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Abstract

We endow the diffeomorphism group Diff o, (Q,U) of a paracompact (reduced) orbifold with
the structure of an infinite-dimensional Lie group modeled on the space of compactly supported
sections of the tangent orbibundle. For a second countable orbifold, we prove that Diff o, (Q,U)
is C°-regular, and thus regular in the sense of Milnor. Furthermore, an explicit characterization
of the Lie algebra associated to Diff o,b(Q,U) is given.
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Introduction and statement of results

Diffeomorphism groups of compact manifolds and their subgroups are prime examples of
infinite-dimensional Lie groups. There are many well-known results concerning the Lie
group structure of these groups; e.g., a classical result states that the diffeomorphism
group of a compact manifold is an infinite-dimensional regular Lie group (see [49]). For
the algebraic structure of these groups, see [4]. More generally, Lie group structures on
diffeomorphism groups of paracompact manifolds (even with corners) were constructed
in [48] (cf. also |28] for the special case Diff (R™)). Furthermore, in [44] the diffeomor-
phism groups of manifolds were endowed with the structure of a regular Lie group in
the “convenient setting of analysis”. We remark that the “convenient setting of analysis”
(see [44]) is not equivalent to the setting of analysis adopted in this paper. Our stud-
ies are based on a concept of C"-maps between locally convex spaces known as Keller’s
C7-theory [40] (see [49], [24] and [33] for streamlined expositions, cf. also |5]). The present
paper generalizes the results on diffeomorphism groups of manifolds to diffeomorphism
groups of reduced paracompact orbifolds.

Orbifolds were first introduced by Satake [56] as V -manifolds to generalize the concept
of a manifold. Later on they appear in the works of Thurston (cf. [59]), who popularized
the term “orbifold”. One might think of an orbifold as a manifold with “mild singulari-
ties”. Objects with orbifold structure arise naturally, for example in symplectic geometry,
physics and algebraic geometry (cf. the survey in [1]). It is well-known that there are at
least three different ways to define an orbifold: Orbifolds may be described by atlases
of local charts akin to a manifold (see [1,35,/51]). Furthermore, orbifolds correspond to
special classes of Lie groupoids (see [51] or the survey [50]). Finally one might think of
them as Deligne-Mumford stacks (cf. [46]). The author thinks that the first approach
is suited best to apply methods from differential geometry to orbifolds. Hence in the
present paper we define orbifolds in local charts. Unfortunately, this point of view makes
it difficult to define morphisms of orbifolds. The literature proposes a variety of notions
for these morphisms, e.g. the Chen-Ruan good map |[16], the Moerdijk—Pronk strong
map [52], or the maps in |7]. However, orbifolds in local charts are equivalent to certain
Lie groupoids, whose morphisms are well-understood objects. Thus orbifold morphisms
should correspond to a class of Lie groupoid morphisms. The orbifold maps introduced by
Pohl [55] satisfy these requirements, since they were modeled to be equivalent to groupoid
morphisms @ Furthermore, these maps allow a characterization in local charts, which is

(*) Other concepts of orbifold maps are also widely believed to satisfy similar properties,
cf. |1} Section 2.4]. However in [55] a counterexample to these claims may be found.

(6]
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amenable to methods of differential geometry and Lie theory. Therefore in the present pa-
per, maps of orbifolds will be orbifold maps in the sense of Pohl [55] (for a comprehensive
introduction to these maps see Appendix .

To construct the Lie group structure on the diffeomorphism group of an orbifold we
have to develop several tools from Riemannian geometry on orbifolds. These results are
of interest in their own right and include the following:

We discuss geodesics on Riemannian orbifolds and prove that they are uniquely de-
termined by their initial values. Then a detailed construction for a Riemannian orbifold
exponential map [expeo,y] is provided. This map is an orbifold morphism in the sense of
Pohl [55], which generalizes the concept of a Riemannian exponential map to Riemannian
orbifolds (cf. [35] and [16], respectively for Riemannian exponential maps on geodesically
complete orbifolds).

The Riemannian exponential map on a manifold may be used to construct the Lie
group structure on the diffeomorphism group of the manifold (cf. [49]). The Riemannian
orbifold exponential map allows us to follow this line of thought: We endow the diffeo-
morphism group of a paracompact reduced orbifold with the structure of an infinite-
dimensional locally convex Lie group in the sense of [54]. More precisely, the main results
subsume the following theorem (cf. Theorem :

THEOREM A. The diffeomorphism group Diff o,1(Q,U) of a paracompact reduced orbifold
(Q,U) can be made into a Lie group in a unique way so that the following is satisfied: For
some Riemannian orbifold metric p on (Q,U), let [expo,] be the Riemannian orbifold
exponential map. There exists an open zero-neighborhood H, in the space of compactly
supported sections of the tangent orbibundle such that

E: H, — Diffo,,(Q,U), [6] — [expo,] © [],

induces a well-defined C*-diffeomorphism onto an open submanifold of Diffo,n(Q,U).
This condition is then satisfied for every Riemannian orbifold metric on (Q,U). If (Q,U)
is a compact orbifold, then the Lie group Diff o,1,(Q,U) is a Fréchet-Lie group.

This result generalizes the classical construction of a Lie group structure on the diffeo-
morphism group Diff (M) of a paracompact manifold. For such a manifold, we may con-
sider subgroups of Diff (M), whose elements coincide outside of a given compact set with
the identity. It is known that these subgroups are Lie subgroups of Diff (M) (cf. |27), Sec-
tion 14]). Section contains a similar result for diffeomorphisms of orbifolds, which is
a consequence of Theorem A:

THEOREM B. Let (Q,U) be a paracompact reduced orbifold. For each compact subset K
of @ we define the group Diff o, (Q,U) K of all orbifold diffeomorphisms which coincide
off K with the identity morphism of the orbifold. Let Diff o, (Q,U). be the group of all
orbifold diffeomorphisms which coincide off some compact set with the identity morphism
of the orbifold. Then:

(a) The group Diff o,1,(Q,U). is an open normal Lie subgroup of Diff o, (Q,U).
(b) For each compact subset K of Q, there is a compact set L O K such that the group
Diffo,1,(Q,U) 1, is a closed Lie subgroup of Diff o, (Q,U). The closed Lie subgroup
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Diffo,b(Q,U) 1 is modeled on the space of sections in the tangent orbibundle which
vanish off L.

If (Q,U) is a trivial orbifold (i.e. a manifold), one may always choose K = L in (b).

We remark that Lie group structures for diffeomorphism groups of orbifolds were
already considered by Borzellino and Brunsden. In [7] and the follow-up [8], the diffeo-
morphism group of a compact orbifold has been turned into a convenient Fréchet—Lie
group. The author does not know whether the orbifold morphisms introduced in [7] are
equivalent to the class of orbifold maps considered in the present paper. If both notions
were equivalent, the results of [7,|8] concerning the Lie group structure of the diffeomor-
phism group are subsumed in Theorem A. This follows from the fact that in the Fréchet
setting both notions of “smooth maps”’ coincide (cf. |[40] and [44, Theorem 4.11(a)]).
Hence Fréchet—Lie groups in the sense of [54] and “convenient Fréchet—Lie groups” co-
incide. However, we have to point out that the exposition in |7] contains several major
errors (see Remark for further information on this topic).

We also mention that in the groupoid setting, topologies for spaces of orbifold maps
have been considered. Chen constructs in [15] a topology on the space of orbifold mor-
phisms whose domain is a compact orbifold, turning the space into a Banach orbifold (cf.
also similar results in [36]). The exposition of the present paper is independent of these
results.

After constructing the Lie group Diffo,,(Q,U), we determine the Lie algebra associ-
ated to this group. It is instructive to recall the special case of the diffeomorphism group
Diff (M) of a compact manifold M. Milnor proves in [49] that the Lie algebra associated
to Diff (M) is the space of vector fields X(M) on M, whose Lie bracket is the negative of
the bracket product of vector fields. It turns out that an analogous result holds for the Lie
algebra of the Lie group Diffo,1(Q,U). To understand the result we need the following
facts:

A map of orbifolds [6] which is a section of the tangent orbibundle is called an orbisec-
tion. With respect to an orbifold chart of @, each orbisection induces a unique vector field
on the chart domain, called its canonical lift. In particular, each orbisection corresponds
to a unique family of vector fields (cf. Section [3| for details). By construction, the local
model for the Lie group Diffo,1,(Q,U) is the space of compactly supported orbisections
Xorb(Q).. We are now in a position to formulate the following result on the Lie algebra
of the diffeomorphism group Diffo,1,(Q,U) (Theorem [5.23):

THEOREM C. The Lie algebra of Diffo,(Q,U) is given by (Xomw(Q)e, [+, -]). Here the
Lie bracket [-,-] is defined as follows: for arbitrary [6], (7] € Xow(Q)., the Lie bracket
[[6],[7]] is the unique compactly supported orbisection whose canonical lift on an orbifold
chart (U, G, ) is the negative of the Lie bracket in X(U) of their canonical lifts oy and 1.

Finally we discuss regularity properties of the Lie group Diffo,1,(Q,U). To this end,
recall the notion of regularity for Lie groups.

Let G be a Lie group modeled on a locally convex space, with identity element 1, and
r € No U {oco}. We use the tangent map of the right translation p,: G — G, = — zg,
by g € G to define v.g := T1p4(v) € TyG for v € T1(G) =: L(G). Following 18], [32]
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and [33], G is called C"-regular if the initial value problem

{n'(t) =()n(t),
n(0) =1

has a (necessarily unique) C"*l-solution Evol(y) := 7n:[0,1] — G for each C"-curve
v:[0,1] = L(G), and the map

evol: C"([0,1], L(G)) = G, ~+ Evol(v)(1),

is smooth. If G is C"-regular and r < s, then G is also C*-regular. A C'*°-regular Lie
group G is called regular (in the sense of Milnor)—a property first defined in [49]. Every
finite-dimensional Lie group is C°-regular (cf. [54]). Several important results in infinite-
dimensional Lie theory are only available for regular Lie groups (see [49|, [54], [32], cf.
also [44] and the references in these works). We prove the following result (Theorem 5.35):

THEOREM D. For a second countable orbifold, the Lie group Diffo.,(Q,U) is C*-regular
for each k € Ng U {oc}. In particular this Lie group is regular in the sense of Milnor.

Notice that in general the orbifolds in the present paper are not assumed to be second
countable. However our methods require second countability of the orbifold to prove that
the evolution map evol is smooth. It is known that the approach outlined in the present
paper cannot be adapted to orbifolds which are not second countable. Hence we pose the
following question:

OPEN PROBLEM. Let (Q,U) be a paracompact reduced orbifold which is not second
countable. Is the Lie group Diffo,,(Q,U) a C"-regular Lie group for some r € NgU {c0}?

The present article commences with a brief introduction to infinite-dimensional cal-
culus, orbifolds and their properties (Section . Our goal is to present a mostly self-
contained exposition of orbifolds and their morphisms. In particular, Appendix E con-
tains all necessary information about orbifold maps in the sense of |55]. However, the
exposition avoids references to the groupoid morphisms after which these maps are mod-
eled. The work is organized as follows: In Sections [2| and [3] classes of orbifold maps are
discussed in the setting of [55]. These include orbifold diffeomorphisms, partitions of unity
and sections of the tangent orbibundle. Afterwards, we consider Riemannian geometry
on orbifolds and develop important tools employed in the proof of the central results of
this work. The main results are contained in Section [Bl

The less introductory material contained in the appendices should be taken on faith
on a first reading. The presentation of this material in the text would have distracted
from the main line of thought.

Note added in proof (February 2015). The open problem formulated in this introduc-
tion has been solved. A combination of |32, Corollary 13.6] and the results from Section
shows that for a non-second countable orbifold the diffeomorphism group will be
C'-regular.



1. Preliminaries and notation

CONVENTIONS 1.1. In this paper, we work exclusively over the field R of real numbers.
All topological spaces will be assumed to be Hausdorff. We write N := {1,2,...} and
Ny := NU{0}.

1.1. Differential calculus in infinite-dimensional spaces. Basic references for dif-
ferential calculus in locally convex spaces are [5][24}25,30,40]. Basic facts on infinite-
dimensional manifolds are gathered in Appendix For the reader’s convenience, we
recall various definitions and results:

DEFINITION 1.2. Let E, F be locally convex spaces, U C E an open subset, f: U — F
a map and r € Ny U {oo}. For (z,h) € U x E we define (if it exists) the directional
derivative

df (z,h) := Dy f(z) := g%t_l(f(x +th) — f(x)).
We say that f is C" if the iterated directional derivatives

d(k)f(xvyla cee ayk) = (Dyk o Dylf)(x)
exist for all £ € Ny such that £k < r, x € U and y1,...,yx € F, and define continuous
maps d¥) f: Ux EF — F.If f is C™, it is also called smooth. We abbreviate df := d( f.

REMARK 1.3. If Fq, E5, F are locally convex spaces and U C F;,V C Es open subsets
together with a C'-map f: U x V — F, then one may compute the partial derivative
dy f with respect to E;. It is defined as

dif:UXxV xE = F dif(z,y;2) = }iﬁII(l)til(f(I—FtZ,y) — f(z,v)).

Analogously one defines the partial derivative dof with respect to E5. The linearity
of df(z,y,-) implies the so-called Rule on Partial Differentials for (x,y) € U x V and
(hl,hg) € F1 X Ey:

df (x,y,h1, he) = di f(z,y; h1) + da f (2, y; ha). (1.3.1)
By [24, Lemma 1.10], f: U x V — F is C! if and only if dif and daf exist and are

continuous.

DEFINITION 1.4 (Differentials on non-open sets). (a) A subset U of a locally convex space
FE is called locally convez if every x € U has a convex neighborhood V' in U.

(b) Let U C E be a locally convex subset with dense interior. A continuous mapping f:
U — Fiscalled C" if f|yo: U° — F is C" and each of the maps d®) (f|yo): U° x E¥ — F
admits a continuous extension d®) f: U x EF — F (which is then necessarily unique).

(10]
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If U C R and f is C!, we obtain a continuous map f': U — E, f'(z) = df(z)(1).
We shall write % f(z) := f'(z). In particular if f is of class C", we define recursively
%f(x) = (% )/(x) for k € Ny such that k < r, where f(©) := f.

Using these definitions one may define infinite-dimensional manifolds as usual. We
refer to Appendix [C] for definitions and comments on the notation used. To discuss
regularity properties of Lie groups, the notion of C"*-mappings is useful.

DEFINITION 1.5 (C™*-mappings). Let Eq, E5 and F be locally convex spaces, U and V
open subsets of E; and Es, respectively, and r, s € NgU {oco}. A mapping f: U xV — F
is called a C™*-map if for all 7,5 € Ny such that i < r,j < s, the iterated directional

derivative
d(i’j)f(xa Y, W1y ew, Wi, V1, .. 7vj) = (D(wi,O) cee D(wl,o)D(o,vj) ce D(O,vl)f) (z,y)
exists forallz c U,y € V, wy,...,w; € By, vi,...,v; € Fy, and yields continuous maps

d@Df:UxV x Bl x B} - F,
(T, 9, w1, .. w015, 05) (D(wi,O) “* Dw, ,0)D0,v;) - ~D(o,v1)f)(x,y).

Again this concept may be extended to maps on non-open domains with dense interior:
DEFINITION 1.6. Let Ey, Es and F' be locally convex spaces. Consider locally convex
subsets with dense interior U of Fy and V of Es, and r,s € Ny U {c0}. We say that a
continuous map f: U XV — Fis a C™*-map if flyoxye: U° X V° — F is a C™*-map
and for all ¢, j € Ny such that ¢ < r,j <'s, the map

dGD (flyoxye): U x V° x Bi x B} = F
admits a continuous extension d»9) f: U x V x E} x E% — F.

For further results and details on the calculus of C™*-maps we refer to [2].

DEFINITION 1.7. Let U, V be locally convex subsets with dense interior of locally convex
spaces Ey, Ea, respectively, and let F' be a locally convex space. For r, s € Ng U {00}, we
define the spaces

C"(U,F):={f:U— F| fis a mapping of class C"},
C™(UXxV,F):={f: UxV — F| fis a mapping of class C""}.
Furthermore, we define C(U, F) := C°(U, F) and endow C" (U, F) with the compact-open

C"-topology (see Section [C.2]).

CONVENTIONS 1.8. In the following, we let Diff" (M) be the group of C"-diffeomorphisms
from a C"-manifold M to itself for r € NgU{oo}. To shorten notation, we write Diff (M) :=
Diff > (M) if M is a smooth manifold.

1.2. Orbifolds I: Moerdijk’s definition. In this section, we introduce orbifolds as
in the works of Moerdijk et al. Our exposition follows [51], but we slightly change the
definition of orbifold charts (see Remark [1.12]).
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DEFINITION 1.9 (Orbifold charts). Let @ be a topological space. An orbifold chart of
dimension n > 0 is a triple (U, G, ¢), where U is a connected smooth paracompact n-dim-
ensional manifold without boundary, G is a finite subgroup of Diff(U) and ¢: U — @Q is
an open map which factors to a homeomorphism on the orbit space U/G — ¢(U).

If (U,G, ¢) is an orbifold chart on @ and S is an open G-stable subset of U, then
the set {g|s: g € Gs} is a group isomorphic to Gg by Newman’s Theorem Thus by
abuse of notation the triple (S,Gg, ¢|s) is again an orbifold chart called the restriction
of (U,G,¢) to S.

Let (V, H, 1) be another orbifold chart on Q. An embedding A: (V, H,vy) — (U, G, ¢)
of orbifold charts is a topological embedding A\: V' — U which is an étale map @ that
satisfies ¢ o A = 1.

We say that two orbifold charts (U, G, ¢) and (V, H,1) of dimension n on @ are
compatible if for any z € ¢(U) N p(V), there exist an orbifold chart (W, K,6) on @
with z € (W) and embeddings between orbifold charts \: (W, K,0) — (U,G,¢) and
w: (W, K,0) = (V,H, ).

ProposITION 1.10 ([51, Proposition 2.12]). Let Q be a topological space.

(a) For any embedding \: (V, H,v) — (U, G, ¢) between orbifold charts on Q, the image
A(V) is a G-stable open subset of U, and there is a unique isomorphism X\: H —
Gy < G for which A(hz) = X(h)A(z).

(b) The composition of two embeddings between orbifold charts is an embedding between
orbifold charts.

(¢) For any orbifold chart (U,G,), any diffeomorphism g € G is an embedding of
(U, G, ¢) into itself and g(g') = gg'g~*.

(d) If \u: (V,H,¢) — (U,G, @) are two embeddings between the same orbifold charts,
there exists a unique g € G with A = go p.

Proof. The proof of |51, Proposition 2.12| carries over verbatim to finite-dimensional
connected manifolds without boundary. =

DEFINITION 1.11 (Orbifolds I). An orbifold atlas of dimension n for a topological space
Q is a set of pairwise compatible orbifold charts

U:={(U;,Gi,¢i) | i €T}

of dimension n on @ such that | J;.; #:(U;) = Q. Two orbifold atlases of @ are equivalent
if their union is an orbifold atlas. An orbifold of dimension n is a pair (Q,U), where Q
is a paracompact Hausdorff topological space and U is an equivalence class of orbifold
atlases of dimension n on Q.

REMARK 1.12. The definition of an orbifold does not exactly follow the exposition in [51].
We have to mention two changes:

(a) For an orbifold chart (U, G,7) as defined in this section, the chart domain U is

a finite-dimensional connected and paracompact manifold. In [51] one is only allowed

(*) That is, for each p in the domain of A, the tangent map T,\ is an isomorphism. On
occasion these maps will also be called local diffeomorphisms.
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to choose U as an open subset of R™. However, every orbifold in our sense uniquely
determines one in the sense of [51]. This fact follows from Lemma Let (U,G,)
be an orbifold chart as in Definition Then Lemma allows the construction of
an orbifold chart (V,, Gy, ,7|v,) for © € U, where V, is diffeomorphic to an open subset
of R™. Hence the orbifolds defined in Definition [[.1T] admit an orbifold atlas whose chart
domains are open subsets of R™.

(b) In contrast to the treatment in [51], we do not require the topological space @
to be second countable. We do not need second countability of @) for most of this work,
whence we chose to omit it here (also compare Remark .

1.3. Orbifolds II: Haefliger’s definition. We recall an equivalent definition of orb-
ifolds as outlined in [35]:

DEFINITION 1.13 (Orbifolds II). Let @ be a paracompact Hausdorff topological space.

(a) Let n be in Ng. A (reduced) orbifold chart of dimension n on @ is a triple (V, G, ¢)
where V is a connected paracompact n-dimensional manifold without boundary, G is a
finite subgroup of Diff (V'), and ¢: V — @ is a map with open image ¢(V') that induces
a homeomorphism from V/G to ¢(V'). In this case, (V, G, ¢) is said to uniformize o(V).

(b) Two reduced orbifold charts (V, G, ), (W, H,1¢) on Q are called compatible if for
each pair (x,y) € V. x W with ¢(z) = ¥(y) there are open connected neighborhoods V,
of z and W, of y and a C*°-diffeomorphism h: V, — W, such that 1 o h = ¢|y,. The
map h is called a change of charts.

(¢) A reduced orbifold atlas of dimension n on @ is a set of pairwise compatible reduced
orbifold charts

V:={(V;,Gi,¢i) | i € I}

of dimension n on @ such that (J,.; ¢:(Vi) = Q.

(d) Two reduced orbifold atlases are equivalent if their union is a reduced orbifold
atlas.

(e) A reduced orbifold structure of dimension n on @ is an equivalence class of reduced
orbifold atlases of dimension n on Q.

(f) A reduced orbifold of dimension n is a pair (Q,U) where U is a reduced orbifold
structure of dimension n on Q.

Definition [1.13] is equivalent to Definition [1.11] i.e. they yield the same equivalence
classes of orbifold atlases. The compatibility conditions of both definitions coincide by |51}
Proposition 2.13]. The proof outlined in [51] carries over without any changes to our
setting.

REMARK 1.14.

(a) The term “reduced” refers to the requirement that for each reduced orbifold chart
(V,G, ) in U the group G is a subgroup of Diff (V). Hence the action of G on V is
effective. We will only consider reduced orbifolds (and maps between them). Thus to
shorten our notation, we will drop the term “reduced” in the remainder of the paper.
A “reduced” orbifold will thus simply be called an orbifold.
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(b) We will occasionally refer to the dimension of an orbifold as defined in as
the orbifold dimension. We shall prove later that, as in the case of a manifold, the
orbifold dimension is an invariant of the orbifold. More explicitly, two orbifolds can only
be diffeomorphic to each other if they have the same orbifold dimension. We postpone
these considerations until we are ready to define morphisms of orbifolds.

(¢) In general, maps of orbifolds (see Appendix [E]) only admit local lifts in certain
orbifold atlases contained in the equivalence class U of the orbifold (Q,U). Therefore we
introduce the convention: An atlas V contained in i/ will be called a representative of U.

(d) Notice that U is only an equivalence class of orbifold atlases. We have not defined
a maximal atlas, since the definition of orbifold charts would force the maximal atlas to
be a proper class (and not a set). We avoid the set-theoretic problems incurred by such
a construction. However, by abuse of notation we will sometimes write (U, G,7) € U to
denote an orbifold chart compatible with the given orbifold structure .

For the rest of this paper we shall always assume that the orbifolds considered are de-
fined as in Definition [I.13] As we have already remarked, the definition of orbifolds given
in the previous section is equivalent to our working definition of an orbifold. In particular,
the changes of orbifold charts restrict locally to open embeddings in the sense of Propo-
sition On occasion it will turn out to be advantageous to work with embeddings of
orbifold charts, as Proposition [1.10]is then available.

1.4. The topology of the base space of an orbifold. In this section, we compile
several facts about orbifolds which are well-known in the literature (cf. [1,/7}/16}/51]). We
give proofs for the reader’s convenience.

LEMMA 1.15. For an orbifold (Q,U), the family of open sets {V := (V) | (V,G,x) € U}
is a base for the topology on Q.

Proof. Let p € @Q and U C @ be an open neighborhood of p. Choose an orbifold chart
(V,G,7) € U such that p € vV = (V). The map w is given by the composition of
the quotient map onto the orbit space with a homeomorphism onto an open set. Hence
Lemma shows that 7 is continuous and open. The set 7~!(U) is an open subset of V'
containing some element p € 7~*(p). By Lemma we can choose a G-invariant open
set S such that p € S C 771 (U) and (S, Gy, 7|s) is an orbifold chart. By construction,
p € ©(S) C U, proving the lemma. =

To analyse the structure of the base space we need a well-known fact from topology:

ProrosiTION 1.16. If X is a Hausdorff space that is locally compact and paracompact,
then each component of X is o-compact. If, in addition, X is locally metrizable, then X
is metrizable and every component has a countable basis of the topology.

Proof. By |21, Ch. XI, Theorem 7.3] each component is o-compact. The space X is
paracompact, locally metrizable and Hausdorff, hence we may choose a locally finite
closed cover consisting of metrizable subspaces. Then X is metrizable by |22, Theorem
4.4.19]. Each connected component C' is Lindeldf by |21, Ch. XI, Theorem 7.2]. We deduce
from |22}, Corollary 4.1.16] that C' is second countable. m
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PROPOSITION 1.17. If (Q,U) is an orbifold, then the topological space @ has the following
properties:

(a) @ is a locally compact Hausdorff space.

(b) @ is connected if and only if Q is path-connected.

(¢) Q is metrizable.

(d) Ewery connected component C of Q is open, o-compact and second countable.

We remark that Q is not necessarily second countable.

Proof. (a) The space @ is Hausdorff by definition of an orbifold. Clearly, being a locally
compact space is a local condition, i.e. may be checked within 7(U), where (U, G,7) € U
is an arbitrary orbifold chart. Lemmashows that 7(U) is a locally compact Hausdorff
space, since every finite-dimensional Hausdorff manifold U is such a space.

(b) The quotient map onto the orbit space is continuous and open (Lemma ,
and manifolds are locally path-connected. Thus @ is locally path-connected, whence the
assertion follows from general topology [21, Ch. V, Theorem 5.5].

(¢) For every chart (U,G,m) € U the group G C Diff(U) is finite. The manifold U
is locally metrizable (since every chart is a homeomorphism) and a paracompact locally
compact Hausdorff space. By Proposition[I.16] U is metrizable. The quotient map onto an
orbit space is a closed-and-open map by Lemma[B:4] Since metrizability is an invariant of
closed-and-open maps by |22, Theorem 4.4.18|, the space @ is locally metrizable. Summing
up, @ is a locally metrizable, locally compact and paracompact Hausdorff space. Again,
by Proposition the metrizability of @ follows.

(d) The space @ is locally path-connected, which implies the openness of C' by |21}
Ch. V, 5.4]. We already know that @ is a Hausdorft space which is paracompact and
locally compact. Every component of @ is then o-compact and second countable by
Proposition [1.16

To prove the last remark, consider the following counterexample: Let (Q,U) be an
arbitrary orbifold modeled on a topological space Q # 0 and I be a set with cardinality at
least ;. Construct the orbifold (Q7,U;) by defining the topological space Qr := [[;; @
as the disjoint union of copies of @), and the orbifold charts on every copy of @ as copies
of charts in Y. Then (Q,Ur) is not second countable, even if @ is. m

1.5. Local groups and the singular locus. Let (Q,U) be an orbifold of dimension n,
(U,G,n) € U an orbifold chart of @ and = € U. Let z := mw(x). We deduce from [51]
Lemma 2.10] that the differential at x induces a faithful representation G, — T,U,
g — T,g, and hence a faithful representation of G, in Gl(n,R) (cf. also Lemma [B.10).
The corresponding finite subgroup of Gl(n,R) is unique up to conjugation in Gl(n,R)
(induced by the change of chart maps). This conjugacy class will be called TG,. Since
Gye = gGpg~* for any g € G, we have TG, = TG, Let X: (V, H,¢) — (U,G, ) be an

embedding of orbifold charts, and y € V with A(y) =2 and Ao h = A(h) o A for h € H,
entailing that A\(H,) = G, by Proposition and

TG, = T, \TH,(T,\)"".
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Thus the conjugacy class of TG, depends only on the point z and not on the choice of
the orbifold chart (U, G,7) on @ or on x. Hence the following definition is justified.

DEeFINITION 1.18 (Local group). Let (Q,U) be an orbifold. For every z € @, by the
above there is a group I',(Q) C Gl(n,R) which is unique up to conjugation in Gl(n,R).
We call I, (Q) the local group of z. In the literature I, (Q) is also called the isotropy group
of z. We avoid this and reserve “isotropy group” for the subgroup of a group acting on a
manifold, which fixes a given point.

The singularities, i.e. points with non-trivial local group, generate a structure which
distinguishes a non-trivial orbifold from a manifold. We claimed that orbifolds are man-
ifolds with “mild singularities”. To emphasize this point we shall investigate the singular
locus (i.e. the set of all singularities). As a consequence of Newman’s Theorem the
singular locus is a nowhere dense closed subset of the base space of an orbifold. In other
words, the topological base space of an orbifold contains an open and dense manifold.
A proof for this result is given in the rest of this section:

DEFINITION 1.19 (Singular locus). Let (Q,U) be an orbifold. The singular locus of Q is
the subset
Yo ={2€Q|TI.(Q) # {1}}.

In a chart (U, G, m), one has g N7(U) = m(X¢q), where X is the set of points in U with
non-trivial isotropy subgroup with respect to the action of G. An element z € @ is called
a singular point if x € X, and z is called non-singular if x & X¢.

Since there are different orbifold structures on the same topological space, occasionally
we have to indicate which one is meant. In these cases we shall write I'. (Q, U) resp. ¥ (g1,
to avoid confusion.

PROPOSITION 1.20 (Newman, Thurston). The singular locus Xq of an orbifold (Q,U) is
a closed set with empty interior.

Proof. Let (U,G, ) be any chart at some point p € Q). By definition ¥¢g N 7 (U) is the
image of ¥¢. As G C Diff(U) is finite, we deduce from Newman’s Theorem that
the set Ny of non-singular points in U is open and dense. Lemma [B-4] shows that the
quotient map 7 onto the orbit space is open, whence

So=0\ U #)
(U,G,m)eU
is a closed set. Since Ny is dense in U, m(Ny) is dense in 7(U). Then (Q \ o) N7 (V)

is dense in 7(U), and since the open sets 7w(U) cover @ (for some atlas), Q \ X¢ is dense
in Q. In particular, (£¢)° =0. m

1.6. Orbifold atlases with special properties. In this section, we construct special
orbifold atlases. These atlases are needed later on, to construct charts for the diffeomor-
phism group of an orbifold.

DEFINITION 1.21. Let (Q,U) be an orbifold and V a representative of U. We say that
another representative W of U refines V (or is a refinement of the atlas V) if for every
chart (W, G,¢) € W, there is a chart (V, H,7) € V and an open embedding of orbifold
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charts Aw,y: (W,G,¢) — (V, H,m). Given another representative V' of U, we say that
W is a common refinement of V and V' if W refines V and W refines V.

LEMMA 1.22. For an orbifold (Q,U) and two arbitrary representatives V,V' of U, there
exists a common refinement W of V and V'.

Proof. Since the union W := YV UV’ is an orbifold atlas for (Q,U), i.e. all charts are
pairwise compatible, for each = € @ we may choose an orbifold chart whose image
contains  and which embeds into a chart in V and a chart in V' (cf. Definition .
The collection of all charts chosen this way is an atlas, which is a common refinement of
Vand V. =

LEMMA 1.23. Let (Q,U) be an orbifold. For any representative V of U, consider the
classes of orbifold charts
UeV:={UH¢)elU|3IV,G, ) €V and an embedding \y,v: (U, H,¢) = (V,G, )},

Uc Vv ={{UH,p)cU €V | A\yv(U) C Vis compact}.

Then the sets {p(U) | (U, H,¢) e U € V} and {¢(U) | (U,H,$) € U T V} of open sets
are bases for the topology on Q.

Note that the compactness of Ay (U) in V implies ¢(U) C (V).
Proof. Consider an arbitrary open set Q2 C @ and some point x € €. The set V is an
atlas, and thus there is some chart (V,G,v) € V with « € Im, say = 1(y). Because
V' is locally compact, y has a compact neighborhood K in V, contained in the open
set 1~1(Q). By Lemma K contains a G-stable open neighborhood W of y in V.
Then (W,Gw,v|w) € U T V (because A,y can be chosen as the inclusion map and
Imy|lw CQ). =

DEFINITION 1.24. Let (Q,U) be an orbifold. An orbifold atlas V := {(V;,G;,m;) | i € I}
of (Q,U) is called locally finite if the family (m;(V;))icr is a locally finite family of open

sets @

LEMMA 1.25. Let (Q,U) be an orbifold. Then the following hold:

(a) There is a locally finite representative V of U.

(b) For each representative W of U, there is a locally finite representative W' which
refines WW.

(¢) The refinement W' in (b) may be chosen with the following property: For each
(U,G,¢) € W, there are (V,H,p) € W and an open embedding A\y,v of orbifold

charts such that Ay, (U) CV is a compact set, whence Ucv (using notation as in

Lemma|1.15)).

Taking identifications, without loss of generality Ay v is just the canonical inclusion
(of sets) and G is a subgroup of H.

(?) We assume here that the atlas is “indexed” by I in the sense that the map I — V,
i+ (Vi, Gi, 1), is injective.
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Proof. (a) The topological space @ is a locally compact Hausdorff space. For each ¢ € Q
pick a compact neighborhood U, of g. Then (U;)qu is an open cover of . By paracom-
pactness of @, there is a locally finite open refinement (Wj);es of (Ug)qeq- Note that
every W, is compact. By [22, Lemma 5.1.6], there exists a shrinking (O;);es of (W;) e
that is an open cover of @ such that O; C W for each j € J. The uniformized subsets of
@ form a basis of the topology by Lemma Thus for each j € J, the compact set O; is
covered by finitely many uniformized sets which are contained in W}, say O; C |2, Bjx-
Since the family (W;);es is locally finite,

{Bixljed k=1,...,n;}

is a locally finite open covering of () by uniformized subsets. The corresponding atlas V
is thus locally finite.

(b) and (c) We may argue as in (a), but replace the set of all uniformized subsets of @
by the set of all uniformized subsets, which are images of i € W (resp. images of U = W
for (c)). Since Lemmaensures that these sets of images are bases of the topology, no
further changes in the proof are needed. For the last statement identify U and Ay,yv (U),
resp. G, with \(G). =

LEMMA 1.26. Let (Q,U) be an orbifold, and W a locally finite orbifold atlas such that
for each (V,H,p) € W the uniformized subset (V') is relatively compact. Consider a
refinement W' as in Lemma c) indezxed by a set I. There exists a map a: I — W
which associates to each i a chart (Viy(iy, Ha(iys a(i)) into which (Ui, Gi, ;) embeds (as an
orbifold chart) via an inclusion of sets Uy — Vo). Furthermore, Iy 1= a YW(V,H,p)C I
is finite for each (V,H,p) € W.

Proof. Lemma M(c) ensures that for each ¢ € I, there is at least one chart in W
such that (U;, G;,v;) embeds into this chart via the inclusion of sets. Choose a chart
(Vai)s Ha(i)> Pa(iy) such that U; C Vi) is compact, Gy € Hyy and ¥ = @ai|u;-
We obtain a map a: I — W with the desired properties. For each (V, H,¢) € W, the
uniformized subset ¢(V) is relatively compact. Since W’ is locally finite, there is only a
finite subset of I such that ¢;(U;) N (V) # 0. Therefore Iy := a~*(V, H, ) is finite for
each (V,H,p) €W. n

Later on an orbifold atlas will be needed which is adapted to a certain closed and
discrete set. To construct such an atlas we need to deal with some technical difficulties
in the following lemma:

LEMMA 1.27. Let X be a paracompact topological space, D C X be a closed discrete subset
(i.e. X induces the discrete topology on D). Then there exist disjoint open neighborhoods
Q, C X for x € D such that ()zep is locally finite.

Proof. For x € D let V,; be an open neighborhood of = such that V, N D = {z}. Then
V:={V, |2 € D}U{X \ D} is an open cover of X and there is a locally finite open cover
(W;)jes subordinate to V. Let J' := {j € J | DNW; # 0}. Then (W;),e, is an open
cover of D and for each j € J', there is x; € D with W; C V. Since V,; N D = {x,},
icsr Wi, the map J' = D, j — x;, is surjective.

For x € D choose j(x) € J" with 2,y = x. Then (Wj(,))zep is a locally finite open

x; is uniquely determined. Since D C |
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cover of D. Since every paracompact space is normal by [22) Theorem 5.1.5], X is a
regular topological space. Hence there is a neighborhood C, C Wj(,) which is closed
in X. The locally finite union A, := UyeD\{m} Cy of closed sets is closed and = ¢ A,
since x ¢ V,, 2O Cy. Define Q,, := CJ \ A,. Then (;),ep has the desired properties. m

PROPOSITION 1.28. Let (Q,U) be an orbifold, ¥V € U an orbifold atlas and D a closed
discrete subset of Q. There exist locally finite atlases A = {(U;,Gi, ;) | @ € I} and
B={(W;,Hj,¢;)|j€ J} €U such that all of the following conditions are satisfied:

(a) The charts in A, B are relatively compact, i.e. if (U, G,v) is such a chart, then the
set W is a compact subset of Q.

(b) The atlas A refines B and B refines V as in Lemma c).

(c) For z € D, there are unique i, € I and j, € J with z € ;(V;) and z € ¢;(U;),
respectively.

(d) If Q is o-compact, then the sets I and J are countable.

Proof. Tt suffices to construct B with the asserted properties (to get A, we apply the same
construction with B instead of V). The space @ is a metrizable locally compact space
by Proposition [[.I7] Using Lemma [I.27] we may choose disjoint open neighborhoods
Q, C Q for z € D such that (2,).ep is locally finite. As @ is locally compact, for
each z € D we may choose a compact neighborhood L; ., C €2,. By Lemma @ for
each z there is a relatively compact orbifold chart (U,,G.,p.) € U T V such that
z € p.(U,) C 9. (U.) C LS ,. Furthermore, the inclusion of sets induces an embedding
of orbifold charts. Again by local compactness, for each z we may choose a compact
neighborhood Ly , C ¢, (U,).

The set Lo . is contained in L; .. Since each L; . is contained in €2, and these sets
form a locally finite family, the family (Lo .).cp is locally finite. The set L := J,.p, Lo,»
is thus closed by [22, Corollary 1.1.12] and we may consider the open subset Q" := Q\ L.
Now Q' is locally compact and as @ is metrizable by Proposition the subspace Q'
is paracompact. The images of the class R := {(V.H,m) e U C V | n(V) C Q'} form a
basis for the topology on @)’. Using an argument analogous to Lemma c), there is a
locally finite orbifold atlas B’ = {(W}, Hj, ;) | j € J'} C R for Q" such that each chart
(W, H,p) € B’ is relatively compact and embeds into some member of V as in Lemma
1.25|(c). Notice that by construction none of the charts in B’ contain elements of D.

For each z € D, the set L, := L1, NQ \ ¢,(U;) C Q" is compact. The atlas B’ is
locally finite, and thus there are finite subsets J., C J’ such that ¢,;(W;) N L, # 0 iff
j € J.L. Assume that P is the image of an orbifold chart in B’ which is contained in

0=Q\ |J L. = (U ¢-0)) u(@\ U Lis).
z€D z€D z€D

As each Ly , is a closed set and the family (L1 ,).ep is locally finite, the union of the sets
L, is closed by |22, Corollary 1.1.12]. Therefore O is an open set and by construction

pP= (U 0.(U) mP) U (Pm (Q\ZLEJDLLZ))

zeD
is a disjoint union of two open sets. As orbifold charts are connected, we deduce that
their images are located as follows:
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Either the image is contained in @\ U, p
z € D, or it is contained in | J, j, 9. (U.). Discarding the charts whose image is contained
in U,cp - (U.), we obtain the subset

= U J;U{jEJ/‘(pj(Wj)ﬁ U LLZ:@}
z€D zeD

of J' such that the family B” := {(W;, Hj,¢;) | j € J"} covers Q\ ,cp ¥=(U>).

Set J := J"” LI D. The set indexes the atlas B := B" U{(W,,H,,¢,) | z € D}. By
construction, B is a refinement of V with the properties of Lemma c).

Ly ., or it intersects at least one of the L.,

It remains to prove that B is locally finite. As B" is a locally finite atlas, it suffices to
check the following condition: For each z € D, only finitely many charts in B” intersect
the image of (U, G, ¢.). For each z € D, the charts indexed by z are contained in L; ,,
and by construction only a finite number of charts in B” intersect L .. Thus at most
finitely many images of charts in B intersect a given L7 ,, 2 € D, whence A and B are
locally finite.

If @ is o-compact, then () is a countable union of compact sets, each of which meets
Im ; for only finitely many j € J (as B is locally finite). Hence J is countable. Likewise,
the index set I of A is countable. m

The following lemma will allow us to control the local behavior of sections in the
tangent orbifold.

LEMMA 1.29. Let (Q,U) be an orbifold and W = {(V;, H;, @;) | i € I} be a locally finite
orbifold atlas. For each i € I, let K; C V; be a compact subset. Then, for each i € I, there
is an open cover {ZF}1<p<n, of K; CV; such that:

(a) The sets ZF are H;-stable for i G I,1<k<n,;.

(b) For each j € I with ZFNK;N@;  ¢;(K;) # 0 there is an embedding of orbifold charts
A ZF = V.

(¢) The cover {ZF}1<k<n, may be chosen such that for each i € I, 1 <k < N; there is
an H;-stable open set ZF such that ?f is a compact set, contained in ZF and each
embedding )\fj is the restriction of an embedding on Zf

Proof. The set K; := %(Ki) is compact, and since W is locally finite, there is a finite
subset F; of W such that K; N(V 7) # 0 if and only if (V, H, ¢) € F;. In particular, there
is a finite set J; such that K” = K;N ©;(K;) # 0 if and only if j € J;. The compact sets
K”- are contained in V The set

Ky =K Ny (Ky) = KNy o (K5) = (ol) ™ (05(K;)) (1.29.1)
is closed in K; and hence compact. For each j € J;, the set K;; is contained in ¢ *;(V}).
Thus each K;; may be covered with open H;-stable subsets Afj of V; such that there is an

open embedding of orbifold charts Aj; : A, — Vj. Since Kj;; is compact, for each j there
is a finite family (Al )1<r<mj which covers Kj;;. As J; is finite, for each x € K; we obtain

an open nelghborhood
N vy U Ka).
TEAT, Jj€J, ¢ Kij
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Choose an H;-stable connected open neighborhood =z € Z* C N,. Each y € Z% is
contained in K;; only if  is contained in K;; as well. For each j € J; such that z € Kj;, the
open embeddings defined on Aj; restrict to an open embedding of orbifold charts on Z*.
Since K is compact, we may select a finite open cover {Z% |z, € K;, 1 <k < n} of K.
Observe that Z7* N K; Ny; '¢;(K;) = Z% N K;; holds by (L.29.1). If this intersection is
non-empty, we derive that z; € K;;. By construction, there is an embedding of orbifold
charts on Z* which satisfies (b). Hence the family (Z**)<x<,, satisfies all properties of
assertion (b).

(c) follows directly from (b) and local compactness of each V;: Before selecting a
finite cover by some of the Z*, we set Z% := 7% and for each = we choose a compact
neighborhood z € C, C Z*. The H;-stable sets form a base of the topology and we may
select a new H;-stable subset x € Z, C C C A By compactness of K;, we may select
a finite covering from the family (Z,),ck, which satisfies (c). m

1.7. Examples of orbifolds. This section collects well-known simple examples from
the literature to illustrate the definition of an orbifold. We also fix some terminology for
later use.

ExaMPLE 1.30. Every paracompact smooth finite-dimensional manifold M (without
boundary) is an orbifold. An orbifold atlas for M is given by the following set of charts:

{(C,{id¢},id¢) | C € M a connected component}

where by abuse of notation idg: C — M is the inclusion map. We call this orbifold
structure induced on the manifold M the trivial orbifold structure.

EXAMPLE 1.31 (A mirror in R? [59, 13.1.1]). Consider R? together with the action of the
linear diffeomorphism 7: R? — R?, (z,y) ~ (—z,y). The map v fixes the points (0,v),
y € R. An orbifold structure is induced on the quotient R?/{y) ~ H := {(z,y) € R? |
x>0}

Fig. 1. A mirror in R?. The boundary of the half-plane contains the singular points, while points
outside the boundary are non-singular.

This example can be generalized to a manifold with boundary in the following way
(cf. |59, 13.2.2]): Let M be a (smooth) manifold with boundary OM. Glue together two
copies of M along OM to obtain the double dM of M. Recall that by using a collar
around the boundary (cf. |38, Chapters 4, 6]) the double may be endowed with a unique
structure of a smooth manifold without boundary (see [53, Definition 5.10 and Theorem
6.3] for a full account of the construction). Again the diffeomorphism which interchanges
the two halves of the double generates a finite group I'. By construction the orbifold
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dM /T is isomorphic to M. Hence every manifold with boundary is in a natural way an
orbifold, whose singular locus is the boundary of the manifold.

EXAMPLE 1.32 (Good orbifolds). Let M be a smooth finite-dimensional paracompact
manifold and T' C Diff(M) be a subgroup. Assume that the canonical action of T" on M
is proper, i.e. there exists a metric d on M such that I" acts by diffeomorphisms and for
each x € M there exists r > 0 such that
{v €T |7.B](z) N B(z) # 0}

is finite. Then the orbit space M /T may be endowed with an orbifold structure induced
by the group action of I" on M (cf. [13, II1.G1.3] for details). An orbifold which arises in
this way is called developable or good.

A particularly attractive situation arises if M is a connected, paracompact manifold
and I' is finite. Then the good orbifold obtained from these data possesses an atlas with
one chart, i.e. (M, T, 7), where 7: M — M/T is the canonical quotient map. In Example
we compute orbifold structures for M = S2. Several of these structures will be good
orbifolds.

EXAMPLE 1.33 (Symmetric products |1, Example 1.13]). Suppose that M is a smooth
finite-dimensional, paracompact manifold. Consider the symmetric product X, :== M™/S,,
where M™ is the n-fold Cartesian product of M and S,, is the symmetric group on n
letters which acts on M™ by permutation of coordinates. Tuples of points have non-
trivial isotropy groups if they contain a number of repetitions in their coordinates. The
diagonal of M™ is fixed by each element of the finite group S,.

In the next example we consider two orbifold charts on the same topological space
which induce non-diffeomorphic orbifolds.

ExAMPLE 1.34 ([55, Example 2.2]). Let @ := [0, 1] be the topological space with the
induced topology of R. The map f: Q — Q, z+ 22, is a homeomorphism. Let p: R —
R be the reflection in 0. Consider the map p: |-1,1] = @, « — |z|. Then p induces
a homeomorphism |—1,1[/{p) and we derive orbifold charts V; := (]—1,1[, {p),p) and
Vo= (]=1L1[,(p), f o p).

However, these orbifold charts are not compatible. To see this, assume to the contrary
that they are compatible. Since fop(0) = 0 = p(0), there exist open connected neighbor-
hoods Uy, Us of 0 in ]—1, 1] and a diffeomorphism h: U; — Us such that fop = poh. This
equation leads to h(z) € {£+/]z[}. By continuity we have the following choices for h:

hi(x) = /al, ho(z) 1= —/|zl,

N 7\/@7 I'SO, o \/M7 ZL’SO,
hg(l') = {\/E, " Z 07 h4(l‘) = {\/m’ " Z 0.

Since none of the above is differentiable, the two charts are not compatible.

ExaMPLE 1.35 (Orbifold structures on the 2-sphere). The following examples are all
modeled on the 2-sphere S2, i.e. the topological space of each of the orbifolds is the
2-sphere with the topology turning it into a smooth manifold. Examples of this type first
appeared in [59]. We give a detailed construction based on the exposition in |35]:
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Let N be the north pole and S the south pole of S2. Endow the sphere with the usual
topology turning S? into a smooth manifold. Define charts around N and S, respectively,
as follows:

Let X; := B§Z/4(O), i =1,2, be the open disc of radius 37 /4 centered at 0 in R?. We
describe points in polar coordinates (r,0), 0 < r < 37/4, 0 < 6 < 27. Recall that the
geodesics connecting N and S on S? are the great circles connecting N and S. To construct
the charts pick a great circle C connecting N and S. Every great circle connecting N and
S can be uniquely identified by an angle of rotation 0 < 6 < 27. Furthermore, each x on
S2\ {S} is uniquely determined by a set of coordinates (r,6), 0 < r < 7, 0 < 6 < 27. Here
r is the length of the geodesic segment between x and N. Analogously, we may identify
each point z in S? \ {N} with a pair (7 —7,0), 0 <r <7, 0 <6 < 2, where 7 —r is the
length of the geodesic segment between z and N. We obtain (the inverses of) the charts

cosf) —sinf 0 sinr

P1: X; = 8% (r,0)— |sinf cos® 0 0 ],
0 0 1/ \cosr
cosf —sinf 0 sinr
Py: Xo = S%, (1,0) — | sinf cosf® 0 0o |,
0 0 1/ \—cosr
for the manifold S?. These charts turn S? into a smooth compact manifold in the usual
way.
We construct an orbifold structure on S?: Let n; € N for ¢+ = 1,2. Consider the

subgroup G; C Diff(X;) which corresponds to a rotation o; of order n; on X; and Xs.
The map p;: X; — X;, (rcos@,rsinf) — (rcos(n;0),rsin(n,;0)), identifies two points if
and only if they are in the same G; orbit.

Consider the quotient map X; — X, /G, and canonically identify the orbit space with
the “cone”

C; ={(r,0) e X; |0<0 < 2r/n;}

endowed with the quotient topology with respect to ¢;: X; — C, (r,6) — (r,0 mod
27 /n;). A computation shows that ¢;: C; — X;, (r,0) — (r,n;0), is a homeomorphism of
the topological spaces C; and X;. Moreover, p; factors through the quotient X;/G; ~ C;.
We obtain orbifold charts (X;, G;,q:), @ € {1,2}, with ¢; := 9; o p;. A computation
shows that A;; = ¢; '(Imgq;) = {(r,0) € X; | 7/4 < r < 37/4} is an open annulus.
Furthermore, for each (r,0) € A;; we obtain a neighborhood €, ¢ such that the mapping

) _ n, . .
Tijlan, == (@) o gy Qg — Xiy (r,60) = (W s~ 0)’ i#je{1,2},
(]
makes sense. The maps 7;j|q, , are local diffeomorphisms, which commute with the orb-
ifold charts, i.e. ¢;7i; = @jldomr,, @ # J € {1,2}. Locally, the restrictions of the maps
7;; thus yield change of chart morphisms. Since for each z € A;; we obtain a change of
charts, the orbifold charts are compatible and induce the structure

S%’”lv"ﬂ = (827 {(Xi7 Gia qz) | 1= 1, 2})
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2

(n1,m2) coincides

of a compact orbifold on S2. As a topological space, the base space of S
with S? with the usual topology. We distinguish the following cases:

ni,ny = 1: In this case ¢; = ¥;, i = 1,2, and thus S%Ll) is just the C°°-manifold S2.
As a connected trivial orbifold, S? is a good orbifold.

n1 > 1, no = 1: We obtain a cone-shaped singularity of order n; in N, while S is
a regular point. The orbifold S%nhl) is called the Z,,-teardrop. It is an example of a
non-developable orbifold. Indeed the orbifold S?m, 1) is developable (good) if and only if
ny = ng (see |13, Ch. III.G, Example 1.4(1)]). Moreover, we mention that the teardrop
orbifold is a nice example of an orbifold which appears in symplectic reduction. The
reader is referred to |14} 24.5] for a detailed exposition.

ni # ng, ni,ne > 1: We obtain an orbifold with two cone-shaped singularities of order
N1, resp. no. An orbifold of this kind is called the Z,,,-Z,,,-football. As already mentioned,
this orbifold is non-developable.

ni,ne = n > 1: Consider an action of a finite group of diffeomorphisms I' C Diff (S?)
generated by a rotation of order n on S? which fixes the north and the south pole. The
group I' acts smoothly, effectively and almost freely on S2. Hence the orbit space S?/T is
an orbifold using the global orbifold chart 7: S — S2?/I". By construction, the orbifold
structure of this orbifold agrees with S?n’n . It is an example of a good orbifold.

At the level of topological spaces all of these orbifolds coincide. However the additional
structure of cone-shaped singularities on the space is illustrated in Fig 2.

Fig. 2. Orbifold structures on S?. The picture shows the structure of the singularities of different
orbifold structures on S?: (a) the trivial orbifold S%M), i.e. the manifold S?, (b) the teardrop
S(Qmﬂl), and (c) the football S?

(n1,m2)"



2. Maps of orbifolds

In this paper, we use maps of orbifolds as defined in [55]. For the reader’s convenience, we
repeat the definitions and constructions of [55] in Appendix In this chapter, we obtain
a characterization of orbifold diffeomorphisms. Then several tools and constructions for
later chapters (such as open suborbifolds and orbifold partitions of unity) are provided.

2.1. Orbifold diffeomorphisms. Throughout this section, let (Q;,U;), i € {1,2}, be
arbitrary orbifolds. By definition, diffeomorphisms of orbifolds are the isomorphisms in
the category of reduced orbifolds:

DEFINITION 2.1. A morphism of orbifolds [f] € Orb((Qy,U1),(Q2,Us)) is called an
orbifold diffeomorphism if there is [§] € Orb((Q2,Us), (Q1,U1)) such that

id(Quu) = 9]0 [f] and id(@, ) = [f] o [g]-
In this case, we also write [f]~! := [g]. Let Diffor ((Q1,U1), (Q2,Us)) be the set of orbifold
diffeomorphisms contained in Orb((Q1,U1), (Q2,Us)).

To shorten notation, the orbifold diffeomorphism group Diff o1, ((Q,U), (Q,U)) will be
denoted by Diffo,1,(Q, U).

We will now characterize the lifts of orbifold diffeomorphisms. It will turn out that
an orbifold diffeomorphism is completely determined by properties of its lifts.

PROPOSITION 2.2. Let [f] € Orb((Q1,U1), (Qa,Us)) be a diffeomorphism of orbifolds.
Each representative f = (f,{fi}icr, [P, vy]) satisfies the following properties:

(a) the map f is a homeomorphism, and
(b) every local lift f; of f is a local diffeomorphism.

Proof. We first notice that since [f] o [f]~* and [f]~! o [f] are the respective identity
morphisms, the maps f: Q1 — Q2 and f~': Qy — @ (where f~! is the underlying

continuous map of [f]~1) are homeomorphisms since composition yields the identity on
Q2 and Q1, respectively. Hence (a) is true.
Two representatives of the class [f] are related via lifts of the identity. Lifts of such

mappings are local diffeomorphisms, whence locally lifts of different representatives of [f]
are related via diffeomorphisms to each other. Thus the definition of [f] shows that it
suffices to prove assertion (b) for any representative fof [ f]

Choose and fix representatives V = {(V;, G, m;) | ¢ € I} of Us, U = {(U;, Hj, ;) |

jeJyof Uy and W = {(Wy, Li, o) | k € K} of Uy such that the maps [f] and [f]~!
possess representatives f € Orb(V,U) and § € Orb(U, W), respectively. Let a: I — J

25]
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and #: JJ — K be the maps such that the mappings f;: Vi — U, and g;: U; —
Wg(;) are local lifts of f and g, respectively, with respect to orbifold charts (V;, Gy, ;)
and (Uq (i), Ga(i), Yai))s (Us, Gy, 05) and (Wgy, Ga(y), 05, ). To shorten the notation, set
Vi :=m;(V) and for every i € I derive a commutative diagram:

9a(i)

Vi — U Wa(ati)
lﬂ'i J(wa(i) Jwﬂa(i)
M fly, ~ fﬁl'ﬁa(i) -

Vi Ua(i) Wai)

Composition in the bottom row induces the identity idQ1|‘~,7, . We conclude that for each
i € I, the map g,(;) o fi is a local lift of the identity and thus a local diffeomorphism
by Proposition In particular, each f; is an immersion and hence dim @1 < dim Q5.
An analogous argument shows that dim Qs < dim @1, whence dim @1 = dim ()». Since
the orbifold dimensions coincide, we have dim V; = dim U, ;). The inverse mapping the-
orem (see |45, Ch. I, §5, Theorem 5.2]) now implies that the immersion f; is a local
diffeomorphism. =

COROLLARY 2.3. Two orbifolds (Q;,U;), i € {1,2}, which are isomorphic have the same
orbifold dimension.

DEFINITION 2.4. Consider an orbifold map [f] € Orb((Q1,U1), (Q2,Us)) together with
a corresponding representative of orbifold maps f = (f,{f}, [Py, vy]). We say that [f]
preserves local groups if f: Q1 — Q2 maps every element p of )1 onto some element f(p)
of Q2 such that I')(Q1) = T'f) (Q2).

This property may be interpreted as preservation of the local structure of an orbifold.
In particular, one would expect that this is a natural property of orbifold diffeomorphisms.
This is indeed true, as the following proposition shows:

PROPOSITION 2.5. Let [f]: (Q1,U1) — (Q2,Uz) be a map of orbifolds, with a represen-
tative f = (f,{fi}icr, (Pf,vs)) such that f is a homeomorphism and each f; is a local
diffeomorphism. Then [f] preserves local groups. In particular, every orbifold diffeomor-
phism preserves local groups.

Proof. Let p be in Q. There are orbifold charts (V,G,7) € Uy and (U, H,y) € Uy
together with a local lift fy: V — U of f such that p € V, ¢ := f(p) € U and fy is a
local diffeomorphism. Fix some preimage p € 7~ !(p) and denote its image by ¢ := fy (D).
Since G is finite, there is an open connected neighborhood €2 of p in V' such that for
every v € G, there is some p., € Py with v|q = p,|q. Thus one obtains

fv(vz) =vi(py)fv(z) VeeQ, yely. (2.5.1)

Shrinking €2 if necessary, we may assume that 2 is a G-stable open connected subset
with G = G, and fy|q is a diffeomorphism onto an open subset of U. By (2.5.1)), ¢ o fv
factors over /G and it is an open map. Hence (2, G, 1o f/) is an orbifold chart for Q5.
By construction, fy is an embedding of orbifold charts from (Q, G,v o fv) to (U, H, ).
Hence (Q,Gp, % o fy) € Us, and thus I'), = Gy = T', (the groups are even conjugate in
Gl(n,R)). =
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REMARK 2.6. The proof of Proposition provides information about an orbifold map:
Consider an orbifold map which satisfies the prerequisites of Proposition[2.5] Let f;: V; —
W, be its local lift with respect to the charts (V;, G;, ;) and (W;, H;,v;), and x € V.
Then there is an arbitrarily small open neighborhood €2, of z in V; with the following
properties:

(a) fila, is a diffeomorphism onto an open set Qy, ;) := fi(2),
(b) the set , is G;-stable with G, o, = G 4,
(c) for each v € G; 4, the restriction 7|q, is an element of Py,
(d) the set €,y is Hj-stable with Hio, = Hi f(x)-

In particular, (2, G, Tilo,) and (Qy, ), Hi,fi(z)vwi|9fi(z)) are orbifold charts con-
tained in U and in Us, respectively. Locally, we may therefore always construct lifts which
are diffeomorphisms.

It is possible to construct a charted orbifold map from a family of local lifts as in the
last remark:

PROPOSITION 2.7. Let (Q;,U;), i € {1,2}, be orbifolds, f: Q1 — Q2 a homeomorphism
and {fiYicr a family of local lifts of f with respect to V € Uy and W € Us such that each
fi is a local diffeomorphism. Assume that V satisfies (R2) from Definition . Then
there exists a pair (P,v) such that (f,{fi}ic1,[P,v]) € Orb(V, W) is a representative of
an orbifold map in Orb((Q1,U1), (Q2,Us)). The pair (P,v) is unique up to equivalence.

Proof. Let V = {(V;,G;,m;) | i € I} be the representative of U; such that every lift f;
is a map f;: V; = W, for some (W;, H;,v;) € Us. As f is a homeomorphism, W :=
{(Wi, Hy,4p;) | i € I} is an orbifold atlas. Define F' := [[,.; fi and consider the set

P:={h € ®(V) | his a change of charts and F|qomn, F|codr are étale embeddings}.

Clearly P is a quasi-pseudogroup which generates ¥ (V). Construct a map v: P — ¥ (W)
as follows: For A € P there are ¢,j € I such that dom A C V; and cod A C V;. The map
Fldaom s = fildom x is a diffeomorphism onto an open set Uy C W;. We may now define

v(A) == fiAfilgl: U = fi(cod A).

The set f;(cod \) is open since f; is a local diffeomorphism. Following the definition of P,
v()) is a diffeomorphism. We compute

Yiv(N) = 0, [ M fildom ) ™H = FiA(fildomr) ™t = fﬂ'z’fiwi = ff "ilu, = Yilu,,
which shows that v(A) € ¥(W). In addition,
Fol= fj oA = V(A) o fi|d01n)\ = V()\) o F|dom/\-

Thus we have constructed a quasi-pseudogroup P and a well-defined map v: P — ¥(W)
satisfying property (R4a) of Definition Reviewing (R4b)—(R4d) there, clearly these
properties are satisfied by v. In conclusion, (f,{fi}icr, P,v) is a representative of an
orbifold map.

To prove uniqueness, assume that (f,{f;}icr, (P',v')) is a charted map for another
pair (P’,v"). Consider A € P and p € P’ with germ, A = germ, p for some z in their
domains. Then the mappings fj o A = v(A) o fildom » and fj o p = v/ (1) fildom . coincide
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in some neighborhood of z. Since f; is a local diffeomorphism, the mappings v(\) and
/(1) coincide in some neighborhood of F(z). m

Combining Remark [2.6] and Proposition 2.7 we obtain the following corollary:

COROLLARY 2.8. Let f: Q1 — Q2 be a homeomorphism, and {g;}icr a family of local
lifts of f with respect to atlases V' and W' such that each g; is a local diffeomorphism.
Assume that V' satisfies (R2). Then there exist an orbifold atlas V which refines V' in-
dezed by some J, and an orbifold atlas W which refines W' and a family of lifts f;
with respect to (V;,Gj,0;5) € V, (Waey, Hgy), 0p()) € W such that each f; is a dif-
feomorphism. In addition, there is a unique equivalence class [P,v] with P = Chyr and
v(A) = fk)\(fj|dom>\)’1|fj(dom>\) for X € Chy, v, (Ve,Grytbr) € V' for r € {4k} such
that f = (f,{f;}jes, [P,v]) € Orb(V',W).

LEMMA 2.9. Let V = {(V;,G;,¢;) | i € I} and W = {(W,, Hj,p;) | j € J} be atlases
for orbifolds (Q1,Uy) and (Q2,Us), Tespectively. Consider a charted map of orbifolds f =
(f,{fi}ier, [P, v]) € Orb(V, W) with the same properties as the map f in Corollary .
Then:

(a) For each Gi-stable subset Q2 C Vi, the set f;() is an Hpg;-stable subset of Wy
with isotropy group Hg r.0) = Giga-

(b) After possibly shrinking V and W, we may assume that the map @ B:1 — Jis
bijective.

(¢) If B is bijective, then v: Chy — Chyy is a bijection.

Proof. (a) Let ©Q C V; be a G;-stable subset with isotropy subgroup G; o and z € Q.

Because P = Chy, the proof of Proposition [2.5| applies and we can take 2, = Q in

Remark 2.6

(b) If there are i, j € I with 8(i) = 8(j), we obtain a diffeomorphism f;lfi: Vi—= V.
A quick computation shows that wjfjflf,» = f_lapﬁ(j)fi = 1;, and thus f;lfi is an
embedding of orbifold charts. Reversing the roles of i and j, also f[l f; is an embedding
of orbifold charts. Therefore we may omit one index of the pair 4,5 with (i) = B(j)
and the set of orbifold charts indexed by the reduced set will again be an orbifold atlas.
The axiom of choice allows us to shrink V to obtain an orbifold atlas (which by abuse of
notation will also be called V) such that § is injective. Clearly since f is a homeomorphism,
the set of charts {(W;, H;,¢;) € W | j = (i) for some i € I} is an orbifold atlas. Thus
by replacing J with 8(I), we may assume that § is surjective, hence bijective.

(c) It is obvious that v is injective. Let A € Chyy, w, be any change of charts morphism
with (W, H.,¢,) € W, r = k,l. There are unique ¢,j € I with §(i) = k and 8(j) = !
such that p(\) = fj_l)‘fi|f;1(domx): fH(dom \) — fj_l(cod A) is a diffeomorphism.
A quick computation leads o v;(A) = S GAfil ;1 (qomy = £ Fibikdomr = Yildom,
which proves that () € Chy, v,. By construction now v(u())) = A, and thus v is a
bijection. m

The next proposition is the converse of Proposition [2.2] i.e. we shall prove that the
properties of orbifold diffeomorphisms in Proposition actually characterize those, and

(') Which assigns to each index i an index 3(i) € J such that g;: V; — Wpa(,).
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are equivalent to the categorical definition. The leading idea is to use the local properties
of the lifts (i.e. that every lift may be locally inverted) to construct a family of lifts
for f=1. In general, a given lift cannot be inverted globally. Nevertheless it is possible to
construct smaller charts and induced lifts, which may be inverted globally.

PROPOSITION 2.10. Let (Q;,U;), i € {1,2}, be orbifolds and V € Uy, W € Uy. Con-
sider a charted map f = (f,{fi}tier,[P,v]) € Otb(V,W). If f is a homeomorphism
and fi: Vi — Wy is a local diffeomorphism for each i € I, then the orbifold map

[f] € Orb((Q1,U1), (Q2,Us)) is a diffeomorphism of orbifolds.

Proof. By Corollary and Lemma there are orbifold atlases V' indexed by J and
W' indexed by K together with a representative § := (f,{g;};ecs,[P’,v']) € Orb(V',W’)
of [f] such that each lift gj: Vj — Wpg(; is a diffeomorphism and the map 8: J — K
is a bijection. We use the computation from the proof of Lemma The inverse
g;lz Wa;) — Wj of g; is a local lift of f~1 with respect to (W), Ha(jy, ©p(j)) and
(V;,Gj, ;). Since f is a homeomorphism, the family W' is an atlas for Q2 indexed by K.
As each g;l is a diffeomorphism, by Proposition there is a pair @ C ¥(W') and
w: P — ®()V') such that hi= (F74, {g;l}je;(, (@, u]) € Orb(W, V).

Consider the compositions h o g and g o h: For every j € J the local lift of § has
been constructed as inverse maps of the local lift of § with respect to (V;,G;, ;) and
(W), Ha(jy, ©s(j))- Thus the composition of both representatives gives a lift of the
identity and we derive

[flog] = [hod) =idig,u and [g]o[f]=[§oh] =id(g, 1)
Observe that the proof of the last proposition yields the following fact: Assume that
each member of the family of local lifts for an orbifold map is a diffeomorphism. Then this

family uniquely determines the orbifold map. In particular, each orbifold diffeomorphism
is uniquely determined by its family of local lifts:

COROLLARY 2.11. An orbifold diffeomorphism [f] € Orb((Q1,U1), (Q2,Us)) is uniquely
determined by the family of local lifts { f; }icr where (f,{fi}icr, [P,V]) € [f] is an arbitrary
representative.

PROPOSITION 2.12. An orbifold diffeomorphism [f] € Orb((Q1,U1), (Q2,Usz)) with rep-
resentative f = (f,{f;}jes,[P,v]) is uniquely determined by its underlying continuous
map f.

Proof. Let [§] € Orb((Q1,U1), (Q2,Usz)) be another orbifold diffeomorphism with un-
derlying map f. Then the underlying map of [§]~! is f~'. Hence each representative h
of [g]™" o [f] is given by h = (idg, {hi}icr, [P',7']). Recall from Construction that
the lifts h;, i € I, arise as composition of suitable lifts of representatives of [f], [g]~!.
Since all lifts of orbifold diffeomorphisms are local diffeomorphisms by Proposition [2.2]
we deduce that each h; is a local diffeomorphism. Now Proposition [E.27] implies that

id(Q:u:)[ﬁ] = [9]7" o [f]. Thus [g] = [f], which proves the assertion. m

Summarizing the preceding results, one obtains:
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COROLLARY 2.13. For an orbifold map [f] € Orb((Q1,Us), (Q2,Us)) the following are
equivalent:

(a) [f] is an orbifold diffeomorphism.

(b) Each representative (f,{f;Yicr, |P,v]) € [f] satisfies: f is a homeomorphism and each
fi is a local diffeomorphism.

(¢) There is a representative f = (f,{fi}ier, [P,v]) of [f] such that f is a homeomor-
phism and each f; is a local diffeomorphism.

(d) There is a representative f = (f,{f;i}jes, [P,v]) € Otbh(V, W) of [f] such that f
is a homeomorphism and each f; is a diffeomorphism. Furthermore, the assign-
ment a: V — W such that f; is a local lift with respect to the pair (V;,Gj,¢;),
(Wa)> Gags), Ya(j)) can be chosen bijective.

If f is as in (d), then a representative of [f]~' is given by (f_l,{fj_l}, [v(P),0]) €
Orb(W, V). Here 0: v(P) — ¥ (V) assigns to A € v(P) with dom X € W;) and cod A C
Wa) the map 6(X) := fj_l/\fi‘f;l(donm)'

In particular, an orbifold diffeomorphism is uniquely determined by its underlying
map and we obtain a natural inclusion of the orbifold diffeomorphisms into the set of
homeomorphisms:

Diffor, ((Q1,Ur), (Q2,Uz)) — Homeo((Q1,U1), (Q2,Uz)),
[(f: {fitier, [P,V])] = f.

We remark that the characterization of orbifold diffeomorphisms via any family of
lifts will be crucial for the rest of this work. It enables us to avoid the technical details
of the definition of orbifold maps. Instead we may think of an orbifold diffeomorphism
as a family of compatible smooth lifts. In particular, these results enable an efficient
investigation of orbifold diffeomorphism groups. As a first application of Corollary [2.13]
we consider the following example.

EXAMPLE 2.14. Let (Q,U) be an orbifold with an atlas {(U, G, w)}. We call (U,G, ) a
global chart. Consider a diffeomorphism of U which is a weak equivalence with respect
to the G-action, i.e. a diffeomorphism h: U — U together with a group automorphism
a: G — G such that hog = alg) o h for all ¢ € G. Note that h~! is also a weak
equivalence, with respect to the group automorphism a~!. In particular, h and h~!
induce mutually inverse continuous maps h: Q@ — Q and h™': Q — @, respectively.
The pair (h, B) induces a representative of an orbifold map such that the corresponding
orbifold map is a diffeomorphism of orbifolds by Corollary Denote by DiffG(U) the
set of all diffeomorphisms of U which are weak equivalences with respect to the G-action.
Then we obtain a map A: DiHG(U) — Diffo,(Q, U), which maps weak equivalences on
the global chart to orbifold diffeomorphisms. It turns out that A is a homomorphism of
(abstract) groups. Notice that A can only be injective if @ is trivial, since G C Diff%(U)
coincides with the kernel of A. However, in Example [5.21] we will see that for certain
orbifolds with global chart, the map A is surjective, i.e. all orbifold diffeomorphisms are
induced by weak equivalences.
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2.2. Open suborbifolds and restrictions of orbifold maps. We define the notion of
an open suborbifold to introduce the restriction of an orbifold map to an open subset. Any
subset of a metrizable space with the induced topology is again a metrizable space. Every
metrizable space is paracompact and Hausdorff by [22, Theorem 5.1.3]. Since the base
space @ of the orbifold (Q,U) is metrizable by Proposition each of the subspaces in
the following constructions will be a paracompact Hausdorff space.

DEFINITION 2.15 (Open suborbifold). Let (Q,U) be an orbifold. An orbifold (X, X)
is called an open suborbifold of (Q,U) if there is a map [i] = [(¢, {tk}rer, [PiV])] €
Orb((X, X),(Q,U)) such that

(a) ¢ is a topological embedding with open image,
(b) every ¢y is a local diffeomorphism.

A map [i] with properties (a) and (b) is called an open embedding of orbifolds.

Since it will not be needed, we shall not define the general notion of a (possibly non-
open) suborbifold. The reader is refered to |1, Definition 2.3] for further information on
this topic.

DEFINITION 2.16 (Restriction of an orbifold map to an open subset). Let (Q,U) be an
orbifold and 2 C @ be an open subset. Choose an atlas A € U/ such that the images of
(V,G,v) € A which satisfy (V) C Q cover Q. Then A|g = {(V,G,¢) € A| (V) C Q}
is an orbifold atlas for Q. Notice that the equivalence class Ug, of A|€2 does not depend on
the choice of A and defines a unique orbifold structure on €. The inclusion t: Q < Q of
sets induces an open embedding of orbifolds, which we denote by [iq]: (Q,Uq) — (Q,U).
Define the restriction [f]|q of [f] € Orb((Q,U), (Q2,Us)) to Q via

[fla =[] o [ig].

DEFINITION 2.17 (Corestriction of an orbifold map). Let (X, X) be an open suborbifold of
(Q,U) together with an open embedding of orbifolds [i]. Consider another orbifold (@', V)
and a map [f] € Orb((Q',V), (Q,U)) with representative f = (f,{f}rer, [P,v]) € [f]
such that Im f C Im..

For k € I, let the lifts be given as fi: Vi — Usr), where (U, Ga(r)s Va(k)) s
an orbifold chart. Then Im f, C w;(lk) (Im¢). As Im fy is connected, it is contained in a
connected component of the invariant set 1p;(1,€)(1m t). The connected components of an
invariant set are G (x)-stable subsets of U, x). Hence these connected components can
be made into orbifold charts for the subset Im¢. Using these charts, Lemma [E.19] shows
that there is a representative § € Orb(V',U’) of [f] such that each lift gy : Vi = U, of §
satisfies (U},) C Tm . Define the corestriction of [f]:

A1 = [ {gihe, [P, V'] € Orb((Q',V), (e, Unin)),

where (P’, ") is the pair obtained via Lemma for g. In particular, we obtain a unique
map ([i]|"™ )~ o [f]|"™* € Orb((Q’, V), (X, X)) into the open suborbifold. By definition
of the equivalence relation (Definition [E.20)), the class [f]|™* does not depend on any
choices made in the construction.
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REMARK 2.18. (a) An orbifold (X, X) is an open suborbifold of (Q, ) if and only if there
is an orbifold diffeomorphism from (X, X’) to an orbifold which arises as the restriction
of U to an open subset.

(b) Consider an open subset 2 C @ and the representative f= (f, {fx}rer, [P, V])
of [f] € Orb((Q,U), (Q',W)) such that there is J C I with the properties that Vg :=
{(V},Gj.mj)}jes C U and Q = {J; ; m;(Vj). Define Py := PNChy,, and set v :=v|p,.
The composition in Orb is induced by composition of suitable representatives. A compu-
tation with the representative above yields [f]|q = [h], where h := (f|a, {f;}je, [Pr, v1]).

(c) Let (X, X) be an open suborbifold with open embedding of orbifolds [i]. By con-
struction, [f]m: = ([f] o [i] o [8]|™*)~".

(d) In Chapter |3| tangent spaces of orbifolds and the tangent orbifold are defined.
As these objects are defined via an arbitrary orbifold chart, analogous to the manifold
case, for each open suborbifold (X, X) of (Q,U) the tangent spaces 7;)( X and 7:1(417)@ are
canonically isomorphic @ If the open suborbifold is an open subset, we shall identify
the tangent spaces later on.

2.3. Partitions of unity for orbifolds

DEFINITION 2.19. Let (Q,U) be an orbifold, V = {(V;, G;,7;) | ¢ € I} be a representative
of U and endow R with the trivial orbifold structure (i.e. the one induced by its mani-
fold structure). A family {(x;, {xi,j}jes, [P, vi)) }ier in Orb(V, {idr}) is called a smooth
orbifold partition of unity subordinate to V if the family of continuous maps {x;}icr is a
partition of unity subordinate to the open covering {m;(V;)}icr, i.e.

(a) suppx; C m;(V;) for all i € I,
(b) the family (supp x;)icrs is locally finite,
(¢) xi>0forallieland}), ;xi(z)=1foreach z € Q.

PROPOSITION 2.20 (Partition of unity). Let (Q,U) be an orbifold. For each representative
V of U there exists a smooth orbifold partition of unity subordinate to V.

Proof. Each representative of U allows a locally finite refinement by Lemma b), thus
the assertion will be true if the existence of a smooth orbifold partition of unity for an
arbitrary locally finite representative of U can be verified.

Let V i= {(Us, G, 7o) | @ €1} be a locally finite representative and Vi={m, (Us) Yacr
be the family of open images of the charts in V. Since @ is a paracompact Hausdorff
space, applying |22, Lemma 5.1.6] twice, there are locally finite families of open sets
Wl CW!CW2C W2 C r,(Us,) such that {W} | a € I'} covers Q (here the closure
means closure in Q). Let W/ := 7' (W), i € {1,2}. Observe that since Wi C Imm,,
it is closed in the subspace topology. On Im7?,, we identify 7, with the quotient map
onto the orbit space of the G,-action on U,. This map is surjective continuous, open and
closed by Lemma Hence for i = 1,2, |21, Ch. III, Theorems 8.3(5) and 11.4] imply

(?) Here the symbol EMQ denotes the tangent space of the orbifold (Q,U). The notation was
chosen to emphasize the dependence on the orbifold structures X and U.
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To(WE) = W‘ and Wi C 71'_1(W ). Vice versa, [21, Ch. III, Theorem 11.2(2)] yields
Wi =71 (Wi). By construction, every W is G-invariant.

The manifold U, is a smooth connected paracompact (hence second countable by
Proposition and finite-dimensional manifold. By the smooth Urysohn lemma (cf.
|17, Corollary 3.5.5]) for manifolds, there is a smooth map f*: U, — [0,1] such that
f‘"|W1 = 1 and supp f* C W2. Define an equivariant smooth map 6,: U, — R with

values in [0, 1] by averaging over Gg:

Oa(y) = ‘G|Zf“7y

YEGq

Notice that W} C supp 6, C W2 still holds by G,-invariance of these sets. In particular,
the map vanishes outside of W2. For every € I, define a map,

0a(y), ma(x)=mqa(y) for some y € U,,

0, o lms(x) = 0.

The G ,-equivariance of 6, implies that 0, g is well-defined, and it is Gg-equivariant. We
claim that 6, is smooth: To see this, note that for each x € wgl(lm Ta), there is an
open neighborhood V,, C Ug of x and a smooth change of charts A: V; — U,. On the
open set V,;, the map 6, s is a composition of smooth maps: 6, s|v, = 6, o A. Hence on
ng(lm 7o) the map 6, 3 is smooth.

904’5: U5—>[0,1], X — {

By construction, suppf, € W2 C U,, i.e. 7(supp ba,8) C WO% C Imm,. The above
shows that 6, g is a smooth map on the open neighborhood ﬂgl(lm Tq) Of its support.
On the open set Ug \ supp 6,5 the map vanishes, and finally 6, g is smooth.

Notice that 6,,, = 8, by construction. Since the family V is locally finite, for z € Q
there are only finitely many « € I such that 7' (z) # (). Define another Gg-equivariant
smooth map on Ug:

Xas: Us = [0,1), Xap = Oa/ Y 055

oel
The map xo,q satisfies XQ,Q|UQ\W—§ = 0. Since 7, is an open map and 7, (WO%) is closed,
the map xq,o descends to a continuous map on @,
Xa,a(T), = =ma(y) with y € Uy,
0, z € Q\U,.
By construction, supp xa € mo(Us). For every o € I, the smooth map X, is a lift of
Xao in the chart (Uy, Gy, 7m,) € V. The family V covers @), and we have constructed a
family of continuous maps with smooth lifts in every orbifold chart of V. As R is a trivial
orbifold, the following data completes the construction of an orbifold map: Choose the
quasi-pseudogroup P := Chy which generates ¥(V) and v: Chy — T{(R, {idr},idr)}),
f + idg. These choices induce a map (Xa,{Xa,0}, [P ¥]) which clearly satisfies the re-
quirements of Definition (cf. Remark [E.12]) and

()A(oc = (Xa» {Xa,o }+ [P VD)OCGI € Orb(V, {idr})

is a family of charted orbifold maps.

Xao: @ — [0,1], xH{
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The construction of x, shows that V~V1a C supp Xa C 74 (U, ) and the sets Wal cover Q).
Thus the family {supp xa }aer covers @ and since V is locally finite, this family is locally
finite. A quick computation for x € @ now shows that

x) = 7 (z) = 790"0‘ 7z
ZX@( ) Z Xa,aTq ( ) Z )256195@( « ( ))

acl a€l,ze€my(Uqs) a€l,z€my(Ua

- ¥ fama ' (2) =1

—1
a€l, z€ma(Uy) Zée[,xewg(Ué) 96776 (.17)

The family (xq)aer is therefore a partition of unity subordinate to V. In conclusion,
(Xa)aer is a smooth orbifold partition of unity subordinate to V. m

NotaTIiON 2.21. Let (Q,U) be an orbifold with a locally finite representative 1V of U
indexed by I. Consider an orbifold partition of unity {X.}acr subordinate to V as in
Proposition For any pair (o, 8) € I x I, the lift of x, on Ug will be abbreviated

as Xa,3-



3. Tangent orbibundles and their sections

In this chapter, we construct an analogue to tangent manifolds and tangent maps for
an orbifold. Tangent orbifolds are well-known objects (cf. |1, Proposition 1.21]). We em-
phasize that the bundle map associated to a tangent orbifold is a map of orbifolds. This
allows us to define orbisections, i.e. maps of orbifolds which are sections of the bundle
map. In Section [5.1] suitable spaces of orbisections will serve as a model space for the
diffeomorphism group of an orbifold. Furthermore, it is possible to construct a tangent
endofunctor for the category of reduced (smooth) orbifolds. Throughout this chapter, let
(Q,U) be an orbifold. We begin with the construction of tangent orbifolds:

3.1. The tangent orbifold and the tangent endofunctor

CONSTRUCTION 3.1 (Tangent space of an orbifold). Let p € @ and let (V;,G;,m;) € U,
i € {1,2}, be arbitrary orbifold charts with p € m;(V;). Consider pairs (m;,v;), i = 1,2,
where v; € Ty, V; with z; € 7, (p). Notice that by compatibility of orbifold charts, there
exist open neighborhoods z; € U; C V; and a change of charts A\: Uy — Uy such that
A(z1) = xo. Identify the tangent spaces T,,V; with the corresponding tangent spaces of
the open submanifolds U; C V;. Since every change of charts is a diffeomorphism, the
tangent spaces Ty, V7 and T}, V> are isomorphic.

We introduce an equivalence relation on the set of all possible pairs of this kind: We
declare two pairs to be equivalent, (w1, v1) ~ (72, v2), if there are open subsets x; € U; C
V; and a change of charts A\: Uy — Us such that TA(v1) = ve. Here TA: TU; — TUs is
the tangent map of A. Since T: Man — Man is a functor (Man being the category of
smooth manifolds), the relation ~ is an equivalence relation. The equivalence class [, v]
of (m,v) is called a formal orbifold tangent vector, and define the set 7,Q of all formal
orbifold tangent vectors at p.

Consider z; € 7~ 1(p), (U, G, w) € U. The isotropy subgroup G, acts on T, U via the
linear diffeomorphisms v.v := T, v.v. Every v € G is a self-embedding of orbifold charts,
whence

(m,v) ~ (7, Tyv), VYyeGQG. (3.1.1)

Let © € T,,U/Gy, be the equivalence class of v € T, U for z; € 7~ !(p). We obtain a
bijective map
kit Ty U/Gyy — TpQ,  EZN(D) :=Tw(v) == [m,v].

To see that this map is indeed injective, consider elements kZ' (0) = kX' (w). Thus there
is a change of charts A with TA(v) = w. By [51, Lemma 2.11] we have Ao = g|o for

35]
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suitable ¢ € G, on an open neighborhood O of ;. By definition of T,,U/G,,, this
implies v = w.

Endow 7,Q with the unique topology making the bijection £¥' a homeomorphism.
The space T,Q, is called the tangent space of Q) at p. We claim that the topology on 7,Q
neither depends on the choice of charts nor on the preimage x; in a given chart. Choose
some chart (U, G, ). As a first step, we prove that the topology does not depend on the
choice of the preimage in this chart:

STEP 1: Choose another x5 € 7=1(p). There is some v € G with .21 = 5. The isotropy
groups of x1 and z are thus conjugate v.G,,v~! = G,,. The derived actions of G,, on
T, U, i € {1,2}, are conjugate via the linear isomorphism T,,~, i.e. g.v =T}, (y L ogo
v)(v) for all g € G,. This induces a homeomorphism m: 1., U/Gy, — T,,U/G,,. For
v € T, U, let ¥ be its image in Ty, U/G,, and compute
(k) o k) (@) = (k22) o] B (h22) 1, L] = T (0)

Since m is a homeomorphism, so is (k22)~tokZ1: T, U/Gy, — Ty, /G.,. In conclusion,
the topology on 7,Q does not depend on the choice of z; € 7! (p), whence the index z;
of k% can now be omitted.

STEP 2: Consider another chart (W, H,) with p € ¥(W), and pick y € ¥~ 1(p). By
compatibility of charts, there are open subsets x € Viy C U, y € Viy C W and a change
of charts homomorphism A: Viy — Vi with A(z) = y. Shrinking the open sets Vi, Vi, we
may assume that (Vi, G4, |y, ) is an orbifold chart and A an open embedding of orbifold
charts. This map conjugates (in the sense of Proposition a)) the G -action on T, U
to the Hy-action on T, W again inducing a homeomorphism T, A: T, Vi, /G, — T, Vi /H,,.
As in Step 1, a well-defined homeomorphism is given by

kyp okt T,U/Gy — Ty/H,,  ©+ TA®D).
Therefore the topology on 7,Q is independent of the choice of charts.

REMARK 3.2. Let (U,G,7) be an orbifold chart with p € Imz. The homeomorphism
T,Q 2 T,U/G, for x € n~(p) allows us to think of 7,Q as an orbifold. In particular, the
tangent space 7, may be identified with a convex cone. In contrast to tangent spaces of
manifolds, the tangent spaces of an orbifold will not be vector spaces. Nevertheless, each
orbifold tangent space contains a zero element 0, := [m,0,], where (U, G, ) is a chart
with p = m(x) and 0, € T, U the zero element.

In the manifold case, our definition boils down to: The tangent space of a manifold
(considered as a trivial orbifold) at p is the tangent space of the manifold at p.

DEFINITION 3.3 (Tangent orbifold). Consider the set 7Q :=J .o 7p@- Since the tan-
gent spaces are mutually disjoint, we derive a well-defined map
Tro: TQ — Q, [¢,v] — ¥(z), where v e T,domu.

If (U,G,%) € U is an arbitrary chart, then G acts on TU via the derived action 7.X :=
T~(X). Define IT: TU — TU/G to be the quotient map to the orbit space with respect
to this action. Using the notation of Construction we obtain a map for (U, G, ) € U:

TY: TU - TQ, v+ [1,v].

PEQ
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In particular, each v € T, U is mapped to some [1),v] € Ty()@. Choose an atlas A € U.
We equip 7@Q with the final topology with respect to the family (T%),q,4)eA-

This topology induces a canonical orbifold structure on 7. An atlas for this orbifold
is given by the family (TU, G,Tv) @ where (U, G,1) runs through A. The G-action
of the chart (TU,G,T%) is the derived action of G, i.e. y.v := Ty(v). With respect to
this structure m7¢g induces an orbifold map. Its lifts are given by the bundle projections
TU = U, for (U,G,7) €U.

We define the tangent orbifold T(Q,U) of (Q,U). It is the orbifold (TQ, TU), where
TU is the orbifold structure induced by 7.A. A proof for the details of this construction
will be given in the next lemma.

LEMMA 3.4. Let (Q,U) be an n-dimensional orbifold. Using the notation of Definition
the following statements hold:

(a) Let (U,G,¥),(V,H, o) € U and \: U DO W — W’ C V be a change of charts. Its
tangent map TA: TW — TW' is a diffeomorphism with ToT X\ = TY|rw .

(b) For any chart (U,G,) € U we set U := (U) and TU := ImTp. Then TU is an
open set in TQ and T is an open map.

(¢) The topology on TQ does not depend on the choice of the atlas A € U in Defini-
tion 3.3

(d) For each A € U, the set TA = {(TU,G,TY) | (U,G,v) € A} is an orbifold atlas
for TQ. The orbifold charts in this atlas are compatible via the changes of charts
computed in (a).

() The map mrq: TQ — Q, [¢,v] — ¥(z), v € T,U, is continuous and TQ is a
Hausdorff paracompact space. Hence, T(Q,U) is an orbifold.

(f) mrq induces a morphism of orbifolds gy € Orb(T(Q,U),(Q,U)).

(g) The topology on TQ induces on each T,Q the topology obtained in Construction (3.1}

Proof. (a) For the change of charts A, the tangent map TA: TW — TW' is a diffeomor-
phism. It suffices to prove the commutativity for each element of T,.-W, where r € W is
arbitrary. Since A is a change of charts, we have YA = ¥[qom ». The definition of Ty, Q
yields [¢, v] = [p, TA(v)]. For v € T,,W we obtain the identity

TETAW) = [p, TAW)] = [b,v] = To(v),

(b) The space TQ is endowed with the final topology with respect to the map-
pings T, where (V, H, ) runs through A. To prove the assertion we need to show that
(Tm)~Y(Ty(V)) is an open set for every (W,H,n) € A and every open set V C TU.
Define the set of changes of charts from U to W:

Chyw ={X: U DdomA — cod A C W | XA is a change of charts}.

(*) Notice that we should have written {T'g | g € G} instead of G in the definition of
(TU, G, T1). Definition requires the acting group to be a subgroup of Diff(T'U), which is
only satisfied by {T'g | g € G}. However, we use the canonical identification G = {T'g | g € G}
to justify the shorter (but in fact incorrect) notation (TU, G, T1).
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Then one computes its preimage as
(Tm)"H(Tp(V)) = {w € TW | [r,w] € Tp(V)}
={weTW |3\ €Chyw,w=TA(v) for some v € V}

= (J TAdomTANV)CTW.
\eChy,w

Each T\ is a diffeomorphism onto its (open) image, whose domain is an open set. Thus
every TA(dom TANV) is an open subset in TW. This proves that (T'7)~1(T¢(V)) is an
open set, whence T is an open map with open image TU in TQ.

(c) To see that the topology does not depend on the choice of A, we consider the final
topology O’ on TQ with respect to the mappings T4, where (U, G, ) runs through an
atlas A’ € U. Tt suffices to prove that the topologies coincide if A C A’. Thus without
loss of generality the final topology O with respect to A is finer than the topology O'.
However, the computation in (b) shows that O’ is also finer than O, whence O = O’
follows and the topology does not depend on the choice of A.

(d) If (U, G, ¢) € Ais an arbitrary chart, then T'¢ has an open image by (b). Consider
the map T¢: TU/G — Im T, v + [¢, v]. Combining Propositionwith the definition
of the equivalence relation in Construction [3.I] this map is a well-defined bijective map.
We may factor T'¢ as T'¢p = T o I, where II is the quotient map to the orbit space
associated to the G action on TU. Since II is a quotient map and T'¢ is continuous, T'¢ is
continuous. If V' C TU/G is an open set, then II=(V) is an open set. Since T¢ is open
by (b), the set Tg(V) = T¢II~!(V) is open. Thus T'¢ is an open map, and so T'¢ may be
factored as the quotient map to the orbit space associated to the group action composed
with a homeomorphism. In particular, the set of orbifold charts

TA:={(TU,G,Tn) | (U,G,7) € A}

covers 7Q. In (a), we have constructed a family of maps which are change of chart
maps for T A. Using this family of changes of charts, the definition of the chart maps
and tangent spaces T,Q shows that each pair of orbifold charts in 7.4 is compatible.
Thus T'A is an orbifold atlas inducing a unique orbifold structure 7(Q,U) of dimension
2dim(Q,U) on TQ.

(e) The definitions of m7¢ and 7@ together with the compatibility of orbifold charts
yield ﬂ}é(w(U)) = TY(TU) for every (U,G,1) € U. Hence the preimages of a basis
of the topology under mrg are open (cf. Lemma , and thus m7¢g is continuous
by |22, Proposition 1.4.1].

The space TQ is a Hausdorff space: Let x,y € TQ be distinct points.

The first case: mrq(x) # mro(y). There are orbifold charts (U, Gy, ¥s), (Uy, Gy, y)
€ U such that mrg(x) € ¥,(Uy), m70(y) € ¥y (Uy) and ¢, (Uy) Ny (U,) = 0. As the
images of these charts do not intersect, the set Chy, v, is empty. By construction of the
equivalence relation, we have T, (TU,) N T, (TU,) = (. Hence = € W;—é(l/)x(Ux)) and
Y€ W;—éz(’(ﬂy(Uy)) are contained in disjoint open sets.

The second case: mrg(x) = m7¢(y). Choose any orbifold chart (U, G, ¢) with 77 (x)
€ ¢(U). Then z,y € 777_—1Q(1/)(U)) = Ty(TU). Both z and y are contained in T¥(TU),
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which is homeomorphic to the orbit space TU/G. This space is Hausdorff by Lemma
and there are disjoint open subsets z € V,,, y € V,, of Ty(TU). As Ty (TU) is open, both
points are contained in disjoint open subsets of TQ. In conclusion, 7@ is a Hausdorff
space.

The space TQ is paracompact: Connected components of 7@ are open and closed,
therefore |22, Theorem 5.1.35] implies that @ will be paracompact if each connected
component of T is paracompact.

We claim that each connected component C' of 7@ is second countable. If this is true,
paracompactness of a component is ensured by the following observations: The quotient
map to an orbit space preserves locally compact spaces by Lemma [B:4] Thus 7Q is
locally compact, hence a regular space. Combining |22, Theorems 3.8.1 and 5.1.2] second
countability of a component implies paracompactness of that component.

Proof of the claim. Every component C’ C @ is second countable (cf. Proposition .
The continuous map mrg maps C into some component C’ C Q. Since C’ is second
countable, there is a countable base B of the topology on C’. The images of orbifold charts
in ¢ also form a base of the topology by Lemma Thus without loss of generality
B contains only (open) images of a set of orbifold charts R = {(U;, G, m;) | i € I} in U.
By construction of m7¢, the countable family of open sets 7B := (I'm;(TU;)) v,,ci m)er
covers C. Observe that TU; = TU;/G; and TU; is the tangent manifold of a connected
paracompact manifold, thus connected paracompact and second countable by Proposition
The quotient map to the orbit space is continuous and open by Lemma [B:4] which
implies that TU; is also second countable. As a countable union of open and second
countable spaces, C' is second countable.

(f) The map my¢ is continuous by (e), and we have to construct lifts for mr¢g: Con-
sider an arbitrary orbifold chart (TU,G,Tv) € TU. Let mpy: TU — U be the bundle
projection of the tangent bundle. This map is smooth, and we obtain a commutative
diagram:

Tv—" 1

J{T"TU J{WTQ
P

U————U

Choose a representative A € U and define Pr, == Uy pyeaxa{TA | A € Chuw}.
We have to show that the quasi-pseudogroup P, generates ¥(T.A). Let ¢ € (T A)
and pick an arbitrary v € dom¢. There are (TU,G,Tw),(TV,H,Ty) € TA and an
open set v € Q C TU such that ¢|q is a diffeomorphism onto an open set ' C TV
which contains w := ¢(v). Since T (w) = Tw(v), the equivalence relation shows that
there are open sets x € W C U, y € W/ C V and a change of charts \: W — W'
such that v € T,W, w € T,WW’ and TA(v) = w. Shrinking W and W’ we may assume
that TA: TW — TW’' is an embedding of orbifold charts. Thus on TW, the maps T\
and o|ry are embeddings of orbifold charts. By Proposition there is an h € H,,
such that h.TA = ¢|rw. The definition of the group action on charts in 7.4 yields
¢lrw = hIX=T(hoA). Now ho\ € ¥(A) implies T'(h.\) € Pr,,,,- Consequently,
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Pr,, generates ¥(T A). Define the map
Viro' Prrg = ®(A), TA= A
By construction, this map satisfies (R4a)—(R4d) of Definition and therefore
Trou = (trg. {mrv | (U,G,7) € A}, [Pr,(,Vrrol) € Orb(TA, A)

is a representative of an orbifold map. We call mr (g ) the bundle projection. By abuse
of notation, we let 77 (g ) also be the equivalence class of the charted map 77 (g ) in
Orb(7(Q,U), (Q,U)). Clearly any choice of A in the above construction yields the same
class w7 (). In particular, for each chart (TU,G,T) in TU there is a representative
of 7 (qu) such that the bundle projection 77y : TU — U is a local lift of w7 ). The
triple (7(Q,U), (Q,U), m1(qu)) is an orbibundle, the tangent orbibundle (cf. |1, p. 14]).

(g) Choose some orbifold chart (U, G, 1) € U such that p € ¢(U). Shrinking the chart,
we may assume {z} = ¢ ~!(p), i.e. G 2 T,. By construction, 7,Q C T%(TU). Recall from
(c) that T = T oI, where II is the quotient map to the orbit space with respect to the
G-action on TU and T is a homeomorphism. Observe that (T%)~Y(T,Q) = I(T.U).
Notice that for manifolds the subspace topology of T, U C TU coincides with the usual
topology of T,U. As the quotient map to an orbit space is open, [21, Ch. VI, Theorem
2.1] proves that the subspace topology of (T%)~!(7,Q) and the quotient topology on
I(T,U) = T,U/G coincide. In Construction T,Q has been endowed with precisely
the same topology. Hence the induced topology on 7,Q coincides with the one from
Construction B.1] =

Notice that for any trivial orbifold (i.e. for a manifold), the tangent orbibundle co-
incides with the tangent bundle of the manifold. For a non-trivial orbifold, an explicit
example of a tangent orbifold will be computed in Example [3.28

Mappings to the tangent orbifold admit representatives which are charted maps whose
range atlas is T A for some A € U. Thus orbifold maps to the tangent orbifold always
possess representatives which may be computed in the canonical orbifold charts of the
tangent orbifold.

LEMMA 3.5. Let [f] € Orb((Q,U), T(Q,U)) be an arbitrary orbifold map. There is a
representative f € [f] such that the range atlas off is contained in TW for some W € U.
In other words, f is a charted orbifold map with f € Orb(V, TW), where V and W are
some representatives of U.

Proof. Let [f] be as above. Consider the composition w7 g ) © [f] of [f] with the bun-
dle projection m7(g) (Lemma . Reviewing [55, Lemma 5.17] (cf. Section , the
composition in Orb is induced by the composition of representatives of the equivalence
classes. Fix a representative 77 gy € Orb(TW, W) for some W € U. Then there are
representatives V, V" of U and a representative V' of TU together with the following
charted orbifold maps: § € Orb(V, V') with § € [f] and h € Orb(V', V") with h € TT(QU)
such that these maps induce the composition, i.e. Ty o | f] = [h o §]. Furthermore,
these charted maps can be chosen such that the following diagram is commutative:
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TT(Q.U)

TW—---->oW

AN

h

V V/ VI/
Here the charted maps €1 and e9 are lifts of the identity (cf. Definition [E.25) and com-
position in the diagram is composition of charted orbifold maps. By definition of the

composition in Orb, we obtain [f] = [e1 0 g] with a representative e10§ € Orb(V, TW). n

The rest of this section will be devoted to constructing a tangent functor for the
category Orb. To achieve this goal, we have to construct tangent orbifold maps. We
record several observations, which will allows us to introduce tangent orbifold maps.

REMARK 3.6. (a) Let V be a representative of U for an orbifold (Q,U). The G-action
in a chart in V acts on the tangent chart via the derived action. Since the tangent
functor T: Man — Man (where Man is the category of smooth (not necessarily finite-
dimensional) manifolds) is functorial, Proposition[L.10[e) and the definition of the tangent
manifold imply that T® (V) := {TA| A € ¥(V)} is a quasi-pseudogroup which generates
W (TV). Furthermore, if P is some quasi-pseudogroup which generates ¥(V), then the
quasi-pseudogroup TP := {TA | A € P} generates ¥(TV).

(b) Let A\, € Chy,w be a change of charts and X € domTA NdomTyu be such
that germ y TA = germ y Tu. Choose an open X-neighborhood Ux C TV with TA|y, =
Tpluy - This implies Az, (x) = tlrry (Uy)- Since 77y is an open map, mry (Ux) is open
and contains 77y (X). Thus germ . (xy A = germ . (xy -

DEFINITION 3.7. Let (Q;,U;), i = 1,2, be orbifolds and [f] € Orb((Q1,U1), (Q2,Us2)) be
a morphism with representative f = (f,{f;}Yicr, [P,v]) € Orb(V,W).

Furthermore, consider atlases V={(V;,G;,¢;) | i€} and W={(W,, H;, ;) | j€J}.
For two changes of charts, TA = Ty if and only if A\ = u, whence Tv: TP — ¥ (TW),
TX— Tv()), is a well-defined map. Here T P is the quasi-pseudogroup of some (P,v) in
the class [P, v] as in Remark [3.6{a). The class [T P, Tv] does not depend on the choice of
(P,v) in [P, v] by the definition of equivalence (cf. Definition [E.10).

Combining Remark [3.6(b) and the properties (R4a)—(R4d) of Definition for the
map v with respect to F' := ], fi, we see that T v satisfies properties (R4a)-(R4d) with
respect to F' := [[,c; Tf;. In particular, we derive T )T fi(TA.x) = Tpa;T fi(x)
for each A\ € Chy, y,. Thus there is a well-defined continuous map 7f: TQ1 — TQo,
Tf(@) = ToamTfTY;  (2), x € Im Tep;.

In conclusion, a charted map of orbifolds is given by

TF = (TF,AT f:}ier, TP, Tv]) € Orb(TV, TW).

The map 7/7 is a representative of the orbifold tangent map ['7/'}] of [f]. We have to check
that the construction of this map is functorial.

N

LEMMA 3.8. The assignment T: Orb — Orb, (Q,U) — T(Q,U), [f] — [7/>f], s a

functor, i.e.
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(a) If é = (idg, {fi}icr, [P,v]) € Orb(V, W) is a lift of the identity id(q 1), then Teisa
lift of the identity idT(qu)-

(b) Let f = (f, {fi}ier, [Py, vs]) € Orh(V, W) and consider another charted orbifold map
9= (9:195}se7, [Py, vg]) € Orb(W, A). Then Tgo f=TgoTf.

(¢) Two representatives f1, fo of the orbifold map [f] € Orb((Q1,U1), (Q2,Usz)) induce
equivalent charted orbifold maps, i.e. [71?1} = [7172]

(d) Finally, [T/g-o\f] = [7/'5} o [7/'}] holds for [f] € Orb((Qi,U),(Q2,Us)) and
[9] € Orb((Q2,Us), (Q3,U3)).

Proof. (a) For each i € I let the lifts f;: V; — W) be given with respect to the charts
(Vi, Gi, ) and (W), Hag), Pa(iy)- Here a: I — J is the map which assigns to f; the
chart W, ;). Each f; is a local diffeomorphism by Definition Using functoriality
of T, again T'f; is a local diffeomorphism. By Proposition [E:27] the assertion will be true
if Tidg = id7q. Consider z € TQ with x € ImT4; for some ¢ € I. Choose z, € TV;
with T%;(z;) = x, and observe that by Proposition we may choose orbifold charts
(Sz, G, els,) and (S, G', ¥|s: ) with mry, (x) € S, such that f; induces the identity
on S, with respect to ids, and (fi|s,)™!. Hence fi|s, is a change of charts, which implies
Tidg(z) = Tidq(Tvi(22)) = Tpay T fi(22) = Tpa T (fils,)(22) = .

(b) Define h; := go(;yo fi and h = go f. Then the charted orbifold map go f is given by
h = (h,{h; | i € I}, [Py, vs]). From Deﬁnition we infer T(/go\f) = (Th,{Th; i€},
[T Pn, Tvy]). By construction, one has TS € Orb(TV,TW) and Tg € Orb(TW, TA).
These charted orbifold maps may therefore be composed as in Construction [E.I8 Thus
7/'}“ o 7/'\9 is given as

}ALT = (Tg oTf, {Tga(i) © Tfi}ieh [PhT7 VhT])'
By functoriality of T', we have h; = T'(ga @) © fi) = T9a(i)T f; for i € I. Hence the lifts of
T(/go\f) and hy coincide for each i € I. We conclude that Th = Tgo T f.

If (TP, Tvy) ~ (Pnr,Vh,), then both maps will be equivalent as charted orbifold
maps. By construction of the quasi-pseudogroups, this indeed follows directly from the
functoriality of T and property (R4b) of Definition However, since quasi-pseudo-
groups work with the germs of maps, the computation has to be carried out at the germ
level. Here are the technical details:

Let \,pu € Chrv, 1v,, i,j € I, A\ € TPy, p € Py and X € dom\ N dom p with
germy A = germy p. To establish the equivalence, we have to prove the identity

germyy,, (x) Tvi(A) = germayy,, (x) Var (1) (3.8.1)

Set x := mpy, (X). By definition of the quasi-pseudogroups of fand § (combine Remark
and Construction [E.18)), we obtain the following data:

(1) n,p € Pr,x €Uy o,Upypopenand |y, ., plu,, € P, with A = Th|y, , and germ y p =
germy Tp;

(2) &yayp € Py with Vh(77|U7,,w) = v4(&n,2) and gCTM ¢, (1) Ene = geTM ¢, (1) vy(n), respec-
tively for va(plu,.) = vg(p,z) and germy, () §p0 = germy, ) vr(p);
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(3) &ux € TPy with v, () = Trg(€u x) and the germ of §, x at T'f;(X) satisfies
germyy, (x) u, X = germypy, (x) Tvi(Tp).
For ¢, € Py and z € dom ¢Ndom ) Remark b) implies germ, ¢ = germ, v if and
only if germ y T'¢ = germ y T for some X € T.V;. Exploiting property (R4b) of Defini-

tionfor vy we obtain germy, ) V(@) = germy, ) v¢(¢), whence germp . (x) Tvf(T'¢)
= germyy, x) Tve(T%). Analogously the same holds for v, and v, by (1) and (2):

U'r],m) = geTMrp, (X) T, (577,9:)-

We already know that germy T = germy A = germy p = germy T'p, and Remark [3.6|(b)
yields germ,n = germ, p. Using property (R4b) of Definition for vy and (2), one
obtains germy, ) &yx = germy, ) vy(n) = germy, () v¢(p). Together with (3) this yields

germyy, x) T6y e = germyy, x) Tvy(Tp) = germyy, x) &, x - Again by (3) and property
(R4b) of Definition for Tv, we derive

geTM 7y, (X) Tvn(A) = geTMpp, (X) Tvp(n

gerMrpp, (X) Tvn(\) = gerMrpp, (X) Tvg(Tén,)
= gerMrp, (X) Tve(€ux) = Ty, (X) Vhr (1)
Since X, X and p were arbitrary, we have (T Py, Tvy) ~ (Phy,Vn,), and we conclude
that TGO\f) = 7/5 ) 7/7
(¢c) In view of of (a) and (b), we can apply T to the diagram which defines
the equivalence of charted orbifold maps (cf. Definition , and the assertion follows.
(d) This is just the combination of (b) and (c). m

REMARK 3.9. Let (Q;,U;), i € {1,2}, be orbifolds and [f] € Orb((Q1,U1), (Q2,U2)). The
definition of the tangent orbifold map implies that the following diagram is commutative:

T(Q1,Ur) L T(Q2,Us)

7T7'(Q1vl/f1)l J"T(szuz)
(7]

(Q1,Uy) —————— (Q2,Ua)

In other words, the family (77 (gu))(Q.u)corb defines a natural transformation relating
the endofunctors 7 and idorb.

3.2. Orbisections. We now study sections of the tangent orbibundle of an orbifold.
These maps will be called “orbisections” and may be thought of as an analogue of vector
fields on manifolds. In this section, (Q,U) is an orbifold.

DEFINITION 3.10. A map of orbifolds [6] € Orb((Q,U), T(Q,U)) is called an orbisection
if

WT(Q,I/{) o [6’] = id(Q,Zx{)'
Its support supp [6] is the closure of {x € @ | o(z) # 0.}, where 0, € T,Q is the
zero-element. We define Xo,1,(Q) to be the set of all orbisections of the orbifold (Q,U).

An orbisection [6] € Xo,b(Q) with supp [6] C K for some compact subset K C @ is
called compactly supported (in K).
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For K C @ compact define the set Xo,1(Q)x = {[6] € Xom(Q) | supp[6] C K}
of orbisections supported in K. Let Xo,1,(Q). be the set of all compactly supported
orbisections in Xo,5(Q).

If M is a trivial orbifold (i.e. a manifold), then orbisections are vector fields on the
manifold. It is well-known that vector fields for a manifold form a vector space. In Section
we will prove that the set Xo,(Q) (and the subspaces Xo.b(Q)e, Xom(Q)x) are
topological vector spaces over R for any orbifold. This fact is quite surprising for a non-
trivial orbifold. Indeed, recall that at a singular point, the orbifold tangent space does
not have a vector space structure. However, for lifts of a special kind for orbisections, we
may obtain a vector space structure: For vector fields, it is often advantageous to consider
the representative of a vector field X: M — T M in charts. For a manifold chart W, this
representative is defined to be Xy := d¥ o X o W1, It is possible to obtain lifts of a
similar kind for orbisections on arbitrary orbifolds.

DEFINITION 3.11. Consider [6] € Xom(Q) with 6 = (0, {0;}icr, [Py, Vo)) € Orb(V, TV).
If for each i € I the lift is a vector field o; € X(V;), then (0;);cr is called a family of
canonical lifts for the orbisection 6] with respect to V. If there is no risk of confusing
which orbifold atlas is meant, we will also say that {o;}icr is a canonical family for [5].

Representatives of orbisections with canonical lifts with respect to a given atlas are
unique:

LEMMA 3.12. Let [f] € Xom(Q) and V € U be an arbitrary orbifold atlas such that
there exists a representative h = (f,{f;Yic1,[Pn,vn]) € Orb(V,TV) whose lifts form a
canonical family for [f]. Then h is unique, i.e. if there is another representative of [f]
whose lifts form a canonical family with respect to V, then the members of this family
must coincide with {f;}ier.

Proof. Let g = (f,{gi}ic1, [Py, vq]) € Orb(V, TV) be another representative of [f] whose
lifts form a canonical family with respect to V. For each chart (V;, G;,;), i € I, we have
mrv, fi = idy, = mrv,g;. On the other hand, ¢; and f; are lifts of f, thus for every x € V;,
there is v, € G; such that T, f;(z) = v,.fi(z) = g;(z). Combining these, we obtain

x = mpy, fi(x) = mrv,9i(x) = ey, T fi(z) = vz (3.12.1)

Thus for each x € V; \ ¢, (i.e. x is non-singular), we derive v, = idy, and f;(z) = ¢;(x).
The continuous maps f; and g; coincide on the dense set V; \ X¢,, whence f; = g;. =

It turns out that analogous to vector fields on manifolds, one is able to construct a
canonical family for each orbisection with respect to any given orbifold atlas. At first we
have to ensure that there is at least some representative with a family of canonical lifts
for a given orbisection:

LEMMA 3.13. For every orbisection [f] € Xow(Q), there is a representative V of U
indezed by some I and a representative of an orbifold map ¢ = (f,{fi}icr, [P, v5]) €
Orb(V,TV) such that

@) g€ 1], A
(b) {fi}ier is a canonical family for [f] with respect to V.
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Proof. Following Lemma we choose orbifold atlases A, W € U indexed by I such
that there is a representative b = (f, {h;}icr, [P;,v;]) € OrbOW, T A) of [f]. Fori e I
let h;: Vi — TUq ) be the lift with respect to (V;, Gi,9;) € W and (TUq ), Gag)s Tas))
in TA. By Lemma the composition h} := ULy © hit Vi = Uqy is a local lift

of idg, since (g © [h] = id(g u). For each v € V; there is an open G;-stable set V;” by
Proposition such that h}|y. is an open embedding of orbifold charts.

Thus V; can be covered by open Gj-stable subsets {V7 | j € J;} such that hilys is
an embedding of the orbifold chart (Vf G iyl ) into W(;). Define an orbifold altlas
Ve UviaV = {(V/, Gy ily) | i € 1.j € Ji}. Since b} is invertible on cach V7,
j € J;, one can construct a family of lifts for f as follows: Set

F=TM )™ o hilya: Vi = TV

A computation proves i o fZJ = idy, Le. ff € %(Vf) Since hzl\w is an embedding
of orbifold charts, the same holds for T'(h}|;)™" = (Th{|pyi)~" (cf. Lemma . By

construction, the smooth maps fl] are induced by the lifts h; of h with respect to the
inclusion of V;’ and the open embedding Th}|;.;. Hence Lemma implies that there

is a representative g € [f] whose local lifts are given by the family (f/);cr, je.,. Therefore,

g € Orb(V, TV) is a representative of [f] whose lifts form a canonical family with respect
to the atlas V. m

We now have canonical lifts for an orbisection at our disposal. With this tool, it is
possible to deduce a surprising property of orbisections:

PROPOSITION 3.14. Orbisections preserve local groups.

Proof. Consider [f] € Xom(Q) together with a representative f = (f, {fi}ier, [Py, vy])
such that {f;}icr is a canonical family with respect to some orbifold atlas V. Consider
x € @ together with an orbifold chart (V;,G;,v;) such that x € ¢;(V;). Abbreviate
G = G;. Recall f; € X(V;), i.e. it is a vector field on V;. Choose z € V; with ¢;(z) = «.
We have to prove that G, coincides with Gy, (.). To this end consider v € Gy, (.). By
definition, v acts on T'V; via the derived action v.v := Ty(v). One computes

z = mry, fi(2) = mrv (v-fi(2)) = mrv, Ty (fi(2)) = v.mrv, fi(2) = v.2.

Thus every v € G, () is an element of G.. Hence 0: Gy, .y — G, v+ 7, is an injective
group homomorphism. We claim that 6 is surjective. To prove this, consider § € G,.
Observe that every § € G, is a change of charts (even an embedding of orbifold charts)
and there is g € Py together with an open (connected) neighborhood Q. C V; of z such
that 0|, = g|a.. The map v¢(g) is a change of charts of T'V; into itself. Restricting to the
open connected component C' of dom v¢(g) which contains f;(z), |51, Lemma 2.11] implies
that there is a unique v € G such that v;(g)|c = 7v|c. On the open set Q. N f;1(C), we
have

fiodlg 1y = Vi@ fila.ng ) = V- fila.ar o) (3.14.1)

The set Q, N f; ' (C) is a non-empty open set, and by Newman’s Theorem there is a
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non-singular y € Q, N ;" *(C). Specializing to y, equation yields
fi(0y) =~.fily) =T fi(y), so by=mrv, fi(0y) = mrv.Tvfi(y) = 7-v.
Then §~1v.y = y, and y being non-singular forces v = §. Applying this to (3.14.1)) we
obtain
fi(z) = fi(0.2) = T6.fi(z) = 6.fi(2).
In other words, ¢ fixes fi(2) and thus ¢ is an element of the isotropy subgroup Gy, .)-.

Thus 6 is surjective. We conclude that 6: G, — Gy, (.), v + 7, is an isomorphism of
groups and that the local groups I'; and I't(,) are isomorphic. m

The property of preserving local groups limits the choice of images an orbisection may
take at a given singular point. In particular, there are elements in the tangent space at a
singular point which are not in the image of any orbisection. We refer to Example [3.2§]
for such a case.

PROPOSITION 3.15. Let [f] be an orbisection and V € U be an orbifold atlas. Furthermore,
let f = (f,{fiYicr, [Pr,vs]) € Orb(V, TV) be a representative of [f] such that {fi}icr is
a family of canonical lifts. For each element ¢ of the set of changes of charts Chy of V
(¢f. Notation [E.9) with dom¢ C V; and cod¢ C V;, (Va,Ga,tha) € V, « € {i,j}, we
have the identity

fi9 =Tofildom ¢- (3.15.1)
The pair (Chy,v) with

v: Chy = ¥(TV), ¢~ To,

is o representative of [Py,vy]. Here Chy is the quasi-pseudogroup of all changes of charts

for the atlas V (cf. Notation|E.9).

Proof. Pick an arbitrary change of charts ¢ as above and choose a representative (Py, vy)
of [Py, vy]. It suffices to prove the identity on small neighborhoods of arbitrary
points in dom ¢. Let zp € dom ¢ be such a point. Since Py generates ¥(V), there is an
open xg-neighborhood U,, C dom¢ C V; together with ’yfo € Py such that ’Yro|Um0 =
¢|Um' By definition, we obtain a local lift of f:

Fi8lv,y = Fivmolt,, = vi(ve) filv,, - (3.15.2)
On the other hand, the composition T'¢ fi[v,  is defined, since fi|y,, € X(Usy,). By Lemma
a), T'¢ is a change of charts of TV, and thus T'¢ fi|y,, is a local lift of f on Uy,. For
every y € U,,, we obtain

Tupjvp (45, fi(y) = T T fi(y)-
Thus there is a unique group element g, € G; such that gy.uf(*yfo)fi(y) = Tofi(y).
In Proposition [3.14] we have seen that orbisections preserve local groups, whence they
preserve non-singular points. Therefore lifts of orbisections map non-singular points to
non-singular points. The set U,, is a non-empty open subset of V; and by Newman’s

Theorem @ the non-singular points of the G;-action on V; are dense in U,,. Using
(3.15.2) for non-singular y € U,, we obtain the identities

Tofi(y) = gy-v1 (V2 i) = 9y-Fi6(y) = Tgy(fi6(1)),



3.2. Orbisections 47

whence
o(y) = 7oy, To fi(y) = mrv, Ty (fi0(y)) = gy-0(y).

As changes of charts preserve non-singular points and y is non-singular, g, = idy, follows.
The maps vy (7;?0) fi and T'¢f; therefore coincide on the non-singular points of U,,. As
these points form a dense subset in U,, the continuous maps must coincide on Uy,
whence T¢fi|v,, = vi(v4,) filu,,, and indeed T¢fi|v,, = fid|uv,, follows.

The quasi-pseudogroup Chy generates ¥ (), and our previous considerations show
that v (as defined above) satisfies property (R4a) of Definition The functoriality
of T implies properties (R4b)—(R4d) of Definition for (Chy,v). Notice that we did
not change the family of lifts {fi}ie;. Thus h := (f,{f:}ic1, [Ch,v]) € Orb(V,TV) is a
charted map such that [f] = [h]. =

REMARK 3.16. Let M, N be smooth manifolds and f: M — N be a smooth map. Recall
that o € X(M) and 7 € X(N) are called f-related if T foo = 7o f. Hence Proposition [3.17]
shows that canonical families of an orbisection are families of pairs of f-related vector
fields, where f runs through the changes of charts of the domains of the pair.

LEMMA 3.17. Let [f] be an orbisection and V be an arbitrary representative of U. There
is a refinement V' of V and a representative h = (f,{h;}ics,[P,v]) € Orb(V', TV') of
[f] such that {h;}icr is a family of canonical lifts for [f].

Proof. By Lemma [3.13] we may choose a representative W of U indexed by I and a
representative § = (f,{gi Vicr, [P, v]) € Orb(W, TW) of [f] such that {g;}scs is a canon-
ical family. Choose a common refinement V' of W and V. The refinement ' induces a
common refinement 7V’ of TV and TW, since embeddings of orbifold charts are mapped
to embeddings of orbifold charts by the tangential functor T. Let V' be indexed by J
and a: J — I be a map such that for j € J there is an embedding of orbifold charts
Ao (VG5 ) = (Wagys Ha(g), Yags))- The family {g;}ier is a canonical family, there-

[EMY
fore
9a(s ))\](V )= ga(])(lm)\ ) CTImA,.
Define the maps h;j := (T'Aj) " ga(jyAj: V] = TV/. Then Lemma ensures that there
is a pair (P,v) such that h := ( {h }Jej, [P, v]) is a representative of [f]. A computation
yields

TTV; hj =TTV (T)‘j)_lga(j))‘j = )\j*lﬂ—TWa(j)ga(j))\j = ide

for each j € J. In conclusion, {h;};es is a canonical family and the domain atlas of his
a refinement of V. m

The results obtained so far show that each orbisection possesses representatives whose
lifts form canonical families for suitable refinements of V. We will now prove the converse:
For each orbisection and an arbitrary orbifold atlas, there is a representative whose lifts
form a canonical family with respect to the given atlas. This result is quite surprising
since in general maps of orbifolds need not have lifts on an orbifold chart chosen in
advance.
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PROPOSITION 3.18. Let [f] € X0 (Q) and let W be an arbitrary representative of U
indexed by J. There exists a representative § = (f,{g;}jes, [P,V]) € OrbOV, TW) such
that {g;};jes is a canonical family with respect to W .

Proof. Lemma [3.17] allows us to choose a refinement V of W indexed by I and a rep-
resentative b = (f,{fv, }icr,[P,v]) € Orb(V,TV) of [f] such that {fv,}ics is a family
of canonical lifts for [f]. Let (W;,Gj,v¢;) € W be an arbitrary orbifold chart. We have
to construct a local lift of f on (W;,G;,%;). To achieve this, consider z € W;. Since
Yi(z) € Q and V is an atlas, there is a chart (V;, G;, ¢;) € V together with a change of

charts A, € Chy, w, (cf. Notation [E.9) such that € Im A,. Then we define
fw, () =T fu, 2, ' (2) € T.W (3.18.1)

for all 2 € ImA. The definition of fy, depends neither on the choice of A, nor on
(Vi, Gy, ¢i). To see this, consider another chart (V;,G;,¢;) € V and a change of charts
morphism p,; € Chy, w, with x € Im p,. Denote the intersection Im A, N Im p; by €.
We will show that for each z in the open xz-neighborhood €,, equation yields the
same fiy, (2) if p, is used instead of \;. Observe that h, := /\:;1“r|#;1(91) is a change of
charts in Chy;, v;. Using that the family { fy, }scs is a canonical family of lifts with respect
to V, for z € ), we compute

TAufv Ay ' (2) = TAs fvihatiy ' (2) = TAT h fv 1y (2) = Tha fv, 15 (2).

Hence, on 2, the assignment does not depend on any of the above choices.
Thus it makes sense to define a map fw,: W; — TW;, © — TAfy,A\"1(x), if there is
(Vi,Giyp;) €V and A € Chy, w, with z € Im A. For each z € W; there is a change of
charts such that the identity holds in an open z-neighborhood. Hence, the map
Jw;, is smooth, and by construction a smooth vector field. Repeating the construction for
each chart in W, we obtain a family of vector fields { fw, } jes which lift f.

We claim that the family of vector fields is a canonical family of lifts. It suffices to
prove the identity for each ¢ € Chw, w, and j,k € J. To this end fix ¢ € Chw, w,
and consider z € dom¢ together with a change of charts A\, € Chy, w, such that
z€ImA, Cdome¢. Then ¢ o A, € Chy, w, implies

fw, 0 6(2) BED 1)) fur (60 ) 16(2) = ToTA £ids 1 (2) EED T fiy (2).

Since z € dom ¢ was arbitrary, this proves identity . Hence by Proposition
we may choose v such that the map g := (f, {fw, }jes, [Chw,V]) is a representative of
an orbisection with canonical lifts. The atlas V is a refinement of W, thus for every
i € I there is an embedding of orbifold charts A;: (Vi, Gi, 7)) = (Wai), Gagiy» Yag))- By
construction, we obtain fy, = TA; ! fw. . A, and therefore every lift fy, is induced by
a suitable lift of §. Following Definition we have § ~ h and the classes [j] and [f]

coincide. Thus the lifts are a canonical family of [f] with respect to W. u

Proposition shows that every orbisection may be identified in every given atlas
with a unique family of canonical representatives. In particular, orbisections satisfy anal-
ogous properties to C'*°-sections in the tangent bundle in the sense of |16, below Remark
4.1.8].
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REMARK 3.19. (a) A family F of vector fields on an orbifold atlas V which satisfies
equation (3.15.1) induces a continuous map F: Q — TQ (cf. the proof of Proposition
for the explicit construction) such that

o (F,F,[Chy,v]) € Orb(V,TV) with v: Chy — ¥(TV), A = T,
e F is a canonical family.

Vice versa, if (f,{fi}icr, [Pf,vy]) is a representative of an orbisection whose lifts form a
canonical family with respect to an atlas V, then the above construction for {f;};cs yields
the map f. Lemma implies that an orbisection is uniquely determined by its family
of canonical lifts with respect to any atlas V. This induces a one-to-one correspondence
between the set of orbisections and families of vector fields for some orbifold atlas V which
satisfy .

(b) Notice that (a) implies: For [f] € Xom(Q) and (U, G, 1) € U, there is a unique
vector field fy € X(U) such that for f = (f,{fi}ier, [P,v]) we have T4 fy = fu.

(¢) The canonical lift of the zero-orbisection 0o, with respect to some orbifold chart
(U, G, 1) is the zero-section in X(U). If [f] € Xom (Q) is an orbisection and (U, G, ) € U
is some chart such that ¢(U) Nsupp [f] = 0, then the canonical lift of [f] on U is the
zero-section in X(U).

(d) Proposition implies that orbisections in Xo.,(Q) take their values in

T™ = {[m,v] | (U,G,¢) €U, v € TU with g.v = v for all g € Grpy(v)}-

Notice that T,U™ := {v € T,U | g.v = v for all g € G} is a subvectorspace of T,,U and
TU™ = U.er T, U™ is invariant with respect to the derived G-action on TU. Since the

chart mapping T'¢ is an open map, |21, Ch. VI, Theorem 2.1| implies that the restriction

inv . . TO™NTr(myQ + 1 .r .
T7r|;_ginvmm(T7r) is a quotient map. Furthermore, the map TW\T%M @@ is bijective.

Thus ’7;(96)@"“’ := Tr(T,U™) is in a natural way a vector space, whence the fibres of
TQ™ are vector spaces. Notice that this vector space structure induces a vector space
structure on Xo,1(Q) by pointwise operations on canonical lifts. The details are recorded
in the next section.

(e) The underlying continuous map o of an orbisection [§] € Xo,5(Q) uniquely de-
termines the orbisection. To see this, we choose a family of canonical lifts (¢;);c; with
respect to some atlas {(U;, G, ;) bier € U for [6]. From part (d), for z € U; we derive

the identity
TQ™ NTr(a)Qy—1
oi(z) = (T T, Uinv @) oo o).
Hence, the underlying map o uniquely determines the canonical lifts ;. By part (a),
the canonical family {o;};cr uniquely determines [§], whence the assertion follows. In
particular, we obtain a canonical embedding

Xow(Q) = C(Q,TQ), [6]— 0.

3.3. Spaces of orbisections. We now study spaces of orbisections. For these spaces
we will obtain the structure of a real topological vector space. The construction of the
vector space structure is inspired by arguments first given in [7].
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PROPOSITION 3.20. The set Xo,b(Q) of orbisections is a real vector space with pointwise
vector space operations on canonical lifts. The zero element 0o € X0 (Q) of Xom(Q)
is called the zero-orbisection. Endowing X0, (Q) with this vector space structure, the sets
Xom(Q)x C Xorm(Q)e C Xorb(Q) become linear subspaces.

Proof. Let [f],[g] € Xorb(Q) and choose an arbitrary representative V of the orbifold
structure U, indexed by some set I. By Proposition we may choose unique rep-
resentatives of orbifold maps f = (f,{fi}ier, [Ps,vs]) € Orb(V,TV) of [f] and § =
(9,{9i}ier, [Py, vg]) € Orb(V, TV) of [§] such that the families of lifts are canonical fam-
ilies. Without loss of generality Py = P, = Chy and vy(\) = v4(A) = T'A, by Proposition
[3-15] By construction, for each i € I the lifts are vector fields f;,g; € X(V;). Recall
from [17, 2.7] that the vector space structure on X(V;) is induced by pointwise opera-
tions. We define the vector space operations on X, (Q) via the following construction:

For z € R consider f; + zg;: V; — TV; € X(V;). Remember that tangent maps act as
linear maps on each tangent space. For every change of charts A € (V) with dom A C V;
and cod A C V; we obtain

(fi +29)A(p) = f;(A(p)) + 29;(A(p)) = vi(A) fi(p) + 2v4(N)gi(p)
= TpA(fi(p)) + 2TpA(2gi(p)) = TpA(fi(p) + 2gi(p))
= Vit2g(AN)(fi(p) + 29:(p))- (3.20.1)

Define the quasi-pseudogroup Pji.q := Chy and viy.q: Prisg — ¥(TV), A — TA.
The pair (Pfi.q,Vf+29) and the family (f; + zg;)icr satisfy properties (R4a)-(R4d) of
Definition Notice that by identity for a chart (V;,G;,v¢;) € V the map
T;(fi + zg;) is constant on each fiber wi_l(y). As 1); is a quotient map, the map

f 420y vy s (Vi) = Ti(TV;), 0 T o (fi + 29:)0 (),

is continuous, by [21, Ch. VI, Theorem 3.2]. Furthermore, the map f; + zg; is a smooth
lift for f + zgly,(v;). We claim that for every pair (i,j) € I x I, the maps f + 29|y, (v;)
and f + zgly,(v,) coincide on ¥;(V;) N4 (V;).

If this is true, then f 4+ 2g: Q@ — TQ,  — [ + 29[y, (v;)(x), for € ;(V;) is a
well-defined continuous map. We obtain a charted orbifold map

fi?g = (f + z9, {f’L + Zgi}iel: [Pf+zg7 Vf+zg]) € Orb(v7 TV)

such that each lift f; + zg; is a vector field. Hence {f; + z¢;}icr is a canonical family

with respect to the atlas V and we have [f + zg] € Xo.b(Q). Proof of the claim: Consider

z € ¥;(Vi) N (V;). For every pair y, € ¢, (z), o € {i,j}, there is a change of charts
A € Chy, v; such that A(y;) = y;. Again by (3.20.1), the claim follows as

I+ 29ly,0v)(@) = TY;(f5 + 295)(y5) = T (f; +tg;)(Mwi))

= TY;TAfi + 29:)(wi) = Toi(fi + 29:)(p) = [ + 29

It remains to show that the construction does not depend on the atlas V. Let V' be

another representative of i and let f’ and §’ be representatives of [f] and [§], respectively,

whose families of lifts form canonical families with respect to V’. By Lemma we may
choose a common refinement of ¥ and V’'. The definition of equivalence of orbifold maps

¢i(Vi)<x)'
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implies that the classes will be equal if the induced lifts on this refinement coincide. With-
out loss of generality we may assume that V' refines V: Let V' = {(Wy, Hy, o) | k € K}
and a: K — J be the map which assigns to k € K an element of I such that there is an
embedding of orbifold charts Ay : (Wi, Hg, #x) = (Vak)» Ga(k)> Ya(r))- The atlas TV’ for
TQ is a refinement of TV. In particular, T\ is an embedding of (TWy, Hy, T'¢y) into
(TVa(k)7 Ha(k)7 Twa(k))~ Let f/ = (fv {fllc}kEKa [P]/“ VH) and gl = (97 {g;c}kEKV [Pév V;])
The families { f; }ier and {g; }icr are families of vector fields, and we obtain induced vector
fields on each chart (W4, Hy, ¢y) since this chart embeds into a chart (Vi 4y, Ga(r), Ya(k))-
Combine Lemma and the uniqueness assertion for canonical lifts (Lemma [3.12)) to
obtain the following identity for the induced vector fields:

fo=TA fat e Gk = TAL Gar) M-

Constructing ffi—?g’ € Orb(V', TV') as above, we deduce from the last identity that
f4+zg~ f+zg'. A vector space structure on Xo,,(Q) is thus defined via

[f]+ 2[g] == [f + =g].
Clearly 0o € Xom(Q)k C Xom(Q)e, whence these subsets are not empty. The last

claim follows from the definitions: For [f],[§] € Xom(Q). with supp [f] € K and supp [g]
C L with K, L C @ compact, one obtains supp([f] + z[g]) C supp [f] Usupp[g] C K U L.
Therefore Xo,1(Q)x and Xo(Q). are linear subspaces. m

Our goal for the remainder of this section is to topologize the vector spaces Xop,(Q)
and Xorb(Q).. If Q is a compact topological space, then Xo,,(Q) will be a Fréchet space.

LEMMA 3.21. Let (Q,U) be an orbifold and V = {(U;, G, ) | i@ € I} an arbitrary
representative of U indexed by I. There is a bijection identifying each [f] € Xom(Q)
with a unique representative fy, whose lifts {fu, Yicr form a canonical family for [f] with
respect to V.

(a) The map
Av: Xom(Q) = [[X(W), A= (fuier,
iel
is a linear injection into a direct product of topological vector spaces (cf. Section
for information on X(U;)), whose image is the closed vector subspace

H:— {(fi)iez e [T xwy) ‘ YA € Chy, dom A C U, cod A C Uj, fi\ = TAfi|dom}.
icl
(b) If V is a locally finite atlas such that each chart in V is relatively compact, then
Av: Xon(@Q)e = P XU, fv = (fu)ier
iel
is a linear injection into the direct sum of topological vector spaces (cf. [39, 4.3]).
Making identifications, its image is the closed vector subspace H N @D, ; X(Us;).

Proof. (a) For [f] € Xom(Q), we let (fu,)ier be the family of canonical lifts with respect
to V. Proposition shows that Im Ay is contained in H. Remark a) implies that
Ay is injective and Im Ay, = H holds. The vector space operations of Xo,1,(Q) are defined
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via pointwise operations for families of vector fields. Hence by definition, Ay, is a linear
map.

We have to show that H is a closed vector subspace. Consider A € Chy, y, and
arbitrary y € dom A. Each element in H must satisfy f;(A(y)) = TAfi(y), i.e. we observe
that evy,(fj) = (T'Aoevy)(f;). Here ev, and evy(,) are point evaluation maps defined
on X(U;) and X(Uj), respectively. The choice of the topology on X(U;) (cf. Definition
implies that point evaluation maps are continuous mappings on these spaces. To
see this, note that for a manifold chart (s, V) the restriction map resgi is continuous
(cf. Notation . By |2, Proposition 3.20|, point evaluation maps are continuous for
all spaces C°(Vy;, Tx(y)V;), whence the claim. Since the projections pr,: [[,c; X(U;) —
X(Uy), (fi)icr — fx, are continuous for all k, we derive a continuous mapping

hag: [[XW) = TayUs,  (fidier = (TAoevy)(fi) — evagy (f)).
el

We may now write the space H as the intersection
—1
H= ﬂ n hiy(0)
AeCh 4 yEdom A
Since each hy, is continuous, the space H is a closed subspace of J[,.; X(U;) as an
intersection of such spaces.

(b) The atlas V is locally finite, and thus only finitely many charts intersect a given
compact set. In particular, Ay makes sense. The canonical injection I: P, ; X(U;) —
[T;c; X(Us) is continuous by [39} 4.3.1], and thus I-'(H) = H N @, -, X( Z) is a closed
subset of P, ; X(U;). Again by Proposition u Im Ay is contained in I=(H), and by
Remark-, Ay is injective and Im Ay = I"Y(H) = HN@,;c; X(U;). =

DEFINITION 3.22. (a) Let V be a representative of U for an orbifold (Q,U). Endow
Xorb(Q) with the locally convex vector topology making the linear map

A Xo(Q) — H XU, [fl=— (fu)w,ae)evs

(U,Gp)ev

a topological embedding. Here we have used the unique lifts fyy constructed in Remark
[3:19] We call this topology the orbisection topology and note that it is the initial topology
with respect to the family of maps

0 Xom(Q) = X(U), [fl~ fu, (U,G¥)eV.

(b) Let V := {(V;,H;,%¢;) | j € J} € U be a locally finite orbifold atlas such that
each chart in V is relatively compact. Endow Xo.,(Q). with the locally convex vector
topology making the map

Av: Xon(Q)e = P XV)),  [fl = (fv)jes
jed
from Lemma [3.21|b) a topological embedding. We call this topology the compactly sup-

ported orbisection topology (or c.s. orbisection topology). With respect to this topology,
the linear maps 7v, : Xom (Q)e— X(Vj), [f]— fv,, are continuous for each (V}, Gj,9;) € V.
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A priori, the topologies defined on the spaces of orbisections might depend on the
choice of orbifold atlas. However, as in the manifold case, we will see that neither the
orbisection topology nor the c.s. orbisection topology depend on this choice. To prove
the independence of the compactly supported orbisection topology from the choice of the
orbifold atlas, relatively compact orbifold charts are needed. This explains the additional
requirement in Definition [3:22]

LEMMA 3.23. Let W = {(W;, Gy, ¢;) | i € I} € U be an arbitrary orbifold atlas for Q.

(a) The orbisection topology with respect to V is initial with respect to the family
(TW,) (W, Hi g ew -

(b) Let W be locally finite such that each chart in W is relatively compact. The c.s.
orbisection topology Oy with respect to V and the c.s. orbisection topology Oy with
respect to YW coincide.

Proof. (a) Consider the atlas W UV obtained by joining the atlases V and W. Clearly
the orbisection topology induced by V (respectively by W) is coarser than the orbisection
topology induced by WUV. We claim that the orbisection topology induced by V is finer
than the one induced by VUW. If this is true, then the two orbisection topologies coincide.
An analogous argument applies to the topology induced by W. Hence it suffices to prove
that the orbisection topology induced by V coincides with the one induced by W U V.
Without loss of generality we may assume that V is contained in W, i.e. W =W U V.

Let 7 be the initial topology on Xom,(Q) with respect to (Tw,)w, G,.¢,)ev. Fix
(U, H,v) € W. We have to show that 7y: (Xo.b(Q),T) — X(U) is a continuous map.
The open sets {V; := UNW; | i € I} form an open cover of U. Define V; := 1~ *(V;) to
derive an open cover of U. By [27, Lemma F.16], the topology on X(U) is initial with
respect to the family (res{ )ics. Since every V; satisfies ¢(V;) C ¢;(W;) by compatibility
of orbifold charts, there is a family of changes of charts (\ix)rex, in Chw, y such that
UkeKi cod N, = V.

Another application of |27, Lemma F.16] implies that the topology of X(V;) is ini-
tial with respect to (resz/éd )\ik>k€ k;- Using transitivity of initial topologies, ¢y will be
continuous with respect to 7 if we can show that every

fir = resgod A 0 TU: Xorb(Q) — X(cod i)

is continuous for i € I, k € K;. But |27, Lemma F.15(a)|] implies that the mapping
resh i 0 X(W;) — X(dom \) is continuous. Now we use the fact that

n: X(dom Ai) — X(Im Agg), X+ TAoX oAl

is continuous. To see this, observe that in charts (using Lemma , the mapping
reduces to a pullback by a smooth map which is continuous, by |25, Lemma 3.7]. We
conclude from f;r = gx resg‘gin \Tw, that 7y is continuous with respect to T for every
(U,G,v) € V. Thus the orbisection topology with respect to V is finer than 7, whence
both topologies coincide.

(b) Consider V = {(V;, H;,v;) | j € J}. Notice that VUW is still a locally finite atlas
with relatively compact charts. After replacing W = {(W;, G, ¢;) | i € I} with WUV,
we may assume without loss of generality that ¥V C W. Let Oy be the c.s. orbisection
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topology with respect to W, and Oy, be the c.s. orbisection topology with respect to V.
Since V is contained in W, the definition of the c.s. topology implies Oy, C O, W, i.e. the
topology Oyy is finer than Oy,. Conversely, we have to prove that Oy, is finer than Oyy. To
see this, it suffices to prove that idx,,, (0).: (Xor(Q)e; Oy) = (Xom (@), Oy) is contin-
uous, which follows from [11, Ch. I, §1, No. 6, Proposition 5] if every zero-neighborhood
in Oyy contains a zero-neighborhood in Oy,. We proceed in three steps:

STEP 1: Ooyb-neighborhoods in (Xom(Q)c, Ov) from zero-neighborhoods in X(W,.).
Consider (W,., Gy, ) € W. The projection pr,.: [[;,c; X(W;) — X(W,) and the canoni-
cal inclusion Iyy: @,;c; X(W;) — [[;c; X(W;) are continuous (cf. |11, Ch. II, §4, No. 5,
Proposition 7|). Furthermore, since V C W, we identify each chart (V}, H;, ;) in V with
a chart (W (), Ga(j), Pa(j)) in W. Then the canonical inclusion

[V,W: EB%(VJ) — @X(Wz),
JjeJ el

Y iy = 0 ifi# ay) for all j,
(fJ)JEJ — (fz)zela fz {fj i oz(j), e J

is continuous. Then Aw, := pr. oIy o Iyw: @,c;(Vi,Hi, i) — X(W,) is a con-
tinuous map. Now each zero-neighborhood Q in X(W,) induces a zero-neighborhood
(A, o Ay)~H(Q) in Oy.

Consider [6] € Xo:b(Q). and denote its canonical lifts on (W;, G;,v;) € W by ow,.
By Proposition the canonical lift oy, is uniquely determined by the canonical lifts

{ov, | (Vj, Hj, ¥;) € V with . (W;) NIm oy # 0}
Recall that all charts in W are relatively compact and V is a locally finite atlas. Thus

for each r € I, there is only a finite subset J,. C J such that Im; N @, (W,) # 0 if
and ounly if j € I.. Denote the canonical inclusion B, X(Vi) = D, ; X(V;) by ¢y,.
By |11, Ch. II, §4, No. 5, Proposition 8(i)|, the map ¢, is continuous for each J, C J.
The maps L)y and Iy ,y, respectively, are (up to identification) just inclusions of subsets
and pr,. is a projection. Since the lift oy, of an orbisection [6] € Xom(Q). is uniquely
determined by the family of lifts indexed by J,., for each open set 2 € X(W,.) we obtain

the following:
The lift oy, is in Q if and only if [6] € (Aw, o Ay) (),
if and only if (ov; )res, € (Aw, 017,) 1 (Q). (3.23.1)

STEP 2: The countable case. We shall assume for this step only that the atlases V, W are
indexed by countable sets I, J.

Consider the vector spaces (B,c; X(W;))box and (D¢ X(V;))box, respectively, en-
dowed with the box-topology. Since I, J are countable, the box topology coincides with the
locally convex direct sum topology by [39, Proposition 4.1.4]. A typical zero-neighborhood
in @,c; X(W;) is given by U := ,; U;, where U; C X(W;) is an open set. For each
i € I, choose by Step 1 open box neighborhoods B* := @aeli B!, such that B* C
(A, oty,) "1 (U;). Reformulating condition this yields: If oy, € B, for all a € J;,

then ow, € U; follows. Using the boxes defined above, we construct sets €); := ﬂie I B;
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Recall that V contains only relatively compact charts and W is locally finite. Thus for
fixed j € J the set I; := {j € J; | i € I} is finite, whence the set ; is an open zero-
neighborhood of X(Vj). Now B := D, jes X(Vj).
The open box-neighborhood B contains only elements of €5 jed X(V;) which are mapped
by the projection B¢ ; X(V;) = @yc s, X(Vi) into B¢, By, for each i € I. We obtain
the following condition for an orbisection [6] € Xo,5(Q). with families of canonical lifts
(ov;)jes with respect to V and (ow, )ies with respect to V:

6] € AN (B) & (0v,)jes € B = (Vi € I)(ov,) e, € €D Bi
keJ;

Q; is a box zero-neighborhood in €

= (Vi € I) ow, € U; = [6] € A ().

In other words, the typical zero-neighborhood A;\} (U) in Oyy contains the zero-neighbor-
hood A;'(B) € Oy. As sets of the form A5, (€D, ; U;) form a base of zero-neighborhoods
in Oy, we deduce that Oyy C Oy, and thus Oy = Oy. Furthermore, the map p :=
Ay [T AW o (A [ Av)=1) s an isomorphism of topological vector spaces.

STEP 3: The general case. In general, neither ¥ nor W need to be countable (since the
orbifolds we consider need not be o-compact). Orbifold charts are connected, whence each
chart is contained in exactly one connected component. Let C be the family of connected
components of @ and, for C' € C and an atlas A, define A¢ := {(V, H,¢) € A| (V) C C}.
The subset A¢ is an atlas of orbifold charts for the component C'. We may split the atlases
V, W into disjoint unions V = | |cc Ve, resp. W = | |z We- By construction, Ve is
still contained in We.
Decompose the direct sums

Prxwy=-B( B xm). Pxvy=-B( B xv),
iel CeC (W,G,¢)eEWe jeJ CeC (V,Hy)eVe

and observe that the maps Ay and Ay, decompose as Ay = (Ay.)cec and Ay =
(Awe )cec. Every connected component C' C @ is o-compact by Proposition [L.I7(d).
Since W¢ and Ve are locally finite, both atlases have to be countable. For each con-
nected component C Step 2 yields an isomorphism

pPc = AWC|Im Awe A;é |Im Ave : Im Avc — Im AWC-

Taking direct sums in the category of topological vector spaces is functorial. Therefore
the map @ e po: Boce Im Ay, — Prce Im Ay, is an isomorphism of locally convex
topological vector spaces. Observe that the families of canonical inclusions (of vector
subspaces) tc: ImAv, = @Dy g pyev. X(V) and 1o: ImAwe = D w66 ewe X(W)
induce continuous linear maps ¢ := @yt and ' == Py Lo, respectively. By [11]
Ch. II, §4, No. 5, Proposition 8], the subspace topology on Im ¢ turns ¢ into an isomorphism
of topological vector spaces, and the same holds for " and the subspace topology on Im /.
We deduce that

Aw|ImAW o (Av‘ImAV)71 _ L/ ° @ (AWC‘ImAWC ° (AVC|ImAvC>71) ° L71
cecC

is an isomorphism of topological vector spaces. Thus Oy = Oyy. =
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To illustrate the construction of the orbisection topologies, we consider the special
case of orbisections on an orbifold with a global chart. It turns out that we may then
identify the orbisections with subspaces of vector fields on the global chart.

EXAMPLE 3.24. Let d € N. Consider a finite subgroup G C Diff(R%). We define an
orbifold structure on Q := R™/G via the atlas V := {(R?, G, 7)}, where 7: R? — R?/G
is the quotient mapping.

(a) By Proposition each orbisection [6] € Xo,5(Q) can be identified with a
unique vector field in X(R?). Since the group elements are changes of charts, for the
canonical lift of an orbisection on the global chart we have g.X = T'go X = X og for each
g € G. Thus the canonical lifts are G-equivariant vector fields. Hence by Lemma[3.23] the
map Ay: Xom(Q) — X(R?) (cf. Lemma establishes an isomorphism of topological
vector spaces between Xo,1,(Q) and the space of all G-equivariant vector fields X¢(R?).

Observe that X“(R?) is a closed subspace of X(R%). To prove this, recall that for
each p € R? the point evaluation evy: C% (R4, R?) — R is continuous by |2, Proposition
3.20|. Hence for each pair (p,g) € R? x G, the map

Epg: C*(RLRY) 5 RY, [ dg(p,-) o evi(f) — evyg(f),

is continuous. We may then identify X%(RY) with the closed vector subspace
-1
an]Rd ﬂgGG Epyg (0)
(b) We identify the compactly supported orbisections Xo.,(Q). with the set of equiv-
ariant compactly supported vector fields of R?. To this end, consider

XG(RY) = {X € X.(RY) |Vg e G, Tgo X = X o g}

as a subspace of X.(R?) (cf. Definition . We claim that Xom(Q). and X&(R?) are
isomorphic as topological vector spaces. To this end, choose a locally finite orbifold atlas
W = {(U;,Gyi,m;) | i € I} for Q with I countable. By Lemma we can choose W
such that for each i € I the set U; C R? is a relatively compact-open subset such that
the inclusion of sets induces an embedding of orbifold charts. Then R? = |J,.; G.U;, as
W is an orbifold atlas for Q = R%/G. Since G is a finite group, we may assume that for
each i € I and g € G there is j € J with U; = g.U; and G; = ¢9.G;.g7'. Thus (U;)ier
is a locally finite cover of R? by relatively compact-open subsets such that the cover
is countable. Recall from the definition of the topologies that the rows in the following
commutative diagram are topological embeddings with closed image (cf. Lemma and

Definition [C.13))

Aw

Xorb(Q)c Dicr X(Ui)
GJ’—“
XG(RY) — S x (RY) — v, B,c; C=(U;, RY)

Here the isomorphism 6 is defined via (f;)icr — (pry o fi)icr- As canonical lifts of an
orbisection are unique by Lemma [3.12] Proposition and a trivial computation yield
Im(f#Ayy) C Im Ryy. Furthermore, the image Im(R;, 0Ayy) coincides with X&(R?). De-
note by oga the canonical lift of [6] € X0, (Q). with respect to the global chart. Then
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R;\,l OAyy induces the isomorphism of topological vector spaces
Xom(Q)e — XERY),  [6] = oga.

Observe that X5 (R?) is a closed vector subspace of X.(R%). This follows from part (a) and
the following facts: The inclusion ¢: @,;.; C*°(U;,R?) = [[;c; C*(U;,R?) is continuous
by |11, Ch. II, §4, No. 5, Proposition 7]. By definition of the topology on X(R%), we
may identify X(R?) with a closed vector subspace A of [[,.; C*°(U;,R?) such that
17HA) = Ry (XY (RY)). Hence the assertion follows by continuity, since Im Ryy is a
closed subspace.

We conclude that for the orbifold @ = R?/G, the space Xom(Q) corresponds to
X% (RY). Also Xom(Q). corresponds to X&(R?).

We remark that a similar result holds for arbitrary orbifolds with a global chart, by
essentially the same argument.

THEOREM 3.25. Let (Q,U) be a second countable orbifold, i.e. Q is a second countable
space (or equivalently Q is a o-compact space). The topological vector space X0 (Q) is
then a Fréchet space.

Proof. As @ is second countable, there is a countable orbifold atlas {(U;, G, ;) | i € N}
for Q. By Lemma [3.23] the orbisection topology is initial with respect to the maps

T, Xow(Q) = X(Us),  [fl = fu,-
In particular, Lemma yields a linear topological embedding

A Xom(Q) = [T X)), 1= (fo)ier,
iEN
onto a closed subspace. The manifolds U; are finite-dimensional, connected and paracom-
pact. Thus by Proposition |1.16} every U, is o-compact and second countable. The space
R™ is a Fréchet space over the locally compact field R. Combining these observations
with Lemma and |27, Proposition 4.19], X(U;) with the topology defined in Defi-
nition is a Fréchet space for each ¢ € I. The countable product of Fréchet spaces
is a Fréchet space (combine |11, Ch. I, §3, No. 2] with |39 Proposition 3.3.6]), and thus
[I;c; X(Us) is a Fréchet space. From Lemmas and we deduce that Xo,5(Q) is

isomorphic to a closed vector subspace of the Fréchet space [],.; X(U;). Thus Xo.,(Q)

is a Fréchet space. m

COROLLARY 3.26.

(a) The spaces X0, (Q) and Xom (Q). with the orbisection topology, respectively with the
c.s. orbisection topology, are Hausdorff and complete topological vector spaces.

(b) If (Q,U) is a compact orbifold, then the locally convex vector spaces Xom(Q) and
X0 (Q). coincide. If Q is compact, then both spaces are Fréchet.

(c) LetV be alocally finite orbifold atlas for Q which consists of relatively compact charts.
The family (Tv)v,q,p)ev as in Definition b) forms a patchwork for Xom(Q)e,
turning it into a patched locally convexr space. The topological embedding is given

by Ay (cf. Definition |C.14)).
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Proof. (a) We endow the space of vector fields on a finite-dimensional manifold with
the topology introduced in Definition Recall that direct products and direct sums
of Hausdorff and complete locally convex vector spaces are again such spaces by |39,
Propositions 4.3.3, 4.3.6 and 4.4.3]. The assertion follows from |27, Remark F.8], since
the spaces Xom(Q) and Xon(Q). with the topology of Definition are isomorphic to
closed subspaces of complete and Hausdorff spaces.

(b) For finite index sets, products and direct sums are canonically isomorphic. As
locally finite covers of compact spaces are finite, together with Theorem [3.25] this proves
the claim.

(c) This follows directly from the definition of the c.s. orbisection topology (Defini-

tion 3.22).
LEMMA 3.27. Let K C @ be a compact subset and endow X0 (Q)k € Xom(Q). with
the subspace topology. The space Xom(Q) Kk is a closed subspace of X0 (Q)e.

Proof. Choose an arbitrary locally finite orbifold atlas V := {(V;,G;, ;) | i € I} for
(Q,U). We obtain a topological embedding Ay : Xom(Q)e — B, ; X(V;) whose image is
closed, by Lemma b). For each i € I, we obtain a (possibly empty) subset U; :=
Y7 (Q\K). IfU; = (), define A; := X(V;). Otherwise, consider 2 € U; and a manifold chart
(Wy,9) for V; such that z € W,,. The evaluation map ev?: C°°(Wy, R?) — RY, & s £(z),
is continuous by |27, Proposition 11.1]. As the topology on X(V;) is initial with respect
to the maps 60, : X(V;) — C®(Wy,RY), X — Xy, the point evaluation ev,: X(V;) — R,
o+ ev¥ ofy(0), is continuous. Hence we obtain a closed set A4; := Neev, €5 ' (0). From
[11, Ch. 1L, §4, No. 5, Corollary 1], we conclude that A := @, ; A; = [[,c; AN, X(Vi)
is closed. By construction, each orbisection in A;l(A) vanishes off K, whence its support
must be contained in K. We deduce that Ay,'(A) = X0 (Q) k., whence Xom(Q)x is a
closed set. m

The results in this section suggest that orbisections behave in many ways as vector
fields for finite-dimensional manifolds. Before we end this section, we point out that in
some ways orbisections do not behave like vector fields. There may be formal orbifold
tangent vectors which are not contained in the image of any orbisection. In the manifold
case, this may never occur. The following example was first considered by Borzellino et
al. |7, Example 43] in the context of their notion of orbifold maps:

ExAMPLE 3.28. Consider R, with an action induced by v: R — R, z — —x. Set G := ()
and let ¥: R — R/G be the quotient map to the orbit space. The quotient is homeo-
morphic to @ := [0, 00| (as a subspace of R). By abuse of notation we obtain an orbifold
atlas U := {(R,G,v¢)} for Q. Now (Q,U) is an orbifold and the local groups are trivial
for every point except 0 (where it is isomorphic to G). We may thus compute the tangent
spaces of @ at € @) in the following way:

For z # 0 we have 7T,Q = R and 7pQ = [0, c0[. An atlas for the tangent orbibundle is
induced by the orbifold chart (TR, G,T), where G acts on TR via the derived action.
Taking identifications we obtain TR = R?. The group G acts via elements of O(1) on R.
Hence its action on TR is induced by the linear map Tv: R? — R?, (x,y) — (—x, —y).
The topological base space of the tangent orbibundle is thus 7Q = R?/G. The zero
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vector is the only fixed point of the derived action of G. Since orbisections preserve local
groups by Proposition every orbisection maps 0 € @ to 0 € R?/G = T Q. Thus all
orbisections in Xo,5(Q) must vanish at 0 € @ and

Q = U Imf ¢ TQ.
(FlFwzg.0)}Pv)EX0m(Q)

Is the topological subspace @’ at least an orbifold? We shall prove that the answer to
this question is negative. Indeed, it will turn out that @’ is not locally compact.

Following Remark d), the set @’ is homeomorphic to TR /G, i.e. it is homeo-
morphic to (T(R\{0})U{0 € TyR})/G. Since T(R\{0})U{0 € TyR} ~ R\{0} xRU{(0,0)}
is not locally compact, Lemma e) implies that @’ is not locally compact.



4. Riemannian geometry on orbifolds

In this section, the notion of a Riemannian orbifold metric is recalled. Our approach
follows the construction of Riemannian metrics on manifolds (cf. [19, Ch. 1.2, Proposition
2.10]). The corresponding construction of such an object for an orbifold is well-known
(see for example |51}, Proposition 2.20]; we also recommend the survey in |16, Appendix
4.2]). Nevertheless, the results are repeated here for the readers convenience, and to fix
some notation.

DEFINITION 4.1 (Riemannian orbifold metric). Let (Q,U) be an orbifold and consider
some orbifold atlas V = {(V;, Gy, ¢;) | i € I} for (Q,U). A Riemannian orbifold metric
on @ is a collection p = (p;);cr, where p; is a Riemannian metric on the manifold V; such
that the following holds:

(Compatibility) For each (i,7) € I x I and each open G;-stable subset S C V;, every
embedding of orbifold charts A: (S, (G;)s, ¥ils) = (U;,Gj,v;) is a Riemannian embed-
ding, i.e.

P (TeA(), Ty A(w)) = pi(v,w), Vo,weT,V;, zeb.

Let (Q,U) be an orbifold endowed with a Riemannian orbifold metric p. The triple
(Q,U, p) is called a Riemannian orbifold.

REMARK 4.2. Consider a Riemannian orbifold metric p on some orbifold (@Q,U), associ-
ated to an atlas V as above. For a chart (V, G, 1) € V, the group G acts by self-embeddings
of orbifold charts. If V' is endowed with a member p; of p, each element of G thus acts as
a Riemannian isometry with respect to p;.

ProPOSITION 4.3 (|51, Proposition 2.20]). Any orbifold (Q,U) admits a Riemannian
orbifold metric p.

Proof. Let V = {(V;,G;,v;) | i € I} be any representative of U, and {X;};c;r a smooth
orbifold partition of unity subordinate to V, which exists due to Proposition [2:20] Recall
fromthat for every pair (4, 5) € I x I, there is a smooth lift x; ; of x; to (V;,G;, ;).
For i € I, choose some Riemannian metric m® on V; (ct. |45, Ch. VII, §1, Proposi-
tion 1.1]). As G; acts by diffeomorphisms, we obtain pullback metrics on V;. Averaging
over G;, on every tangent space there is a positive definite bilinear form

Z Tpg.v, Tpgw), Yv,weT,V;,peV,
9€qG;

(vw(z.

\G\

such that the family (—, —)® = ((—, _>z()i))pEVi defines a Riemannian metric on V;. By
construction, each element of G; is a Riemannian isometry with respect to (—, —)(®.

(60]
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Define a Riemannian metric p; on V; as follows: Because (supp x;)icr is locally finite,
1;(p) with p € V; is contained in supp x; for only finitely many ¢ € I. Therefore there is
an open G;-stable subset p € S, C V; such that for y € S, ¥;(y) € supp xx can hold only
if ¢;(p) € supp xi, for k € I. Shrinking S,,, without loss of generality for each k € I with
¥i(p) € supp x there is an embedding of orbifold charts X;: (S, (Gi)s,,%ils,) = V-
If ¢;(p) & supp Xk, simply let AP: S, — V, be constant (whence T A} = 0), and for
v,w € T,,V; define

(Pi)p(v,w) =D x4 (P) - (TN (), TN (W) -
Jjel
Since the x;; are the lifts of an orbifold partition of unity, only finitely many terms are
non-zero and (p;), is a positive definite bilinear map on T,V; x T,,V;. The definition of
(pi)p neither depends on S, nor on the choice of A}:

To prove this, consider another Gj-stable set p € S), with embeddings ph. Since we
are only interested in the tangent map at p (which may be computed in an arbitrarily
small open subset), we restrict f and X} to an open and G;-stable subset S C S, N Szl)
which contains p. If 1;(p) & supp xx, the contribution to (p;),(v,w) is zero. Otherwise,
Propositiond) implies that there is a group element g € Gy, such that u} |s = g o AY|s.
By construction, every g € Gy is a Riemannian isometry with respect to (—, —)*). Thus
every choice induces the same map.

The maps )\g, Xk,; are smooth and (—, —)#*) is a Riemannian metric for each k € I,
thus the family p; := ((pi)p)pev; defines a smooth map on each open set T'S, & T'S, C
TV;®TV;. By construction, the map does not depend on the set S;,, and thus p; is smooth
on TV; ® TV;. Hence it is a Riemannian metric on Vj.

We claim that the family (p;);cr satisfies the compatibility condition of Definition
[41} Consider arbitrary i,j € I together with an open G;-stable subset S C V; and an
embedding of orbifold charts p: (S, (Gi)s,¥ils) — (V;,Gj,1¢;). For p € S and v,w €
T,V;, we have to show that (p;),(p)(Tpu(v), Tpu(w)) coincides with (p;), (v, w).

Since p is an embedding of orbifold charts and by construction one has xx ; = X% 0¥;,
we derive xp ;o = Xk i|d0mu. We compute:

" L (k)
(P3) ey (Tppi(v) = > X (1p) - (Tu M (v ),Tu(p)/\L(p)Tpu(w)Ag(mM(m
kel
k
=Y xwilp) - <Tp(>\f§(p)u)(v)7Tp(Aﬁ(p)u)(w)>§u)<p)“(p)
kel N—— N—— k
92:: :92
= > xa(p) - (T} (0), T (w)) st -
kel

Restrict every non-constant map 6}, to a small open G;-stable neighborhood of p such that
the restriction of #} yields an embedding of orbifold charts (cf. |51, Proposition 2.13]).
As the definition of the metric does not depend on the choice of embedding, we obtain

(pj)u(p) (TPU(U>7TpN(w)) = (pi)p(vyw)~
The family p is compatible as in Definition [I.I] whence it is a Riemannian orbifold
metric. m
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A Riemannian orbifold metric (uniquely) extends to each representative of the orbifold
structure:

PROPOSITION 4.4. Let (Q,U) be an orbifold and V = {(V;,Gi,4;) | i € I} some rep-
resentative of U for which there is a Riemannian orbifold metric p = (p;)ics. For each
representative A of U, there exists a unique Riemannian orbifold metric p which extends
ptoVUA.

Proof. We construct a Riemannian metric on (U, H,$) € V U A as follows: For ¢ € U
choose an H-stable subset ¢ € S; C U together with an embedding 77 : (Sq, Hs,, ¢|s,) —
(Vi, Gy, ;) for some i € I. Define, for v,w € T,U,

(hv)q(v,w) = pi(Ter! (v), Ty7] (w)).
Repeating this construction for each ¢ € U, arguments as in the proof of Propostion
[4:3] show that py is a well-defined Riemannian metric on U. In particular, py does not
depend on the choices involved in its construction. Since in the above construction we
may always choose the inclusion S, C U for a chart (U, G, H) € V, one obtains py = pu
for (U, H,¢) € V.

Finally, the family (pv),q,¢)evua satisfies the compatibility condition of Definition
[41] To see this, consider a change of charts A € Chyy 4. It suffices to check the compatibil-
ity condition for each ¢ € dom A C U separately. By construction, there are embeddings of
orbifold charts 7;: Sy — V; and Tf\(q): Sx(q) — Vj into charts (Vi, Gy, 1), (V;, Gj,105) € V.
Then for v,w € T, dom A we compute:

(ﬁcod )\)/\(q) (Tq/\(v)v Tq/\(w)) = Pj (T(IT)J\(q))‘(U)7 TQT/J\(q)/\(w))

Y i (Tymi(w), Tyri(w)) = (pu)g v, w),

where the identity (%) follows from the compatibility of the Riemannian orbifold metric
(pi)ier and the fact that on a neighborhood € of 7/(¢) the mapping (Ti(q) oXo Tg\g)_l
is an embedding of orbifold charts. =

Instead of defining a Riemannian orbifold metric as in Definition Proposition [4.4]
yields an equivalent definition of a Riemannian orbifold metric: It may be defined as a
family of Riemannian metrics on the class of all compatible (with respect to the orbifold
structure) orbifold charts, which satisfies the compatibility condition (cf. [51, p. 41]).
From this point of view, a Riemannian orbifold metric on any representative of i induces
a uniquely determined Riemannian orbifold metric on the equivalence class U. We shall
adopt this point of view in Lemma below.

Either way, a Riemannian orbifold metric was defined using embeddings of orbifold
charts. The reader may have noticed that our working definition of orbifolds (cf. Definition
uses changes of charts (but is equivalent to the approach using embeddings of
orbifold charts). The definitions in this chapter are slightly easier to formulate using
open embeddings of orbifold charts, and therefore we chose this approach.

Nevertheless, changes of orbifold charts are Riemannian isometries:

LEMMA 4.5. Let (Q,U, p) be a Riemannian orbifold, and for some orbifold charts (U, H,¢),
(V,G,¥) € U consider a change of charts A: U 2 dom A — cod A C V. Furthermore,
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let paoma be the pullback metric of py with respect to the inclusion dom A C U. Then
A: (dom A, pgom ) — (V, pv) is a Riemannian embedding.

Proof. Let p € dom A be arbitrary and choose an open connected H-stable subset p €
S C dom A. Then (S, Hg, ¢|g) is an orbifold chart and A|s is an embedding of orbifold
charts. Since py and py are members of p, the map A|g is a Riemannian embedding.
In particular, (pdomr)p = (A*pv)p. Since p € dom A was arbitrary, A is a Riemannian
embedding. =

DEFINITION 4.6. Let (Q;,U;, p;), i = 1,2, be Riemannian orbifolds and consider a map of
orbifolds [f] € Orb((Q1,U1), (Q2,Us)). The map [f] is called orbifold isometric if there is
a representative f = (f, {fitier, P,v) € Orb(V, W) such that each lift f;: V; — Wy is
an isometric immersion of the Riemannian manifold (V;, p1 ;) to the Riemannian manifold
(Wagiys P2,ai))-

If [f] is a diffeomorphism of orbifolds which is orbifold isometric, [f] is called an
orbifold isometry.

REMARK 4.7. The condition to be an isometric immersion of Riemannian manifolds may
be checked locally. Lemma (i.e. the compatibility conditions of Riemannian orbifold
metrics) combined with Proposition shows that a map [f] will be orbifold isometric if
and only if each representative f := (f,{fj}jes, [P,v]) has the property that the family
of lifts {f;},cs consists of isometric immersions.

As an obvious first example, we mention that for a Riemannian orbifold (Q,U, p) the

identity morphism id(q g4 is an orbifold isometry.

LEMMA 4.8. Let (Q,U, p) be a Riemannian orbifold and (Q1,U1) be an orbifold together

with an orbifold diffeomorphism [f] € Orb((Q1,U1), (Q,U)). There exists a unique Rie-

mannian orbifold metric [f]*p on (Q1,U1) such that [f] becomes an orbifold isometry with

respect to (Q1,Us,[f]*p) and (Q,U,p). The Riemannian orbifold metric [f]*p is called
the pullback metric induced by [f].

Proof. Following Corollary [2.13(d), choose orbifold atlases V = {(V;, G;,¢;) | i € [} € Uy
and W = {(W}, Hj, ;) | j € J} €U together with a representative g = (f, {fi}ier, [P, V])

of [f] with the following properties:

(a) fi: Vi = Wa; is a diffeomorphism for each i € I,

(b) the map 3: I — J is bijective,

(¢) P =Chy, and for A € Chy, v, one has v(X) = f;\fi |}, (dom ) (see Corollary .
Proposition [4.4] yields a unique family of compatible Riemannian metrics (p;),e induced

by p such that each chart (W}, H;, ;) turns into a Riemannian manifold (W}, p;). Endow
each manifold V; with the pullback metric f; pg(;), turning f; into a Riemannian isometry.

Cram. The family (f;pp())ier turns each X € Chy,v,, i,j € I, into a Riemannian
embedding.

An argument analogous to the proof of Lemma (c) shows that yu == fj\f; Fi(dom \)
€ Chwy,y,wp(;, and fiA = L fildom »- Consider p € dom A, and for v, w € T,,V; compute:
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(f58))am) (TpA©), ToAW)) = (pa(i)) £, (Tp fiA W), Tp fiM(w)
= (083t o) (Tptifi(v), Topfi(w)
= ([ pp(iy)p(v, w).
The last identity is due to the compatibility condition of p, since p is a change of orbifold
charts (cf. Lemma . In view of Proposition the compatible family (f;pg())ier
yields a unique Riemannian orbifold metric [f]*p.

We have to ensure that | f]* p does not depend on the choice of §. To this end, consider
another representative h = (f, {hx }rex, [Chy,v']) € Orb(V',W') of [f] with the same
properties as §. Write ([ f]* p)’ for the Riemannian orbifold metric induced by h. Reviewing
Proposition both metrics will coincide if the family (f;ps(i))ier [1(h}pp(j))jes of
Riemannian metrics is compatible in the sense of Lemma [£.5] To check this choose i € I,
j € J and some change of charts A € Chvi,vj" Then h; )\fjl | £, (dom ») 1S & change of charts.
A computation as above together with the compatibility of the metrics pg(;) and pgr(;)

shows that A is a Riemannian embedding. Thus [f]*p and ([f]*p)’ coincide, proving the
uniqueness of the pullback orbifold metric. m

REMARK 4.9. In Lemma special representatives of an orbifold diffeomorphism were
used in the construction. Their lifts were given by a family of diffeomorphisms. The proof
of Lemma may be adapted to work with an arbitrary family of lifts of the orbifold
diffeomorphism. In general, these families will be families of local diffeomorphisms by
Corollary In this case, the identities computed in the proof will only hold locally.
Hence the same arguments require cumbersome notation, which may be avoided in the
construction if representatives are used whose lifts are diffeomorphisms.

Our goal in introducing Riemannian orbifold metrics on orbifolds is to obtain an
analogue of the Riemannian exponential map on a manifold for a Riemannian orbifold.
To this end, we need to introduce the notion of a geodesic on a Riemannian orbifold.

4.1. Geodesics on orbifolds. In this section let (Q,U, p) be a Riemannian orbifold.
Notice that by Proposition [£.4] the Riemannian orbifold metric p induces a family of
compatible Riemannian metrics for each representative of Y. As we introduced Rieman-
nian orbifold metrics, the question arises how geodesics for a Riemannian orbifold may
be defined. Furthermore, one would like these geodesics to share at least some properties
of geodesics on a Riemannian manifold. Geodesics on Riemannian orbifolds have been
considered in the literature (cf. Haefliger and collaborators |13,[35], Borzellino [6] and
Chen et al. [16]) in the context of different frameworks (i.e. étale groupoids, Thurston’s
notion of orbifolds in local charts and Chen—Ruan good maps, respectively). For the
setting considered in this work, we shall give a definition of an orbifold geodesic which
shares the properties developed for geodesics on orbifolds in the literature. In fact, the
restriction of a geodesic to a compact interval corresponds to a unique G-geodesic in the
sense of Haefliger. However, since geodesics should be maps of orbifolds, our proofs are
independent of this equivalence.

Throughout this section, Z := ]a,b[ C R will always be an open interval with a < b.
Endow Z with the canonical structure of an open submanifold of R (i.e. a trivial orbifold
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structure) and denote its orbifold structure by Uz. As a first step, we define smooth paths
in orbifolds:

DEFINITION 4.10. An orbifold map [¢] € Orb(Z, (Q,U)) is called a smooth orbifold path.

EXAMPLE 4.11. (a) If (Q,U) is a trivial orbifold (i.e. a manifold), a smooth orbifold path
is just a smooth curve 7 — Q.

(b) Reconsider Example The map v: R? — R?, (2,9) — (—z,y), is a reflection
of R? and H is the right half-plane. Let ¢: R? — H be the quotient map to the orbit
space with respect to the (v)-action. Then H is an orbifold with global chart (R?, (), q).
As the orbifold atlas contains only one chart, the changes of charts are generated by
v and idgs. Define Iy := ]0,3/4[ and I, := |1/4,1] which cover |0,1[ = I U I5. Let
A: I; D I1NI — I be the inclusion. Then the quasi-pseudogroup P := {idy, ,ids,, \, \"1}
generates the change of charts of {I1, I5}.

Consider the smooth maps c1: I; — R% ¢t — (1 —2t,1 — 2¢), and co: Iy — R
t— (2t — 1,1 — 2t). We obtain a continuous map c: ]0,1[ = H, t — qo¢;(t), for t € I;.
Set v(A) := 7, to uniquely determine v: P — W(U), which satisfies (R4) of Definition [E.§|
Then é := (¢, {c1,ca}, P,v) is a smooth path in H. We sketch the images of the lifts and
the smooth path in H:

Fig. 1. A mirror in R? and a smooth orbifold path

Notice that there is a weaker notion of a continuous path. It was introduced in [13|
Ch. III, 3] to obtain a fundamental group of an étale groupoid. The map ¢ induces
a continuous path into H in the sense of Haefliger (cf. |13, Ch. III, Example 3.3(2)]).
Define a map v': P — U(U) via v'(A) = idgz. The tuple (¢, {c1,c2}, P,v') does not
define a charted orbifold map, but it induces a continuous path in the sense of Haefliger
(cf. |13 Ch. ITI, Example 3.3(2)]).

In the last example, an orbifold path has been constructed with respect to a special
orbifold atlas: Define the set of all orbifold charts Az = {(Vy, {idv, },7a) | @ € A} € Uz
such that an orbifold chart (Vu,{idv,},ma) € Uz is contained in Az if and only if:
Vo = Jl(a),r(a)[ € Z is an open interval with a < I(a) < 7(a) < b, and the map
Tt Jl(a), r(a)[ — T is the inclusion (of sets). By construction, each change of orbifold
charts in Chy, v, for two orbifold charts (Va, {idv, }, 7a), (Vs,{idv,},m5) € Az is an
inclusion of open sets. Consider a smooth orbifold path [¢] € Orb(Z, (Q,U)) with repre-
sentative ¢ = (¢, {ck }rer, [P, v]) whose lifts are defined on charts (dom ¢, {iddom ¢, } 7k)-
The chart maps of orbifold charts on Z are diffeomorphisms, since they are also manifold
charts of the smooth manifold Z. Define an orbifold atlas V; := {m(domc¢y) | k € I}
of Z, where 7 (dom ¢x) C 7 is a connected open interval. Hence V; C Az. Apply Lemma
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together with this set of charts to obtain a representative i € Orb(Vz, W) of [¢],
where W is the range atlas of ¢. In conclusion, for each smooth orbifold path, there is a
representative whose domain atlas is contained in Az.

LEMMA 4.12. Let [¢] € Orb(Z,(Q,U)) be a smooth orbifold path and P some point
in Z. Identifying the tangent orbifold TZL with the tangent manifold T x R, the element
Tc(P,1) € Top)Q is called the initial vector of [¢] at P. For each representative ¢ =
(¢, {ck}trer, [P, v]) € Orb(V,W) of [¢] withV C Az and P € domcy, the initial vector is
induced by Tpci (1) = c¢)(a).

Proof. Consider the lift ¢;: domey — Vi, where (dom ey, {iddome, }> ) € Az and
(Vi, G, ) € U. As T is a trivial orbifold, the tangent manifold 77 = 7 x R coin-
cides with the tangent orbifold. We suppress the identification Tidz in the formulas:
By Definition of the tangent orbifold map, Tc(P,1) = T, Tep T (7) ~H(P, 1) is well-
defined. Hence it suffices to prove T, ' (P,1) = (P,1) € domTc;, = domey, x R. As
(dom ¢, {iddgom ey, }> k) € Az, so that mp is the inclusion of sets domer — Z, 7y is
the restriction of a linear continuous map. A computation in the identification proves
Tr'(P,1) = (P,1), whence from Tpcy(1) = Tcx(P,1) the assertion follows. In partic-
ular, £ = Tc(Tw(a, 1)) by definition of the orbifold tangent map (cf. Definition [3.7). We
claim that £ depends neither on the choice of ¢ nor on the choice of the lift. To this end
choose a representative ¢ of [¢] such that the lift ¢.: dom ¢, — V/ with (V/,G.,x’) € V
satisfies a € dom c;.. Consider the associated element &' := (7., Toc.(1)) in To(q)@Q. The
definition of equivalence of orbifold maps yields open neighborhoods Ja — €,a + €] of a,
Uy CVy of ¢x(a) and Uz C V! of ¢,.(a), together with a change of charts map A: Uy — Us
with Ack|ja—c,ate] = C7"|]/a—a,a+a[' Thus T,, () ATack(1) = Tuc,(1) follows, which implies
E=¢.n

LEMMA 4.13. Let [¢] € Orb(Z, (Q,U)) be an orbifold path and [a,b] C T some compact
subset. There exists § = (c|jz,y[, {9x }1<k<N, [Py, Vg]) withx <a <b <y and N € N such
that

(a> [é”]wﬂ/[ = [g]7
(b) dom gi = )I(k),r(k)[ for each 1 <k < N and
xr=11)<l(2)<rl)<iB)<r2)<---<l(N)<r(N-1)<r(N) =y,
(C) Pg = {id]l(N),r(N)[} U {id]l(k)m(k)[al']]z—i_lv (LZ—H)*l | 1 < k < N — 1}, where Lg-i—l is the
canonical inclusion [l(k + 1), r(k)[ <= Jl(k +1),r(k + 1)].
Proof. Refine the domain atlas of ¢. A full proof is given in Appendix [F] m

In a neighborhood of a compact set, we may think of an orbifold path as a family of
smooth paths, which are compatible in the following way: On each intersection of their
domains, the inclusion of sets induces a change of orbifold charts in the range atlas which
maps one lift to the other. The situation is sketched in the following figure for a smooth
path in an orbifold (Q,U):

DEFINITION 4.14 (Orbifold geodesic). Let [¢] € Orb(Z,(Q,U)) be a smooth path in
a Riemannian orbifold. The map [¢] is an orbifold geodesic if there is a representative
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Fig. 2. Image of a smooth orbifold path together with lifts on a special range atlas

(e,{ci}ier, [P, v]) € Orb(V,{(V},G},v¥;}jes) with V C Az such that for each i € I the
lift ¢;: ]I(3),7(4)[ = Va) is a geodesic. Here (V, (i, pv, ;) is the Riemannian manifold,
where py,, ,, is the member of the Riemannian orbifold metric. If [¢] is a geodesic, then
the map ¢: Z — @ is called a (geodesic) arc. Sometimes by abuse of language we will also
call the image of ¢ a (geodesic) arc.

ExXAMPLE 4.15. Return to Example Consider v: R? — R? (z,y) — (—z,y), and
the orbifold R?/(y) =2 H (where H is the right half-plane in R?). Endow the global
chart (R2, (y),%) with the flat Riemannian metric. As (y) € O(2), this Riemannian
metric is (y)-invariant. Non-trivial geodesics in this metric are straight lines, which induce
geodesics of orbifolds. Geodesics contained either in the right or the left half-plane are
mapped to straight lines in the quotient. Standard Riemannian geometry shows that a
connected component of the set of points fixed jointly by a set of Riemannian isometries
is a closed totally geodesic submanifold (cf. |42, Ch. II, Theorem 5.1]). Since (v) acts
by Riemannian isometries, geodesics which contain singular points either pass through
the singular locus in one point, or are contained in it. Furthermore, geodesics which pass
through the singular locus are reflected (as befits an example called mirror in R?). The
following figure depicts an arc of this type:

geodesic (lift)

Fig. 3. Orbifold geodesic in R?/(y): reflected line



68 4. Riemannian geometry on orbifolds

In particular, orbifold geodesics behave differently from geodesics in Riemannian man-
ifolds. It is well-known that the arc of an orbifold geodesic may not even be locally length
minimizing (cf. [35, 2.4.2]). The following picture (which is slightly wrong to show the
reflection) illustrates this behavior:

A T T
CR? ey | | H
. ey | | | | | | |
geodesic (llft): : : : quotient ::(::(::arc in R2/<’Y>
_— >
. R AN
L C C
e e T

Fig. 4. Orbifold geodesic in R?/({v): not length minimizing in any neighborhood of the singularity

For further examples of orbifold geodesics (in particular, closed geodesics on orbifolds)
we refer to [35] 2.4.5].

PROPOSITION 4.16. Let [¢] € Orb(Z,(Q,U)) be an orbifold geodesic together with a rep-
resentative G = (¢,{g;};jet, [P,v]) of [¢]. If the domain atlas of § is contained in Az, then
each lift g; is a geodesic.

Proof. As [¢] is an orbifold geodesic, there is a representative ¢ = (¢, {¢; }ier, [P, V']) €
Orb(V, V') such that every ¢; is a geodesic in (V;, p;). Furthermore, the domain atlas of
¢ is contained in Az, (V;,G;,v;) € V' and p; is the member of the Riemannian orbifold
metric on this chart. Consider the lifts g;: dom g; = W; of § with respect to the charts
(W, H;, ;) in the range atlas of §. Since ¢é ~ §, the definition of equivalence for orbifold
maps yields the following data: There are lifts ¢ and ¢’ of the identity on Z, resp e”
and €” on (Q,U), together with a charted map of orbifolds h such that ¢oe =€’ oh
and goe” = ¢” oh. For j € J we consider some ¢ € domg;. As t € Z, there is
an index i € I with ¢t € dome¢;. Recall from Definition that the lifts of ¢, ¢/, &”
and " are local diffeomorphisms. In particular, they restrict to embeddings of orbifold
charts on open sets by Proposition [E:14] Together with Lemma [E:22] we obtain open
neighborhoods U C dome; of t and V' C V; of g;(¢) such that: There are changes of
charts A: domc¢; 2 U — domg; and pu: V; 2 V — W; with

gioA=pocly. (4.16.1)

The domain atlases are contained in Az, whence domc¢;,domg; C 7 and their chart
maps are induced by the inclusions of sets. Hence the change of charts A\: U — domg;
is the inclusion of an open subset. Thus g;lv = p o ¢lu. As (Q,U, p) is a Riemannian
orbifold, u is a Riemannian isometry. Since isometries preserve geodesics (cf. [43, Ch. IV,
Proposition 2.6]), the identity shows that in a neighborhood of ¢, the map g; is
a geodesic in (W}, p;). The construction depends neither on j € J nor on ¢, whence g; is
a geodesic for each j € J. =

Two orbifold geodesics coincide on a joint interval Z if and only if their initial vectors
coincide (cf. LemmalF.3)). On a Riemannian manifold, geodesics are uniquely determined
by their initial data at one point. The same holds for orbifold geodesics:
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PROPOSITION 4.17. Consider p € Q and & € TpQ.

(a) There is an € > 0 such that an orbifold geodesic ¢ € Orb(]—2¢,2¢[, (Q,U)) with
initial vector £ at O exists.

(b) Let [¢] € Orb(Z,(Q,U)) and [¢'] € Orb(Z',(Q,U)) be orbifold geodesics. If there
exists a € TNTI' such that the initial vectors of ¢ and ¢ in a coincide, then the initial
vectors of [¢] and [¢'] coincide at each point in TNT', whence [&]|znz = [¢]|znz -

Proof. (a) Choose some representative (m, X) € £, where (V,G,n) € Y and X € T,V with
Tn(X)=¢&. Set = mpy (X). Let py be the member of the Riemannian orbifold metric
on V, ie. (V,py) is a Riemannian manifold. Standard Riemannian geometry (cf. [43]
Ch. IIT, Theorem 6.4]) shows that there is an € > 0 and a geodesic ¢p: |—2¢, 2¢[ — V with
initial condition (z, X), i.e. ¢o(0) = 2 and Toco(1) = X. Let c:= mocy, P = {idj_oc o[}
and v: P — W(U) be the map which sends the element of P to idy . We obtain an orbifold
geodesic ¢ := (¢, {cp}, P,v). By construction, the initial vector of ¢ at 0 is &.

(b) Since ZNZ' is an open submanifold of Z and Z’, the orbifold maps restrict to
orbifold maps in Orb(ZNZ', (Q,U)). To shorten our notation we may therefore assume
that Z = 7’ and a = 0. Choose representatives ¢ = (¢, {ck }rer, [P,v]) € Orb(V, W) and
¢ = (', {er}tres, [P, V']) € Orb(V', W) whose domain atlases are subsets of Az. We will
check the condition of Lemma (b)7 which is equivalent to the assertion:

As a first step, we show that there is € > 0 such that for each ¢ € |—¢, €[ the condition
of Lemma, b) holds. Let ¢y be a lift of ¢, and ¢, be a lift of & with 0 € dom ¢oNdom cf.
Set codco = Vp and cod ¢j = Vj for orbifold charts (Vo, {idv, }, 7o) and (Vy, {idy; }, ),
respectively. The geodesics pass through ¢(0) = ¢/(0) with initial vector £ € Te)(Q,U).
The construction of § € Ty (Q,U) yields a change of charts Ag: Vo D2 U — V C Vj
such that ToAoco(1) = Toc)(1). The lifts ¢ and ¢ are geodesics and A¢ is an isometry.
Uniqueness of geodesics on Riemannian manifolds now ensures that there is an ¢ > 0
such that TyAoco(1) = Tye)(1) for all t € |—¢,¢].

We claim that the subset of Z where the condition of Lemma (b) holds contains
Z N[0, 00[. Assume that this is not the case, and consider

to:=1inf{t € Z |t >0, BN € Chyyun: t € domey, Ndom ., Tydep(1) = Tycl.(1)}.

Let ¢ be the local lift of ¢ and ¢]. be the local lift of ¢’ such that ¢ty € dom ¢, N dom ..
Their images are contained in (Vi, Gi, ) and (V,., G, m,), respectively. The first step
ensures that tog > 0, and by construction the condition of Lemma [F.3|(b) holds for all
smaller ¢t. This forces ¢ and ¢’ to coincide on [0,ty], and by continuity of these maps,
we obtain c¢(tg) = ¢/(tp). Thus there is a change of charts A\: Vz, D U — V C V,. with
ek (to) = c.(to). Choose some t < to with ¢k ([t,t0]) € dom A. Since t < tg, there
is a change of charts p with Tiuck(1) = Tier(1). Shrinking the domain of p, we may
assume that p is an embedding of orbifold charts and dom p C dom A. Now A|qom ,, is an
embedding of orbifold charts mapping dom p into V,.. By Proposition d) there is an
element h € G, such that hoX|qom , = . The change of charts Ay, := ho is a Riemannian
isometry which satisfies Ty A,k (1) = Tipcg (1) = Ticl.(1). We deduce that on its domain,
At, maps the geodesic ¢y, to ¢,. There is some § > 0 such that ¢ (Jto—0,t0+[) C dom Ay, .
Hence TsAt,cr (1) = Tycl.(1) for each s € ]tg — 0,19 + d[. This contradicts our choice of ¢,
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and thus there is no such point in Z N [0, 00[. An analogous argument for ¢ < 0 shows
that the condition of Lemma [F.3[b) holds for all of Z, whence both orbifold geodesics
coincide. m

Since orbifold geodesics are uniquely determined by their initial vectors at some point,
we may construct a join for two suitable geodesics:

LEMMA 4.18. Let [¢] € Orb(Z,(Q,U)) and [¢'] € Orb(Z', (Q,U)) be orbifold geodesics
such that for some xg € I NI their initial vectors coincide. Then there is a unique
orbifold geodesic [¢V¢'] € Orb(ZUT', (Q,U)) such that [¢VE |z = [¢] and [éV ]|z = [d].

Proof. It is possible to “glue” two orbifold geodesics whose initial vectors coincide at one
point. This procedure, together with a full proof, can be found as Lemma [F-4] u

Standard Riemannian geometry shows that the maximal domain 7 has to be an open
subset of R (since the lifts of an orbifold geodesic are geodesics in suitable charts, whose
maximal domain is always an open subset of R). Naturally we have to ask whether the
orbifold geodesic constructed in Proposition a) may be uniquely (up to equivalence
of orbifold morphisms) extended to a maximal domain. In fact each geodesic with this
initial vector in 0 may then be derived as a restriction of the maximal geodesic. The next
lemma is inspired by a lemma due to Chen and Ruan (cf. |16, Lemma 4.2.6]):

LEMMA 4.19. Let p € Q be any point and § € T,Q.

(a) There is a unique mazimal interval Ze such that an orbifold geodesic [é¢] in
Orb(Ze, (Q,U)) with initial vector & at 0 exists on Ze.
(b) If Q is compact, then I =R for each § € TQ.

Proof. (a) Let S¢ be the set of all orbifold geodesics whose initial vector at 0 is £&. Orbifold
geodesics with initial vector £ at 0 exist by Proposition a), whence S¢ is non-empty.
For two elements [¢], [¢'] € S¢, there is a join [¢ V ¢] by Lemma which is again an
element of Se. Any finite number of elements in S¢ may be joined in this way. For [¢] € S,
we let Z; be the interval such that [¢] € Orb(Zg, (Q,U)).

Construct recursively an element [é] € S¢ on the open subset Z := U[a] cs, Le- The
set Z¢ is an open connected subset of R as a union of connected open subspaces with
non-empty intersection (cf. |22, Corollary 6.1.10]). Define c¢: Ir — Q via c(t) := /(¢) if
t € domc with & = (¢/,{c}}ier, [P,v]) € Se. This map is well-defined by Proposition
There exist numbers

< a9<a1<a=0<a1<ay <

such that I¢ = (J,czlar, axq1] and such that for each k € Z a lift ¢, of some ¢ € S¢
is defined on an open interval I, containing [ak, ag41], with image in (Vj, G, ) and
¢ is a geodesic. Choose I(k) so large and r(k — 1) so small that ap < r(k —1) <
I(k+1) < ags1 and JI(k),r(k)[ C Ix, and there exists a change of charts Ay ;41 with
cr([l(k+1),r(k)]) C dom Ak k+1 and Ag g1 0 Ck|[l(k+1),r(lc)} = Ck+1|[l(k+1),r(k)]~ Let W be
an atlas containing all (V, Gy, k). Define P := {idyu - tr ' thyy | k € Z} where
Ik + 1), (k)] = ik + 1),7(k + 1)[ and s Wk + 1), r(k)[ — Ji(k),r(k)[ are

inclusions of sets. Now define v: P — W(W) via v(idjix),r)[) 1= ide,V(Li'H) = A k41
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and v(uf ) = )\;’}CH. Then ¢ := (¢, {ckljik),r(0)[frez, [P, v]) is a geodesic and ¢ € S¢
because T'moT'co(0,1) is also the initial vector of some ¢ € S¢, and hence equal to &.

(b) Following (a), it is sufficient to prove that an orbifold geodesic [¢] € Orb(Z, (Q,U))
with initial vector £ at 0 and Z = ]a, b[ may be extended in the following sense: If there
is a sequence (t,)nen € Ja, b] such that t,, — b with b < oo and lim ¢(¢,,) exists in @, then
there is an orbifold geodesic [¢/] defined on ]a,b'[, b > b, whose initial vector at 0 is &.
Set q := lim, ey ¢(t,) and choose an orbifold chart (V,G,,v) with ¢ = ¢(z) for z € V
and G = G,. Notice that ¥~!(q) = {z}. Choose a compact neighborhood U, of z and
observe that G,.U, is again a compact set.

A compactness argument together with |19 3.2 Proposition 2.5] proves that there
are d,¢ > 0 such that for each p € U, and v € B, (04,¢), there is a unique geodesic
Yo |—0,8] — V with initial value Toy(1) = v. Here py is the member of the Rieman-
nian orbifold metric on V. For N large enough one obtains c¢(t,) € ¥(U,), Yn > N.
The definition of an orbifold geodesic implies that for each t¢,, there is some local lift
¢n: dome, =V, of ¢ with ¢, € domc¢, and (V,, Hy, p,) € U. By compatibility of orb-
ifold charts, ¢(t,) € Im ¢, NY(U,,) for n > N implies that there is some change of orbifold
charts A\, with A\,c,(t,) € Gz.U,. As each ), is a Riemannian embedding, the definition
of an orbifold geodesic yields ||T3, Ancn (1), = K = ||T},, Amcm(1)]] 5, for all n,m > N.
Using homogeneity of geodesics on Riemannian manifolds |19} 3.2 Lemma 2.6], for each
g € G;.U, there is some §’ > 0 such that for each v € B, (04, K + 1) the geodesic with
initial value v exists on |—4¢’,0'[. Let vx be the geodesic in (V] py) with initial vector X.
Choose ng > N such that b —t,, < ¢’

The geodesic gng: [tng — O,tng +0'[ = V, t — VT, Angeng (1) (t = tny ), induces an
orbifold geodesic § := (¥ 0 gngys {Gno {id]t7L0_5/7t'rL0 +5'[}, V) where the map v is defined as
I/(id]tno 8 g +o[) = idy. By construction, the initial vector of g in ¢, coincides with the
initial vector of ¢ in t,,,. Thus Lemma[d.18]yields an orbifold geodesic ¢V § which is defined
on |a, ty, +d'[. The initial vector of ¢V § at 0 is £ and its domain strictly contains |a,b[. =

REMARK 4.20. The maximal geodesics [é] on Z¢ constructed in Lemma a) do not
extend, i.e. if [§] € Orb(Z, (Q,U)) is a geodesic whose initial vector at a € ZNZ, coincides
with the initial vector of [é&] at a, then Z C Z¢ and [é¢]|z = [g].

THEOREM 4.21. Let (Q,U, p) be a Riemannian orbifold and £ € TQ.

(a) There exist 6,8 > 0, an open neighborhood O C TQ of £ and a continuous map
ag: ]=8,0'[ x O = Q, and for &' € O¢ the path ae(-,£'):]-6,0' = Q, t — a(t, &),
is the geodesic arc of an orbifold geodesic [é¢/] with initial vector & at 0. We call o
an orbifold geodesic flow.

(b) If (&§,¢) € TQ x TQ with O¢ N O¢ # 0, then ae and a¢ coincide on the intersection
of their respective domains.

(c) If the mazimal orbifold geodesic [é¢] with initial vector £ at O satisfies [c,d] C Z¢, then
the set O¢ in (a) may be constructed such that for ¢ € O¢ the map [é] is defined on
e, d].

Proof. (a) By Proposition a), there is some € > 0 together with the representative
of an orbifold geodesic ¢ = (¢,{g; | 1 < i < N}, P,v) defined on |—2¢, 2¢[ with initial
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vector £ at 0. After shrinking the domain, without loss of generality ¢ is defined on an
open neighborhood of [—¢,¢] with properties as in Lemma We show that there is
an open neighborhood of £ such that each orbifold geodesic with initial vector in this set
exists at least on [0, ¢].

To shorten the notation, relabel the charts as {—t,—¢t+1,...,0,1,...,s} for certain
s,t € Np such that 0 € dom go. Let g;: ]I(7),r(i)[ = U;, —t < i < s, be the lifts, where
the (U, Gi, ;) are charts in U. By construction, for —t < 4 < s there is a change of
charts A\i™! satisfying A" gz| J1Gi+1),r (i) = Jit1li(i+1),r(5)[- For 1 <4 < s choose a point
zi € J1(i), (i — 1) with zp := 0 < % < z; for i < j. Define X; :=T,¢,(1) for 0 <i <s
and observe that g; is uniquely determined by X;. By construction, [1)g, Xo] = £. Finally
choose 2511 € dom g with 2,41 > € and 2541 > 2.

Standard Riemannian geometry on manifolds shows that the geodesic flow depends
smoothly on the initial data (cf. |19, Ch. 3.2, Proposition 2.5] and [45, Ch. IV, §3 and
Ch. VII, §7], respectively). On the Riemannian manifold (U;, p;), there is a geodesic flow
i D; = TU; defined on an open set D; C R x TU; (cf. [45, Ch. IV, §4, remark before
Corollary 4.3]). The map ; is smooth by an application of |45 Ch. IV, §2, Theorem
2.6]. Since g, is a geodesic defined on [zs, zs41] C JI(s),r(s)[ with T, gs(1) = X, the
compact set [0,zs41 — 25| X {Xs} is contained in the open set Dy. An application of
the Wallace theorem |22, 3.2.10] provides an open neighborhood [0, zs41 — 2] x {Xs} C
|—8s, 2501 — 25 + 0s[ X V5 C Ds. For each element ¢ of this neighborhood in TUs, the
geodesic with initial data ¢ exists on the interval |z5 — ds, 25 + 05|

Shrinking Vs and 5, we may assume that Vs C 75(1]5 (cod A:_;) and z5— 05 > r(s—2).
Identify T'cod Aj_; and T'dom A_; with open subsets of TU; and TU;_;, respectively,
and set V! := (TAS_;)"1(Vs) C TUs_1. The geodesic gs_1 is determined by X,_1, and its
domain ]I(s — 1), (s — 1)[ contains [zs_1, z5] with T,_gs—1(1) € V. As the geodesic flow
ps—1 is smooth, arguments as above applied to ¢s_; yield an open set Vs_1y C TU;_
with V,_; € Tcod \3”} and

L4 [O,Zs - Zs—l] X {Xs—l} - ]—53_1,2’3 —Zs—1+ 63—1[ X Vs_1 € Ds_y,

4 903—1(23 - Zs—ly‘/s—l) C ‘/5/’

® 2,1 —0s—1 >1(s—3).

Again one obtains an open set V/_; := (TA*73)"*(V,_,) C TU,_». Repeating the argu-

ment for each 0 < i < s — 2, we arrive at an open neighborhood V;j C TU, of Xj. For

each ( € 1}, there is a unique family of geodesics (cé)0<z<S such that cé is defined at

least on |z; — 6;, zi41 + 6;[. In addition, these families satisfy 15, A!_jc;—1(1) = Ty, c;(1).
Repeating the argument for [—¢, 0], we obtain an open set V;;~ such that the geodesics

are defined on [—¢,0]. Set V := VNV and 0 := z_4_1—0_¢, 0" := z441+d,. Foreach eV

and —t <1i < s+ 1, the geodesics cz are defined on [z;_1 — d;, 2; + 6 } By construction,

one may restrict their domains so that )\“'1 |]ZL+1 it i = ‘]Z1+1 Y SANRY o

For each ¢ € V, the family (CC> t<i<s 1nduces an orbifold geodesic. The continuity of the

geodesic flows yields a well-defined continuous map

@:]=0,0'[xV—=Q, (t{) wi(cé(t)), for each t € |z; — &;, zi41 + &5
Consider the orbifold chart (TUy, Go, Tto) € TU for the tangent orbifold 7(Q,U). Chart
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maps of orbifold charts are open maps, and thus O := T (V) is open in 7 Q. It contains
&€ = T (Xo), and the subspace topology on O¢ with respect to @) coincides with the
quotient topology induced on O¢ by T4y (since Ty factors via a homeomorphism with
open image). The restriction ¢ := T?/)0|8£ is an open, continuous and surjective map. For
each ¢ € O¢, choose a preimage Ce ¢ 1({¢}) € V. Notice that each choice of preimage
for ¢ induces an orbifold geodesic with initial vector ¢ at 0. Following Proposition b)
the geodesic arcs obtained from a choice of ¢~*({) coincide with the arc of [é:] on the
intersection of their domains. Hence each choice defines the same continuous path in Q.
As ¢ is defined at least on |9, 0’[, the maximal geodesic with initial vector ¢ is defined
on this interval. We derive a well-defined map

a:]-0,8[x 0, = Q, (t,¢)— at,C).

The map idj_s 5[ X ¢ is the product of open continuous surjective maps, whence it is itself
open, continuous and surjective. In particular, this mapping is a quotient map such that
& = o (idj_55( % q). As @& is continuous, |21, Ch. VI, Theorem 3.1] implies that « is a
continuous map.

(b) By Proposition [£.17|(b), the arcs of two orbifold geodesics with the same initial
data coincide. Hence for each w € O¢ N O, the arcs of the geodesics coincide, therefore
ae(-,w) and a¢(-,w) coincide on the intersection of their respective domains. This proves
the assertion.

(c) Repeat the proof of (a) verbatim with [c,d] C Z¢ instead of [—¢,¢]. m

COROLLARY 4.22. For every p € Q, there is an open neighborhood W, C TQ of 0 € T,Q
and a continuous map a: |—2,2[ x W, — Q such that ]-2,2[ — Q, t — «(t,§), is the
unique geodesic arc with initial vector £ at 0 defined on ]—2,2[ for each £ € W,,.

Proof. Choose an arbitrary orbifold chart (U, G, %) such that p = ¢(x) for some z € U.
By definition, T%(0;) = 0, € T,Q, where 0, € T, U is the zero-element. Standard Rie-
mannian geometry (see [19, 3.2 Proposition 2.7]) ensures that there is a smooth mapping
v:]=2,2[ x V — U, defined on some open set V' C TU such that each € V induces
a geodesic in U defined at least on |—2,2[. Arguing as in the proof of Theorem m
we choose W), := T(V) and «a: |-2,2[ x W, = Q, (t,&) — ¥(y(t,z¢)), where z¢ is an
arbitrary preimage of £ under T4 in V. m

LEMMA 4.23. An orbifold geodesic [¢] € Orb(Z,(Q,U)) is uniquely determined by its
underlying map.

Proof. Let [¢] and [¢'] be orbifold geodesics with the same underlying map ¢: Z — Q.
Shrinking the domains of definition of the lifts and composing with a change of charts if
necessary, we can achieve the following: There are representatives é of [¢] and ¢ of [¢],
respectively, such that their families of local lifts contain lifts cg, ¢f: |—&,e[ — V for some
orbifold chart (V, G, ). Since both ¢o and ¢f lift ¢, we have v,.co(z) = ¢ (x) for every
x € ]—¢,¢[ and 7y, € G. For v € G define

Uy :={z €]-¢,¢e[ | 1.co(z) = ci(2)}.
Notice that U, is a closed set for v € G and |—¢,¢[ = U, U, Since G is finite, Baire’s
theorem asserts that at least some U, must have non-empty interior. Hence the geodesics
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¢o and ¢ coincide, up to composition by a group element in G, on an open subset of
]—¢,€[. Let = be a point in the interior of U,. Since the geodesics 7.co, ¢y coincide on
an open neighborhood of x, their derivatives must coincide. By Lemma the initial
vectors of both geodesics at = coincide. Hence the assertion follows from Proposition

EI7 =

Despite the quite similar behavior of orbifold geodesics to geodesics on Riemannian
manifolds, not all properties of geodesics may be preserved in the orbifold case. For
example, as is noted in [35, 2.4.2], orbifold geodesics may not even be locally length
minimizing in the natural length metric on @ (induced by piecewise differentiable paths).
However, as we are only interested in geodesics as a tool to obtain an exponential map,
we shall not investigate this behavior.

4.2. The Riemannian orbifold exponential map. In this section, our main tool
derived via Riemannian geometry on orbifolds, the Riemannian orbifold exponential map,
is introduced. As before, the triple (Q,U, p) will be a Riemannian orbifold. By Lemma
4.19(a), for each £ € TQ, there is a maximal orbifold geodesic [é¢] with initial vector
¢ in 0. The geodesic arc of a maximal orbifold geodesic is unique by Proposition [4.17]
Hence the continuous map of the base spaces c¢: Z¢ — @ is uniquely determined.

DEFINITION 4.24 (Riemannian orbifold exponential map). Let Q be the set of all £ € TQ
such that the orbifold geodesic [é¢] with underlying map c¢¢: Ze — @ satisfies [0, 1] C Ze.
The map

€XPorb Q- Qv g = 05(1),

is called the Riemannian orbifold exponential map. The set  is an open neighborhood
of the zero-section, by Theorem [{.21](c) and Corollary We call Q the domain of the
Riemannian orbifold exponential map.

LEMMA 4.25. The Riemannian orbifold exponential map is continuous and for 0, € T,Q
the identity expo,,(0p) = p holds.

Proof. Let £ € Q be arbitrary. The geodesic [é¢] is defined on an open interval Z¢ such
that [0,1] € Z¢. By Theorem c), there is an open neighborhood ¢ € O C TQ such
that each orbifold geodesic [é,] for w € O¢ is defined on [0,1] C |—4,¢'[. Furthermore,
O¢ C Q. There is a continuous map o : ]—9,0'[ x O = Q, (t,w) — ¢y (t), such that by
construction, expg,,(w) = a¢(1,w) for all w € O¢. Hence expg,y, restricts to a continuous
map on the open set O¢. Theorem [£.21[b) ensures that for any ¢ € Q the maps (1, -)
and ag(1, ) coincide on Of N O¢. From |21, Ch. IV, Theorem 9.4] we deduce that expg,y,
is continuous.

Choose an arbitrary orbifold chart (U, G, ) € U such that p € ¢(z) for some x € U.
The chart 7% maps 0, € T,U to 0, € 7,Q. Standard Riemannian geometry ensures
that the geodesic v starting at x with velocity 0 is constant, and hence defined on all
of R. Setting ¢c: R — @, t — p, we obtain a representative of an orbifold geodesic
¢ = (c¢,7, {idr},v), where v(idr) := idy. The orbifold geodesic [¢] has initial vector 0,
at 0, and its arc is uniquely determined by Proposition This proves expo,,(0p) = p. =
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PROPOSITION 4.26. Consider the open suborbifold (2,Uq). The map expey, induces a
map of orbifolds [expo,,] € Orb((Q,Ua), (Q,U)) also called the Riemannian orbifold

exponential map.

Proof. The subset Q C TQ is open. Hence the orbifold structure 7 induces a unique
orbifold structure (€2, TUp) (cf. Definition 2.16)), turning this orbifold into an open sub-
orbifold of (TQ,TU). We claim that there is a representative V of Tl together with a
family of lifts, turning expg,;, into a charted orbifold map in Orb(V, W) for some W € U.
By Lemma [£.25] the map expo,, is continuous. Construct smooth lifts of expg,y,: To
this end, consider an arbitrary £ € Q. By Theorem [{:21] and its proof, there is an open
neighborhood ¢ € O¢ C Q together with the following data:

o (TU,,G1,Tyn) € TU, with O¢ = T (V) C T4, (TU,) for some open V C TUy,

e a family of orbifold charts {(U;, Gi, ;) h1i<i<n € U,

e a continuous map 6: V — @, X — &(1, X), such that § = expg,,0T%1|v. The map 6 is
the composition of the geodesic flows ¢; on (U, p;), 1 <4 < N, changes of charts A;;+1
for 1 <i < N, the projection of the tangent bundle TUy and the orbifold chart .

Recall from the proof of Theorem [£.21]that there is a partition 0 =ty < t; < --- <ty <1
such that a smooth map Exp,: TU; 2 V — Uy may be defined via

Expe(X) = mrunpn (1 —tn, ) o TAN_in o on—1(tN —tN-1,")
o---0TAg0p(ty,-)(X). (4.26.1)

Reviewing Theorem we see that 6 = ¢n o Exp.

Choose an open Gi-stable subset W of V' which contains some preimage x¢ of . Re-
stricting Exp, to W, we obtain a smooth map Expy;, on an orbifold chart (W, Gw, T1|lw).
By construction, Expy, is a smooth lift of expg,;, on W.

We show that any local lift Expy, of expg,, obtained via with respect to
(W, Gw,T¥1|w) and (Un, Gy, n) but taking other choices for the intermediary charts,
geodesic flows and changes of charts, coincides with v.Expy; for some v € G .

The lifts Expy, and Expj, are defined as restriction of a composition of geodesic
flows ;, changes of charts A, r+1 and the bundle projection mry, (cf. ) Notice
that the flows, changes of charts and the number N may differ for Expy;,. However, we fixed
the chart ¢ := pn = ¢/y,. Each ¢;(t; —t;_1,-) is defined on an open subset of TU;. It is a
diffeomorphism from this subset onto its (open) image in TU; (this follows from [45, Ch. IV,
§2, Theorem 2.9]). The changes of chart T\ k41 are étale embeddings. In addition, the
bundle projection 77y, is an open map, whence Expy; is an open map as a composition of
such maps. The same holds for Expy;, whose image is contained in (Uy, G, % n). The con-
struction of the lifts Expy,, and Expy;, shows that there are diffeomorphisms ¢y : W — O,
&y W — O’ onto open sets O,0' C TUx with Expy, = mryy 0o on (1 —tn, ) 0 ¢ and
Expy = mruy © pn (1 — thy, ) o ¢fy,. Without loss of generality, taking the maximum of
tn, ty, we may assume ¢y = t. Now we obtain a diffeomorpism ¢y o ¢f3,': O' — O. For
each X € O, there are unique geodesics v (t) := mruyen(t, X): [0,1 —tn] = Uy and
vx (t) = mruyon (t dw o by (X)) : [0,1—tn] — Un. The geodesics vx, vy lift the same
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orbifold geodesic arc, since Expy, and Expj, are restrictions of orbifold geodesic flows.
By Lemma for X € O, there is some gx € Gy with T1_;, (9x-7x) = Ti—tx V-
The element gx acts as a Riemannian isometry, mapping geodesics to geodesics,
which implies gx.yx (t) = v (t) for all t € [0,1 — ¢x]. For any non-singular X € O’, the
isometry gx is uniquely determined: To prove this, let ¢’y € Gy be another isometry
with ¢’ .vx = 7%. Then
Tgx(X) = Tgx-on (0, 6w o ¢! (X)) = pn (0, X)
= Tgxpn (0, dw 0 dy' (X)) = T (X).
Since X is non-singular, Ty, (x)9x = Trpy, 9, and by [51, Lemma 2.10], gx = g’y
follows. The set O’ C TUy is an open, connected set. Hence Lemma implies that
C = O\ ¥7¢, is connected. As we have seen, for each X € C, there is a unique
gx with gx.7x(0) = 75 (0). The set Hy, = {c € C'| gx.7:(0) = 7.(0)} = {c € C |
9x TruyeN(1—tn,¢) = mruyen(l—ty, (bWO(b{;,l(c))} is closed by |22, Theorem 1.5.4].
Uniqueness of gx proves that two such sets H, and H), are disjoint if and only if g # h.
Since G is finite, Hy, is open and closed. By connectedness of O’ \ ¥rq,,, there is a
unique v € Gy with

YN N (1= tn, )onsre, = Troyen(1—tn,-) 0 dwdiy ' lonsre, - (4.26.2)
The set O’\ E¢, is dense in O’ by Newman’s Theorem [B.9] Hence, by continuity, (4.26.2)
holds on all of O’. As (¢};,)"*(O’) = W by construction, we finally derive v.Expy, =
Expy.

The construction of lifts does not depend on &, thus we may cover ) with a set of
orbifold charts V := {(W;,G;,m;) | ¢ € I} such that on each (W;, G;,m;) there exists a
local lift Expyy, of expg,y, with respect to (W;, Gy, ;) and a suitable chart (U;, Gy, ;).
Eliminating charts which occur several-fold, we may assume (W;, G;, ;) # (W;, G, ;)
and (U, Gy, ;) # (Uj, G, v;), for i # j (by replacing charts U; with U, x{i} if necessary).
The charts in V are compatible since they are contained in T, their images cover 2 and
we have V € TUq. Define the atlas W := {(V,G,¢) e U | V = cod W; for some i € I}.

We show that it is possible to construct a quasi-pseudogroup P and a map v such that
the lifts commute with the changes of charts as in Definition To this end, consider
arbitrary local lifts Expy, and Expy, of expg,, with respect to the charts (W, G, n),
(U, H,v) and (W', G, n"), (U', H' ,4)"), respectively. Furthermore, let h € Chy, be a change
of charts which induces a commutative diagram:

Expy,

domh 22 W U
AN A
h O €XPorb ; Q (4.26.3)
v AN
cod h =2 W Bxpwr U’

Cover Expy,(dom k) with the domains of suitable changes of charts. Our goal is to re-
strict h to open subsets such that there are changes of charts which complement the
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right hand side of to a commuting triangle. By commutativity of , for
each X € domh there is an embedding of orbifold charts Ax € Ch(U,U’) such that
Ax (Expy (X)) = Expy/(h(X)). Again let ¢y and ¢y denote the diffeomorphisms
with Expy, = mrueu(l — tn,-) o ¢w and Expy, = mryep (1 — thy, ) o ¢wr. Since

~N(t, ¢w (X)) is defined for all t € [0,1 — tn], we deduce from the continuity of the flow
that there is some ¢ > ty,t)y such that mrueu(l —t,0u(e — tn,dw (X)) € domAx
for all t € [0,1 —¢]. For Y € W define the element Y := ¢y(c — tn,dw(Y)) €
TU. Now the open set ¢;'(TdomAy) contains [0,1 — &] x {X} The Wallace the-
orem |22, 3.2.10] ensures that there is an open neighborhood X € V C TU such
that [0,1 —e] x V C Yy YT dom \x). By continuity of ow, we can choose an open
G-stable X-neighborhood V C (py (e — ty,-) 0 ow) 1 (V ) Ndom h with Gy = Gx. For
each Y with Y € V, the geodesic vy (t) := mrypu(t,Y), t € [0,1 — €], is contained
in dom Ax. We obtain two local lifts Exp%,V|h(V) and Ax o Expy, o h™ ) with re-
spect to the charts (h(V), Gy, ™ |n(v)) and (U’, H,9'). The Riemannian embedding
Ax commutes with parallel dlsplacement (see [43, Ch. IV, Proposition 2.6]). Hence we
derive TAxpu(1 —,Y) = @ui(1 — &, TAx(Y)) for Y € V. In particular, the following
holds:

Ax o Expy o b7 oy = mru TAxeu (1 — €, )ou(e — tn, ) o dw o b v
=mrurpu (1 — €, )TAxpu(e — tn,-) o pw o b ). (4.26.4)
The local lifts Ax Expy,h~* |n(vy and Expyy/|n(v) are therefore compositions of the bundle
projection mry/, the geodesic flow on U’ and some diffeomorphism. As we have already
seen, there is some v € H' such that fy.)\XExpWh’1|h(V) = Expy/|n(v)- Replacing Ax
with the embedding of orbifold charts v.\x, we derive

Ax o Expy|v = Expyys o hly. (4.26.5)

We may thus cover dom h by open G-stable subsets {Wx, | ¢ € I;,} such that for each
h; := hlwy, there is a change of charts AP which satisfies A o Expyy, |v = Expyy o h|y.
Repeating this construction for every change of charts in Chy, we obtain P := {h; | i € I,
h € Chy}. By construction, P is a quasi-pseudogroup which generates ¥ (V).

For each element f of P choose and fix some h € Chy with f = h;, and define the map
v: P — ¥(W), f =h; = A!. The Conditions (R1)-(R4a) of Deﬁnition are trivially
satisfied by expoy, = (expoy, {Expy, | (W, G, ) € V}, P,v). We check condition (R4b),
ie. if g,h € P and z € domh Ndomg with domg,domh C U and germ, h = germ,, g,
then germg,, (o) V(h) = germp,, (,) v(9).

Let domwv(h) C V and codv(h) C V', where (V, H,v),(V', H',1)') are suitable orb-
ifold charts. By construction we already know that v(h)(Expy(x)) = v(g)(Expy(z)).
Restricting to an open and Hgyp,, (2)-stable subset Expy;(z) € S, of domv(g) Ndom v(h),
the changes of charts v(g) and v(h) restrict to embeddings of orbifold charts. By Proposi-
tion[1.10] there is a unique v € H’ such that v.v(g)|s, = v(h)|s,. Now v.v(g)(Expy (2)) =
v(h)(Expy(z)) = v(g)(Expy(z)) implies that v € H;(g)(sm), and from Proposition

we obtain some § € H with v(g)(d) = .
As Expy; is an open map, the intersection S, NIm Expy; (dom gNdom h) is a non-empty
open set. It contains at least one non-singular point y by Newman’s Theorem [B:9] Both
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maps coincide on Expy, (dom g N dom k), whence

v(9)(0.y) = v.v(g)(y) = v(h)(y) = v(g)(y),

which implies d.y = y. Since y is non-singular, § = idy follows. The mapping @ is a
group homomorphism, from which we deduce v = idy~. In conclusion, v(g)|s, = v(h)]s,,
whence their germs agree, proving property (R4b) of Deﬁnition The above shows that
locally there is only one choice for v(g). From this observation, one deduces that properties
(R4c)—(R4d) of Definition are also valid for expg,;,. We have thus constructed a
charted map

eX/Pab = (eXpOrb’ {EXPW}(W,G,‘IT)EV7 [Pa V]) S Orb(vv W)

for the range family W € U as defined above. To finish the proof, we need to check that
any other choice of lifts yields a charted orbifold map which is equivalent to expgy,.
Let expon, = (eXpog; {Ew: | (W', G, 4") € V'},[P’,v']) be another charted orbifold
map whose lifts are constructed as above. Arguing as before, for each lift Expy;,, we may
cover Im Expy;, with the domains of embeddings u;,, i € I, of orbifold charts such that:

(a) dom ply # dom ,u{/V for each i # 7, ‘
(b) for each i, there is a lift Eyys of exXpPo,p and an embedding of orbifold charts Al such
that Expy, (dom Ayy,) € dom py, and piy Expyy |aom xi, = Ew; Ay -

Repeating this argument for each chart in ¥V, we obtain an orbifold atlas A of charts
for Q2 and a family F of orbifold charts for Q. In particular, for each chart A € A, there
is a chart in F together with two pairs of embeddings of orbifold charts: The first pair
(¢4,¢%) is the canonical inclusion into dom Expyy, respectively cod Expy, for a suitable
lift of expg,y,, while the second pair is given by the embeddings (A4, pa) constructed
above. It is now easy to check that the data (A, F, (¢}, %) aca) and (A, F, (A, f1a) aca)
satisfy the hypothesis of Lemma m By construction, the induced lifts of expg,;, and
e?f)\ab coincide. In particular, the induced lifts satisfy an identity as in , ie.
by construction they are given as the composition of geodesic flows, changes of charts
and bundle projection of manifolds. An argument as above shows that locally there
is just one choice for the change of charts in the image of v. Local uniqueness of the
changes of charts relating the lifts thus forces eXpoyn, ~ 6Xpoy, (cf. Definition [E.10).

Hence [6Xpoy,] = [€Xpogy) follows and we abbreviate this unique map of orbifolds as
[eXpOrb]' u

The above proof reveals several useful properties of the lifts for expg,y,, which we
collect in the following

REMARK 4.27. (a) The proof of Proposition [£.26|shows that arbitrary sets of lifts (which
are given as lifts of orbifold geodesic flows evaluated at 1) for expg,y,, where no two are
defined on the same chart, may be completed to a family of local lifts which satisfy (R2)
of Definition Each of these families then induces a representative of [expg,y]-

(b) The families of lifts we constructed in Proposition have the additional prop-
erty that for each Expy, - (W, Gw,7) — (Uw, Guy,, %), there is an orbifold chart (V, H, ¢)
such that W C TV is an H-stable subset which is Gy -invariant.
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Throughout this chapter, we assume that (Q,U,p) is a smooth Riemannian orbifold.
We construct a Lie group structure on Diff o,,(Q,U) by an application of the construc-
tion principle outlined in Proposition To this end, the subgroup of all compactly
supported orbifold diffeomorphisms will be turned into a Lie group.

5.1. Lie group structure on Diffo,,(Q,U)o. It turns out that our approach needs a
framework, i.e. an orbifold atlas together with a collection of local data, which we fix
now. Based on this preliminary work, we construct a locally convex Lie group structure
modeled on Xo.h(Q). for the subgroup Diffo,,(Q,U)e C Diffo,,(Q,U). This group is
generated by elements in Diff o,1,(Q,U) suitably close to the identity. In Section the
Lie group Diff o,1,(@, U)o becomes the identity component for the Lie group Diff o,1,(Q, U).

CONSTRUCTION 5.1.

(I) For each connected component C' C @ choose some z¢ € C. As @ is locally path-
connected, each component of ) is open. Hence {z¢ | C CQ a connected component }
is a discrete and closed subset. Combining Proposition [[.28] with Lemma [T.26] we
may choose orbifold atlases A, B € U with the following properties:

(a) the orbifold atlases A = {(U;,G;,v;) | i € I} and B = {(W;,Hj,¢;) | j € J}
are locally finite,

(b) each chart in A, B is relatively compact (i.e. the image of a given chart in @ is
relatively compact),

(c) for each connected component C' C @), there are unique ic € I and jo € J with
zc € ¥io (Ui ) and z¢ € @, (W;,), respectively,

(d) A is a refinement of B and there is a: I — J such that each i € T satisfies:

(i) U; C W (i) and the canonical inclusion of sets is an embedding of orbifold
charts, implying G; C H,(;) and ¥; = @q)lu;,

(ii) a(’ic) = jc,
(iii) a~1(j) is finite for each j € J.

(IT) For each i € I, the set U; C W (i) is compact and connected. By local compactness
and local connectedness, there is a relatively compact connected open set U; C O; C
Wa(iy- The set Hy(3)-O; is open, H,(;)-invariant and U, is a connected subset of O; C
H ¢ (3)-O;. Thus U; is contained in a connected component of H,;.0;. Replacing O;
with this component, without loss of generality O; is an open, relatively compact,
H(;)-stable subset. Notice that G; C H,(;),0, by construction.

[79]
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5. Lie group structure on the orbifold diffeomorphism group

For each j € J, define a compact, H;-invariant subset K; := H;. UiEQ,l(j) O;. Apply
Lemma with respect to the family of compact sets (K;);e; and the atlas B.
For each KC; there is a cover by a finite set Z; := {ZF | 1 < k < N;} of open Hj-
stable sets such that: for each member of Z;, there is a finite family of embeddings
(A\E, Z]’-C — Wh)hez(j,k) With properties as in Lemma By part (¢) of Lemma
each ZJ’-C is relatively compact and the embedding A7, is the restriction of an
embedding 5\% whose domain contains Zk

Consider the open submanifold K7, which is o-compact as an open subset of the sec-
ond countable locally compact manifold W (cf. the proof of Proposition d)) By
Lemma we may cover each K3, j € J, with a countable family {(V5';, &) }1<r<i;,
l; € Ng U {oo}, of manifold charts such that the cover is locally finite and subordi-
nate to the open cover {Zi nKs | 1 <k < N} of K5. Furthermore, these charts
satisfy /ffc(VSkj) = B5(0) and the families V,ffj = (ni)‘l(Br(O)), 1 <k < j;, cover
K5 for each r € [1, 5]. Since Hy) is finite, the set Hy).U; C ICg(i) is compact. The
atlas {(Vskj, K7, 1<k<i, is locally finite, whence there is a finite subset F5(Hq(;).Us)
such that V5k:o¢(i) N Ha(i).Ui # () if and only if the chart (V;a(i),/fi) belongs to
F5(Hy(i)-U;). We define open sets

QT‘,i = U V:’la(l), re [17 5],

(V;fa(i)Mﬁz(l))efs(HQ(ma)

and compact sets Kj; := (5 ;. There is a finite subset F5(K5 ;) such that a chart
belongs to F5 (K5 ;) if and only if foa(i)ﬁHa(i).K&i #0). Observe that He(;).U; Q5.
Let p; be the Riemannian metric on W; and expy, : D; — W; the associated
Riemannian exponential map. By compactness of !Cj and Lemma m there are
constants s; > 0, j € J, such that: The closure of O; := Uxelcg B, (04,85) € TW;
is contained in Dj, and expyy, restricts to a diffeomorphism on T, W; N O; for each
z € K. Moreover, 5,4 f, , is compact for i € I and a~t(j) is finite for j € J.
Shrinking the constants s;, we can achieve that expy,_ (B, (0z, sa())) € Q2,5
for each i € I and = € Q54 K, ;- Since th(?f) is compact, Lemma yields a
constant 0 < Sj; < min{sy | h € Z(j,k)} such that expyy, restricts to a diffeomor-
phism on

TAK, (B, (04, S;x)) € Tt W, @€ Z).

Furthermore, since changes of charts are Riemannian embeddings, by choice of Sj,
we have

TA?h (B,Dj (Oxa Sjk)) C By, (OA_’;h(z)v Sh)
for x € dom /\?h. For each j € J, we define
Sj = Hlil’l{Sjk | 1 S k S N]}

The set F5(K5,;) is finite, and for each chart (nga(i),ng(i)) € F5(Ks,;) the set

Useve o By, i) (0, Sa(iy) is a neighborhood of the zero-section on the compact set
3,a(i
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‘/2ka(i)' Hence the Wallace lemma |22, 3.2.10] yields a constant R; > 0 with

Bo(0) % Br,(0) S TR (| Bpay (001 Sa@))  ¥(Vihageys i) € Fo(£5,):

meVZk,a(i)

For the rest of this section, we fix the data constructed in Construction[5.1]and use the
symbols without further explanation. The next lemma is a rather technical statement. It
is the first step in constructing orbifold diffeomorphisms using the Riemannian orbifold
exponential map.

LEMMA 5.2. Consider (U;, Gi, ;) € A, and for an orbisection [6] € Xom(Q) denote by
Ta(iy its canonical lift on Wy and by o its underlying continuous map. There exists an
open zero-neighborhood Mﬂ° C X(s5,5) such that if 0, is contained in the neighborhood
N; = (resg&;”)_l(]\/’iﬂ“) C X(Wq(s)) then the following hold:

(i) ¥:(U;) € o71(Q), where Q is the domain of expe,y,,
(ii) [EA"’HW(U” = [expop] © [6]|$Z_(UU induces a diffeomorphism of orbifolds onto its
1mage,
(iii) Ua(i)(@) - Oa(i) for OAa(i) as in Construction ).
Proof. The set O; C ICZ(Z.) is open and H,;-stable, whence an H,;)-stable open subset
is given by T'O; N Oa(i) C D, iy- We obtain an orbifold chart

(Tol N OO‘@)’ Ha(i),TO,iﬁOa(i) ) T(‘Oa(z) |T01-ﬂ()a(i) )

together with the lift EXpTOmOa(i) = expw, ) ‘TOiﬂOa(i)TOi N Oa(i) — W) of expoy,-
By Remark a), there is a representative éxpo,;, € Orb(V, W) of expgo,, such that
Expro, n Ouiiy 18 contained in the family of local lifts of expgy;,. Notice that 1;(U;) C Q
is an open subset, whose inclusion iy, (,) induces an open suborbifold structure (see
Definition [2.15)). Consider an orbisection [6] with Im o]y, ,) € €. Definitions and
[2.16] together with Proposition [E.26] imply that there is a well-defined map of orbifolds
[E |y, )] = [expom] © [Ef“fzi(Ui). Now, we proceed in several steps:

STEP 1: Apply Lemmato F5(Hq:)-U;) to obtain an open zero-neighborhood Niﬂs'i -
X(5,) (playing the role of E5 k in the lemma). Define N; := (resQW:;“)_l(N?“)

X(Wo(i)), and observe that 0,(;y € N; and the following conditions hold: For each X € N,
the map eXpy, ., © X\QM is an étale embedding into Wai)- The set E CQs, C ICZ(Z.)

N

is compact, which allows the construction of a (C%-neighborhood of the zero-section
Pl,i - %(9571) such that X € Pl,i implies X(QQ,Z) Q Oa(i)- Set ./V;Qs'i = NzQBZ n Plﬂ'

and N; := (resg;f“)*l(N?s’i N P ;). Each vector field in N; satisfies (iii) and N is a

preimage, as required. By construction, ¢;(U;) = @a(i)(Ui) C @a(iy(Oi) and Exprq -6 o
is a lift of expg,y,, whence (i) follows from (iii). In addition, if o, € N; then the
map expyy, . © O’a(i)|Ha(i)_Ui is an étale embedding. Specializing to U;, the map e :=
EXpTOmOam o0 i)|u, = EXpTOmOa(i> o g; is an étale embedding, where o; is the canonical

lift of [6] on (U;, G, ;). From now on, consider [6] € Xo,(Q) such that o,y € N;.
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STEP 2: The map €' is equivariant with respect to the inclusion v: G; < H ;). Consider
an H,;-invariant subset R C {23 ;. We claim that exXPw, ;) Oa(i)|r is equivariant with
respect to H ;). If this is correct, then e?* commutes with any 6 € Hy),u, = Gi, as
Hy)-Ui C© Qg is invariant. To prove the claim, let § € H,(; be arbitrary and = € R.
As d.x € R C Qa, 04(;) is a canonical lift and H,(;) acts by Riemannian isometries, we
compute: expyy, Oa@i)(0.7) = eXpyy, Téoqz)(x) = 0. exPyy, 0a(i)(x), thus proving
)| eet.

the claim. The map e is a local lift of E7|y, (v,) = (expoy, © 0|y, (v,

STEP 3: The set Im e is H,;)-stable with H, ;). Ime?* C Qg ;. Consider 6 € H, ;) such
that 0. Im e NIme?: # . For z,y € U; with e?i(z) = d.¢”(y), one obtains

eXPyy, (i) © Ta(i) () =e%(x) = 0.7 (y) = eXPyy, Ja(i)(&y).
From Step 1, we conclude that x = 4.y, since on H,;.U; € Qg ; the map eXPyy, ., © Ta(i)
is an étale embedding. By H,;)-stability of U;, 6 € G;, whence 6. Ime?* = Ime??. This
proves the H,;)-stability of Ime?" and Gy eo: = Gi.
The canonical lift o,(;) is contained in N;. By construction of €; ; (cf. Lemma D.8)),
the equivariance of this map implies

Ha(i)- Ime’i = exXpw,, ., O'i(Ha(i)~Ui) - eXPw,, ;) Ui(Ql,i) C Q.

STEP 4: E7|y, (v, 18 injective and a homeomorphism onto its open image. Consider x,y €
Yi(Us) with E7|y, w,)(x) = E7|y,w,)(y), and choose preimages z, € Y (z) and 2, €
wi_l(y) of x and y, respectively, in U;. Since e?* is a lift of E7|y, (v,), there exists § € Ho ;)
such that e”#(z,) = d.e7*(z,). By Step 3, we must have 6 € G;. Since €% is an embedding,
equivariance of this map yields 6.z, = z,. Both points are in the same orbit, which forces

z and y to coincide. Hence E7|5 is injective.

The local lift e is an étale embedding and the maps of orbifold charts are contin-
uous and open. For any open subset S C 1;(U;), E%|y, ) (S) = @a(i © €7 0 ¥; (S)
is an open set. In conclusion, E7|y,y,) is an open map, whose image is open in Q. In
particular, Im E7|,, () is an open suborbifold of Q. An atlas for Im E7|,, (v,) is given by
{(Ime?", Gi, @a(iy|imer: ) }. Since composition in Orb is well-defined, a representative of

[expono[0] %(Ui)’ corestricted to Im ;) is given by EA"’|%(UZ.) = (B gy, €7, Gi,v) €
Orb({(Us, G, i) }, {(Wagiys Ha(i)s Pa(iy) })- Now E7|y, (v, is a homeomorphism which
maps the open suborbifold ¥;(U;) of @ onto an open suborbifold such that the local
lift of E7|y, (v, is a diffeomorphism onto its (open) image. Proposition ensures that
[EA'“\w,i(Ui)] is a diffeomorphism of orbifolds. m

REMARK 5.3. Later on, we shall apply patched mapping techniques (cf. Section |C.3)) to
prove the smoothness of several maps. To do so, we have to define an orbifold atlas, where
charts may occur repeatedly: Let C := {(Wa (), Ha(i), ¥a(i)) | © € 1} be the orbifold atlas
which arises from B by collecting a different copy of (W}, H;, ;) € B for each i € a™1(j).
Observe that this atlas is locally finite and each chart is relatively compact, as a=1(j) is
finite and B is locally finite with relatively compact charts.

PROPOSITION 5.4. There are open zero-neighborhoods N; C X(Waiy), @ € I, which gener-
ate an open zero-neighborhood N C Xo,0(Q). such that each [6] € N induces an orbifold
diffeomorphism [E°] := [expo,) © [6]|? € Diffoum(Q,U).
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Proof. For each i € I, construct via Lemma a neighborhood N; C X(Wy(;)). The
construction shows that for each [6] with o4y € Nj, the map E?|y,(v,) is an embedding
of the open suborbifold ;(U;).

By definition of the direct sum topology, the box

D= ([In) D W)

iel iel iel
is an open subset of @, ; X(Wy()) (cf. |39, 4.3] and |26, Proposition 7.1] for a proof).
Using the atlas C introduced above, we define the set

= AZ! (@/\/;) (5.4.1)
iel
which is open in the c.s. orbisection topology by Lemma[3.23] A combination of Definition
and Remark [£.27|(a) shows that each [6] contained in A induces a well-defined map
of orbifolds [E?] = [expoy,] © [6]|? such that E? := expgy, 0 0: Q — Q is a local
homeomorphism. In particular, E7|,, v, is an open embedding for each i € I. Let XDorb
be the representative of the Riemannian orbifold exponential map obtained from the
family (ExpToméam)ie 1 by Remark a). Then the domain atlas € of €xpg,;, contains
the family {(TO; ﬁéa(i), Ha(i),TOiﬂOQ(i) , T@a(i)|TOmOa(i))}i€T and for each [6] € N, the
canonical lifts o; satisfy Im o; C TOiﬂOa(i) for i € I. Hence there is a representative 5| €
Orb(A, &) of [6]|* whose lift on (U;, Gi,v;), i € I, is just 0;|TO:N0ati) | As composition in
Orb is well-defined, we obtain [exporb 06|% = [exporb] [6]|2. Thus the lifts constructed
in Lemma“yleld a representative £ := éxpon, 06 = (E7, {e% }ic1, P,v) € Orb(A,C).
Here each lift e is an étale embedding and (P,v) is obtained by an application of
Construction The image of such a lift is an orbifold chart (Ime”, Gi, @a(i)|tmen: )
To prove the assertion we have to check that E? is surjective and injective for every
[6] € N. Reviewing the construction of Nj, the map E” maps ¢;(U;) into 0a ) (Wa(s))-
Every orbifold chart is a connected set, whence its image is contained in a connected
component of Q). Thus £ maps every connected component of ) into itself. In conclusion,
it suffices to prove that the restriction of £ to each component is bijective, whence we
can assume that @) is connected. As a first step, we show that for every orbisection [6] € N
the map E? is a proper map. To this end consider an arbitrary compact subset L C Q.
The atlas B is locally finite, and thus L meets only finitely many of the sets ¢;(W;), j € J,
say L CUl_, ¢, (W;.) and LN p;(W;) =0 for all j € J\ {j1,...,jn}. For [6] € N, we
have E7(1;(U;)) C @a(iy(Was))- The closed set (E7)~(L) is thus contained in

clJ U @@ (5.4.2)
r=lica=1(jr)

By Construction [5.1} each a~!(j,) is a finite set. Hence (E”)~!(L) is compact as a closed
subset of a union of finitely many compact sets. Since L was arbitrary, E° is a proper
map (cf. |9, Ch. I, §10, No. 3, Proposition 7]). Combining the facts that @ is locally
compact by Proposition and E7 is a proper map, E? is a closed map (cf. |9, Ch. I,
§10, No. 2, Theorem 1]). The image of E? is an open and closed set, since images of local
homeomorphisms are open. But @ is connected and thus E? is surjective.




84 5. Lie group structure on the orbifold diffeomorphism group

Summing up, the map E? is a proper, surjective local homeomorphism of connected
and path-connected locally compact spaces. Thus, E° is a covering of ) onto @ by
[23, Theorem 4.22]. Recall Construction Ic): There is some zg € @ such that zqg is
contained in a unique pair of orbifold charts ((U.,,,Gq,%20), Weg, Hzg, 02,)) € AXB.
Since E7(¥s(Us)) € @a(i)(Wai)) and zq is not contained in any ¢; (W) except for j = jq
by Construction we derive from (5.4.2): [(E”)"!(z2¢)| = 1. The number of sheets of
a covering is an invariant for the connected space @ (cf. [23, Theorem 4.16]), whence E°
is injective.

In conclusion we have constructed a charted orbifold map E? such that E? is a con-
tinuous, closed bijective map (i.e. a homeomorphism by [21, Ch. III, Theorem 12.2]) and
each lift €7, (V;, G;, ;) € V, is an étale embedding. Each lift is a local diffeomorphism,
whence Propositionimplies that E7 is a representative of an orbifold diffeomorphism
[E7] = [expoyp) o [6]]. =

The mapping taking an orbisection from the zero-neighborhoods N (see Proposition
to an orbifold diffeomorphism will in general not be injective. However, on a suffi-
ciently small zero-neighborhood one can always achieve this.

PROPOSITION 5.5. Consider the family (N;)icr as in Proposition 5.4 For each i € I,
there is an open neighborhood Py ; C X(S5;) of the zero-section and sets

M= NBIAPRy,;, M, = (resQW;i(“)_l(MQS”‘)

(3

such that on the zero-neighborhood M := AZ"(D,c; M;), the map
E: M = Diffor,(Q,U),  E([6]) = [E’] = [expon)  [6]|7,
is injective with E(Oor) = id(gu)-

Proof. Following Proposition cach [6] € N = AZ" (@,c;N;) induces an orbifold
diffeomorphism [E“] Shrink AN; to obtain an open C'-neighborhood M; of the zero-
section in X(Wo(;)): For each i € I choose a non-singular point z; € U; (which exists due
to Newman’s Theorem since U; is an open set) and an H,;)-stable z;-neighborhood
U., © Wagy with Hygyp., = {idw,, }. This is possible since 2; is non-singular. The
family ]-'5(Ha(i).ﬁi) constructed in Construction covers U;, and we may choose a
chart (nga(i), Iﬁ::(i)) such that z; € nga(i).

Consider the open set Uzi = TV;a(i) N Oa(i) N exp;Vi(i)(Uzi) C TWy). The in-
tersection T, W,(;) N U, is an open zero-neighborhood. We obtain another open zero-
neighborhood

609 (20), pry (T (O, 0 (177 (21) x RY)) | € C=(B5(0),RY)

where pry: Bs(0) x RY — R? is the projection. Define Py; C X(Q5,) to be the open
zero-neighborhood induced by Lng(i)(zi),prQ(Tng(i)(ﬁzi N (K:;:(i)(zi) x R%)))|. By con-
struction, eXPyy, ;) © Ta(i) MAPS 2 into U, if 04(;) is contained in P ;. The intersec-
tion M?5 = MQ° N P,; is a non-empty open zero-neighborhood in X(£25 ;). Define
M; = (resgvzi‘ff”)’l(/\/l?s’i) C N;. Then M := AZ"(D,c; M;) contains Ooyp, and is an
open subset of N in X0, (Q)e-



5.1. Lie group structure on Diffo,5(Q, U)o 85

We show that the map E (as in the statement of the proposition) is injective on M.
Assume that there are [6], [7] € M such that E([6]) = E([#]). For E([6]) = [E°], there is
a representatlve E° in Orb(A,C), by Proposition By assumption, the orbifold maps
induced by E? and E7 coincide, whence E™ = E° follows. We will prove that for each
i € I, the lifts ¢’ and €™ coincide. Fix ¢ € I and observe that £ = E7 implies that
for each z € Uj;, there is some ., € H,(;) with e#(z) = 7..€7(z). Consider a component
C of U; \ B¢g,. The set {c € C | 7.€%(c) = €"(c)} is an open and closed subset of C.
As C'is connected, there is a unique v¢ € H, () with €|z = yce™|g. For x € CN T,
this yields the identity T, (yce™) = Tpe® = Tp(ycre™). Since €™ is a diffeomorphism,
we derive T, (1)75,170 =T, (,;)idWa(i) and 75,170 € Hu(),emi (z)- By [51, Lemma 2.10],

Yo = oo follows. Then vo = ¢ follows for each component such that there is a
chain C = C4,...,C, = C” of components with C N Cxy1 # 0. Observe that by a
combination of Lemmas and [A.2[each 2 € X, is contained in some C' and U.ce C
is a neighborhood of . Hence there is a unique « with v.e™ = €. Specializing, we obtain
7.€7(2;) = €7 (z;). The lifts 04(;), Ta(i) are elements of M;, whence by definition of M;,
we have e7(2;),e7 (z;) € U.,. The H,;-stability of U, forces v to be in the isotropy
subgroup of U,,. Hence v = idw,,,, and we obtain eXPyw, .,y © i = eXPyy, O Ti- Lemma
iii) implies that Imo; and Im 7; are contained in Oa(i). As expyy. o is injective on
TeWea@ N OAa(i) for z € U;, we must have 7; = 0;. Repeating the argument for i € I, the
families {7;}ic; and {o;}ier coincide. As those lifts are canonical lifts, Remark a)
implies that [6] = [7] and E: M — Diffo,,(Q,U) is injective. m

We now apply the results of Section [D| to construct a neighborhood #H of the zero-
orbisection:

CONSTRUCTION 5.6. Using the local data obtained in Construction IV), we define
open sets
iy 1= U Vi, TeELD]
(Vi i ) EFs (Ks,0)

By construction, Q5; C Q5; = K5; C Q. , for each r € [1,5].

In Proposition [5.5) we have constructed sets M as intersections M;** = N/** N
Py ;N Py ;, where N, is an open zero—neighborhood as in Lemma Apply Construc-
tion -With R; (see Construction [5.1(V)) taking the role of R, M := W), K = K5 ;
and P := P; ;N P, ; to construct an open zero-neighborhood Hg, C M; C X(W, (i) The
set Fs i occurring in Lemma is Ni > from the proof of Lemma By construction,
Hr, = (resg/”;() )’1(HK5”") for an open zero-neighborhood 'Hgs”‘ C X(92s5,K5,;)- Finally,
foreachi e I the construction yields constants 0 < 7;, v; < R; with the following property:

If X € X(Wa() is such that for each (Vd "a(i)’ Kuk ) € F5(K5,), the local represen-

tative X, satisfies ||XkHT(0)’1 < 7;, then X is contained in M;.

Recall from Construction that for each pair (X,Y) € Hg, x Hg,, there are unique
vector fields X o; Y, X*1 Y™ € X(Q5,4 , ,)- Together with the definition of R; (Construc-
tion [5.1(V)), the estimates (D.9.4) and (D.9.6) imply the following properties, which we
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record here for later use:
X 0; Y(x), X*(2) € By, (00, Sa(i)) € Oaqiy, Vo € Qsja iy - (5.6.1)

Moreover, for each chart (Vy', ) m%(i)) € F5(Ks,;), the vector field X o; Y satisfies the
estimate (D.9.4), i.e. ||[(X o; Y)[n]||m(0) < v;. Recall that v; in Construction W is
chosen exactly as in Lemma Hence for X, Y € Hp, and z € V), ;) Lemma [D.6[b)

yields the identity

exp,, Tk (X o; V) () = k%D expyy,

o (i) (X < Y)(:U) (5.6.2)

Define the open subset H ::Ag1 (B,c; Hr,) of X0 (Q).. By construction, 0o, € H S M.

The vector fields X ¢; Y and X™* induced by orbisections in H yield families whose
members are A-related for suitable changes of orbifold charts A. The details are checked
in the next lemma.

LEMMA 5.7. Consider orbisections [6],[7] € H. We denote their families of canonical
lifts with respect to the atlas B by {o;};cs and {7;};c, respectively. Let A € Chy, w, be
a change of charts which satisfies dom A C Q54 i, , and Im A C Q5,4 k., for k = a(i)
and l = a(j). Then the following identities hold:

T)\(O‘],c O Tk)'dom/\ = (0’1 O Tl)O/\, (5.7.1)

T>\0'Zi|dom)\ = 0'l*j o\

Then o; ©; Tj|u, and a}‘i U, are equivariant with respect to the derived action of G;.

Proof. The identities and (5.7.2) may be checked locally. Fix x € domA C
Qs5/4,K5., together with a chart (Vg}k,fi,ﬁ) € F5(Ks,) such that « € Vg, ;. The mani-
fold atlas chosen for K, C Wy, is subordinate to the cover (Z] N KY)1<,<n,. Hence there
is some Zj with V5% C Z]. As z € V% C Ky and AN(z) € Q54 x,, € Ki, by Con-
struction (cf. Lemma , there is an embedding of orbifold charts p: Z; — W,
with p(x) = A(x). After possibly replacing p with v o p for suitable v € H;, there is
an open neighborhood U, of z in Qg4 g, , with uly, = M|y, . By construction, we ob-
tain p(r) = Mz) € Q5/4,x,, € K and T, = T;\. The definition of S}, together with
equation implies T'u(o; o; 7;)(x), Tpo' (z) € O, and (0, 0; 7)p(x), 0,7 p(x) € Oy.
Let exp,, be the Riemannian exponential map induced by the pullback metric on Bs(0)
with respect to (k%)~!. The map p(k%)~! is a Riemannian embedding of Bs(0) into W;.
From [43, Ch. IV, Proposition 2.6], we deduce for v € dom exp,, that

expyy, Thl(ry) ™t (v) = p(kyy) " exp, (v). (5.7.3)

Recall from Construction [5.6] that for i € I, there is some open set Hp, with the same
properties as in Lemma [D.§|such that [6] € H implies 01, € Hp,. For X € Hp,, we have:

(i) KEexpy, o X(z) = exp, Tk, X (z) for eachie V34, (use Lemma D.6(b), (f)),
(i) expy, o X(V5), ) € V3l and expy, o X(V3Y) € V5Yy, (see Lemma m d)),
(ili) Vgyy € expy, o X(V3)) (see Lemma (d))

The families {0} and {71} are canonical families, whence oy = Tpoy. In addition, for
the vector field o ©; 7 on Vg} 1 the local identities (D.9.3) and (D.9.8) are available.
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Combining these facts we compute:

expyy, TeA(ok 0 T)(x) = expyy, Top(ok 0 k) (x)
_ G7-3)
= expyy, T(p(kh) ™ k) (on 05 ) (2) —=
ESD k-1, k -1
= w(kin) " ko expyy, (0 0; T1)(2) —=" prexpyy, (expy, [N,) " eXPyy, Ok exDyy, Tk(2)
i+ (573)
T expyy, T oy, expyy, Tr(x) = expyy, o1 expyy, k()

i.+(5.73) (BN
" expyy, 01 expyy, (@) = (expyy, o1 expyy, A (@) = expy, (01 05 ) (A(x)).

Since expyy, restricts to a diffeomorphism on T,y W} NOy, the computation yields (5.7.1)).
To obtain (5.7.2]), we use x € Vg} 4,1, and compute using the facts above:

pri) ™t exp,, Triy (o 0; 73) ()

* i (D.9.-8) -

expyy, TuAoy (x) = expy, Tpoy' () =" plexpw, © okla, i, ) ().
As z € V5k/4’n, by (iii) the image (expyy, o O'k|Q2,K51i)_1(fE> is contained in V3. Since
Tnﬁok(VQ’?k) C domexp,, we conclude with (5.7.3) that oyu(Vy) = Tuor(Vyh) C
dom expyy, . Thus

(expyy, 01) 0 expyy, Tp Aoy () = expyy, opu(expy, Uk\Qz,KN )~ Hx)
= expy, Tuo(expy, oklo, i, )7 (%) = plexpy, or)(expy, orlos i, )7 (@)
= p(@) = Nz) € Q51K ;-

Recall \(x) € Q5,4 ,, and Tuo,'(x) € O,. Now the definition of O, in Construction
V) yields expyy, Tppoyi(z) € Qo k5 ;- On Qg ¢, the map expyy, o 07 is injective, by
Step 1 in the proof of Lemma We deduce that expy, TAo} (z) = expy, 0;,° (A(z)).
Since expyy, restricts to a diffcomorphism on T)(,) NO;, the computation yields (5.7.2).

The families {0 o; 7;}ier and {0* }ier obtained in this way induce orbisections:

PROPOSITION 5.8. Consider orbisections [6],[7] € H, whose canonical families with re-
spect to B are given by {o;}jes and {7;}jes, respectively. Then

(a) The family {oa(i) @i Ta(i)ticr induces an orbisection [oo7] € M whose family of
canonical lifts with respect to the atlas A is given by (0 © T); 1= 0qa(i) @i Ta(i)lv, for
1el.

(b) The family {O'Zi(i)}iej induces an orbisection [0*] € M whose canonical lifts with
respect to the atlas A are given by (0*); := U:;i(i)‘Uz: foriel.

Proof. The families {(c ¢ 7);}icr and {(0*);}ier are compatible families of vector fields
on the atlas A by Lemma These families yield canonical families of lifts with respect
to A. In particular, the identities (5.7.1)) and (5.7.2)) allow the definition of continuous

maps:

0oT: Q= TQ, x+— Tyi(oor);  (2), ifxe(Uy),
Q= TQ, x> Ti(o*)i; (x), if x € Y, (U;).
These data allow the definition of orbisections [76 7] and [0*] by Remark a).
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To complete the proof, we have to show that [7o7],[0*] are contained in M.
To this end, we need to ensure that [707] and [0*] are compactly supported. The
orbisections [6],[7] € H are compactly supported, whence supp [§] U supp [7] is con-
tained in a compact subset K C . Since B is locally finite, there is a finite sub-
set S, C B such that (W;, H;,p;) € Sy if and only if Imp; N K # (. Consider
(W;,Hj, ;) € B\ So.r. By Remark [3.19(d) the canonical lifts of [6],[7] on W; are the
zero-section in X(W;). The conclusion in Construction implies that o; ¢; 7; = 0

T A

and o' = 0 for each i € a~1(j). Therefore the supports supp [o ¢ 7] and supp [0*] are

J
contained in K, , := U(W ooty o0 (-))esmwi(Ui)' As S, ; is finite and for j € J the

set a~1(j) is finite, K, , is a finite union of compact sets v;(U;). Hence the supports of
[7 7] and [o*] are contained in a compact set, whence these orbisections are compactly
supported.

Following Proposition we may consider the canonical lifts (¢ ¢ 7), and o}, on
each chart (Wy, Hy, @) € B. The orbisections [ 6 7], [o*] will be contained in M if their
respective canonical lifts are contained in M; for each i € a1 (k), k € J.

Fix i € a=*(k) and define (o0 7))y :=((0 0 T) i)k, © Kyt and (07)(n] := (0} ), © Ky
(cf. Definition (C.10) for (V3% k}) € F5(K5,;). By Construction it suffices to prove
that for each chart (VJ%, kE) in F5(Ks;), we have [((0 ¢ T)k)m ||T(0)71 < 7; and
(o) ||T(0))1 < 7;. Observe that the conditions may be checked on Q54 f ,. Uniqueness
of canonical lifts together with and forces the canonical lifts (oo7); and (%)

to coincide with 0,0, 7 and o, respectively, on Q5 /4, K., - Recall from the construction that

1

the constant 7; corresponds to the constant 7 in Construction Hence a combination

of with Corollary[D.10]yields l((0oT)k)m) HT(O)J = [(o%) 1 © (Tk)) ] ”T(O),l <7
and [|(05 ) HT(O) L = (o [n])*HT(O) , < 7i- We conclude that each of the canonical
lifts of [0 7] and [0*] on (Wj, Hy, @) is contained in M; with i € o~ (k). Summing up,
[707] and [o*] are contained in M. =

REMARK 5.9. (a) Proposition implies that the map F may be applied to [0 ¢ 7] and
[0*] for [o],[T] € H.

(b) Moreover, consider the canonical lifts (o o 7)w, ,, and W Of [o o 7] and [o*],
respectively, for [o],[r] € H on a chart (Wuq, Ha(s), (i) € B for i € I.

Let again o,(;) and 7, be the canonical lifts of [6] and [7], respectively, on
(Wagiy, Ha(iys Paiy)- Then uniqueness of canonical lifts together with Lemma shows
that the restrictions of these vector fields to €5 ,4; satisfy

(0o T)ch(i) Qs/a.i = Ta(i) ©i Ta(i) and OWaiy = a(i):

In the rest of this section, these properties will be crucial for several key arguments.
We shall now ensure that the orbisections constructed satisfy the identities needed for
composition and inversion in F(M):

LEMMA 5.10. For any [6],[7] € H,
E([6]) o E([7]) = E([c o 7)), (5.10.1)
E([6])! = E([o7]). (5.10.2)
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Proof. Fix [6],[7] € H. The left and the right hand sides of and are
orbifold diffeomorphisms. As observed in Proposition and Corollary orbifold
diffeomorphisms are uniquely determined by their underlying maps or their family of
lifts. To prove the assertion it therefore suffices to show that their family of lifts or the
underlying maps on both sides are equal.

Consider the right hand sides of both equations: The orbisections [0 ¢ 7] and [0*] have
been constructed by a family of canonical lifts {o ¢ 7); }ie; and {(0);}ier, respectively,
with respect to the atlases A and T7.4. Both orbisections are contained in M. Taking
identifications we have Im(oo7);,Im(c*); C Oa(i). Corestriction of each lift to TU; ﬁOAa(i
yields representatives of [6]|2 and [#]|?. Thus representatives of E([g o 7)) and E([c*]) are
given by (E°°7,{e\"°7)i}icr, P,v) and (E°,{e }icr, P', V'), respectively, in Orb(A,C).
For each i € I, by construction the lifts of these maps satisfy:

eXPyy, ,, © Ta(i) © €XPy, , © Ti = XDy, © (coT); =77, (5.10.3)

*

(expyy, ., © Oa(i)s.) o, = expyy, 00 =€t (5.10.4)
We show that the lifts in (5.10.3) coincide with the lifts of E([5]) o E([7]). As Orb is a
category, composition in Orb is associative. Hence lifts can be computed iteratively:

E([0]) o E([r]) = [expo] © [0]| o [expor] © [7]|? = [expor] © ([0][” © [expoyn] o 7))
As T,(;) and 0,(;) are contained in Hp,, the composition of charted orbifold maps (cf.
Construction yields a lift of E? o E™ on U; which coincides with the left hand side
of . Therefore follows from by an application of Corollary

To prove the identity we show that the underlying maps of both sides are
equal. To this end, let ¢  be the underlying map of E([6*]). By Proposition m it
suffices to check the identity

expo, 00 0e’ =idg.

If this identity holds, then assertion follows. Clearly the identity can be checked
locally for each chart (U;, Gy, ;) € A. By construction on U; we have 7 1); = Pa(s) oei.
Here ¢% is the lift of E([E;}) in the chart U;. Fix 2 € U; and notice that Im e% C Q;
by (5.10.4). Choose an H,,;)-stable neighborhood U, C Qs; of €7 (z) in W,;). Restrict
the canonical lift o (;) of [6] on Wy(;) to U,. Then oy, := aa(i)%g” is a canonical lift
of [6] on the chart (U, Hog),u,, Pa(i)lu,). From U, C Qo and [6] € H, we deduce
Imoy, = 0a;)(Usz) C O (i), by Lemma (iii). Taking identifications, we may compose
oy, and

Ex 5 = ex A
pTUwﬂOa(i) chx(i) a(s)

Recall from Lemma that Exppy; 5 s a lift of expg,y,. Moreover, Construction

(i)
I]%@I shows that Expry; 6, , ©0v, is a lift of expe,, 0 0. Hence, we obtain the following
t

ntities:

eXPoy, © 70 €7 i(2) = €XPor, © 7 © Pa(i) © € () = Pa() (BxPry, 6, ) © 0V, © €7 (2))

5 : Ul(x))

=

.4

-1

Pa(s) ((eXpWa(i) O Oqu(i) |Uz) ° (eXpWa(i) O Oa(i) |Q2,i)

= Qa@)(x) = Yi(x)  (since U, C Qo).
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Since x € U; has been chosen arbitrarily, we may repeat the construction for each = € U;,
whence expg,}, © 0 © e? = idg, and thus (5.10.2)) follows. m

We now turn our attention to the composition and inversion maps:
LEMMA 5.11. The maps
comp: H x H = M C Xow(Q)e,  ([6],[7]) = [007],
inv: H - M C Xomw(Q)e, [6] = [07],
are smooth.

Proof. The atlases A and C are indexed by I. Let o; and o,(;) be the canonical lifts with
respect to (U;, Gy, i) € A and (Wa), Hagi), Pa(i)) € C, respectively. The continuous
linear maps 7;: Xor (Q)e — X(Us), [6] = 04, and Ai: Xom (Q)e = X(Waiy), [6] = 0agis
induce patchworks for Xo,1,(Q)., by Corollary The product Xo,5(Q)c X Xom(Q)e
is a locally convex vector space and we have the family of maps

Ai X A xorb(Q)c X %om(Q)c — %(Wa(l)) X X(Wa(z)) forveI.

We already know that A is an embedding with closed image, and thus the map A x A also
satisfies this property. We conclude that the family (A; X \;);er indeed yields a patchwork
for xOrb(Q)c X xOrb(Q)o

Arguments as in the proof of Lemma show that the family (\; x \;);er yields a
patchwork for Xo.m,(Q)e X Xorb(Q).. Let p be the corresponding topological embedding for
this patched space (cf. Definition|C.14]). The patchwork on each of the spaces (Xo.b(Q). X
Xor(Q)er (Ni X Xidier), (Xorb(Q)e, (Ni)ier) and (Xor(Q)e, (7)ier) is indexed by 1. On
the open set Hpg, constructed in Construction consider the maps

comp, : /HRi X/HRi %:{(Uz), (X,Y)P—)XOZ*Y
nv;: HRi — x(UZ), X — X" U;-
Since H = Ac_l(@iel Hpg,), the identities for the patchwork established in the proof of

Lemma yield p(H x H) € @,c;(Hr, x Hr,) and Ac(H) € @P,; Hr,. By construc-
tion, we deduce from Proposition [5.8] that

(compi)ielpﬁ?;%imm XHa,) _ Agocomp and (invi)ielAcH?iE’ PR _ A ginv.

U;»

These mappings make sense, since comp, and inv; vanish on the zero element. Hence
comp and inv are patched mappings. By Proposition it is sufficient to prove that
comp and inv are smooth on the patches, i.e. for each ¢ € I, the maps comp, and inv;
are smooth.

For the remainder of this proof we therefore fix i € I and prove the smoothness
of comp; and inv;: The open sets Q. ,, r € [1,5], contain U;. Consider the restriction

Wi Q, . . .
maps res, ;) , Tesy which are linear and continuous, whence smooth by |27, Lemma
5,Ksg ; i

F.15(a)]. Recall that the maps

Ks,4

Qs,K5; Q5,15

Ci:HRi h XHRi ’ —>%(Q5/47K51i), X— XY,
Qs,x5 ; i

Li: HRi ’ %%(95/47](5,1)7 X'—)X*‘,
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are smooth by Lemma By definition the maps comp, and inv; are given as compo-
sitions of smooth maps as follows:

Qs/4,K5
COmpi = reSU_ ’
i

o

Wai Wi
oc;o (rest,Ki xresg " |HR¢ xHr, ),

A Wiy
oL oresg .
g

. Qs/4,K5 ;
inv; = res;; ’
i

Hr, -
We conclude that comp, and inv; are smooth, whence comp and inv are smooth. m

Endow E(M) with the smooth manifold structure making F: M — E(M) a diffeo-
morphism. We are now in a position to construct a Lie group structure on a subgroup of
Diff o, (Q, U):

PROPOSITION 5.12. There is an open subset P C E(M) C Diffo,,(Q,U) which contains
the identity such that the subgroup generated by P,

DiﬁOrb(Q7 u)O = <P>7

admits a unique smooth manifold structure turning Diff o,5(Q,U ) into a connected Lie
group modeled on Xo,b(Q). and P into an open connected identity-neighborhood.

Proof. Endow E(M) with the unique smooth manifold structure turning £: M — E(M)
into a diffeomorphism. Consider Py := E(#) as an open submanifold of E(M). Combin-
ing Lemmas [5.10] and the composition and inversion

m: Po x Py = E(M),  ([f1,[]) = [f] o [g] = E(comp(E~"([f]), E([9]))),
v: Py = E(M), /] = [f17" = Elinv(E7([f]),

are smooth maps. Observe that by Proposition [5.8] and by the definition of m and ¢ the
images are contained in F(M). The set Py is an open identity-neighborhood on which
inversion and group multiplication of Diffo,1,(Q,U) are smooth. Hence the preimage
™Y Po) = Po N (Po)~! with (Pg)~! := «(Py) is an open neighborhood of the identity
in Py. Thus E~1(PyN(Py) 1) is an open zero-neighborhood in Xo,1,(Q).. Since this space
is locally convex, we may choose a convex zero-neighborhood H; C E~1(Py N (Py)~1) C
X0 (Q)e. Then Py := E(H1) C PoN(Py)~! is a connected, open identity-neighborhood
in E(M). Since P; € Py N (Py)~ L, we have 1 =H(Py) = Po N (P1)~! = (P1)~! = o(Py).
Being a preimage of an open set with respect to a continuous map, (P;)~! is open.
Furthermore it is connected as a continuous image of such a set. We obtain an open,
connected identity-neighborhood P := P; U (P1)~! C Py in E(M) by |22, Corollary
6.1.10].
From the above, we deduce that m(P,P) C E(M) and m induces a smooth map

PxP = EM), (f)~ [/

Furthermore, P~ = P C E(M) and the mapping P — E(M), [f] — [f]~!, induced by
¢ is smooth. Thus all prerequisites of Proposition a) have been checked. Hence we
derive a unique smooth manifold structure turning the group

Diffo,u(Q, U)o :== (P)

into a Lie group such that P is an open identity-neighborhood in Diffo,,(Q,U)o. In
addition the manifold structure induced by Diff o,1,(@, U)o coincides with the submanifold
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structure of P C E(M). Therefore, P C Diff o,1(Q, U)o is open and connected. As the
group operations of Diffo,,(Q,U)o are smooth, each of the sets P™ (the elements of
Diffo,5(Q,U)o, which are obtained by n-fold composition of elements in P, n € N) is
a connected identity-neighborhood. Since P is a symmetric identity-neighborhood, we
deduce from the proof of [37, Theorem 5.7] that

Diffor(Q,U)o = (P) = | P".
n=1

Hence Diffo,1,(Q, U)o is a connected Lie group by [22, Corollary 6.1.10]. =

In the next section, we shall construct a Lie group structure on Diff o, (Q,U). The Lie
group structure on the subgroup Diff o,1,(Q, U)o of Diff 5,1, (Q,U) will turn this subgroup
into the identity component of the Lie group Diff o, (Q,U).

5.2. Lie group structure on Diff5,,(Q,U). Unless stated otherwise, all symbols used
in this section retain the same meaning as in Section [5.1] In particular, we shall always
be working with a Riemannian orbifold (Q,U,p). First, we will prove that the Lie
group Diffo,1,(Q, U)o is independent of the choice of the atlases A, B and the local data
constructed in Section [5.1] Second, the construction does not depend on the choice of
the Riemannian orbifold metric on (Q,U). Having dealt with these preparations, an
application of the construction principle, Proposition [C.20, will yield a unique smooth
Lie group structure on Diffo,(Q,U). The strategy of the proof follows [29] where a
similar argument has been used to turn the diffeomorphism group of a manifold into a
Lie group.

LEMMA 5.13. The Lie group Diffo,,(Q,U)o constructed in Proposition depends nei-
ther on the choice of atlases A, B, nor on the local data collected in Construction[5.1]

Proof. Let AT and BT be orbifold atlases which satisfy the same properties as A and
B in Construction Replace A and B in the construction of Section with AT
and BT. Taking the Riemannian orbifold metric p as before, we obtain another con-
nected, smooth Lie group Difforb(Q,L{)(‘f depending on the new set of data. As shown
in Section there is a C*°-diffeomorphism Et, E*([6]) := [expo,,] © [6], mapping
the open convex zero-neighborhood H; (defined as in Proposition with respect to
AT and BT, the open subset H™ C Xom(Q). and the local data constructed for AT
and BT) onto an open identity-neighborhood in Diffo,,(Q,U)d. Then O = H; N H]
is an open, convex (and hence connected) zero-neighborhood in Xo,b(Q,U).. The map
E takes O diffeomorphically onto an open identity-neighborhood in Diffo,1,(Q,U ). As
Diff 5,1, (Q,U)o is a connected Lie group, E(O) generates this group by [37, Theorem
7.4]. Analogously, E* maps O diffeomorphically onto an open identity-neighborhood in
Diffo,1(Q,U)d which generates this group. Recall from Proposition that E([6]) =
[expoy] © [6]]F = ET([6]) for each [#] € O. Hence both maps coincide on O. We deduce
that Diffo,,(Q,U)o = (E(O)) = Diffo,,(Q,U){ as an abstract group and also as a Lie
group. m
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LEMMA 5.14. The Lie group Diffo,(Q,U)o constructed in Proposition does not
depend on the choice of the Riemannian orbifold metric p on (Q,U) (cf. Section[5.1).

Proof. Let p” be another Riemannian orbifold metric on (Q,%). By Lemma we may
use the same atlases A = {(U;,G;,¢;) | i € I} and B = {(W;,Hj,¢;) | j € J} asin
Construction[5.1] Reviewing this, the local data constructed in Construction [5.I(II)~(IV)
do not depend on the Riemannian orbifold metric. The constants R;, ¢ € I, and s;, .55,
j € J, in Construction H(V) change for p# = (p;%)je 7. The new constants depending
on p? will be denoted by RZ#, i€ I, and s?, SJ#, j € J (see Construction V) for their
properties).

Let [ex/po\rb#] be the Riemannian orbifold exponential map with respect to (Q,U, p?).
As in Section one constructs open zero-neighborhoods H# := Agl(@iel HR?) and

H# C M?#, which depend on the data in Construction I)—(IV), the constants RZ#7 i€
I and sf, SJ#, j € J, as well as on the Riemannian orbifold metric p?. Furthermore, we ob-
tain an injective map E# : M# — Diffo,,(Q, Z/l)#, a connected Lie group Dif'fOrb(Q,Z/{)Z;7£
= (P#) and a convex zero-neighborhood ”Hf C H#* C Xom(Q). such that

E* |0 HE - P* C Diffon(QU)F,  [6] = [P0 ] o [6]|7",
is a diffeomorphism onto an open identity—neighborhood

Fix some i € I and let F5(Ks,:) = {(V5',), % kol )) | 1 < n < N;} be the atlas of
Construction [5.1(IV) @ For each 1 < n < N; the Riemannian metrics induce pull-
back metrics Wlth respect to the manifold charts Iia(l) The charts /in 2 jnduce pullback
metrics on Bs(0) with respect to p,(;) and pa(i). For (V. (i) ()) 1<n< NZ7 the
associated Riemannian exponential maps will be denoted by expyy,_ il and expW ol
respectively. Flnally we define the local representatives of X € X(Wy;)) with respect to
k2 via Xpn) =X, 0 © (fﬂ%(Z )™t € C>=(B5(0),RY).

Observe that the open set Hp, in Construction [5.6] was obtained by Construction
D9} Reviewing Construction [D9] for 1 < n < N, real numbers &,,d, > 0 have
been chosen such that for each z € By(0), the map Ga(i)n),et B, (0) — Ry —
XDy, ) [n 1(z,y), is a diffeomorphism onto its open image which contains Bs, (0). Fur-
thermore, by Lemmathe choice of ,, yields the smooth map b : Ws, — B, (0),
ba(iy,[n) (T, ) 1= ¢a(1),[n .(y). Recall that e, < v; for 1 <n < N;. Here 1/z is the constant
constructed in Lemma [D.6| with respect to the finite family F5 (K ;). Thus the assertions
of Lemma hold. For each z € V" "a(i) 1 <n < N, there is an open set N, C T, W)

with the property
B, (559 (2)) € expuy, 11530 (0), B, (0) € w5 expy,
Observe that the neighborhood H R* has been obtained by another application of Con-

struction [D.9| with respect to a famlly of constants 7,07 > 0 for 1 <n < N;.

n

By Lemma ( ), we may choose constants 7 > E# > 0 for 1 <n < N; so small

1,n
that exp” . Kn N2)} x By is contained in Bj (kn " or x € or
h ot By (0 d in Bs, (kn(2)) f Vi F

(N,). (5.14.1)

()"

(*) To shorten our notation, we number all charts from 1 to some N; € N, i € I. It will
always be clear from the context which charts are meant.
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1 <n < N;, for each Eﬁn we choose a constant (5# > (5?%” > 0 which satisfies the assertion

of Lemma [D.3(b), with & replaced with E?R Apply Construction with R := RZ‘7E and
P = P# n PQ#N but replace the pairs (e, 67) with (61 o (5# ,,) to obtain an open zero-

n - n

Q5,5
neighborhood H 4 C HR;KO’Z~ Thus the map

Uy : Bg(0) X BE#n(O) — B, (0),  un(z,y) := bagi),n (@expﬁ,ﬂ(iw[n] (z,y)), (5.14.2)

makes sense and is smooth as a composition of smooth maps. By construction, we have
E?&n < ef < v#, where v# is the constant as in Lemma with respect to the finite
family F5 (K5 ;). Hence we deduce by Lemma b) from equations ([5.14.2)) and ([5.14.1))

that the map (E~1E#);: Hps — X( K, ), defined via

(E7YE#)(X)(z) := eXPyy, | pWa(l) oX(x) (5.14.3)

makes sense. In addition, we show that (E~'E#); is a smooth map. To see this, let 1 <
n < N; and recall that H» C X(Qs,x; ;) is open and F5(K5 ;) covers Qs g, ,. Hence for
1 <n < N;, the maps r,: %(95,;(5@) — C*°(B5(0),R%), X + X, form a patchwork by
Deﬁnition Analogously, the maps t,,: (1, x,,) — C®(B1(0),R?), X — X/, (0):
yield a patchwork for 1 < n < N;. Consider the open subset |B1(0), B ( Voo C
C>(B5(0),R%). For X € HR?& we obtain X, (B3(0)) C B (0) (cf. Constructlon w

and Lemma . Hence 7,(Hp#) C LBl(O),BE# (0)]oo- In addition, |27, Proposition
4.23(a)] with (5.14.2)) yields a smooth map ’

Un: [B1(0), B¢ (0)]oo = C*(B1(0),R?),  Un(0) i= (un)(0),

with (up)s(0)(z) := un(z, o(x)) for z € By(0). By (5.14.2), U,, maps the zero-map to the
zero-map. Evaluating (5.14.2) pointwise for (X,z) € H R# X M1 K., the local formula

(5.14-2) and Lemma[D.6[b) yield the identity t, o (B~ 1E#) = U, or,. Thus (E~1E#);
is a patched mapping which is smooth on the patches, whence (E~!E#); is smooth by

Proposition [C.17}

For each j € I, construct in the same manner an open set HR# C X(s,K,,) to-
gether with a smooth map (E~!E#);. Define HY = (resg/“( ) 1(HR#) C Hpx C
X(Wq(iy)- By Construction H#* = A" (Dyer H?) C ’H’#. For each [6] € }I#,
the family {(E‘lE#)i(UQ(MstKw) . tier is a family of vector fields. Since [6] is com-
pactly supported, only finitely many canonical lifts 0,(;) are non-zero. By standard Rie-

mannian geometry, the Riemannian exponential map composed with the zero-section
yields the identity. Hence shows that only finitely many of the vector fields
{(E7YE#)i(0ag)los, ws )| }161 w111 be non-zero. We claim that these vector fields form
a canonical family of an orbisection. If this is true, then these vector fields define a com-
pactly supported orbisection E~1E#([6]), whose lifts with respect to A are given by
{(EflE#)i(aa(i)\stKw) U, tier- On U; C Q4 4, these vector fields yield an orbisection if
the following is satisfied:
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Let [6]) € H? and X\ € Chw, w, be a change of charts which satisfies dom XA C Q1 ;
and cod A C Qq ; for some k = (i) and | = «(j). Then
TA(E*E#)i(Uk\QMW)|domA = (E*lE#)j(a”QS,Ks‘j) o\ (5.14.4)

The argument given in the proof of Lemma [5.7] may be repeated almost verbatim. We
check the identity (5.14.4) locally:

Choose some z € dom)\ C Q; and a chart (Vi k) € F5(K5;) with 2 € V{7, Again
there is some Z} with V%, C Z;. Asz € V") C K and A(x) € Ky, there is an embeddlng
of orbifold charts p: Z;, — W; with p(z) = )\(a:) After possibly composing p with a
suitable element of Hj, there is an open neighborhood U, of = in Z] with uly, = Av,,
and thus T, = T,\. Since p and p# are Riemannian orbifold metrics, each change of
orbifold charts in Chw, w, is a Riemannian embedding of its domain endowed with the
induced metrics into the Riemannian manifold (W, p;) and (W, pfk), respectively. By
construction of HZ# ,each X € Hz# satisfies

qu;jn]’x expkaw[n] X[”]”T(OLO <ep<R; foreachl<n<N;. (5.14.5)
Recall from Construction (V) the properties of R; and Si: The definitions imply
that Tu(E’lE#)i(akmsme)( k) C O; C dom expyy, for [6] € H#. Computing locally
on Vg, we use that /L(Hfb);l is a Riemannian embedding into W;. Again by [43, Ch. IV,
Proposition 2.6, the identity expyy, T'(u(ky) ") (v) = p(k};) ™" expyy, [, (v) holds for each
v € domexpyy, - The family {ox}res is a canonical family of lifts, whence oy =
T 1ok dom u- By definition of Hl# - ’Hth, for each z € Vg’)’k and X € Hl# the identity
Kk expv#vk oX(2) = expfka,[n] Trn,X(z) holds (cf. the proof of Lemma . Observe that

AMz) € Q1 and 0) € HJ# Combining these facts one computes:

expy, ToME™ B )i(0kl0s i, ) (@) = expy, To(u(ry) ™ w7 (expyy, IN) eXpW ok ()

p(rf) "t expyy, g TR (expyy, |n,) ™" exply, onla) 2 Mexpwk o)
(k) "texpl, o Triok(x) = exply, o1(p(x)) = exply, a1(A(@))
(5.14.3) _

I iy (B )01l M)

As x € K} and \(z) € Ok, ;, the definition of R; implies TI)\(E_IE#);C(JHQ&KM)(x)
€ O;. By construction of HJ#, we deduce that (E*IE#)J-(01|QS)K5’J_))\($) €Oy As expyy,
is injective on T, Wi N O, and z € dom )\ is arbitrary, this proves . We conclude
that the family of vector fields {(E~'E#);(ca()las, x5, )|Us ier is a family of canonical
lifts for a compactly supported orbisection E~1E#([5]).

Define E-1E#: H#* — Xom(Q)e, [6] — E~1E#([6]). Using the patchworks (\;);er
and (7;);er for Xom(Q). (see the proof of Lemma, a computation yields the identity

HY

E7'E*, el

resg (ETLE), 1"esQ ;{; v
We have already seen that (E~!E#); is smooth and (E~'E#);(0,;) = 0; for each i € I.

Qi ks, W,
By |27, Lemma F.15(a)|, the mappings resU,l'K"”'7 resg 2’) are smooth, whence E~'E#
i 5 K5,i
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is a patched mapping which is smooth on the patches. By Proposition E~'E# must
be smooth and therefore it is continuous. Using continuity, there is an open, connected
zero-neighborhood R# C ’H? N H# such that E~'E#(R#) C E~Y(P). Uniqueness of
canonical lifts proves that the canonical lift of E~'E#([6]) on W,;) coincides on U; with
(E7YE#) (00w las. K4 ) Recall the construction of the representative £7 of E([5]) in
Prop031tlon n Using (5.14.3)), for E(E~'E#([6])) and i € I the construction yields the
lifts expW iy T The same hfts are obtained if this construction is carried out with

respect to the Riemannian orbifold exponential map [exporb} As orblfold diffeomor-
phisms are uniquely determined by a family of lifts (cf. Corollary [2.11), E#([6]) = E o
(E~1E#)([6]) € E(E~Y(P)) = P for each [6] € R#. The set R¥ is an open and connected
zero-neighborhood contained in ’H#. Since Diffotb(Q,L{)# is connected, (E#(R#)) =
Diffo,1,(Q,U){ by |37, Theorem 7.4], which implies Diff o, (Q,U) € Diff o, (Q,U)o. In
particular, the inclusion morphism DiHOYb(Q,L{)O# — Diff o, (Q, U)o is smooth on the
open identity-neighborhood E#(R#), hence smooth by [10, Ch. III, §1, No. 2, Propo-
sition 4]. Reversing the roles of p and p#, one deduces that also Diffo,,(Q,U)s C
Diff o, (Q,U)¥ and the inclusion morphism Diff o, (Q, U)o — Diff o (Q,U)7 is smooth.
In conclusion, Diffo,1(Q, U)o and Diff o1, (Q,Z/I)# coincide as Lie groups. m

So far, we achieved that the Lie group structure on Diff o,1,(Q, U)o does neither depend
on the local data (the atlases A, B etc.) nor on the Riemannian orbifold metric. We exploit
these facts to prove that the requirements of Proposition b) are satisfied:

PROPOSITION 5.15. Let [¢p] € Diffou,(Q,U) be an arbitrary orbifold diffeomorphism.
Then for each [f] € Diff o,(Q, U)o we have [¢] o [f] o [¢]~! € Diffo,(Q, U)o and

gy Difforn(Q.U)o = Diffor(Q. U)o, [f1 = [é]o [f] o [4] 7",
is a smooth map.

Proof. The proof will be quite simple, after some preparations: Following Corollary
2.13(d), we may choose orbifold atlases V; := {(V}, Lt 7)) eU | ke K} €U, i € {1,2},
together with a representative ® = (¢, {¢x }rer, P,v) € Orb(Vy,V,) of [¢] such that
each ¢p: VI — V,f is a diffeomorphism. Furthermore, Corollary ensures that we may
choose P = Chy, and v(\) = ¢l)\¢;;1|¢k(dom x) for A€ CthngL

By Proposition[I.28|there are locally finite atlases A and B indexed by I and J, respec-
tively, which satisfy the properties of the atlases in Construction (I) In addition, there
isamap B: J — K such that W} is an open subset of V 3077 the 1nclu51on of sets induces an
embedding of orbifold charts and W; C V 50) is compact for each j € J. As a consequence
of Lemma we may construct Diffo,,(Q, U)o with respect to these atlases and the
Riemannian orbifold metric p. Thus there are open sets H1 C H := Az (P,;c; Hr,) and
a diffeomorphism El|z, onto an identity-neighborhood in Diff 6,1, (Q, U )o.

By construction, the inclusions of sets U; € W ;) C Vﬁl(a(i)) and ¢g(q(i)) are changes
of orbifold charts for each i € I. For i € I, the sets W"' = p(a(i))(Wa(iy) and Ut =
Psa(iy(Us) are Lﬁ(a(l)) -stable, open and relatively compact subsets of V B i) (cf. Lemma
2.9(a)). Define the following sets of orbifold charts for Q:

AT = {(U], G“ﬂ'ﬂa )|U+)|z€I} and Bt —{(W+ J,<pj —7"/33)|W+)|36J}
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The underlying map ¢ is a homeomorphism and each ¢y, is a diffeomorphism. Hence AT
and BT are orbifold atlases for ) such that UZ-+ C W;(i) for each ¢ € I, and the inclusions
of sets induce embeddings of orbifold charts. Since W;r is a relatively compact subset of
Vg( ) for each j € J, we deduce from the continuity of w%(j) and |22, Corollary 3.1.11]
that the image of each chart in A% and Bt is relatively compact. Exploiting that ¢ is a
homeomorphism, A* and BT are locally finite atlases, since the same holds for A and B.
Furthermore, by construction of A and B, for each connected component C C @, there is
a point z¢ which is only contained in the images of a unique pair of charts in A x 3. The
homeomorphism ¢ permutes the connected components of (), whence each z¢ is mapped
into a separate component. Each element of {¢(z¢) | C C Q a connected component} is
thus contained in the images of a unique pair in AT x BT such that the images of different
pairs are contained in different connected components. Summing up, the atlases A™ and
BT satisfy all properties required in Construction ).

As B is an atlas, a family of lifts for a representative of [QAS] is given by {®; :=
®8(j)lw, }jes- By construction, each of these lifts is a diffeomorphism and ®,¢;(U;) = Ut
for each i € I. Corollaryensures that {@;1} jeg is a family of lifts for a representative
of [¢]~* in Orb(B*, B). Observe that <I>j_1(Ui+) = U, for each i € a~1(j). Before we prove
the smoothness of o consider the following auxiliary maps:

Define t;: Hp, — X(U;"), X — T@a(i)XCD;(li)\U:r, for ¢ € I. For [6] € H, the family
{ti(04) }ier defines a family of vector fields. We show that these vector fields are a family of
canonical lifts of an orbisection: Let A € C hU,*,Uf be any change of charts with arbitrary
1,7 € 1. As noted above, p = (I);(lj))\q)a(i)Lb;(li)(dom ") is a change of charts in Chy, v,
and we compute

t(05) 0 A =Ta ()03 P ()t A = TPa ()75 1P ;) ldom A
= T(I)a(j)TMUi(I);(li)ldomA = TAt;(0;)|dom A-
The family {¢;(0;)}ics is a family of canonical lifts with respect to AT, whence it induces a
unique orbisection ¢([6]). By construction, ¢;(o;) will be the zero-section if ¢; is the zero-
section. Hence t([5]) is compactly supported and we obtain a map t: H — Xom(Q)e,
[6] — t([6]). Consider the patchwork induced by the maps

pi: Xom(Q)e = X(Wae)), pi([6]) = 0ag), and
¢ Xowm(Q)e — X(U), qi([0]) = oy, i€l
sending an orbisection to their canonical lifts. By construction of H (cf. Construction

, we have p;(H) C Hpg,. From ¢; o pi\ZR'i = ¢; ot we deduce that t is a patched
mapping. We claim that ¢; is smooth for each ¢ € I. This will imply the smoothness of ¢

by Proposition [C.17
To prove the claim, consider

Qs,K5,; -1
t;l HR@ 51y X((I)a(i)(Qg))K&i)% X — Tq)a(i)Xq)a(i)|‘I>a(71)(95,K5,i)7
‘Pa k3 Q Ky 4 a(i . . .
and note the identity t; = resU+< ) (Bouscs, )t; 1"esQW5 ? . Since the restriction maps are
i 15,1

smooth, it suffices to prove the smoothness of ¢;. By construction, 25 f , is covered by
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the finite family of manifold charts F5(Ks,:) = {(V5',), kol ) | 1 <n < N,;}. Hence the

sets V, (’;(r) Pai)(Vala) cover qi) (25, x.,). Set Ao = 2y a(z ‘Vncfm to obtain

a manifold atlas for @, (s k. ): Fo (Ks,) == {(VZ" i ),'yf{(l )| 1 <n < N;}. By Def-
inition there are finite families of linear continuous mappings 67, : X(Qs5,x5,) —
Ch (Vsna(l) R?), X — X, , and 92’(1_) FX(Pa(iy5,K5.,) — COC(VS";(_) Rd) Y =Y, , with
1 < n < N;. The family (eg(i))lgngm is a patchwork for X(Qs k. ,) and (0 (Jr))1<n<N

is a patchwork for X(® a(l)(Q5 Ks,;)) by Lemma [27, Lemma F.6]. As CID;(l.) is smooth,
the pullback C*° (<I>_( )| 5,7%”,Rd) is continuous linear and therefore smooth by [25]
Lemma 3.7]. A quick computatlon for 1 < n < N; yields the identity GZ(T) ot =
Cc> (@a( )| “naf) , ]Rd) o 92(1)' We conclude that t; is a patched mapping, which is smooth

on the patcheb ' whence smooth by Proposition

The orbifold diffeomorphism [(5]_1 induces a unique pullback metric p# = ([(5]_1)* p
on Q (cf. Lemma[L.8). Denote by p; the members of p on the orbifold charts (WJ, H;, ¢;),
j € J. The Riemannian metric associated to p# with respect to (W+ Hj, ¢; ), € J,
is given by the pullback metric pj = (Q>j )*p;. For j € J let exp;: Dj — W; be the
Riemannian exponential map with rebpect to (W;,p;) and expf: Df — W;' be the
exponential map with respect to (WJ s PF ) These pullback metrics turn éj,cbjfl into
Riemannian isometries and the map [(b] into an orbifold isometry. In particular we derive
T®,(D;) = Df and the exponential identity

D#
exp? (T®;)| ) = o exp; .
Let [6] be in H and consider e as in Proposition From the last identity we deduce
(I)a(i) oe’io (I)a(i)lUiJr = (I)a(i) expa(i) 0’1(1);(11) IU;F = expf(i) T(I)a(z)a'l(b;(lz) ‘Uf (5.15.1)
Combining Lemma with Lemmal[5.2] one may construct Diff o1, (Q,U)o with respect

to the atlases A+, BT and the Riemannian orbifold metric p#. Hence there are an open
connected zero-neighborhood H; C Xomb(Q). and a map

Ef: H} — Difforn(Q,U)o,  [6] = [expog,#] o Gl

Here [expg,,”] is the Riemannian orbifold exponential map associated to p*, whose
domain is Q#. The map E; is a diffeomorphism onto its image, which is an open identity-
neighborhood in Diffo,1,(Q,U)g. As t is smooth and thus continuous, there is an open
connected zero-neighborhood A C H; such that t(A) C H;

Recall from Corollary [2.11] that an orbifold diffeomorphism is uniquely determined by
the lifts of any of its representatives. Hence for [6] € H1 = E~1(P) (cf. Proposition,
the orbifold diffeomorphism [¢] o E([6]) o [¢]~" is uniquely determined by {®ayoe”io

(z)|U+}7fEI In Proposmon a representative of EZ ([6]) for [6] € H in Orb(AT, BY)

has been explicitly computed. Its lifts were given by {expa( ) 0T+ }26 1. Since the lifts

uniquely determine the diffeomorphism, equation (5.15.1)) implies ¢ J:]E ([6]) = E;t([&]) €

Diffo,5(Q, U)o for every [6] € A. In particular, c[dg]E(A) C Diffo,b(Q,U)o. The set E(A)
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is an open connected identity-neighborhood, whence it generates the connected Lie group

Diffo,5(Q,U)o by |37, Theorem 7.4]. Therefore () (Diffo,b(Q,U)o) = c[(l;](<E(A)>) -

+
Diffo,6(Q,U)o. We deduce from c[$]|E(A) = E; o t|IZ# o (E|E(A))*1 that the group au-
tomorphism () of Diffo,,(Q,U)o is smooth on the open identity-neighborhood E(A),
hence smooth by |10, Ch. III, §1, Proposition 4|. =

The preceding proposition shows that for each [¢], the conjugation map ¢; 3 is smooth
and maps Diff o, (Q, U)o to itself. All requirements of Proposition b) have been
checked. Applying this construction principle, we obtain a unique Lie group structure on
Diff o,1,(Q,U), turning Diff o,1,(Q, U)o into an open submanifold of Diffo,,(Q,U). Sum-
marizing the results, we obtain:

THEOREM 5.16. The group Diff o,(Q,U) can be made into a Lie group in a unique way
such that the following condition is satisfied:
For some Riemannian orbifold metric p on (Q,U), let [expo,] be the Riemannian

orbifold exponential map with domain Q. There exists an open zero-neighborhood H, in
Xom(Q). such that

[6] = [expoyp) © 6]
is a well-defined C*-diffeomorphism of H, onto an open submanifold of Diff o, (Q,U).
The condition is then satisfied for every Riemannian orbifold metric on (Q,U). The

identity component of Diffor,(Q,U) is the Lie group Diff o, (Q, U)o constructed in Sec-
tion 511

COROLLARY 5.17. If (Q,U) is a compact orbifold, then the Lie group Diff o,1,(Q,U) is a
Fréchet-Lie group.

Proof. If @Q is compact, then Xo,5(Q)e = Xor(Q) is a Fréchet space, by Corollary "

We now consider subgroups of Diffo,,(Q,U) which turn out to be Lie subgroups of
Diffo,5(Q,U).

DEFINITION 5.18. Let K C @ be a compact subset, and for an orbifold map [f] denote
its underlying map by f. Define the set of all orbifold diffeomorphisms whose support is
contained in K:

Diffor, (Q,U) i == {[f] € Diffor,(Q,U) | flo\x = idg\x }-
We also say that the elements of Diffo,,(Q,U)k coincide with the identity morphism
of Q off K.
Furthermore, we define the subset Diffo,1,(Q,U). C Diffo,1,(Q,U) of all orbifold dif-
feomorphisms, whose underlying map coincides with idg outside some compact set in Q.
Observe that the sets Diffo,,(Q,U) k and Diff 5,1, (Q,U).. are subgroups of Diff o,1,(Q,U).

REMARK 5.19. Notice that, by construction, Diff o,,(Q,U). contains Diff o, (Q, U )o. The
normal subgroup Diff o,,(Q,U). is therefore an open subgroup of Diffo,,(Q,U) by |37,
Theorem 5.5]. Hence it becomes a normal open Lie subgroup of Diff o, (Q,U).
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PROPOSITION 5.20. Fach compact subset K of Q is contained in a compact set L such
that the group Diffo,(Q,U)L is a closed Lie subgroup of Diffo,n(Q,U) modeled on

Xom(Q)rL-

Proof. We shall again use the notation of Section [5.1] The atlas A is locally finite and
the image of each chart in A is relatively compact. Thus there are only finitely many
charts (U;, Gy, ;) in A with v;(U;) N K # 0. Let I be the set indexing this family and
consider the closed set L := Q\U,cp\ 1, ¥i(Ui). By construction, K € L C Uy, ¥i(Ui),
whence L is a compact set. We claim that Diffo,,(Q,U)r is a closed Lie subgroup of
Diffo,5(Q,U) modeled on X0, (Q) L.

For each i € I\ Ik, choose a non-singular point z; € U;. By [41, Theorem 1.9.5|, we
may choose &; > 0 with expyy,_ (By, ;) (02;,6:)) N Hagy.xi = {z;}. By definition of the
topology on X(W;)), there is an open neighborhood R; C X(W,;)) of the zero-section
such that o € R; implies o(x;) € By, (0z;,¢€i). Define the open neighborhood of the
zero-orbisection

Ri= 0" (P Rie P XWa)) € Xom(Q)e.

i€I\Ik jeElK

Let [6] be an element of Hi N'R, where H; is the open zero-neighborhood defined in
Proposition Denote by {o;}icr the family of canonical lifts of [§] with respect
to A. Recall that F([5]) is a diffeomorphism, whose local lift with respect to (U;, G;,¢;),
i € I'\ Ik, is the map e% = exPyy, |Oa(i) o 0;. Furthermore, expyy, ‘Oa(i)m’TwWa(i)
diffeomorphism for each x € U;, which maps 0, to x. Since the canonical lift with respect
to (Ui, Gi, ;) of the zero-orbisection is the zero-section, we deduce that

EHiNRNXom(Q)r) € Diffor,(Q,U) L.

On the other hand, consider [6] € H; NR with E([5]) € Diffo,(Q,U) . The underlying
map of E([6]) coincides with idg on @ \ L. By construction, v¢;(U;) N L # 0 for each
i € I\ Ix. Hence @q; 0 €t = idg o 9; = ;. We deduce that e : U; — W(;) must
be an embedding of orbifold charts. Since the canonical inclusion U; — Wy(;) is an
embedding of orbifold charts by Construction [5.1(Id), Proposition [1.10[d) yields e =
hl|y, for some h € H,(;. Specializing to the non-singular point x; € Uj, this yields
e”(x;) = h(x;) € Hygy-wi. Since [6] is contained in R, we have o; € R;, and thus
e (z;) N Hoy-vi = {xi}. We obtain h(x;) = z;, and since z; is non-singular, h = idw,
follows. Thus e”* = idw,, , lv; and we deduce that o; must be the zero-section in X(U;).
Repeat the argument for each i € I'\ Ix. As Q\ L = U;ep 1, %i(Ui) by construction,
[6] is an element of X0, (Q)r. Summarizing the preceding results, we obtain

is a

E(H1NR)NDifforu(Q,U) = E(H1 N RN Xowm(Q)r)- (5.20.1)

Since P = E(H;) generates Diff o,1,(Q, U)o, we deduce that Diffo,,(Q,U) 1, is a Lie sub-
group of Diff o, (Q,U) modeled on Xo,1(Q)r. The space X0 (Q) 1 is a closed vector sub-
space of X (Q). by Lemma[3.27] Hence the identity implies that Diff o, (Q,U) L
is locally closed in the topological group Diff o,1,(Q,U), and thus the group Diff o,1,(Q,U) 1,
is a closed subgroup by [9, Ch. III, §2, No. 1, Proposition 4]. =
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For a trivial orbifold (i.e. a manifold) one need not refine the zero-neighborhood, i.e.
we can always choose K = L in Proposition for a trivial orbifold.

We are now in a position to consider the Lie group structure of the diffeomorphism
group of certain orbifolds with global chart.

ExAMPLE 5.21 (Equivariant diffeomorphism groups, cf. [58]). Let d € N and G be a
finite subgroup of the orthogonal group O(d) C Diff(R?) such that

(IS) The group G satisfies G, = {idga} for all z € R\ {0}.

Recall that for d odd, each element g of O(d) possesses at least one real eigenvalue ;. By
orthogonality we must have A\, € {—1,1}. If g € G \ {idga}, then (IS) implies \; = —1.
Then g2 is an element of G' with real eigenvalue 1. Again condition (IS) forces g = idgn,
and thus all eigenvalues of g must be 1 or —1. Using condition (IS), all eigenvalues of g
are —1 and we obtain g = —idga. Hence for odd d only G = {idga, —idga} or G = {idga}
are possible. We are interested in the non-trivial case, whence we assume for the rest of
this example that G # {idga}. In the special case d = 1 we obtain a “one-dimensional
mirror” (cf. Example [1.34)).

Let m: RY — R?/G be the quotient map onto the orbit space and @ := R%/G. Then
{(R?, G, 7)} is an atlas for @, turning the orbit space into a good orbifold with a global
chart. We denote by U the orbifold structure generated by this atlas.

Recall from Example that every diffeomorphism of R? which is a weak equivalence
with respect to the G-action induces a unique element in Diff o,1,(Q,U). The map which
associates to such a diffeomorphism the induced orbifold diffeomorphism is denoted by
A: Diff(R%) — Diffo,(Q,U). In |58, Corollary 7] we were able to prove that A is
surjective for an orbifold with global chart which satisfies (IS). Consider the subgroup of
Diff“(R%) whose elements coincide with the identity off some compact subset:

Diff¢ (R?) := {f € Diff(R?) | 3K C R? compact, f|ga\ g = idga\ i }-

Then A induces an isomorphism of groups A.: Diff(R?) — Diffo.,(Q,U). (see |58,
Lemma 9]). Via this isomorphism and the construction principle Diff% (R9) and
Diff’(R%) can be made into Lie groups modeled on X% (R?). Recall that in [28] the
group Diff (R?) has been endowed with the structure of a Lie group modeled on the space
X.(R%) of compactly supported vector fields. The Lie group Diff(R?) turns the subgroup
DiﬁG(Rd) into a closed Lie subgroup modeled on the space X&(RY). For the orbifolds
discussed in this example, the Lie group structure on Diff (R%) induced by Diff o (Q, U)
coincides with the strucure induced from the structure on Diff(R?) obtained in [28]. For
a proof of these facts, we refer to [57, Remark 8.0.8].

REMARK 5.22. As mentioned in the introduction, this is not the first work which con-
siders Lie group structures on the diffeomorphism group of an orbifold. In |7] and the
follow-up [8|, the diffeomorphism group of a compact orbifold was turned into a Fréchet—
Lie group in the sense of convenient differential calculus. We mention that the article |7]
contains several errors, making it unclear whether the methods outlined in |78 turn the
orbifold diffeomorphism group into a convenient Lie group. To illustrate our concerns, we
point out two serious problems in |7]:
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e Lemma 23 in |7] states that the local lifts of an orbifold map are independent of local
charts once the lifts are chosen. In particular, it is claimed that there is a unique
extension of a lift defined on an open subset of a chart. The assertion clarifies the
definition of an orbifold map proposed in |7]. However, the lemma is false, as there
may be several extensions to a lift. A counterexample can be obtained as follows: Let
R/(7y) be the orbifold induced by the action of the reflection ~ at the origin. Consider a
smooth map f: ]—1,3[ - R with f(¢) #O0ifand only ift €]0,1[U]2,3[. If ¢: R - R/G
is the global chart for this orbifold, go f is a continuous map, which induces a morphism
of orbifolds in the sense of [7]. In fact, we may choose for example f|;_; 1.5/ as a smooth
lift at 0. Clearly there are several possibilities to extend this lift smoothly to the pair
of charts |—1, 3[, R, thus contradicting the lemma.

o In [7, Definition 31|, the space of C"-orbifold morphisms C{ (01, 03) is endowed
with a topology. The topology is defined via the construction of a neighborhood base
following the classical construction of the C*°-Whitney topologies (cf. |38]). However,
the definition of the basic neighborhoods depends on a choice of lifts in the charts used.
To explain this point we need to recall details from [7, Definition 20|: Orbifold maps
are equivalence classes of underlying maps with an assortment of local lifts. Two maps
are equivalent if for each point z € @ their local lifts f, and g, at that point coincide
as germs in the preimage of x. Hence, if z is a singular point, one can have different
lifts whose germs coincide at x by composing an existing lift with an element in the
isotropy group of x.

Now the topology is defined on the equivalence classes of orbifold maps and should
thus be independent of the choice of lifts. Unfortunately, this is not the case in [7]:
In the definition of the neigborhoods the local lifts points are compared on relatively
compact-open subsets of their domains. As explained above (cf. also the first part of
the present remark) there are examples where we can arrange that equivalent lifts at
singular points do not coincide outside of a small neighborhood. As the lifts are not
uniquely determined, measuring their distance depends on the choice of lifts. Thus if
one ignores the local group, some maps will be in a given neighborhood, while maps
equivalent to them are not. Moreover, the description of the topology and especially
the distance defined in |7, Definition 36] are then dependent on the representative of
an equivalence class.

This topology is then used in |7] and [8] to obtain a topology on the diffeomorphism
group of a compact orbifold, which is supposed to turn this group into a convenient
Lie group.

5.3. The Lie algebra of Diffo,,(Q,U). In this section, the Lie algebra L(G) of the
group G := Diffo,1,(Q,U) constructed in Section will be determined. We stick to the
notation introduced in Sections and By construction, the map

E: xOrb(Q)c 2 Hl —P g Ga [6—] = [eXpOrb] ° [(}”Qa

is a diffeomorphism of the open zero-neighborhood H; to an open identity-neighborhood
P in G. Furthermore, £ maps Ooyb to id(g ) by Proposition @ We use the natural
isomorphism 7o, £ to identify Tiq , ,,,G with Xorb(Q)e = Too,, Xorb(Q)e-
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We modify the classical argument to compute the Lie algebra of the diffeomorphism
group of a compact manifold via the adjoint action by Milnor (see [49, pp. 1035-1036]).
To compute the Lie bracket, we have to understand the adjoint action of Tiq,,,G
on itself. Using the chart E, the product on G pulls back on the zero-neighborhood
{([6],[7]) € H1 x H1 | E([6]) o E([7]) € InE} C Xom(Q)e X Xorb(Q)e to a smooth
product operation

(6] [7] := E-1(B([6]) o E(7]).

By construction, [6] * 0o, = [6] = Ooyb *[0]s. Hence the constant term of the Taylor
series of * in (Ooyh, O0rb) (cf. [24) Proposition 1.17]) vanishes. Following |54, Example
I1.1.8], the Taylor series is given as

(6] [7] = ([6] + [7]) + (6], [7]) +--- -
Here b([0], [7]) = % |t,s:0 (t[o] = s[7]) is a continuous Xoyn(Q).-valued bilinear map and
the dots stand for terms of higher degree (cf. [33]). With arguments as in |49 p. 1036,

the adjoint action of T G on itself is given by

dq.u
ad([e])[7] = b([o], [7]) — b([7], [])-
In other words, the skew-symmetric part of the bilinear map b defines the adjoint ac-
tion.
By [49, Assertion 5.5] (or [54, Example 11.3.9]), the Lie algebra L(G) of G may be
identified with T;

d(g .1 G such that the Lie bracket coincides with the adjoint action:
[z,y] = ad(x)y.
To compute the Lie bracket [-,-], it is sufficient to compute the second derivative of the

local product operation in Xo,1(Q).. Consider the atlas A as in Constructiontogether
with the linear topological embedding A 4: Xom(Q)e = B,c; X(Us), [6] = (0i)icr, with
closed image. For fixed [6], [7] € X0 (Q)e, the map (t,s) — t[d] * s[7] factors through a
finite subproduct of the direct sum. Hence the derivative of s[§] x t[7] may be computed
from the derivatives of the canonical lifts (¢[] * s[7]);.

Recall from Lemma that for each pair [6],[7] € Hi, there is an orbisection
[007] € Xom(Q). such that E([oo7]) = E([6]) o E([#]). Returning for a moment to F
as a map on M as in Proposition [5.5] The mapping F is bijective, whence for i € I we
deduce that

(t[6] * s[7])i = (toa() @i 5Ta()|U;-
For the rest of the proof, fix ¢« € I and compute % |t,s:0(t0a(i) O sra(i))|Ui.

By construction, the vector field {0 ;) i $Ta(s) is defined on Q5,4 f; ;. As the restric-

tion map 1resUi/4 5 is continuous linear by [27, Lemma F.15(a)|, it commutes with the
differential,
esﬂ5/4’K5’i > to (i) Oi ST, » (toa(i) i STa(i))
U; a(i) Y1 STa(i) = [.a, a(i) i STa(i))|U; -
9s0t |, . 950t |, .

Thus it suffices to compute the derivative in X(€5,4.x, ,)-
The set {(1/57;47a(i),/€g(i)) | (‘g’}a(i),ni(“)) € F5(Ks,;} is finite and covers Q5,4 g, ,-
Hence the topology on the space X(€25/4,x,,) is induced by the linear embedding with
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closed image

T X(Qs/4,505,0) = 11 O (Vs o RY),
Vi )’“n( ))EFs(Ks.i)
X — (pry T,‘{O‘( )X Vi ))]_-5’K5,i7

where pr, is the linear projection onto the second component of Bs,4(0) x R?. Since

(/{ﬁ(i))*1|35/4(0) is a diffeomorphism onto ‘/'5’;4106(1.), the mapping

C=((K2 ) M By 000 RY) : C(Vihy iy RY) = C(Bs4(0),RY),
X—Xo (Hg(i))_1|35/4(0)a

is an isomorphism of topological vector spaces by [27, Lemma A.1]. We derive an embed-
ding of topological vector spaces with closed image (Cm((ng(l))*l |Bs,4(0)> R%) 7, (k5.0 0T -
Using this map, the derivative may be computed in A := Hfs(Ks ) C>(B5,4(0), R?). For
X € X(Wa), define Xp,) := pry Tn%(i)X(n%(i))’HBSM(O) € C°°(Bs/4(0), R%). The map
pr, is linear and each Tﬁ%(i) is linear in the vector space component. Hence the definition
of the vector space operations of X(W;)) shows that the identity (¢X),) = tX[,) holds
for each t € R and X € X(Wy ;).

To compute the derivative of (to,(;) ©i $7a(;)) in A, more information on (to,) ©i
STa(i))[n] is needed. Fortunately, by Construction a local formula is available. To

write it down explicitly, we need to recall notation and facts from the construction:

For each chart (Vsna(z) Kol ))

associated to the pullback metric with respect to mn(i) and the member of the orbifold
metric po;y on Wy ;). Recall from Constructlon - that for x € V) V4.a() there is an

let exp,, be the Riemannian exponential map on Bs(0)

open set N, C T, W, such that TFC»,L( )(N ) C domexp,, and exp,, restricts to an étale
embedding on this set (cf. Lemma . By Constructionn 6} for (toa(i)©i STa() )lQO/4 K
and each chart V77, ) the local idenfity (D-9.3). We wanf o keep track of the local chart

(V2y., k&) in which we construct a new vector field via the operation ¢ as in Construction
m Hence we write o, for ¢ in the chart (Vs"k, k). Using the notation introduced, the
identity (D.9.3) yields the following formula for 2 € Bs/4(0):
TH/ a(i )taa(z) i STa(l)( Q(Z)) 1(33) = (xv (taa(z))[n] O[n] (STa (2) )[n]( ))
= ( T, (eXpn|THg(i)(Nz)) 1expn (expn( :(8Ta @) (@ z)), (taa(z ) (eXpn(STa(i))[n] (CL‘))))
= (@, (exXPp | yn (y,)) XDy (€xD1 (2, 8(Ta(i) ) (2)), HOa(i)) 0] (€XP 5 (Ta (i) ) (2)))) -

Apply pry to the formula above to obtain the desired identity for (toa () i 5Ta(i))n]-
To simplify the notation, we abbreviate X := (04(i))in and Y := (74(;))n). Recall the
following properties of exp,, (cf. [41, Theorem 1.6.12]):

exp,,(¢,0) =z, dyexp,(x,0) =idgs, for all x € Bs/4(0).
Define M, = Tro® (N(mi‘”)—l(w)) C T, B5,4(0) for z € Bs;4(0). Since exp,, is injective
n (z,0) € Tra® (N.) with exp,, (z,0) = z and dsexp,,(z,0) = idga, we derive
d(exp,|ar,)) " (z,-) = idga.
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For 2 € B5/4(0), the facts collected above allow us to obtain

82
9501 t’szo(tO'a(i) O STa(i))[n] (m)
82
= (exp,, |, ) 'exp,, (exp, (z,sY (z)), tX (exp, (z, sY (z))))
0s0t |, .
= | dlexp,|n,) 5| exp, (exp,(z,sY (2)),tX (exp,(z,sY ())))
95|, Ot
0
= 3% d(exp,|a,) " (exp, (z, sY (z)), X (exp,, (z, sY (2)))). (5.22.1)
s=0

The map d(exp,, |y, ) ! is linear in the second argument. Hence the rule on partial deriva-

tives ((1.3.1) applied to (5.22.1) yields the following identity:
82

D50t (tﬂa(i) i STa(i) ) [n] (x)

= d(expylaa.) ™ (expn 0,000 5
@) 10
+d (expnle) % eXpn(‘ra SY(JJ)),X(QXP”(J?,O))
s=0

= dX(2,Y () + d? (exp,|ar,) " (2, Y (2), X (2))) .

t,s=0

expn(x,sY(z)))>

s=0

Sxy
The derivative d® (expn|THg(i>(N ))’1(:5, -,+) is a symmetric bilinear map by |24, Propo-
sition 1.13]. Hence Sxy is symmetric in X and Y. An analogous computation yields
62
Osot

(taa(i) i STa(i))[n] ($> = dY(.’L‘, X(.I')) + Sxv.

t,s=0

As C“(m%(i),Rd) is an isomorphism of topological vector spaces and evaluation at x is
continuous linear, ((ad([6])[7])a () is given by
82

R 0?
(@d([6D[TD a(i))m) (=) = 950 ts:o(toa(i)oism(i))[n] (@)= 5ear t,szo(twi)ois%(i))[n] (2)

= dX (Y (2)) = dY (X(2)) = (d(0a() ) (Ta@)) ] = A(Ta(@)) il (Ta)) ) (2)-
Recall from [54}, Definition 1.3.6] that the Lie bracket of vector fields V, W in X(Qs5 /4, ki)

is the unique vector field [V, W]; such that for each chart (VJ}, mz(i)) € F5(Ks,)
the identity

([ViW 1)) = AW Vin) — dVi) Wiy

is satisfied. By the above computation, the negative of the Lie bracket of the vector
fields o, (;) and 7, coincides with (ad([5])[7])a() on Qs/4,k,,- Since U; C Q54 k
the canonical lift (ad([6])[7]); on U; coincides with the negative of the Lie bracket of the
canonical lifts of o; and 7;. By abuse of notation, let [o;, 7;] be the Lie bracket of the lifts
in X(U;). The families {0, }icr and {7;};cs are families of canonical lifts of the orbisections
[6] and [7] with respect to the atlas A. Hence each pair of lifts o;, 0; (respectively 7;, 7;)
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fori,j € I is ¢-related for ¢ € Chy, v, (i.e. holds). By [49] Assertion 4.6], [0, 7;]
and [0}, 7;] are ¢-related for each ¢ € Chy, y, and every pair i, j € I. Hence ([o4, 7;])icr
is a family of canonical lifts for the compactly supported orbisection ad([6])[7]. The result
of this section may now be summarized as follows:

THEOREM 5.23 (Lie algebra of Diffo,,(Q,U)). Identify Tia,, ., Diffor(Q,U) via Tog,, E
with the space Xorm(Q). and the Lie algebra of Diff o, (Q,U) with (Xom(Q)e, [+ -]). The
Lie bracket [-,-] is defined as follows:

For arbitrary [6], [7] € Xom(Q)c, their Lie bracket [[6],[7]] is the unique compactly
supported orbisection whose canonical lift on an orbifold chart (U, G, ) is the negative of
the Lie bracket in X(U) of their canonical lifts oy and 1.

If the orbifold is trivial (i.e. a manifold), Theorem specializes to the well-known
description of the Lie algebra for the diffeomorphism group of a manifold (cf. [54, Example
11.3.14]).

5.4. Regularity properties of Diffo,,(Q,U). In this section, we prove that the Lie
group Diffo,1,(Q,U) is a regular Lie group in the sense of Milnor (cf. [49, Definition 7.6]).
Unless stated otherwise the notation from Sections (.1l and [(.2] will be used. Another
prerequisite is the definition of C*-regularity as outlined in Appendix The philosophy
in the proof of the Lie group properties for Diffo,,(Q,U) was to compute the relevant
data locally in orbifold charts. Hence we investigate the situation on orbifold charts,
where we study the flows of vector fields and their differentiability properties. Several
facts from the calculus of C™*-mappings (see Definition[L.6] cf. [2]) are needed. We study
the following differential equation:
REMARK 5.24. Define f: [0,1] x B5(0) x C"(]0,1],C*(B5(0),R%)) — R? via the assign-
ment f(t,z,7) := (¢, z) := v(t)(x) for r € Ny U {oo}. Consider the evaluation maps
e: C®(B5(0),R%) x B5(0) = R, ¢(0,z) := o(x),

e1: C([0,1],0°°(B5(0),RY)) x [0,1] — C*=(B5(0),R?Y),  (7,t) = y(t).
By |2 Proposition 3.20], € is smooth and ¢; is of class C°>". We may rewrite the map f
as

f(ta l‘,’}/) = 5(51(’Y>t)7x)'

Hence the chain rule [2, Lemma 3.17| implies that f is of class C™° with respect to the
product [0,1] x (Bs(0) x C"([0,1], C>(Bs5(0),R%))).
Thus the initial value problem
"(t) = f(t,z(t =Nt z(t
#(0) = F(t,2(0),7) =70, 2(0), .
x(to) =T, X0 € B5(0),

admits a unique maximal solution ¢ 4, by |2, Theorem 5.6]. Fixing ¢, = 0, the flow of

(5.24.1),
FIf := FI/(0,-): [0,1] x (Bs(0) x C"([0,1],C>(B5(0),R?))) 2 Qp — RY,
(tv (J?o, 7)) = @0,33077@)’
is of class C™"1:° on the open subset {2y by |2, Proposition 5.9].
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LEMMA 5.25. Let r € Ng U {oo}, v € C7([0,1],C>®(B5(0),R%)) and consider f as in
Remark [5.24].

(a) If ~ satisfies ||’y(t)||m70 <1 for allt € [0,1], then the map Flg(-,r}/), is defined on
[0,1] x B3(0) and F1([0,1] x B3(0) x {}) C B4(0).

(b) Consider ¢ > 0 and a compact subset K C Bs(0). There exists 0 < 7 < 1 such that
for all v € C([0,1],C>(B5(0),R%)) with Supt€[0,1]||7(t)“m71 < 7 (¢f. Definition
[C.7), we have |[FY(t, ) — idpyo)ll.1 < C for ali t € [0,1].

(¢) For 7 as in (b) and B,(0) := {f € C*°(B5(0),RY) | ||f||ﬁ(0)70 < 7}, we obtain a
smooth map

F: 07((0,1], B-(0)) = C™([0,1], C>(B3(0),RY)), 7 = FI(-,7)

[0,1]x B3(0)-

Proof. (a) For 2y € B3(0), the maximal solution to the initial value problem
is the mapping Flg(-,xoﬁ). We claim that it is defined at least on [0,1]. Restrict-
ing Flg , we obtain the maximal solution to the initial value problem whose image
remains inside By (0): Denote this solution by w: [0,t9] — B4(0). Then u is of class C.
If to < 1, we deduce from the Fundamental Theorem of Calculus |24, Theorem 1.5]
that

(@) < ()] + H / s u(s)) ds

<lzol| +1=:p < 4.

Therefore uljg4,[ does not leave the compact subset B,(0) C B4(0). Close to to, the
right hand side of the differential equation is defined on an open subset of a
finite-dimensional Banach space, whence by [31, Lemma 3.11], C*-maps coincide with the
k-times continuously Fréchet differentiable maps considered in [45]. One may therefore
apply [45, Ch. IV, Theorem 2.3|: The maximal solution must be defined on an interval
strictly larger than [0, o[, thus contradicting the choice of ty. We conclude that FIf (-, )
maps [0, 1] x B3(0) into B4(0).

(b) Observe that Flg(-,'y) is of class C"t1>° by Remark By |2, Lemma 3.15]
Flg (-,7) is a C'-mapping, whence the derivatives required for ||| exist. The mapping
h:[0,1] x B3(0) — RY, h(t,z) := 'yA(t,Flg(t, x,7)), is of class C™° by the chain rule [2,
Lemma 3.19]. Fix = € Bs(0) and consider g: [0,1] — L(R?), g(t) := dy FIJ(t,2,7; ).
Schwarz’ theorem |2, Proposition 3.6 and Remark 3.7] implies that g is a solution to

{y'(t) = doy (8, F1} (t,2,7); ) 0 (1),
y(O) = ide.

The domain of v"(t,-) is an open subset of R¢. Hence the derivative doy™(t, ;) is

(5.25.1)

determined by the Jacobian matrix. As all norms on R? are equivalent, there is a con-
stant C' > 0, depending only on d and the choice of norm such that ||doy" (¢, z;)||op <
C'sup|q|=1 |0%v"(t,z)|| with partial derivatives in the z-variable. Furthermore, F1J(-,~)
maps [0, 1] x B5(0) into B4(0) by (a), and H'Hm,l controls the partial derivatives. Hence
the above estimate yields

sup [lday (61 (6, 2,7); )lop < sup. Clv(0) s
t€[0,1] t€[0,1]
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Vice versa, there is a constant ¢ > 0, depending only on the norm and d such that

sup sup [[0%(FIf (£,-,7) — idga) (@)[| < sup clg(t) = g(0)][op-
te(0,1] |a|=1 te[0,1]

Let 6 > 0 be an upper bound for sup,¢(g 1) C’H'y(t)Hm .- The mapping g is of class C*,
whence the Fundamental Theorem of Calculus [24, Theorem 1.5] yields:

nmw—mwmp=mawmmH@=HAdw%am&aawm@»m

/wmmw@f/<MMMMwmw®fwwm»@
/mmmmw+/mm — idgallop ds

= 0t+/ 0)|g(s) — idga|lop ds.
0
Apply Gronwall’s inequality [3, 6.1 Gronwall’s lemmal] to choose 1 > 71 /C > 0 such that

SuPte[o,l]H“Y(t)Hm,l < 11/C implies

sup sup [|0%(F1 (t,-,~) — idga)(z)]| < sup ¢|lg(t) — g(0)[|op < C. (5.25.2)
te(0,1] |a|=1 t€(0,1]

Observe that the estimate ((5.25.2)) holds for each x € Bs(0), as the constants did not
depend on x. We have to obtain an estimate for Flg : The Fundamental Theorem of
Calculus |24, Theorem 1.5] with equation (5.24.1)) yields for x € Bs(0):

t
/ 7"(8, Fl (s,2,7)) ds|).

0
Now we require sup;c(o 1[|7(t)[|1 5,5y, < ¢ to obtain the following estimate:

sup [|F1f (¢, 2,7) — idp, (o) (2)] < ¢.
tefo,1]

Thus 7 := min{¢,71/C, 1} is a constant with the desired properties.

(c) Let 7 € Ng U {0}, X be a Fréchet space and U C R an open subset. By Remark
each of the topological spaces [0, 1], C"([0,1], X) and C"(U, X) is metrizable. The set
C"([0,1], B-(0)) is an open subset of the Fréchet space C” ([0, 1], C°°(B5(0),R%)) (cf. |25}
Lemma 3.6]), hence metrizable. Therefore each finite Cartesian product of these spaces
is a k-space by [21, Ch. XI, 9.3] and we may use the Exponential Law for C™*-maps
(cf. |2, Theorem 3.28(e)]): Since Fl£(~,'y) is of class C"*1:°° we deduce that F(v) is in
C™1(]0,1],C>=(B3(0), R?)). Hence F makes sense and we claim that F is smooth.

By Remark F1J is of class C"1°° on the product [0,1] x (Bs(0) x C"([0,1], B,(0))).
The Exponential Law implies that

(F10)¥: 0,1] = C=(B5(0) x C7([0,1], B-(0)), ¢+ ((,7) = FIj(t,2,7)).
is a C™-map. Now (F1})V coincides with the map
(FI7)T: [0,1] = C=(C7([0,1], B(0)) x Bs(0),R?), ¢+ ((v,2) = FI(t,2,7)),
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except for the inessential order of z and 7. Combine the Exponential Law with |2, Lemma
3.22] to establish the isomorphism

P: C™ (CT([Oa 1]7BT(0))7COO(B3(O)’Rd)) — 0™ (CT([Oa 1]7BT(0)) X B3(0)7Rd)’

via f ~ f". Then another application of the Exponential Law shows that (F") :=
(@ 1((F1)1)): [0,1] = C>=(C"(]0,1], B-(0)), C>°(B3(0),R%)) is a mapping of class C™+1.
Evaluating (F)" at (t,7) € [0,1] x C([0, 1], B, (0)) the definition yields (F")(t)(y) =
F"(~,t). Hence by |2 Corollary 3.8] and the Exponential Law, the map F”: C"([0,1],
B,(0)) x [0,1] — C>=(B3(0),R%), (y,t) = F(y)(t), is a C>"+l-map. By |2, Theorem
3.28(e)], this proves F' to be a smooth map. m

To prove the (C°-)regularity of Diffo,1,(Q,U), we have to construct a smooth evolution
map C°([0, 1], Xorb(Q)e) — Diffo,(Q,U). We will ensure the smoothness of all relevant
maps via patched mapping arguments. These are prepared by the following preliminary
lemma.

LEMMA 5.26. Consider r € NgU{oo}, and fory € C"([0,1], X(Wq(s))) and (V5 (i)’ a(l))
= .7:5(K51) define the C"-curves 7, ati) 1= 0 o) © Y (¢f. Definition and V) -

C>((kn )) ,R%)oy oty - For each i € I, there is an open Cl- nezghborhood E'C X(Wam))
of the zero-section such that the following hold:

(a) For~ e C"([0,1],€"), we obtain a map e(y) € C™([0,1], X(Q2,k,..)), defined locally
for (t,z) € [0,1] x V3!, ;) via

e(7)(t)(z) = (expy,,, [n.) "' o (kD) 0 FIJ (£, 52 (2), 7)) (5.26.1)
for f as in Remark and N as in Lemma @ Furthermore, for Sy as in
Construction5.1(V) and (t,z) € [0,1] x V', 4,

expw,, 0 e()()(@) € Vi and  e(3)(t)() € By, (On, Sagw).  (5.26.2)

(b) For each v € C™([0,1],E%), the map e(v)(0) is the zero-section in X(Qo k). If 7 is
the constant map v = Ow,,,, then e(v)(t) is the zero-section for each t € [0, 1].
(¢) The following maps are smooth:

Wi : CT([Ov 1}7 gz) — Cr+1([07 1]7 x(QQ,Ks,i))7 0 8as 6(7)7
0;: C7([0,1],€7) = X(Q2,x5,.), v = e(y) (D).
Proof. The set F5(Ks;) is finite, whence by Lemma[D.6|(a), we can choose and fix v > 0

with the following properties: For each y € €4 k; ,, the map expy, o is injective on

N, = U (TrSDN) (k2D ()} x B,(0)),

(VE::La(i)’Hz(l))EIy

where I, = {(V',: nz(i)) € F5(Ks,) |z € m} Lemma.(b holds for the exponen-
tial maps exp,, associated to the pullback metric on B5(0) with respect to p,(;) and K ()

Consider ( Vi) B ) € F5(K5,). By Lemma there are constants e, > 0 and
1> 4, > 0 such that a““ B4(0) x B, (0) — Ban(()x) " (@,y) = expulpl o) (@+y),
is a smooth map. Shrinking &,,,d,,, without loss of generality &, < mm{R,,u} for the
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constant R; from Construction V). Recall that /ﬁ%(i)(nga(i)) = Bs5(0), whence by
Lemma b) there is a constant 0 < 7,, < 1 such that for v € C" ([0, 1], C*°(B5(0),R%))
with sup;ego 11[17(0) 567,10 < T, one has

sup [[F1f (¢, %) — idp, o)l 5571 < On- (5.26.3)
t€(0,1]

Observe that 6,, < 1 together with (5.26.3]) implies Flg(t, -,7)(B2(0)) € Bs(0). Consider
the open zero-neighborhood E,, := {f € C*°(B5(0),R?) | I/l z;@,1 < ™}, and let

£l = {0 € X(.,,) | 01y = prs 0 THED 0 50 (k50 € )

be the open neighborhood of the zero-section in X({s k, ,) induced by FE,. Repeating
this construction, we obtain open neighborhoods of the zero-map and the zero-section,
respectively, for each chart in F5 (K ;). Let Vi := (£, g, ,) & C X(Q5,k,.,). We show that

the open zero-neighborhood £% := (resg/ (0 )‘1(%) C X(W,(;)) satisfies the assertion.
(a) Consider v € C7([0,1],V;) and (V7' ;) & a(l)) € F5(Ks,). The map h,, sending
Y(t) to yp(t) for ¢ € [0,1] is continuous linear by |27, Lemmas F.6, 4.11]. We deduce
from [34, Lemma 1.2] that
(hn)* : CT([()’ 1], %(95,1{5,1')) - CT([O7 1]7 COO(B5(0)7Rd))7 7 = Vinl
is continuous linear. Since y € Vi, we have v ) € C"([0,1], E,). By construction,

(15.26.3) holds, af{(i is smooth and FIO( 25 Vn]) @ Crt1:>_mapping by Remark |5.24, By
the Exponential Law |2, Theorem 3.28(e)], a map in C"1(]0, 1], C>°(B2(0), Rd)) may be
defined via

e(Mn(t) = a3 o (idpy(0), FI) (£, 1) — idpyy), € [0,1]. (5.26.4)
Observe that e(y),(t)(B2(0)) C B, (0) for each t € [0,1]. The construction may be

repeated for each chart in F5(K5 ;). As €, < min{v, R;}, we obtain by definition of v and
R; for (t,z) € [0,1] x By(0):

T(/{g(i))fl (x, e(y)n(t) (x)) € N(K%(i))fl(x) N Bpa(i) (O(Rﬁ(i)),l(x), Sa(i)). (5.26.5)
By Lemma b), the formula (5.26.4)) is equivalent to the right hand side of (5.26.1)).

From the uniqueness of the flow F1j (-, 77,,7), we deduce that the mappings e(7y),, coincide on

the intersections of their domains, whence we obtain a map e(y) € C"*([0,1], X(Q2,x, ,))-

The local representative of this time-dependent vector field on (‘/5”0((h a(® ) € F5(K5,)
D-6(b)

is e(y)n. For x € V3l o(iy> the formula of e(v)n together with Lemma allows us to

compute
(expyy, ., Iv.) 0 e(N(B) (@) = (rg™) " expre(1)n (1) (@ (2))
= kSO FY (t, 5 (@), V) € Vi'ae)-

Furthermore, (5.26.5)) shows that the estimate (5.26.2)) holds. The map resg/;? is con-
5,4

tinuous linear by |27, Lemma F.15|, whence

(resg, ) Yo C7([0,1], X(Wegy) = €7 (10,1), X(2s.16,.,))
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is continuous linear by |34, Lemma 1.2]. Assign to a map v € C"([0,1],&?) the vector

W, Wai :
field e(resq ", @ ( )). By abuse of notation, we will omit res, """ from now on, i.e. for
5, K5 i

~v e C7 ([0, 1] 5 ) we have e('y) = e(resQW“? (7).
(b) The map Flf (kK ( Yn)) is a solution to the initial value problem (5.24.1))

);
with initial value Flf(O ko (33) Vn]) = n%(i)(x). From (5.26.1) we obtain the identity
e(M0)(x) = (expyw,, In,)7"

(x ) = 0, since expy,  (0;) = = and on N, the map
expyy, ., 1S injective. If Y] = 0, its flow is defined as Flg(tmg(i)(x),O) = ng(i)(ac).

Analogous to the previous argument, e(v)(t) is the zero-section for each t € [0, 1].

(c) We prove the smoothness of w?, §* via a patched mapping argument. To this end,
for s € [1, 5] consider the continuous linear maps

Py %(Qs Ks.) = C(Bs(0),RY), 0 0 a0 (k5)7!

s(0)

By Definition (pn)(vn RSV EF (K5 0 is a topological embedding with closed
image. Thus Lemm m yields a topological embedding with closed image
P C7(0.1. X)) = €D CT([0,1),CF(Bu(0).RY), v+ (9 07k
F5(Ks,i)

Consider the maps h': C"([0,1],V;) — C™1([0,1], X(Qs,k,.,)), ¥ — e(7). We claim that
there are smooth maps D,, such that the following diagram is commutative:

W, (s
(i)
rch

([0, 1, € —=% €7([0, 1], Vi) CTH([0, 1], X(Qe,x5.,))

p‘{ lpf

D (0,11, E) E @ (0,11, ¢ (B (0), RY)

Fs(Ks,i) F5(Ks,i)

hi

Observe that the vertical arrows are given by embeddings with closed image and compo-
sition in the upper row yields w; = h’ o res. Since res is a smooth map, w; will be smooth
if b is smooth. If the claim is true, then by Proposition ht and thus w; will be
smooth. Consider the open sets | B2(0), Bs, (0) |oo € C°(B3(0), R?) and define

(an™).: | B2(0), Bs, (0)] o — C=(B2(0),RY),  (an®).(g)(x) := ap@ (2, g(2)).

By [27, Proposition 4.23(a)], (a5"), is smooth, since a2’ is smooth. Now we define

a smooth map F,: C"([0,1], E,) — C"*1([0,1], C*>°(B3(0),R%)) by setting F,(y)(t) :=
i

n
Flg (t, -, Y)|Bs0) —1dBy(0), t € [0,1] (Lemma [5.25(and the definition of E,,). The estimate

[0,
(5:263) yields F,(+)([0,1]) C [B2(0), Bs, (0)]
Thus (an ())* o FA C7([0,1], E,) x [0,1] = C°(B2(0),R9) is a C°*"+L-map by the
Exponential Law |2, Theorem 3.28(e)] and |2, Lemma 3.18]. Apply [2, Corollary 3.8 and
Theorem 3.28(e)] to obtain a smooth map:
D,,: C([0,1], E,,) — C™1([0,1], C°°(B2(0), R%)),

7= (@ @)e 0 )Y (7) = (an™)s 0 Fu(),
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with D,,(0) = 0. A computation with and Lemmab) shows that @ 7, x, ,)Dn
makes the above diagram commutative. By |2, Proposition 2.20], we consider the eval-
uation e1: C"H([0,1], X(Q2 k,,)) — X(Q,k,.), ¥ — ~7(1). Since &1 is smooth and
0; = &1 ow;j, 0; is smooth. m

LEMMA 5.27. In the setting of Lemma define the open set £ := Ac_l(@iel &Y C
X0 (Q)., where C is the orbifold atlas introduced in Remark . Let r € Ng U {oc0}. For
eachi € I and~y € CT([Oa 1]7 xOrb(Q)c)} we deﬁne Yal(i): [07 1] - X(Wa(z))’ t— (’Y(t))a(i);
where (Y(t))a(i) 5 the canonical lift of v(t) with respect to the chart (Wy (), Ha(), Pa(i))-

(a) If vy € C7([0,1], Xorb(Q)c), then the map yo(; is of class C” and for i € I, the map
pi: CT([0,1], Xom(Q)e) — CT([0,1], X(Wa(i)))s ¥ = Ya(i), i85 continuous linear.

(b) For each v € C"([0,1],&), we obtain a path e(y) € C™([0,1], Xom(Q).) whose
canonical lifts with respect to A are given by e(p;(y))|u, fori € 1.

Proof. (a) Pick y€ C" ([0, 1], Xor(Q).). By construction, Ac oy € C"([0, 1], P, c; X(Wai)))
has compact image. Arguing as in the proof of Lemma [C.I5] v induces a family of maps
(Ya(i))ier € @, CT([0,1], X(Wy;))). Recall from Definition of the c.s. orbisection
topology that each map 7w, ,, : Xorb(Q)e = X(Wa(i), [6] — OW,;» is continuous linear.
By [34, Lemma 1.2], p; is a continuous linear map, as p; = (1w, ,, )«-

(b) Consider the family of time-dependent vector fields (s +— e(Va(i))(8)|v; )ier con-
structed in Lemma a). We claim that for fixed s € [0, 1], these vector fields are a
canonical family of lifts of an orbisection. It is sufficient to check the following stronger
condition:

For alli,j € I and any change of charts pu: Q2 k., 2 domp — codp C Qs g, ;, we
have e(va(;))(s) © i =T o e(Ya(i))(5)dom -

We check the condition locally:

Pick x € dom y together with charts (V7' ), n'f{(i)) € F5(Ks,) and (V57 H%L(j)) €

F5(Ks,;) such that z € V', ;) and u(zx) € Valai) € Q2,5 Since Y43 € & (5.26.3)
yields maps

P [07 1] - VvST,La(i)a t—= (Kzg(i))il Fl(];(t7 Hg(i) (x)?’Y(X(i)[TL])a
Pu(z)* [0’ 1] - ‘/?)??L(j)’ t— (’%%’L(j))il Flg(ta R%L(j)(m% rYoc(])[m])

These maps are C'-integral curves for the (time-dependent) vector field Ya(i) With ini-
tial condition ¢, (0) = x and for v, with ©,4)(0) = u(x), respectively (using the
terminology of [45, Ch. IV, §2]). The charts in F5(K5 4(;)) are contained in some Zg(i),
by Construction Since x € Ky and p(x) € Ky, there is a change of charts
At Zy gy = Wagg) with A(z) = p(z). Composing A with a suitable element of H,(jy,
without loss of generality there is an open neighborhood U, of x with uly, = Mu,-
The set nga(i) is contained in dom A, whence A o o, : [0,1] — W) defines a C'-curve
such that A o ¢,(0) = XNz) = p(z) € Qyk,,. For fixed t € [0,1], the vector fields
Ya(iy(t) and v4(;)(t) are members of a canonical family of lifts of an orbisection, i.e.
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Ya()(t) © A = TAYa()(t)|dom - We compute
9 )
o) (O2(0) = TNt (22 (0) = TA( 51 ) (0 = 500 2) (0

Thus the C'-curve A o ¢, is an integral curve for the time-dependent vector field Ya(j)
with initial condition A o ¢,(0) = A(xz) = p(x). On the other hand, the same is true
for the C'-curve ©u(z)- As integral curves for (time-dependent) vector fields are unique
(cf. [45, Ch. IV, Theorem 2.1] with [45, p. 71]), we derive A o @, = ©;(q)-
Computing locally, we exploit that Ao (mff(i))_l is a Riemannian embedding of Bs(0)
into W(;). In particular, by [43, Ch. IV, Proposition 2.6],
eXpyy, T()\(n%(i))_l)(v) = Ar2D)Lexp, (v), Vv € domexp, .
Notably, the estimates (5.26.2) and (5.26.5) hold. With Lemma [D.6|b) and the identity
(5.26.1)) for e(va(iy) on [0,1] x VQ’fa(i), one deduces from the above identity that
eXPw.,, T)\e(fya(i))(s)(x) = eXpW ) T)‘(T"fa(i))_1T"f%(i)€(’7a(i))(5)(95)
A @) exp, TryWe(vam) ) (5) (@)
_ )\( a(z)) 1 a(z)expw ol ('Ya(i))(s)(l')
Ak @) FI (s, 50 (%), Yai) n])
= Ao SD:L’( ) = @u(m)( )

On the other hand, the local formula (5.26.1)) for e(vq4(;)) on [0,1] x V;’;(J) implies

exB, ) 0 ra)()((E)) = Gute(5) = XDy, TA(ra(6)(5) (@)

By construction, A(z) = u(z) € K3. Moreover, the mappings e(va(;j))(s) and e(ya(i))(s)
are vector fields which satisfy the estimate (5.26.2). Together with these facts, the defi-
nition of the constants (cf. Construction [5.1(V)) yields

e(Ya())(8) (1(2)), TAe(Ya(i))(5)(@) € By, 0u(a)s Sa() € Oaij)-

The map expyy, . is injective on Oa(j) N T2y Wa(s)- Hence e(va(j))(s) o u(x) = T o
e(Va(i))(s)(z), thus proving the claim. Since U; is contained in Qs g, ,, we deduce that
the family (e(7Va(:))(8)|v; )ier is a canonical family for an orbisection. Thus Remark a)
shows that this family induces an orbisection e()(s). Observe that A¢ o ([0, 1]) factors
through a finite subset of C by |11, Ch. III, §1, No. 4, Proposition 5]. We derive from
Lemma b) that there are only finitely many members of (e(ya(i))(s))icr which are
not the zero-section. Assume that the finite subset F' C I satisfies e(ya(:)) ()|, # Ov, if
and only if i € F. Then supp [e(7)(5)] € U,;cr Pati)(Wagi)- Since each @q i) (Way) is a
relatively compact subset of @, the orbisection [e(7)(s)] is compactly supported.

We are left to prove that the assignment [0,1] = Xom(Q)e, s — e(7)(s), is of class
C™*1. Identify Xom(Q). via Ay with a sequentially closed subspace of @,.; X(U;). It
suffices to prove that A 4oe(v) is contained in C"+1([0,1], @, ; X(U;)). The path A 4oe(y)
factors through the inclusion @, p X(U;) — @,c; X(U;). Each component is given by
the C"1-path t — e(p;(7))(t)|v,, whence A4 o e(v) is a path of class C"! as a map to

D, X(U). =
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To ensure the smoothness of the evolution map on the Lie group, we exploit the
patched locally convex structure of Xou,(Q)e. Unfortunately C”([0, 1], Xorb(Q).) will
inherit this structure only if Xo.1,(Q). is countably patched (cf. Lemma. To ensure
this condition, we require:

CONVENTIONS 5.28. For the rest of this section, we let @ be a o-compact (or second
countable) topological space.

LEMMA 5.29. Let Q be a o-compact space and r € Ng. The maps

w: C7([0,1,&) = C™H([0,1], X0 (Q)e), v+ e(y),
evol: C7([0,1],€) = Xom(Q)e, v = e(y)(1),

are smooth and map the constant path v = 0oy, to itself and to 00,1, Tespectively.

Proof. The topological space @) is o-compact and A, C are locally finite, whence [ is count-
able. Corollary c) shows that the mappings A4, A¢ turn Xo.h(Q). into a patched
locally convex space. As r < oo, the spaces @,.; C"([0,1],X(U;)) and C™*1([0,1],
P, X(U;)) are isomorphic by the proof of Lemma The same is true if we replace
each U; with W, ;). For A as in Construction [52' and C as in Remark @ we identify
these spaces to consider the mappings

PA: CT+1([O7 1]7 xOrb(Q)c) — @ CT+1([O7 1]a x(Ul))7 0 s A.A oy = (’YUi)iEI7
il
Pe: C([0,1], X0 (Q)e) = D CT([0,1], X(Waii)), v+ Acoy = (Yaw)ier-
el
An application of Lemma[C.15| proves that: P4 and P¢ are linear topological embeddings

with closed image, whose components form patchworks, for C"*1([0,1], X0,5(Q).) and
C7([0,1], Xorb(Q)c), respectively. The maps w and evol are well-defined by Lemmal|5.27|(b)

Q2 k5 ;

and we claim that they are smooth. For i € I, let res;, " : X(Q2,k; ;) — X(U;) be the
restriction map. These mappings are linear and continuous by |27, Lemma F.15(a)]. Thus

ri = C" ([0, 1], resgf’Ks'i) is continuous and linear by [34, Lemma 1.2|, hence a smooth
map. For i € I, consider the smooth map w; defined in Lemma By Lemma [5.26{(b)
the smooth map r; o w; maps the constant path v = OWW) to the constant path whose
image is the zero-section. From the definitions we obtain

(Priow)orldgns ™ ) = Aw. (5.29.1)
el
Hence w is smooth on the patches, and we deduce from with Proposition
that w is a smooth map. As the evaluation map evy: C"1([0,1], X0 (Q)e) — Xom(Q)e,
v = (1), is smooth (cf. |2, Proposition 3.20]), the smoothness of evol follows from
evy ow = evol. The last assertion is a direct consequence of Lemma [5.26{b). =

LEMMA 5.30. Let H, € Xom(Q)c be the open zero-neighborhood of Theorem . Con-
sider an open identity-neighborhood S C E(H,) which is symmetric, i.e. S = S™1.
There is an open subset 0o,y € R C & C Xow(Q). such that w(CT([0,1],R)) C
CTt([0,1], E71(S)).
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Proof. Consider the C%-neighborhood of the constant path 7o, = 00rb:
C"([0,1], E7HS)) == C°([0,1], E~Y(S)) N C™ ([0, 1], o (Q)e).

Specializing to r = 0 in Lemma we see that w: C°([0,1],&) — C1([0,1], X0 (Q).)
is smooth with w(v0,,,) = Y00, Then w=H(C([0,1], E7L(S))) € C°([0,1],€) is an
open zero-neighborhood. The definition of the compact-open topology yields an open set
0o € R C Xomw(Q). such that yo,,, € C°([0,1],R) € w=(C([0,1], E~X(S))). The

assertion follows. m

Observe that, by construction, also evol(C"([0,1],R)) € H,. We shall see presently
that with the maps constructed in Lemma [5.29] a smooth evolution for the Lie group
Diff o, (Q,U) may be constructed. We would like to apply methods similar to the manifold
case (cf. |49, p. 1046]) to prove the regularity of Diff o,(Q,U). However, if (Q,U) is a non-
trivial orbifold, it is more difficult to verify the existence of right logarithmic derivatives.
We need representatives of the orbifold diffeomorphisms in S tailored to this purpose:

LEMMA 5.31. Consider [f] € S with [f] = [E?] for some [0] € H,. For each [§] € S, there
is a representative E4(g) of [g] with lifts {E(g)i}icr such that the following properties
are satisfied:

(a) foreachi € I, the lift E;(§); is an étale embedding in C*°(e”(U;), Wa(s)) (cf. Lemma

(b) if [9] = [f]~", then the lifts are given by Ef(f’l)i = (e9)~t for alli € I.

Proof. Let [79] be the unique preimage of [g] with respect to E. From [§] = E([79]) =
[expo] © [79]|? we deduce that the claim will hold if there are representatives of [expq,y,]
and [#9]|? whose composition yields the desired representative. The map [f] is an orbifold
diffeomorphism with representative £o = (E°,{e% }icr, [P,v]). Hence the orbifold charts
{(e?(Ui), Gi, @a(iy|ess (0y)) bier (cf. Lemmal5.2) cover Q. Recall the following details from
the proof of Lemma [5.2

By Step 3, Hy(s)-Ime” C Qs ; is an invariant subset such that ITme”* is H,;)-stable.
Using Lemma iii), the canonical lifts Tg(i) map Im e into Oa(i). Thus (Tg(i) |gg(631 )iel
is a family of lifts for a representative 7/ of [79]|%. As Qs ; C Koiy, we obtain an open
subset 7' Ime? N Oa(i) C domexpyy, (cf. Construction (IV)). This set is G;-stable,

is a lift of the orbifold exponential map expg,,.- By Re-

whence EXPW, (i) 1T m 7O, s

mark a), there is a representative e%\(_)f/ [expoy,) Wwhose family of lifts con-

tains {expwa(i)

of E([9]) = [§] whose lifts are the smooth mappings

E(f§ EAT’)i = (eXPWa(i)
As a consequence of theA proof of Lemmal[5.2] these maps are equivariant étale embeddings.
Since €7 is a lift for [f] for each i € I, the map E(f; f~!); o e’ is a change of orbifold
charts. Hence for each ¢ € I, there is a unique ~; B € H,(;) such that 'yif_l OE(f; ]6—1)1_ =
(e?i)~L. The family (7{71)161 induces a lift of the identity & by Proposition m We
obtain another representative £oexpg 07’ of E([#9]), whose lifts Es(9)i = *yifilo E(f;4)s,

. Iy’ . .
TTm ea,imoa(i)}iej. Composing expg,, and 7/, we obtain a representative

O,
TIme“: ﬂOa(i)) o T(i(z) ‘Irr(:g‘zi . (5311)
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i € I, are étale embeddings. Furthermore, for [§] = [f]~!, by construction assertion (b)
holds. m

REMARK 5.32. (a) The construction of E(f;§) in Lemma shows that we can de-
fine maps E? = expy,, © Tz(i)‘HQ(i).(Imeoi) with E?‘Ime”i = E(f;f~!) (combine

Hyy-Ime? C Qy; (see Step 3 of the proof of Lemma with Lemma, (iii)). As
each 77 @) is a canonical lift of an orbisection, we deduce that 7 o E? = E]’; on for each
n € Hu)-
o . o id(g
(b) Let [f] = id(q ) and consider 7; as in the proof of Lemma Then ~, =
idy, for each i € I. To see this, observe the identities id(q ¢y = id g ;) and E~(id(gu))

= Ooyp. For ¢ € I, both lifts constructed in (5.31.1) coincide as idy, = expyy, ) © Oy
id(q,u)

%

it

This forces the identity - = idy,.

DEFINITION 5.33. For [¢] in S, let [;5] be the unique orbisection in H, with E([;E]) = [¢].
Apply Lemma m to [¢]7! € S. By part (b) of Lemma we obtain a repre-
sentative ¢ of [¢]. For each ¢ € I the lifts gf = Eq;,l(qb)i of ¢ are embeddings of

Uy, = exPyy, ) (cf;zrl (U;)) C Qo,; with Im gf’ = U;. The pointwise operations make
C? = {f € COO(U@?TWa(i)) | TTWay © f = gj)}

a vector space. Endow Cf’ with the unique topology turning (gf)*: x(U;) — Cf , Of
;0 g?, into an isomorphism of topological vector spaces. We define a linear map
Aggy: gy = {1610 18] | 18] € Xom(@Q)} > @DCE 8]0 1] -+ (010 6t
iel
where o; is the canonical lift of [6] on U;. As orbisections are uniquely determined by a
family of canonical lifts, the map A[ 3 is injective. Endow C 3] with the unique locally
convex topology turning A[ 3 into a topological embedding.

The lifts gid(Q‘“) are the identity on U; for each ¢ € I, by Remark b). Therefore

C; and Xo,5(Q). coincide, and hence the mappings A and A4 are the same.

id(q.uy
For the rest of this section, fix the notation of Definition We obtain a structural
result for the tangent manifold of Diff .1, (Q,U):

LEMMA 5.34. Let [¢] be an element of S with S as in Lemma [5.30, There is an isomor-
phism of topological vector spaces

T[QE]Dlﬁ‘Orb(Qyu) — Im A[

dQ.u)

Qe 2
[¢] o

whence T[qa]Difforb(Q,U) is isomorphic as a topological vector space to C[«%]‘

Proof. Fix [¢] € 8. As S is a symmetric set (i.e. S = S71), the inverse [¢]™* of [g]

is contained in S. By construction of S, there is a representative of [¢]~1 with lifts

{(¢H) U — Wai) tier- To shorten our notation, we set Uy, = (¢2)~1(U;) and re-

call Uy, C Qo ; from Definition The family of lifts {gf }ier uniquely determines a

representative of [¢], by Corollary We proceed in several steps:

STEP 1: We construct the mapping ag. For each [g] € S, denote by [69] the compactly
supported orbisection with E([69]) = [§]. By Lemma a) each [§] € S possesses a



5.4. Regularity properties of Diffo.,(Q,U) 117

representative E;_,(g) with lifts (E_.(9)); := vfexpwa(i) o Ug(i)lUm' Fixie I, pe U,
and consider the map

{-jgi: S = Wa(i)7 [Llﬂ — EA—l(g)i(p)'

We show that aff"' is smooth. To this end, let Ty, s Xom(Q)e — X(W, a(l y) be the map
which sends an orbisection to its canonical lift on W, ;). By Definition [3.22(b), this map
is continuous linear, hence smooth. Choose a manifold chart (Vj,, ) of the manifold
Wa) with p € Vp,. The map 7y, : X(Wo)) — C®(Vp,RY), X = Xy, := pry Ty X |y,
is continuous linear by Definition |C.10) m Let gp: C°(V,,RY) — R, f s f(p), be the
evaluation map in p. This map is a linear map, which is smooth by |2, Proposition 3.20].
Finally define evy,: X(Wo()) = TpWai), X = X(p). Asevy, = (Tpthp) ™1 (p), -)ogpory,,
ev, is continuous linear. By construction of H,, it is contained in the open subset M
constructed in Proposition (cf. Construction [5.6). Hence Lemma ii) implies that
evy, maps Ty, © E~1(S) C M; into the set Oa(i) N T,Wea). The image of the smooth
map evy 0 Ty, ;) O E~1|s is thus contained in dom eXpyy, .,y N T,Wa(iy- By construction of
the lifts £;_,(g); in Lemma | one may rewrite £5* as a composition of smooth maps,
thus estabhbhlng the desired bmoothness

et = .
'yz o exXpyy (Z)|pra<i) 0evpoTw,, oL |s.

Repeating the construction for each pair p € Uy,, where i runs through I, we obtain a
map

gy T Diffor (Q.U) = Tlie,(TWa@)"*, V= (Tigep* (V))ier peus,
and abbreviate its image as V[ 3= Im Qg

STEP 2: We endow V[qg] with a vector space structure which turns o) into a linear
map. The tangent space T[ 3] Diffo,1,(Q,U) is the set of equivalence classes of Cl-curves
n:]—e,e[ = S with 7(0) = [¢], where  ~ 6 if and only if (E~' o 7)'(0) = (E~* 0 §)'(0).
Abbreviate the equivalence classes with respect to this relation by [t — n(t)]. (and
likewise in T'W,;)). Since each 5¢’ is smooth and 7 is of class O, for each i € I and
p € Uy, the curve 5¢7 on is of class C'. Hence the definition of ayg yields

a[@]([U]N) = (tw E[QE]—l(W(t))i(p)]w)iel’peljm- (5.34.1)

The curve 7 in (5.34.1) passes through [¢] for ¢ = 0, whence by Lemma b) fori € 1,
we have Ej_,(n(0)); = g?. Therefore we infer from (5.34.1]) the identity

V[¢ {(fz iel € H TW l)) ) fz( ) eT ¢(p)Wa(i)}~ (5.34.2)
el

In particular, (5.34.2) shows that the pointwise operations turn V[ 3] into a vector space.
Furthermore, by (|5.34.2) T[d;]eg’i 9] Diffo,,(Q,U) — T ¢(p)Wa(i) is linear. By definition,
the map g becomes linear if V[ 3 is endowed with the vector space structure induced
by pointwise operations.

STEP 3: A formula relating a g to aia g -

[1)] — [1}] o [@], be the right translation and

Let p[d;]Z Diﬁorb(Q,U) — Diﬂorb(Q,U),
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G? = ((g0)ien)"s J[@Wa@)V = [TI@Wai)V,  (fi)ier = (fiog?)ier.
iel iel
Consider [n]~ € Tia, ., Diffors(Q,U). The composition in Diffo,,(Q,U) is continuous,
as the latter is a Lie group. Since 1(0) = id(q ), we may thus assume 7(t) o [¢] € S for
all t. By Lemma a), there is a representative of 7(t) o [¢] with lifts Eg . (n(t)o b)i =
¢‘ U, n(t)o¢ .

yf eXPw, ;) 7o (z) . Here O’a (i) | is the canonical lift on W, ;) of the compactly supported

orbisection [077(t)0¢] with E([a”(t)o‘i’]) =n(t) o [¢].
The set Uy, is contained in Qs ; C Q5,4 ., , (cf. Construction. By Remark we
thus have Un(t ¢| o = Z((t; o a(i)|U¢i' Recall that by construction of O'Z((i; o; Uz(i) |U¢i

i)
(see (D.9.7) in Construction we have

ex 00" o o o, = ex 00" o ex 0c? |
pWa(i) a() t a(z Usg; pWQ(i) a(i) pW(x(i) a(i)Us,;

Furthermore, g = E; (@) =~ oexpy, ., oai(i) v, and Im g? = U;. Hence we deduce
that exXpw, ,, © ai(i)(U@) C Hyi)-Ui € Q2. Analogous to Step 2 in the proof of Lemma
one shows that 7? € H,(;) commutes with eXPw,, ;) © UZ((§;|HQ(1,>_U1.. Summing up, we
obtain:

t — E ) o (b)i(p)]w)iel,pEU%

t
[t — % o expyy, )JZE% 3 0¢(i)(p)]~)i€I,PEU¢i

17()

oy (T () = (I
( t — ’yl eXpW ) a(z)eXme ) a(z)( )] )iGLPGU(pi

o1
{t = eXPW, iy Pa(d) % expwamaa(z‘) (p)} N)ig peU,
—_——
=g¢
=G%o Qid (g u) ([n]~)-
=G? 0 id g 41y - Now G?(V; =V

We derive g © Tp[qg”doma 9] follows, as

4(Q.u) i, “>)

Tp[ 4 is a diffeomorphism.
STEP 4: G‘z’\Vid(QM is linear. To see this, let v,w € Tiq, ,,, Difforn(Q) and r € R. Since

Tp[qg}, 5 and Qid(g 1)

are linear, the formula in Step 3 yields:
G"b(aid(wn (v +rw)) = a5 (Toy (v +rw))
= 1) (Tpggy (v)) + reyg) (Toyg) (w))
=G? (O‘id(Q,u) (v)) + TG¢(aid(Q.u) (w))
STEP 5: tid(g,,, i an isomorphism of topological vector spaces and Viq, ,,, = ImA4.
Consider the map h: Xo:m(Q)e — Tid g 4 Difforn(Q,U), [6] — [t — E(t[6])]. For i € I,
we denote by o; the canonical lift on U; of the orbisection [6]. Then (5.34.1) together

with Remark b) and (5.31.1)) implies
Qidq 4, © P([6]) = ([t = exPyy, (tgi(p))])iel,pem' (5.34.3)

As expyy_ . is the Riemannian exponential map on W), we obtain a geodesic ¢; ,(t) :=
eXPyy, (toi(p)) with ¢ ,(0) = oi(p). Therefore (5.34.3) yields aiq,q, ,,, oh([0]) = (0i)ier =
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A 4([6]). Since E is a diffeomorphism, h = Ty E(0,-) is an isomorphism of topological

vector spaces. Now aiqq, ,,, © h = A4 shows that Vidig o = Imaid g 4 and Qidg 4 1S AN

isomorphism of topological vector spaces. In particular, the formula shows that o

idQ.u)
is a linear isomorphism onto the closed subspace Via, ,,, = Im A4 C P, c; X(Us).

i€l
STEP 6: G¢| is an isomorphism of topological vector spaces and V,;; = Im A ;.
Vd(Q w [¢] [¢]

By definition, G is the map (gf’ )icr and each gf : Ug, — U, is a diffeomorphism. The

map (¢2)*: X(U;) — C? is an isomorphism of topological vector spaces by Deﬁnitionm
¢

From |11, Ch. II, §4, No. 5, Proposition 8], we deduce that the mapping G¢ |€B Z(U ) is an

isomorphism of topological vector spaces. By Step 5, Viq 4, ,,, 1s a subspace of @ X(U;)
and Vi3 = G‘z’(Vid(Q M)) by Step 3. Since G* maps @, ; X(U;) into @,.; Cy, , the set Via
. Endow V; x(U;) and

becomes an isomor-

is contalned in @

Vis

phism of topological vector spaces. By constlructlon7 for ( fi)ie I € V[ 3] there is a unique

[(;?] € Xom(Q)c such that (f;)icr = G‘z’AA([z;?]) = (sz 0 ¢?)icr. Hence the elements
in V[ 4 are of the form (o; o gf )icr, where o; is the canonical representative on U; of

ier C dio 1) Wlth the subspace t0pology of @,

i€l

some [6] € Xorb(Q)c. As a consequence of the definition of A4, as sets Im A5 and V)
coincide. By definition of the topology, they also coincide as topological vector spaces.

STEP 7: g s an isomorphism of topological spaces for each [g{)] € S. Endow V[q;] with
the topology as in Step 6 and obtain a commutative diagram for [QAS] €S

did (@ u)
Diff o (Q,U) ————— Via g )

Tp: [ [¢‘]
l 7131 JG v Vid(Q.u
-
T,

. [#]
g Diffon (Q,U) ——————

Tid(Q,u)

As all arrows apart from the bottom row are isomorphisms of topological vector spaces,
S0 is ) . By Step 6, Im g = V[<Z>] =1Im A[d3]’ thus proving the assertion. m

We are now in a position to obtain regularity properties for the Lie group Diff o1, (Q, U).

THEOREM 5.35. Let (Q,U) be a-compact. Then the Lie group Diff o1, (Q,U) is C*-regular
for each k € Ng U {oo}. In particular, this group is regular in the sense of Milnor.

Proof. We claim that Diffo,,(Q,U) is a (strongly) C%-regular Lie group. If this is true,
then the assertion is a direct consequence of Definition To prove the claim, by
Lemma[C.24]it suffices to obtain a smooth evolution and right product integrals for some
zero-neighborhood C°([0,1],U). Let E: H, — Diffo,,(Q,U), [6] — [expou) © 6], be
the manifold chart at the identity introduced in Theorem (cf. Proposition. Using
the map evol introduced in Lemma we define a map

Fi:=Fo eV01|CU([O’1]’R)I OO([O, 1],R) — Diﬁorb(Q,U),

where R is chosen as in Lemma [5.30] with respect to the symmetric subset S C Im E. By
Lemmal5.29] evol is a smooth map, whence E is smooth as a composition of smooth maps.
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Identify Xom(Q). with L(Diffo,5(Q,U)) via the isomorphism ToE(0,-) = a;j:(LQ w © Ay
and recall from Step 5 of the proof of Lemma [5.34] that Viq,, ,,, = Xorb(Q)c. Following
Lemma |C.24 m the Lie group Diffo,,(Q,U) will be (strongly) Co- regular if we can show

that each v € C°([0,1],R) has a right product integral P(vy) with P(y)(1) = Ei(y).

We first need to understand the derivative of a C1-curve n: [0,1] — S C Diffo,,(Q,U).
For s € [0, 1], we let [67(*)] be the preimage E~'(n(s)) (cf. Definition . Recall from
Lemmathat for all s,¢ € [0,1], there is a representative E, ;)-1(n(s)) of n(s). Using
the notation of Definition the lifts of this representative with respect to the atlas

{Uney,» Ha (i), Pa(i)|U, ) Fier are given as

En(t)*l( ( )) = '7,7( ) pWa(i) © UZE;?;'UWU){

The derivative of the lift with respect to s may be computed locally in manifold-charts.
To do so, we fix p € Uy, for some ¢ € [0, 1]. Since U, ), € Q2 by Definition we

choose and fix a manifold chart (V i) n%ff)) € F5(Ks,;) with p € V;Z(i). Observe that
by [27, Lemmas F.6 and 4.11], the map

KW x(v"
P

5, (1)) — C>(Bs5(0), Rd)v X = X,

with Xy, ;=C> ((nﬁpz))’l, Rd)(QKQ(i> (X)), is an isomorphism of topological vector spaces.
As 7 is of class C, the following composition yields a C!-curve:
Nepi i= Kfl‘p(l) o resvféz) O TW, ) © E~Yon:[0,1] = C>=(Bs5(0),R%).
5,0()

Let exp,,, be the Riemannian exponential map induced on B5(0) by the pullback metric of
the Riemannian metric on W, ;) via (Iin ) ! Slnce E~Y8) CH, and (V7 (i)’ /ifff) )) €
Fs, 15, the construction of H, (cf. Theorem or more precisely Constructions
and shows that 7, ,.; ([0, 1])(33(0)) C B.,, (O) € B,,, (0), whence

Mp,i(s) € | B2(0), By, (0)]oe € C®(B5(0),RY)  for all s € [0, 1].

By choice of vy, the set B4(0) x B,, (0) is contained in domexp,, (cf. LemmalD.6). We
deduce from |27, Proposition 4.23] that

(expnp)* : LBZ (0)7 Bunp (O)J 0o 7 COO(BQ (O)’ Rd)7 f — expnp (ing(0)7 f|Bg (O))a

is smooth. We obtain a C''-curve (expy, )« © Nt,p,it [0,1] = C(B2(0), R?). Furthermore,
Lemma [D.G[b) yields

expyy, ., © T(ky, oty 1|BQ(0)xBunp 0 = (snD)~o Xy, | B, (0)x B, (0)-

The above considerations do not depend on p € U, (;),, whence they may be repeated for
cach p € Uyp),, i € I. With Lemma b) and the Exponential Law [2, Theorem 3.28],
we may now compute the derivative as
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QA (t) (77/ (t))

= ay)([s = n(t+ s)]~) = ([s = Egey-1(t + 8))i(p)]~)ier, pev, ),

t t+s
= ([s = 3" expyy,, ol O)ier, pev, o,

= ([s = 7" expy_, (TreD) (52D (), mipi(t + ) (55D (P))ier, pev, o,

() 0 ) t-+ OO et e,
i)\ — 9 a(i
= (@M ) g (expa )0 mp) (5D (0), V)i pevr o, (5:35.1)
s=t

Let £ € C°([0,1],R) be some continuous curve. By Lemma we may consider the
Cl-curve n := Eow(£): 0,1 — 8. To compute the derivative 7/(t), we exploit the
identity (5.35.1)). The definition of the mappings implies

a(i Wa — (i
Nepi = K ()oresv @ 0T, 0 BT o (Bow(€)) = (s = K3 (w(é)(8)amlyre ))-

5, 0(1) ) 5,0(4)

The canonical lift w(f)(s)a(i) is uniquely determined, whence w(&)(s)q(;) coincides with
wi(€a(i)(8)) (cf. Lemma on € ¢, , by the proof of Lemma
Since (VS"Q(Z) Iinp ) € f5(K5 i), we derive Vng (i) € 2,k ;- Therefore the lift satisfies
(5.26.1). Summing up, for (s,z) € [0,1] x V2n§( )
N (8) (@) = KD (e(€)agn () (rp (2))
L) o (H%,(f)) o FIf (s, k& ( )s Eali)iny])-
a(i) a(i)

Observe that exp,, Tkn,  (expy, )= exp,, Tkn,
tion of N, (see Lemma [D.6[b)), we obtain

= pryo THZ‘I() )(eXpWa(i)

(expw,,, [v.) ™. By construc-

-1 )—1 _ Ha(i)_

(i) — o(d)
expnp Tﬁnp (eXpWQ(i) |N1> - K;’n,p eXpWQ(i) (eXpWa(i) Ny

Insert this identity and the local formula for 7, ; into (5.35.1):
; 0]

t a(i)y—
a0 0) = (TGI8 ) 5

_ (T(,Y;?(t) (Krolzz()i))—l)%

(€xPr.)s 0 ) (s, nzf,”(p)))

s=t iEI,pGU,I(t)i

FIj (s, ﬁzﬁi) (p), €a(i)[np])> .
1€1, peUy, (1)

s=t

Fixing /{ﬁgi)(p) and &, the flow Flf( mnp ( )s€a(i)in,]) 18 @ solution to the differential

equation ([5.24.1)). Thus
0

Os - Flg(& ’igf,i) (p)a ga(i)[np])

= (P (t, k8 ( )s Eaiyina))s Ealiying) (6 (F15 (¢, 52 l)( ):Ea(iin,])))
= T“%i JE(t )a(i) o (Fé%,(f)) YFI(, n%ﬁ (D). €atiin,)))-

Since £(t)q(;) is a canonical lift, it is equivariant with respect to H,(;). Thus the last
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identity proves

o (' (£) = (PO (ke I & w00 0). Eatirin)) e, peu, o,
t al(i
= (€D an! (o) FI (A2 0). Cain))ser, pev,

Moreover, w(€)(t) = E~1(n(t)) by construction. Using the notation of Lemma and
its proof, we obtain expy, o w(&)(t)aw) () = E(n(t)~ " n(t))i(p). On the other hand,

(5-26.1) yields the identity
expyy, o w(&)()a)(p) = (ﬁ?) LRI (t, ( )s Eali)ing])-
By choice of 'y"( ") (see the proof of Lemma 7 we derive

t
ey (0 (1)) = (E@ao (97" ())ier.pev,, = E@Baw © 97 )ier = Ay (€(1) 0 n(1)).
We may now use the structural results on the tangent space of Diffo,1(Q,U) at (t) € S.
To shorten the notation, abbreviate ¥ := ToF(0,-) = ozi_d(leu) o A 4. From Lemma
and its proof (in particular, the formula in Step 3), we infer

Ay (any (7 (8))) = €(t) o m(t) = A4 (GTIA(EWD)) = A,y (e (Tonn P (E(D))).
The map An(t o 4y is an isomorphism of topological vector spaces, whence n'(t) =
Tppy¥(&(t)) follows. Recalling the definition of 1 we have n'(t) = ;tE( &) =
Torwe) ) PE®)).

The facts obtained so far allow the right logarithmic derivative of n(t) = E(w(n)(t))
to be computed:

50 = T o 2 B(€)(D)
= Tpee) @) TPewew) Y(E®) = ¥ (@) (5.35.2)

By construction, F4(§) = E(w(£)(1)) = n(1) and Lemma implies w(£)(0) = Ooyb.-
Thus 1(0) = E(w(£)(0)) = E(0o:p) = id(g ). Furthermore, the computation of the right
logarithmic derivative (5.35.2]) shows that the curve £ possesses a right product integral
E(w(§)) = n. We have already seen that the mapping E; is smooth, thus the proof is
complete and Diffo,1,(Q,U) is a (strongly) C%-regular Lie group. =

The orbifolds in the present paper are not assumed to be second countable. We had to
require second countability of the orbifold to ensure that Xo,1,(Q). is countably patched.
In this case, we obtain an atlas indexed by the countable set I, whence the map

A @D (0,11, 20) = (0.1, D EW), ()= D) (o),
iel iel iel

is an isomorphism of topological vector spaces for r € Ny if the mapping spaces are
endowed with the compact-open C”-topology (see Lemma . This fact was crucial
to prove the smoothness of the evolution map evol. It is known that A fails to be an
isomorphism of locally convex spaces if I is uncountable. We give a proof for this fact:

Fix » = 0 and let I be an uncountable set. Notice that arguments as in the proof
of Lemma [C.I5] ensure that the map A is an isomorphism of vector spaces which is
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continuous. We denote its inverse by O (see Lemma for the construction). Hence we
have to prove that © is discontinuous if I is uncountable.

For each i € I, we choose and fix a one-dimensional subspace E; C X(U;). The
locally convex direct sum @, ;R = @, ; E; may be identified in a canonical way
with a subspace of @, ; X(U;) by [11, Ch. II, §4, No. 5, Proposition 8]. If we con-
sider the subspaces C([0, 1], E;) C C([0,1], X(U;)) for i € I, we may analogously identify
D, C([0,1],R) = P, ; C([0,1], E;) with a subspace of @,.; C([0,1],X(U;)). A trivial
computation yields the identity

Ao, E)) = (D, 1],@151-).
iel i
Hence the inverse © restricts to a map 7" := @|C ier CUOALED e Claim that T is dis-

([0.1],Dics Ei)°
continuous, whence © must be discontinuous. To prove this claim, identify each of the

spaces F; with R. The assertion then follows from the next lemma, whose proof was
communicated to the author by D. Vogt and S. A. Wegner.

LEMMA 5.36. The map T: C([0,1],D,c;R) — D;c; C([0,1],R) is discontinuous for

each uncountable set I.

Proof. Recall from [47, §24] and Remark that the compact-open topology on the
space C([0, 1] D, R) is induced by the following system of seminorms:

p§ = sup Zé ‘ i , with ¢ = (61’)1'6[ and §; > 0, forie .
1€I
Analogously, the topology on @,.; C([0,1],R) is induced by the following system of
seminorms:
((fi)ier) ZEZ sup |fi(¢)|, with &= (g)ier andg; >0, foriel.

el €[0,1]

Arguing indirectly, we suppose that 7' is a continuous map. Since T is linear, the continuity
means that
Ve = (ei)ier 30 = (81)icr, C = 0 Y(fi)ier € P C([0,1],R),
iel
a:((fidier) < Cps (3 (00). fi)
icl
or equivalently,

Ve = (ei)ier 36 = (6:)ier Y(fi)ier € P C([0,1],R),
iel

Zsl sup @) < sup Zé\fi

ier €01 0.1) jer
To obtain a contradiction, fix ¢ = (1)161 and choose & = (d;);er as above. For n € N,
define the set M, :== {i € I | §; < n}. By construction, I = | M,,. Since I is
uncountable, there must be N € N with |My| =

For n € N, consider E C My with E = {i,...,i,} and choose f;, € C([0,1],R) with

0 < fi, <1 such that supp f;, Nsupp f;; = 0 if k # j. Furthermore, let ¢;, € [0,1] with

neN



124 5. Lie group structure on the orbifold diffeomorphism group

fir(tx) = 1 for 1 < k < n. Define (fi)icr € @,
1 <k <mnand f; := 0 otherwise. By choice of 4,
> sup [fi(0)] < sup Y il fi(1)]. (5.36.1)

icq t€01] te[0,1] 7

We compute both sides of the above inequality. For the left hand side of (5.36.1) the
definition of the family (f;);ecs yields

S sw A= S sw lfu Bl = Y 1=mn.

ic1 t€[0.1] 1<k<n t€[0.1] 1<k<n

C([0,1],R) via f; := f;, if i = iy for

On the other hand, since the supports of the maps f;, are disjoint, the right hand side

of (5.36.1)) evaluates as

n
sup Y il fi(t)] = sup Y 6, |fi ()] = sup &, < sup & < N.
te(0,1] 7 tel0,1] . 1<k<n 1EMN

Hence (5.36.1)) yields n < N, where N is fixed but n may be chosen arbitrarily large, a
contradiction. m

Summing up, the inverse O of A is discontinuous for uncountable index sets I. Hence
A fails to be an isomorphism of topological vector spaces if I is uncountable. Thus our
methods do not generalize to the setting of arbitrary paracompact orbifolds. As already
stated in the introduction, this observation leads to the following open question:

OPEN PROBLEM. Let (Q,U) be a paracompact reduced orbifold which is not second
countable. Is the Lie group Diff o, (Q,U) a C"-regular Lie group for some r € Ng U {c0}?

Notice that the solutions for the differential equations considered in this section also
exist for non-second countable orbifolds. Therefore, we suspect that the problem has a
positive solution.



A. Hyperplanes and paths in euclidean space

The results in this appendix are part of the folklore. However, for the reader’s convenience
we provide full proofs for these known facts. As usual, a hyperplane H in euclidean space
R4 is a linear subspace of codimension 1 and a path is a continuous map from an interval
to R%.

LEMMA A.1. Letd € N and X C R? a linear subspace such that dim X < d—2. Consider
an open and path-connected subset C C RY and x,y € C \ X. Then there exists a path
p: [0,1] = C\ X connecting x and y. In other words, C'\ X is path-connected.

Proof. Without loss of generality, we may assume X = R~ x {0} and m > 2. The set
C' is path-connected, whence there is a path ¢: [0,1] — C with ¢(0) = z and ¢(1) = y. I
the intersection Im ¢ N X is empty, there is nothing to prove. Otherwise we construct a
path as follows:

Consider the projections mx : R? — R?™™ x {0} = X and mp: R? — {0} x R™. The
projections are continuous open maps with mx + mo = idga. Observe that z € X if and
only if ma(2) = 0. The set {q(¢) | t € [0,1],m2(¢(t)) = 0} = Img¢ N X is compact and does
not contain x and y. Therefore we can choose x; € X, 1 <i < N, and £ > 0 with

ImgNX C | J Be(wi) xB(0) CK:= | Be(wi) x B-(0) € C\ {,y}.

1<i<N 1<i<N

As each closed ball is path-connected, the sets B.(z;) x B:(0) are path-connected. Hence
K is a set with finitely many path-components Ki,..., K, (cf. [21, p. 115]). Each path-
component is a union K; = J; <, <,, Be(2i,;) x B:(0) and is thus compact. Furthermore,
the boundary 0K satisfies 0K = 0K U---UJK,., since the sets K; form a finite partition
of closed and disjoint sets. As ImgN X C K°, we deduce that 0K; does not contain
elements of Im ¢ N X. We construct the path by induction: The set L; := ¢~ 1(K;) is a
closed subset of [0, 1], which does not contain 0,1 by construction.

CASE 1: If L1 =0, set ¢1 :=gq.

CASE 2: If L1 # 0, the compactness of L; enables us to consider s; := min L; and
t; := max L;. For ¢t € {s1,t1}, we must have ¢(t) € 0K;. As shown above, this implies
that q(s1),q(s2) & X, i.e. ma(q(s1)),m2(q(t1)) € B:(0) \ {0}. Note that B.(0) \ {0} is
path-connected (by a variation of |21, Ch. V|, Theorem 2.2]), since m > 2 is satisfied.

Furthermore, 7x (K1) is path-connected, whence there is a path

Y1t [Sl,tl] — ﬁx(Kl) X (BE(O) \ {0}) g K1 g C' with 71(51) = q(Sl) and '-Yl(tl) = q(tl)

[125]
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Define a mapping

Q(t)7 le [07 1]\]817t1[7
’yl(t), te [Sl,tl].
By construction, ¢; is a path with ¢;(0) = « and ¢;(1) = y. Furthermore, Im¢; N K7 =
q1([s1,t1]) implies Im ¢; N K7 N X = (). This also holds in Case 1. In either case, note that
the definition of ¢ yields Img; N X C Uy, K-

Assume that for all ¢ with 1 < 7 < n é r, we have already constructed a path g;
connecting = and y, whose image is contained in C' with Img; N X C Ui+1§j§r K;.

q1:[0,1] = C, t»—>{

Consider the compact set L, := ¢, *,(K,) C 0, 1[. If L,, is empty, simply set ¢, := ¢,_1
to obtain a path with the desired properties. Otherwise, we have to construct a path
Gn from ¢,_1 such that the image does not intersect (K; U---U K, ) N X. Apply the
above construction verbatim with L, # () and ¢,_; instead of L; and ¢. Since ¢,_1
does not intersect K; N X for each 1 < ¢ < n — 1, the construction yields a mapping
¢n with Tmg, N X C U,;1<,;<, Ki, whose image is contained in C'. Summing up, after
finitely many steps the mapping p := ¢, satisfies Imp C C, p(0) = z, p(1) = y and
ImpN X C U, 1<i<, & = 0. Hence p is a path with the desired properties. m

LEMMA A.2. Let d,m € N, C be an open connected subset of R* and (Xi)i=1,...m be a
family of vector subspaces of R? such that dim X; < d for all 1 < i < m and X; # X;

fori=#£7j.
a) For each pair x,y € C M X, there is a path p: [0,1] — C such that
=1
(1) p(0) =z, p(1) =y,
(2) p([0,1) N X; =0 for all i such that dim X; < d — 2,
(3) p([0,1)NX; N X; =0 for all i,j such that i # j.

(b) Assume that there is k € Ny such that dimX; = d—1 if 1 <i < k and dim X; <
d—1 otherwise. Then the set R%\ Ui~ X, with the subspace topology has at most 2k
(path-) connected components.

(c) If C CR? is a convex open subset, then C'\ |J;~, X; possesses at most 2% connected
components.

Proof. (a) Since for ¢ # j we have dim X; N X; < d — 2, it suffices to construct a path
p which satisfies properties (1) and (2) for an arbitrary finite number of subspaces Y;
with dimY; < d — 2. Since C' is path-connected, C'\ Y; is path-connected by Lemma
Iteratively, C\ Y1 \---\ Y, =C\ (Y1 U---UY,,) is path-connected by Lemma

(b) The subspaces X; are closed in R¢, whence O := R?\ | J!| X; is an open set. The
components of  coincide with the path-components of Q by |21, Ch. V, 5.6]. We claim
that there are at most 2% path-components. For a hyperplane X j, we consider the two
half-spaces H;r and H; such that R is the disjoint union H ;L UX;UH; . The half-spaces
are the path-components of R?\ X ;- Each half-space is a convex set. We observe that
cach intersection HY M ... HI™ with o2 {1,...,k} — {+,—} is again a convex sct.
From (a) we deduce that these sets yield path-connected subsets of R? \ |, <jem X5 if
we remove (J; ;1< ;<,,, X;. Hence R4\ |JI, is a union of no more than 2* path-connected
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sets, from which the assertion follows. The number of components does not change if
X; with dim X; < d — 2 is removed from R% \ U;;} X;. On the other hand, the number
doubles at most if X; is removed from RY \ Uf:—ll X;. Hence the assertion holds.

(¢) From the proof of (b), we deduce that the components are induced by intersections
of k half-spaces, which are convex sets. However the same holds for the subset C' ﬁH;(l) N
N Hj *) From part (a) we deduce with arguments as in (b) that all non-empty sets

of this kind induce the connected components of C'\ [J~; X;. As there are at most 2*
non-empty sets of this kind, the assertion follows. m



B. Group actions and Newman’s theorem

In this appendix, we recall several basic facts concerning group actions, orbit spaces and
quotient mappings to orbit spaces. We are interested only in continuous group actions,
whence each group action in this work will be required to be continuous. Several basic
results will be repeated to fix some notation. For further information on group actions,
we recommend [12/60].

B.1. Group actions

DEFINITION B.1 (Group actions). Let G be a topological group and X a topological
space. A G-action on X is a continuous map ©: G x X — X such that:

(a) ©(1,z) = x for all x € X, where 1 is the identity element of G.
(b) ©(g2,0(g1,x)) = O(g2g1,x) for all g1,92 € G and x € X.

The pair (X,0) (or (X,G) if the action is clear) is called a G-space and we denote it
usually just by the underlying space X. We shall abbreviate g.z := O(g, x) if it is clear
which action is meant.

For z € X the orbit of x is the set G.x := {g.x | g € G}. Let X/G = {G.x |z € X}
be the set of all orbits endowed with the quotient topology induced by p: X — X/G,
x +— G.z. The space X/G is called the orbit space of the G-space X.

DEFINITION B.2 (Isotropy subgroups and fixed point sets). Let X be a G-space. Define
the isotropy group G, :={g € G| gx = x} of x € X. For g € G, the set of fized points
of g will be denoted by ¥, = {z € X | g.x = z} and we write

Sei={reX |G £} = |J =,
geG\{1}
For a subset S C X, we define ¢.5 :={g.z | x € S} and let Gg :={g € G| g.5 = S} be
the isotropy group of S. A subset S C X is called G-invariant if Gg = G. Furthermore,
a G-stable subset of X is a connected set S C X such that for g € G either g.5 = S or
g.SNS=0.

An elegant proof of the following lemma has been communicated to the author by
A. Pohl:

LEMMA B.3. Let X be a manifold and G a finite topological group acting on X wvia
homeomorphisms, i.e. O(g,-): X — X is a homeomorphism for each g € G. Then, for
each x € X, there exist arbitrarily small open G-stable neighborhoods of x whose isotropy

[128]
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groups coincide with G. In particular, the G-stable open sets form a base for the topology
on X.

Proof. Let U be any neighborhood of x and x1,...,x, be all the distinct elements in
the G-orbit of x. Without loss of generality, © = x;. For i« = 1,...,n, choose an open
neighborhood U; of x; with the following property: For ¢ # j, the sets U; and U; are
disjoint and U3 C U. For i = 1,...,n, define G} := {g € G | g.x; = x} and set

S = ﬂ ﬂ g.Us.

1<i<n geG!

As G acts by homeomorphisms, the set S’ C U; C U is an open neighborhood of z.
Consider h € G. If h.x = z;, this implies h=! € G}. Therefore S’ C h~1.U; yields
h.S" C U;. For i # 1 we deduce from U; NU; = () and S’ C Uy for h as above that
h.S’ N S" = (. On the other hand, for i = 1 we have h € G, whence hG} = G; for all j,
and thus

h.S" = (n] M (hg).U; = ﬁ ) 9U; =5 (B.3.1)

J=1geGq; J=lgeq;

Let S be the connected component of S” which contains x. As X is locally path-connected,
S is an open neighborhood of z by |21, Ch. V, Theorem 4.2]. Since G acts by homeomor-
phisms, by G, permutes the connected components of S’ and fixes x. Combining
and the fact that h.5'NS" =0 for h € G\ G, we deduce that Gg = G, and S
is a G-stable open neighborhood of x which is contained in S’ CU. =

LEMMA B.4 (|60, Propositions 3.1 and 3.6]). Let X be a Hausdorff G-space and G a
compact topological group. Consider the quotient map n: X — X/G, x — G.x onto the
orbit space. Then

(a) X/G is a Hausdorff space.

(b) 7 is a continuous, open and closed map.

(¢) 7 is a proper map.

(d) X is compact if and only if X/G is compact.

(e) X is locally compact if and only if X/G is locally compact.

REMARK B.5. Let M be a (possibly infinite-dimensional) manifold. The discrete topol-
ogy is the unique Hausdorff topology turning a finite subgroup G of Diff" (M) into a
topological group. The natural mapping ©: G x M — M, (g,z) — g(x), is continuous
since each element in G is continuous and G is endowed with the discrete topology. Hence
each finite subgroup of Diff" (M) induces a canonical action of a compact group on M
which satisfies the prerequisites of Lemma [B.4]

DEFINITION B.6. Let f: X — Y be a map from the G-space X to the H-space Y.

(a) If there is a group homomorphism A: G — H such that f(g.xz) = A(g).f(x) for all
x € X, g € G, then f is called equivariant with respect to .

(b) If G and H coincide and f(g.x) = g.f(x) for all x € X, g € G, we call f

equivariant. An equivariant homeomorphism is called an equivalence.
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(c) Let f be a homeomorphism and let G = H. If there is a group automorphism
a: G — G with f(g.2) = alg).f(z) for all x € X, g € G, then the map f is called a weak
equivalence.

Note that the inverse of a (weak) equivalence is again a (weak) equivalence.

DEFINITION B.7. Let M be a smooth manifold which is also a G-space. We define the
set of all weak equivalences with respect to the G-action,

Diff (M) := {f € Diff (M) | f is a weak equivalence}.
REMARK B.8. It is easy to check the following facts about Diff® (M):

(a) Diff¢(M) is a subgroup of Diff (M).
(b) If G C Diff(M) acts via the natural action on M, then G C Diff%(M). In this case,
G is a normal subgroup of Diff% (M).

B.2. Newman’s theorem. The following theorem of M. H. A. Newman is an impor-
tant tool to investigate the structure of orbifolds (for a proof see |20, cf. also |12, III,
Theorem 9.5]):

THEOREM B.9 (Newman, 1931). Let G be a finite group acting effectively by homeomor-
phisms on a connected paracompact finite-dimensional manifold M. Then the set M\ X¢
of points with trivial isotropy group is dense and open in M.

In the situation of Theorem the elements of Y are called singular points and
the elements of M \ X¢ are called non-singular points. If G acts by C*°-diffeomorphisms
on a paracompact smooth manifold, then Newman’s theorem is much easier to prove
(see [51, Lemma 2.10]).

We compile several interesting consequences of Newman’s theorem. For further infor-
mation, we refer to |51, Section 2.4].

LEMMA B.10 (cf. |51} p. 36]). Let M be a smooth finite-dimensional paracompact man-
ifold, G a finite subgroup of Diff (M) and x € M. Then there exist arbitrarily small G-
stable charts (W, k) with x € W such that k(z) = 0 and k conjugates the isotropy group
G to a (finite) group of orthogonal transformations on k(W'). Furthermore, Tp,g = idr, pm
implies glw = idw for each g € Gy; if M is connected, it implies g = id ;.

Proof. Since G is finite, we may choose a G-invariant Riemannian metric on M by [51}
Proposition 2.8]. The group G thus acts via Riemannian isometries with respect to
this metric. Let exp,,; be the Riemannian exponential map with respect to this metric.
By |41, Theorem 1.6.12], we may choose £ > 0 such that exp,,; induces a diffeomorphism
from the open ball B.(0,) centered at 0, in T, (M) to an open neighbourhood W of z,
expyr .t Be(0) = W C M. As the metric is G-invariant, each g € G, induces an or-
thogonal transformation T, g of T, M. Since exp,, commutes with Riemannian isometries
on its domain, we deduce exp,; , © T29ldomexp,, , = 9 ©€Xp M, - This formula shows that
T,g = id implies g|w = idw, and also that W is G,-invariant. By continuity of exp,,, we
can shrink € to ensure that W is contained in a G-stable neighborhood of z (cf. Lemma
B.3). Hence there is ¢ > 0 such that exp,, ,(B:(0;)) = W is a G-stable subset with
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Gw = G. For such a W, define r := (expys,|p.(0,)) " The pair (W,x) satisfies the
assertion. In particular, W may be taken arbitrarily small.
For the final assertion, note that g # id s implies g|w # idyw, by Newman’s theorem. m

LEMMA B.11. Let M be a connected paracompact smooth manifold and G be a finite
subgroup of Diff(M). Denote by X the set of singular points with respect to the derived
action G xTM — TM, (¢9,X)— ¢g.X :=Tg(X), of G on TM. For each open connected
set U CTM, the set of non-singular points U \ Y1 is (path-) connected.

Proof. Without loss of generality we may assume U # ). Let C be a component of
U\ X7¢ and C be its closure in U. We will show that C' is open. The connectedness of U
then entails C' = U. If there were another component D # C, then C N D = (), because
D is open and CN D = ). But D C U = C yields a contradiction, whence U \ Yr¢ is
connected.

To see that Cis open, let X € 9C' (the boundary with respect to /). Then X € YpgasC
is open and closed in the open subset U\ X7 of U. By definition of the derived action for g €
G we have Ty (X) = v (9.X) = g.mrp (X) if g.X = X. This implies Gx C Gy (x)-
By Lemma there is a G-stable manifold-chart (W, k) such that mrp (X) € W,
Gw = Gr;,(x) and £ conjugates Gy to a finite group of orthogonal transformations
on k(W) = B.(0) C R? for d = dimM and some ¢ > 0. For g € G, (x), let g
be the orthogonal transformation conjugate to g, i.e. g is a linear map which satisfies
gok = kog. The functoriality of the tangent functor implies T'gTx = TkTg. Taking
suitable identifications, TG = (g|p_(0) © Pr1,dg) = (J|B.(0) X §) is the restriction of a
linear map. Thus T'x conjugates the action of Gyw = Gr,.,,(x) on TW to a linear action
on T(TW) = B-(0) x R Since W is G-stable with Gw = G, (x), the set TW is
G-stable with Grw = G, (x) by definition of the derived action. Hence TW N Xrg =
TWQETGWTW(X) . Choose an open connected neighborhood Q of X in TWNU . If Q\E ¢ isa
connected set, then (Q\X76)NC = QNC # Pas X € C, and thus Q\Xre C C. As Q\Xrg
is dense in Q by Newman’s theorem, we deduce that Q C C. Thus C will be open as required.

To verify this, observe that 2 C TW entails QN Xprg = 02N ZG""TM(X). Consider the
open sets Q := Tk(Q) and V := Tk(Q\ Zrg) = 2\ Tr(Xra,,,, x)- We claim that V is
connected. If this is true, the same holds for Q \ Yr¢, whence the proof is complete.

We now prove the claim. As Tk conjugates the group action to a linear action, the
set QN Tr(TW N Xrg) is the intersection of the open (path-)connected set Q with a
finite union of linear subspaces of R??. By Lemma the set V will be connected if for
each g € G, (x) the fixed point set of the associated linear map 7'g is not a hyperplane
in R?%. For each g € Grypp(x) \ {idas}, Lemma implies that § is not the identity
map. From |13, Ch. I, Proposition 2.18(1)], we deduce that the fixed points of g are
contained in a hyperplane H C R?. Each linear subspace fixed by 77 is thus contained
in H x H and dim(H x H) = 2d — 2. Thus T'g does not fix any hyperplane, whence V is
connected. m



C. Infinite-dimensional manifolds and Lie groups

In this section, we briefly recall the notions of infinite-dimensional manifolds and infinite-
dimensional Lie groups. Manifolds and Lie groups modeled on infinite-dimensional spaces
may be defined almost exactly as in the finite-dimensional case.

C.1. Manifolds modeled on locally convex spaces

DEFINITION C.1. We recall from [33| that a manifold with rough boundary modeled on
a locally convex space FE is a Hausdorft topological space M with an atlas of smoothly
compatible homeomorphisms ¢: Vi — U, from open subsets V of M onto locally convex
subsets Uy C F with dense interior. If each Uy is open, then M is an ordinary manifold
(without boundary). In a similar fashion C"-manifolds may be defined for r € Ny. Unless
stated otherwise, every manifold will be assumed to be without boundary. Direct products
of locally convex C*-manifolds, tangent spaces and tangent bundles may be defined as in
the finite-dimensional setting. We refer to [54] for details.

NotatioN C.2. Let M, N be C"-manifolds (where 1 < r < o0) and f: M — N a
mapping of class C". We denote by T'f: TM — TN the tangent map. Abbreviate by
Tpf: TpM — Ty N the restriction of T'f to the tangent space T, M of M at x € M. If N
is an open subset of a locally convex space F, the tangent map T'f: TM — TN = N x F
is given by (z,v) — (f(x),df(z,v)) for v € M, v € T, M and a map df: TM — F. If
f:U — VisaC"-map, where U, V are open subsets of locally convex spaces E and F, it
is convenient to think of df (z,-) as a differential. Hence we canonically identify T, U = F
and T,V = F to obtain df (z,v) = T, f(v).

We let wrpr: TM — M be the bundle projection. For 7 = oo we denote by X(M) the
space of smooth vector fields, i.e. smooth mappings X : M — T'M with 7wy 0 X = idyy.

C.2. Function spaces and their topologies. Our exposition of the C"-topology fol-
lows [27], but we allow locally convex subsets. Although the definition of differentiability
differs from the one used in [27], on open subsets of locally convex spaces over the field
R they are equivalent by |5, Proposition 7.4].

DEeFINITION C.3 (Compact-open topology). Let X, Y be Hausdorff topological spaces,
K C X compact and U C Y open. We define the set

K, U]:={feCX,Y) [ f(K)C U}

Then the sets
LK17 UlJ n---N LKna U'ILJ

[132]
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with n € N, K; C X compact and U; C Y open for 1 < ¢ < n, are a base for a topology
on C(X,Y) (cf. |22 Section 3.4]). It is called the compact-open topology, and we denote
by C(X,Y )c.o. the space C(X,Y) with this topology.

DEFINITION C.4. Let E, F be locally convex topological vector spaces, U C E a locally
convex subset with dense interior and r € Ny U {oc}. Endow C" (U, F) with the unique
locally convex topology turning
(AP Dozjer: C(UF) » [[ CWXELF), frs (D),
No3j<r
into a topological embedding. We call this topology the compact-open C"-topology. Notice
that it is the initial topology with respect to the family (d)(-))nsj<p-

REMARK C.5. (a) By [24, Lemma 1.14], Definition coincides on open sets with the
definition in |25 Definition 3.1]. Hence if U is an open subset of finite-dimensional space
E and F is a Fréchet space, then C"(U, F) is a Fréchet space by |25, Remark 3.2].

(b) For each compact subset K C U and open subset V' C F, the set

LK, V] :i={yeC"(UF)[~(K)<V}
is open in C"(U, F) by |27, Lemma 4.22].

If s,7 € Ng U {oo} with r < s, then C*(U,F) C C"(U,F) by definition and the
topology on C*(U, F) is finer than the subspace topology induced by C" (U, F'). Let €2 be
an open set in C*(U, F') such that 2 = C*(U, F)) N A for some open A C C"(U, F). Then
we call Q a C"-open set in C*(U, F') or a C"-neighborhood of f € C*(U, F) for any f € Q.

DEFINITION C.6. Let E be a locally convex space and M a C"-manifold. Then we let
C" (M, E) be the space of all C"-mappings v: M — E. The pointwise operations turn
C" (M, E) into a vector space. Endow C" (M, E) with the initial topology with respect to
the family

0.: C"(M,E) = C"(Vi., E), v~ 9lu, or™,
where k: U, — V,, ranges through an atlas of M. The topology is independent of the

choice of atlas by |27, Lemma 4.9]. If M is an open subset of a locally convex space, |27,
Lemma 4.6] proves that this topology coincides with the compact-open C"-topology.

DEFINITION C.7. (a) Let U C R? be an open subset d € Ny and K C U compact. For
¢ € C"(U,RY), r € Ng U {00}, the maximum norm ||-||o, and k € Ny with k& < r, we use
standard multiindex notation to set
= o 0o
€l = mass ma|0°€(a) |
(b) Let E be a locally convex space and r € Ny U {co}. Endow C"([0, 1], E') with the
locally convex vector topology induced by the family of seminorms |[|-[|cx ,, defined via
ak
= —(t
s 1=, e (5200

where p ranges through the continuous seminorms on E and k € Ny with £ < 7.

REMARK C.8. (a) Let U C R? be some open subset, where d € Ny. As U is o-compact,

there is a sequence (K, )nen of compact sets such that U = J,cy Kn- By a variant
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of |25, Proposition 4.4], the locally convex topology induced by the family of seminorms
&,k IneN,0<k<r}onC"(URY) coincides with the compact-open C"-topology.

(b) A variant of |25, Proposition 4.4] shows that the topology introduced in Definition
b) is initial with respect to the mappings

d9: cm([0,1], E) = C([0,1] X R, E)co.,, v dPv, 0<j<r,

i.e. it coincides with the compact-open C"-topology.
In particular, then

C"([0,1],U) :=={~ € €"([0,1], E) | 7([0,1]) € U} = [[0,1}, U],
is an open subset for each open U C E. If F is metrizable (respectively complete),

C"([0,1], E) is metrizable by [39, Ch. 2.8, Theorem 1] (respectively complete by |34,
Lemma 1.4]).

NotaTION C.9. Let U C F and V C F be locally convex subsets with dense interior of
locally convex topological vector spaces F and F', respectively. Furthermore, let G be a
topological vector space and f: U — C(V,G) be a map. We associate to f the map

fAfrUXxV =G defined via £ (u,v) := f(u)(v).

C.3. Spaces of sections and patched spaces. In this section we endow the space
of smooth vector fields X(M) on a smooth manifold M with a topology. Furthermore,
we use the concept of a “patched locally convex space” (cf. [26}27]) to obtain a criterion
for the differentiability of maps between spaces of sections. We recall the following facts
from [27, Appendix F|:

DEFINITION C.10. Let M be a smooth manifold modeled on the locally convex space E

and wpp: TM — M be the bundle projection. Consider a maximal atlas A of M and a

chart (Viy,¢) € A with ¢: Vi, — Uy. Let pry: Vyy x E — E be the canonical projection.
For a vector field X € X(M), we define a local representative

Xy i=pryoToXly,:Vy — E.
In particular, Ty o X (y) = (¥(y), Xy (y)) for all y € V.
We endow X(M) with the unique locally convex topology turning the linear map
L:x(M) = [ O®(ViB), X (X)) e
(Vg p)eA

into a topological embedding. Then the topology on X(M) is the initial topology with
respect to the family of linear maps 8y : X(M) — C>*(Vy, E), X — Xy.
LEMMA C.11 (|27, Lemma F.9]). The topology on X(M) is initial with respect to the
family (04) (v, ¢)e5, where B C A is some atlas for M.

Proof. Combine |27, Lemma F.9] with |27, Proposition 4.19], which guarantees that the
topology defined in |27] coincides with our definition of the compact-open C"-topology
over the field R. m



C.3. Spaces of sections and patched spaces 135

NoTATION C.12. Let M be a smooth manifold and U an open subset of M. We define
the restriction map res} : X(M) — X(U), X ~ X|LV. For each open subset U this map
is continuous linear by |27, Lemma F.15] @

DEFINITION C.13. Let d € N. We define the space of compactly supported vector fields
X.(R%) @ The assignment 0: X.(RY) — C(R4 R?), X ~ pry o X, is a bijective map,
where pr, denotes the canonical projection TRY = R? x R? — R?, (z,y) > y. We define
a topology on C°(R¢ R?) (and thus also on X.(R%)) turning @ into an isomorphism of
topological vector spaces. Choose a locally finite cover U = (U;);er of R? by relatively
compact-open subsets U; € R? such that the cover is countable. Then consider the map

Ry: X(RY) —» @ C*(U;,RY),  Ry(o):=(pryoo

el

U, )iEI'

We endow X.(R?) with the unique locally convex topology induced by the linear map Ryy.
Here the right hand side has been endowed with the locally convex direct sum topology.
By [27, Lemma 8.10], the topology constructed does not depend on the choice of covering
U (recall from |27, Proposition 4.19] that the topology defined in 27| coincides with our
definition of the compact-open C"-topology over the field R). Furthermore X.(R9) is a
Hausdorff space and Ry, is a topological embedding with closed image by |27, Proposition
8.13).

DEFINITION C.14. A patched locally convex space over R is a pair (F, (p;)icr), where E is
a topological R-vector space and (p;)ier is a family of continuous linear maps p;: £ — E;
to topological vector spaces F; such that

(a) for each x € E, the set {i € I'| p;(z) # 0} is finite,
(b) the linear map
p:E— @Ei, z = (pile))ier = Zpi(x),
iel i€l
from E to the direct sum @, ; E; (equipped with the direct sum topology cf. |11}
Ch. II, §2, No. 5, Definition 2]) is a topological embedding,
(c) the image p(FE) is sequentially closed in @, ; E;.

The mappings p;: E — E; are called patches, and the family (p;);cr is called a patchwork.
If I is a countable set, we also say that F is countably patched.

LEMMA C.15. Let (E, (pi)icr) be a patched topological R-vector space, with p;: E — E;
and p as in Definition [C.14. For each r € Ng U {c0}, the map

p«: C7([0,1], E) — CT([O, 1], EDEz) grpog,
i€l

(*) The article [27] uses another concept of differentiability in locally convex vector spaces
which is adapted to non-discrete topological fields. However as |5, Proposition 7.4] asserts, this
concept of differentiability coincides with the one from Definition [[.2] on open sets of locally
convex vector spaces over the field R. As we are only interested in this case, we may use the
results of [27] without restriction.

(%) Since this space is only needed in Exarnple we shall only consider vector fields on R*
(cf. [27, Appendix F] for a more general definition).
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is a linear topological embedding whose image is sequentially closed. If |I| < oo or E is
countably patched and r < oo, then the family

C"([0,1],p:): C"([0,1], E) — C"([0,1], E;), v~ piey, i€,
turns C"([0,1], E) into a patched locally convex space over R.

Proof. The maps C"([0,1],p;) are continuous linear for ¢ € I and p,. is a topological
embedding by [34, Lemma 1.2]. Without loss of generality we identify E with a subspace
of F:= @,c; Es. Let (fu)nen € Imp, be a sequence which converges to some f in
C"([0,1], F). Since E is sequentially closed, due to the continuity of the point evaluation
maps (cf. |2, Proposition 3.20]) for ¢ € [0, 1] the sequence (f,,(¢))nen converges in E. Hence
the image of f is contained in E. Recall that directional derivatives may be computed as
limits of sequences. As each element f(t) is contained in F and E is sequentially closed,
the mappings d®) f, for Ny 3 k < r, take their images in E. Hence f € C"([0,1], E) and
Im p. is sequentially closed as a subspace of C"([0,1], F).

CASE 1: |I| < oo. Since [ is finite, the coproduct F' := @, ; F; in the category of
locally convex topological vector spaces coincides with the product of the E;. Hence the
canonical projection 7;: F' — F; and the canonical inclusion ¢;: F; — F are continuous
linear for ¢ € I. From [34, Lemma 1.2] we deduce that the mappings

(i)« )ier: CT([O» 1], @Ez) - @ " ([0,1], E4), fr=(mio fier,
iel iel
Dero.1.8) - (D UDE).  (F)= D w)-(f),
i€l iel iel
are continuous linear and mutually inverse. Thus the spaces C”([0,1],,.; E;) and
@,c; C7([0,1], E;) are isomorphic as locally convex spaces, whence the maps (p;)«, i € I,
form a patchwork for C"([0, 1], E).

CASE 2: |I| = oo and r < oo. The canonical inclusions yield a family of continuous
linear maps ((¢;)«)icr by [34, Lemma 1.2]. As in the first case, we obtain a linear and
continuous map A: @,.; C"([0,1], E;) — C™([0,1], F), (7vi)ier = > ;e (ti)«(vi). For the
rest of the proof, we suppress the inclusions ¢; in the notation. To prove our claim, we have
to construct an inverse mapping for A. To do so, pick v € C"([0, 1], F). The compact set
~([0,1]) C F is contained in a finite partial sum by |11}, Ch. III, §4, No. 1, Proposition 5].
As the inclusion of a finite partial sum is a topological embedding with closed image,
from |34, Lemma 1.2] and the isomorphism established for the finite case, we deduce that
there are unique v; € C7([0,1], E;) for ¢ € I with v = A((7s)iecr). Hence we obtain a
well-defined inverse of A via ©: C7([0,1], F') = @,c; C"([0,1], Ei), v = (7i)ier-

We claim that A is an isomorphism of locally convex spaces. To prove the claim, let
I'; be the set of all continuous seminorms on F;. Consider ¢ = (¢i)icr € I' := [[;; I'; and
obtain a continuous seminorm rq: F' — [0,00][, 74(>_;c; @) = sup{qi(x;) | i € I}, with
x; € E;. Since the space E is countably patched, the topology on F' coincides with the
box topology by [39, Proposition 4.1.4]. Hence the family (r;)4er determines the locally
convex topology on F. By definition of the topology on C"([0,1], F'), the continuous
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seminorms s,: C"([0,1], F) — [0, o0,
ok ok
$q(y) == sup sup ry| =—v(z) ] = sup sup supg¢;| =—7i(z) |,

o) 0<k<roe(0,1] (6$k ( )) 0<k<r z€[0,1] i€l (333’“ ( )>
determine the locally convex topology on C”"([0, 1], F) for ¢ ranging through T. Likewise,
the locally convex topology on C"([0, 1], E;) is determined by the continuous seminorms

k
tg;: C((0,1], Ei) — [0,00[, t4,(7:) = SuPy<p<, SUDseo,1) 4i ( ori(2)), where g; ranges
through I';. The locally convex sum topology, i.e. the box topology on &, ; C"([0, 1], E;),
is induced by the family of seminorms uq: @,c; C"([0,1], E;) — [0, oo,

8k
ug((vi)ier) = Sup tg;(7i) =sup sup sup g; (8 =il ))
i€l 0<k<r z€[0,1] z
for ¢ = (gi)ier € I'. Observe that for each ¢ € T', we have s; 0 A = u,;. We deduce that
A~ is continuous (cf. [11, Ch. II, §2, No. 4, Proposition 4]), whence A is an isomorphism
of locally convex spaces. m

If r = 0o and |I| = oo, the map A introduced in the proof of Lemma is still a

continuous linear bijection, but its inverse fails to be continuous in general.

DEFINITION C.16. Let I be a set and (E, (p;)icr) and (F, (g;)ier) patched locally convex
R-vector spaces with canonical embeddings p: E — @,.; E; and q: F' — P
Definition [C.14

(a) A map f: U — F defined on an open subset U C E is called a patched mapping
if there exists a family (f;);cr of mappings f;: U; — F; on certain open neighborhoods
U; of p;(U) in E;, which is compatible with f in the following sense: We have 0 € U;
and f;(0) = 0 for all but finitely many i, and ¢;(f(z)) = fi(pi(z)) for all i € I, i.e.
40 f=@icr fi) onl? "

(b) For k € Ng U {co}, we say that a patched mapping f: U — F is of class C* on
the patches if all of the mappings f; in (a) can be chosen of class C*.

el F; as in

PROPOSITION C.17. Let I be a set and (E, (pi)icr), (F,(¢i)ier) be patched topological
R-vector spaces. Assume that f: U — F is a patched mapping from an open subset
UCE toF.If f is of class C**1 on the patches, then f is of class C*. If E and F are
countably patched and f is C* on the patches, then f is of class C*.

Proof. For i € I, let f;: U; — F; be the mappings compatible with f. Consider the
box neighborhood @, ; U; := ([;c; Us) N (D, i) which is open in the locally convex
sum (cf. [39, 4.3]). The compatibility condition yields g o f = (D,c; fi) op\éeUi. As
shown in [26, Proposition 7.1], the map @, fi is a C*-map if each f; is of class C**+1
(respectively each f; is a C*-map and I is countable). By definition, this is the case
if and only if f is C**! (respectively C* in the countable case) on the patches. The
map (P, fi) op|g9 Ui is of class C* as a composition of a C*-map and a smooth map.
Thus g o f is a C*-map. Since the subspace Im ¢ is sequentially closed, the corestriction
(go f)|™9 is a C¥-map. As ¢|"™ is an isomorphism of topological vector spaces, f is a
CF-map. m
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C.4. Lie groups

DEFINITION C.18. A (locally convex) Lie group is a group G equipped with a smooth
manifold structure (modeled on a locally convex space) turning the group operations into
smooth maps. Denote its neutral element by 1 and recall that L(G) := T1G is its Lie
algebra (cf. [24,/54] for details).

DEeFINITION C.19. Let G be a Lie group. We denote by p,: G — G, h — hg, the right
translation by g € G. This yields a natural right action of G on the tangent Lie group TG
(cf. [10, Ch. III, §2]):

v-gi= (Tppy)(v) € TpyG for z € G, v € T,G.

The following construction principle for Lie groups will be our main tool to construct
Lie group structures (cf. [10, Ch. III, §1, No. 9, Proposition 18]).

PRrROPOSITION C.20. Let G be a group and U,V subsets of G such that 1 € V = V!
and V -V C U. Suppose that U is equipped with a smooth manifold structure modeled
on a locally convex space such that V' is open in U and which turns -V — V C U
and p:V xV — U—the mappings induced by inversion and the group multiplication,
respectively—into smooth maps. Then the following hold:

(a) There is a unique smooth manifold structure on the subgroup Go := (V) of G gener-
ated by V' such that Gy becomes a Lie group, V is open in Gg, and such that U and
Gy induce the same smooth manifold structure on the open subset V.

(b) Assume that for each g in a generating set of G, there is an open identity-neighborhood
W C U such that gWg= C U and cg: W — U, h — ghg™', is smooth. Then there
is a unique smooth manifold structure on G turning G into a Lie group such that V
is open in G and both G and U induce the same smooth manifold structure on the
open subset V.

C.5. Regular Lie groups

DEFINITION C.21. Let G be a Lie group with Lie algebra L(G). Consider a C*-curve
p: [0,1] — G with k > 1, and recall that

a"p e C*H([0,1), L(@)),  (8"p)(8) =p'(t) - p() ",
is called the right logarithmic derivative of p. Furthermore we call p a right product
integral for §"p.

If ¢: [0,1] — G is another C*-curve such that 6"p = §"¢q (i.e. both p and ¢ are right
product integrals for ”¢), then ¢ = p- go for some constant gy € G (cf. [49, Lemma 7.4]).
DEFINITION C.22. If v € C*([0,1], L(G)) with k € Ny U {oo} admits a right product
integral p, we define P(y) := p- p(0)~!. Thus P(y) is a right product integral for ~
such that P(7)(0) = 1¢ is the identity element of G. The product integral is uniquely
determined by this property.

DEFINITION C.23. Let k € Ng U {oo}. A Lie group G with Lie algebra L(G) is called
(strongly) C*-regular if for each ¢ € C*([0,1], L(G)), the initial value problem

7(0) =1g, d"(v)=¢ (C.23.1)
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has a solution P(¢), which is then contained in C*+1([0,1],G), and the corresponding
evolution map
evolg: C*([0,1], L(G)) = G, &~ P(€)(1),
is smooth. If G is C*-regular, we write
Evolg: C*([0,1], L(G)) = C**1([0,1],G), &+~ P(€),

for the map at the level of Lie group-valued curves. For more information on regularity
see [32].

The group G is called regular (in the sense of Milnor) if it is C*°-regular. For k < r
the C"-regularity follows from C*-regularity.

Notice that we have defined regularity properties of Lie groups using the right loga-
rithmic derivative. Alternatively one may define left logarithmic derivative, left product
integrals and regularity properties using these notions. However, it is well-known that this
results in the same concepts of regularity as defined in Definition See [18] Proposi-
tion 1.3.6] for a proof.

The following lemma will be our main tool to prove the regularity of the orbifold dif-
feomorphism group. Its proof carries over almost verbatim from |18, Proposition 1.3.10]:

LEMMA C.24. Let G be a smooth Lie group with Lie algebra L(G). Assume that there is
a zero-neighborhood U C C*([0,1], L(G)) for k € No U {00} such that every & € U has
a right product integral. Furthermore assume that E1: U — G, £ — P(&)(1), is smooth.
Then G is C*-regular.
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In this work we assume some basic familiarity with Riemannian metrics and geodesics.
Our approach also requires standard results from Riemannian geometry as outlined in
[19/411/43]. The results obtained in this section are a variation of ideas first developed
in [29]. Our goal is to fix the necessary notation and to provide estimates needed in the
proofs of the main theorems.

NoOTATION D.1. The pair (M, pys) will always denote a finite-dimensional smooth Rie-
mannian manifold M, with Riemannian metric pp;. Notice that for each * € M the
Riemannian metric yields a positive definite inner product pasq: T M x T, M — R. We
usually abbreviate

pu(X,Y) = pro(X,Y), VX,V € T, M.

We define the e-balls with respect to the Riemannian metric in T, M around the origin 0
as By, (05,¢) := {X € T,M | \/pm(X,X) < €}. Recall that on every Riemannian

manifold there exists a Riemannian exponential map
expy: TM D Dy — M
whose domain D), is an open neighborhood of the zero-section. Each Riemannian expo-
nential map on a smooth Riemannian manifold is smooth.
Recall the following standard result of Riemannian geometry:

LEMMA D.2. Let (M,p) be a Riemannian manifold with Riemannian exponential map
expys: Dy — M and let K C M be a compact subset. There is € > 0 and an open set
V C M containing K such that:

(a) for each x €V, the map eXpM@,,p(gm(f)p(O”’g)) is a diffeomorphism with open image in

M
(b) Uzev Bp(0z,€) € Das is an open neighborhood of the zero-section on K.

7

Proof. Apply [41] Theorem 1.8.15] to each point « € K. Since K is compact, this yields
a finite family x1,...,x, € K and constants €1, ..., &, such that:

o for each 1 < k < n and y € expy,(B,(0y,,¢x)), the mapping expy/|5,(0,.,) 15 an
embedding with open image,
e KCV:= Ulgkgn expa(Bp(0zy, €k))-

Set ¢ := min{ey,...,e,}. The pair (e,V) satisfies the assertion of the lemma since
U.ev Bp(0z,€) is an open neighborhood of the zero-section by the proof of [41, The-
orem 1.8.15]. m

[140]
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For the rest of this section, we endow R? (for d € N) with the maximum norm ||||so-
We denote by B,.(z) the metric ball around = € R? with respect to ||| and of radius
r > 0. As a first step we discuss Riemannian exponential maps on metric balls in euclidean
space. To this end, fix the metric ball B5(0) C R%, d € N, and endow it with an arbitrary
Riemannian metric.

LEmMA D.3. Consider B5(0) as a Riemannian manifold with an arbitrary Riemannian
metric. Let exp: D — Bs(0) be the associated Riemannian exponential map. There exist
e>0and1>6 >0 such that:

(a) B4(0) x B=(0) € D and ¢, = exp(z, ~)|2§’((£")(BE(O)) is a diffeomorphism for each
(S m.

(b) Bs(x) C exp(x, B-(0)) for each x € B4(0) and b: Ws — B.(0), b(z,y) := ¢, (y), is
a smooth map on the subset Ws := U, 5.5 @) {x} x Bs(z) of Bs(0) x R.

(¢) For each t > 0, there exists oy € |0,¢] such that ¢, (By,(0)) C Bi(zx) for each x in
B4(0).

If t < §/2 in (c), we obtain a smooth map
f5 BB(O) X Bat (O) X Bof, (O) — BE(O)a f(xvyaz) = b(xa(ﬁdu(y)(z))

Proof. (a) The set B4(0) x {0} is a compact subset of D. Lemma yields an open
neighborhood B4(0) x {0} C W C D such that exp(z, -) restricts to a diffeomorphism on
W NT,M for each x € mpp,(0)(W). An application of Wallace lemma |22, 3.2.10] yields
e > 0 such that B4(0) x B.(0) C W.

(b) For fixed z € By(0), we have dgexp(z,0;:) = idpa (cf. [41, proof of Theorem
1.6.12]). Apply the parameter-dependent Inverse Function Theorem [31, Theorem 5.13]
to the exponential map on B4(0) x B.(0). By compactness of By(0), this yields some
d > 0 which satisfies the assertion of (b). Note that W; is relatively open in B4(0) x R?,
and thus a locally convex subset of R? x R? with dense interior.

(¢) By uniform continuity of exp on B4(0) x B.(0), we may choose oy with the desired
properties. If ¢t < 6/2, we obtain ¢, (,(2) € Bs(x) for each (z,y,2) € B3(0) x B,,(0) x
By, (0). The assertion now follows from (b). m

The mappings defined in the last lemma will be used to obtain estimates for the
growth of metric balls if certain maps are applied to these balls. We are interested in
the composition of suitable vector fields on Bs5(0) with the Riemannian exponential map.
Recall that canonical lifts of orbisections are vector fields and lifts of the Riemannian orb-
ifold exponential map are typically Riemannian exponential maps of the charts. Hence
the following estimates describe the local behavior of a composition of such lifts. More-
over, the computations will enable us to control the composition of orbisections and the
Riemannian orbifold exponential map.

In the proof of the next lemma we use the space £(R?) of continuous linear endomor-
phisms of R?. For the rest of this section we endow the space £(R?) with the operator
norm ||-|lop with respect to ||-||oc-

LEmMA D.4. Consider B5(0) as a Riemannian manifold with an arbitrary Riemannian
metric and the exponential map exp. Let €, §, and D be as in Lemma[D.3] and p > 0.
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There exists an open C'-neighborhood N of the zero-map in C°°(Bs(0),RY) such that
each £ € N satisfies:

(8) (a0 ) (Ba(0) € Ba(0) x B(0) € D and [lexp(a.£(x)) — a < min{1/8.6/2}
for each x € B3(0),

(b) Fe :=exp o (idp,(0),&lBs(0)) is an étale embedding,

(c) fory e B3(0),

B%(Fs(y)) Fe(Bs(y)) € Bs(Fe(y)), s€]0,3—|lyll, (D.4.1)
01 (0) € F, ( «(0)) € Buowa (0),  s€]0,3), (D.A4.2)
1 (0) C Fy {(B,(0)) € B (0), 7 €]0,2+1/8), (D.A.3)

(d) there is a map 5* € C“(ImFg,Rd) such that (F¢)™ = exp o (idpm £, £¥),
(e) Hf*Hﬁ(O)’1 < p foreach £ €N, and if £ =0, then £ =0,
(f) the map I: N'— C>(B2(0),R%), & = £ |p,(0), is smooth.

Proof. We need preparatory estimates to control the derivatives of all relevant maps.
Since €, were chosen as in Lemma [D.3] we may consider the smooth map

a: B4(0) x B5(0) = B.(0), a(x,y) :=b(z,z+y) = ¢, (z+y).

Since exp(x,0) = x, we derive a(z,0) = 0 for each x € B4(0). Thus dya(z,0;-) = 0
for all z € B4(0). The set Bs(0) x {0} C a~!(B,(0)) is compact, whence the Wallace
lemma [22, 3.2.10] allows us to choose 0 < t < min{1/8,d/2} with

a(B3(0) x B.(0)) € B,(0), (D.4.4)
lldia(z, y;)lop < p/2  for (z,y) € B3(0) x B(0). (D.4.5)

Set m := sup{||daa(z,y;-)|lop | * € B3(0), y € B;(0)} < oo. It is well-known that the
invertible matrices form an open subset £(R?)* of £(R?) and inversion is continuous on
this set (cf. |31, Proposition 1.33]). Hence there is 0 < v < 1/4 such that for A € L(R?)
with || A — idga|lop < 7 and thus A € L(R?)*, we have ||A™! — idga||op < %.

By Lemma we may choose o; > 0 with respect to € and § such that ¢ > oy
and ¢;(By,(0)) € Bi(z) € Bminf1/s,s/2}(x) for each z € B4(0). We obtain an open
neighborhood of the zero-map | B3(0), B, (0)] € C(Bs5(0),R%).,., and by construction
each ¢ € |B3(0), B,,(0)] satisfies the assertions of (a). We shrink |B3(0), By, (0)] to
construct N: For £ € | B3(0), By, (0)] NC>(B5(0), RY), we define the smooth maps Fy :=
exp o (idp,(0), &l Bs(0)) and ge := Fe —idp, (). Our goal is to apply a quantitative version
of the Inverse Function Theorem for Lipschitz continuous maps (cf. [31, Theorem 5.3]).
From [24, Lemma 1.9], we deduce that the assignment B3(0) — L(R?), z — dge(z,-), is
well-defined and continuous. Since the domain of g¢ is convex, an estimate for ||dge (2, -)||op
will yield a Lipschitz constant for g:

dge(z;-) = d(Fg —idpy,(0))(2;-) = dFe(2; ) — idga
= dj exp(z,&(z);-) — idpe + daexp(z,&(2);dé(2;+)),  z € Bs(0).

T1(z) Tr1(z)
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The map F: B4(0) x B-(0) — L(RY), (2,w) + dy exp(z,w;-) — idga, is continuous by [31,
Lemma 3.13] with F'(z,0) = 0 for z € B3(0). Using the Wallace lemma as above, we
find s € J0, ] such that F(Bs(0) x B.(0)) C Bk*(0). Then Wy := |B3(0), B.(0))] €
C(B5(0),R%)..,. is an open neighborhood of the zero-map.

For each ¢ € |B3(0), B,,(0)] N Wy N C>(B5(0),R%) and x € B3(0), we derive the
estimate ||T7(x)|lop < 7v/2 < 1/8. Since B3(0) x B:(0) is compact, there is an upper
bound ||da exp(z,y;-)|lop < C' < oo independent of (z,y) € B3(0) x B.(0). For each ¢ €
| B3(0), Bo, (0)] N W1 and o € B3(0) we obtain the estimate | T77(2)||op < C|ld&(2;)|lop-

The topology on C*°(Bs(0), R%) is initial with respect to the family (d*)),cy, by Def-
inition Thus we obtain an open C'-neighborhood of the zero-map in C*(B5(0), R)

via

Wy = {€ € C(B5(0),R?) | dV¢ € | B3(0) x Bi(0), By/5¢(0)]}-

Define the C'-neighborhood as N := |B3(0), By, (0)] N W; N Wy. For each £ € N, the
construction shows Lip(ge) = sup, . <slldge(z;)llop <7 < 1/4.

Since Lip(ge) < 1 = 1/||idge||op, the Lipschitz Inverse Function Theorem |31, Theorem
5.3] yields: For ¢ € N, the map F¢ is a homeomorphism onto its image and is
satisfied. Specializing to y = 0 together with (a) yields . Apply Fgl to
to obtain (D.4.3). We claim that Fy is an étale embedding. If this is true, (b)
holds. To prove the claim, note that for each z € B3(0), one has 1/4 > ||dge(2;-)|lop =
|dFe(2;-) — idga(+)|lop. Hence dFg(z;-) is in L(R?)* for each z € B3(0). The Inverse
Function Theorem (see [45, 1.4, Theorem 5.2]) implies that F¢ is a local diffeomorphism,
and since it is already a homeomorphism onto its image, F¢ is an étale embedding.

We now prove the assertions (d)—(f). To this end, observe that by (c), the image of
Fg satisfies By 1(0) € Im F¢ € By(0). Choose x € Im F¢ and set y := Fgl(ac) € B3(0).
By construction of A/, we have £(y) € By, (0), whence

v = Fe(y) = ¢y(§(y)) € Bi(y) € Bs/2(y), (D.4.6)

and thus y € Bi(x). We may thus define £*(x) := b(x,Fg_l(x)) and obtain a smooth
map £*: ImFy — R? with Im¢* C B.(0). From the above estimates, we deduce that
he- := exp o (idim r,,£*) is defined. A computation with z € B3(0) then shows

he- © Fe(z) = exp(Fe(2), €7 (Fe(2))) = dpe()(§7Fe(2)) = ¢Fg(z)(</>F§(Z H(Fe(2))) = =
Hence (d) holds. Notice that by construction {*(z) = a(z, (F¢ (m)
In particular, if § = 0, then F¢ = idp, (), whence {*(x) = a(:n7 F L)
To obtain the estimate for (e), we compute the derivative:
4" (;) = dyale, (Fe) ™ (2) =5 )+ doa(, (Fe) ™ (&) 3 d(F ) (a3 ) —idga (). (DAT)
By construction, d(Fgl)(x; ) = (dFe(y;+))~! with y := Fgl(:zz). By definition of N, we
have ||dFe(y, ) — idgalop < 7, and we derive ||(dFe(y; )™ — idgallop < 552575

Let € By(0). Since Fe Y(x) — 2 € B(0) by (D.4.6), the operator norm of the
second summand in (D.4.7) 1s smaller than m - Q(TP-&-I) < £. Likewise, a combination of

(D.4.6) and (D.4.5) implies that the operator norm of the first summand is less than p/2.
Summing up, we have ||d§*(z;-)|lop < p for each x € By(0).

—x) for € Im Fr.
—z) = a(z,0) = 0.
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As the operator norms on the compact set B2(0) were constructed with respect
to [|[loc, we derive sup, =1 [07€ 5570 < SUP,cH 1967 (25 )llop < p. Moreover, by

(D.4.6) and (D.4.4) the estimate ||£*(2)|lo0 = ||a(;v,Fgl(:c) —7)||so < p follows. In con-

clusion, ||§*||m 1, < p, and thus (e) holds.

Recall that £*(z) = a(x, (F§_1|32+1/8(0) — idB2+1/8(0))(x)) for 2 € Byy1/5(0) C Im F
(cf. (D.4.3)). By construction of N/, we obtain Fg_1 | Bosr,s(0) =18, 1 4 (0) € [ B2(0),B5(0)] oo
C C*°(Bay1/5(0),R?). Let a, be the map a.: [Bz(0), Bs(0) oo — C*(B2(0),R?) defined
via a.(n)(x) = a(z,n(z)). This map is smooth by |27, Proposition 4.23(a)|, and since
C>(Ba41/8(0), R?) is a topological vector space, addition of elements and thus the map
a: C°°(Bg+1/8(0),IRd) — C°°(Bg+1/8(0),Rd), [ [ —idp,,, 4(0), is smooth. We claim
that

h: N — COO(B2+1/8(O)7Rd)7 E— Fg_l\BHl/g(o),
is smooth. If this is true, the assertion of (f) follows, since I = a, o a o h. Remark [C.5|(a)
implies that C°°(B5(0), R?) is metrizable. Hence by |27, Proposition E.3|, h is a smooth
map if and only if h o ¢ is smooth for each smooth curve c: R — N. By the Exponential
Law (see, e.g., |27, Proposition 12.2]), the map ko c: R — C°°(Bay15(0),R?) will be
smooth if (hoc)": R x Baiq/8(0) = R?, (7,2) — h(c(7))(x), is smooth. To verify this,
we adapt an argument from [44, p. 455]: Consider the map
H:Rx B2+1/8(O) X B3(O) - Rd? (T,JI, y) = eXp(:U,CA(T, y)) — T = Fc('r)(y> - Z,
which makes sense by construction of A. Furthermore, H is smooth, as ¢*: R x B5(0) —
R? is smooth by |2, Theorem 3.28]. Since Fi(.y o h(c(r))(z) = x for each 7 € R and
x € Bayq/5(0), we obtain the identity H(7,z,(hoc)"(r,z)) = 0. A computation yields
the following estimate for the derivative of H:
Hd3H(Ta €,Y; ) - ide’HOP

= ||dy exp(y, ¢ (7, y); -) + da exp(y, " (7, y); dac” (7,3 ) — idgal|

< |ldy exp(y, " (7,y); ) — idgallop + [ld2 exp(y, " (7, y): dac” (7, ) llop

<v/24+~/2<1/8+1/8< 1.
Here we have used the estimates for 77 and T7; obtained above, which apply because
c(t) € N for each 7 € R. We deduce that d3H (7, z,y;-) is invertible for each (7,z,y) €
R x BQ%(O) x B3(0). Furthermore, for fixed (7,7) € R x By, 4/5(0), the map H(r,z,-) =
Fi7(-) — = is injective on B3(0). Using the injectivity, we deduce with the Implicit
Function Theorem [31, Theorem 5.2] that (h o ¢)” is smooth. In conclusion, (f) holds. m
LEmMA D.5 (|45, I1.3, Theorem 3.3]). Let M be a finite-dimensional paracompact man-

ifold of dimension d. Given an open cover O of M, there exists a locally finite manifold
atlas V(O) = {(Vs k, k&) trer with the following properties:

(a) the cover V(O) is subordinate to O and each chart domain Vs, is precompact,
(b) for each k € I, one has r(Vs) = Bs(0) C R,
(c) for each T € [1,5], the open sets Vi i, := ;' (B,(0)) cover M fork € I.

If M is o-compact, then every atlas with properties (a)—(c) is countable.
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Proof. The manifold M is locally compact and paracompact. Apply [22, Lemma 5.1.6]
together with local compactness of M to obtain a refinement O’ of O such that the closure
of each of the open sets in O’ is compact and is contained in some open set in O. By
Proposition each component of M is second countable, and thus we may apply [45]
I1.3, Theorem 3.3] to obtain a (countable) locally finite manifold atlas subordinate to O’
for each component. Thus the closure of any chart domain in this atlas is compact as
a closed subset of a compact set. Taking the union of the atlases for the components,
we obtain an atlas V(O) for M with the desired properties. If M is o-compact, say
M = UneN K,, with compact sets K, then each K,, meets V; j, for only finitely many k.
Hence I = Uyen{k € 1| Vsx N K, # 0} is countable. m

We shall combine our considerations to construct special neighborhoods of the zero-
section in X(M) for a paracompact Riemannian manifold (M, pps). Consider some atlas
{(Vsk,kk) | k € I} for M as in Lemma For each chart (Vs , ki), we define the
pullback Riemannian metric py on Bs(0) with respect to x;'. Then ;' becomes a
Riemannian embedding. In particular,

Tk " (Bp, (0 (2): 7)) = Bp(0g,7), 7 >0, (D.5.1)

for x € V5 ;. Moreover, the Riemannian exponential map exp;, associated to the Rieman-
nian pullback metric p;, satisfies Tn;l(dom exp,) C domexp,, and

exp s Tﬁ,:1|domexpk = /@,;1 expy, - (D.5.2)

For the remainder of this section, we endow the image of a manifold chart with the
pullback Riemannian metric just described. Whenever the constructions require a Rie-
mannian metric on a chart domain, we use the induced metric without further mention.
In the next lemma, we use notation as in Definition [C.10}

LEMMA D.6. Let (M, par) be a d-dimensional paracompact Riemannian manifold with
Riemannian exponential map exp,,; and some open cover O of M. Choose via Lemma
an atlas V(O) := {(Vs k, ki) | k € I} with respect to O. There are v, > 0 for k € I
such that

(a) for each y € M, exp,, is injective on N, := Uner Tk '({kn(y)} x B, (0)) € T,M,
where the index set is defined as I, :={k € I |y € Vi }.

(b) Tkn(Ny) € domexp,, exp,|rx,(n,) 5 an étale embedding and exp,Tkn|n, =
knexpys|n, for each n € I,.

If J C I is finite, we may choose v > 0 such that (a)—(b) hold for each k € I with respect to
v, = v. Moreover, in this case there exist open C'-zero-neighborhoods N, C C>® (Vs i, Rd)
for k € J such that for each X € 0,1 (Ny) C X (Vs 1).

(c) The map expyy o Xy is defined with Imexp; o X|p— C Vs 1.

(d) The following estimates are available for the composition: expy; o X (Vsjan) € Vor,
Vsjak Cexpyo X (Vo) € Vi and B4(0) x B, (0) C dom expy,.

(e) The map F% :=expy; o X|v,, is an étale embedding.

(f) Tor each x € V3, we have X, (z) € B,(0).
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Proof. For each k € I, Lemma allows us to choose v}, > 0 such that exp,(z,-)
restricts to an étale embedding of B, (x) for each 2 € B4(0). Since V. is compact and
the cover V is locally finite, there is a finite subset Fj, C I such that Vs,; NV, # 0 if
and only if i € Fj,. By compactness of V , NV ; for j € Fy, there is some v > 0 such
that for each j € Fy, one has T(ky o r;, ") ({rr(z)} x B,;(0)) € {sx(x)} x B, (0) for all
x € V3 xNVy, ;. The choice of v}, together with shows that the open sets N, induced
by the family (vy)rer satisfy the assertion of (a). Since Tk, (N;) € {kn(x)} x B, (0) for
each n € I, by construction, the set Tk, (N,) is contained in the domain of exp,, for each
n € I,. Hence yields expy|n, = expy; Th;, dom exp, Thk|n, = K}, " expy Tk, -
We deduce that (b) must hold.

If J C I is finite, choose v := min{y | k € J}. It remains to construct the open sets
Ny. Fix k € J and consider the chart (Vs k, ki ). Reviewing Lemma the construction
of N} C C*(B5(0),R%) may be carried out using arbitrarily small €, since by hypothesis
must have the same properties as in Lemma[D.4] where it may be chosen arbitrarily small.
The map &y, is a diffeomorphism, whence C*° (x, R?): C®(Bs5(0),R%) — C>= (Vs 1, RY),
f — f oKy, is linear bijective and continuous by a combination of |27, Lemma 4.11]
and [5, Proposition 7.4]. Define the open C'-neighborhood N, := C*(ky, R?)~1(NV]) C
C*>(Vs x, R?). The Riemannian exponential map exp,, is related to exp,, via and
the identity in (b). Hence the properties obtained via Lemma for vector fields with
Xy, € Ni imply (c)—(f). m
REMARK D.7. In the setting of Lemmal[D.6] consider a compact subset K C M. As V(O)
is locally finite, there is a finite subset F5(K) := {(Vsx;, kx,) | 1 < j < N} of V(O) such
that Vs, N K # 0 if and only if (Vs x, ki) € F5(K). Notice that F5(K) induces a family
of open neighborhoods of K via

N
KCQxi=|JVig, rell,s]
=1
The set Fs(K) is finite, whence the set K5 := i, Va4, is compact. Again, we define a
finite subset F5(K5) := {(Vsn.kn) | n € I, V5, N K5 # 0} of V(O) as the set of charts
which intersect the compact set K5. As above, one defines open neighborhoods €, ., of
K; for r € [1,5].

We will now construct a neighborhood of the zero-section such that the composition
of sections in this neighborhood with the Riemannian exponential map yields an étale
embedding. The arguments in the proof of the following lemma are inspired by [38] 2.
Theorem 1.4].

LEMMA D.8. Let K C M be a compact set and F5(K) = {(Vsk, k) | 1 <k < N} as
above. For each 1 < k < N construct a C'-zero-neighborhood N}, C COO(‘/'57k,Rd) as n
Lemma c)f(f) applied with the finite set J = {1,..., N}. Furthermore, consider the
continuous maps 9,?,?“: X(Q5.x) = C°(Vs 1, RY), X +— X,,. There are open C'-zero-
neighborhoods My, C Ny, such that, setting Es i := ﬂgzl(ﬁgs’f()_l(/\/lk) C X(5.x) and
E = (resé\{{va)_l(Eg,,K) C X(M) (cf. Notation , the map Fx := expy; o X|q, . is
an étale embedding for each X € E, and Fx (m) C k.
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Proof. By Lemma m for each X € 0! (Nj) the map exp,; o X |v5 is defined, and its
image is contained in V3 i, for each (Vs i, ki) € F5(K). The manifold M is locally compact,
hence a regular topological space. Thus by [22, Theorem 3.1.6], we may separate the
compact set V5 i, from the closed set M \ V3 . We obtain disjoint open sets Ay, By C M
such that Vo C Ay, and M \ Va3, C By, for each (Vs i, ki) € F5(K).

CLAIM. There are open neighborhoods My C Ny, of the zero-map, 1 < k < N, such that
for X € Es g the following hold: Fx(mﬂ Qo k) C Ay and Fx(Qo,x \ Vax) € By for
each 1 <k <N.

If this is true, then the proof may be completed as follows: Let X be contained
in Es . Observe that the construction of Ejsj implies that for each 1 < £ < N the
map Fx|v, ,n0sx = F¥|vi,n0,, is an étale embedding by Lemma e). Consider
distinct z,y € Q2 ik and choose 1 < k < N with z € V. If y € V5, we must have
Fx(z) # Fx(y) since the map is an étale embedding on V3 N Q2 k. On the other
hand, if y € Qo i \ Vs € M \ V3, by the above Fx(z) € Fx (Vo N Q2 ) C Ay and
Fx(y) € Fx(Q2,x \ Vax) C By. Since A, and By, are disjoint, again Fx(x) # Fx(y),
whence F'x must be injective. Thus each X € F yields an injective local diffeomorphism
expy; 0 X, ; i-€. expyr0 X|q, . is an étale embedding. Furthermore, Fx maps V; i into
Va, by Lemma[D.6(d). Hence the definitions of O x and Qs yield Fx (Q k) € Qo k-

Proof of the claim. For k # j, we obtain sets
Kyj =t (Vo N (M \ V3;)) € B2(0) and By := Try(TVsx, Nexpy/ (B N Vag)).

By construction each Kj; C Bs(0) is compact and each By, is an open subset of T'B5(0).
Define Ay, := Tk (TVs 1 N exp&1 (Ag)) for 1 < k < N. Recall the identity exp,; 0o 0y =
idas, where 0p; € X(M) is the zero-section. This yields the inclusions Kj; x {0} C By,
for each pair (k,7) € {1 <k,j <N |k#j} and By(0) x {0} C Agy. Hence, the Wallace
lemma [22} 3.2.10] yields constants ex; > 0 for 1 < j < N which satisfy Ky; x B;,;(0) €
By; and B2(0) x By, (0) C Ay for each pair (k,j) € {1 <k,j <N | k # j}. Moreover,
for 1 < k < N we obtain an open neighborhood
N
My = | B2(0), Bey, (0)] N () Ky, Bz, (0)] € C(B5(0),RY)

j=1

J#k
of the zero-map. Define the C*-open set M, := C>(kx, RY) =1 (M) NN C O (Vs 1, RY).
By construction, each vector field X € E5 i (defined as in the statement of the lemma)
may be composed on (23 i with exp,,. With the identities and Lemma (b),
the mapping Fx may be evaluated locally on V5 in the chart (Vs i, ki) € F5(K).
For any X € FEjs x, we note that X,, € C°(xkg, R?)71(|B2(0), Be,, (0)]). Observe that
B5(0) x Be,,(0) C Ay and the definition of Agy imply Fx(Vax) € Ag. Furthermore,
each element y € Q9 x \ V31 is contained in Wn for some 1 < n < N. Thus k,(y) is
contained in K,; by construction. Furthermore, X,, € C*(k,,R%) (| Kk, B-,,(0)])
and K, x Be,,(0) C By. By definition of B,, a computation in the chart (V5 ,, ky)
yields Fx (y) € Bi. Asy € Q9 ik \ V3 and k were chosen arbitrarily, Fx (Q2 x\ Vs 1) C B
foreach1<k<N.m




148 D. Riemannian geometry: Supplementary results

We are interested in vector fields which yield, after composition with the Riemannian
exponential map, the inverse for F'x (respectively, the composition Fy o Fx). In the rest
of this section, we construct C'*-neighborhoods of the zero-section, whose elements permit
such vector fields. Furthermore, the mappings sending a vector field to the vector field
which induces Fx o Fy (respectively Fy 1y should be smooth on these neighborhoods. The
leading idea is to construct these fields locally in a cover of charts, which will enable us
to obtain them as global objects from the local data. For reasons explained in Section
we construct a neighborhood of the zero-section depending on an open C!-neighborhood
of the zero-section chosen in advance and on a positive constant R.

CONSTRUCTION D.9. Consider the setting of Lemma Let K C M be compact and
Es k € X(25 k) an open neighborhood of the zero-section as in Lemma Fix R >0
and an arbitrary open C'*-neighborhood of the zero-section P C X(£25 k). By construction
of the manifold atlas, Q5 x C Q4 k, by Lemma ¢). As the family F5(K5) is a manifold
atlas for Q5 ., the topology on X(£1 g, ) is initial with respect to the family {9ﬁk|vw |
(Vs.k, i) € F5(K5)} by Deﬁnition Thus there is a family of open C''-neighborhoods
of the zero-map Wy, C C*°(B(0),R?) = C°(Vi 1, RY), Va1, ki) € F5(K5) with

Qq, _ s}
(resﬂsﬁis) 1(E5,K mP) 2 n (aﬂklvl’k oC (’ik‘VLk’Rd))
F5(Ks)

Here C*(kk|v; ., RY): C*(B1(0),R?) — C*(V1,R?) denotes the pullback f — fo
%|v; . » which is continuous by [27, Lemma 4.4]. Since B1(0) € B5(0) = sx(Vs,x), Remark
[C.8|(a) implies that we may choose 7 > 0 such that for

feBE = {f € C®(Bs 0L R | | fllgg, < 7
the condition f|p, o) € W} is satisfied. Shrinking 7 if necessary, we may assume 7 < R.
Define the open C!'-neighborhood of the zero-section

E'= [ (607" 0 (ki RY) T (BE) C X(Qs 0,
F5(Ks)

(W)

Then
E' C (reng’f)_l(E&K NP) and (ressj\ﬁle’))_l(E') CEnN (reszK)_l(P).

STEP 1: A vector field inducing the composition exp,, o X o Fy. Since the family F5(K5)
is finite, we may fix a constant ¥ > 0 with v < R as in Lemma [D.6] Consider arbi-
trary (Vs n,kn) € F5(K5) and shrink the C'-open set B”: Choose &, > 05,/2 > 0 and
1> 6, > 0 with properties as in Lem such that €, < min{r,v}. Set 0, := 05, /2
and p, = min{y,7}. Apply Lemma with the constants e, d,, p, taking the roles
of &,8,p to obtain a Cl-neighborhood N, of the zero-map in C*°(Bs(0),R?). Then
each X € C®(k,,RY)(N,)) C C>®(Vs,,R?) satisfies the assertions of Lemma c)f
(e) with respect to v. By choice of the constants (cf. Lemma, there is a smooth map
fn: B3(0) X B, (0) X By, (0) = Be, (0) such that for (z,y, z) € B3(0) x B, (0) x By, (0),

fn(2,0,0) =0, fo(z,y,0)=y and f,(z,0,2) ==z (D.9.1)
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Hence the partial derivative satisfies d; f,,(2,0,0;-) = 0 for all z € Bs(0). The continuous
map Bs(0) x By, (0) X By, (0), (z,y, 2) — ||dfn(z,y, z; -)||op is bounded on the compact set
B5(0) x By, /2(0) x By, /2(0) by some t,, > 1. As the partial derivative with respect to =

vanishes in B;(0) x {0} x {0}, a compactness argument yields 0 < i, < min{v, 2, ﬁ}
such that for all (z,y, z) € B2(0) x By, (0) x B, (0) the estimate ||d1 fn(2,y, 2; ) |lop < 7/3

holds. Define the open C*-zero-neighborhood
H, = No N {f € C®(B5 (01, RY | [ fllgora < fn} © C(Bs(0),RY).

Since pn, < 7, we deduce H] C BI. Set H' := mfs,x5 (9,?:*K5)_1C°°(ﬁn,Rd)(H;) C
X(Q5,x,) to obtain a C'-neighborhood of the zero-section contained in E'.

Let &, n be elements of H,,. By Lemma F¢(B2(0)) C B3(0), whence the composi-
tion [, 0 I¢|p, (o) is defined. Since p,, < 0y, we have F, F¢(z) € Bj, (z) for each x € Bo(0)
by definition of o, = 05,2 (cf. Lemma . Therefore, for each x € By(0),

no&(a) = 07 (FyFe(a) = fu(@ €@)n(Fe(@))) € Boy (0) C Bo(0)  (D92)
is defined and yields a smooth map no¢: B2(0) — B, (0) C B, (0). Observe that n,£ =0
implies no& = 0 by (D.9.1)). For (Vs.,,kn) € F5(K5) and X € ', set X, := X, 0kt
Moreover, for X € H' the composition Fiy := expy; 0 X|q, , is defined. Consider y € V3,
and X € H'. By construction Xp,; € H;,, whence X{,)(kn(y)) € By, (0) € B,(0). Since

n’

{kn(y)} x By(0) C T'kn(Ny), for Fx, asin Lemma Lemma (b) yields
Fin L Ex ) (R (y) = Rt expy, (R (9), Xin) (i (1)) = £y texp, Thin © X (y)
= expy Triyy ' Thin 0 X (y) = expyy 0 X (y) = Fx(y).
Furthermore, a combination of Lemma b) and (c) allows us to compute the identity
Tﬂn(eXpM|Ny)7lli'r:1|expn(Tnn(Ny)) = (eXpn|Tnn(Ny))71

for y € Va,. Set x := Kk, (y) with y € Va,. Since ¢, < v, we conclude {z} x B._ (0) C
Tkn(Ny). This yields

(id32(0)7 X[n] <© Yv[n] ) (Q?)
= (@, fa(@, Yy (2), Xp) (Fyy,, (2)))) = (exPp (a1 x 8., 0) ™ Fx Fyyy (2)

= (exPy|Tr, (N,) 1Fx[n] Py, (x) = Tk (expyy

)7 Ny)ilﬁgl‘eXPn(T"ﬁn(N'y))FX[n] Fy[n] (IIZ)

= T/@'n(expM|Ny)_1/£;1FX[n] Py, (z) = Tffn(exp,\/[h\zy)_1 exp Xn;le[n] (2)

= Thin(expar|n,) " expa X expy Y (y) = Thin(expy|n,) " expy X (Fy (y).  (D.9.3)
This assignment is defined and smooth on V3 ,,, by (D.9.2). Hence for X,Y € H’, we can
define X o Y: Qo g, — TM, x> (expys|n,) ' (expy o X o expy, o Y)(x), which is an
element of X(s k). The identity (D.9.3)) yields X oY =0 for X,Y =0. For X,Y € H’
define (X oY), := (X oY), vs.,. 05| B, (0)- Then the above computation (D.9.3) yields
(X YY) = Xipn) © Y[y on Ba(0). From (D.9.2), we deduce

(X oY)n = | X[n) 0 Y}y, < &p, <min{r,v} < R. (D.9.4)

]”33/2(0)70 ]||Bs/2(0)70

STEP 2: A wector field inducing F)}l. By construction, for (Vs.,,k,) € F5(K5) each
H!, is contained in a set A, as constructed via Lemma such that the assertions of



150 D. Riemannian geometry: Supplementary results

Lemma [D.6| -(c ) hold for C*°(k,,, R?)(N,,). In particular, we may apply Lemma
with K = K5, the open cover F5(K5) and the open sets (H;,) (v, . x.)eFs(Ks): For each
chart in F5(K3), we obtain an open C!-zero-neighborhood H, C C°(k,,R?)(H!) C
C>®(Vs ,,RY). Then we define

MO = N (02575) " (H,) CH'.
(Vs,n kn)EF5(Ks)

By Lemma e) for each X € HR5 " the mapping exp,; o X|q, «, 18 an étale em-
bedding. Consider X € HRE’K and (Vsn,kn) € Fs(Ks). By construction of #HJ, in
Step 1, we deduce with Lemma [D.4(c) that Bs/4(0) C Fx,, (B2(0)). We already estab-
lished the identities Fix (y) = &, Fx,, (kn(y)) and T/ﬂn(expM|Ny)‘1/1;1|expn(Tnn(Ny)) =
(expp| 7w, (n,)) ", for y € Vs, and X € "H%{”K? Furthermore, Lemma (C)*(e) yields
a map Xj, € C*(ImFx,,R?) with Fx; = expy, (idm py, » Xfy) = F)}[i]. This
map satisfies HX[n]||B2(O) 1 < pn = min{r,7} < R. Hence by choice of v, we deduce

X (W) € Thy(Ny), and thus Fx, (y) € exp,(Tkn(Ny)) for each y € V5,4 ,. Combining
these facts we compute for (Vs ,, k) € F5(K5) and y € Vs /4:

~—

)~ ( o) (B (y)
)" 1( X in) " (¥)
= (expyrln,) 7' F ( )
= (expy|n,)” (eXpM Xlewes) ™' (W)-

Tty (expyl 7w, (v,) ™ Fx, (Bn(y)) = (expyln,

expy|w,

—~ o~

By the computation, we obtain a section of the tangent bundle on €254 - via
X Qspac, = TM,  X*(y) = (exppsln,) " o (expy 0 X) 7 (y).

Let (Vsn,kn) € F5(K5) and y € Vs/4,. Observe that exp,|r.,(v,) is injective. Fur-
thermore, Fix- (rn(y)) = exp,,(rn(y), X[ (kn(y))) and (kn(y), Xp, (50 (y))) € Thn(Ny).
These identities imply (exp,, |7, (v,)) ' Fx= (kn(y)) = (kn(y), X[ (5n(y)), whence the

[n]
local identity above yields

X*(y) := (expM|1\;y)_1 o Fil(y) = Tfigl(idBQ(o),X[*n})/in(y) for each y € V54,5,
(D.9.5)
As X[, is a smooth map by Lemma (D.9.5) shows that X* is smooth. Hence X* is
in X(Qs5,4,x,). In addition for each (V5 ,,, kn) € F5(Ks), by choice of py,

1 Xt 5 @y0 < Pn=min{y, 7} < R. (D.9.6)
Define Hp := (resé‘{[5 s )~ (’HQ5 ), and observe that the estimates obtained in Steps 1
and 2 remain valid for sections in this set.

CONCLUSION. We have constructed C''-neighborhoods of the zero-section

,Hgs,xs — F_1< H ’Hn) - X(Qs)xg))’
(Vs,nkin ) EF5 (K5)

Hp = (resty, ) (Hp" ") € X(M)
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where I': X(Q5,k5) = [l (v, e)erm (55 C>® (Vs ,, R%) is the embedding defined in Defi-

nition and each H,, C C>(Vs,,R?) is an open C'-neighborhood of the zero-map.

By construction, H g is contained in the zero-neighborhood EN(resyy.  )~'(P) chosen

in advance. Here E is a neighborhood as in Lemma and P C X(Qs5 k) is an open
C'-neighborhood of the zero-section. In particular, Lemma implies that each element
of Hp satisfies the assertions of Lemma [D.6[d), i.e.:

For (Vsn,kn) € F(Ks) and X € Hg, we have X, (V1,) C B,(0) with By(0) x
B, (0) C domexp,,. For a pair (X,Y) € Hr x Hp there are vector fields X oY € X(Qs k)
and X* € X(5,4,k, ), respectively, such that

expy 0 (X oY) = expys X expys Yo, k5 (D.9.7)
expy; 0 X = (expy, oX\QQ,K5)71|QS/4yK5. (D.9.8)

We note that if X and Y are the zero-section, then the local formulas (D.9.3]) and (D.9.5))
(with Lemma (e)) prove that X oY and X* are the zero-section in X(Q2 g,) and
X(Q5/4,K,), respectively.

The neighborhood H g constructed in this section is used in Section [f] to obtain sym-
metric neighborhoods in the space of compactly supported orbisections. The argument in
Construction [D.9] depends only on a finite atlas. Hence the sets constructed are open in
X (M) with the topology introduced in Definition Unfortunately, the vector fields
X oY and X* will thus in general not be defined on all M. Because of this, we are not
able to prove a statement of the following kind: If X,Y € Hpg, then X oY € E and
X* € E. At the moment, we can only prove the following:

COROLLARY D.10. Consider the setting of C’onstruction and let H.,, (Vsn,kn) €
F5(K5) and Hr be as constructed there. For each pair n,& € H!,, the map no&: Ba(0) —
B, (0) satisfies |\17<>§Hm71 < 7 < R. Hence, by (D.9.3), for any pair (X,Y) € Hr x Hg

and each chart (Vs n, kn) € F5(K5), we derive ”(XOY)[”]”m L <T.

In Section [}] we consider a setting, which allows X ¢ Y to be extended uniquely
to all of M. In this case, Corollary will imply the result mentioned above (cf.

Proposition .

Proof of Corollary[D.10 By (D.9.2)), it suffices to prove that the norm of the derivative
is bounded by 7. To do so, we recall the estimates from Step 1 of Construction [D.9 Let
x € B1(0), y € Bz(0) and consider £ € H!,. Then F¢(x) € By(0) and ||f||?(m71 < iy, With
0< py < min{y, %, #tn} Recall that ||d1 fn(y1,y2,93;)|lop < 7/3 and ¢, is an upper
bound for ||dfy (y1, Y2, Y35 )|lop With (y1,92,y3) € B2(0) x By, (0) x B, (0). As Hl, C N,
for an open neighborhood A, constructed via Lemma [D.4] we deduce from the proof of
the lemma that 1/4 > ||dF¢(z;-) — idga|lop > ||[dFe(z;-)|lop — 1 for ||z]jec < 3. For each

(z,y) € B1(0) x B1(0) we obtain the estimate [|d{(z;y)[lc < [[d€(;-)[lop < 57 Choose

t, large enough such that ||d§(z;y)||ec < 2 on B1(0) x B1(0). Using the rule on partial
derivatives and the chain rule with these estimates, we compute for (z,y) € B1(0)x B1(0):
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ld(7© €) (2 9) oo T2 ||df (, £(x), n(Fe (2)), 3, dE(w, ), dn(Fe(x), dFe (2,9))) |
< llda o (2, ), 1(Fe (), 9)lloo + 1fn (@, £(), n(Fe ()i )llop - 114 (23 9) oo
- [ldf (@, €(2), n(Fe(@): Mop - ldn(Fe(@); )llop - I1dFe (23 9)|oo
)

< §+ l[dfin (2, (), n(Fe(2)); ) lop ([1dE (25 ) || oo +2 ldn(Fe(@); )lop) <
<tn <dpn <dpin

+

S
@l
IN

~ 4
3

We derive H%(nof)(m)”m < 7 for x € B1(0) and j € {1,...,d}, and finally
||77<>§||Bl(0),1 <T7.m

LEMMA D.11. Consider the open zero-neighborhoods ’H%’”K"’ as i Construction. The
maps

CHPIE X WS S X (), (X,Y) e X oY,
v HE S X (0 k), X s X*,
are smooth.

Proof. Let I be the finite set indexing F5(K5). Following Definition and the defi-
nition of Q. k,, the topology on X( k), r € [1,5], is defined via the linear embedding
with closed image

Lp: X(Qrr,) = [[ CF(Ver, RY) = @ C(Vip, RY).
kel kel

Therefore the maps pj = X(Q x;) = C°(Voi, RY), pj(X) := Xy, |v,.., k € I, define a
patchwork for X(9, k) indexed by I. Define

P X(Qs.k,) X X(Qs.1,) = @D C® (Vs i, RY) x C (Vs 1, RY),
kel

(X.Y) = (0} * pR)(X,Y))ner-

Recall that finite products coincide with direct sums in the category of locally convex
vector spaces. The universal property of the direct sum therefore ensures that the map

L: @O (Ve RY x €V, RY) = (D C= (Vs R ) x (P C(15,4,RY),

kel kel kel
(Xk, Yi)wer = (Xu)rer, Ye)rer),

is an isomorphism of locally convex spaces. Furthermore, Lop = I's x I's. As I'5 is an
embedding with closed image, the map I's x I'5 is a linear embedding with closed image
(identifying the domain of I's via the embedding with a closed subspace of the codomain
of T's this follows from |11, Ch. II, §2, No. 5, Proposition 8 and Corollary 1]). We conclude
that p is an embedding with closed image and the family (p} x p})rer yields a patchwork
for .}:(957](5) X 3€(Q57K5).

We claim that the maps ¢ and ¢ are patched mappings which are smooth on the
patches. If this is true, then the assertion follows from Proposition We proceed in
two steps and first prove the claim for the map c:
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Recall from Construction that H%s’K"’ = ﬂne,(efj“5)—1(%n). Here each of the
sets H,, is an open neighborhood of the zero-map with H, C C*®(k, R~ (H!) =
C>®(kp, RY)(H]) and H,, C C°°(B5(0), R?). We define the maps

hn: Hy, x Hj, = C®(B2(0),RY),  (1,€) = nok,
Cn: Hp X Hp — Coo(‘/Q,n7Rd)7
(X,Y) = C®(knlvy,., RY) 0 by 0 (C® (1,1, RY) x C (5,1, RY))(X,Y).

Observe that by Step 1 in Construction each map ¢, maps the zero-map (0,0) €
Hp X Hp to 0 € C°(Va p, R?). From the definition of ¢ and the identity , a trivial
computation yields the identity ¢, o (p2 x p3) = p? o ¢ for each n € I. Therefore c is
a patched mapping whose compatible family is (¢, )ner. By Proposition the first
part of the claim will hold if each ¢, is a smooth map. However, ¢, will be smooth if
and only if h,: H., x H!, — C=(Ba(0),R%), (n,£) = no¢, is smooth, since O (x; 1, R%)
and O (k,, R?) are mutually inverse isomorphisms of topological vector spaces by [27,
Lemma A.1]. We fix n € T and prove that h,, is a smooth map:

To this end, recall the constants ¢, d,, obtained in Construction [D.9] By Lemma D3]
we may consider the smooth maps

en: Ba(0) x B., (0) = R (2,y) = exp,,(z,y),
an: By(0) x Bs, (0) = B., (0), an(x,y) :=by(x,x +y).

By |27, Proposition 4.23(a)], these maps induce smooth push-forward maps

enst [B3(0), Be,, (0) oo = CF(B3(0),RY),  ens(7)(2) := en(z,7(2)),
ans: [B2(0), Bs, (0)]oo — C%(B2(0),RY),  ans(n)(@) := an(x,n(x)),

where |B5(0), B.., (0)]o € C>(B4(0),R%) and [B5(0), Bs, (0)) oo € C>(Bay)0(0), RY)
are open sets. Recall from Construction that H/ is a subset of an open set N,
which has been constructed by an application of Lemma Thus n € H), satisfies
Lemma (a), whence 7(B3(0)) € B.,(0). In other words, H,, C |B3(0), Bc,(0)] o
(after restricting to B4(0), which we suppress in the notation). By definition, e,.(n) = F,
with F, as defined in Lemma@ Furthermore, applying the estimate , we obtain
enx(n) € | B2(0), B3(0)]oo. By |27, Lemma 11.4], there is a smooth composition map

©: C*(B3(0),R?) x [B3(0), B3(0)] oo = C™(Ba1/20(0),R?),  (£,9) = f © 9B,y 20(0)>

where | B2(0), B3(0)| € C*(B3(0),R?). Hence, we may compose © and (e,s X €,4) to
obtain a smooth map © o (ens X €ns): Hj, X Hj, — C°°(Ba1/20(0),R?). By definition
of H;,, for n € H), we derive the estimate I, (z) € B, j2(x) for x € B3(0) (see Lemma

a)). Thus O(en«(n), en«(§))(x) — 2 € Bs, (0) for x € By(0), n,& € H.,. Combine the
identity (D.9.2)) with the definition of f, in Lemma ¢) to deduce

hin(11,€) = @ (O(ens (1), €ns(§)) — i, 50 (0))-

We conclude that h,, is smooth as a composition of smooth maps. Summing up, this
proves the first part of the claim.
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As a second step, we construct a compatible family for ¢. To this end, we define
in: ,H;L — COO(B5/4(O)aRd)a §H£*|B5/4(O)a
i M = C®(Vayan, RY), X 5 C®(knlvy ., RY) 0 0 C(k, 1 RY).

From the identity , we derive p?/ Y= tnp>. Hence ¢ is a patched mapping and we
have to prove that each ¢, is smooth. Again ¢,, will be smooth if 7,, is smooth.

Recall that H/, C N, for an open set N,, C C°°(B5(0), R?) with the properties of the
set N in Lemma Hence the map I,,: N;, — C°°(B3(0),RY), £ — £*|p, (0), is smooth
by Lemma f). Let A: B5/4(0) < B2(0) be the canonical inclusion. The pullback
C> (), R9) is continuous linear, hence smooth. Finally, the identity i, = C>(\,R9) o L)y,
ensures that 4,, is smooth. =



E. Maps of orbifolds

In this section, we recall the notion of an orbifold map in local charts which was intro-
duced in [55] (cf. Section [1.3|for details on orbifolds). Our exposition follows [55] and we
repeat basic facts for the readers convenience. Orbifold maps in the sense discussed here
correspond to maps in a category of groupoids. Our notion of orbifold map developed
here is thus equivalent to other types of orbifold maps which are equivalent to maps
in the associated groupoid category (cf. [15] for the Chen-Ruan good map and [1] for
the Moerdijk—Pronk strong map). We do not recall the connection with groupoids to
construct orbifold maps. However, to facilitate a better understanding of orbifold maps,
more details on the connection with groupoids are given in Remark

E.1. (Quasi-)Pseudogroups. In this section we let M be a smooth manifold.

NoTaTION E.1 (Transitions). A transition on M is a diffeomorphism f: U — V| where
U, V are open subsets of M. Notice that the empty map () — () is a transition on M.
The product of two transitions f: U — V and g: U’ — V' is the transition

YY) o gl wnvny: g HUNV!) = FUNV), x> f(g(x)).

The inverse of f is the inverse of f as a function. If f: U — V is a map, we denote by
dom f the domain of f and by cod f the codomain of f. For x € dom f we denote by
germ,, f the germ of f at x, and by A(M) the set of all transitions of M.

DEFINITION E.2 (Pseudogroup). A pseudogroup on M is a subset P C A(M) which is
closed under products and inversion of transitions. We call P a full pseudogroup if for
every open subset U C M the transition idy is contained in P. A full pseudogroup is
called complete if it satisfies

(Gluing property) If f € A(M) and there is an open cover (U;);e; of dom f such that
flu, € P for all i € I, then f is an element of P.

The pseudogroup P is closed under restrictions if for any f € P and an open set
U C dom f, the map f|5(U): U — f(U) is in P. For example, every full pseudogroup is
closed under restrictions.

DEFINITION E.3 (Quasi-pseudogroup). A quasi-pseudogroup P on M is a subset of A(M)
with the following properties:

(a) For each f € P and x € dom f, there exist an open set U with z € U C dom f and
g € P together with an open set V such that f(z) € V C domg and (f|y)~! = g|v.

[155]
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(b) If f,g € P and x € f~!(cod f Ndom g), then there exist h € P and an open neigh-
borhood U C f~!(cod f Ndom g) N dom h of z with go f|y = hly.

Thus inversions and compositions of elements in a quasi-pseudogroup are only required
to correspond locally to other elements in the quasi-pseudogroup. For pseudogroups,
inverses and composites globally belong to the pseudogroup. Quasi-pseudogroups are
designed to work with the germs of their elements. In general, quasi-pseudogroups may
be thought of as generators for pseudogroups in the following sense:

DEFINITION E.4. Let P be a pseudogroup on M which satisfies the gluing property and
is closed under restrictions. The pseudogroup P is generated by aset A C A(M)if A C P
and for each f € P and x € dom f there exists g € A and an open set U C dom fNdom g
with € U and f|y = g|y. Then P is uniquely determined by A.

Consider a subset B of A(M). If there exists a unique pseudogroup () on M which
satisfies the gluing property, is closed under restrictions and is generated by B, then we
say that B generates Q.

REMARK E.5. (a) The set A(M) is a pseudogroup. Each pseudogroup is a quasi-pseudo-
group.

(b) Each quasi-pseudogroup generates a unique pseudogroup which satisfies the gluing
property and is closed under restrictions. Vice versa, each generating set for such a
pseudogroup is necessarily a quasi-pseudogroup.

E.2. Charted orbifold maps. In this section, we let (Q,U) and (Q’,U’) be orbifolds.
Morphisms of orbifolds will be constructed in several steps, since they arise as equivalence
classes of certain objects:

DEFINITION E.6. Let V := {(V;,G;,7;) | ¢ € I} be a representative of i. We abbreviate

the disjoint union of the chart domains of elements in V with V' :=[],.; V; and define

V=0, zw— mx)forxzeV,.
Then the subset
(V) :={feAWV)|mo f=m|domys}

of the set of all transitions on V is a complete pseudogroup on V which is closed under
restrictions.

The last definition may be used to associate to each orbifold an étale Lie groupoid
(as is explained in [55, 2.9 and 2.10]). This relation was invaluable to derive the notion
of orbifold map introduced in this section. However, we will only provide some details in
Remark and refer to 55| for a full account.

DEFINITION E.7. Let f: Q@ — Q' be a continuous map. Consider two orbifold charts
(V,G,w) e U and (V',G',7") € U'. A smooth map fy: V — V' is called local lift of f
with respect to (V,G, ) and (V',G',7') if 7’ o fyy = f om. In this case, fy is also called
a local lift of f at ¢ for each g € w(V).
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DEFINITION E.8 (Representative of an orbifold map). A representative of an orbifold
map from an orbifold (Q,U) to an orbifold (Q',U’) is a tuple

f:: (fa{fi}iGIaP’V)

where

(R1) f: Q@ — Q' is a continuous map.
(R2) For each i € I, the map f;: V; — V! is a local lift of f with respect to orbifold

7

charts (V;, G;,m;) € U and (V/, G}, 7)) € U’ such that

Umvi) =@
il
and (V;,Gi,’ﬂ'i) 7& (ij,Gj,’]Tj) for i,jeI, 1 # J.
(R3) P is a quasi-pseudogroup which consists of changes of charts of the orbifold atlas
V= {(V;,Gi,ﬂ',‘) ‘ xS I}
of (Q,U) and generates ¥(V).
(R4) Set F' = [[;c; fi: V = [Lic; Vi = ;i Vis 2 = fi(z), if © € V;. Choose any
orbifold atlas V' € U’ which contains the set {(V/, G}, 7})}icr. Then v: P — ¥ (V')

ARk

is a map which assigns to each A € P a change of charts
v(A): W H X)) — (VG ¢")
between orbifold charts in V' such that the following properties are satisfied:
(a) Fol=v(A\) o F|gomx for all A € P,
(b) for all A\, x € P and all € dom A N dom p with germ, A = germ,, & we have
germp () V(A) = germp ;) (1),

(c) for all A\, u € P and all x € A~!(cod A N dom 1) we have
8ermp(x(2)) V(1) - germp ) V(A) = germp ) v(h)
where h is an element of P such that there is an open set U with
z €U C A (cod\Ndomp)Ndomh and po My = h|y,

(d) for all A € P and x € dom \ such that there is an open set x € U C dom A with
Aly = idy, we have germp,y v(\) = germp, idys where U’ := [];c; V/'.

The orbifold atlas V is called the domain atlas of the representative f , and the set
{(V/, G}, x!) | i € I} is called the range family of f. Note that the range family is not
necessarily indexed by I. Moreover, the mapping v does not depend on the choice of V'
since it takes its values in (J; ;yer; Chvy v (cf. Notation below). TheAcontinuous
map f will sometimes be called the underlying map of the representative f. The map
f cannot be chosen arbitrarily. As [55, Example 4.5] shows, it is not even sufficient to
require that f be a homeomorphism, to ensure that there is a representative f with
underlying map f.

The technical condition in (R2) that two orbifold charts in V be distinct is required,
because in several places I is used as an index set for V (cf. property (R3)).
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In view of Definition it is useful to have a shorthand for the changes of charts
associated to a given orbifold atlas. We fix the following notation.

NotatioN E.9. Let V = {(V;,Gi,¢;) | @ € I} be a representative of U. Recall the
notation for the set of all changes of charts between two orbifold charts (first introduced

in Lemma b)):
Chy, v, == {\: Vi 2 dom A = cod A C Vj | X is a change of charts}.
We define the set of all changes of charts of the atlas V via

Chy :={A: V; DdomA — cod X C V; | X is a change of charts and ¢, j € I'}

= U Chuy,.

(i,4)eIxI

Observe that Chy is a (quasi-)pseudogroup which generates ¥(V).

DEFINITION E.10. Let f := (f,{fi}icr, P1,v1) and § := (g,{9:i ticr, P2, 2) be two rep-
resentatives of orbifold maps with the same domain atlas V representing the orbifold
structure U on @ and both range families being contained in the orbifold atlas V' of
(Q",U"). Set F:=[];c; fi- We say that f is equivalent to §if f =g, f; = g; for all i € T
and

8T () vi(\) = 8T () va(Aa)

for all \y € P, Ay € Ps, x € dom A; Ndom Ay with germ, Ay = germ,, As. This defines an
equivalence relation. The equivalence class of f will be denoted by

(f: {fi}ier, [P1,11]).

By abuse of notation, we denote by f the equivalence class | f} of the representative f , if
it is clear that we refer to equivalence classes. The equivalence class of the representative
f is called an orbifold map with domain atlas V and range atlas V', for short an orbifold
map with (V,V') or, if the specific atlases are not important, a charted orbifold map.
Define Orb(V,V’) to be the set of all orbifold maps with (V,V’). To shorten notation we

denote an element h € Orb(V, V') by V Doy,

REMARK E.11 (Relating charted orbifold maps and groupoid morphisms). In this re-
mark, we digress from the main line of thought of this section. Though one does not need
the connection of orbifold morphisms to morphisms of groupoids, this relation helps to
understand the technical conditions introduced in Definitions and

Let (Q,U) be an orbifold and V = {(V;,G;,1;)}icr a representative of U. Recall
from [55] the definition of the atlas groupoid I'(V) = (I'(V)o,I'(V)1, s, t, u, m, i) associated
to V. Here, the space of objects is the disjoint union I'(V)o := [ [, Vi with the canonical
manifold structure. The space of arrows is the set of all germs of changes of charts
T'(V); :={germ, A | A € Chy,z € dom A} with the germ topology. Notice that the space
of objects is exactly the disjoint union V' appearing in (R4) of Definition Moreover,
the space of arrows encodes the change of charts in the atlas V. The structure maps of
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the atlas groupoid I'(V) are defined by
s(germy, \) ==z,  t(germ, \) = A(z),  m(germ,, i, germ, A) = germ, (0 N),
u(z) = germ,, idy for an open z-neighborhood U and i(germ, A\) = germ,, At

It follows from elementary computations that I'(V) is an étale Lie groupoid. A morphism
of atlas groupoids 6: I'(V) — I'(V’) is defined by a pair 0;: T'(V); — I'(V');, i € {1,2}, of
smooth maps, which commute with all structure maps.

We now sketch the connection of charted maps and morphisms of atlas groupoids:
Consider a charted orbifold map h = (h, {h;}icr, [P,v]) with domain atlas V and range
family contained in V’. Choose representatives (P,v) of [P, v], and define 0y := [[;c; hi
and 6 (germ, A) := germy, (,,) ¥(A) for A € P. This is defined on I'(V); by (R3) of Defini-
tion and well-defined by (R4b). Then 6 = (6p,61) is a morphism of atlas groupoids
by (R4) in Deﬁnition (cf. |55, Proposition 4.7] for a proof). More explicitly, the maps
0o and 0; commute with the structure maps s and t by (R4a) of Definition with m
and i by (R4c) and with u by (R4d). The conditions (R3) and (R4) of Definition [E.§ are
modeled precisely so that a charted orbifold map yields a morphism of atlas groupoids.
The quasi-pseudogroup P allows us to work directly with a (possibly small) collection
of changes of charts without resorting to germs. However, reversing the construction, it
turns out that for a morphism of atlas groupoids, there may be different choices for the
pair (P,v) (see [55 Proposition 4.9]). To obtain a bijective correspondence one has to
introduce the equivalence relation for pairs (P, v) in Definition

REMARK E.12. (a) The results of |55] apply to the class of second countable orbifolds and
the wider class of paracompact orbifolds. We only required orbifolds to be paracompact.
Second countability of all spaces seems to be a standard requirement in the theory of
groupoids (cf. [51]). However, [13,/35] and the survey article by Lerman [46] outline the
theory of Lie groupoids for non-second-countable manifolds. In particular, the article by
Lerman indicates that all desirable properties on the groupoid side are preserved for
paracompact orbifolds and manifolds. Hence we require only the weaker condition.

(b) In Definition we used quasi-pseudogroups instead of the pseudogroups Chy
or ¥ (V) since, in general, a quasi-pseudogroup P will be much smaller (sometimes even
finite). Observe the following facts, whose proofs we omit here:

(i) Let (f,{fi}ier, P,v) be a representative of an orbifold map. Replacing P with a
quasi-pseudogroup P’ whose elements arise as restrictions of maps in P (if necessary
reducing them to open neighborhoods which are stable with respect to the group
action), one may replace v with a map v/ which maps each element in P’ to an
open embedding in the range family. The pair (P’,7') may be chosen such that
(f,{fi}ier, P,v) and (f,{fi}ier, P’,v') are in the same equivalence class.

(ii) Consider a representative of an orbifold map f: (Q,U) — M, where M is a connected
manifold (without boundary) and the range family of the charted map is the atlas
(M, {idas},idps). The map v may then be chosen as the map taking each h € P to id .

Before we can define the composition of two charted orbifold maps, results concerning
the identity morphism are provided in the next section.



160 E. Maps of orbifolds

E.3. The identity morphism. In this section, we construct the identity morphism in
the category of reduced orbifolds.

DEFINITION E.13. Let f: Q@ — Q' be a continuous map between orbifolds (Q,U), (Q',U’).
Suppose fy is a local lift with respect to (V,G,n) € U and (V',G',n’") € U'. Consider
embeddings of orbifold charts in U and U’, respectively,

A (WK, x) = (V,Gyr) and s (W K, X) = (V.6 ),
such that fi,(A(W)) C p(W'). Then the map
gi=p tofyox W W

is a local lift of f with respect to (W, K, x) and (W', K’, x"). We say f- induces the local
lift g with respect to A and p, and call g induced lift of f with respect to fy, A and p.

PRrROPOSITION E.14 ([55, Proposition 5.3]). Let (Q,U) be an orbifold and fv be a local lift
of idg with respect to (V,G,m),(V',G', ") € U. For each v € V there exists a restriction
(S,Gs,m|s) of (V.G,m) withv € S and a restriction (S',G ,7'|s/) of (V',G', ') such
that fv|§/ is a diffeomorphism and a change of charts from (S,Gg,7|s) to (S',G's,7'|s).
In particular, fy|s induces the identity idgs with respect to the embeddings of orbifold
charts ids and (fy|3)~".

Proposition shows that every local lift of the identity idg is a local diffeomor-
phism (but in general it need not be a global diffeomorphism as |55, Example 5.4] shows).

PropPOSITION E.15 (|55, Proposition 5.5]). Let (Q,U) be an orbifold and {fi}icr a fam-
ily of local lifts of idg which satisfies (R2). Then there exists a pair (P,v) such that
(idg,{fi}icr, P,v) is a representative of an orbifold map on (Q,U). The pair (P,v) is
unique up to equivalence of representatives of orbifold maps.

ProposITION E.16 ([55, Proposition 5.6]). Let @ be a topological space, and suppose U
and U are orbifold structures on Q. Consider a charted orbifold map

f=(idg,{fi}ier, [P,V])
such that the domain atlas V is a representative of U, and the range family V', which is
an orbifold atlas, is a representative of U'. If f; is a local diffeomorphism for each i € I,
then U = U', i.e. the orbifolds coincide.

DEFINITION E.17. Let (Q,U) be an orbifold and f = (f,{fi}ier, [P,v]) be a charted
orbifold map whose domain atlas is a representative of U. The representative f is called
a lift of the identity id(q 1) if f =1idg and f; is a local diffeomorphism for each ¢ € I. We
also say that f is a representative of id(guy- The set of all lifts of id(q 1) is the identity
morphism idq ) of (Q,U).

E.4. Composition of charted orbifold maps. In Remark we have noted that
charted orbifold maps correspond to morphisms of atlas groupoids. To compose (g, 01) :
(V) - (W) and (dp,61): T(W) — T'(U) in the groupoid category, we just have to
compute (dg o 0y, d1 o 81). Unfortunately, the definition of composition is more delicate
for charted orbifold maps. In local charts, we have to construct a new pair (P,v) for the
composition of the charted orbifold maps to encode the information provided by d; o 6.
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CoNsTRUCTION E.18. Let (Q,U), (Q',U’) and (Q”,U") be orbifolds, and
Vi={(V;,Gi,m) i eI}, V' :={(V],Gn})|jec]}

j’
be representatives of U and U’, respectively, where V is indexed by I and V' by J.
Furthermore, let V" € Y”. Consider charted orbifold maps

f=(f.{fi}ier, [Pr,vs]) € Orb(V, V"),
g = (g7 {gj}jGJv [P.(]? VgD € OI‘b(V’, V”)'

Define a: I — J to be the unique map such that for each i € I, f; is a local lift of f with
respect to (V;, G;,m;) and (Vo’t(i), G;(i),w(’l(i)). The composition of § and f,

go fi=h=(h,{hiticr,[Pn,vn]) € Orb(V,V")

is given by h:=g o f and h;:=g, ;o fi for all i € I. To construct a representative (P, vp,)
of [Py, vp] fix representatives (Py,vy) and (Py,vy) of [Py, vy] and [Py, v,], respectively.
Consider p € Py with domy C V; and cod p C Vj for the orbifold charts (V;, G;, ;) and
(V;,Gj,m;) in V. Property (R4a) ensures that

fj oOp= Vf(:u) Ofi‘dom,ua

where v¢(n) is a change of charts in V. For # € domy, set y, := fi(z) € domuwy(u).
Since P, generates ¥(V'), we may choose &, , € P, such that there is an open set
Yr €U}, , € dom¢, . Ndomvy(u) and the following is satisfied:

Sl , =vi(wloy, , -

BT

We may choose an open set € U, , C dom y such that f;(U, ) C U,

wx:

choices one may achieve that for u1, ue € Py and zp € dom pg, k € {1,2},

By adjusting

.u1|Um,m1 # M2|Uu2,w2 or  &uyzy = Spawa- (E.18.1)
Define the quasi-pseudogroup

Py :=A{plu,. | n€ Py, x € dompu}

and observe that it generates ¥(V) as Py generates W(V). As (E.18.1) holds, we obtain
a well-defined map

v P = V"), un(plu,.) = ve(€ue)-

Since v, and vy satisfy (R4a)—(R4d), the same holds for v,. Furthermore, the equivalence
class of (Pp,vp) does not depend on the choices in the construction of P, and vp,.

So far, we have only explained the composition of charted orbifold maps in Orb(V,V’)
and Orb(V’,V"). Obviously, if V' and V" are orbifold atlases for the same orbifold, we
want to define the composition of maps in Orb(V, V') and maps in Orb(V", V") for arbi-
trary V"’. The leading idea is to construct a common refinement of the range family and
the atlas V" together with induced maps, which may then be composed as in Construc-
tion [E-I8] Before we introduce the general construction, we define the notion of induced
charted orbifold maps:
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LEMMA AND DEFINITION E.19 (|55, Lemma and Definition 5.11]). Let (Q,U) and (Q',U’)
be orbifolds. Consider representatives

V={(V;,Gi,m) | i € I} of U indexed by I,
V' ={(V/,G},7]) |l € L} of U indexed by L
and a charted map
= (f,{fi}ier,[Pf,vs]) € Orb(V, V).
Define B: I — L to be the unique map such that for each i € I, f; is a local lift of f with
respect to (V;, G, ;) and (Vﬁ/(i)’G,IB(i)77TIB(i))' Suppose there are:

a representative W = {(W;, H;,v;) | j € J} of U, indexed by J,

a subset {(W}, H;,¢%) | j € J} of U', indexed by J (not necessarily an orbifold atlas),
amap a: J — I,

for each j € J, an embedding of orbifold charts

Ajs (Wi Hjs ¥5) = (Vag), Gag)s Ta()
and an embedding of orbifold charts
wis Wi Hj i) = (Ve Gatat) o)
such that fo(j)(Aj(W;) C pj(W)).

For each j € J we define the smooth map
hyi= 5" © fagy © Aj: Wy = W
Then:
(a) € := (idg, {Aj}jes, [Peyve]) (with [P, ve| provided by Proposition is a lift of
idgu-

(b) The set {(W}, H;, %) | j € J} and the family (117)jes may be extended to a repre-
sentative

W' = {(Wy, Hy,¥y) | k€ K}
of U', and a family {pk}rex of embeddings of orbifold charts such that
= (idg:, {urrex, [Per, ver]) € Orb(WV' V')

(with [Pz, ver] provided by Proposition [E.15)) is a lift of the identity id(g: 1)
(¢) There is a uniquely determined equivalence class [Py, vp] such that

h = (f,{h;}jer, [Pn,vn]) € Orb(W, W)
and foe=¢"oh.
We say that the charted orbifold map h is induced by f.

DEFINITION E.20. Let (Q,U) and (Q',U’) be orbifolds. Further let Vy, Vs be represen-
tatives of U and Vl, V5 be representatives of U'. Suppose that f; € Orb(V;, Vi), i =1,2.
We call f; and f, equivalent (fy ~ fo) if there are representatives W of U and W' of U’



E.4. Composition of charted orbifold maps 163

together with lifts of the identity e; € Orb(W,V;) and &} € Orb(W', V), respectively (for
i € {1,2}), and a map h € Orb(W, W’) such that the following diagram commutes:

Vi 4)])1
/ E \
\ i g

VQHVz

REMARK E.21. Let (Q,U) and (Q',U’) be orbifolds. The notion of equivalence of
charted maps induces an equivalence relation on the set of all charted orbifold maps
whose domain atlas is contained in &/ and whose range family is contained in U’. This
enables the composition of an orbifold map with range family in ¢’ with an orbifold
map with domain atlas in U’. In passing to equivalence classes of charted orbifold
maps, we obtain orbifold maps which are independent of the choice of an orbifold
atlas. Following [55] the construction enables us to define a category of orbifolds whose
objects are (reduced) orbifolds together with the morphisms of orbifolds discussed in this
section. Notice that this approach yields an ordinary category, i.e. we do not construct
a higher category structure for the category of (reduced) orbifolds. It is also possible to
construct a higher categorical structure for the category of reduced orbifolds. This has
been carried out in [61] (cf. also [46] for a survey on the category of orbifolds as a higher
category). In the approach to the category of reduced orbifolds presented in this section,
the higher categorical structure vanishes. This is caused by the equivalence relation of
orbifold morphisms introduced in Definition Compared to the approach in [61],
the equivalence classes of this relation identify morphisms which are isomorphic up to
2-morphism in the category of reduced orbifolds (which were introduced in this setting
of maps in [61]).

To prove the desired results, the following lemmata clarify the relation of induced lifts
and induced charted orbifold maps.

LEMMA E.22 (|55, Lemma 5.13]). Let (Q,U) and (Q',U") be orbifolds and

f = (fa {fi}i617 [P7 VD € OI‘b(V, V/)

be a charted orbifold map, where V and V' are representatives of U and U’, respectively.
Assume that there are orbifold charts (Vy, G, 7o) € V, a = a, b, and points x € V, with
7o(xa) = mp(xy). Then there are arbitrarily small orbifold charts (i.e. for each open set
Q C Q we may choose charts, which are contained in Q) (W, K,x) e U, (W', K',x') €
U and embeddings Ao: W, K,x) = (Va,Ga,7a), pia: W, K',X') — (V.,G., 7)) of

orbifold charts with o € A\o(W), a = a,b, such that the induced lift g of f with respect
to fa, Ao and p, coincides with the one induced by f,, \p and py. In other words, we
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obtain a commutative diagram

a

/ \

g

Ab
1223
fo

Vs vy

LEMMA E.23 (|55) Lemma 5.14]). Let (Q,U) and (Q',U") be orbifolds, V a representative
of U, and V' one of U'. Further let f € Orb(V,V'). Assume that h € Orb(Wi,W}) and
§ € Orb(Wa, W3) are both induced by f. There are representatives W of U and W' of U’
together with lifts of the identity ; € Orb(W, W), i € {1,2}, and €, € Orb(W',W/),
i = 1,2, such that a charted orbifold map k € Orb(W, W') exists, making the following
diagram commutative:

Wy —2 Wi

AN

k (E.23.1)

oA

WQ *> W2

If the orbifolds are second countable, we may choose W and W' to be countable.

DEFINITION E.24. Tt follows from the last lemma that the relation ~ introduced in
Definition [E:20] is indeed an equivalence relation. For details we refer to the exposition
in [55].

Denote the equivalence class of a charted orbifold map f with respect to the equiv-
alence relation ~ introduced in Definition [E.20| by | f} It will be clear from the context
whether f is a charted orbifold map and | f} denotes its equivalence class, i.e. the orbifold
morphism, or f is a representative of the charted orbifold map and | f] is the equivalence
class of representatives, which by abuse of notation is also abbreviated as f .

E.5. The orbifold category. We have explained how to construct orbifolds and mor-
phisms of orbifolds. Now we recall the category of orbifolds, which is isomorphic to a full
category of certain Lie groupoids (cf. [55] for details on this topic).

DEFINITION E.25. The category Orb is defined as follows: The class of objects Ob Orb
is given by the class of all paracompact Hausdorff orbifolds (as defined in Definition|1.13)).
For two orbifolds (Q,U) and (Q',U ) the morphisms, i.e. orbifold maps from (@, Z/l) to
(Q',U'"), are the equivalence classes [f] of all charted orbifold maps f € Orb(V, V') where
V is a representative of U and V' is a representative of U’, that is,

Orb((Q,U), (Q",U")) :={[f] | f € Orb(V, V'), VelUd, V' eU'}.
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The composition in Orb is induced by the following construction: Let

[/] € Orb((Q,U),(Q,U)) and 3] € Orb((Q",U"),(Q",U"))
be orbifold maps. Choose representatives f € Orb(V, V') of [f] and § € Orb(W, W) of [g].
Then find representatives K, K’ and K" of U, U’ and U", respectively, and lifts of the
identity € € Orb(K, V), e € Orb(K', V'), &, € Orb(K',W'), €” € Orb(K",W") together
with charted orbifold maps h € Orb(K, K, ke Orb(K’, K”) such that the diagram

V—H/’ W’—H/\/’

LN AN

k

commutes. Define the composition of [§] and [f] as
@10 [f] = [k o h].
ProproOSITION E.26 (|55, Lemma 5.17 and Proposition 5.18]). It is always possible to

compose two orbifold maps in Orb((Q,U),(Q",U")) and Orb((Q',U"),(Q",U")), and the
composition in Orb is well-defined.

All equivalence classes of lifts of the identity coincide for a given orbifold (Q,). Hence
the “identity morphism” in Definition is the identity morphism of (Q,U) in Orb.
ProposITION E.27 (|55, Proposition 5.19]). Let (Q,U) be an orbifold and € a lift of

id(gu)- Then the equivalence class [€] of e consists precisely of all lifts of id(q ). Hence
the “identity morphism” id(q 1) is the equivalence class [e].
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In this section, we supply proofs for some of the more technical assertions in Section

LEMMA F.1 (Lemma [4.13). Let [¢] € Orb(Z, (Q,U)) be an orbifold path and [a,b] C T
some compact subinterval. There exists a charted orbifold map § = (c|jzy[ {9r }1<r<N,
[Py, vg]) withx <a<b<uy,lz,yCZ, and N € N such that:

(1) [elhz.y = (9],
(2) dom gy = Ji(k),r(k)[ for each 1 <k < N, such that

z=11)<i2)<r(l) <IB)<r2) < - <IUN)<r(N-1)<r(N) =y,

(3) Py = {id]l(N),r(N)[} U {id]l(k),r(k)[7LZ+la (Lz-i_l)_l |1 <k <N -1}, where L£+1 is the
canonical inclusion Jl(k),r(k)[ 2 JI(k + 1),r(kE)[ — Ji(k + 1), r(k + 1)][.

Proof of Lemma[{.13 Consider a representative ¢ = (c,{c;}ier, [Pe,ve]) of [¢] whose
domain atlas is contained in Az. As [a,b] C Z is compact, there is a finite subset F' C T
such that [a,b] C ;¢ dom¢; and dom ¢;N[a, b] # 0 for alli € F. Set x := inf | J;. p dom ¢;
and y := sup (J,c p dom¢;, and consider ¢|j, ;. By construction, for i € F' the set dom ¢;
is contained in ]z, y[. Consider the representative i}, i of the orbifold map [ij; ] whose
lifts are given by the family {idgom ¢, }icr. Following Construction the composition
h:=é¢o i]a,y 1s a representative of [¢]|j5 = [¢] © [i]4,,(]- By construction, the family of lifts
of h is {¢i}icr. As F is finite, we can choose and fix a partition of |z, y[ by real numbers
I(k), r(k)',1 <k <N €N, which are ordered as in (2), such that JI(k)’,r(k)'[ C dom ¢,
for some i, € F. Note that each inclusion ¢y : JI(k)',7(k)'[ — dome¢;, is a change of
orbifold charts.

Apply Lemma with respect to the family of pairs (i, idcoa cip ),Ak: e{l,...,N},
to obtain a representative §' = (cjz y[, {95 J1<k<N, [Py, Vy]) induced by h.

Choose (f1 € P, with dom (f** C Ji(k)’,7(k)'[ and cod f ™ CJi(k + 1), r(k + 1)'[.
Set of ;= (tfT)7L, I(1) ;== @, 7(N) ==y and

r(k) :=supdom ey, I(k+1) :=infdomf*!,  foreach 1 <k < N — 1.

By construction |I(k),r(k)[ C Ji(k),7(k)'[ for 1 < k < N. The numbers [(k),r(k) are
ordered as in (2), since the {(k)’, r(k)" were ordered in this way. Furthermore,

Je, (= |J 1), (k)L

1<k<N
With this choice of L£+1, the quasi-pseudogroup Py as defined in (3) generates the changes

[166]
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of charts for {]i(k),r(k)[| 1 < k < N}. Define

ideodc,, i A = idjur) e (i)
vg(A) == vy (FF1) if A=t

Vg/<LZ+1)_1 if A= (LZ+1)_1

to obtain a map v,: P, — ¥(A), where A € U contains the range family of §'.

Apply Lemma with respect to the pairs (JI(k), r(k)[ < JI(k)',7(k)'[;idcodc;, )
for 1 <k < N to obtain a representative § = (| [, {9x }1<r<n, [P, v]) induced by §'.
Reviewing the construction of vy, we see that by construction and property (R4d) of
Definition [E.§|the germs of #/(A) and vy, (1) must coincide at gx(z) if germ, A = germ,, p for
x € dom gi. Thus (Py,vy) ~ (P,v), whence we may replace the pair (P,v) with (Py,vy).
Observe that in each step, we have only applied Lemma Thus [§] = [¢][jz,y[- =

Clearly the definition of the restriction of an orbifold map yields the following:

COROLLARY F.2. If [¢] € Orb(Z, (Q,U)) is an orbifold geodesic and [a,b] C T is compact,
then the restriction [§] = [¢]|j5,y with © < a < b <y constructed in Lemma is an
orbifold geodesic.

Proof. Simply choose in Lemma [.13] an atlas contained in Az. =

LEMMA F.3. Consider representatives ¢ = (¢, {ck }rea, [P V]), ¢ = (¢, {c.}ren, [P, V'])
of orbifold geodesics in Orb(Z,(Q,U)), whose domain atlases are contained in Az. As-
sume that the lifts satisfy codey = Uy for (Ug,Gi,¢r) € U and codc, = W, for
(Wr, Hyy o) € U, respectively. The following conditions are equivalent:

(a) [¢] = [¢].

(b) Forallk € A, r € B and t € dom ¢, Ndom ., there is A" : Uy, D dom AF™ — W,.,
a change of charts with T,(AF"c;,)(1) = Tyer (1) (ie. the initial vectors coincide).

(c) For anyt € I, there is a pair (k,r) € A x B and \;: Uy 2 dom Ay — W, a change
of charts such that t € domcy Ndome, and Ty (Aier)(1) = Tier(1).

(d) There are representatives of [¢] and [¢'] which we denote by § = (¢, {ck}rer, [Py, Vq))
and §' = (¢,{ck}rer, [Py, v,]), respectively, whose domain atlases are contained in Az.
In particular, a geodesic arc in Q is uniquely determined by the initial vector.

Proof. “(a)=>(b)” is a reformulation of Lemma [£.12] for orbifold geodesics.

“(b)=-(c)” is trivial.

To check “(c)=-(d)”, we construct representatives induced by é and ¢': The chart
domains of the domain atlases of é and ¢ are intervals I, := domecy, k € A, and J, :=
dom ¢, r € B, respectively. Pick some ty € 7 together with a pair (k,r) € Ax B satisfying
the hypothesis of (c). There is Ay, € Chy, w, with Ty, (Ayycr)(1) = Ty, (1). Shrinking
dom \;,, we may assume that the set ty € dom )y, is Gx-stable. Thus it induces an orbifold
chart (dom )\tgaGk,domx\toa¢k|domx\to) € U. As ¢, is a geodesic, we may choose ¢, > 0
with ¢ ([to —€to, to+€t,]) C dom Ay, and [t —eg, to+€o] C J,-. The change of charts Ay, is
a Riemannian isometry, since (Q,U, p) is a Riemannian orbifold. In particular, A;, maps
geodesics of dom A\, C Uy, to geodesics of W,.
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Thus Ay, 0 ¢ Jto—ety, totet,| = Wi is a geodesic. Uniqueness of geodesics in Rieman-
nian manifolds implies that A, o ck|]t0*5t0gt0+5t0[ = c’rhto,eto,toﬁtg[, as their derivatives
coincide at tg. For the trivial orbifold Z the set Cy, := Jtg—et,, to+et,[ C IxNJ, induces an
orbifold chart via the inclusion of sets. Set () := k and S(to) := r, and define changes
of orbifold charts pi, 0 Cty = La(te)s Hto.8° Cto = Ja(ty) and Vg a: dom Ay, — Uqry)
via the inclusion of sets. Furthermore, set vy, 3 := A¢,. Reviewing the construction, we
see that ca(ty)btg,a C My 0 and c, ype,8 © Im Ay, = Imy, g. This implies

Vt_o,laca(to)Uto,a = Vt_o,lﬁclﬁ(to)/ltoﬁ' (F.3.1)
With respect to the pair (Cy,, {idc,, }, Ct, = ) and (dom Ayy, Gk dom ey » Vkldom,, ) the
lifts of ¢ and ¢’ coincide. The construction does not depend on ty and may be repeated for
each t € 7. In this way we obtain a (possibly infinite) subset R C 7 such that |J,., Cs =T
and C; # C, if t # s. Since these sets cover Z, the construction yields an orbifold atlas
C C Az for Z. It may happen that the charts (dom A¢, Go(s),dom A;> Va(t)ldom ,) and
(dom As, G (s),dom A, > Va(s)|dom A, ) coincide for s # t. To satisfy the requirement (R2) of
Definition we redefine the charts: Take dom A; x {s} instead of dom Ay, and redefine
the group actions, changes of charts etc. in the obvious way. Recall that this does not
change the equivalence class of ¢ and ¢/, by Lemma Without loss of generality we
assume (dom A, Gy (t),dom Ar» Ya(t)ldom A,) 7 (dom Ag, Gy (s).dom A, > Va(s)|dom A, ) for s # t.
Using Lemma the charted maps ¢ and &, induce representatives i and &' with
respect to C and W € U which contains {(dom A, Gy (¢),dom a» Ya(t) ldom a,)) | t € R}
From we deduce that the lifts of & and &’ coincide. Choose a refinement of the
domain atlas of & as follows: There is a sequence of real numbers in 7

<) <r(=2) <l(0) <r(-1) <) <r(0) <i(2)<r(l) <---
such that ]I(n),r(n)[ is contained in some chart of the domain atlas of & for each n € Z.

Apply an argument as in the proof of Lemma (cf. Lemma [F.1)) to obtain a cover of
7T by intervals Iy indexed by Z, such that:

(1) IyNI; #0 if and only if j € {k — 1,k k + 1}, k,j € Z.

(2) h induces a representative § = (¢, {gx }rez, [Py vg]) of [¢] and i’ induces a representa-
tive ' = (c/, {9y }rez, [Py, vy]) of [¢'] such that P, = Py and the quasi-pseudogroup
P, is {id]l(k)’r(k)[,Lﬁﬂ,(L’,i“)_l | k € Z}, where (f*1, ((fT1)~1 are defined as in
Lemma [£.13

(3) As the lifts of i and A’ coincide, for each k € Z the lifts g; and g}, are given as a

restriction gr = g3, = hs |y, ri): 10(R), 7(B)[ = Vi, (Vi, Gk, ¥x) € U, of a lift h of h.

Shrinking the sets ]l(n),r(n)[, n € Z, we assume that gx(Ji(k + 1),r(k)[) and
gr(Jl(k),7(k — 1)[) are contained in stable subsets of dom v (tf) N dom v (15 ™) and
domvy((¢F_1)71) N domuwy ((tk_,)~1), respectively, for each k € Z. Restricting the
changes of charts to these stable subsets, by Definition[E.10]the pairs (P, v5) and (Py, vg)
may be replaced by equivalent pairs such that the maps v4(\) and vz (A) are embeddings
of orbifold charts with dom v4(\) = dom vy () for each A € P,. Unfortunately, v; and vy
need not coincide. However, since the lifts coincide we obtain

V() 0 gk ligken) et = k1 0 o = v () 0 geljirer 1), -
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) 1F1) are embeddings of orbifold
LI]:—H) —

Hence both geodesic arcs coincide. As v4( and vy (

charts with the same domain, for each k € Z there is some Y;+1 € Gg1 with vg(
k+1
Y1V ()

“(d)=(a)” Consider representatives § of [¢] and §' of [¢] as constructed in step
“(c)=(d)”. We claim that [§] = [§’]. To prove the claim, consider the case that the
geodesic arc Im ¢ contains non-singular points. Hence there are k € Z and z € Z such
that c(z) = ¢ycx(2) is non-singular. For each subset Hy, C G the components of () ¢ 7, X4
are totally geodesic submanifolds of (Vg, p) by [42, Ch. II, Theorem 5.1]). Assume that
there is an open, non-empty set U such that Im ¢; NU is contained in a component jointly
fixed by the elements of some subset Hy C G, which contains elements different from the
identity idy, € Gj. Then the image Im ¢y, is contained in this component (cf. [41], proof of
Theorem 1.10.15]). This contradicts the choice of ¢k (z), whence the non-singular points
must be a dense subset of Im ¢, with respect to the subspace topology. Changes of charts
preserve non-singular points. Hence the same argument may be repeated to prove that

the non-singular points must be dense in the image of each ¢, k € Z.

In conclusion, we have to consider two cases:

CASE 1: The geodesic arc of [¢] (or equivalently the arc of [¢/]) contains a non-singular
point. Preparatory considerations show that the non-singular points are dense in the
image of each lift. Hence yj41.v4(ciT) = vy (1f ™) implies yp41 = idy, ., for all k € Z,

as Im ¢;41 contains non-singular points. We deduce that v; = vy, whence § = §'.

CASE 2: The geodesic arc of [¢] (or equivalently the arc of [¢]) is contained in the singular
locus of ). We construct a representative of [¢] which coincides with ¢’. Apply Lemma
[E.19] with suitable changes of charts to g and §’, such that (Vi, Gr,¥x) # (V;, G, ¢;) if
k # j. Observe that for each choice (nx)rez € [[iez Gr the pairs {(idji),r) M%) rez
induce another representative h of [¢] by Lemma Recall from the construction
of h = (¢,{nk o ¢k }rez, Pn,vn) the following details:

As n, € Gy, is defined on Vi, we may choose P, = P; and v}, is uniquely determined
by the identity

v () = n,;ilug(L’,zH)n,;an(dom vy (1)) (F.3.2)

We claim that it is possible to inductively (starting from 0 and consider the cases Ny and
Z; independently) choose the family (nx)rez such that nier = ¢ and vy, = vy

Begin with & = 0. Since dom v4(:% ;) = dom vy (:° ;) (and these maps are embeddings
of orbifold charts by step “(c)=-(d)”), by Proposition [I.I0[d) there is 7o € Gy with
v3(1% 1) = 70.v4(¢Y). The situation is visualized in Figure I|, where we depict the lifts
together with the embeddings of orbifold charts.

(*) Unfortunately, these details are not apparent from the mere statement of Lemma
However, the proof of this Lemma in [55, p. 21] readily entails these facts: Notice that we may
choose P, = P, since we applied Lemmato {(idyi(ry,r(k)[> M)  kez- Here the first embedding
of each pair is an identity, whence we need not restrict the elements of P; as in [55 p. 21].
Moreover, the identity then follows directly from the proof.
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e’

Fig. 1. Lifts of orbifold geodesics in the singular locus related by pairs of embeddings

The isometry 7 fixes the geodesic ¢y pointwise on the set Im ¢y N cod vy (12,) since

Y0o0l11(0),r(—1)1 = Y0¥ (12 1)1 1(0)r(=1)1 = Ya (12 1) e 1l1(0)r(= 1)1
= colj).r(-1- (F.3.3)
Hence vp.cog = ¢g. Set ng := 70_1 and n_; := idy_, to obtain ng.co = cp and n_1.c_1 = c_1.
Furthermore, (F.3:2) yields v, (:2) = nov3(¢:%1)idy_, = 75 'v5(t° ;) = vy (12,). Proceed
by induction on k£ > 1: Consider k£ > 1 such that for 0 < [ < k elements n; € G; have
been chosen with

m.c. = ¢ and Vh(Lé—l) = nl'VQ(Lf—l)nl_}l|d0mug(¢§_1) = Vf?'(Lg—l)'

We have to choose 1y, with ng.c, = ¢ and vy, (e8 1) = mvy (¢F )1 ldom vy(uh_,)- Argue
as in the case k = 0: Since the embeddings of orbifold charts share the same domain, there
is v € Gy with y.v5(eF ) = vy (tF_;). A computation as shows that v;, fixes
Im ¢;, pointwise. Since dom Ug(Lﬁ_l) is G_1-stable and n;_1 fixes Im ¢;_1 pointwise, we
obtain ng_1(domvg(¢eF_,)) = domwgy(ef_;). Thus we consider the embedding of orbifold
charts A == v5(tf )t ldom vyt _,y- Since dom A = dom Yvg (LF_ ), Proposition|1.10(d)

yields a unique hy € Gy with A = hk.%.yg/(Lﬁ_l).
Define 7y, := (hy, - 7%) "' € Gx. We compute the following identities:

v (t5—1) = v ()M ldom vy () = A = ey v (52) = v (1),
Me-Cre 1) o (k1) = M-V (Uh_1) © Chmt iy e (b—1)] = Vg (Lh— )M 1 Chmt i) (o1
= Vg(bﬁ—ﬂ o Ck—lhz(k),r(kq)[ = Ck|]l(k),r(k71)[~

Thus the isometry 7, fixes the geodesic ¢, pointwise on Imc, N codvy (¢f ), whence
1 fixes all Im ¢, pointwise. We may thus inductively choose elements in Gy, k > 1,
with the required properties. Observe that by (R4)(c)&(d) of Definition we have
v (5 i (k) = vs(¢k )71 Instead of choosing ny for k < 0 such that the identity

nk+1V§(LZ+1)T]]€_1‘domuﬂ(LkJrl) = vy (1§™) holds, it suffices to choose 7; which satisfies
g\"k

nkyg(LZ+1)nlc_Jl1|d0ml/g(Lﬁ_H) = vy (uf,,). If we require that n, fixes ¢y pointwise, then
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an argument as in the case k > 1 allows us to inductively choose 7 for £ < —1 with
the desired properties. Summlng up, there is a family (9x)kez such that h =g
h is constructed via Lemma 9| with respect to the pairs {(idyx),r); Uk)}keZ- By
Lemma m § ~ h = §. Hence in both cases [¢] = [§] = [¢§] = [¢] follows from
Definition [E20 =

, where

The next lemma is a restatement of Lemma [{.18] together with a detailed proof. We
shall demonstrate that two orbifold geodesics whose initial vectors coincide at some point
induce a well-defined join, i.e. an orbifold geodesic defined on the union of their respective
domains.

LEMMA F.4 (Lemma[L.18). Consider an orbifold geodesic [¢] € Orb(Z,(Q,U)) together
with [¢'] € Orb(Z',(Q,U)) such that for some xo € T NI their initial vectors coincide.
There is a unique orbifold geodesic [¢V ] € Orb(ZUT',(Q,U)) such that [¢V ]|z = [¢]
and [éV &|z = [€].

Proof of Lemma . As a first step, we construct an orbifold geodesic on Z U Z’, with
the same initial vector at zo: If Z C 7', we set [¢V '] :=[¢]. f T' C T, we set [¢V ] := [¢]'.
For these cases, the assertion follows from Proposition m(b) Interchanging the roles
of [¢] and [¢/] if necessary, it suffices to consider the case Z = ]a,b[ and Z' = |z, y[ with
a<z<b<uy.

Fix tg € |z, b[ with g > z¢. We construct an orbifold geodesic by gluing several pieces:
Choose representatives ¢ = (¢, {ck}rea, [Ps,ve]) of [¢] and & = (¢, {c).}ren, [P, ve])
of [¢'] such that the lifts are defined on charts, which are contained in Az and Az,
respectively. Since the initial vectors of [¢] and [¢/] at zg coincide, they coincide at each
point in ZNZ' = |x,b[ by Proposition By a combination of Lemma d) and
Lemmawe may thus assume that there are k;, € A and ry, € B with ty € dom Chyy =
dom c;to C |z, b[ such that c;to = c,, - Proposition implies that

c(t), t€la,b,

cvia,yl = Q, tH{c/(t), telx,yl,

is a continuous map. Restricting the lifts (cf. proof of Lemma , we obtain represen-
tatives ¢fjq ¢, induced by ¢ and &'y, ,, induced by ¢:

The lifts of these mappings are precisely the restrictions of lifts ¢, and ¢. such that
dom ¢, N Ja, to[ and dom ). N Jtg, y[ are non-empty. As these intersections may coincide,
we choose new index sets R, S for these atlases. Since the domain atlases of ¢ and ¢
are contained in Az an Az, respectively, the domain atlas of ¢¢fjq [ is contained in
Ajato[ and the domain atlas of ¢'|, . is contained in Ay, ;. By construction, ¢éfjq 40 =
(cliastol» 19% } ke Ry [Pla,to[» Yiato[)) 18 Obtained by restriction of all data to the open set ]a, to],
i.e. there is a map a: R — A such that the lifts satisfy gr = cq(i)ldom camyNlato[- Bach
element in P, ;.| is constructed as the restriction of an element in P; to an open subset of
its domain and Yq 4o[(#]dom pja,tol) 1= Ve(p). As Uy, := domcg, M ]a, to[ # 0, this chart is
contained in the domain atlas Wi, 4, of ¢[jq4,[- Let i: U, — dom Cr,, be the inclusion of
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sets. Define a change of charts as follows: For A € Py, ¢,[ and (W, G, %) € Wia 451 € Ajasto[>

Ao (,é'lmiﬁi(domk))—l if e ChUtO,Wu
Aig := < i0\ if A€ Chwu,,,
iolo (“Imiﬁi(dom)\))fl if \ e ChUtO,Ut,O .

Each of these changes of charts is well-defined and A # p implies Ay, # pt,. Thus we may
define vz, (Aty) := Vjq10[(A). Furthermore, set v4,(iddom tho) = idvkto, Vo (1) 1= idetO and

v, (i71) = idy,, . We obtain a set of changes of charts
Cto = {)‘to ‘ A E ChUth UChW,UtO UChUtO,Uth W e W]a7t0[} U {iddomcktovi i_l}.

Since P, 4, is a quasi-pseudogroup, the construction implies that C' := Cy, U Pg 4, is a
quasi-pseudogroup which generates

\P(W]aﬁz[ U {(dom Chz s {iddom eng, }, dom Chz la, sup dom Chz [)})

Our previous observations imply that for an atlas B € U containing the codomains of the
lifts {gx } e r, the map

Vi (A) it A e Cy,

V]a,to[(/\) if e -P]a,to[>

is well-defined. Consider ¢,,4, := (clja,sup domey, [» {dom gk }ker U{ck,, }, C;vc). The map
to d

V)a,t,[ Satisfies property (R4) of Deﬁnition Together with the definition of A, and v¢,

this implies that v satisfies property (R4). Hence é, 4, is a representative of an orbifold
map such that each lift is a geodesic defined on a chart in Aj, sup dom cg, [ In other
“0

ve: C — ¥ (B), >\»—>{

words, [é41,] is an orbifold geodesic whose initial vector at any point in its domain
coincides with the corresponding one for [¢]. Note that in the domain atlas of é,4,,
only (dom ¢y, ,{iddom Chry },domey, < Ja,supdomey, [) intersects [to,b[. We may thus
interpret this chart as an “adhesive joint”. Repeat the construction for &

We obtain &, := (Clhinfdomcré wh 1Pk tres U {C/rto}vaVD)' Again only the chart
with domain dom c;to = domcy, in its domain atlas intersects la, to].

We will glue the geodesics €q.t,, ¢,y at their “adhesive joints” to obtain a geodesic
on |a,y[: With the exception of idgom - idgom Cryy the quasi-pseudogroups C and D
contain only changes of charts, whose domains are contained in ]a, to[ (for C') and in Jto, y[
(for D), respectively. In particular, C N D = {idqom Chry }, whence we obtain a disjoint
union:

CuD= {iddom Chg } ucC \ {iddom Chy } uD \ {iddom Chy }

Consider A\, y € CUD.If A € C\D and i € D such that the composition is defined on some
open subset of their domains, then y = iddomckt0 € C. Vice versa, an analogous condition
holds for elements in D\ C. Thus no pair in (C'\ D) x (D \ C) can be composed on any
open subset of their respective domains. As both sets C' and D are quasi-pseudogroups,
P* := C' UD is a quasi-pseudogroup which generates the changes of charts of the atlas
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whose domains are given by {domhs | s € S} U {gi | k € R} U{domc,, }. Define
{VD(A) if A € D,

ve(N) ifxecC.
As Vc(idckto) = idetD = idv% =vp (ideto)’ the map v* is well-defined. Since vo and vp
satisfy condition (R4) of Definition the same holds for v* with respect to the lifts
{hs | s € S}U{ck,, }U{gr | k € R}. Hence ¢* := (cVc', {hs | s € SfU{cx, }U{gr | k € R},
P*,v*) is a representative of an orbifold geodesic on ]a, y].
Observe that the initial vector of ¢* at x( coincides by construction with the initial
vector of [¢] at xg. As the initial vector of [¢] coincides with the one of [¢/] at zo, [¢V&] :=
[¢*] satisfies the first assertion by Proposition "

ve(\)
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canonical family, see orbisection, canonical lifts tangent space, [36]
compact-open topology, [[33] orbifold atlas, [T2]
C"-topology, [[33] equivalence,

locally finite,
reduced,
refinement, [16]

domain atlas, [I57]

equivariant map, [[29]

equivalence, representative, [I4]
weak equivalence, [[30] orbifold chart, [I7]
with respect to a morphism, [[29] change of charts, [[3
set of all changes of charts, [158
G-space, @ compatibility,
geodesic arc, [67] embedding,
germ of f at z, [[59] global chart, [30]
group action, [I2§] reduced, [T3]
derived, restriction of, [[2]
isotropy group, [12§ orbifold diffeomorphism group, [25]
isotropy group of a set, orbifold geodesic flow,

orbifold map, [L58]
bundle projection,

Lie group, [I3§ charted, [T5§|

isotropy group, [I6]

C*-regular, [138] corestriction, [31]

regular (in the sense of Milnor), [139 diffeomorphism, 25|
local group, exponential map, |7_5|
local lift, geodesic,
logarithmic derivative, right, identity morphism, [160

induced lift,
isometric, [63]
lift of the identity, [[60]

manifold
with rough boundary, [[32]

orbifold, [[2] open embedding, [3]
developable, 22] orbifold isometry, [63]
dimension, [T4] partition of unity,
formal tangent vector, preserving local groups,
good, representative, [[57]
open suborbifold, restriction to open subset,
reduced, [I3] smooth path, [65]
Riemannian, initial vector, [66]
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underlying map, [I57]
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compactly supported, [3]

support, 3]

topology, 2]
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orbit space, [I28]

partial derivative, [I0]
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patched mapping, [[37]
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point
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singular,
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range family, [[57]
reduced orbifold structure, [T3]
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