)
λ = U1/tπtλ. Cal
ulation of the expli
it form of themeasure π(t)

λ 
an now be done by 
al
ulating G−1
U1/tπtλ

(z), inverting it and using theStieltjes inversion formula. We 
an get it another way by using the 
ontinued fra
tionrepresentation of Cau
hy transforms and by a result by Saitoh and Yoshida [SY℄. Weknow that
Gπtλ

(z) =
1

z − tλ− tλ

z − (tλ+ 1) − tλ

z − (tλ+ 1) − tλ. . .
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G
π

(t)
λ

(z) = GU1/tπtλ
(z) =

1

z − λ− λ

z − (tλ+ 1) − tλ

z − (tλ+ 1) − tλ. . .
.

Note that although the transform G
π

(t)
λ

(z) in [BW2℄ was 
al
ulated 
orre
tly, the 
orre-sponding 
ontinued fra
tion forms (11.39) and (11.40) were erroneous. From the above
ontinued fra
tion representation we get the 
oe�
ients in the re
ursion formula for moni
polynomials orthogonal with respe
t to the measure π(t)
λ :

p0(x) = 1, p1(x) = x− λ,

p2(x) = (x− (tλ+ 1))p1(x) − λp0(x),

pn+1(x) = (x− (tλ+ 1))pn(x) − tλpn−1(x).Saitoh and Yoshida 
onsidered measures orthogonalizing systems of orthogonal moni
polynomials de�ned by
q0(x) = c, q1(x) = x− α,

qn+1(x) = (x− a)qn(x) − bqn−1(x).It 
an be easily seen that for α = λ, a = tλ + 1, b = tλ and c = 1/t these relationsprodu
e for n ≥ 1 the polynomials pn(x) 
orresponding to the t-free Poisson measure
π

(t)
λ . For n = 0 we get p0(x) = tq0(x), but this does not spoil the orthogonality relations.Saitoh and Yoshida 
al
ulate the unique probability measure ν orthogonalizing the abovesystem of polynomials:

ν = ν̃ + ν̂,where
f(x) = (1 − c)(x− a)2 + (c− 2)(α− a)(x− a) + (α− a)2 + bc2,

dν̃(x) =
c
√

4b− (x− a)2

2πf(x)
· χ[a−2

√
b,a+2

√
b](x) dx,and

dν̂(x) =





0 if f(x) has no real roots,
max

(
0, 1 − b

(α−a)2

)
δy if f(x) has one real root y = α+ b

α−a ,
w1δy1

+ w2δy2
if f(x) has two real roots y1 and y2,where

wi =
1√

(α− a)2 − 4b(1 − c)
max

(
0,

bc

|yi − α| −
|yi − α|

c

)
.We therefore get the absolutely 
ontinuous part of the t-free Poisson measure, as well asits dis
rete part:
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π̃

(t)
λ =

√
4tλ− (1 − x+ tλ)

2

2πx(1 + (−1 + t)x+ λ− tλ)
χ[tλ+1−2

√
tλ,tλ+1+2

√
tλ](x) dx,

π̂
(t)
λ =

{
max(0, 1 − λ)δ0 for t = 1,
w1δy1

+ w2δy2
for t 6= 1.3.7. t-in�nite divisibility and t-free Lévy�Khin
hin formula. We already brie�ymentioned the term �in�nite divisibility� in the 
ontext of the properties of the boolean
onvolution. Let us re
all the de�nition:Definition 3.19. We say that a probability measure µ is in�nitely divisible with respe
tto a 
onvolution ⋆ if for every N ∈ N there exists a measure µN su
h that µ = µ⋆N

N .This 
an be rewritten equivalently in terms of R⋆-transforms: a probability measure
µ is in�nitely divisible with respe
t to a 
onvolution ⋆ if for every N ∈ N there existsa measure µN su
h that R⋆

µ(z) = NR⋆
µN

(z). In the 
ase of the t-free 
onvolution t weprefer to use the ϕ t
µ (z) transform, sin
e it allows us to treat measures with unboundedsupport. We have an analogue of the free Levy�Khin
hin formula:Theorem 3.20. A measure µ is t -in�nitely divisible if and only if there exist α ∈ R anda �nite positive measure ̺ su
h that for all z ∈ C+,

ϕ t

µ (z) = α+

∞\
−∞

1 + zx

z − x
d̺(x).Proof. In the 
ase of the t-free 
onvolution a measure µ is t -in�nitely divisible if forevery N ∈ N there exists a measure µN su
h that on some trun
ated angle domain

ϕ t

µ (z) = Nϕ t

µN
(z).By a double appli
ation of the de�nition of the ϕ t transform to the left and right handside of the above equation we get

1

t
ϕ⊞

Utµ(z) = ϕ t

µ (z) = Nϕ t

µN
(z) = N

1

t
ϕ⊞

UtµN
(z),hen
e, the measure µ is t -in�nitely divisible if and only if

ϕ⊞

Utµ(z) = Nϕ⊞

UtµN
(z),whi
h is equivalent to ⊞-in�nite divisibility of Utµ (all equalities hold on some trun
atedangle domains). By the free Levy�Khin
hin formula (see [Ma℄, [BV1℄ and [BV2℄) themeasure Utµ is freely in�nitely divisible if and only if there exist α̃ ∈ R and a positivemeasure ˜̺ su
h that for all z ∈ C+,

ϕ⊞
Utµ(z) = α̃+

∞\
−∞

1 + zx

z − x
d˜̺(x).Hen
e

ϕ t

µ (z) =
1

t
ϕ⊞

Utµ(z) = α+

∞\
−∞

1 + zx

z − x
d̺(x),where α = α̃/t and ̺ = ˜̺/t.
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onvolution powers of probability measures. Ni
a and Spei
her [NS℄proved the followingTheorem 3.21. For any probability measure µ, possibly not in�nitely divisible, and anynumber s ≥ 1 there exists a probability measure µs su
h that
µs = µ⊞s,whi
h is understood as

ϕ⊞

µs
(z) = sϕ⊞

µ (z).In the 
ase of the boolean 
onvolution, sin
e all probability measures are in�nitelydivisible, the same property holds for s ≥ 0. We are interested in �nding a similar resultfor the 
ase of the t-free 
onvolution t . Clearly, we 
ould not expe
t su
h a propertyonly for s ≥ s0, for some 0 < s0 < 1, sin
e then, by iterating the 
onvolution power, wewould have the property for all s > 0. In fa
t, we have the followingTheorem 3.22. For an arbitrary probability measure µ ∈ Prob(R) there exists a measure
µs ∈ Prob(R) su
h that µ = µ t s

s for s ≥ 1.Proof. By de�nition
ϕ t

µ (z) =
1

t
ϕ⊞

Utµ(z) =
1

t
ϕ⊞

ν (z),where Utµ = ν ∈ Prob(R), hen
e for s ≥ 1 there exists a measure νs su
h that ν = ν⊞s
s ,whi
h gives

1

t
ϕ⊞

ν (z) =
s

t
ϕ⊞

νs
(z) = sϕ t

U1/tνs
(z).We have therefore found a measure U1/tνs whi
h has the required property (U1/tνs)

t s = µfor s ≥ 1. It is not possible to improve on s, sin
e that would imply that the free
onvolution version would also hold for s ≥ 0, whi
h is known to be false.
4. Generalized Brownian motion4.1. Introdu
tion. In [BS3℄ Bo»ejko and Spei
her 
onsider the generalized Brownianmotions. Su
h a pro
ess is a family of operators ω(t), t ∈ R, in an appropriate non
om-mutative probability spa
e. The 
onstru
tion of su
h pro
esses usually follows severalsteps. First we 
onsider a separable 
omplex in�nite-dimensional Hilbert spa
e H and aunital ⋆-algebra C(H) with generators c∗(h), c(h) for all h ∈ H satisfying the relations

c∗(af + bg) = ac∗(f) + bc∗(g), (c(f))⋆ = c∗(f),for all f, g ∈ H and a, b ∈ C. We 
all c∗(h) 
reation operators and c(h) annihilationoperators , and the algebra C(H) the 
reation and annihilation algebra. We also 
onsidera unital ⋆-algebra A(K) generated by ω(h), h ∈ K, with the relations
ω(af + bg) = aω(f) + bω(g), ω(f) = (ω(f))⋆,for all f, g ∈ K and a, b ∈ R, where K is a real Hilbert spa
e. A natural way to relate thetwo obje
ts above is to require the 
omplex Hilbert spa
e H to be the 
omplexi�
ation of



Probability interpolating between free and boolean 25the real K, written H = KC. Let k ∈ K →֒ H. Then the ⋆-subalgebra of C(H) generatedby c∗(k) + c(k) is isomorphi
 to A(K). The algebra A(K) 
ould be 
alled the algebra ofin
rements, sin
e if we identify K with L2(R, dx) then the indi
ator fun
tions χ[0,t)(x)are in L2(R) and the pro
ess ω(t), t ≥ 0, 
an be de�ned as ω(χ[0,t)). In order to turnthe algebras 
onsidered into non
ommutative probability spa
es we need yet to spe
ifystates on both of them.Definition 4.1. A Fo
k state on C(H) is a positive normalized linear fun
tional ̺t :

C(H) → C given by
̺t[c

♯1(f1) · · · c♯n(fn)] =
∑

V ∈P2(n)

t(V )
∏

(k,l)∈V

〈fk, fl〉 ·Q(♯k, ♯l),(4.1)where the symbols ♯i ∈ (1, ⋆) indi
ate 
reation or annihilation, and Q is a two by twomatrix with Q(1, ⋆) = 1 and 0 in all other entries:
Q =

(
0 1

0 0

)
,and where t is a fun
tion on the set of pair partitions, t : P2(n) → C.Definition 4.2. A Gaussian state ˜̺t on A(K) is a positive normalized linear fun
tionalgiven by

˜̺t[ω(f1) · · ·ω(fn)] =
∑

V ∈P2(n)

t(V )
∏

(k,l)∈V

〈fk, fl〉.(4.2)Remark 4.3. The Gaussian state ˜̺t on A(K) is the restri
tion of the Fo
k state ̺t on
C(KC) to the subalgebra A(K).Remark 4.4. Not every �pairing pres
ription� t(V ) gives rise to a positive fun
tional inthe above de�nitions. However, Guµ  and Maassen proved in Theorem 2.6 of [GM℄ thata fun
tion t(V ) produ
es a positive Gaussian state ˜̺t if and only if it also produ
es apositive Fo
k state ̺t. We 
all su
h fun
tions positive de�nite.Remark 4.5. The GNS representation asso
iated to the pair (C(H), ̺t) is a ⋆-algebra of
reation and annihilation operators a
ting on a Hilbert spa
e Ft(H) having a Fo
k-typestru
ture

Ft(H) =

∞⊕

n=0

Hn.Conversely, we 
an start by de�ning an appropriate Fo
k-type spa
e and then take as
C(H) the ⋆-algebra generated by 
reation and annihilation operators on this Fo
k spa
e;we follow this approa
h later in this 
hapter.When ˜̺t is indeed a state, the sequen
es ˜̺t[ω(f)k], k = 0, 1, . . . , are moment sequen
esof probability measures. One 
an 
onsider measures only for f ∈ K su
h that 〈f, f〉 = 1,sin
e moments arising from other elements 
orrespond to their dilations.Example 4.6. Various examples of positive de�nite �pairing pres
riptions� t(V ) havebeen given, resulting in di�erent probabilities:
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(I)
q (V ) = q#I(V ), −1 ≤ q ≤ 1, where #I(V ) is the number of
rossings in the partition V , the moments ˜̺t[ω(f)k], k = 0, 1, . . . , 
orrespond tothe q-Gaussian measure [BKS℄,2. the 
ase t(V ) = t

(cc)
1−t(V ) = (1 − t)#V −cc(V ), 0 ≤ t ≤ 1, where cc(V ) is the numberof 
onne
ted 
omponents of the partition V , and #V the number of blo
ks of thepartition V , has been 
onsidered in [BS3℄; the 
orresponding measure is known for

1− t = 1/N , N ∈ N, and equals D√
1/N

g ⊞ · · ·⊞D√
1/N

g where g is the standard
lassi
al Gaussian measure,3. when t(V ) = tt,−1(V ) = t
(cc)
1−t(V ) · t

(I)
−1(V ) = (1 − t)#V −#cc(V ) · (−1)#I(V ) themoments ˜̺t[ω(f)k], k = 0, 1, . . . , 
orrespond to the Kesten measure κt.The fa
t that the fun
tion tt,−1(V ) in point 3 above is positive de�nite is a 
onsequen
eof Corollary 1 of [BS3℄, whi
h states that the pointwise produ
t of two positive de�nitefun
tions t1(V ) · t2(V ) is again positive de�nite. Our aim in the remaining part of thisse
tion is to 
omplete the results of [BS3℄ by presenting a detailed 
onstru
tion of the
orresponding Fo
k-type spa
e. Moreover, by the above mentioned 
orollary, we may
onsider the more general pointwise produ
t t

(I)
q (V ) · t(cc)

1−t(V ) instead of the spe
ial 
ase
t
(I)
−1(V ) · t(cc)

1−t(V ).Definition 4.7. For a partition V ∈ P2(n) let
tt,q(V ) = t

(cc)
1−t(V ) · t(I)

q (V ) = (1 − t)#V −#cc(V ) · q#I(V ),where #cc(V ) is the number of 
onne
ted 
omponents, #I(V ) is the number of 
rossingsand #V is the number of blo
ks of the partition V , and 0 < t < 1, −1 ≤ q < 1.Proposition 4.8. The fun
tion tt,q(V ) is multipli
ative, that is , if the partition V de-
omposes into 
onne
ted 
omponents (V0, . . . , Vk) then tt,q(V ) = tt,q(V0) · · · tt,q(Vk).Proof. Sin
e tt,q(V ) = t
(cc)
1−t(V ) · t(I)

q (V ) and both fa
tors are multipli
ative, so is theirprodu
t.4.2. Fo
k spa
e. We shall 
onstru
t our Brownian motion by �rst 
onstru
ting a Fo
kspa
e on whi
h we shall de�ne appropriate operators.Definition 4.9. Let H be an in�nite-dimensional separable 
omplex Hilbert spa
e. Letus denote by F0 the algebrai
 Fo
k spa
e 
onsisting of a distinguished ve
tor Ω and ofve
tors of the form (f1 ⊗ · · ·⊗ fn, A), where n ∈ N, fi ∈ H, and A ⊂ {1, . . . , n − 1}together with a pre-s
alar produ
t given by bilinear extension of
〈Ω,Ω〉t,q = 1,

〈Ω, (f1 ⊗ · · · ⊗ fn, A)〉t,q = 0,

〈(f1 ⊗ · · ·⊗ fn, A), (g1 ⊗ · · ·⊗ gm, B)〉t,q
= δmn

∑

π∈Sn

〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉(t− 1)(n−1)−#[A∩B∩b(π)] · q#I(π)

where for π ∈ Sr

b(π) = {r − k | 1 ≤ k ≤ r − 1, π(Bk) = Bk} ⊂ {1, . . . , r − 1}.
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hed to simple tensors 
an be visualized as interval partitions grouping theelements of the tensor into interval blo
ks. The numbers in the sets indi
ate the tensorsymbol, 
ounted from the right, on whi
h one interval ends and another begins. Thisnotation may seem a little 
umbersome, but allows for a very 
on
ise notation of intervalpartitions of sets of di�erent 
ardinality.Theorem 4.10. The bilinear form 〈 , 〉t,q is positive for 0 < t < 1 and −1 ≤ q < 1.Proof. Fix n ∈ N and set f̂ = f1 ⊗ · · ·⊗ fn ∈ H⊗n. We have to show that for all possible
hoi
es of M ∈ N, f̂1, . . . , f̂M and A1, . . . , AM ⊂ {1, . . . , n− 1} we have
L :=

〈 M∑

i=1

(f̂i, Ai),

M∑

j=1

(f̂j , Aj)
〉

t,q
≥ 0.We have

L =

M∑

i,j=1

∑

π∈Sn

〈f̂i, π(f̂j)〉(1 − t)(n−1)−#[Ai∩Aj∩b(π)]q#I(π)

= (1 − t)n−1 1

n!

M∑

i,j=1

∑

π,σ∈Sn

〈σ(f̂i), π(f̂j)〉(1 − t)−#[Ai∩Aj∩b(σ−1π)] q#I(σ−1π)

where π(f̂) denotes π(f1 ⊗ · · ·⊗ fn) = fπ(1) ⊗ · · ·⊗ fπ(n). We know that the kernels
F,G,H on {1, . . . ,M} × Sn given by

F ((i, σ), (j, π)) = (1 − t)−#[Ai∩Aj∩b(σ−1π)],

G((i, σ), (j, π)) = 〈σ(f̂i), π(f̂j)〉,
H((i, σ), (j, π)) = q#I(σ−1π)are positive de�nite by [BS3℄, and so is their pointwise produ
t.Definition 4.11. To �nish the 
onstru
tion of the spa
e F we �rst divide the algebrai
Fo
k spa
e F0 by the kernel of the pre-s
alar produ
t 〈 , 〉t,q and take the 
ompletion ofthe result with respe
t to the s
alar produ
t 〈 , 〉t,q.4.3. Creation and annihilation algebraDefinition 4.12. For ea
h f ∈ H let us de�ne a 
reation operator c∗(f) and an annihi-lation operator c(f) by linear extension of

c∗(f)Ω = (f, ∅),
c∗(f)(f1 ⊗ · · · ⊗ fn, A) = (f ⊗ f1 ⊗ · · ·⊗ fn, A ∪ {n}),and
c(f)Ω = 0,

c(f)(f1, ∅) = 〈f, f1〉Ω,

c(f)(f1 ⊗ · · ·⊗ fn, A) =

n∑

i=1

〈f, fi〉(f1 ⊗ · · · ⊗ f̌i ⊗ · · · ⊗ fn, A|i) · (1 − t)z(i,A) · qi−1,
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z(i, A) =

{
0 if i = 1 and n− 1 ∈ A,
1 otherwise,

A|i =

{
A \ {n− 1} if i = 1 and n− 1 ∈ A,
A ∩ {1, . . . , n− i} otherwise,and with the usual 
onvention that

f1 ⊗ · · ·⊗ f̌i ⊗ · · · ⊗ fn = f1 ⊗ · · · ⊗ fi−1 ⊗ fi+1 ⊗ · · ·⊗ fn.Theorem 4.13. For all η, ξ ∈ F and all f ∈ H we have
〈c∗(f)η, ξ〉t,q = 〈η, c(f)ξ〉t,q.Proof. It is enough to show for all n ∈ N, all f1, . . . , fn, g1, . . . , gn ∈ H, all A ⊂ {1, . . .

. . . , n− 2} and all B ⊂ {1, . . . , n− 1}
〈c∗(f1)(f2 ⊗ · · · ⊗ fn, A), (g1 ⊗ · · ·⊗ gn, B)〉t,q

= 〈(f2 ⊗ · · ·⊗ fn, A), c(f1)(g1 ⊗ · · · ⊗ gn, B)〉t,q.Let us 
al
ulate both sides:LHS = 〈(f1 ⊗ · · ·⊗ fn, A ∪ {n− 1}), (g1 ⊗ · · ·⊗ gn, B)〉t,q
=

∑

π∈Sn

〈f1, gπ(1)〉 · · · 〈fn, gπ(n)〉(1 − t)(n−1)−#[(A∪{n−1})∩B∩b(π)] · q#I(π),

RHS =

=

n∑

i=1

〈f1, gi〉〈(f2 ⊗ · · ·⊗ fn, A), (g1 ⊗ · · ·⊗ ǧi ⊗ · · · ⊗ gn, B|i)〉t,q(1 − t)z(i,B) · qi−1

=

n∑

i=1

∑

σ∈S
(i)
n−1

〈f1, gi〉〈f2, gσ(2)〉 · · · 〈fn, gσ(n)〉(1 − t)(n−2)−#[A∩B|i∩b(σ)]+z(i,B) · qi−1+#I(σ),

where S(i)
n−1 is the set of all bije
tions from {2, . . . , n} to {1, . . . , ǐ, . . . , n} and b(σ) and

I(σ) are de�ned by 
onsidering σ in the 
anoni
al way as an element of Sn−1. For given
i and σ de�ne π ∈ Sn by π(1) = i, π(j) = σ(j). The assertion follows if

(n− 1) − #[(A ∪ {n− 1}) ∩B ∩ b(π)] = (n− 2) − #[A ∩B|i ∩ b(σ)] + z(i, B)(4.3)and
#I(π) = i− 1 + #I(σ).(4.4)Condition (4.3) has been proven in [BS3℄. To show (4.4) note that for σ ∈ S

(i)
n−1 and its
anoni
al 
ounterpart σ′ ∈ Sn−1:

{2, . . . , n} σ−−−−→ {1, . . . , ǐ, . . . , n}

1-1xy
x
y1-1

{1, . . . , n− 1} σ′

−−−−→ {1, . . . , n− 1}



Probability interpolating between free and boolean 29the sets of inversions I(σ) = {(k, l) | k < l and σ(k) > σ(l)} and I(σ′) = {(k′, l′) |
k′ < l′ and σ′(k′) > σ′(l′)} are also in 1-1 
orresponden
e, hen
e of the same 
ardinality.Moreover, for π ∈ Sn de�ned above we have I(π) = I(σ′)∪{(1, l) | 1 < l and i = σ′(1) >

σ′(l)}, thus #I(π) = #I(σ) + i− 1.Definition 4.14. Let C(H) be the unital ∗-algebra generated by all c∗(f), c(f) for f ∈ Hand de�ne on C(H) the state
̺t,q(a) = 〈Ω, aΩ〉t,q.Theorem 4.15. For all n ∈ N and all f1, . . . , fn ∈ H we have

̺t,q[c
♯1(f1) · · · c♯n(fn)] =





0 if n odd ,∑

V ∈P2(n)

tt,q(V )
∏

(k,l)∈V

〈fk, fl〉 ·Q(♯k, ♯l) if n = 2r,(4.5)where
Q =

(
0 1

0 0

)
.Proof. A nonzero va
uum expe
tation is only possible if the number of 
reators equalsthat of annihilators, hen
e the odd moments vanish. By an observation of Bo»ejko andSpei
her [BS3, p. 144℄, to prove the theorem it is enough to 
onsider the 
ase where the fiform an orthonormal basis of H and where ea
h fi appears exa
tly twi
e in {f1, . . . , f2r},whi
h means that in the sum only one term 
orresponding to a partition denoted V0survives. If for some 1 ≤ i < m < 2r we have 〈fj , fk〉 = 0 for all j = i, . . . ,m and

k = 1, . . . , i − 1,m + 1, . . . , 2r then by orthogonality and the de�nition of the 
reationand annihilation operators we get
[c♯1(f1) · · · c♯i−1(fi−1)]c

♯i(fi) · · · c♯m(fm)[c♯m+1(fm+1) · · · c♯2r(f2r)]Ω

= [c♯1(f1) · · · c♯i−1(fi−1)]〈Ω, c♯i(fi) · · · c♯m(fm)Ω〉t,q[c♯m+1(fm+1) · · · c♯2r(f2r)]Ω

= ̺t,q(c
♯i(fi) · · · c♯m(fm))[c♯1(f1) · · · c♯i−1(fi−1)c

♯m+1(fm+1) · · · c♯2r(f2r)]Ω,whi
h means that the state tt,q is multipli
ative. Thus, it is enough to 
onsider the 
asewhen V0 is a single 
onne
ted 
omponent; the general 
ase will follow by multipli
ativeextension. In su
h a 
ase we have tt,q(V0) = (1 − t)r−1q#I(V0) = RHS of (4.5). Tosee that this is equal to LHS of (4.5) = ̺t,q[c
♯(f1) · · · c♯(fn)] we need to show that theexponents of 1 − t and of q in tt,q(V0) = RHS will 
orrespond to those 
oming from adire
t 
omputation of LHS. The two exponents behave exa
tly as in models where onlyone of them is present. The exponent of 1 − t is exa
tly r − 1, sin
e ea
h annihilationoperator apart from c(f1) gives a fa
tor 1 − t. The exponent of q is indeed equal to thenumber of 
rossings of V0: this follows from the 
orresponding result on the q-Fo
k spa
e
onsidered in [BS1, Proposition 2℄.4.4. Conne
tion with the redu
ed free produ
t. The next theorem gives a linkbetween the generalized Brownian motion 
onsidered in the present work and the redu
edfree produ
t of Voi
ules
u. However, we need to assume q = −1 and use the notation

̺t = ̺t,−1.
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∗
i = c∗(fi) | i ∈ N} denote a distinguished set ofgenerators of the unital ∗-algebra C0 = 〈{ci = c(fi)}〉, for some orthonormal basis {fi}of the underlying Hilbert spa
e K, let t1, t2 be real numbers with 0 ≤ t1, t2 ≤ 1 and

s1 = 1 − t1, s2 = 1 − t2. De�ne s by
1

s
=

1

s1
+

1

s2
and t = 1 − s =

1 − t1t2
2 − t1 − t2

.Embed C0 in C0 ⋆ C0 (free produ
t with identi�
ation of units) via
ci 7→

√
s

s1
j1(ci) +

√
s

s2
j2(ci), c∗i 7→

√
s

s1
j1(c

∗
i ) +

√
s

s2
j2(c

∗
i ),and let ̺ be the restri
tion of ̺t1 ⋆ ̺t2 to C0. Then ̺ = ̺t.Proof. We need to show that for all n ∈ N and all i(1), . . . , i(n) ∈ N,

(4.6) ̺t1 ⋆ ̺t2

[(√
s

s1
j1(c

#
i(1)) +

√
s

s2
j2(c

#
i(1))

)
, . . . ,

(√
s

s1
j1(c

#
i(n)) +

√
s

s2
j2(c

#
i(n))

)]

= ̺t[c
#
i(1) · · · c

#
i(n)].To do this we shall show the equality of free 
umulants of the left and right sides of theabove equation. For a given state ϕ on a unital ∗-algebra B its multilinear free 
umulants

rϕ are de�ned via the relation (ai ∈ B)
ϕ(a1 · · · an) =

∑

V ={V1,...,Vp}∈P2(n)

rϕ[aV1
] · · · rϕ[aVp

],(4.7)
where rϕ[aVi

] = rϕ[av1
, . . . , avs

] for Vi = (v1, . . . , vs). Let us �rst 
onsider the 
umulantsof the right-hand side of (4.6), that is, of r̺t
[c♯i(1) · · · c

♯
i(n)]. For odd n this quantity van-ishes, sin
e by the de�ning equation (4.7) it is a sum of produ
ts of �shorter� 
umulants,at least one term in ea
h of those produ
ts being of odd length, and 
umulants of lengthone are the original state, hen
e are zero on single 
reators and annihilators. Moreover,sin
e the moments of ̺t are expressed in Theorem 4.15 by a formula involving summationover all 2-partitions, it 
an be seen by indu
tion that the free 
umulant 
an be obtainedfrom the following formula involving only 
onne
ted pair partitions:

r̺t
[c♯i(1), . . . , c

♯
i(2r)] =

∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

tt(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l)

=
∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

sr−1 · (−1)#I(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l).

To evaluate the free 
umulant of the left-hand side of the equation (4.6) we use the fa
tthat free 
umulants linearize the free produ
t:
r̺t1

⋆̺t2

[(√
s

s1
j1(c

♯
i(1)) +

√
s

s2
j2(c

♯
i(1))

)
, . . . ,

(√
s

s1
j1(c

♯
i(2r)) +

√
s

s2
j2(c

♯
i(2r))

)]
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= r̺t1

[√
s

s1
c♯i(1), . . . ,

√
s

s1
c♯i(2r)

]
+ r̺t2

[√
s

s2
c♯i(1), . . . ,

√
s

s2
c♯i(2r)

]

=

(
s

s1

)r

r̺t1
[c♯i(1), . . . , c

♯
i(2r)] +

(
s

s2

)r

r̺t2
[c♯i(1), . . . , c

♯
i(2r)]

=
∑

V0={V1,...,Vr}∈P2(2r)
V0 connected

sr−1 · (−1)#I(V0)
∏

(k,l)∈V0

〈fk, fl〉 ·Q(♯k, ♯l).

4.5. Se
ond quantization. An important subje
t in the study of the generalized Brow-nian motions is the existen
e and properties of the se
ond quantization fun
tor. In theprevious se
tion we 
onsidered the ⋆-algebra A(K), generated by the Gaussian elements
ω(k) where k ∈ K and K is a real Hilbert spa
e, together with a Gaussian state ˜̺t givenby a pairing pres
ription t. Alternatively, we 
an 
onsider the von Neumann algebra
Γ (K) generated by the embeddings of ω(k) = c∗(k) + c(k) into the 
reation and annihi-lation algebra C(KC), together with the va
uum expe
tation Fo
k state ̺t(·) = 〈Ω, ·Ω〉tgiven by the same pairing pres
ription t. The paper [R℄ studies the properties of thealgebra Γ (K). When the Fo
k state is tra
ial, we have the following de�nition.Definition 4.17. Let K(1),K(2) be two real Hilbert spa
es and T : K(1) → K(2) any
ontra
tion. A unital tra
e preserving 
ompletely positive map Γ (T ) : (Γ (K(1)), 〈Ω, ·Ω〉t)
→ (Γ (K(2)), 〈Ω, ·Ω〉t) is 
alled a se
ond quantization fun
tor.A detailed study of this notion 
an be found in [GM℄. The most important result ofthat paper is the existen
e of Γ under the 
ondition of multipli
ativity of t and faithfulnessof ̺t for Γ (l2

R
(Z)). It is also proved that in the 
ase of the Kesten type pairing pres
ription

t(V ) = tt,−1(V ) = t
(cc)
1−t(V ) · t

(I)
−1(V ) = (1 − t)#V −#cc(V ) · (−1)#I(V ), 0 < t < 1,the 
orresponding va
uum Fo
k state 〈Ω, ·Ω〉t is tra
ial, and that the assumptions of theexisten
e theorem are satis�ed.In our 
al
ulations we 
onsider a parti
ular 
hoi
e of the Hilbert spa
es and of the
ontra
tion in the above 
onstru
tion. Namely, we take the same one-dimensional Hilbertspa
e K = K

(1) = K
(2), and the simplest possible 
ontra
tion T = e−τI = sI where

τ > 0, 0 < s < 1. The algebra Γ (K) is L∞(supp(κt), κt). Sin
e the support of the Kestenmeasure κt is 
ompa
t, we have L∞(supp(κt), κt) ⊂ L2(supp(κt), κt). Any γ ∈ L2(κt)
an be written as γ(x) =
∑∞

k=0 αkpk(x), where pk(x), k = 0, 1, . . . , is the sequen
eof polynomials orthonormal with respe
t to the Kesten measure κt. The a
tion of theoperator Γ (T ) is
Γ (T )γ(x) =

∞∑

k=0

skαkpk(x).(4.8)The operator Γ (T ) 
an be expressed by a kernel, Γ (T )γ(x) =
T
ks(x, y)γ(y) dκt(y), andthe kernel 
an be de�ned with the use of orthonormal polynomials:

ks(x, y) =

∞∑

k=0

skpk(x)pk(y)



32 �. Wojakowski(see [J℄). Moreover, if the fun
tion γ is bounded, γ ∈ L∞(κt) →֒ L2(κt), then fromTheorem 2 of [J℄ it follows that Γ (T )γ(x) is also bounded, provided that the kernel isnonnegative. Thus, the kernel, when nonnegative, de�nes an operator Γ (T ) : Γ (K) →
Γ (K). The requirement of 
omplete positivity of Γ (T ) redu
es in this 
ase to positivity,and in terms of the kernel to the question whether ks(x, y) is positive for x, y in thesupport of κt. This 
hoi
e of the Hilbert spa
e and of the operator T was meant asa test 
ase for the general problem of existen
e of the se
ond quantization fun
tor andwas 
arried out before the paper [GM℄ appeared. The results of Guµ  and Maassen are,however, limited to the 
ase 0 ≤ t ≤ 1. Our 
al
ulations, in addition to providing a 
losedform formula for the kernel, show that it remains positive for 0 < t < (1 +

√
2)/2 andis no longer so for greater t. This means that no se
ond quantization fun
tor 
an existin this 
ase; it is also an answer to a question of Janson [J℄ on the existen
e of kernelswithout the positivity property.4.6. The Mehler kernel for the Kesten measure. We re
all that the Cau
hy trans-form of the Kesten measure κt is the following:

Gκt
(z) =

1

z − 1

z − t

z − t. . .
.

We 
an therefore use the 
oe�
ients of the 
ontinued fra
tion to de�ne the re
urren
e
oe�
ients of the orthonormal polynomials.Definition 4.18. Let us denote by pk(x) the system of polynomials othonormal withrespe
t to µt given by the following re
urren
e relations:
p0(x) = 1, p1(x) = x,

xpn(x) = λnpn+1(x) + λn−1pn−1(x),where
1 = λ0,

√
t = λ1 = λ2 = λ3 = λ4 = · · · .Hen
e
p2(x) =

x2 − 1√
t
.Definition 4.19. We denote by ks(x, y) the t-deformed Mehler kernel

ks(x, y) =

∞∑

k=0

skpk(x)pk(y),and by ka
s (x, y), a = x, y, the shifted sums

kx
s (x, y) =

∞∑

k=0

skpk+1(x)pk(y), ky
s (x, y) =

∞∑

k=0

skpk(x)pk+1(y).We would like to see that the above series are 
onvergent for any x, y ∈ supp(κt).The 
oe�
ients λk of the re
urren
e relation for polynomials orthogonal with respe
t to
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onstant for k ≥ 1, we may thus use the following boundednessresult proven in [N, Chapter 3, Theorem 12℄ for polynomials with 
onvergent 
oe�
ients.Theorem 4.20. The sequen
e {|pk(x)|} is uniformly bounded on any 
losed interval ∆ ⊂
(−2

√
t, 2

√
t).Moreover, we 
an expli
itly 
al
ulate the values of pk(x) when x is one of the atomsor one of the endpoints of the above interval, whi
h is the support of the absolutely
ontinuous part of the Kesten measure.Lemma 4.21. For any t > 0, at the endpoints of the interval we have

p0(2
√
t) = 1, p1(2

√
t) = 2

√
t, pk(2

√
t) =

2kt− (k − 1)√
t

,

p0(−2
√
t) = 1, p1(−2

√
t) = −2

√
t, pk(−2

√
t) =

2kt− (k − 1)√
t

· (−1)k,and for 0 < t < 1/2 at the atoms we have
p0

(
1√

1 − t

)
= 1, p1

(
1√

1 − t

)
=

1√
1 − t

, pk

(
1√

1 − t

)
=

1√
1 − t

( √
t√

1 − t

)k

,

p0

( −1√
1 − t

)
= 1, p1

( −1√
1 − t

)
=

−1√
1 − t

, pk

( −1√
1 − t

)
=

1√
1 − t

( −
√
t√

1 − t

)k

.Proof. It is a simple veri�
ation that the sequen
es pk(x) satisfy the re
urren
e formulaeof De�nition 4.18 for the appropriate values of x.Theorem 4.22. The series ks(x, y), kx
s (x, y) and ky

s (x, y) are 
onvergent for all −1 <

s < 1, x, y ∈ supp(κt), t > 0.Proof. First observe that the sequen
es pk(x) when x is one of the atoms are boundedwhenever the atoms show up in the measure, i.e. for 0 < t < 1/2. Hen
e, for −1 < s < 1the series ks(x, y), kx
s (x, y) and ky

s (x, y) are 
onvergent for all x, y ∈ (−2
√
t, 2

√
t) ∪

{−1/
√

1 − t, 1/
√

1 − t} (the dis
rete part appearing only when 0 < t < 1/2).The remaining task 
onsists in 
he
king the 
ase x ∈ {±2
√
t}, y ∈ (−2

√
t, 2

√
t) ∪

{−1/
√

1 − t, 1/
√

1 − t} and also the 
ase x, y ∈ {±2
√
t}. But in the �rst 
ase, thedesired radius of 
onvergen
e 
an be easily 
al
ulated from the Cau
hy 
riterion, and inthe se
ond 
ase from the d'Alembert 
riterion.Theorem 4.23. The Mehler kernel ks(x, y) for the measure κt is given by

ks(x, y) =
(s2 − 1)(s2(t− 1) − t− s(t− 1)xy)

(s2 − 1)2t+ s(−xy − s2xy + s(x2 + y2))for any −1 < s < 1, x, y ∈ supp(κt).
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urren
e relation de�ning the polynomials pk(x) to �nd rela-tionships between the series ks(x, y), kx
s (x, y) and ky

s (x, y):
ks(x, y) =

∞∑

k=0

skpk(x)pk(y) = 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

∞∑

k=3

skpk(x)pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

∞∑

k=3

sk

(
xpk−1(x)√

t
− pk−2(x)

)
pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+

x√
t

∞∑

k=3

skpk−1(x)pk(y) −
∞∑

k=3

skpk−2(x)pk(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
+
sx√
t

∞∑

k=2

skpk(x)pk+1(y)−s2
∞∑

k=1

skpk(x)pk+2(y)

= 1 + sxy + s2
(x2 − 1)(y2 − 1)

t
− sx√

t

(
y + sx

y2 − 1√
t

)
+
sx√
t

∞∑

k=0

skpk(x)pk+1(y)

− s2
∞∑

k=1

skpk(x)

(
ypk+1(y)√

t
− pk(y)

)

= 1 + sxy − s2(y2 − 1)

t
− sxy√

t
+
sx√
t
ky

s (x, y) − s2y√
t

∞∑

k=1

skpk(x)pk+1(y)

+ s2
∞∑

k=1

skpk(x)pk(y)

= 1 + sxy − s2 − s2(y2 − 1)

t
− sxy + s2y2

√
t

+
sx− s2y√

t
ky

s (x, y) + s2ks(x, y).Hen
e
(4.9) ks(x, y) =

1 + sxy − s2 − s2(y2−1)
t − sxy+s2y2

√
t

+ sx−s2y√
t
ky

s (x, y)

1 − s2and symmetri
ally
(4.10) ks(x, y) =

1 + sxy − s2 − s2(x2−1)
t − sxy+s2x2

√
t

+ sy−s2x√
t
kx

s (x, y)

1 − s2
.Moreover

ky
s (x, y) =

∞∑

k=0

skpk(x)pk+1(y)(4.11)
= y + sx

y2 − 1√
t

+

∞∑

k=2

skpk(x)pk+1(y)

= y + sx
y2 − 1√

t
+

∞∑

k=2

skpk(x)

(
ypk(y)√

t
− pk−1(y)

)



Probability interpolating between free and boolean 35
= y + sx

y2 − 1√
t

+
y√
t

∞∑

k=2

skpk(x)pk(y) −
∞∑

k=2

skpk(x)pk−1(y)

= y + sx
y2 − 1√

t
− y√

t
(1 + sxy) +

y√
t

∞∑

k=0

skpk(x)pk(y) − s
∞∑

k=1

skpk+1(x)pk(y)

= y +
sxy2 − sx− y − sxy√

t
+ sx+

y√
t
ks(x, y) − s

∞∑

k=0

skpk+1(x)pk(y)

= y + sx+
sxy2 − sx− y − sxy√

t
+

y√
t
ks(x, y) − skx

s (x, y).Solving (4.9), (4.10) and (4.11) for ks(x, y) we get the desired formula.4.7. Positivity of the t-deformed Mehler kernelTheorem 4.24. The Mehler kernel ks(x, y) is nonnegative for all 
hoi
es of 0 ≤ s < 1,
x, y ∈ supp(κ), 0 < t < (1 +

√
2)/2.Proof. We use the fa
t that the kernel is symmetri
, ks(x, y) = ks(y, x). We shall splitthe proof into four 
ases: 1. both x and y are in the atoms; 2. one of them is in thepositive atom and the other in the 
ontinuous part of the support; 3. one in the negativeatom and the other in the 
ontinuous part; 4. both x and y in the 
ontinuous part.1. When both x, y ∈ {−1/
√

1 − t, 1/
√

1 − t} and the measure admits atoms, that is,for 0 ≤ t < 1/2, we get
ks

( −1√
1 − t

,
−1√
1 − t

)
= ks

(
1√

1 − t
,

1√
1 − t

)
= 1 − s

t− 1 + st
≥ 1sin
e t− 1 + st ≤ 0, and

ks

( −1√
1 − t

,
1√

1 − t

)
= 1 − s

1 − t+ st
≥ 0.2. When x = 1/

√
1 − t and y ∈ [−2

√
t, 2

√
t], 0 ≤ t < 1/2 we get

ks

(
1√

1 − t
, y

)
=

(1 − s2)(s2(1 − t) + t− s
√

1 − t y)

t
(
(s2 − 1)2 − s(1+s2)y√

1−t t
+ s2y2

t − s2

(t−1)t

) .To 
he
k positivity we shall 
onsider separately the numerator and denominator. Sin
e
1 − s2 > 0, only the se
ond fa
tor of the numerator is relevant. This is a linear fun
tionin y and assumes negative values for y > s2−s2t+t

s
√

1−t
.We may ignore the positive fa
tor t in the denominator and the remaining part is aquadrati
 fun
tion of y and assumes negative values for

s2 − s2t+ t

s
√

1 − t
< y <

1 − t+ s2t

s
√

1 − t
.Sin
e under the assumptions on s, y and t we have

y ≤ 2
√
t <

s2 − s2t+ t

s
√

1 − t
<

1 − t+ s2t

s
√

1 − t
,whi
h means that for the relevant values of y both the numerator and the denominatorare positive, the positivity of the whole kernel is established in this 
ase.



36 �. Wojakowski3. When x = −1/
√

1 − t and y ∈ [−2
√
t, 2

√
t], 0 ≤ t < 1/2 we get

ks

( −1√
1 − t

, y

)
=

(1 − s2)(s2(1 − t) + t+ s
√

1 − t y)

t
(
(s2 − 1)2 + s(1+s2)y√

1−t t
+ s2y2

t − s2

(t−1)t

) .By an argument similar to the previous point, the numerator is positive for all y >
s2t−s2−t√

1−t
, whereas the denominator assumes negative values for

y ∈
(
t− 1 − s2t

s
√

1 − t
,
s2t− s2 − t

s
√

1 − t

)
.But sin
e

s2t− s2 − t

s
√

1 − t
< −2

√
t ≤ y,both the numerator and denominator remain positive for all y ∈ [−2

√
t, 2

√
t], hen
e thepositivity is established.4. When both x, y ∈ [−2

√
t, 2

√
t] and t > 0 we get

ks(x, y) =
(1 − s2)(−s2(t− 1) + t+ s(t− 1)xy)

t
(
(s2 − 1)2 + s

(
− xy

t − s2xy
t + s(x2+y2)

t

)) .Observe that the denominator satis�es
t

(
(s2 − 1)2 + s

(
− xy

t
− s2xy

t
+
s(x2 + y2)

t

))

= t

((
(1 − s2) +

s2x2 − sxy

2t

)2

+

(
1 − x2

4t

)(
s2x− sy√

t

)2)
,so it is nonnegative. Denote by w(s, t, x, y) the se
ond fa
tor of the numerator:

w(s, t, x, y) = −(s2(−1 + t)) + t+ s(−1 + t)xy = s2(1 − t) + s(t− 1)xy + t.It remains to 
he
k when the polynomial w(s, t, x, y) is nonnegative. First assume that
t ∈ (0, 1). We shall prove nonnegativity of w in this 
ase:

s2(1 − t) + s(t− 1)xy + t > s2(1 − t) + s(t− 1)4t+ t,be
ause sin
e s(t − 1) < 0 the left hand side expression is the smallest for xy = 4t,furthermore, evaluation of the right hand side at the lowest point of the parabola gives
s2(1 − t) + s(t− 1)4t+ t > t+

4(t− 1)2t2

t− 1
= (1 − 2t)2t > 0.Hen
e ks(x, y) is nonnegative in this 
ase.Now assume t ∈ [1,∞). The minimum of the polynomial w(s, t, x, y) is attained atone of the points when xy = −4t, and sin
e the 
oe�
ient of s2 is negative, when s = 0or s→ 1. Then

w(0, t,−2
√
t, 2

√
t) = t > 0and

w(s, t,−2
√
t, 2

√
t)

s→1−→ −4t2 + 4t+ 1 > 0 for t < 1 +
√

2

2
.Hen
e, for t > (1 +

√
2)/2 the kernel ks(x, y) admits negative values for some s, x, ywithin the appropriate domain.
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umulants5.1. t-free produ
t of states. From the previous 
onsiderations we know that the t-free 
onvolution of measures 
an be interpreted as a spe
ial 
ase of the 
onditionally free
onvolution of Bo»ejko, Leinert and Spei
her [BLS℄. However, the 
onstru
tion presentedin that paper 
onsists of �rst 
onstru
ting a 
onditionally free produ
t of pairs of states
(Φ1, Φ2) = (µ1, µ2) ⋆c (ν1, ν2) on A = A1 ⋆A2 = C〈X1, X2〉 for two given pairs of states
(µ1, µ2) on A1 = C 〈X1〉 and (ν1, ν2) on A2 = C 〈X2〉, and only then de�ning (φ1, φ2) =

(µ1, µ2) ⊞c (ν1, ν2) on C 〈X〉 by linear extension of (φ1, φ2)(X
n) = (Φ1, Φ2)((X1 +X2)

n).Using those observations, we would now like to de�ne the t-deformed free produ
t ofstates.To this end we shall de�ne a family of transformations U (n)
t a
ting on states onalgebras of polynomials in n non
ommuting variables, su
h that for n = 1 we get thetransformation of measures Ut dis
ussed previously and that for

(Φ, Ψ) =
n
⋆c
i=1

(µi, Ut(µi)),(5.1)where µi are states on C 〈Xi〉 and the se
ond state Ψ is de�ned as the free produ
t
Ψ =

n
⋆

i=1
Ut(µi),(5.2)we have

(Φ, Ψ) = (Φ,U
(n)
t (Φ)).(5.3)We have the following assio
iativity lemma, proved by Mªotkowski in [Mª, Proposition 2℄:Lemma 5.1. Assume that I =

⋃
j∈J Ij is a partition of I. Then

⋆c
j∈J

( ⋆c
i∈Ij

(µi, νi)) = ⋆c
i∈I

(µi, νi).(5.4)Therefore, we also get
(Ψ,U

(n)
t (Ψ)) ⋆c (Φ,U

(m)
t (Φ)) = (Θ,U

(n+m)
t (Θ)),(5.5)for the states Ψ on C 〈X1, . . . , Xn〉, Φ on C 〈Xn+1, . . . , Xn+m〉 andΘ on C 〈X1, . . . , Xn+m〉.This allows for the followingDefinition 5.2. We shall 
all the state Θ arising in equation (5.5) the t-deformed freeprodu
t of the states Ψ and Φ.5.1.1. Boolean 
umulants and interval partitions. Sin
e we are dealing with algebrasof non
ommutative polynomials in many variables, every f ∈ C 〈X1, . . . , Xn〉 
an bewritten as a �nite sum f =

∑
αi1,...,ik

Xi1 · · ·Xik
. Linear fun
tionals 
an thus be de�nedon simple words Xi1 · · ·Xik

and then extended to the whole algebra.We now get to the details of the de�nition of the transformation U (n)
t and to the dis-
ussion of whether it produ
es states, i.e. positive fun
tionals. In the previous 
hapterswe saw that the one-dimensional deformation of measures Ut is the t-th boolean 
onvolu-tion power, whi
h followed from the properties of the 
orresponding Cau
hy transforms.We shall see that U (n) 
an also be seen as a kind of boolean 
onvolution power. We needthe following



38 �. WojakowskiDefinition 5.3. Let η be a state on C 〈X1, . . . , Xn〉. Then we de�ne the boolean R-transform RB
η on simple words Xi1 · · ·Xik

by the relation
η(Xi1 · · ·Xik

) =
∑

V ∈B(n)
V =(V1,...,Vk)

RB
η (XV1

) · · ·RB
η (XVk

)

where B(n) is the set of interval partitions of the set {1, . . . , n}, that is, 
ontaining onlyouter blo
ks, and XVk
= (Xvk−1+1, . . . , Xvk

) if Vk = (vk−1 + 1, . . . , vk). We shall denotethe interval (vk−1 + 1, . . . , vk) by [vk−1 + 1, vk].Definition 5.4. We shall 
all a state η⊎t on C 〈X1, . . . , Xn〉 the t-th boolean produ
tpower of some other state η on C 〈X1, . . . , Xn〉, t ∈ R, when(5.6) η⊎t(Xi1 · · ·Xik
) =

∑

V ∈B(n)
V =(V1,...,Vk)

tRB
η (XV1

) · · · tRB
η (XVk

).

Following Lehner [L℄ we shall make use of the following de�nitions:Definition 5.5. A partition π is irredu
ible if the elements 1 and n are in the same
onne
ted 
omponent.Definition 5.6. The interval 
losure of a given partition π is the smallest interval parti-tion π dominating π, that is, for every blo
k πi ∈ π there exists an interval blo
k Bi ∈ πsu
h that πi ⊂ Bi.In the following we will make use of the moment-
umulant relations for the 
ondition-ally free produ
t, whi
h involve summation over only non
rossing partitions. Thus we willneed the above de�nitions only in the non
rossing 
ontext, along with some propertiesgathered in the following proposition:Proposition 5.7. Let π be a non
rossing partition of the set [1, n]. Then:1. π is irredu
ible if the elements 1 and n are in the same blo
k.2. Any π 
an be de
omposed into irredu
ible fa
tors Pi, i = 1, . . . , k.3. Any su
h irredu
ible fa
tor Pi 
onsists of blo
ks πjk
∈ π su
h that ⋃

πjk
= [ri, si]and exa
tly one of those blo
ks is outer and 
ontains ri and si, both the ends ofthe spanned interval ; we denote this blo
k by outer(Pi).4. The interval 
losure of the partition π is the interval partition π with blo
ks

([r1 = 1, s1], [r2 = s1 + 1, s2], . . . , [rl, sl = n]) 
orresponding to the ends of in-tervals spanned by the irredu
ible 
omponents.Proof. Instead of a formal algebrai
 proof we shall present the notions and ideas ondiagrams. Let n = 10 and 
onsider a non
rossing partition π of the set [1, 10] su
h thatone of the blo
ks πi of π 
ontains both 1 and 10; it 
ould be for instan
e
1 2 3 4 5 6 7 8 9 10 π



Probability interpolating between free and boolean 39where πi = (1, 6, 10). The smallest interval partition dominating π must have an intervalblo
k that dominates the blo
k πi 
ontaining the endpoints, hen
e π must be 
omposedof one blo
k 
ontaining all the points:
1 2 3 4 5 6 7 8 9 10 πConversely, sin
e we are now dealing with non
rossing partitions only, if the smallestinterval partition dominating π is a one-blo
k interval, there must be a blo
k πi in π
ontaining both 1 and n, otherwise we have a situation like one of the following:
1 2 3 4 5 6 7 8 9 10 π1

1 2 3 4 5 6 7 8 9 10 π2

1 2 3 4 5 6 7 8 9 10 π3...
1 2 3 4 5 6 7 8 9 10 πiWe have marked the outer blo
ks of all the partitions in bold line. Let irredu
iblefa
tors be the subpartitions 
onsisting of one outer blo
k together with all inner blo
kssupported on points from between the ends of the outer blo
k. As an illustration take

π2 from the above examples. Clearly π2 = ((1, 3, 6), (2), (4, 5), (7, 9, 10), (8)) and it de-
omposes into P1 = ((1, 3, 6), (2), (4, 5)) and P2 = ((7, 9, 10), (8)). Every su
h irredu
iblefa
tor is mapped into an interval in the interval 
losure.It is also 
lear that summations involving all non
rossing partitions of an ordered set
an be written as 
omposite summations, �rst over interval partitions ω and then overall non
rossing partitions π su
h that π = ω.5.1.2. Main theoremTheorem 5.8. For states µi on C 〈Xi〉, i = 1, . . . , n, and (Φ, Ψ) = ⋆c
n
i=1(µi, Ut(µi)) wehave Φ⊎ t = Ψ , and write U (n)

t (Φ) = Ψ .Proof. The 
onditionally free produ
t of states is linearized by the multilinear 
umulants,whi
h for a pair (µ, ν) of states on C 〈Xi〉 are de�ned through
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ν(a1 · · · ak) =

∑

π∈NC(k)

∏

Vi∈π
Vi outer

rν [Vi]
∏

Vj∈π
Vj inner

rν [Vj ],(5.7)
µ(a1 · · · ak) =

∑

π∈NC(k)

∏

Vi∈π
Vi outer

Rµ,ν [Vi]
∏

Vj∈π
Vj inner

rν [Vj ],(5.8)
where for a partition blo
k V = {v1, . . . , vj} we denote by rν [V ] = rν [av1

, . . . , avj
] the free
umulant of the state ν and by Rµ,ν [V ] = Rµ,ν [av1

, . . . , avj
] the 
onditional 
umulant withrespe
t to the states µ and ν. In this de�nition we assumed aj ∈ C 〈Xi〉, j = 1, . . . , k, andwe extend it to C 〈X1, . . . , Xn〉 by putting rν [a1, . . . , ak] = Rµ,ν [a1, . . . , ak] = 0 wheneverany aj /∈ C 〈Xi〉.We note that for the spe
i�
 
hoi
e a1, . . . , ak = Xi we have ν(a1 · · · ak) = ν(Xk

i )and µ(a1 · · · ak) = µ(Xk
i ) and the above equations (5.7), (5.8) de�ne the same re
urren
erelation as (2.13), (2.14) for linear 
umulants, whi
h means that rν [a1, . . . , ak] = R⊞

ν (k)and Rµ,ν [a1, . . . , ak] = Rc

µ,ν(k). As a 
onsequen
e, for (µ, ν) = (µi, Ut(µi)) we get
Rµi,Ut(µi)[a1, . . . , ak] =

1

t
rUt(µi)[a1, . . . , ak](5.9)for our spe
i�
 
hoi
e a1, . . . , ak = Xi.The transforms 
orresponding to the 
onditionally free produ
t (Φ, Ψ) are the sumsof the transforms 
orresponding to the pairs (µi, Ut(µi)), extended to C 〈X1, . . . , Xn〉:

RV = RΦ,Ψ [av1
, . . . , avj

] =
n∑

i=1

Rµi,Ut(µi)[av1
, . . . , avj

],(5.10)
rV = rΨ [av1

, . . . , avj
] =

n∑

i=1

rµi
[av1

, . . . , avj
],(5.11)

and the moments with respe
t to the states (Φ, Ψ) are re
overed through the moment-
umulant formulae for the 
onditionally free produ
t established in [BLS℄:(5.12) Ψ(a1 · · · ak) =
∑

π∈NC(k)

∏

Vi∈π
Vi outer

rVi

∏

Vj∈π
Vj inner

rVj
,

and(5.13) Φ(a1 · · · ak) =
∑

π∈NC(k)

∏

Vi∈π
Vi outer

RVi

∏

Vj∈π
Vj inner

rVj
.

To prove the assertion we only need to 
onsider a1 · · · an of the form Xi1 · · ·Xik
. Forthis 
hoi
e, all 
umulants appearing in the right-hand sides of the above equations willsatisfy RV = (1/t)rV , sin
e they are sums of 
umulants for whi
h (5.9) holds. Let us nowgroup the non
rossing partitions π in the summation in (5.13), a

ording to the stru
tureof their irredu
ible 
omponents, whi
h is re�e
ted by the interval partitions π arising as
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losures:
Φ(Xi1 . . . Xik

) =
∑

ω∈B(k)

∑

π∈NC(k)
π=ω

∏

Vi∈π
Vi outer

RVi

∏

Vj∈π
Vj inner

rVj

=
∑

ω∈B(k)
ω=ω1,...,ωm

∑

π=C1∪···∪Cm

Ci∈NC(supp(ωi))
Ci=ωi

m∏

i=1

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj

=
∑

ω∈B(k)
ω=ω1,...,ωm

∑

C1∈NC(supp(ω1))
C1=ω1

· · ·
∑

Cm∈NC(supp(ωm))
Cm=ωm

m∏

i=1

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj
.

Set for 
onvenien
e
KΦ(ωi) =

∑

Ci∈NC(supp(ωi))
Ci=ωi

Router(Ci)

∏

Vj∈Ci

Vj inner

rVj
.

Then
Φ(Xi1 · · ·Xik

) =
∑

ω∈B(k)
ω=ω1,...,ωm

m∏

i=1

KΦ(ωi),

whi
h is exa
tly the expression (5.6) de�ning boolean 
umulants, thus KΦ(ωi) = RB
Φ (ωi).Transforming equation (5.12) in the same way as (5.13) above we get

Ψ(Xi1 · · ·Xik
) =

∑

ω∈B(k)
ω=ω1,...,ωm

m∏

i=1

KΨ (ωi),

where
KΨ (ωi) =

∑

Ci∈NC(supp(ωi))
Ci=ωi

router(Ci)

∏

Vj∈Ci

Vj inner

rVj
,

hen
e
KΨ (ωi) = tKΦ(ωi).Thus tRB

Φ (ωi) = RB
Ψ , whi
h 
ompletes the proof.5.2. Re
urren
e formula for moments. Earlier in this work we mentioned a resultby Bo»ejko and Wyso
za«ski from [BW2℄ where the authors give a re
urren
e formulafor the moments of Ut(µ):(5.14) mUt(µ)(n) = tmµ(n) +

n−1∑

k=1

mUt(µ)(k)mµ(n− k).We shall extend it to the states Φ and Ψ . By fa
toring the �leftmost� (respe
tively�rightmost�) interval term out of the produ
t and grouping similar terms in the de�nitionof the boolean 
umulants we get the following



42 �. WojakowskiProposition 5.9. For any state η on C 〈X1, . . . , Xn〉 we have
η(Xi1 . . . Xik

) =
∑

ω∈B(k)

∏

i

RB
η (ωi)

= RB
η ([1, k]) +

k−1∑

j=1

RB
η ([1, j])η(Xij+1

· · ·Xik
)

= RB
η ([1, k]) +

k−1∑

j=1

η(Xi1 · · ·Xij
)RB

η ([j + 1, k]).

If k = 1 only RB
η ([1]) survives.Theorem 5.10.

Ψ(Xi1 · · ·Xik
) = tΦ(Xi1 · · ·Xik

) + (t− 1)

k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
).

Proof. We apply Proposition 5.9 to the RHS of the above a number of times:
RHS = tRB

Φ ([1, k])

+
k−1∑

j=1

tRB
Φ ([1, j])Φ(Xij+1

· · ·Xik
)

+

k−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)tRB

Φ ([ι+ 1, k])

+

k−2∑

ι=1

Ψ(Xi1 · · ·Xiι
)

k−1∑

j=ι+1

tRB
Φ ([ι+ 1, j])Φ(Xij+1

· · ·Xik
)

−
k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
)

= RB
Ψ ([1, k]) +

k−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)RB

Ψ ([ι+ 1, k])

+
k−1∑

j=1

RB
Ψ ([1, j])Φ(Xij+1

· · ·Xik
)(5.15)

+

k−1∑

j=2

(j−1∑

ι=1

Ψ(Xi1 · · ·Xiι
)RB

Ψ ([ι+ 1, j])
)
Φ(Xij+1

· · ·Xik
)(5.16)

−
k−1∑

j=1

Ψ(Xi1 · · ·Xij
)Φ(Xij+1

· · ·Xik
)(5.17)

= Ψ(Xi1 · · ·Xik
) = LHSbe
ause by Proposition 5.9 the terms (5.15) and (5.16) 
an
el with (5.17).
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