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Abstract

The complex Monge—Ampere operator is a useful tool not only within pluripotential theory, but
also in algebraic geometry, dynamical systems and Kéhler geometry. In this self-contained survey
we present a unified theory of Cegrell’s framework for the complex Monge—Ampeére operator.
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1. Introduction

Let 9, O be the usual differential operators, i the imaginary unit, d = 9 + 9 and d°¢ =
i(0 — 9). The complex Monge-Ampére operator is then defined by

(Ug,y ... up) — (ddur) A -+ A (dduyp) € M

where ug,...,u, € PSH(Q) N C%*(Q), and M is the set of Radon measures. If u = u; =
oo = Uy, then

0%u
Cy N\ — AT )
(dd°u) 4™ n! det(@zjaik)dvn’

where
. n
AV, = dzy Adyr A - A day A dyy = (;) dzy Adz A -+ Adzn A dzy

is the volume form on R?" (~ C"), and the n x n matrix

0%u
8zj82k

is the complex Hessian of u. The history of the extending of the complex Monge-Ampeére
operator is rich and colorful so let us just mention a few results here; for further in-
formation we refer to [I3, [60, [65] [70]. It follows from the work of Chern, Levine, and
Nirenberg [40] that there exists a continuous extension (in the weak*-topology) of the
complex Monge-Ampére operator to PSH(Q2) N C(§2). Bedford and Taylor proved in
their seminal article [16] that it is possible to extend the operator in question to locally
bounded plurisubharmonic functions, and later they proved in [I7, Proposition 3.6] that
their extension is also valid for plurisubharmonic functions in the usual Sobolev space
W12 In the light of these positive results one might expect that it is possible to construct
a continuous extension to the whole space of plurisubharmonic function. This is not the

case, since Shiffman and Taylor [80] gave an example which shows that such an extension
is not possible if we want to have the range of the complex Monge—Ampeére operator in
the space of Radon measures. Here the underlying problem is multiplication of distribu-
tions. It is worth noting that Kiselman [59] defined the complex Monge-Ampere operator
with the help of multiplication of distributions in the sense of Colombeau. This approach
of using more up to date distribution theory has still to be explored.

In 1998 Cegrell [30] introduced a class of negative unbounded plurisubharmonic func-
tions in which he solved the Dirichlet problem for the complex Monge—Ampeére equation.
Since then the complex Monge—Ampeére operator in this new setting was investigated by
many mathematicians.

5]



6 R. Czyz

The goal of this survey is to present the theory of the complex Monge-Ampére op-
erator in the framework introduced by Cegrell [30} 32, [33]. We shall use methods which
are developments of the classical work for locally bounded plurisubharmonic functions.
Our purpose is to collect the recent developments in the theory of the complex Monge—
Ampere operator spread throughout the literature. We shall make improvements, simplify
proofs, and unify the presentation to make this theory more accessible to the reader. The
only demand on the reader is the knowledge of the fundamental facts concerning locally
bounded plurisubharmonic functions and the Monge-Ampére operator acting on them
(see e.g. [62]). To make this survey self-contained we present, in Chapter |2} the basic
definitions and facts.

Let us start to give some perimeters of the setting. All definitions and notions can
be found in Chapter [2] along with the necessary facts from the locally bounded case.
Let Q € C", n > 1, be a hyperconvex domain. In Chapter [3] we shall focus on extend-
ing the complex Monge-Ampere operator to the Cegrell class £. The set £ of negative
plurisubharmonic functions was introduced by Cegrell in [32], and he proved that this
is the largest set of non-positive plurisubharmonic functions defined on €2 for which the
complex Monge—-Ampere operator can be continuously extended (Theorem [3.9). Blocki
proved in [22] that if n = 2, then

E={pe PSHO)NW Q) : ¢ <0}

loc

Later, in [23], he obtained a complete characterization of £ for n > 1.
Consider the following example by Kiselman [59):

w(zy,. .. zn) = (= log |z )Y (|22 + - + |20 — 1).

It is well-known that v & £, and u € VV&E(Q) NPSH(Q) if, and only if, n > 3.

An important question is to describe the boundary values of functions in €. To study
this problem we shall need the notion of mazimal plurisubharmonic functions introduced
by Sadullaev in [79]. By using a theorem of Cegrell [34] (see Theorem [4.2| below) we are
able in a convenient way to construct the smallest maximal plurisubharmonic majorant
@ of a function w in €. We set N = {u € £ : @ = 0}. Functions in the Cegrell class N
are therefore (in a way) functions with zero boundary values. To proceed we say that a
plurisubharmonic function w is in N'(H) (= N(Q, H)), H € &, if there exists a function
© € N such that

(1.1) HZ>uz>¢+H,

and therefore we say that any function in N(H) has boundary values H. Note that
if w € N(H), then v € N(a) so our interest in describing the boundary value of a
function in £ can be rephrased as: If w € &, then is u in M (@)? At the point of writing
this survey, this question is not settled. In Theorem and Proposition [6.5 we give
two positive answers to the above question. In Chapter we shall first show that the
classical approach to boundary values coincides with the boundary values arising from
the generalized Demailly-Hormander boundary measures from [36] (Theorem [7.9). Then
we prove that the notion of boundary values associated to inequality is the same as
the generalized Demailly-Hérmander boundary measures (Theorem [7.10). Thus, we can
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view the boundary values arising from (1.1)) as a generalization of the classical point of
view.
Now we present two main theorems from Chapter [6]

Theorem Assume that p is a non-negative Radon measure. If there exists a func-
tion w € & such that p < (dd“w)™, then for every mazimal plurisubharmonic function
H € & there exists a function u € € such that w+ H < u < H and (dd°u)™ = p.

Theorem [6.22] is a generalization of the Kolodziej subsolution theorem for bounded
plurisubharmonic functions (Theorem [2.7). Example shows that there exists a non-
negative Radon measure p such that there does not exist any function v € £ that satisfies
(dd°u)™ = p. On the other hand, it is not yet clear whether it is possible to solve the
Monge—-Ampere equation when the given measure has finite total mass.

Let us now give an outline of the proof of Theorem Using the Radon—Nikodym
theorem we have p = 7(dd“w)™, 0 < 7 < 1, and by the Cegrell-Lebesgue decomposition
of Monge-Ampeére measures [30}, 32] we have

w=T1(ddw)™ = 7f(dd°p)" + TV,
where p € &, 0 < f € LL _((dd°p)™), and v is a positive measure carried by {u = —oo}.

loc
The measures f(dd°p)™ and v are mutually singular and therefore they will be referred to
as p's reqular and singular part, respectively. Lemma [6.21] shows that we can work with

the regular and singular part separately. In Chapter [6.1] we prove the following theorem.

Theorem Assume that p is a non-negative Radon measure defined by p = (dd°p)™,
© € N with n(A) = 0 for every pluripolar set A C Q. Then for every H € £ such that
(dd°H)™ < i there exists a uniquely determined functionuw € N'(H) such that (dd“u)™ = p
on Q.

The two main tools in the proof of Theorem[6.6] are the so called comparison principle
established in Corollary and Kotodziej’s subsolution theorem.

In the proof of Theorem the singular part is more delicate to handle. One reason
for this is that the comparison principle is not in general valid for measures that charge a
pluripolar set (see e.g. [16]). Let v € £ and 0 < g < 1 be a X y——oc} (dd°u)"-measurable
function that vanishes outside {u = —oo}. Then consider

ud = uélg (sup{u, : f <7, 7 is a bounded lower semicontinuous function})*,
{”Sg
where u, is as in Definition[6.10] 7 is a family of certain simple functions, and w* denotes
the upper semicontinuous regularization of w. In particular, Theorem [6.15]in Chapter [6.2
implies that (dd“uX2)"™ = yg(dd°u)™, where xg is the characteristic function of the set
E in Q. In this way we have sufficient control over the singular part.

In Chapter we prove a stability theorem for the complex Monge—-Ampere equation
in N(H). We also show the existence and stability of solutions of Monge-Ampere type
equations. Both results generalize Cegrell and Kolodziej’s work [37]. In Chapter
we present a theorem concerning subextension of plurisubharmonic functions without
increasing the total Monge-Ampere mass. This type of theorem has proven to be a useful
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tool in, for example, approximation of plurisubharmonic functions [35], and estimating
the volume of plurisubharmonic sublevel sets [5]. We shall end this survey with some
applications. In Chapter [§] we shall study continuous pluriharmonic boundary values
on images of product domains, i.e. we shall discuss the following question: Let D C
C™ be a product domain, and let f : 9D — R be a continuous function. Under what
condition does there exist a function h that is pluriharmonic on €, continuous on €
and h|sq, = f? The methods presented here are not only useful within pluripotential
theory, but also as a tool in algebraic geometry, dynamical systems and Kéahler geometry
(see e.g. [B, BT B2 56]).
The author’s contributions are as follows:

Chapter [2f Theorem is from [4].
Chapter [3} Proposition is from [46].
Chapter [4} Example is from [6].

Chapter [5f Theorems [5.7] to are from [4].

Chapter Theorem is from [4].
Chapter all results are from [4].

Chapter all results are from [4] except Example

Chapter Example [7.7 was constructed by the author.

Chapter the results in this chapter are exclusively published in this survey.
Chapter all results are from [47] except Example

Chapter [8} all results are from [0} [, [45].

2. Preliminaries

In this chapter we present some fundamental results concerning the complex Monge—
Ampere operator: the comparison principle (Theorem [2.2)), quasicontinuity of plurisub-
harmonic functions (Theorem , continuity of the complex Monge-Ampeére operator
with respect to monotone sequences (Theorem or sequences converging in capacity
(Theorem . We also introduce the Cegrell classes of negative plurisubharmonic func-
tions &y, F,E,E(H), F(H), and E(H) (Definitions and [2.12)), and prove some
basic properties.

A domain is an open and connected set. Recall that a bounded domain Q C C” is
called hyperconvex if there exists a plurisubharmonic function ¢ : Q@ — (—o00,0) such that
the closure of the set

{z€Q:9p(z) <c}

is compact in © for every ¢ € (—o0,0), i.e., the level set {z € Q: ¢(2) < ¢} is relatively
compact in (2. If there can be no misinterpretation, a sequence [-]32; will be denoted
by [-]. In this article, PSH(Q) is the family of plurisubharmonic functions defined on §2,
and PSH™ () stands for the negative plurisubharmonic functions.

We start by recalling the most fundamental results concerning the complex Monge—
Ampere operator acting on locally bounded plurisubharmonic functions.

The Monge—Ampére operator is continuous with respect to monotone sequences.
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TuroreM 2.1 ([16]). Let [u}]32, be a locally uniformly bounded monotone (decreasing

or increasing) sequence of plurisubharmonic functions in Q for k = 1,...,n; and let
u;“ —uP € PSH(Q) N LE.(Q) as j — oo fork=1,...,n. Then

ddcu} A Nddouy — dd°u' A - A ddeu™
in the weak™-topology.

THEOREM 2.2 ([I9], comparison principle). Let Q@ C C™ be a bounded, open set and let
u,v € PSH(Q) N L>®() be such that

1i§1j§1f(u(z) —v(z)) >0

z€Q
for every & € 0. Then

/ (ddev)" < / (ddeu)™.
{u<v} {u<v}

If in addition u > v then
/ (ddeu)™ < / (ddev)™.
Q Q

On the other hand, if (dd°u)™ < (ddv)™, then u > v.
Let 2 € C™ be an open set. For every Borel set A C Q) the C),-capacity, introduced
by Bedford and Taylor in [19], of the set A is defined by
Cn(A) =Cph(A,Q) =sup {/ (dd°u)™ :u e PSH(?),-1<u< 0}.
A

Moreover, C,, is a subadditive Choquet capacity and it vanishes exactly on pluripolar
sets. Recall that a set E' in C" is pluripolar if for any z € E there exists a neighborhood
V of z and v € PSH(V) such that ENV C {v = —o0}.

DEFINITION 2.3 ([84]). A sequence [u;] of functions defined in €2 is said to converge in
capacity to w if for any t > 0 and K € (2,

lim C, (K N {|ju—u;| >t},Q)=0.
Jj—00
For further information about convergence in capacity see e.g. [84].
Recall that for £ C Q the relative extremal function hg o for E in € is defined by
he(z) = hpao(z) = sup{u(z) : u € PSH(Q), u < 0and u < —1 on E}
for every z € €.
THEOREM 2.4 ([11L 12} 19]). Let Q be an open set. Then for any open or compact set
E € Q, h}, is bounded plurisubharmonic function, supp (dd°hi;)"™ C E and

Co(E,Q) = /Q (ddhy)™,

where h; o denotes the upper semicontinuous regularization of the function hg,q. More-
over, if E is an open set then hg,o = hi; .
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THEOREM 2.5 ([19], quasicontinuity of plurisubharmonic functions). For any plurisub-
harmonic function u defined in Q and any € > 0 there exists an open set U C Q with
Cn(U, Q) < e such that u restricted to Q\ U is continuous.

The Monge-Ampere operator is continuous with respect to sequences of plurisubhar-
monic functions converging in capacity.

THEOREM 2.6 ([84]). Let [u¥]52, be a locally uniformly bounded sequence of plurisubhar-
monic functions in Q for k=1,...,n; and let u;“ — uf € PSH(Q) N LE.(Q) in capacity
as j — oo fork=1,...,n. Then

ddcu} A Nddou] — dd°u' A --- A ddu™
in the weak™-topology.
The following subsolution theorem was proved by Kolodziej in [63].

THEOREM 2.7 ([63], Kolodziej’s subsolution theorem). Let Q be a bounded hyperconvex
domain in C". Let u € PSH(Q)NLYS,(Q) with lim, .., u(z) = f(w) for allw € 0, where
f € C(OQ). If u is a positive, finite measure such that p < (dd“w)™, then there exists a
unique bounded plurisubharmonic function v such that (dd°v)™ = p and lim,_, v(z) =
f(w) for all w € 09).

DEFINITION 2.8 ([30]). Let 2 C C™ be a bounded hyperconvex domain. Define the Cegrell
class & (= &y(Q)) to be the class of bounded plurisubharmonic functions ¢ defined on
Q such that

lim5 w(z) =0

z€Q
for every & € 09, and

/Q (dd®p)™ < 0.

DEFINITION 2.9 ([32]). Let © C C" be a bounded hyperconvex domain. Define the Cegrell
class € (= £(Q)) to be the class of plurisubharmonic functions ¢ defined on §2 such that
for each zp € Q there exists a neighborhood w of 2z in Q and a decreasing sequence [g;],
@; € &y, which converges pointwise to ¢ on w and

sup/ (dd°p;)" < oo.
Jj J

If [¢;] can also be chosen such that it converges pointwise to ¢ on the whole €, then ¢
is said to be in the Cegrell class F (= F(12)).

PRrROPOSITION 2.10 ([32]). Let K € {&, F,E}. Then K is a convex cone. Moreover, if
u € K andv € PSH™(Q) then max(u,v) € K. In particular, if u € K andv € PSH™(Q),
u<wv thenv e K.

Proof. Observe that just from the definition of F and £ it is enough to prove that & is
a convex cone and for any u € & and any negative plurisubharmonic function v we have
max(u,v) € &.

It is obvious that if ¢ > 0, u € K then tu € K. Let u € & and v be a negative
plurisubharmonic function. Then max(u,v) € L*(2) and lim,_.¢ max(u,v) = 0 for all
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¢ € 99Q. Theorem 2.2 yields
/(ddC max(u,v))" < /(ddcu)”,
Q Q
since u < max(u,v).
Now take u,v € &. Since U; = {u = tv}, for t € (1,2), is an uncountable family of
disjoint sets, there exists t € (1,2) such that f{u:m}(ddc(quv))" = 0. By the comparison
principle (Theorem we obtain

dd®(u+v))" = dd®(u + v))" dd®(u + v))"
[+ /{m}( (utv)) */{m}( (utv))
:/1 (ddc(u+v))”+/ (dd(u +v))"
{#u<v+u}

{u+v>(1+t)v}

1T+t\"
< <+> / (dd“’u)”Jr(lth)”/ (dd°v)"
t {Hu<vtu} {utov>(1+t)v}

< 3”( /Q (ddu)" + /Q (ddcv)").

This means that u +v € &.

PROPOSITION 2.11 ([32]). Let u € &, and let w be an open set such that w € Q2. Then
there exists v, € F such that uw = v,, on w. Moreover, if

= sup{w € PSH(Q) : w < u on w},
then ¥ > u on Q, ¥ =u on w, and ¢ € F.

Proof. The first part follows just from the definition of £. To prove the second statement
observe that 1 > v, so ¥ € F by Proposition [2.10} =

We are now going to define new classes of plurisubharmonic functions with a weak
type of boundary values. In classical potential theory, the Riesz decomposition theorem
(see [9]) says that any non-positive subharmonic function defined on a bounded domain
can be written as a sum of a Green potential and a harmonic function. The smallest
harmonic majorant of the Green potential is zero and the harmonic function is deter-
mined by its behavior near the boundary. Thus, one can interpret the boundary values
of the given subharmonic function as the harmonic part in Riesz’s decomposition theo-
rem. A straightforward generalization of this decomposition theorem to the context of
pluripotential theory is not possible. Instead we make the following definition.

DEFINITION 2.12 ([, B0, B2]). Let £ € {&), F, £}. We say that a plurisubharmonic
function u defined on Q belongs to the Cegrell class K(Q, H), H € &, if there exists a
function ¢ € K such that

H>u>p+ H.

Sometimes we shall simply write K(H) instead of (2, H).

In Chapter [7] we prove that under certain assumptions, the boundary values arising
from F(H) and the classical boundary values coincide.
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DEFINITION 2.13. Let @ C C™ be a bounded domain, and f € C(9f2) a real-valued
function. Define
PBy(z) =sup{w(z) : w € PSH(Q) : limsupw(z) < f(§) for every £ € 0Q}.
z—&

z€EQN
REMARK 2.14.

(1) The function PBy is nowadays usually referred to as the Perron-Bremermann enve-
lope. If Q C C™ is a bounded hyperconvex domain, and f : 92 — R is a continuous
function, then PB; € PSH(S2). We shall sometimes simplify the notation by writing
u € K(f) if u € K(PBy) in the sense of Definition In [44], we considered KC(f)
with upper semicontinuous boundary data f.

(2) If u € E(H), then u € &£. Furthermore, if f € C(0R), f <0, then PBy is a bounded
negative plurisubharmonic function and therefore £(f) C €. Without loss of gener-
ality we only consider negative functions, since PBy_. = PBy —c.

(3) K(Q,0) =K.

We will need the following theorem of Walsh.

THEOREM 2.15 ([81], Walsh theorem). Let Q@ C C™ be a bounded domain and let f :
0 — R be a continuous function. If
limi?fPBf(z) = limsup PBs(z) = f(§)
z—

z—
z€Q zEé

for every £ € 0Q, then PB; € C(Q).

DEFINITION 2.16. A fundamental sequence [$);] is an increasing sequence of strictly pseu-
doconvex subsets of €2 such that for every j € N we have Q; € ;4 and U;’il Q; = Q.
Here € denotes that € is relatively compact in €2;41.

The following theorem was proved in [32] for H = 0; for arbitrary H € £ it was proved
by the author together with Per Ahag, Urban Cegrell, and Pham Hoang Hiép in [4].

THEOREM 2.17 ([4, B2]). Let H € € and u € PSH(Q) be such that u < H. Then there
exists a decreasing sequence [u;], u; € E(H), that converges pointwise to u on  as j
tends to co. Moreover, if H € PSH() NC(Q), then the decreasing sequence [uj] can be
chosen such that u; € Eo(H) NC(L).

Proof. First assume that H € PSH(Q) NC(Q) and let p € & NC(Q), not identically 0.
Choose a fundamental sequence [2;] in 2 such that for each j € N we have ¢ > —1/(2;5?)
on Qf. Let [v5], v; € PSH(Q;) N C>(€2;), be a decreasing sequence that converges
pointwise to u as j — oo, and v; < H 4+ 1/(2j5) on Q;41. Set

o — dmax(v; =1/j,jo + H) on &y,
jo+ H on 5.

Then [u}], u}j € &(H) N C(), converges pointwise to u on  as j — oo, but [u]] is not
necessarily decreasing. Let u; = supy>; uj,. The construction of ) implies that

u’_‘_1>u’ _A'_L
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and therefore for each j € N fixed it follows that
[maX(U;'» u;‘+1a ce 7u;nfla u;n + 1/m)]§:J

decreases pointwise on 2 to u; as m — oo. Thus, u; is an upper semicontinuous function
and we have u; € PSH(Q) N C(Q). Moreover, [u;] is decreasing and converges pointwise
touwon 2 as j — oo.

Now let H € £ be an arbitrary plurisubharmonic function. Since u < H < 0, the first
part of the proof implies that there exists a decreasing sequence [¢;], ¢; € EgNC(Q), that
converges pointwise to u as j — oo. If v; = max(u, p; + H), then [v;], v; € E(H), is a
decreasing sequence that converges pointwise to u as j — 0o, and the proof is complete. m

REMARK 2.18. If H is unbounded, then each function u; is necessarily unbounded.

THEOREM 2.19 ([32]). C5°(2) C & NC(Q) — E NC(Q).

Proof. Fix ¢ € & NC(Q). Let f € C5°(£2). Then there exists k > 0 such that
f+k|z|> € PSH(Q).

Now fix a, b such that
a < igff <sup(f +k[z]*) < b
Q

and define
u = max(f + k|z|> — b, M),

where M > 0 is chosen such that My < a — b on supp f. Then from Proposition [2.10]
u € E NC(Q) since u > M. Observe that

v =max(k|z|> — b, Mp) € £ NC(Q)
and f = u — v. This ends the proof. =

3. The domain of definition of the complex
Monge—Ampeére operator

The aim of this chapter is to extend the definition of the complex Monge—Ampere op-
erator to the Cegrell class £. We prove that £ is the optimal domain of definition for
the complex Monge-Ampere operator (Theorem . We also present two other results
in that direction, the first one proved by Cegrell, Kolodziej and Zeriahi (Theorem
and the second by Blocki (Theorem . Several results concerning the convergence of
the Monge-Ampere measures are also proved. In particular, it is shown that the com-
plex Monge—-Ampere operator is continuous with respect to monotone sequences in &
(Corollary and Proposition [3.8). Furthermore, we give some inequalities for the total
Monge-Ampére mass (Lemma %l Theorem and Corollary . Most results in
this chapter originate from [32].

In [32] Cegrell proved the following integration by parts theorem for negative pluri-
subharmonic functions.
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THEOREM 3.1 ([32]). Suppose u,v € PSH™(Q), u # 0, lim, e u(z) = 0 for all £ € 09,
and T a positive and closed current of bidegree (n — 1,n — 1). Then dd°u AT is a well
defined positive measure on 2. Furthermore, if fﬂvddcu AT > —oo, then dd°v AT 1is
also a well defined positive measure on 2 and

/vddcuATg/uddcv/\T.
Q Q

Moreover, if in addition lim, ¢ v(z) = 0, then [,udd®v AT > —oo and

/vddcu/\T:/uddcv/\T.
Q Q

Proof. First suppose that u,v € PSH(Q2) NC(Q), u=v =0o0n dQ and [,vdduAT >
—o0. By @8], dd°u AT and dd°v AT are well defined positive measures on Q. Let € > 0.
Then by the monotone convergence theorem
/ uddv AT = lim | (u—max(u,e))ddv AT,
Q =0 Jq
and
/ (u —max(u,e))ddv AT = lim [ (u—max(u,¢))* p/;ddv AT,
Q i—eo Jo
where p € C3°(C"), suppp = B(0,1), [e. p(2)dVa(z) = 1, p(2) = p(l2]), p=(2) =
Lonl/e).
Let Q' € Q be such that {u — max(u,e) # 0} C Q. Then

/(u—max(u,a))*pl/jddcv/\T:/vddc((u—max(u,f))*Pl/j)/\T
Q Q

> / vdd®(u* pry;) NT.
Q/

Since v is upper semicontinuous, when € — 0 and j — oo, by the dominated convergence
theorem we obtain

/vddcu/\Tg/uddcv/\T
Q Q

and similarly, using that —oco < [udd®v AT, we find that

/uddcv/\Tz/vddCu/\T.
Q Q

To complete the proof of Theorem 3.1} we use Theorem and choose u;,v; € ENC(Q)
such that u; \, u, v; \, v as j — co. By [48], dd°u A T is a well defined positive measure
on 2. From the first part of the proof and using the dominated convergence theorem we
have
/ vpddu AT = lim vedd®u; AT = lim ujddv, NT = / uddvy, NT.
Q I J0 J=eeJa Q
Since u is upper semicontinuous we finally get
/ vddu NT < / udd®v AT,
Q Q
which ends the proof of the first part of Theorem The second part follows from the
first one. m
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To define the complex Monge—-Ampeére operator for functions from the Cegrell class
& we need the following convergence of Monge—Ampeére measures of functions from the
Cegrell class &.

TuroREM 3.2 ([32]). Suppose u* € £(Q), 1 < k < n. If uf € £(Q) decreases to u* as

j — o0, then ddcujl- /\dd%? A+ Adduf 1s convergent in the weak”-topology and the limat

measure does not depend on the particular sequences [u;“]oil

Proof. Fix a compact set K C Q. From Definition for every z € K there exist a

neighborhood U of z, a decreasing sequence [wﬂ, wf € &, w;“ — u* on U such that

sup; fﬂ(ddcwf)" < oo for k=1,...,n. Since K is a compact set we can choose finitely
many neighborhoods U*, s = 1,..., N, such that K C U'U---UUN. Let [wh]52,,1 < s <

N, 1 <k < n, be the sequence corresponding to U®. Let vf = Zf:l w;“ Then v;? e & by
Proposition and sup; Jo (ddcvf)” < 00. Thus, if we define df = limy_ max(uf, o),
then sup; fQ(ddcﬁé?)" < oo and ﬁ? = uf on the neighborhood Uivzl U® of K.

Therefore we can assume that sup; [, (ddcuf)" < 00. Then, for h € & (),

[ / hdd®uj A ddu? A - A ddcu}z}
Q
is a decreasing sequence by Theorem [3.1] and since
h(ddcu?)” > (inf h) sup/ (ddcu;?)” > —00,

Q Q i Ja
the limit lim;_, o fQ hddcu; A dd%? A Nddoul exists for all h € &. By Theorem m
ddcu; A ddcuf A -+ Add®uj is convergent in the weak*-topology.

If [v}] is another sequence decreasing to u*, we get, again by Theorem

/ hdd®vj A dd°v? A - A ddv) = / vjdd°h A ddv A -+ A ddof
Q Q

> / u'ddh A ddvi A Addv} = Tim [ wl dd°h AddOvi A - A ddooT
Q

s1—o0 Jo

= lim [ o2dd°h Addul, A--- Addv) > -

s1—o0 Jo

> lim / hdd®ul A---Addu? > lim [ hdd“ul Addu?A--- A ddul.
Q

81400387, —00 s—00 Jo

Therefore, lim;_, [ hddcv} A ddcvjz A+ Addv] exists and

lim hddcvjl» A ddcvj2 A A ddcv? > lim hddcu} A ddcu? A A ddcu?.
j—oo Jq J—7>Ja
Similarly one can obtain the reverse inequality, so we conclude that the limits are equal. m
By using Theoremwe are now able to define the complex Monge-Ampere operator
on €&.

DEFINITION 3.3 ([32]). For u* € £,1 < k < n, we define dd°u' A dd“u? A --- A dd°u™ to
be the limit measure obtained in Theorem
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PROPOSITION 3.4 ([32]). Suppose uF € F(Q), 1 <k <n, and h € PSH™(Q). Ifu} €
Eo0(Q) decreases to uF as j — oo, then

(3.1) lim [ hdduj Add®u A--- A ddouff = / hdd®u' A ddu® A - A ddu”.
Q

J—=00 JO

Moreover, if fQ —hdd®u* A dd°u® A -+ A ddu™ < oo then hddcu} A ddcu? A Addoud
converges in the weak®-topology to hddu' A dd°u? A --- A dd°u™ as j — oo.

Proof. Since § is open, u* € F(2), 1 <k <n, and ddcu; A ddcuf A+ ANdduf converges
in the weak*-topology to dd°u' A dd°u? A --- A dd°u™, we have

oo > lim [ dd®uj Addui A--- Addu > / ddu A ddu® A --- A ddu™.
If h € & NC() then by the proof of Theorem [3.2 we obtain (3.1)).

Now suppose that h € PSH™(Q) and [, hdd“u' A dd“u® A --- A dd“u™ > —oc. Let
[hj] C & NC(Q) be a decreasing sequence converging to h (see Theorem [2.17). By the
monotone convergence theorem, [[,(—h;)ddvy A --- A dd°v,] is an increasing sequence
tending to [,(—h)dd®vy A --- A dd°v, for any vi,...,v, € F. Moreover, for any ¢ € &
the sequence [ [, pdd®uj A dd°u? A --- A dd°u}] is decreasing by Theorem [3.1) and

)= J0

lim [ pdduj Addul A--- A ddu) = / pdduj A dduj A --- A ddCu;.
Q

Therefore for each j € N there exist ¢;,s; € N such that

1
/ (—=h)dd“u" A dd°u® A -+ A ddu™ < i / hiddu' A dd°u® A --- A dd°u™
Q Q

2 2
Sf—/hjddcué,/\~~/\ddcug, Sf,f/hddcurll,/\ddcug_/\~~/\ddcu;’,
j Q J J j Q j ki j
4
Sf_—/hs.ddcu;/\ddcug,/\.-w\ddcug,
7 Q J J J j
4 c, 1 c, 2 c, n 4 c, 1 c, 2 c, n
<= — [ hs;dd°u Addu® A< Addu™ < = — [ hdd®us AdduT A AddPu”.
J Q J Q

This proves (3.1)). Note that if [, hdd“u' A dd°u® A --- A dd°u™ = —oo, then
lim [ hdd®uj A dd®uj A--- A ddu}f = —o0.
j—0o0 Q

This ends the proof of the first part of Proposition [3.4

Now assume that in addition [,(—h)ddu’ Add°u® A--- Add°u™ < co. Then from the
first part of Proposition [3.4]

lim hddcu; A ddcuf A ANddouf = / hdd®u* A dd“u® A --- A ddu™.
i—oe Jo Q

Since h is upper semicontinuous,

lim hdd“uj A ddui A--- A ddu} < hddu® A ddu® A --- A ddCu”,

J—00

but since both measures have the same total mass, they must be equal. m
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REMARK 3.5. A consequence of Proposition [3.4]is that if u € F(§2), then
/(ddcu)" < 00.
Q
COROLLARY 3.6 ([2]). Let u,v € F be such that u < v. Then for all h € PSH™(£2),
/(—h)(ddcv)" < /(—h)(ddcu)”.
Q Q

/Q(ddcv)" < /Q(ddcu)".

Proof. There exist u;,v; € &, u; < v; such that u; \, u, v; \, v as j — o0, and
sup; [q(ddu;)™ < oo, sup; [, (ddv;)™ < oo. By Theoremmthere exist hy € & such
that h \, h as k — co. By Theorem [3.1] we have

/Q (—he)(dd°v;)" = /Q (=) ddhy, A (ddv,)" < /Q (= )dd®hy A (dd°v;)"™

:/(—hk)ddcuj A (ddeo)" L < - < /(—hk)(ddcuj)”.
Q Q

In particular,

Therefore by Proposition [3.4] we obtain

/Q (—hi)(ddev)" < /Q (—hi)(ddeu)",

thus the monotone convergence theorem gives the desired inequality. To prove the second
part of Corollary [3.6]take h = —1. =

COROLLARY 3.7 ([33]). Suppose uk,ué‘? €€&(Q),1<k<mn, uf >ub. Ifh € PSH™ ()N
L>(Q) and uf tends to u* in LL _(Q) as j — oo then hdduj A ddu? A --- A ddu}
converges in the weak®-topology to hddu' A dd“u? A --- A dd°u™ as j — oo.
Proof. Since the result is local we can assume that uk,uf € F(Q). Take wf € & such
that w}“ \, ¥ and sup; fﬂ(ddcwé?)" < 00. Define v;? = (supszj(wé?,u’g))*. It follows from
Proposition that

lim [ hdd®v; Add“v; A--- Addv] = / hdd®u' A ddu® A - A ddu™,
and hdalcvj1 A dalcvj2 A -+ Add°uj converges in the weak®-topology to hdd®u' A dd°u? A
-+ Add°u™ as j — oo. By Theorem [3.1] we obtain

/ hddcv} ARRRWAY ddcv? > / hddcu} ARERWA ddcu;l > / hddu' A -+ A ddu™.
Q Q

Q
Therefore
lim [ hdd“v} A---Addv? = lim [ hdd“u} A--- A ddu” = / hdd“u' A - -+ A dd“u™
j—oo Jo J 7 S Jg J J o
and

lim dd“vj A« Addv} = lim dduj A Addu} = dd°u" A--- A ddu™.

J—00 J—00

Hence
lim hddcu} Ao A ddcu? < hdd®u* A -+ A ddu™

J—0o0

and since both measures have the same total mass, they must be equal. m



18 R. Czyz

It follows from Corollary that the complex Monge—-Ampére operator is continuous
with respect to decreasing sequences. The next proposition shows that it is continuous
also with respect to increasing sequences. Both results are generalizations of Theorem [2:1]

PROPOSITION 3.8 ([32]). Suppose u* € £(Q), 1 < k < n. If uf € £(Q) increases to u*
as j — oo then ddcu} A ddcujz Ao ANddu} converges in the weak*-topology to dd°u® A
dd°u® A -+ Addu™ as j — o0.

Proof. Since the result is local we can assume that u*, u§ € F(92). The same argument as
in the proof of Theorem shows that for all h € & the sequence [, hddcu} A ddcu? A
-+~ Adduf] is increasing and the limit does not depend on the particular sequences [u;f]

We prove that for 1 < k < n, ddcu; Ao A ddcuf A T,,_j converges in the weak*-
topology to dd°u! A--- A ddeu®F A T,_} as 7 — oo, where T, = ddv41 A -+ A dd°vy,

v; € F. By Theorem it is enough to prove that for any h € &,

(3.2) lim [ hdduj A--- Adduf AT,_) = / hdd“u A -+ A ddu® AT, ..
J—00 (9] (9]

For k = 1 we obtain by the monotone convergence theorem

lim [ hdduj ANT,—y = lim [ ujdd°h AT,y = / udd®h ATy,

Jj— Jo J—o0 Ja Q
:/hddcu/\Tn,l.
Q

Now suppose that (3.2) is valid for &k = p. We show that it holds for ¥ = p+ 1. From our
assumption we have

lim [ hdduj A--- Addul AdduPT AT,

Jj—0 Jo
= / hddu' A -+ A dd“uP A dd°uPt ATy,
Q

so it is enough to prove that

lim | hdd“u} A - Addu? Addul™ AT,y

= Jo
= lim hddcu} Ao A ddcuf AdduPT AT
=0 Jo
Since the limit (3.2)) does not depend on the particular sequence the above limits are
equal. m

Cegrell proved that £ is the natural domain of definition of the complex Monge—
Ampere operator (Theorem 4.5 in [32]).

THEOREM 3.9 ([32]). The Cegrell class £ has the following properties:

(1) Ifue &, vePSH™ () then max(u,v) € &,
(2) Ifue&, p; € PSH™ (Q)NLS.(Q), ¢ \u as j — oo, then the sequence [(dd°p;)" |32,
is convergent in the weak*-topology.

Moreover, if a class K = K(Q) C PSH™(Q) has properties (1) and (2), then K C €.
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Proof. Suppose u € £. Then (1) holds true by Theorem and (2) follows from Corol-
lary

Conversely, suppose u € K and w is open and relatively compact in 2. By Theorem

we can find h; € & NC(Q), h; \, u on Q as j — oo. Define
izj =sup{v € PSH () : v < hj on w}.

Then ﬁj € PSH(Q) N L>(Q), supp (ddCiLj)” C @ and ﬁj \, U on w, izj decreases on (2,
and izj > w on .

Since u € K, (1) yields lim; .o h; = h € K since h > u. Therefore, by (2), (dd®h;)™
is convergent in the weak*-topology and since supp (ddcﬁj)" C w € N it follows that
sup; fsz(ddcﬁj)" < oo and we have proved that u € £.

Another characterization of £ was proved in [38] in terms of the so-called p-capacity.
For given ¢ € PSH™ (), K C Q2 we define

Co(K;Q) = sup{/K(ddcw)” ) € PSH (Q)NL®(Q),p <ty < O}.

THEOREM 3.10 ([B8]). ¢ € £(R) if and only if for any compact set K C Q we have
Cy(K; Q) < o0.

In [22], Blocki proved that & = {p € PSH(Q) N WL (Q) : ¢ < 0} when n = 2, and
showed that this equality is not valid for n > 3. Recall that u € Wlﬁf(Q) if D*u € LY (),
for all |a| = k. Later, in [23], he obtained a complete characterization of £ for n > 1.

THEOREM 3.11 ([23]). For u € PSH™(Q) the following are equivalent:

(1) uwe&(Q);

(2) there exists a measure p in Q such that if U C Q is open and a sequence u; €
PSHU)NC>®(U) is decreasing to u in U then (dd°u;)™ tends in the weak*-topology
to p in U,

(3) for every open U C Q and any sequence u; € PSH(U) NC>(U) decreasing to u in
U the sequence [(dd°u;)"] is locally bounded in U in the weak®-topology;

(4) for every open U C Q and any sequence u; € PSH(U) NC>®(U) decreasing to u in
U the sequences

(3.3) lui|" P2 du; A duj A (ddu;)P A (dd°z[H)" P p=0,1,...,n— 2,

are locally bounded in U in the weak*-topology;

(5) for every z € Q there exist an open neighborhood U of z in Q and a sequence u; €
PSH(U) N C=>(U) decreasing to w in U such that the sequences (3.3) are locally
bounded in U in the weak*-topology.

At the end of this chapter we are going to prove some inequalities for the total Monge—
Ampere mass for functions from the Cegrell class F. We will need the following lemma
proved in [67]. Inequality (3.4) was originally proved in [21].

LEMMA 3.12 (21, 67]). Let u,v € PSH(L) N L>() be such that u < v on Q and
lim,_g0[u(z) —v(2)] = 0. Then

/(vfu)kddcw/\Tg k/(fw)(vfu)kflddcu/\T
Q Q
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for allw € PSH™ (2)NL>®(Q) and all positive closed currents T of bidegree (n—1,n—1).
In particular, if w € PSH™ () N L>®(Q) and ¢ € F then

(3.4) / (=)™ (dd°w)" < nl(sup(=w))"~" / (—w)(dde)".

Proof. First, assume u,v € PSH(Q)NL®(N),u<vonQandu=vonQ\K, K €N
Then, using the Stokes formula we obtain

/(v—u)kddcw/\T:/wddc(v—u)k/\T
Q Q

:—k(k—1)/9(—w)d(v—u)/\dc(v—u)/\T—i—k/Q(—w)(U—u)k_lddc(u—v)/\T

< k:/Q(—w)(U—u)k_lddc(u—v)/\T§ k/Q(—w)(v—u)k_lddcu/\T_

In the general case, for each € > 0 we set v. = max(u,v —¢). Then v, /v on Q, v. > u
on  and v, = u on Q\ K for some K € 2. Hence

/(vE —uw)kddw AT < k/ (—w)(ve — u)* " 1ddu A T.
Q Q

Since 0 <wv. —u ' v—wuas e\, 0, letting € \, 0 we get
/ (v —w)*ddw AT < k/ (—w)(v — uw)~tddu A T.
Q Q
To prove the second part of Lemma it is enough to take a sequence ¢; € &y decreasing

to 9 from the definition of the Cegrell class F and apply the first part of Lemma [3.12
We get

/ (—4h5)" (dd°w)"™ < n / (—w)(—tb;)"dde; A (dd°w)"
Q

Q

Sn(sgp(—w))/g(—wj)"_lddcwj/\(ddcw)"_l

<o Znlfsup(-w) ! [ (),
Q
By the monotone convergence theorem and Proposition the proof is finished. m

LEMMA 3.13 ([68]). Assume that X is a non-empty set, n > 1 an integer and that
F: X" — [0,00) is a function such that F(x1,...,2,) = F(To),...,Tom)) for any
permutation o : {1,...,n} — {1,...,n}. If

1/2 1/2
F(x1,...,2n) < F(x1,21,23,...,Tn) / F(za,29,23,...,2y) /2,
then for any p,q € N such that 2 < p+ q¢ < n we have
p-times g-times
r —— —
(xla sy L1y L2y -5 X2 Tptgtly - - - ’xn)
p+q-times p+q-times
e N + e e +
< F(xlv <o L1, Tptgtls--- a'rn)p/(p q)F(an <oy T2, Tptqtls--- 7xn)q/(p Q)'
Furthermore,

Fxy,...,xn) < F(ay,...,x)Y" o Fap, ..., x,)""
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THEOREM 3.14 ([32]). Suppose ui,...,u, € F and h € PSH™ (Q)NL>(). Let p,q € N
be such that 2 <p+q <n and let T = ddup1q+1 A -+ - Addu,. Then

[ iy ey T

< ( /Q (—h)(ddcul)p”/\T>p/(p+Q)( /Q (—h)(ddcug)p+qAT) v

Furthermore,

/Q(—h)ddcm A Addou, < (/Q(—h)(ddc“ﬂ")l/n“' (/Q(_h)(ddcu”)n)l/n.

Proof. Using the definition of F and Proposition [3.4] we see that it is enough to consider
the case when wuy,...,u, € &. From Theorem there exists a sequence h; € &
decreasing to h. Let T" = ddus A --- A dd“u,. Observe that by the Cauchy—Schwarz
inequality we have

/ (—hj)ddcul A dd®ug N T
Q

= / (—ul)ddch A ddchj A T/ = du1 N dCUQ N ddchj A T/
Q Q
1/2

1/2
< (/ duy N dup A ddchj A\ T/) (/ dug A dus A ddchj AN T/>
Q Q

1/2 1/2
= (/ (—U1)ddcul A ddchj A T’) (/ (—Ug)ddCUQ A ddch]‘ N T/>
Q Q

= (/Q(hj)(ddcul)z/\T’>1/2</Q(hj)(ddch)z/\T')l/Q.

By the monotone convergence theorem we get, as j — oo,

/Q(—h)ddcul Addus NT' < (/Q(—h)(ddcul)?AT’)Uz(/ﬂ(_h)(ddcugyAT')W,

Now it is enough to note that Lemma [3.13| gives the desired inequalities. m

COROLLARY 3.15 ([32]). Suppose uq,...,u, € F. Then

/Q dduy A - A dduy < < /Q (ddcul)”>1/n... ( /Q (ddcun)")

In particular, if u,v € F then

</Q(dd0(u+v))n>l/" S (/ﬂ(ddcu)n>l/n+ </Q(ddcv)n>1/n.

The next proposition was proved by the author in [46], and it shows that F is closed
with respect to convergence of plurisubharmonic functions with uniformly bounded total

b . 1
Monge-Ampere mass in L} space.

1/n
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PROPOSITION 3.16 ([46]). Let Q2 be a bounded hyperconvexr domain in C™. If a sequence
u; € F satisfies the condition

sup/ (ddu;)"™ < oo,
i Ja

J
and if there exists u € PSH(Q) such that u; — u in L (), then u € F.

Proof. From Theoremthere exists w; € ENC(Q) such that w; \, u as j — oco. Note

that since u; — w in L]

1o (€2), we have u = lim;_, o v;, where

vj = (supug)”.
k>j

Observe that v; is a decreasing sequence, v; > u;, so v; € F and from Corollary we

have
/ (dd°v,)" < / (ddCu;)".
Q Q

Define ¢; = max(w;,v;). Then ¢; € &, ¢; \, v and again from Corollary we get
sup/(ddcgaj)” < sup/ (ddv;)" < sup/ (ddu;)" < o0,
Jj JQ Jj JQ Jj JQ
which means that v € F.

4. Maximal plurisubharmonic functions

In this chapter we will characterize maximal plurisubharmonic functions in £ (Corollar-
ies and . Next we introduce the set N of negative plurisubharmonic functions
which have the least maximal plurisubharmonic majorant equal to zero (Definition .
We shall also prove some basic properties of the Cegrell class A/ (Propositionsand .

In [79], Sadullaev introduced the concept of mazimal plurisubharmonic functions.
Following Sadullaev we say that a plurisubharmonic function u is maximal if for every
relatively compact open set w of €2, and for each upper semicontinuous function v on w
such that v is plurisubharmonic on w and v < u on dw, we have v < u on w. The family
of maximal plurisubharmonic functions defined on € will be denoted by MPSH(). If
n = 1, then the maximal plurisubharmonic functions are precisely the harmonic functions
defined on 2. For further information on maximal plurisubharmonic functions see e.g. [62
79].

LEMMA 4.1 ([79]). Let u be a plurisubharmonic function on Q. The following are then
equivalent:

(1) the function u is mazimal on €,

(2) if v e PSH(Q), w is a relatively compact open subset of Q, and uw > v on dw, then
u > v on fQ,

(3) if v e PSH(Q) is such that {v > u} is relatively compact in Q, then {v > u} = 0.

Proof. (1)=-(2): This is an immediate consequence of the definition of maximal plurisub-
harmonic function.
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(2)=-(3): Assume that (2) holds and let v € PSH(2) be such that {v > u} is relatively
compact in . It is then possible to choose a relatively compact open subset € of 2 such
that {v > u} is relatively compact in €. Then v < u on 92" and by assumption (2) it
follows that v < w on 9. Thus, {v > u} = 0.

(3)=(1): Assume that (3) holds and let w be a relatively compact open set in {2 and
v an upper semicontinuous function on @ that is plurisubharmonic on w and v < u on
Ow. Let ¢ be defined by

o(z) = {max(u(z),v(z)) if z € w,
u(z) if 20\ w.

Then ¢ € PSH(S) and {¢ > u} is relatively compact in 2. Assumption (3) now yields
{¢ > u} = 0. Thus, ¢ < u everywhere, in particular on w, which implies that v is
maximal on €. =

The “if” part in Theorem was first proved in [79] under the assumption that the
sequence [u;] is decreasing (for an alternative proof see [21]).

THEOREM 4.2 ([34]). Assume that Q C C™ is a hyperconver domain, and u € PSH™ (Q).
Then u is mazimal if, and only if, there exists a sequence [u;], uj € E NC(Q), u < uj,
which converges pointwise to u on § and the sequence of measures [(dd°u;)™] converges
in the weak™-topology to 0 as j tends to co.

Proof. Assume that u € MPSH(2), u < 0. Theorem implies that there exists a
decreasing sequence [vg] C £ NC(Q) which converges pointwise to u as k — oo. Consider
the function

vl (2) = sup{p(2) : p € PSH(Q), ¢ < vj, on Qs},

where [;] is a fundamental sequence of Q. Hence, vi € &, fQj (ddcvi)” =0and u < vi.

Moreover, limy_, o vi < u on Qj Hence u = limy_ vi for all j, since u is maximal. For
each j it is now possible to choose k; such that

vij <wvj+1/j onQ;.
We conclude the first part of this proof by letting u; = vij.

For the converse, assume that there exists a sequence [u;], u; € & NC(Q), u < uy,
which converges pointwise to u and the sequence of measures [(dd°u;)"] converges in the
weak*-topology to 0 as j — oo. Let also w be a relatively compact open set in 2 and v
an upper semicontinuous function on @ that is plurisubharmonic on w and v < u on Jw.
By the proof of Lemma we may assume that v < u on Q\ w. To complete the proof
we must now prove that v < u on 2. Consider the function

u! (2) = sup{p(2) : ¢ € PSH(Q), ¢ < uj on U},
where ' is a strictly pseudoconvex set such that w € Q' € Q. There exist A, B > 0 such
that a(z) = A(]z|> — B) < 0 in Q and (dd°a)™ = dV,,, where dV,, is Lebesgue measure
in C". Lemma implies that
[ —wyavi = [ @~y acay < nlup-a)” [ @aou),
Q ! ’

Q/
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1
loc

on  and by assumption [(dd®u;)"] converges in the weak*-topology to 0. Therefore there
exists a subsequence [u’*] that converges to u a.e. dV,, as ji — oo. We now have v < uf*
on Q¢ and since u/* is maximal on Q' we get v < w’* on . Hence, v < limj, oo u/*

and therefore u’ converges to u in L; () as j — oo, since u; converges pointwise to u

almost everywhere on ', which completes the proof. m

As a direct consequence of Theorem we get Corollaries and below. Corol-
lary [4.3 was proved in [79] for u € PSH(€2) NC(Q) and as a consequence of results in [16]
and [19) it also holds for u € PSH(Q) N Lo (). If w € £, then Corollary was first
proved in [22, Proposition 2.2].

COROLLARY 4.3 ([22]). Let u € €. Then (dd“u)™ = 0 if, and only if, u is mazimal.

Proof. Assume that (dd°u)” = 0. Theorem implies that there exists a decreasing
sequence [u;] C € NC(Q) which converges pointwise to u as j — oo, and [(dd°u;)"] con-
verges in the weak*-topology to (dd®u)™, since u € £. The assumption that (ddu)™ =0
and Theorem [4.2] then conclude the first part of the proof. Conversely, assume that
u is maximal plurisubharmonic. Then by Theorem there exists a sequence [u;],
u; € ENC(Q), u < uj, which converges pointwise to u on {2 and the sequence of measures
[(dd°u;)™] converges in the weak*-topology to 0 as j — co. Hence, (dd°u)” = 0. m

DEFINITION 4.4 ([33]). Let u € PSH(), u < 0, and let [2;] be a fundamental sequence.
Set
u! = sup{p € PSH(Q) : ¢ <u on Q51
where 5 denotes the complement of €2; in (2.
Let [2;] be a fundamental sequence and let u € PSH(R), u < 0. Then v’ € PSH(Q)
and u/ = u on Q. Definition (4.4 implies that [u/] is an increasing sequence and therefore

lim; . v/ exists q.e. (quasi-everywhere, i.e. everywhere except on a set of C,, capacity
zero) on §). Hence, the function @ defined by

(4.1) @ = (lim u?)*

Jj—00
is plurisubharmonic on 2. Moreover, if u € £, then @ € &, since u < u < 0, and by
Theorem B2 it follows that @ is maximal on €.
In Definition we introduce a new class of negative plurisubharmonic functions.

DEFINITION 4.5 ([4, B3]). Set
N={ue&:u=0}

We say that a plurisubharmonic function u defined on €2 belongs to the Cegrell class
N(Q,H)=N(H), H € &, if there exists a function ¢ € N such that

H>u>p+ H.
COROLLARY 4.6 ([33]). Let u € £ and @ be as in (4.1). Then
ENMPSH(Q) ={ue&:u=u}.

ProPOSITION 4.7 ([33]). N is a convex cone and N is precisely the set of functions in
E with smallest mazimal plurisubharmonic majorant identically zero. Moreover, if u € N
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and v € PSH™(Q) then max(u,v) € N. In particular, if v € N and v € PSH™(Q),
u<wv thenveN.

Proof. Let u,v € € and a € R, a > 0. Then it follows from Definition [.4] that u + v >
%+ v and au = au. Moreover, if u > v, then @ > ©. This ends the proof. =

Proposition [4.8] yields a complete characterization of those functions in €& which are
also in V.

PROPOSITION 4.8 ([57]). Let u € €. Then the following assertions are equivalent:

(1) ue N,
(2) there exists a plurisubharmonic function ¢ = Z?il i, ¢j € F, such that u > ¢
on €.

Proof. Assume that u € N, i.e., % = 0. The sequence [u/], where v/ is defined as in
Definition increases pointwise to @ on 2\ A, where A is a pluripolar subset of .
Hence there exists a point a €  and a subsequence [u’*] of [u/] with u(a) > —oco and
u’*(a) > —1/27%. To simplify the notation, [u/] and [—1/27] will be used instead of [u’*]
and [—1/27%]. The original sequence will not be used any more. Let w; be a connected
and open set such that w; C €2 and for each j > 1 define
p; =sup{y) € PSH(Q) : ¢ < uon w;}.
In particular, this construction shows that ¢; > u on ), ¢; = v on w;, and ¢; € F by
Proposition 211} Set
{Qg ifj=1,
w; =

Qi1 \ Qo ifj>2.

This construction implies that Q = U2, wj, w; € Q5_; and ¢; > w/~" on Q for each
j > 2. Then we have

3 6i(0) = er(a@) + 3 pila) 2 ula) + 3w ) 2 () - D 5t > o,

Jj=2

since u(a) > —oo. Thus, the function defined by ¢ = Z;’;l (; is plurisubharmonic, since

[Z?Zl ;152 is a decreasing sequence of plurisubharmonic functions which converges
pointwise to a function ¢ which is not identically —oco as k — co. To complete the proof
of this implication we need to prove that u > ¢ on Q. Let z € Q). Then there exists a jg,
not necessarily uniquely determined, such that z € w;, and therefore

u(z) = @ (2) = Z%(Z) = ¢(2).

For the converse assume that u € £ is such that (2) holds. Let v, = Zle @;. Then [vg],
vg € F, is a decreasing sequence which converges pointwise to ¢ € PSH(Q?), ¢ < 0, as
k — oo. The assumption that u > ¢ and the definition of the ~-operator yield
(o]
w=p=> ) @)
j=k
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for every k > 1. Let k — oo. Then it follows that @(z) = 0, since [vi] converges pointwise
to ¢. Thus, u € N, since u € £ by assumption. m

Example [£.9] shows that Proposition [£.8]is not true if we remove the assumption that
ue€é.

ExAMPLE 4.9 ([57]). Let D? = {(21,22) € C? : |21] < 1, 22| < 1} be the unit polydisc in
C? and for every j € N define

. 1
w;j(z1,22) = maux(j2 In |21], ]—2 In |z2|>

Then u; € PSH(D?), lim,_¢ u;(z) = 0 for every £ € 9D?, and (dd®u;)* = (2m)%8(0,0),
where J(g,0) denotes the Dirac measure at (0,0) € C2. Hence, u; € F(D?). Let vy, : D* —
R U {—o0} be defined by v, = Z?=1 u;j. The sequence [vg] is decreasing and for every
point (z1,22) € D?, 25 # 0, we have

kllrrgovk = Zuj > 21In|zg| > —o0,
Jj=1
which implies that u = lim,_, o vx € PSH(D?). Moreover, for each k > 1,
0>a>) u,
j=k

since (Zle uy) € F C N. Hence, @ = 0 q.e. on D?, which implies that @ = 0 everywhere
on D?. Assume now that u € £. Then for every open neighborhood w € D? of (0,0),

k
/ (dd°vy)? = / (dd(uy + -+ 4 ug))? > Z/ (dd°u;)? = (2m)2k.

Thus, limg . [, (ddvy)? = oo, which contradicts u € € (see Proposition [2.11]).

THEOREM 4.10 ([33]). Suppose u € & with [,(dd°u)" < co. Then u € F(u), and u >
Y +a for some p € F with [, (ddyp)™ < [, (dd°u)™.

Proof. Choose u; € & N C(S) decreasing to u and let [©2;] be a fundamental sequence
in 2. Then for each j there is s; > s;_1 such that for s > s,

/XQj (ddus)™ < /(ddcu)” + 1.
Q Q
By the Kotodziej subsolution theorem (Theorem there exists v, ; € & such that

(ddvs )" = Xq, (ddus)".

Since (ddus)™ < (dd®(us,j+u?))™, we have us > vs j+ul by Theorem|2.2] soif t > s > s;,
then
Us = Up = Vg j +u{.

In particular,

us > (supvy;)* +u’
t>s
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and

u> lim (supvg ;)* +u! = +ul.

§—00 t>s

Now, [¢;] is a decreasing sequence of functions in F, fQ dd®;)™ < fQ (ddu)™ + 1,
so from Proposition [3.16} u 1 = lim+; € F and since u’ increases a.e. to @ as j — 0o, we
have u > v + @, which completes the proof. m

REMARK 4.11. The condition [,(dd“u)™ < oo is not necessary for u to be in F(a). There
exists a function u € &y(u) with [(ddu)™ = oo (see Example [4.12)).

The following example was constructed by the author and Per Ahag in [A].

EXAMPLE 4.12 ([6]). Let D? be the unit polydisc in C2. Let f : 9D? — R be defined
by f(z1,22) = |22/ Then f € C°°(dD?) and PB¢(21,22) = |22|. For each j € N define
¢j : D? = R by ¢;(2) = ¢;j(21, 22) = max(a; log|z1],b; log|22], ¢;), where a;,b;,c; € R,
aj,bj >0 and ¢; < 0. Then ¢; € PSH(D?) NC(D?),

lim @j(z1,22) =0 for every (&1,&) € OD?,
(21,22)—(€1,62)

and
(1.2) [ (o, = emiah, < o

hence ¢; € &. Let vy, : D? — R be defined by v, = Zj 1 ¢;. Then v, € & and [vy] is a
decreasing sequence on D?. Corollary - 3.15( and . ) yield

wy [ arwys (Z ([ <dd6¢j>2)1/2)2 (Z ) )

Jj=1 Jj=1

Assume that

oo

(4.4) Zab )% < oo and Zc]> —00

Jj=1 Jj=1
and let v(z) = limy_ o vg(2). The construction of v implies that

lim v(z1,22) =0 for every (&,&) € 0D
(z1,22)—=(£1,€2)

The assumptions in (4.4) imply that v € PSH(D?) N L>°(D?) and by inequality (4.3)) it
follows that v € &. Let u : D* — R be defined by u = v + PBy, hence u = (v + |22|?) €
Eo(f). Then it follows that

(4.5) / (dde (v + |22]%))? :/ (dd®vy,) +4z/ (ddv) N\ dza N dZo
D2 D2 D?

/ (ddevy,)? + 32 / O dVa((21, 22))
— v 21, R
D2 k D2 621821 2 1, %2
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_ c 890]
_/ (dd°vy,) +:)>2/]Dﬂzjamaz1 dVa((z1,22))

82g0j
>
32§ / Gt dVi((1,22))

where dV3 is the Lebesgue measure on C?. Let 0 < e < 1 and D. = {2 € C : |z| < &}.
Choose x1,x2 € C§°(D) such that 0 < x1,x2 < 1 and x; =1 = x2 on D;_.. For fixed
|zo| < min(1 —¢, (1 —¢)%/%), it follows that

82
(4.6) /Dxl(zl)a 16J dVi(z1) = 8ma,.

Under the assumption that a; > b; inequality (4.5) together with (4.6) yield

k 2
an [ (@ Py 23 | Gaalera(ea)) ok dVal(er, 2)

k

> cZaj(min(l —e,(1— E)aj/bj))2>

j=1
where ¢ > 0 is a constant. Let ¢ — 0. Then (4.7)) implies that

k
/W (dd°(vr + |22*)> > ¢ _a;.
j=1

Thus

(4.8) /D ey = i [ (@ + 1222 2 €Y ay.

k—oo Jp2

Let aj = 1/j, b; = 1/ and ¢; = —1/j2. Thus the assumptions (4.4) and a; > b; are
satisfied, which implies that the function defined on D? by

1
u(z1, 22) Zmax( log\z1| log\zg| 7 >+22|2

belongs to & (f) and [, (dd°u)? = oo, by (4.8).
THEOREM 4.13 ([70]). The function u belongs to F if, and only if, u € N and

/ (dd°u)™ < oo.
Q

Proof. If uw € F, then it is clear that [, (dd°u)™ < oo and by Proposition u € N.
For the converse, let u € N and [, (dd“u)" < co. Theorem shows that there exists
a function ¢ € F such that

uZ>u >+

But v € NV, hence & = 0 and therefore u € F. u
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5. The comparison principle

In this chapter we generalize Theorem [2.2]to functions in F and A (H). Those results are
crucial when proving uniqueness for the Dirichlet problem in Chapter[6.1} First we prove a
more general version of the comparison principle for bounded plurisubharmonic functions
(Lemma, then for the functions in the Cegrell class F (Theorem , and finally for
& (Theorem [5.7). Then by using the convergence result for N'(H) (Corollary [5.12), and
the decomposition theorem for the positive measures (Theorem 7 we shall prove the

comparison principle (Corollaries and [5.10) and the identity principle (Theorem [5.14)
for the functions in N'(H).

The results of the first part of Chapter |5 were proved by Nguyén and Pham in [67],
and the results of the second part of this chapter were a collaboration between the present
author, Per Ahag Urban Cegrell, and Pham Hoang Hiép (see [4]).

We will need the following lemma.

LEMMA 5.1 ([67]). Let u be a Borel measure on  and let f : Q@ — R be a positive
measurable function. The following are then equivalent:

(1) u(A) =0 for all Borel sets A C {f # 0},
(2) for every Borel set A we have [, fdp = 0.

Proof. (1)=-(2): Let A C 2 be a Borel set. Then it follows that

/fdu=/ fdu+/ fdu=o.
A A\{f=0} An{f=0}

(2)=(1): Let Xs = {f > d > 0} for 6 > 0. It is sufficient to prove that u(Xs) =0
for all 4 > 0. Hahn’s decomposition theorem implies that there exist measurable subsets
X; and X; of X such that X5 = X7 UX;, Xy NX; =0, p>0o0n X; and pn <0
on X; . By the assumption we have

6u(X5+>§/X+fdu:0, 6u(Xg)z/X_fdu:o,
5 )

and therefore ;(X; ) = u(X;) =0. Thus, p =0 on Xs. m

The following lemma was proved by Demailly for locally bounded plurisubharmonic
functions ([49]).

LEMMA 5.2 ([67]). Letu,uy,...,up—1 €E,v € PSH (Q) and T = dduy A+ -Addup_1.
The two non-negative measures dd° max(u,v) AT and ddu AT then coincide on the set
{u > v}.

Proof. Let w € F. Since the result is local there is no loss of generality to assume
that u,uq,...,up—1 € F. Theorem implies that for each & = 1,...,n — 1 there

exists a decreasing sequence [u7]?2;,

to ug as j — oo. Moreover, there exists a decreasing sequence [wj]‘]?‘;l, wl € & NC(Q),

ufﬁ € & N C(), which converges pointwise on €

which converges pointwise to w as j — oo. Set TV = dd‘u} A --- A dd°u!,_, and T =
dduy A -+ Add°u,_1. Fix a < 0. Then the set {w’ > a} is open, since w’ is continuous,
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and therefore dd® max(w?,a) A T7 = dd°w? AT? on {w? > a}. Proposition [3.4] yields

lim max(w — a,0) dd° max(w’,a) A T9 = max(w — a, 0) dd° max(w,a) AT

J—00
and
lim max(w — a,0) dd“w’ A T = max(w — a,0) dd“w AT
j—oo
in the weak*-topology. Hence,
max(w — a,0)[dd° max(w,a) AT —ddw AT] =0

and therefore it follows by Lemma [5.1] that

(5.1) dd°max(w,a) NT =dd°w AT on {w > a}.
Fix b < 0. By using (5.1) with w = max(u,v) € F we get
(5.2) dd® max(u,v) AT = dd° max(u,v,b) AT  on {max(u,v) > b}

and with w = u,

(5.3) ddu AT = dd° max(u,b) AT on {u > b}.

The function v is upper semicontinuous, which implies that {b > v} is open and therefore
(5.4) dd° max(u,v,b) AT = dd° max(u,b) AT on {b > v}.

On the set {u > b > v} we now have dd° max(u,v) AT = dd°u A T, by combining (5.2))-
(5-4). To complete the proof note that {u > v} = J,cq-{u > b > v}, where Q is the
set of non-positive rational numbers. Thus, the non-negative measures dd° max(u,v) AT
and dd°u AT coincide on {u > v}. m

The following lemma was proved by Demailly for locally bounded plurisubharmonic
functions ([49]).

LEMMA 5.3 ([67]). Let Q@ C C™ be a bounded hyperconver domain.
(1) Let u,v € € be such that (dd°u)"({u =v = —o0}) = 0. Then
(dd°max(u,v))" > X{uzv} (ddu)"™ + X fu<o} (ddv)",

where xg denotes the characteristic function of E.
(2) Let p be a positive measure which vanishes on all pluripolar subsets of Q. Suppose
u,v € € are such that (ddu)™ > u, (dd°v)"™ > p. Then (dd° max(u,v))™ > u.

Proof. (1): For each e > 0 put A, = {u=v—¢}\{u=v=—00}. Since A, N 45 =0 for
€ # 6, there exist £; "\, 0 such that (dd“u)"(A.;) = 0 for j > 1. On the other hand, since
(dd°u)"({u = v = —oo}) = 0 we have (dd°u)"({u = v —¢;}) = 0 for j > 1. It follows
from Lemma [5.2] that
(dd® max(u,v —€;))"

> X{usv—e,;} (dd°max(u, v —£5))" + X{u<v—e,} (dd° max(u,v — ;)"

= X{uzv—aj}(ddcu)n + X{u<v—aj}(ddcv)n > X{u>v} (ddcu)n + X{u<v—8j}(ddcv)n'
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Since max(u,v—¢;) / max(u,v) and X{y<v—e;} /" X{u<v} @8 j — 00, by Proposition
we get

(dd® max(u,v))" > X{uzv} (dd°u)™ 4+ X{u<v} (ddv)".

(2): The proof is similar to the proof of (1). By the same argument as in the proof
of (1), there exists ; \, 0 such that pu({u = v —¢;}) = 0 for j > 1. It follows from
Lemma [5.2] that

(dd° max(u,v —¢e;))"
> X{usv—e,;} (dd°max(u, v — £5))" + X {ucv—e,} (dd° max(u,v — €;))"
= X{usv—e;} (ddU)" + X{ucv—e;} (ddV)" 2> X{uzpo—c;1dp = dp.
Since max(u,v —¢;) /" max(u,v) as j — oo, by Proposition we get
(dd° max(u,v))" > du. =
LEMMA 5.4 ([67]). Let u,v € PSH(2) N L>®(Q) be such that u < v on 2, and
Zlirgﬂ[u(z) —v(z)] =0.

Then for 1 < k < n, for all wy,...,wx € PSH(Q), -1 < w; <0, j =1,...,k,
Wgt1,-- ., Wy € E, the following inequality holds:

1
(5.5) o / (v —w)kdd®wy A - A ddCw, + / (—w1 ) (ddv)* A dd®wyqq A -+ A ddwy,
*JQ Q
< / (—w1)(dd°u)* A dd°wps1 A - A ddw,.
Q

Proof. To simplify the notation we set T' = dd“wg41 A - - - A dd°w,,. First, assume that
u,v € PSH(QANL>®(Q), u <von and u = v on N\ K for some K € Q. Using
Lemma we get

/(v —w)*ddwy A -+ A ddw,, < k/ (v —u)*"Yddwy A -+ A ddwyp_y A ddu AT
Q Q

<o <h / (v — w)ddewy A (dd°u)* =1 AT
Q

k—1

< k! /Q(v — u)ddw; A Lz_;(ddcu)i A (ddcv)’“il} AT
k—1
= k!/leddc(v —u) A {;(ddcu)i A (ddcv)kil} AT

s / (—wn)[(ddew)* — (dd°v)F] AT
Q

In the general case, for each € > 0 we put v. = max(u,v —¢). Then v. /v on Q, v. > u
on Q and ve =w on Q\ K for some K € Q. Hence

1
i (ve —w)*ddwy A -+ A dd°w,, +/
- JQ

(—w1)(ddv )" AT < /(fwl)(ddcu)k AT.
Q

Q
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Observe that 0 < v. —u /v —u and (dd°v.)* AT — (dd°v)* AT in the weak*-topology
as € \, 0, furthermore —w; is lower semicontinuous and so by letting € \, 0 we have

1

k! Ja

THEOREM 5.5 ([67]). Let Q@ C C™ be a bounded hyperconvex domain.

(1) Let u,v € F be such that u < v on Q. Then for 1 < k < n, for all w; € PSH(Q),
-1<w; £0,5=1,...,k, Wgt1,...,wn € F, inequality holds.

(2) Let u,v € € be such that u < v on Q and u = v on Q\ K for some K € Q. Then
for 1 <k <mn, for allwj € PSH(Q), -1 <w; <0, j=1,...,k wit1,...,w, € E
inequality holds.

Proof. (1): Let & 3 u; \, v and & 3 v; \, v be decreasing sequences from the definition
of F. Replacing v; by max(u;,v;) we may assume that u; < v; for j > 1. By Lemma

(v —u)*ddwy A -+ A dd°w, + /

(w1 )(ddv)F AT < / (—w1)(dd°u)* AT. w
Q

Q

1

o (vj — ut)kddcwl A AddCw, + / (—wl)(ddcvj)’C A ddwyqq A -+ A ddwy,
- JQ Q

< / (—w1)(dd®uy)* A dd°wiqq A -+ A ddwy,
Q

for t > 5 > 1. By Proposition letting t — oo in the above inequality we have

1

E (vj — u)kddcwl A A ddcwn + / (7w1)(ddc’l)j)k AN ddcwk+1 A A ddcwn
cJQ

Q
< / (—w1)(dd°u)* A dd°wys1 A - A ddw,
Q
for j > 1. Next letting j — oo again by Proposition we get the desired conclusion.

(2): Let G, W be open sets such that K € G € W € . By Proposition we can
choose a function © € F such that © > v and v = v on W. Set

R u on G,
u =
o on Q\G.
Since u = v =0 on W \ K we have & € PSH™ (2). It is easy to see that & € F, & <
and 4 = u on W. By (1) we have

1

o (0 — @)*ddwy A --- A ddw, + / (—w1)(dd“D)* A dd°wpyq A -+ - A ddCw,
JQ Q

< /(fwl)(ddca)’“ A dd“wiyy A -+ A ddw,.
Q

Since @ = ¥ on Q \ G we have

1
= (6 — @)*ddwy A -+ A ddw, + / (—wl)(dd“ﬁ)k A dd°w1 A -+ A ddCw,
k. W W

g/ (—w1 ) (dd°@)* A ddwpqq A -+ A ddw,,.
w
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Since & =wu, b =v on W and v =v on 2\ K we obtain

1

o (v —w)*dd®wy A --- A ddw,, + / (—w1)(ddv)* A ddwii1 A - A ddCw,
- JQ

Q

< / (—w1)(dd°u)® A dd°wyyq A -+ A ddCw,. =
Q

We will need the following decomposition theorem for positive measures.

THEOREM 5.6 (|30 B2]). Let 1 be a positive measure in a bounded hyperconvex domain
Q C C". Then there exist p € £, 0 < f € Ll ((dd°¢)™) and a positive measure v carried
by a pluripolar set in Q) such that

j= F(ddop)" + v.

In particular, if u € &, then there exist ¢ € &, 0 < f € L ((dd°¢p)™) and a positive
measure v carried by {u = —oo} such that

(dd“u)™ = f(dd°p)" + v.

THEOREM 5.7 ([]). Assume that Q@ C C", n > 1, is a bounded hyperconver domain.
Let u,v € & be such that lim, . (u(z) — v(z)) > 0 for every ¢ € 0. Then for all
w; € PSH(QY), -1 <w; <0, =1,...,k, Wiy1,...,w, € &, the following inequality
holds:

1

(56) =

/ (v — w)*ddwy A --- A ddw,
{u<v}
+ / (—w1)(ddv)E A ddwgyq A -+ A ddCwy,
{u<v}
< / (—w1)(ddu)® A dd°wpq A -+ A ddw,,.
{u<viu{u=v=—o00}

Proof. Let € > 0 and let T' = dd“wg41 A - - - A ddw,,. By using Theorem (2) for u and
ve = max(u, v —€) we get
1

o (ve—u)kddcwl/\---/\ddcwn+/
cJQ

(—wn)(ddev.)E AT < /(—wl)(ddcu)k/\T.
Q

Q
From the fact that {u < v.} = {u < v — ¢} together with Lemma [5.2] it follows that

X{u<o—c} (@dV)* AT = X (ucy—c) (dd° max(u,v — €))* AT,

where X{,<y—c} is the characteristic function of the set {u < v — ¢} in Q. Then

1
(5.7) 7 / (v — e —u)*dd®wy A - A dd°w, + / (—w1)(ddv)F AT
{u<v—e} {u<v—e}

+ / (—w1)(ddv )" AT
{u>v—e}
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1
~ R fu<ony

+ / (—w1)(ddv)* AT + / (—wy)(ddv)* AT
{u<v—e} {u>v—e}

(ve — w)*ddwy A -+ A ddCw,

1
< o / (ve — w)¥ddwy A - - - A ddw,, + / (—wy)(ddvo)* AT
) Q

—wi )k = —wi )k —w1 cu)k .
g/Q( )(dd“w)* AT /{MSH}( )(dd°u) AT+/{u>H}( )(dd“w)F AT

But {u > v.} = {u > v — ¢} and by Lemma [5.2] we have
Xfuso.3 ([ddv)F AT = X sy (ddw)" AT,
and therefore from (5.7) we obtain

1
5.8 — v—¢e—uwkddw A - Addw,, + —wy)(ddv)F AT <
|
k! {u<v—e} {u<v—e}
/ (—w1)(dd°u)* AT < / (—w1)(dd°u)* AT,
{u<v—e} {u<v}u{u=v=—o0}

since for every € > 0,
{u<v—e}c{u<viu{u=v=—-o0}.

The sequence [x{u<v—c}] is increasing to x(u<yp} as € — 07T, therefore by letting ¢ — 0"
inequality (5.8]) implies that (5.6) holds and the proof is complete. m

REMARK 5.8. Recall that lim__ -(u(z) —v(2)) > 0 for every ¢ € 9Q means that for any
€ > 0 there exists a set A € {2 such that u(z) — v(z) > —¢ for every z € Q\ A.

By using Theorems [5.6] and [5.7] we get

COROLLARY 5.9 ([4]). Assume that 2 C C™ is a bounded hyperconvex domain and H € .
Ifu e N(H) andv € & is such thatv < H on Q, then for allw; € PSH(Q), —1 < w; <0,

j=1,...,n, (5.6) holds.
Proof. Let u € N(H). Then there exists a function ¢ € N such that
H>u>p+ H.

Let [©;] be a fundamental sequence in 2 and let ¢/ be as in Definition The assumption
that v < H implies that for € > 0,

u>p+H=¢p'+ H>¢p' +v—¢ on 5.
Theorem [5.7] implies that
1

= (v—e+¢ —u)"ddwy A - A ddw, + / (—wq)(ddv)™
N J{u<v—e+pi} {u<v—e+pi}

< / (—w1)(ddeu)™ .
{u<v—e}

(59) iX{u<v7€+ij}(rU —&+ ‘pj - u)ni]=1 and iX{u<v76+<pj}i(;i1

We see that
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are two increasing sequences of functions that converge q.e. on Q to X fy<y—c} (v —€—u)"
and X {y<y—e}, respectively, as j — oo. Theorem implies that the measures ddwy A
- Add°wy, and X{y>—occ} (dd°v)™ vanish on pluripolar sets. Therefore

[X(uco—ctpy (v —c+ ¢’ —u)"|32;  converges to  X{ucy—c}(v—¢—u)"

a.e. wr.t. dd®wy A - A ddwy, and [X(y<v—cypi}lfoy converges to X{y<y—c} a.e. W.I.b.

X{v>—oo} (dd°v)™. The monotone convergence theorem yields

1
— (v —e—u)"dd°wy A - AN dd°w, + / (—wq)(ddv)™
e J{u<v—e} {u<v—e}

< / (—wq)(ddu)™.
{u<v—e}
Inequality (5.6)) is now obtained by letting ¢ — 07. m

COROLLARY 5.10 ([4], comparison principle). Let u,v, H € £ be such that (dd°u)™ van-
ishes on all pluripolar sets in Q and (dd°u)™ < (dd°v)". Consider the following two
conditions:

(1) lim, . (u(z) —v(2)) > 0 for every ¢ € 09,

22222 —(

(2) ue N(H), v<H.
If one of the above conditions is satisfied, then u > v on Q.

Proof. Assume that u,v € £ is such that (dd°u)™ vanishes on all pluripolar sets in Q and
(dd°u)™ < (dd°v)™.
(1): Moreover, assume that
lim (u(z) —v(z)) >0
z—(

for every ¢ € 9. Let € > 0. Theorem [5.7] implies that

n

(5.10) %Cn({u +2e <))

1
Ssup{/ (v —u—2e)"(ddw)" : w € PSH(Q), -1 <w SO}
{u+2e<v}

n!

1
< sup{/{ }(v —u—¢e)"(ddw)" : w € PSH(Q), —1<w< O}
ute<v

n!
< sup{ /{ o O ), 1S s o} <o.

Thus, u + 2¢ > v. Letting ¢ — 07 yields u > v on Q.

(2): In this case assume that u € N(H) and v < H. Since u € N (H), there exists
@ € N such that H + ¢ < u < H. Let ¢/ be as in Definition and let € > 0. As
in , we get u+2e > v+ ¢, Let ¢ — 0. Hence v > v on Q. m

LEMMA 5.11 ([]). Let u,v € N(H) be such that u < v and [(—p)dd°u AT < oo,
p € PSH(Q), ¢ <0. Then



36 R. Czyz

(5.11) /(—gp)ddcu/\Tz /(—go)ddcv/\T,

Q
where T = dd®ws A - - - A\ ddw,,, wa,...,w, € E.

Proof. Let [©;] be a fundamental sequence in . As u € N(H) there exists ¢ € N such
that H > u > v + H. For each j € N define v; = max(u, ¥’ + v), where 97 is as in
Definition (4.4} This construction implies that v; € £, v; = u on Qf, u < v;, and [v;] is
an increasing sequence that converges pointwise to v q.e. on  as j — oco. Theorem [2.17]
implies that there exists a decreasing sequence [pk], r € & N C(Q), that converges
pointwise to ¢ as j — 0o. By Stokes’ theorem, for each s > j,

/ (—pr)dduNT — / (—pr)ddv; NT = / (v; —w)ddpr NT > 0.

By letting s — oo we get

(5.12) /Q(fgok)ddcu/\Tz /Q(fgok)ddcvj AT.

The function ¢y, is bounded and therefore Proposition [3.8] implies that (—¢y)dd“v; A T
converges to (—pg)dd®v AT in the weak*-topology as j — oo, which yields

(5.13) lim [ (—¢k)ddv; NT > /(—cpk)ddcv AT.

=00 Jo Q

Inequalities ((5.12)) and (5.13)) imply (5.11]) for ¢, and the monotone convergence theorem
completes the proof, when we let k — co. m

COROLLARY 5.12 ([]). Let H € € and ¢ € PSH(Q), ¢ < 0. If [u;], uj € N(H), is a
decreasing sequence that converges pointwise on Q to a function w € N (H) as j tends
to oo, then

(5.14) i [ () = [ (o)

J—=x JO

Proof Let ¢ € PS’H(Q), ® g 0, and let uj,u € N(H) be such that v < w;. If
fQ )(dd“u)™ = oo, then follows immediately and therefore we can assume
that fﬂ dd“ )" < oo Lemma implies that [[,(—¢) (ddu;)"] is an increas-
ing bequence bounded above by [, (— )(ddC )™. From Proposmon it follows that
[(—¢)(dd°u;)"] converges to (—¢)(dd°u)™ in the weak*-topology as j — oo, and the
desired limit of the total masses is valid. m

LEMMA 5.13 ([]). Let H € € and let u,v € N( ) be such that uw < v. Then for all

w; € PSH(Q) NL>®(Q), -1 <w; <0, j=1,...,n, [((—wi)(ddu)" < oo, we have
1

(5.15) — / (v —u)"ddwy A -+ A ddw, + / (—w1)(ddv)™ < / (—wy)(ddu)™.
n:Jo Q Q

Proof. First we assume that u,v € & (H). By definition there exists ¢ € & such that
H > u > ¢+ H. For each € > 0 small enough choose K & () such that ¢ > —e on K°.
Hence,

u>p+H>—-<+H>—-<c+v on K€
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and therefore max(u,v —¢) = u on K°¢. By using Lemma we get
1
— / (max(u,v — &) — u)"dd°wy A - -+ Addw,, + / (—w1)(dd® max(u,v —€))"
n:Jo Q

< /Q (—wn)(ddeu)".

By letting ¢ — 07 we obtain (5.15) in the case when u,v € & (H). Using this case
together with Proposition [2.17 and Corollary [5.12] we complete the proof. m

An immediate consequence of Lemma is the following identity principle, which
plays a prominent technical role.

THEOREM 5.14 ([4]). Let H € €. If u,v € N(H) are such that u < v, (dd°u)™ = (ddv)"
and [o(—w)(dd“u)™ < oo for some w € £ which is not identically 0, then u = v on Q.

6. The Dirichlet problem

In this chapter we study the Dirichlet problem for the complex Monge-Ampere operator
in a given subset of negative plurisubharmonic functions, say K. More precisely, for a
given positive measure p on a bounded hyperconvex domain 2 C C”, the problem is to
find a plurisubharmonic function v € K solving the equation

(6.1) (ddu)"™ = p.

Our aim is to generalize Kolodziej’s subsolution theorem from locally bounded plurisub-
harmonic functions to functions in &£. In Chapter we shall prove that for a large
class of measures u there exists a unique solution to in F(f) (Theorem [6.1), in N/
(Theorem [6.3), and in N(H) (Theorem [6.6). In Chapter [6.2] we shall consider measures
carried by some pluripolar set. We provide the construction of a function u such that
(dd°u)™ = x i (dd“v)™, where xk is the characteristic function of a pluripolar compact
set K and v € £ (Theorem . This allows us to prove the subsolution theorem for
measures carried by pluripolar sets. Namely, we shall prove that if v € £, then for any
measure p carried by a pluripolar set such that p < (dd°v)™ there exists u € £ that
satisfies (Theorem . In Chapter we shall prove the most general version of
the subsolution theorem: any measure p dominated by the Monge—Ampere measure of
a function v € £, p < (dd°v)™, is the Monge—Ampere measure of some function from &
(Theorem . We also give an example of a positive measure which does not belong to
the range of the complex Monge—Ampere operator (Example .

Results in Chapter were proved in [4, [32] B3]. Almost all results from Chapter
and Chapter were proved by the author together with Per Ahag, Urban Cegrell, and
Pham Hoang Hiép in [4].

6.1. Regular measures. We start by solving the Dirichlet problem in F(f) with con-
tinuous boundary values f.
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THEOREM 6.1 ([32]). Assume that p is a positive measure on  and f € C(99) is such
that lim,_.,, PBy(z) = f(w) for all w € 9Q. If u(Q) < oo and if p vanishes on all
pluripolar sets, then there exists a unique function u € F(f) such that (dd°u)™ = p.

Proof. Without loss of generality we can assume that f < 0. It follows from Theorem [5.6]
that there exist ¢ € & and 0 < g € L'((dd°p)"™) such that p = g(dd°p)". Define
w; = min(g, j)(ddp)™ and observe that
pj < (dd°(j1"p))" < (dd°(j'" o + PBy))™.
By the Kolodziej subsolution theorem (Theorem there exist v; € & such that
(dd°v;)" = pj and u; € PSH(Q) N L>(Q), (dd°u;)™ = p; and lim,_,,, u;(2) = f(w).
Since
(dd®v;)" = pj < pjp1 = (dd®vj41)"
and limv; = limv;41 = 0 on 01, it follows from the comparison principle (Theorem [2.2))
that v; > v;41. Similarly one can prove that [u;] is a decreasing sequence and
PBf Z U Z Uj +PBf.
Let u = lim; oo uj and v = lim;_, v;. There exist 4, B > 0 such that ¢(z) = A(|z|> —
B) <0in Q and (dd“¢)" = dV;,, where dV,, is Lebesgue measure in C". It follows from
Lemma [3.12] that
02 [ (oyavi= [ (o < o) [ (o)
¢

Q
< n!(sgp(—w))”u(ﬁ) < o0,

so the sequence [v;] is convergent in L}OC(Q). This implies that u, v are plurisubharmonic
functions and therefore v € F and u € F(f). Moreover, by Corollary (ddu)™ = p.
The uniqueness follows from the comparison principle (Corollary [5.10]). =

The next lemma will help us determine when the limit of a decreasing sequence of
functions from & belongs to &.

LEMMA 6.2 ([33]). Let u € PSH™ () and let [u;] be a sequence such that u; € &,
u; \,u as j — oo. If there exists 1 € & such that 1 < 0 and

sup [ (~u)(ddu;)" <,
j JQ
then u € £.
Proof. Fix w € Q) and define
v; =sup{w € PSH™ (Q) : ww < uj|w}.
Then v; > u;, v; € &, v; \, u as j — 00, on w. Since supp (dd°v;)" C @ we have, by

Lemma[5.11]
sup [ (dd°0,)" < (nf(=0) " swp [ (<v)(adru,)”

J J

< (=) swp [ (<u)(ddu)" < .

j
which implies that lim; ., v; € F and therefore u € £. =
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In [33] Cegrell proved Theorem below. Here we present a slightly modified proof.

THEOREM 6.3 ([33]). Let pu be a non-negative measure defined on 2 such that pn vanishes
on pluripolar subsets of Q0 and there exists p € PSH(Y), v <0, such that fQ(—go) dp < oo.
Then there exists a unique uw € N such that (ddu)"™ = p.

Proof. The uniqueness follows by the comparison principle in Corollary From The-
orem there exists a sequence [¢;], ¢; € E NC(LY), such that ¢; N\, ¢. Then

/Q(*%)du < /Q(*so) dp < oo,

so we can assume that ¢ € & NC(Q).
It follows from Theorem that there exist ¢ € & and 0 < f € LL _((ddy)™) such

loc
that u = f(dd“)™. Set p; = min(f,)(dd®)™ and observe that u; < (dd®(j'/™w))".
By the Kotodziej subsolution theorem (Theorem there exists v; € & such that
(dd°v;)" = p;. It follows from the comparison principle (Theorem that v; \, w.
Observe that by Lemma [3.12]

sup [ (=o,)"(da°0)" < nbfsup(—0)" sup [ (<o),

J J

< nl(sup(—¢))"~! / (—)dp < oo,

Q

which means that u € PSH™ (). Then u € € by Lemma We shall prove that u € N.
Let [Q] be a fundamental sequence. By the Kolodziej subsolution theorem there exist
af,ﬂf € &y such that

(dd°af)" = xq, min(f, j)(ddP)",  (dd°B})" = (1 — xo,) min(f, j)(dd“p)".
Note that
(dd°(of + B5))" > (dd°af)" + (dd°B})" = (dd°v;)™,
so by the comparison principle,
(6.3) v; > af + ﬁ]k

It follows from Theorem [2.2|that [a?]?‘;l, [ﬂﬁ;”;l are decreasing sequences. From the first

part of the proof it follows that there exist o, 8% € £ such that a? N\, oF, /Bjk \, G* as
j — oo. Therefore

(dd°a™)" = xa, (dd“Y)",  (dd°B*)" = (1 — xa,)(ddY)",
and from (6.3),

u>ak+ 5’“.
It follows from Proposition that o € F. Then
@2 ok 4 ph = g > g

To prove that u € N it is enough to show that ¥ — 0 as k — oo. First note that from
the comparison principle, ﬂj’? < Bfﬂ, so [3¥] is increasing. By Lemma ,
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/ (=B (dde)™ < n! sup(— )" / (—)(dd°gt)"
Q

Q

— nlsup(—p)""! /Q o, (o min(g g

Q
and then, in view of the assumption on ¢, we obtain
[ 8oy < mtswp(- " [ (=p)dn =0
Q Q Q\ Q%
as k — oo, by the monotone convergence theorem. Therefore limj_.o. ¥ = 0 on

supp (dd®p)™, so by the maximum principle for plurisubharmonic functions we conclude
that limy_ oo 5 =00n Q. m

The following example shows that the condition in Theorem is only sufficient.

EXAMPLE 6.4 ([33]). Let B = B(0,1) be the unit ball in C". We show that there exists
u € N(B) N L>®(B) such that lim,_,,, u(z) = 0 for all w € B and

[ ordarny = o
for all p € &, ¢ # 0. Let us define

vj(2) = max(j*log 2|, ~1/5%),
and observe that v; € &, (dd°vj)" = j?"do;, where do; is the Lebesgue measure on the
sphere S; ={z € B : |z| = e=1/3"} and

/ (ddev;)" = 727 (2m)"
S
Moreover,
2N n 1
[ o) = ey,
B J

Define uy, = 3% vj. Then uy, € & and uy \, u = Y772, v;. Moreover, u € N (B)NL>(B)

j=1
by Proposition [4.§] since
1
— Z — <u <0,

J
and supp (dd“u)™ C B(0, )\B(O 6*1) Fix ¢ € &, ¢ # 0. Since the function v is
maximal on B(0,1) \ B(0,e™1), there exists a constant ¢ such that

p < cuy

on B(0,1)\ B(0,e~1!). Therefore we have

B BO.)\B(0,e~1)
§ C/B(O’l)\B(O,e1)(_U1)(ddcu)n = C/B(_Ul)(ddcu)"
> CZ /B(—m)(ddcvj)n _ CZjQ"_4(27T)" _
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PROPOSITION 6.5 ([69]). If u € € is such that (dd“u)™ vanishes on all pluripolar sets in
Q and there exists a function ¢ € PSH(Q), ¢ <0, such that [,(—¢)(dd°u)" < oo, then
ueN(a).

Proof. As in the proof of Theorem [6.3] we can assume that ¢ € &.

Choose u;j € & N C(Y) decreasing to u (see Theorem [2.17) and let [©2;] be a funda-
mental sequence in 2. Then for each j there is s; > s;_; such that for s > s;,

/(_Qp)xﬂj(ddcus)n S/(—<P)(ddcu)”+1.
Q

Q

By Theorem there exists v ; € & such that (ddvs ;)" = xq, (dd“us)". Theorem [2.2
yields us > vs ; + ul, since (dd®us)™ < (dd®(us ; +ul))™. Hence, if t > s > s;, then

Us = Up = Vg j + ul.

In particular,

us > (supvy ;) +u?
t>s

and
w> lim (supvg ;)™ + W = Y+ ul.

870 >

Now, [¢,] is a decreasing sequence of functions in F,

/ (— ) (dde;)" < / (—)(ddu)" + 1,
Q

Q
so from Theorem ¢ =lime; € N since

/ (—o)(dd°)" < / (— ) (dd°u)™ + 1,
Q Q

Moreover, u? increases a.e. to @ as j — oo, and we have u > 1) + 4. m

In Theoremwe solve the Dirichlet problem in N'(H) with given generalized bound-
ary values H. Here we give a slightly modified proof compared to the original one in [4].

THEOREM 6.6 ([4]). Assume that p is a non-negative measure defined on Q by p =
(dd°p)™, ¢ € N with u(A) = 0 for every pluripolar set A C Q. Then for every H € £
such that (dd°H)™ < p there exists a unique u € N'(H) such that (dd°u)™ = p on Q.

Proof. The uniqueness follows by the comparison principle in Corollary We proceed
with the existence part. Theoremimplies that there exists a decreasing sequence [Hy],
Hy, € & NC(Q), that converges pointwise to H as j — oo. Let [€2;] be a fundamental
sequence in €. For each j, k € N let H,jC be as in Definition ie.,

H] = sup{p € PSH(Q) : ¢ < Hy on Q54
Then H, < Hj, Hy = Hj, on Q¢, Hj € &(9) and Hj, is maximal on Q;. Let f{ = H;,|0;.
We show that H,z = PBfg on §2;. Since H,JC is upper semicontinuous, for all £ € 9€;,

limsupHg(z) < limsupH,z(z) < H,]C(f) = Hi(¢) = fjk(f)
Q;3z—¢ 035z—¢
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But we have also

liminf Hi(2) > liminf Hy (=) = Hi(§) = £7(©),

since H, < H ,]c and Hy is continuous. Thus we have proved that
lim Hi(z) = fF
o im i (2) = f7(8),

so by the Walsh theorem (Theorem and the fact that H ,i is maximal on €2, H,JC is
the Perron-Bremermann envelope of f; on ;. Consider the measure y; = xq, ¢ defined
on {2, where xq, is the characteristic function of €2; in €2. For each j € N the measure y;
is a compactly supported Borel measure defined on €2, u; vanishes on all pluripolar sets in
Q and 4;(€2;) < () < oo. Therefore by Theorem [6.1] there exists a unique ¢; € F(£;)
such that (dd°p;)™ = p; on §2;. Moreover, from Theoremthere exist u; € F(Q;, f]’“)
such that (ddu; )" = p; on ;. The comparison principle (Corollary implies that

(6.4) H] >ujp>@;+H] onQy,

since (dd®u; ;)™ < (dd®(yp; + H,i))” and H,Jc is maximal on €2;. The comparison principle
shows that [u;£]72, is a decreasing sequence. Let k — oo and set u; = limp_o0 U -
Then gives us that HY > u; > ¢; + H7 on Qy, ie., u; € F(Q;, H') C N(Q;, HY).
From the assumption that p > (dd°H)" we get (ddu;)" = p; = xo,u = p > (dd°H)"
on ; and therefore from the comparison principle, u; < H on ;. The construction of
; and the fact that [©2;] is an increasing sequence imply that (dd®u;)" = (dd®u;41)™ on
Q;. Hence [u;] is decreasing and

(6.5) H>u;>p+H on{.
Thus, the function u = (lim;_,o u;) € N(Q, H) is such that (dd°u)™ = pon Q. =

REMARK 6.7. Let Q be a bounded hyperconvex domain in C", and f € C(99) be a
real-valued function such that

lirré PBy¢(z) = f(¢) forall £ € 0Q.
2€Q

Let ¢ € N be such that lim,_.¢ p(z) = 0 for all £ € 99, and set p = (dd°p)™. Assume
that p(A) = 0 for every pluripolar set A C Q. Then there exists a unique u € N (f) such
that

(dd°u)™ = pon Q and lim5 u(z) = f(§) forall £ € 90

z€Q
(see (6.5)).

REMARK 6.8. Assume that p is a non-negative Radon measure defined on 2 such that
1 vanishes on all pluripolar sets, and u(Q2) < co. Let H € £ be such that (dd°H)™ < p.
Then there exists a unique u € F(H) with (dd“u)” = p. In particular, if H € £ N
MPSH(R), then there always exists a unique v € F(H) with (dd“u)™ = pu, since
(dd°H)" = 0.
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6.2. Singular measures. Inequality below was originally proved in [49].

LEMMA 6.9 ([, [49)). Let u,ug,v € €, k = 1,...,n—1, with u > v on Q and set
T =ddu; A -+ ANddun,—1. Then

(6.6) X{u:_oo}ddcu AT < X{U:_Oo}ddcv ANT.

n

In particular, if (dd°v)™ vanishes on pluripolar sets, then (dd°u)™ vanishes on pluripolar

sets. Moreover, if uj,v; € €, u; > vy, forj=1,...,n, then
/ dd®ui A - - - Addu, < / dd®vi A -+ A ddvy,
A A
for every pluripolar Borel set A C Q.

Proof. Let € > 0. Set w; = max((1 —e)u— j,v). Then w; = (1 —€)u — j on the open set
{v < —j/e} and therefore

dd°w; NT = (1 —e)dduNT on{v<—j/e}.
Hence dd“w; AT > (1 — €)X {u=—oc}dd‘u AT. Let j — oo. Then
ddvAT > (1 = €)X {um—oc}ddu AT on Q.

The proof of the first part is completed by letting e — 07.
The second part follows from the first one. m

DEFINITION 6.10 ([4]). Let u € £ and 0 < 7 be a bounded lower semicontinuous function.
Then we define

u; = sup{p € PSH(Q) : ¢ < 7Y/"u}.
Definition yields the following elementary properties:

(1) If u,v € € with u < v, then u, < v,.
(2) fuef, then 0> u, > ||T||1L/£(Q)u € &. Hence, by Proposition we have u, € £.
(3) If 71, 72 are bounded lower semicontinuous functions with 7 < 75, then u,, > ur,.
(4) If u € &, then supp (dd°u,)™ C supp 7 and if supp 7 is compact then u, € F.
If [7;], 0 < 75, is an increasing sequence of bounded lower semicontinuous functions
J J
that converges pointwise to a bounded lower semicontinuous function 7 as j — oo,

then [uTj] is a decreasing sequence that converges pointwise to u, as j — oo.
LEMMA 6.11 ([]). Let u € € and let K be a compact pluripolar subset of 2. Then
(dd°ur)" = xk (dd°u)",
where Uy, s as in Definition and
ug = (sup{uy, : K CO CQ, O is open})*.

Proof. Choose a decreasing sequence [O;], O; C €, such that K = (; O;. Then [uxoj]
is an increasing sequence that converges to ux outside a pluripolar set as j — oo, and
supp (dd“u )" € (N O; = K. We have uy,, = u on Oy, hence (dduy, )" > xx(dd“u)",
so (dd°uk)™ > xk (dd°u)™. On the other hand, ux > u and therefore by Lemma [6.9]
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/ (ddug )" < / (ddeu)”
K K
and hence (ddug )™ = xk (dd°u)™. =

LEMMA 6.12 ([]). Let uy,...,u, € E. Then

1/n 1/n
/dd"’ul Aeee Addeu, < (/ (ddcul)") (/ (ddcun)") :
A A A

for every pluripolar Borel set A C Q.

Proof. Without loss of generality we can assume that A is a compact pluripolar set and
ut,...,un € F. Let [Gj] be a decreasing sequence of open subsets of 2 with (; G; = A.
Corollary yields

1/n 1/n
dduy, A--- Addup, < (/ (ddculc,)") (/ (ddCunG,)">
Q / J Q ’ Q J

For 1 <k <n we have uy,, = ui on G; and supp (ddcukcj )" C Gj C Gy, hence

1/n 1/n

J

Let j — co. Lemma then yields the conclusion. m

For u € £ we write fi, = X{u=—oc}(dd°u)"™ and define S to be the class of simple
functions f = Z;"Zl a;XE;, o > 0, where E; are pairwise disjoint and p-measurable
such that f is compactly supported and vanishes outside {u = —oco}. We also define T to
be the subclass of simple functions f € S, f = Z;nzl a;XE;, such that F;’s are compact
sets.

DEFINITION 6.13 ([4]). Let u € £ and 0 < g < 1 be a p,,-measurable function. We define

ud = ;ng (sup{u, : f <7, 7is a bounded lower semicontinuous function})*.
€
f<g
From Definition [6.13] it follows that v < w9 < 0, so u9 € € by Proposition 2.10, and
if g1 < g9, then w9 > u92. Furthermore, if g € T, then
u? = (sup{u, : ¢ <7, 7 is a bounded lower semicontinuous function})* € F.

LEMMA 6.14 ([]). Letu € & and g € S. Then u? € F and (dd°u9)™ = g(ddu)™.

Proof. Assume first that g € 7. Then w9 € F as already noted. Let g = > ;" | axa,
and consider uy = u®X4x, Then for 1 < k < m we have u; + -+ + uy, < u9 < uy so if
B C UZl:l Ay, then it follows from Lemma, that

/(ddcuk)"g/ (ddcug)"g/ (dd(un + - + )", 1<k <m.
B B B

Hence, if B C Ay, then it follows from Lemma that

[ truy o [ @i,
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since (dd“uy)™ = agxa, (dd°u)™. From Lemma we have

ap [ (ddeu)™ = | (dd(uy + -+ um))",
B B

since (ddu;)™(B) = 0 for all j # k. Hence,

ak/ (dd°u)™ < / (ddeud)™ < ak/ (ddeuw)™, 1<k <m,
B B

B
for all Borel sets B C Ak, k= 1,...,m. Thus (ddu?)™ = g(dd°u)".

Assume now that g € S, ie., g = Z;n:l a;XE;, a; > 0, E; are pairwise disjoint
and p,,-measurable such that g is compactly supported and vanishes outside {u = —oo}.
Choose for each E;, 1 < j < m, an increasing sequence [Kf Jp21 of compact subsets of
E; such that x, = 27:1 Xk converges to x = ZT:l XE; a.e. W.I.t. iy as p — oco. Then
Xp € T and gx, € T. Furthermore, if f € T with f < g, then fx, € T and fx, < gxp.
Hence u/Xr > u9%». By the first part of the proof we have (dd“u/*»)" = fy,(dd°u)" and
(ddu9xe )" = gx,(dd°u)™. Since x, /' x and fx, / f, [u/X?] is a decreasing sequence
and uf < ufX». Therefore there exist @ € & such that lim,_, ulxe = w > uf. Similarly
one can prove that lim,_, u9X» > u9. Moreover, since (dd°uf)" = (dd°¢)" = f(dd‘u)",
Theorem implies that ¢ = u/. Thus,

wf = lim w/X* > lim w9
p—oo p—oo

for every f € T with f < g, so Definition [6.13] yields u? = lim, .o, u9X» € F and
(dd°u9)™ = lim (dd°u*?)" = lim gx,(dd°u)" = g(dd°uw)™. =
p—00 p—00

THEOREM 6.15 (M]). Let uw € € and let 0 < g < 1 be a p,-measurable function that
vanishes outside {u = —oo}. Then u9 € € and (dd“u9)™ = g(dd°u)".

Proof. Let [g;], g; € S, be an increasing sequence that converges pointwise to g as j — oo.
If f € T with f < g, then min(f,g;) € S and by Lemma we have (ddcu™n(f:9:))" =
min(f, g;)(dd°u)". Since min(f,g;) / f, [u*(595)] is a decreasing sequence and u/ <
u™n(/:95) . Therefore there exist ¢ € &£ such that lim;_, . u™*/95) = ¢ > /. Similarly
one can prove that lim;_,., u% > u9. Moreover, since (dd°u/)" = (dd°¢)" = f(dd°u)™,
Theorem implies that ¢ = u/. Thus,
uw/ = lim umin(f95) > lim w9
J—00 J—0o0
for every f € T with f < g, so Definition yields w9 = limj_u¥ € £ and
Lemma implies that
(dd°u9)™ = lim (dd“u%)"™ = lim g¢;(dd“u)" = g(dd°u)”. =
j—o0 j—o00
REMARK 6.16. Let u and g be as in Theorem If (ddu)™ vanishes on pluripolar sets,
then it follows from Theorem B.15 that u9 = 0 on Q.

COROLLARY 6.17 ([]). Letuw € & and f,g,0 < f,g <1, be two p,,-measurable functions
which vanish outside {u = —oo}. If f = g a.e. w.r.t. puy, then uf =u9.
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Proof. Let u € £ and assume for now that f,g € S. Then by Lemma we have
ul w9 e F,ul > umx(1:9) and
(dd°ul)" = f(dd°u)™ = max(f, g)(dd°u)" = (ddu™>>(f9)),

Hence, by Theorem we have v/ = u™2x(£:9) | Similarly we get u9 = u™**(£9), Thus,
ul = us.

For the general case let [Q2;] be a fundamental sequence and let f,g, 0 < f,g <1, be
two p,-measurable functions that vanish outside {u = —oco}. Our assumption that f =g
a.e. w.r.t. p, implies that xq,f = xq,9 a.e. w.r.t. u, and by the first part of the proof

we get uX% 7 = X9, The proof is then completed by letting j — oc. m

Example shows that there exists a measure g(dd“u)™ carried by a pluripolar set
that is not a discrete measure.

ExXAMPLE 6.18 ([4]). Let p be a positive measure with no atoms and with support in
a compact polar subset of the unit disc D (see e.g. [74, p. 82] and [26, Chapter IV,
Theorem 1]). Let u be the subharmonic Green potential of p. Consider v = pu X -+ X @
(n-times) and v(z1, ..., 2,) = max(u(z1),...,u(z,)) on Dx- - xD (n-times). Then v € F,
(ddv)™ = v, v has no atoms and it is supported by a pluripolar set.

6.3. The general case

LEMMA 6.19 ([M]). Assume that o, B1, B2 are non-negative measures defined on § which
satisfy the following conditions:

(1) « vanishes on every pluripolar subset of Q,
(2) there exists a pluripolar sets A C Q such that 31(2\ A) = B2(Q\ A) = 0.
(3) for every p € £ N C(L),

/(_P) dp; < /(—p)(da +dfs) < o0
Q Q

[ ods < [ naz

Proof. Since A is pluripolar and €2 is bounded there exists a function ¢ € PSH((Q),
¢ <0, such that A C {ap = —o00}. Take p € & N C() and set p; = max(p, p/j). Then
Jo(=p;)dB1 < [o(=p;)(da+ dfBz) < oo and by letting j — oo we get

/ (=p)dB1 < / (—p)(da + dfs).
{p=—0c0} {o=—00}

But « vanishes on pluripolar sets and 8; and 35 are carried by sets contained in {p =
—oo}. This yields the conclusion. m

Let w € &. Then by Theorem [5.6| there exist ¢, € & and f, € Li_((dd°¢,)"),
fu > 0, such that (dd°u)™ = f, (d dcd)u) + By. The non-negative measure (3, is such
that there exists a pluripolar set A C  with 3,(2\ A) = 0. In Lemma we will use
y = fu (dd°¢,,)™ and the fact that G, is the singular part of (dd“u)™.

Then

for every p € EN C(Q).
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LEMMA 6.20 ([M]). Let u,v € E. If there exists a function ¢ € & such that (ddp)™
vanishes on pluripolar sets and |u — v| < —¢, then B, = B, .

Proof. Let Q' € Q. Without loss of generality we can assume that u,v, p € F, since it is
sufficient to prove that 8, = 3, on €. The assumption that |u—v| < —p yields v+¢ < u
and therefore it follows from Lemma [5.11] that

(6.7) / (—p)(dd°u)" < / (—p)(dd°(v + @)™ < 00

for all p € &. Since (dd°p)™ vanishes on pluripolar sets, by Lemma the measure
i ( )(dd°p)? A (dd®v)™~ also vanishes on pluripolar sets. Therefore 3,1, = 3, and

Qo = iy + Z ( ) (dd¢p)i A (ddev)™—i
Lemma and inequality (6.7 yield

[ o< [ o,

for every p € &. In a similar manner we get

/Q (—p) df, < /Q (=p) dB

for every p € &. From Theorem [2.19]it now follows that 5, = 3,. =

LEMMA 6.21 ([]). Let H € EN MPSH(Q).

)-
(1) If v € N, (ddv)™ is carried by a pluripolar set, and [,(—p)(dd°v)" < oo for all
p € ENC(Q), then
u =sup{p € PSH(Q) : ¢ <min(v, H)} € N(H)

satisfies (dd°u)™ = (ddv)™.

(2) Assume that v € N, (dd°))™ vanishes on pluripolar sets, v € N(H), (dd°v)™ is
carried by a pluripolar set, and [,(—p)((dd°h)™ + (dd°v)™) < oo for all p € ENC(L).
If u is the function defined on Q by

u=sup{p : ¢ € B((dd¢)", v))},
where
B((dd*p)", v) = {p € £ : (dd°0)" < (dd°p)" and < v},
then w € N(H) and (dd°u)™ = (dd)™ + (dd“v)™.
Proof. (1): Since min(v, H) is a negative and upper semicontinuous function we have
u € PSH(Q) and H > u > v+ H. Furthermore, u € N'(H), since v € . By Theorem

we can choose a decreasing sequence [v;], v; € ENC(RQ), that converges pointwise to v as
j — o0, and use Theorem [6.6] to solve (dd“w;)™ = (dd°v;)", w; € N'(H), j € N. Consider

uj = sup{p € PSH(Q) : ¢ <min(vj, H)} € & (H).
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Then u; > wj, so by Lemmaﬂ Jo(=p)(dd°u;)* < [, (—p)(ddw;)™. Corollary
now yields

/(fp)(ddcu)” < /(fp)(ddcv)” for all p € & NC(Q),
Q Q

and therefore (dd“u)™ is carried by some pluripolar set. It follows from Theorem [5.6] that
(dd°u)™ is carried by {u = —oco}. Since v > u > v + H it follows from Lemma [6.20] that
(dd°u)™ = (dd°v)™. Thus, part (1) is proved.

(2): The function (¢+v) belongs to B((dd®))™, v) and therefore we have v+ < u < v,
hence u € N(H). Theorem [5.6|gives (dd°u)™ = a+/3, where a and f3 are positive measures
defined on 2 such that « vanishes on all pluripolar sets and 3 is carried by a pluripolar set.
By the classical Choquet lemma (see e.g. [62]) there exist functions ¢; € B((dd°y¥)",v)
such that u = (sup; ¢;)*. Since for all j we have (dd°p;)" > (dd°y)", Lemma yields
(dd°u)™ > (dd°¢)". By Lemma [6.20] we have 3 = (dd“v)", and we have already noted
that o > (dd®y)™. Theorem implies that there exists a decreasing sequence [v;],
vj € & (H), that converges pointwise to v as j — co. Now,

/Q(—p)((ddcw)" + (dd°v;)") < oo for all p € & NC(),

so by Theorems and there exists a unique w; € N(H) such that (ddw;)" =
(dd°y¥)™ + (dd°v;)™. It follows from the comparison principle (Corollary [5.10) that w; €
B((dd®)™, v;), so if we let

u;j = sup{y : ¢ € B((dd“p)", v;)},

then [u;] decreases pointwise to u as j — oo. Furthermore, since ¢ + v; < w; < u;
Lemma implies that

/Q( p)(ddeus)" < /Q(—vﬁ(ddcuu)":= /£<—4»<<ddc¢on-+<dd0vj>n»
Let j — oo. Then Corollary yields
L/FMM¢@”S/C¢XW¢W”+M)
Q Q

Hence [, (—p)(da + dB) < [,(—p)((dd“¢)™ + d3). Since we know that a > (dd“))"
it follows that for all p € & N C( ) we have [, pdor = [, p(dd®ip)™, and therefore by
Theorem a = (dd¢)™. Thus, the proof is complete. m

The main result of this chapter is the following generalization of Kolodziej’s subsolu-
tion theorem.

THEOREM 6.22 ([4], subsolution theorem). Assume that p is a non-negative measure with
the decomposition (given by Theorem [5.6))

p=f(ddeg)" +v

where ¢ € &, f € L. ((dd°¢)™), f > 0 and v is a non-negative measure carried by a
pluripolar subset of ).



The complex Monge—Ampeére operator 49

(1) If there exists a function w € £ with p < (dd°w)™, then there exist functions ,v € &,
v, > w, such that

(ddey)™ = f(dd°9)™ and (dd°v)" =v,

where v is carried by {v = —c0}.

(2) If there exists a function w € € with p < (ddw)™, then for every H € ENMPSH()
there exists a function u € €, w+ H < u < H, with (dd“uw)"™ = . In particular, if
w €N, thenu e N(H).

Proof. (1): Using the Radon—Nikodym theorem and the decomposition of p we obtain

f(ddc(b)n = 7-X{w>7c>o}(ddcw)n and v = TX{wzfoo}(dde)n7

where 0 < 7 < 1 is a Borel function. For each j € N, let u; be the measure defined by
p; = min(f, j)(dd°¢)™. Hence, p1; < (dd°(j'/™))™ and therefore by Theorem there
exists a unique function ¢; € & such that (dd°y;)™ = p;. The comparison principle
(Corollary implies that ¢); > w and that [¢);] is a decreasing sequence. The function
¥ = lim;j_, o 9; is then in £ and (dd“y)" = f (dd®$)". Theorem implies that there
exists v € € such that (dd°v)"™ = v and v > w. Thus,

(ddey)™ = f(dd°@)™ and (ddv)™ = v.

(2): Continuing with the same notations as in (1), we choose an increasing sequence
of simple functions [g;], suppg; € €, that converges to g = X{w——oc}T as j — ©00.
By Theorem we have w9 € F, (dd°w% )" = g;(dd°w)™ and [w9%] is a decreasing
sequence that converges pointwise to w9 as j — 0o. Moreover, w9 > w. Hence (dd°w9)" =
X{w:_oo}T(ddcw)". Set

u;j = sup{p € B((dd;)", min(w®, H))},
where

B((ddys;)", min(w?, H)) = {p € £ : (dd°v,)" < (dd°w)" and ¢ < min(w?, H)}.

This construction implies that [u;] is a decreasing sequence. The sequence [u;] converges
to some plurisubharmonic function u as j — oo, and by Lemma u; € N(H) with
(dd°uj;)™ = (dd°;)™ + (dd°w9 )™. Furthermore, we have w + H < u; < H. We conclude
the proof by letting j — co. m

REMARK 6.23. Let uy,...,u, € £. Then it follows from the subsolution theorem (Theo-
rem [6.22)) that there exists u € £ such that (dd°u)™ = dduj A -~ A ddu,.

In the following example we construct a positive measure p for which there does not
exist u € £ such that (dd°u)" = p.

EXAMPLE 6.24 ([33]). Let B C C™. In this example we shall construct a decreasing

sequence [us], us € & (B), that converges pointwise to —co as s — oo, and

sup/(log|z|2)2(ddcus)" < 0.
B

s>1

This means that if p is an accumulation point of [(dd°us)™], then there is no u € E(B)
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with (dd°u)™ = p, since by the comparison principle (Corollary [5.10) we have u < wug,
and therefore u = —oo everywhere.

For j > 2,let a; = 1/jY/% and b; = 1/(j1/210gj). Then Y272, a3 = 00, 372, b7 < oo,
and Z;’i2 ajb; = oo. Furthermore, a; > 7 _, ar < 6 for all j > 2. Now define

#j = 52 max(log 2], log(1 — b)), j>2.
T

Then
a?dal—bja .] = k)
ajardomax(1-b;,1-by), J 7 ks
where do, is the normalized Lebesgue measure on the sphere with radius . We then have

[ Goe P ae T = X [ (oglsPRdires nde

dd®p; AN ddpy = {

k=2
s 7
<233 [(ogloPddc; Ao
j=2k=2"B
s J
<2 Z log(1 — b;)?a; Z ak
j=2 k=1

< 12210g(1 —b;)? < o0.
j=2

To conclude this example set ugs = Zj‘:z ;-

7. Generalized boundary values

In this chapter we shall study the boundary behavior of plurisubharmonic functions. It
follows directly from the definition of & (Definition that every function v € & has
zero boundary values in the sense that

lim ¢(z) =0

oty
for every £ € 9. This is no longer true for functions in N. Instead, for all u € N we
have
(7.1) limsup p(z) =0

z—E
z€Q

for every £ € 9Q (Theorem . On the other hand, there exists u € F such that
liminf p(z) = —o00

z—¢

z€Q
for every £ € 092 (Example. For functions in £ we cannot even expect that holds.
Therefore for a better understanding of boundary behavior of plurisubharmonic functions,
following Cegrell ([36]), we introduce another concept of boundary values for plurisub-
harmonic functions. We prove that so called generalized boundary values are a natural
extension of the classical notion of boundary values. This topic is discussed in Chapter
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In Chapter we prove a stability theorem for the complex Monge—Ampere operator in
N(H) (Theorem [7.12). Using the stability theorem we will show the existence and stabil-
ity of solutions of the complex Monge-Ampere type equation (Theorems and @ .
Chapter [7.3]is devoted to a subextension theorem for functions in F(H) (Theorem [7.19).

7.1. Monge—Ampeére boundary measures. In this chapter we define, using some
convergence results for the Monge-Ampere measures of functions from F (Theorem7
the boundary measure pu,, associated with v € F (Definition [7.8)). Furthermore, we shall
show that such a construction is not possible for every function from N (Example [7.7).
For every bounded plurisubharmonic function ¢ we also define the boundary values ¢* of
 with respect to the measure p,,. We prove that under certain assumptions the boundary
values arising from the Monge-Ampére boundary measures, the boundary values for func-
tions in the Cegrell class F(H), and the classical boundary values coincide (Theorems
and [7.10). Most results in this chapter originate from [30].

We start with the classical boundary values of negative plurisubharmonic functions.
We prove the following theorem.

THEOREM 7.1 ([3]). If u € N then limsup, . u(z) = 0 for all £ € 9.

Proof. Let u € N. Suppose that there exists { € 99 such that limsup, . u(z) < 0.
Then there exists f € C(0€) such that v* < f <0 and f(§) < 0. Since €2 is a bounded
hyperconvex domain, there exists a harmonic function h in €, continuous on 2 such that
h = f on 0 (see [9]). The smallest maximal plurisubharmonic majorant of u € N is
@ = 0, by the definition of the Cegrell class A/. Since 0 > h > 4, we have h = 0, but
h(§) < 0 and we obtain a contradiction. m

PROPOSITION 7.2 ([32]). For every pluripolar set E in §Q there exists u € F such that
E C {u=—o0}.

Proof. Since E is pluripolar, there exists a sequence [U;] of open sets U; C € such that
E C Uj and C,,(U;) < 1/27. Let 2] be the fundamental sequence. Define by h; = hy,na,
the relative extremal function of U; N ;. Then h; € &, -1 < h; <0 and h; = —1 on
U; N €. Let up, = Z?:l hj. Fix v € &, =1 < v < 0 in Q. Then from Theorem
Lemma [3.12] and Theorem 2.4] we have

k k

<mhm ) (/ﬂ(—v)(ddchj)”y/n <)y </Q(ddchj)n>l/n

j=1 j=1

k k )
< ()Y O (U N < ()Y O (U) Y < ()Y 27 < oo,
j=1 j=1 j=1

Then u = limy_, o ug is a negative plurisubharmonic function and u € F since by Theo-

rem [3.14] P o
</Q(ddcu)"> <> </Q(ddchj)”> :;w'/" < oo0.

j=1
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To finish the proof note that if z € E, then there exists jo such that z € §2;, and then
z € UjNQ; for all j > jo. Therefore hj(z) = —1for j > jo,s0u(z) = 372, hj(2) = —cc. m

ExXAMPLE 7.3 ([2]). We construct a function v € F such that liminf, .. u(z) = —oo for
all £ € 90. Let E = {z;,j € N} C Q be such that 9Q C E. Since E is a pluripolar
set, from Proposition there exists w € F such that E C {u = —oo}. Therefore
liminf, ¢ u(z) = —oo for all £ € 9Q.

Let [©;] be a fundamental sequence for Q. Let u € F(2) and let [u/] be the sequence
from Definition Then v < v/ < v/t < 0 and v/ € F(Q2). Moreover, by Stokes’
theorem [, ( ddcuj = Jo(ddu)™ and also supp (dd“u/)™ C Q\ Q;.

The following theorem allows us to define a boundary measure associated with a
function in F.

THEOREM 7.4 ([36]). Let u € F(Q). Then there exists a measure p, on 02 such that
(dd°u?)™ is convergent in the weak*-topology to pu,. For all ¢ € PSH(Q) N L>®(Q) the
limit

lim [ o(ddu?)™

J=eJa
exists. Moreover, if ¥ € PSH() N L>®(Q) then the sequence [(dd“u?)"] is convergent
in the weak*-topology.

Proof. Let U be a strictly pseudoconvex set containing Q. Let ¢ € PSH(Q) N L>(1Q).
Since [,(dd°u?)" = [,,(dd°u)™, without loss of generality we can assume that ¢ < 0. By
Theorem [2.17] “ 7| there exists a decreasing sequence [¢r] C & NC(Q) converging to . Then
by Theorem [3.1] we have

—oo</ﬂg0k(ddcu)" /@k(ddcuj) /‘Pk(dch]H)

and using the monotone convergence theorem we find that for ¢ € PSH(2) N L>(Q),

(7.2) —00 < / p(ddu)™ < / o(ddu? )" < / p(dduThH™ < supgp/(ddcu)n.
Q Q Q Q

Q
Thus [, ¢(dd°u?)" is a bounded increasing sequence, so lim;j_,o [, @(dd“u/)" exists.
In particular, this limit exists for all ¢ € C§°(U) C &EU) NCU) — EU) NCU) b
Theorem [2.19] which means that it holds for any ¢ € Cy. This implies that the limit
lim;_, oo (dd°u?)™ defines a positive functional on Cp, so by the Riesz theorem there exists
a positive measure s, on U such that (dd°u’)™ is convergent in the weak*-topology to i,
It follows from the construction that supp p, C 0S.
Fix ¢ € PSH(Q) N L (). To prove the second part of Theorem it is enough, by

Theorem m to prove that for any ¢ € PSH™(Q2) N L°(2) the limit

lim | ¢p(ddu’)"

I Ja
exists. For given ¢, there exist a,b > 0 such that ¢ +a > 0, ¥ +b > 0, and then
(e +a)? (W +b)2%(p+1+a+b)? € PSH(Q) N L>®(). Let w denote any of those
functions. Then by the first part of the proof, lim;_ fQ w(dd°u?)" exists. Then the
limit exists for w = (¢ + a)(¢ + b) and finally for w = ¥ . This ends the proof. m
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EXAMPLE 7.5 ([36]). Let B be the unit ball in C", and let u(z) = log |z|. In this example,
we show that p, = do. Let Q; = B(0,e~!/7) be a fundamental sequence. Then w/(z) =
max(log |z|, —1/j). Therefore, (dd°u/)" = doj, where do; is the Lebesgue measure on
OB(0,e~'/7). Hence, pu,, = do, since (dd“u?)™ tends to do in the weak*-topology.

EXAMPLE 7.6 ([36]). Let D? be the unit polydisc in C2, and let u be the function defined
on D by

u(z, w) = max(log |z, log |w|).
We shall prove that p, = do ® do, where do is the Lebesgue measure on 0D. Let §2; =
Dy_1/; x Dy_1/; be the fundamental sequence. Then

u’ (z,w) = max(log |z, log Jw|, log(1 — 1/7)).

Hence, (ddu’)" = doj @ doj, where do; is the Lebesgue measure on dD;_;,;, which
means that y, = do ® do since (dd°u’)"™ tends to do ® do in the weak*-topology.

Theorem is not valid for functions in A/ (Example , and therefore it is not
possible to define the boundary measure pu,, for u € N.

EXAMPLE 7.7. Let B be the unit ball in C". Define u;(z) = max(log |z|, —1/27). Then
uj € &, (dd°u;)™ = (2m)"doj, where do; is the Lebesgue measure on the sphere {|z| =

6*1/2j}. Let u = Z] 1 u;. Then v € N by Proposition since u(0) = —1. Moreover,

/ dd°u) >Z/ (dd°u;)" = (2m)"
j=1
Let €, = B(0,e~/?") be the fundamental sequence. Note that
=D uk,
k=
and therefore [;(dd°u?)" = co.

Based on Theorem [7.4] we can state the following definition.

DEFINITION 7.8 ([36]). For u € F(f2) and ¢ € PSH(Q2) N L>(Q), let ¢* be the function
in L>(99Q, u,,) such that

lim p(dd“u? )™ = "dp,.
J—00
We may consider ¢* as the boundary values of ¢ with respect to p,. Note that at
least formally ¢" depends on both ¢ and u. However, the following theorems describe
some situations when this definition agrees with other notions of boundary values. In
Theorem we present a slightly modified proof compared to the original one.

THEOREM 7.9 ([36]). Letu € F(2) be such that (dd°u)™ vanishes on pluripolar sets in €2,
and p € PSH~ (W) N L>(W), where W is a bounded hyperconvex domain containing (2.
Then % = p|ga almost everywhere with respect to fu,.
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Proof. Let o € PSH™(W)NL>®(W). By Theorem there exists ¢, € & NC(W) such
that ¢ \, ¢. Then by Theorem [7.4]

lim [ @(dd°u?)™ < lim / op(ddu? )" = / Ordty.

i—oe Jo i Jo o0

By letting £k — oo we obtain

(7.3) lim [ @(dd°u’)" < / wdjty.
J—o0 JO oN

Fix f € C(Q), f > 0. It follows as above that

fe"dp, = lim / fe(ddou’)" S/ fedp,.
o J=Ja o0

Thus " < ¢ a.e w.r.t. 1y, so it remains to prove that faQ e dp, = fBQ @ dt,,. Choose
a hyperconvex set U such that Q € U € W. For a given € > 0 by the quasicontinuity of
plurisubharmonic functions (Theorem [2.5) there exist an open set U. C U, Cy,(Us,U) < €
and ¢. € Co(U) such that infyp < . <0and U\U. C {z € U : p(2) = p(2)}. It
follows that

(7.4) / P dp, = lim /@(ddcuj)" = lim o(dd“w?)™ + lim @e (ddu?)™
o0 i—oo /o i—o Jonu. i Jonu.

> lim o(ddu!)"™ + / ediy
i—o° Jonu. 0

= lim p(ddu’)" + / Pedpty + / ediy,
1= JonuU. a0NU. O\Ue

> lim p(dduw’ )" + / Pedpiy, + / Pdfuy.
I Janu. oQNU. o0

Let he = sup{yp € PSH™ (W) : ¢|U. < —1} be the relative extremal function for U,.
Then by (7.2)), (7.3) and (7.4) we obtain

0> / TS / @dp, > lim p(ddu?)" + / Pedpiy
o0 (o9} I JonU. oQNU.

Zinfgp( lim / (dd“u? )™ + / duu>

U =% Janu. 20NU.

= —infgo( lim / he (ddCu?)"™ + / hsdpu)
U J—% Janu. 2QNU.

> —infgo( lim / hg(ddcuj)"—l-/ hgduu) > —2inf<p/ he(dd®u)™.
u Jj=oe o a0 u-Ja

To finish the proof it is now enough to show that

lim [ ho(dd°u)™ = 0.

e—=0 Jo
Since (dd“u)™ does not put mass on pluripolar sets, by Theorem [5.6|there exist 1) € (W),
£>0, f € L((dd°)") such that i — f(dd°s)™. Define iz — min( f, k)(dde)" for k € N.
Then by the Kolodziej subsolution theorem (Theorem there exists ¥ € £ (W) such
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that (ddyy)™ = pg. Therefore by Corollary and Theorem

/Q (—he)dp = /W(—ha)(ddcwk)” = /W(—wk)ddchs A (dde)"

< sup(— ) < /W<dd%s>“> " ( /W(ddcww”) o

< pp(W)n=n/m sup(—te) Co (U, w)l/m

< Cpk(W)("_l)/" Sll/le(_wk)C”(U€7 U)l/"

= C(k)e'/,

where the constants C, C'(k) do not depend on €. So we have proved that

lim hedpg = 0.
w

e—0

Hence by the monotone convergence theorem

0> lim [ he(dd®uw)” =lm [ hedpr+ lim [ h(f —min(k, f))(dd°y)"™
0 Jw e—0 Jyw

e—0 7% e—

> / (min(k, f) — f)(dd“d)" — 0, k — oo,
w
since —1 < h. <0. m

THEOREM 7.10 ([36]). Let H be a bounded maximal plurisubharmonic function and let
u € F(Q) be such that (dd°u)™ wvanishes on pluripolar sets in Q. Then for every ¢ €
F(Q, H) such that [, o(dd“u)" > —o0 we have ¢" = H".

Proof. Note that by Theorem H the limit lim;_, o H(ddu’)™ exists. We have to prove
that

lim op(dd®u’)" = lim H(dd“u’)".

j—o0 j—o0
By the same argument as in the proof of Theorem [7.4] it is enough to prove that for all
w € PSH™ () N L>®(Q) we have

lim [ we(dd“w/)" = lim [ wH(dd“u/)".

j—oo Jq j—oo Jq
Since ¢ € F(2, H), there exists p € F(Q) such that ¢ + H < ¢ < H. We may assume
that ¥ > ¢ (taking ¥y = max (¢, ) if necessary) and that —1 < w, H < 0. We have

/ we(ddu? )" = / w(p — H)(dd“u’)™ + / wH (ddu?)™.
Q Q Q
Note that by Theorem (3.1}
0< [~ M@ty = [ (~u) - p)dduw)" < [ (u)(-v)ddu)
Q Q

Q

< /Q (—p)(ddeud )™ = /Q (—uf)dd®w A (ddeud )1 < / (—u)dde A (dd°u?)"~!

Q
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_ / (= )dd®) A ddCu A (ddow)"2 < - < / (—u?)ddeo A (ddeu)™ ! = T,
Q Q

< /Q (—u)dd“p A (dd°u)"~! = /Q (=) (dd°u)" < /Q (—)(ddw)" < oo.

Since u? increases to zero outside a pluripolar set and the measure dd“y) A (dd°u)"~* does
not put mass on pluripolar sets, we have I; \, 0 as j — oo. This ends the proof. =

REMARK 7.11. If ¢ € L*®(Q), then [, ¢(dd“u)" > —oo for every u € F. Furthermore,
1) > . This implies that 1 is bounded, and therefore the measure dd“y) A (dd°u)"~1 does
not put mass on any pluripolar set. Thus, for any bounded function ¢ € F(2, H) we
have

Oy = lim p(dd°u?)™ = lim H(dd“uw)" = H"u,

J—00 J—00

for every u € F.

7.2. Stability of solutions and the complex Monge—Ampeére type equation.
In [37], Cegrell and Kolodziej proved a stability theorem for the complex Monge-Ampere
equation in F(PBy), where g is a continuous function on 92 such that lim, . PBy(z) =
g(&) for all £ € 9. Consider the Monge-Ampére equation

(7.5) (ddu)"™ = p.

By stability of solutions to in a class K we mean that after a small perturbation '
of the measure p one still can find a solution ' to the equation (dd°u’)™ = p' that also
belongs to K. Furthermore u’ should be in some sense close to u. We prove the stability
theorem in N'(H) (Theorem [7.12)).

In [28], Cegrell proved that convergence in the sense of distributions of plurisubhar-
monic functions does not in general imply convergence of their Monge—Ampére measures.
In other words, the complex Monge—Ampeére operator is not continuous on the set of pluri-
subharmonic functions equipped with its natural topology, i.e. weak topology. Recall that
a sequence of plurisubharmonic functions that converges in the sense of distributions is
also convergent in L} = for any p € [1,00), i.e. it is weakly convergent (see e.g. [58]).
Later Lelong proved that every locally bounded plurisubharmonic function defined on a
bounded pseudoconvex domain can be approximated in the weak topology by continu-
ous maximal plurisubharmonic functions [66]. It was proved by Xing [84], Cegrell [31],
Pham [71], Ahag and the author [7], among others, that it is better to consider other
types of convergence for plurisubharmonic function to ensure continuity of the complex
Monge—Ampere operator. In particular, Cegrell proved that if a sequence of plurisub-
harmonic functions is bounded from below by a function from the Cegrell class £ and if
it is convergent in capacity then the corresponding Monge-Ampeére measures are weak*
convergent. We shall give an example, using the stability theorem, that on a certain set
of plurisubharmonic functions weak convergence is equivalent to convergence in capacity
(Theorem [7.15)).

Bedford and Taylor proved in [I8] the existence of a solution to the following Monge—
Ampere type equation:

(7.6) (ddu)™ = F(u(z), z) .
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They assumed that p is the Lebesgue measure, and F'/™ > 0 is bounded, continuous,
convex, and increasing in the first variable. Later in [29], Cegrell showed that the convexity
and monotonicity conditions are superfluous. The case when F is smooth was proved
in [24]. In [64], Kolodziej proved existence and uniqueness of solution to when F'is a
bounded, nonnegative function that is nondecreasing and continuous in the first variable.
Furthermore, p was assumed to be a Monge-Ampere measure generated by some bounded
plurisubharmonic function. The underlying domain of has so far been assumed to
be strictly pseudoconvex. A generalization to hyperconvex domains was made by Cegrell
and Kotodziej in [37]. There assumptions were that p is finite, vanishing on pluripolar
sets, and F' > 0 is continuous in the first variable, upper bounded by a function from
L'(dp). Here we shall prove existence and stability of the solution of the Monge-Ampere
type equation for some unbounded measures p (Theorems and .

The results in this chapter are exclusively published in this survey.

The aim of this chapter is the following stability result:

THEOREM 7.12 (Stability theorem). Let €2 be a bounded hyperconvex domain, and let y be
a measure vanishing on pluripolar sets such that there exists v € N with p = (ddv)™, and
let He ENMPSH(QY). Let 0 < f, f; < 1 be measurable functions such that fjpu — fu
in the weak*-topology as j — oco. Then for u;,u € N'(H) which solve

(dduy)" = fip, (dd“w)" = fu
we have u; — u in capacity.
Theorem is a generalization of Cegrell and Kolodziej’s stability theorem ([37]).

From quasi-continuity of plurisubharmonic functions and the monotone convergence the-
orem we have the following well-known lemma ([84]).

LEMMA 7.13. If [u;] is a monotone sequence of plurisubharmonic functions converging
to a plurisubharmonic function u, then u; — w in capacity as j — oo.

Proof. Fix K € Q, £ > 0, § > 0. By Theorem [2.5] there exists an open set G C § such
that C,,(G) < /2, and functions u;, u are continuous on G¢. Thus, |u — u;| N\, 0 locally
uniformly on G¢. Therefore, there exists jo such that for all j > jp, on K \ G we have

oe
=] <

2C,(K)’
For all w € PSH(Q?), -1 < w <0,

1
/ (ddew)" < / (ddew)" + / = ;| (ddw)"
{luj—u|>e}NK G € JKk\a@
1 ¢
<0G +77/ ddew)" < 6.
@+t o W

This means that, after taking the supremum over all w € PSH(Q), -1 < w <0,
Cr({lu; —u| >e}NK) <4,

and the proof is complete. m
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PROPOSITION 7.14. Let Q be a bounded hyperconvexr domain, and let u € £ be such
that p = (dd°u)™ vanishes on pluripolar sets. Let [Qy] be the fundamental sequence. The
following two assertions are then equivalent:

(1) there exists ¢ € N such that (dd°p)™ = p,
(2) there exists a sequence [uy] such that uy € &€, (dd°up)™ = (1 — xa, )i, and ug /0
a.e. in 2.

Proof. (1)=(2): Assume that u € . Since (1—xq, )i < p = (dd°u)™, by the subsolution
theorem (Theorem there exists up € N such that (dd°u;)™ = (1 — xq,)u- The
comparison principle (Corollary implies that the sequence [uy] is increasing. It
remains to show that uy " 0 a.e. To prove this take another fundamental sequence [wy]
such that

wr € Q) E Wr+1 € Qk+17

and define

v =sup{w € £ : w < u on wf}.

Since vy = u on wyf, we have (dd®v;)™ > (dd°ui)”, and from the comparison principle
we obtain uj > vi. Since u € N, by definition vy, 0 a.e. and therefore u; ' 0 a.e. as
k — oo.

(2)=(1): Assume that there exists a sequence [ux| such that uy € &, (ddup)”™ =
(1—xq, ) and ug 0 a.e. in Q. It follows from Theoremthat there exist ¢ € & and
0 < fe L _((dd)") such that u = f(dd“y)"™. By the Kolodziej subsolution theorem
(Theorem there exist u{v € & such that

(ddu)™ = min(f, j)(1 — xq, ) (dd°p)".

It follows from the comparison principle that [ufc] is a decreasing sequence for fixed k, and
uj, > uy. Then there exists vy, € € such that (dd®v;)"™ = (1 — xq,)p and uj, \, vy > uy, as
j — oo. Furthermore, again by Corollary [vg] is an increasing sequence and vy /" 0
a.e. as k — 00, since vy > ug.
By the Kolodziej subsolution theorem there exists ¢3 € & such that
(ddup)" = min(f, j)xe, (ddv)".

It follows from the comparison principle that [(p?c] is a decreasing sequence for fixed j,
and ¢ \, ¢’ as k — oo, where ¢/ € F and (dd°¢’)" = min(f, j)(dd“¢)™. Similarly
[¢7] is a decreasing sequence, for fixed k, and ¢], \, ¢} as j — oo, where ¢, € F and
(dd°1)" = xa, (dd)".

The comparison principle implies that [¢7] is a decreasing sequence and ¢7 > u, and
therefore there exists ¢ € € such that ¢/ N\, ¢ > u and (dd°p)" = u. Now we prove that
© € N. Note that

(dd° (i}, + up))™ = (ddp})" + (dduj)" = (dd°¢’)",
so by the comparison principle we have

¢ > f + .
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Letting j — oo we obtain
Y 2 @r + vk,
and since ¢ = 0 we have
OG> P+ >v, /0, k— oo,
which means that g =0 a.e,so p=0and p € N. m

Proof of Theorem , First note that it follows from the subsolution theorem (Theo-
rem that there exist u;,u € N(H) such that (dd°u;)™ = f;p and (dd°uw)™ = fpu.
Moreover, the comparison principle (Corollary implies that u;,u are uniquely de-
termined.

Let [Q] be a fundamental sequence. By Theorem [6.6| there exist u¥,u” € F(H) such
that

(dd°ub)™ = xa, fip,  (dduF)" = xq, fp.

It follows from the comparison principle that [u”

X, [u*] are decreasing sequences and
uh N\ uj, uF N u, as k — oco. By the subsolution theorem there exists v, € A such that
(ddv)™ = (1 — xq, )i By our assumptions p = (ddv)™ with v € N, so by Proposi-

tion [7.14] v, / 0. Observe that
(dd°uj)" = fin < (1= xa )+ fixapn = (dd°ve)"™ + (dd°u;)" < (dd*(vg + u5))"

and then by the comparison principle u; > vy + uf Therefore

(7.7) u—uj§(uk—u;’?)—i—(u?—uj)guk—uf—vk
and
(7.8) uj—uguf—u:(uf—uk)—l—(uk—u).

Now fix K € Q and §,¢ > 0. Since [v;], [u¥] are monotone sequences, by Lemma
vy — 0 and ©* — wu in capacity as k — oo, and so there exists ko such that for all k > ko,

(7.9) Co({ve < —e/4}NK) < 6/4,  Co({|u" —u| > £/4} N K) < §/4.

Now for fixed k we prove that ué“ — u” in capacity as j — oco. Note that by Corollary
we have for all w € PSH(R2), -1 <w <0,

(7.10) /{ e < / (—w)((ddeut)™ — (ddou)")

{ub>uk}

<l / (—w)f; — fldu,
Qkﬁ{uk>u§}

and similarly

(7.11) /{ o (8w <ul | (—w)lf = fldp.

k k
ka{uj >u }

Now fix K € 2, ¢ > 0 and w € PSH(R2), —1 < w < 0. Then by (7.10) and (7.11) we
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obtain
1
/ (dd°w)" < — |u§C — uF|™ (ddCw)™
{Jub —uk|>e}nK €™ J{uk —uk|>e}nK
1 1
<L (u — ) (ddCw)" + / (u — by (ddow)"
€ {u§>uk} € {u;‘>uk}
n! n!
<% [ Cwlt - fldu< 5[ 1t - fdu
€ Q. g Qp

Since fjp — fu, taking supremum over all w € PSH(Q2), —1 < w < 0, we get u;“ — uP

in capacity as j — oo. Fix k > kg. Then there exists jy such that for all j > jo,
(7.12) Co({|u} —uF| > e/4} N K) < §/4.

Inequalities , , , and yield, for j > jq,
Cr({lu; —u| >e}NK) < 20"({|u;C —uf| > e/4}NK)
C({|u” —u| > /4y N K) + Cp({vr, < —e/4} N K) < 6.
This ends the proof. m
COROLLARY 7.15. Let Q) be a bounded hyperconvex domain, let i be a measure vanishing

on pluripolar sets such that there exists v € N with p = (dd°v)™, and let H € €N
MPSH(RY). Let A(u, H) denote the set of all solutions of the Dirichlet problem

ueN(H), (ddw)" = gp,
where g varies over all p-measurable function with 0 < g < 1. Then weak convergence

and convergence in capacity are equivalent in A(u, H).

Proof. We follow the proof given in [37]. Suppose that u; — w in LL () and let
(dd°u;)™ = f;p. Choose a subsequence f;, converging to some f in the weak*-topology.
Then by Theorem (dd°u)™ = fp and u;, — w in capacity. This argument works for
any subsequence of the original sequence, and therefore u; — w in capacity. m

The stability theorem (Theorem [7.12) coupled with the Schauder-Tikhonov fixed
point theorem (see e.g. [78]) allow us to show a very general existence theorem for the
complex equation of Monge-Ampere type (7.6).

THEOREM 7.16. Let Q2 be a bounded hyperconver domain, p a non-negative measure
vanishing on pluripolar sets, and let H € €N MPSH(Q). Assume also that F(z,z) >0
is a dz x dp-measurable function on (—oc,0] X Q that is continuous in the x variable.
Consider the following two conditions:

(1) there exist p € PSH™(Q) and g € L'((—p)p) such that
0< F(z,z) <g(z),

(2) there exist w € N such that pp = (ddw)™, and a bounded function g such that
0< F(z,z2) <g(z).
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If one of the above conditions is satisfied, then there exists a function uw € N(H) that
satisfies
(dd°u)" = F(u(2), 2) p

Furthermore, if F is a nondecreasing function in the first variable, then the solution u is
uniquely determined.

Proof. We follow the proof given in [37].

(1): By Theoremthere exists a unique v € N such that (dd®g)™ = g i, and there-
fore Theorem [6.6]implies that there exists a unique 11 € N'(H) such that (dd¢;)" = gpu.
Set

K={ueNH):u>}.

1
loc

The set K is convex, and compact in the L, -topology. Let us define a map 7 : K — K
so that

if (dd°v)"™ = F(u(z),2) , then 7 (u) = v.
Note that if u € K, then F(u(z),z) p < (ddyg)™. Theorem [6.6 implies that there exists
a unique v € N(H) such that (dd“v)" = F(u(z),z) i, and by Corollary we have
v > 1. Thus, v € K, i.e. T is well defined.

We proceed to prove that 7 is continuous, and then the Schauder—Tikhonov fixed
point theorem concludes the existence part of the proof. Assume that u; € K with
u; — u. By [37] there exists a subsequence (still denoted by [u;]) converging to w in
L{ (du). Theorem applied to the measure g implies that the sequence v; = 7 (u;)
converges in capacity to some v € K. Since vj,v € K we can use [31] to find that (dd°v;)"
tends to (dd°v)™ in the weak*-topology. Hence,

(dd°v)" = lim (dd°v;)" = lim F(u;(2), 2) p = F(u(z),2) = (dd°T ()",

J]—00

which implies that v = 7 (u) by Corollary Thus, lim; o 7 (u;) = 7 (u), ie. 7 is
continuous.

We now proceed with the uniqueness part. Assume that F' is nondecreasing in the
first variable, and there exist u,v € N (H) such that

(dd°u)" = F(u(2),z)p and (ddv)" = F(v(z),z) p.
On the set {2z € Q: u(z) < v(z)} we have
(dd°u)" = F(u(2), ) i < F(o(2), 2) p = (dd°v)".
Corollary [5.9] yields

/ (ddv)™ < / (dd°u)™,
{u<v} {u<v}

hence (dd°u)™ = (dd°v)™ on {z € Q : u(z) < v(2)}. In a similar manner, we get (dd°u)" =
(dd°v)™ on {z € Q: u(z) > v(z)}. Furthermore, on {u = v} we have

(dd°u)" = F(u(2),z) p = F(v(2), 2) p = (dd°v)".
Hence, (dd“u)™ = (ddv)™ on Q. Thus u = v, by Corollary
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(2): Let g be a bounded function such that 0 < F(z,z) < g(z). By Theorem [6.6] there
exist unique ¢y € N and ¢, € N(H) with

(dd°vo)" = (dd“y)" = g dp.
The rest of the proof is the same as for (1). m
REMARK 7.17. Condition (1) in the above theorem is satisfied by a smaller class of
measures, but with a wider class of functions F. On the other hand, condition (2) gives
a more general class of measures, but then we must assume a more restrictive conditions
on F'. Note that Theorem is a generalization of the corresponding result in [37], since
for a finite measure p it is enough to take ¢ = —1 in condition (1).

We end this chapter by proving a stability theorem for the Monge-Ampére type
equation.

THEOREM 7.18. Let €2 be a bounded hyperconvex domain, let p be a non-negative measure
vanishing on pluripolar sets and let H € €N MPSH(Q). Suppose also that F(x,z) >0
is a dx X du-measurable function on (—oo, 0] x Q which is continuous and non-decreasing
in x. Assume that one of the conditions below is satisfied:

(1) there exist p € PSH™(Q) and g € L*((—p)p) such that
0< F(z,z2) < g(z),

(2) there exist w € N such that p = (dd“w)™ and a bounded function g such that
0 < F(z,2) <g(2).

Let 0 < f, f; £ 1 be measurable functions such that f;p — fp in the weak*-topology as
j — oo. Then for uj,u € N(H) which solve

(ddu;)" = F(u;j(2),2) f5(2)p,  (dd®u)” = F(u(2), 2) f(2)p
we have u; — u in capacity.
Proof. Theorem yields unique functions u; € N(H) such that
(dd®u;)" = F(u;(2),2) f;(2)p-

Theorem together with Corollary implies that there exists a unique function
¢ € N(H) such that (dd°y)"™ = g p, and u; > v, since (ddu;)"™ = F(u;(2), 2) f;(z)dp <
g p = (dd“y)™. Therefore there exists a subsequence, still denoted by [u;], that converges
to u in the weak topology. Furthermore, H > u > 1, since H > u; > 1. Thus, u € N(H).
Corollary yields u; — w in capacity, and then [3I] implies that [(dd®u;)"] tends to
(dd°u)™ in the weak*-topology. Passing to a subsequence, still denoted by [f;], we may
assume that f; — f pointwise a.e. w.r.t. [u]. The dominated convergence theorem gives

us
(dd°u)" = lim (dd°u;)" = jlggo F(uj(z),2)f;(z)p = F(u(z), 2) f(2) .

Jj—o0
Hence, u is a solution to
(dd°u)" = F(u(z), ) f(2)p.
Since this argument works for any subsequence taken from the original sequence, we
conclude that u; — u in capacity. =
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7.3. Subextension. The problem of finding the domains of existence for plurisubhar-
monic functions was considered by Bedford and Burns ([14]), and by Cegrell ([27]), i.e.
they studied domains for which there exists a plurisubharmonic function that cannot
be extended to any larger domain. They proved that any smooth bounded domain in
C™ satisfying a certain non-degeneracy condition on the Levi form is a domain of exis-
tence. Plurisubharmonic functions are defined as functions satisfying certain inequalities,
and therefore it is more natural to consider for them the subextension problem: for
0 C Q9 € C" and for a given u € PSH(;) find v € PSH(s) such that v < u on ;.
Bedford and Taylor improved an example by Forneess and Sibony [55] by constructing a
smooth negative plurisubharmonic function on an arbitrary bounded domain in C™ with
C?-boundary that does not subextend [20]. Cegrell and Zeriahi [39] proved that plurisub-
harmonic functions with bounded Monge-Ampére mass on a bounded hyperconvex do-
main admit a plurisubharmonic subextension to any larger bounded hyperconvex domain
with control of the Monge—Ampeére mass. Cegrell, Kolodziej and Zeriahi [38] proved sev-
eral results showing that plurisubharmonic functions with bounded total Monge-Ampere
mass admit global plurisubharmonic subextension with logarithmic growth at infinity.
We prove that subextension is possible in F(H) (Theorem and Proposition [8.17).
Wiklund constructed an example that shows that subextension is not possible in N/ (Ex-
ample [7.22)). Subextension theorems proved their usefulness for example in estimation
of the volume of sublevel sets of plurisubharmonic functions and in estimation of the
integrability index for plurisubharmonic functions (5, [7, 39], see e.g. [41l [75] for further
applications).

This chapter is mainly based on the joint work of the author and Lisa Hed in [47].
Here we shall prove the following theorem.

THEOREM 7.19 ([47]). Let Q1 and Q2 be two bounded hyperconvexr domains such that
D CQCcC,n>1andlet F € &(Q), GeE(Q) N MPSH(Q2) be such that

(7.13) F>G onQ.

If u € F(Q, F), then there exists v € F(Qa,G) such that v < u on Q1 and

/Q 2 (ddev)" < /Q 1 (ddeu)".

Without the control of the total Monge-Ampére mass, the subextension in F(H),
H € &, would follow as in the second part of the proof of Theorem by using Theo-
rem 2.2 in [39]. At this point it is not known if the assumption that G € MPSH(Qs) is
necessary, but we observe that it is necessary that fQ2 (dd°G)™ < le (dd°F)™.

To prove Theorem [7.19] we need the following proposition.

PROPOSITION 7.20 ([7]). Let H € €. If u € F(H) is such that

(7.14) /Q (ddu)" < oo,

then there exists a decreasing sequence [u;], u; € Ey(H), that converges pointwise to u as
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j tends to oo, and

(7.15) sup/ (dd°u;)™ < oo.
Jj Ja

Furthermore, if [u;], u; € F(H), is a decreasing sequence that converges pointwise to a
function u as j tends to oo, such that (7.15)) is satisfied, then v € F(H) and (7.14)) holds.

Proof. Assume that v € F(H) is such that (7.14) holds. It follows from Theorem
that there exists a decreasing sequence [u;], u; € & (H), that converges pointwise to u

on 2 as j — oco. By Corollary and assumption (|7.14]) we have

sup/ (dd°u;)"™ < oo.
i Ja

Now assume first that [u;], u; € & (H), is a decreasing sequence such that holds
and [u;] converges pointwise to a function u as j — oo. From and Lemma
we have [, (dd°H)" < oo, since u;, H € F(H) and u; < H. Theorem implies that
H e F (IZI ), where H is defined as in Definition Hence, we can, without loss of
generality, assume that (dd°H)"™ = 0. The measure (dd°u;)™ has finite total mass and
vanishes on pluripolar sets by Lemma [6.20f Therefore Theorem implies that there
exists a unique ¢; € F such that (dd°p;)" = (dd°u;)". Furthermore,

(dd“(p; + H))" > (dd“u;)™.
Thus, u; > ¢; + H, by the comparison principle (Corollary . Let np;- be the function
defined by ¢’ = (supy>; ¢x)*. This construction implies that [¢%], ¢ € F, is a decreasing
sequence and

sup/ (dd°p))™ < sup/ (dd°p;)"™ < o0,
i JQ j JQ

J
by (7.15) and the fact that (ddp;)" = (dd“u;)". Thus, by Proposition p =
(limj o ) € F. For every k € N we have u; > ugjyn) > ¢(j4r) + H. Hence, for
every j € N we have u; > ¢ + H. By letting j — oo we get u € F(H). Now ([7.15)) and
Corollary imply that
/ (dd°u)™ = lim [ (dd°u;)™ < oo.
Q

I JO
If u; € F(H) only, we can take 1) € &/(§), 1 # 0 and define
w; = max{uj, ji + H}.

Since jy + H € & (H) for every fixed j, we know that u); € & (H ). By the construction,
w; N\, was j — oo and then Lemmal5.11{and (7.15)) imply that [, (dd“u})™ < [, (dd®u;)™.
It follows from ([7.15) that
sup/ (dd°uf;)"™ < oo
i Ja

and the result follows. m
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Proof of Theorem . Let u € F(4, F). First assume that
(7.16) / (ddeu)" < oo,
951

This assumption and Lemma imply that le (dd°F)™ < oo, since u, F' € F(1, F)
and v < F. Theorem implies that F' € F(Qy, F), where F is defined as in Defi-
nition Hence, we can, without loss of generality, assume that (dd°F)™ = 0. Propo-
sition implies that there exists a decreasing sequence [u;], u; € & (1, F), which
converges pointwise to w on {21 as j — oo, and

(7.17) sup/ (dd°u;)™ < oo.
j J
Consider the measure p; = xq,(dd°u;)"™ defined on 9, where xq, is the characteris-
tic function defined in €y for the set €;. The measure p; is a Borel measure in {2,
and it vanishes on pluripolar sets by Lemma Moreover, from (|7.17) it follows that
;i (£22) < oo. Theorem together with Theorem implies that there exists a unique
Y; € F(Q2,G) such that (dd°y;)™ = p; on Qy. Theorem implies that there exist
w; € E(Q2,0) and ¢; € L (N, (dd°w;)™), ¢; > 0, such that u; = ¢;(ddw;)™ on Q.
For k € N let the measure pj;, be defined on €5 by
Wik = min(p;, k) (dd°w;)™.
It follows from Theorems and that there exist decreasing sequences [1;x]72;,
Vi € F(Q2,G), [0k]idy, @ik € F(Q, F), such that
(ddc’lﬁjk)” = HjE ON QQ and (ddc(pjk)n = Mjr On Ql.

Furthermore, [1;1]32, converges pointwise to 1; on Qs and [¢;|72, converges pointwise
to u; on € as k — oo. The comparison principle (Corollary [5.10) and (7.13) yield

Vi < @i on Q.

Thus, 1; < u; on €. For each j € N let vj = (sup;; ¢;)*. By the construction we have
(S .7:(92, G),

(718) Vj < Uj on Ql,

and v; > 9 on {23 and therefore it follows that

/ (ddev;)" < / (ddegs;)" = / (dd°uy)",
Qo Qo 1951
hence

(7.19) Sup/ (ddv;)" < sup/ (dd°u;)"™ < oo.
Qz j Q1

J J
Thus, lim; .., v; € F(Q2,G), by Proposition Let v = lim;_,o vj. Then it follows
from (7.18) that v < wu on Q4 and by (7.19) and Corollary we have

/ ) < / ()

which completes the proof in this case.
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Now assume that v € F(£21, F') is such that
(7.20) / (dd°u)™ = oco.
(o
Then it suffices to construct a function v in F ({2, G) such that v < u on ;. By definition
there exists v’ € F(Q4,0) such that
F>u>u +F.
From the first part of the proof there exists v’ € F(£22,0) such that v' <’ on ;. Now
let v=12"4+ G. Then v € F(Q, ) and it follows by assumption (7.13)) that
u>u +F>v+G=v
on ;. Thus the proof is complete. m
The next example shows that condition (7.13)) in Theorem is relevant.
ExaMpPLE 7.21 ([7]). Let ©; = D x D and Q5 = Dy x Dy be polydiscs in C2. Then define

f(z,w) = |2]? on 9%y, and g(z,w) = |w|? on IN. If u(z,w) = ||, then (dd°u)? = 0
on ;. Now suppose that there exists v € F(Q,|w|?) such that v < u with

/92 (ddv)? < /Q (dd°u)? = 0.

This means that v must be a maximal plurisubharmonic function. In other words, v is
the solution to the Dirichlet problem

limsup v(z,w) = |w|?,  (dd°v)? = 0.
(z,w)— 9002

By uniqueness we have v(z,w) = |w|?. Hence, v(0,1/2) = 1/4 > 0 = u(0,1/2), which is
impossible.

The following example shows that there exists a function in N\ F that cannot be
subextended.

ExampLE 7.22 ([57,[83]). Let 2 be a bounded hyperconvex domain in C™ and let z € 2.
Recall that the pluricomplex Green function with the pole at z is defined as follows:

ga(z,w) = sup {u(w) : u € PSH(Q), u <0, [u(§) —log | — 2|| < C near z}.

It is well known that ga(z,-) € PSH(Q) NC(NQ\ {z}), ga(z,w) = 0 for w € 9Q and
(dd°ga(z,-))™ = (2m)"0,, where J, is the Dirac measure at z (see [62]). Carlehed, Cegrell
and Wikstom proved in [25] that for every zg € 9 there exists a pluripolar set E C €
such that

lim sup go(z,w) =0

z—20

for every w € Q\ E. Take p ¢ E. Then choose {w;} C Q such that g(p,w;) > —1/43 and
w; — w € 0. Let u be the function defined on § by

u(z) = Y9z w,).
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Note that © € PSH™(Q) since u(p) > —oo. Proposition |4.§| yields u € N(£2). Recall also
the definition of the Lelong number:

v(u,zp) = ll_r)% (2%)” /B(ZO, )ddcu A (dd®log |z — zo|)" L.
It is well known that v(u, z9) is finite for any plurisubharmonic function.
Now suppose that v is a subextension of u to a domain Q' D € and w € . Since
v < u, we have v(v,w;) > v(u, w;) > j and therefore v(v,w) = oo, a contradiction which
means that v cannot be subextended to a larger domain.

8. The homogeneous Dirichlet problem for
pluriharmonic functions

Pluriharmonic functions, as locally real parts of holomorphic functions, play an impor-
tant role in complex analysis. It is well known that for a continuous function f: 92 — R
there does not always exist a pluriharmonic function u which is continuous on € such that
u|pq = f. This Dirichlet problem has been extensively studied for the case of smoothly
bounded domains, like the unit ball, strictly pseudoconvex domains or the unit poly-
disc. Bedford [I0] and Bedford and Federbush [I5] proved that on the smooth boundary
of a strictly pseudoconvex domain any smooth function satisfying a certain tangential
equation can be extended inside the domain to a pluriharmonic function (see also [77]).
In [76] Rudin proved that a continuous function on the boundary of a polydisc with some
of its Fourier coefficients vanishing can be extended inside a polydisc to a pluriharmonic
function. We shall give a complete characterization of this Dirichlet problem in a domain
which is a proper image of bounded hyperconvex product domains (Theorem . Nearly
all results in this chapter were proved by the author in [45].
The aim of this chapter is the following theorem:

THEOREM 8.1 ([45]). Let D; be a bounded hyperconvex domain in C", n; > 1. Set
D=Dyx---xD,,j=1,...,5, s> 3. Moreover, let U be an open neighborhood of D,
let m:U — C", n=mny+--+ns, be a proper holomorphic map and let Q, = 7(D).
If f: 00, — R, n > 3, is a continuous function, then the following assertions are
equivalent:

(1) there exists a function h that is pluriharmonic on Q,, continuous on Q, and hlsq, = f,
(2) f is pluriharmonic on 08 in the sense of Definition[8.8]

(3) the Perron-Bremermann envelope PBy is pluriharmonic on Q. and
PB_j = —PBy,
(4) f is a compliant function (see Definition [8.2)),

(8.1) o lim 5(PBf +PB_¢)(2) =0  for every £ € 0Qy,
e
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(6) for every zo € 00, and every Jensen measure p € J,, with barycenter zy we have

F(z0) = /6 .

DEFINITION 8.2 (]2, 80]). Let f: 92 — R be a continuous function such that

lim PB;(2) = £(€)
z€Q

for every £ € 0Q. If
PBf + PB_f S 50

then the function f is said to be compliant.
The notion of compliant functions was first introduced in [2].

REMARK 8.3. It was proved in [6] that the compliant functions form a linear space.
Moreover, if f, g are compliaint functions then

PByy+ PB_;_,> PB;+ PB_; + PBy+ PB_,,

(8.2)

where ¢ € R.
PROPOSITION 8.4 ([0]). Let K € {&y, F} and let f be a compliant function. If u € K(f),

then
/(ddcu)" < 00,
Q

Proof. Since f is a compliant function, PBy + PB_y € &. If u € K(f) then there exists
v € K such that PBy > u > v+PBy,sou+PB_y > v+PB;+PB_;,sou+PB_y € K.
Moreover,

and u+ PB_; € K.

/(ddcu)" < /(ddc(u—i—PB,f))" < 0.
Q Q

This ends the proof. =

PROPOSITION 8.5 ([6]). If D C C™ is a bounded, strictly pseudoconvex domain with C?-
boundary and f € C?(0D), then f is a compliant function.

Proof. The domain D is in particular B-regular, the function f is continuous and therefore
PBf + PB_y = 0 on the boundary 0D. There exists an open neighborhood U of D
and a strictly plurisubharmonic C2-function p : U — R such that p = 0 on 9D, since
D is a strictly pseudoconvex domain with C%-boundary. By Theorem I in [82] there
exists a C2-function f : C* — R such that f = f on 9D. Choose A > 0 such that
= f+ Ap € PSH(D) and B > 0 such that v = —f + Bp € PSH(D). Hence,
u,v € PSH(U)NC?(U), u = —v = f on dD. Thus
(8.3) / (dd®(u+ v) / ( > dd°u)"F A (dd°v)F < oo.
D D

k=0
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The construction of PBf and PB_; implies that u +v < PB¢ 4+ PB_¢, hence

[ @es; v PE_p) < [ (deus ) <o,
D D

by (8.3) and Theorem This ends the proof. m

Example shows that for any a < 1 there exists f € C»*(9B) such that f is not
a compliant function. Recall that f € C** 0 < a < 1, if f € C* and for any |3| = k
function D? f is a-Hoélder continuous.

EXAMPLE 8.6 ([6]). Let B C C™ be the unit ball and z = (2, z,) € B. For fixed 0 < p < 1,
let f, : OB — R be defined by f,(2', z,) = |2,]?*. Then

PBy, (2',2n) = |22 and PB_j (7', 2,) = —(1— |2/|*).
Set A={(¢,2,) €B: 2z, =0}U{(¢,2,) €B: || =1}. The set A is pluripolar, hence

/B (dd*(PBy, + PB_y,))" = / (PB4 PBg )y

1
_ O/ ’I“an_2n+1(1 _ TQ)n_ldT,
0

where C' > 0 is a constant only depending on n and p. Thus f, is not compliant if, and
only if, p < (n— 1)/n. For n > 2, the function f(,_1), belongs to C'=2/"(0B).

Let D; be a bounded hyperconvex domain in C"/, n; > 1 and set

D=D;x---xDgCC",

where n = n; + - - + n,. For an open neighborhood U of D and a proper holomorphic
map 7 : U — C™ we use the notation Q, = 7(D).

Let Iy = (j1,.-.,Jk) be an increasing multi-index of length k: 1 < j; < -+ < ji < s,
where 1 < k < s. Denote

Ji Jk
I Yo o I I
A* =Dy x---x0Dj, x---x0Dj, x---x Dg and A}k =m(A'F).
Hence,

oD = JA™ and 09, =(0D) = A,
Iy

Iy
Finally, let the distinguished boundary of D be denoted by 8D, i.e.
ODT = 0Dy x --- x dD,.
PROPOSITION 8.7 ([45]). The domain Q. is hyperconver.

Proof. For every j, 1 < j <'s, the set D; is hyperconvex in C"™ and ¢, is an exhaustion
function for D;. Let u be the function defined on D by

w(Crs-e 5 Gs) = max{ei(Qr), - s (G}

hence u is a plurisubharmonic exhaustion function for the set D in C™. Let us now define

o(w) = max{u(z) : z € 7 (w)}.
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From [61] it follows that ¢ is a plurisubharmonic exhaustion function for Q.. Thus, Q,
is hyperconvex. m

DEFINITION 8.8 ([8, [45]). A continuous function u : 92, — R is pluriharmonic if u is

pluriharmonic on every AZx for every increasing multi-index I, of length k € {1,...,s—1}
ie., foreveryl <j; <---<jp<s,ke{l,...,s—1} and for every w;, € 0Dj,,...,w;, €
0Dj, , the function defined by

(8.4) (CTTRRTI (21, Zok) P UOT(Z1, oo, Wiy vy Wy e vy Zs—k)
is pluriharmonic on the set
_ _
Dy, =Dy x---x0Dj, x---x0Dj, x---x Ds.

In a similar manner an upper semicontinuous function u : 9Q,; — R U {—oco} is pluri-
subharmonic if u is plurisubharmonic on every Alr for every increasing multi-index Iy
of length k € {1,...,s — 1}. The identically —oco function is by fiat not considered to be
plurisubharmonic.

REMARK 8.9. Note that, if we take 7 = idp in Definition [8.8] then a continuous function
w is pluriharmonic on D if for every increasing multi-index I}, the restriction of u to Ak
is pluriharmonic.

DEFINITION 8.10. Let 2 C C™ be a bounded domain and let i be a non-negative, regular
Borel measure on Q. The measure p is a Jensen measure with barycenter at z € Q for
continuous plurisubharmonic functions if
u(z) < /_ wdp
Q
for every continuous function v € PSH(). The set of all Jensen measures with barycen-
ter at z for continuous plurisubharmonic functions will be denoted by 7..

It is clear that {0,} C J., where d, denotes the Dirac measure at z. If ) is hyperconvex
domain, then supp p C 99 for all z € 92 and all p € J, (see [25]).

LEMMA 8.11 ([45]). Let D be a bounded hyperconvex domain in C™, and let U be an open
neighborhood of D. Let w: U — C" be a proper holomorphic map and let Q, = 7(D). If
f: 00 — R is a continuous function such that PBjor € PSH(D)NC(D), PBfor = for
on 0D, then

PBjor = PByon.

Furthermore, PBjoy is pluriharmonic in D if, and only if, PBy is plurtharmonic on .

Proof. We start by defining ¢ = fonw : dD — R. By our assumption the Perron—

Bremermann envelope PB, is plurisubharmonic on D and continuous on D. Define
o(w) = max{PB,(2): z € 7 *(w)}.

From [61] it follows that ¢ € PSH(Q:) N C(Q:). We prove that ¢loq, = f. Let Q, >

wj — w € INy. Then there exist finitely many 2;,...,2;7 € 7~ (w;). Take zéj such

that p(w;) = PBg(z;-j). Since 7 is a proper map, we have zé»j — 29 € 0D and then

p(w;) = PBy(27) — PBy(z0) = g(z0) = f(n(z0)) = f(w).
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Hence ¢ < PB; € PSH(:) N C(Q), by the Walsh theorem (Theorem [2.15).
Therefore PBy o € PSH(D) and (PBy o 7)|asp = g. Thus, for z € 71 (w) we get
(PBjom)(z) < PBy(z) and then PBy(w) < ¢(w), which implies that ¢ = PB;. There-
fore

PBfo7T = PBf oT,
since both functions are maximal with the same boundary values g.

Now we prove the second part of Lemma [8.11} From the first part it is clear that if
PBy is pluriharmonic on 2, then PBfor is pluriharmonic on D.

Now assume that PBy is pluriharmonic on D. Note that PB, = —PB_, since PB,,
is pluriharmonic on D and continuous on D and by the first part of the proof,

PBj(w) = max{PBy(z) : z € 7 (w)}

=max{—PB_,(z): z € 7 H(w)}

= -—min{PB_,(z): z € 7 (w)}.
In a similar manner we get PB_(w) = max{PB_,(z) : z € 7~ *(w)}. Combining these
two representations we obtain

0> PBy+PB_y = max{PB_y(z): 2z € 7' (w)}
—min{PB_,(z): z € 7~ (w)} >0,

and so PBy = —PB_¢, which means that PBy is pluriharmonic. m
Proof of Theorem|8.1. The following implications are straightforward: (3)=-(1), (3)=(4),
and (4)=(5).

(1)=(2): Let I} be an increasing multi-index of length k& € {1,...,s — 1}, and let
w;, € 0Dj,,...,w;, € 0Dj,. Let fwj17,._7wjk : Dy, — RU{—0o0} be defined as in lb
We need to prove that this function is pluriharmonic under the assumption that there
exists u € PSH(Qx) NC(Qr) such that ulsq, = f. Take a sequence [(w]?, ..., wil)]5_;
in Dj, x --- x Dj, which converges to (wj,,...,w;,) as m — oo. Moreover, let [u,,] be
the sequence of real-valued functions on Dy, defined by

U (21, oy 2s—k) = UOT(20, . WSy oo WIS 2 k)
This construction implies that w,, is pluriharmonic on Dy, , and continuous up to the
boundary. The sequence [u,,] converges uniformly to Juwj, ...
hence f is pluriharmonic in the sense of Definition [3.8
(5)=(6): First we prove that assumption (8.1f) implies that
lin} PBf(z) = f(¢{) and lirré PB_¢(z) = —f(§)
ZZEQﬂ' ZZEQW

wj, ON Dy, as m — oo, and

for every ¢, & € 0Q,. Assume that this is not the case, for example there exists a £ € 9,
such that limsup, . PBy(z) < f(&). This assumption yields

0= liné (PBy + PB_y)(z) =limsup(PBy + PB_;)(z)
z— 2—€

2€Qx 2€Qx
<limsup PBy(z) + limsup PB_;(z) < f(§) — f(&§) =0,
z—& z—&

2EQL 2€Q,
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a contradiction, hence limsup PBy = f and limsup PB_; = — f on 0f2. Assume now that
there exists ¢ € 9Q, such that liminf, . PB;(z) < f({). Then there exists a sequence
[2;] in ,; which converges to ¢ such that lim;_ .., PBs(z;) < f(¢), hence

0= lim (PBy + PB_¢)(z;) = liminf (PBy + PB_¢)(z;)
J—00 j—o00
= lim PBy(z) +liminf PB_(z;) < f(¢) = f(¢) =0,
j—o0 j—0o0

a contradiction once again. Now it follows by Walsh’s theorem (Theorem [2.15) that
PB¢,PB_; € C(Qy). Fix zy € 0Q, and take yu € J,,. Then

f(Zo) = PBf(Zo) S /S_ PBf d,u.
Lr
Thus
f(z0) < inf{/ PBydu:p e JZO}.
Q

™

If 4 = d,,, then we obtain

f(z0) = inf{/Q PBydu:p e JZO}.

™

In a similar manner the corresponding formula for —f can be obtained, and therefore

sup{/ —PB_ydu:pe jZO} = —inf{/ PB_jdup:pe JZO} = f(20).
Qr Qr

The maximum principle for plurisubharmonic functions and assumption (8.1)) yield

inf{/ PBydp:p e jZO} = f(z0) > sup{/ PBydp:p e jzo}.
Qr

™

Thus, for every zy € 992 and every p € J,, we have

fGo) = | PBydu= [ i

since €2, is hyperconvex and PBy = f on the boundary 0€;.

(6)=(2): Let I} be an increasing multi-index 1 < j; < .- < jr < s of length
ke {l,...,s =1} and 25 € Af*. Take any complex line [ through zy and r > 0 such
that 2o + D, C I N A%, where D, = {z € C : |z| < r}. Since the Lebesgue measure dV;
on the unit disc D is a Jensen measure at 2o, the measure u,(A) = Vi(7~1(4)), where
A C zp +rD, is a Jensen measure at 7(zg). We have by assumption

f(w(zm:/( . )fduﬂz/m fomdvi,

which implies that f is harmonic on 7(zp +D,) and therefore f is pluriharmonic on 9<,.
(2)=(3): Let g = fom: 9D — R. This definition implies that ¢ is a pluriharmonic
on 0D and we will prove that PB, pluriharmonic on D, continuous on D and PB; =g
on dD. Therefore Lemma [8:11] will finish the proof.
Assume that g : 9D — R is a continuous function and let u be defined by

u(zy, ..., 25) = / g(t1, .. ts)dwy, (t1) -+ - dwy, (ts),
oD+
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where w is the harmonic measure relative D; and z;. The function u is s-harmonic on
D, continuous on D and u|sp = g. We will now show that w is pluriharmonic on D.
Let zo = (z1,...,%5) € D, X = (X1,...,X;) € C* (X; € C%) be such that X, =0
and choose r > 0 such that {20 +¢X : ( € C, || < r} = zp + XD, C D. For every
wy € Dy,...,ws_1 € Dy_q1,ws € 8DS, w = (’LUl7 - ,ws_l), X = (Xl, e ;Xs—1)7
¢ € By, t' = (t1,...,ts-1), where t; € D;j, 1 < j < s — 1 denote dw;,, -/ (t') =
dwy,+ex, (t1) -+ dway, ,+ex, , (ts—1). The assumption that g is pluriharmonic in the sense
of Definition implies in particular that ¢ is pluriharmonic on Dy X -+ X Dg_1 X {ws},
hence

1L g(w' + (X' ws) dN(C) = g(w', wy) —/ gdwy, -+ dwy,,
D oD+

w2 Jp,
and
g(w/+<lews) = / g(tlvws)dwiu’-ﬁ-CX’
6D1><---><8DS_1
Therefore,
1
o [ vt OO =5 [ [ ol ) del o (), (1) 4O
1
:/ 72/ Gt t) Ay o0 (#)AN(C)dows, (£)
oD, T Jp, JOD, x---x0Ds_,
1
= [ [ X a1 = [ ot )
oD, T Jp, 8D,
:/ (1, te) dwn, (t1) - s (ts) = ulz0),
8D1>< ><8Dg
which proves that w is pluriharmonic on Dy X «-+ x Ds_1 x {25} for all z; € Ds. By

repeating the same argument for X € C” such that X =0, 1 < k < s — 1, we reach the
conclusion that for each k fixed, 1 < k < s, the function wu is pluriharmonic on the set

Dy x---x{z}x---xDs CD

for all z € Dj. This means that u is pluriharmonic on D since the Levi form of u is

Lu(z1y. ., 25)( X1y .o, Xs)

s —

1 s
2 Zc(uopj)(zl,...72:]'7172‘]'41’»17...,ZS)(X:[,...,Xjfl,Xj+1,...,XS)
=1

1 nﬁfns 0% (
- 2 (x,
§—2 — 0z,0Z, !

ZS)|Xk|2 =

where (z1,...,25) € D, X = (X3,...,Xs) € C", X; € C", pj(z1,...,%j,...,25) =
(21,3 2j,...,25), X; € C" and s > 3.

Since u is pluriharmonic on D, continuous on D and u|sp = f, we have (dd°u)™ = 0
and therefore w = PBy. By the same arguments we see that the function v defined by

v(21,. .., 25) = /6)D+(—g(t1, cooyts))dwy, (1) - dw, (ts)
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is pluriharmonic on D, continuous on D and v|lpp = —f. Thus v = PB_y, which implies
that PB_; = —PBjf on D, by the construction of v and v. m

REMARK 8.12. Similarly to the proof of Theorem the author proved in [45] that a
continuous function f : 9Q, — R can be extended inside the domain Q, := (D) to a
plurisubharmonic function continuous up to the boundary if and only if f is plurisubhar-
monic in the sense of Definition [8:8] Here 7 : U — C" is a proper holomorphic map, U is
an open neighborhood of the closure of a bounded hyperconvex domain D = Dy x---x D,
in C", Dj@(C,ﬂZQ.

ExAMPLE 8.13 ([§]). Let D be the open unit disc in C. If we take D; =D and 7 = id,
then Q, = D".

Let mp = (Tn15 .-+, Tnn) : C" — C", n > 1, be defined as follows:
T k(21,0 20) = Z Zjr " i,
1<ji<<jr<n

for 1 < k < n. Then 7, is a proper holomorphic mapping and so too is 7, |p» : D" —
7 (D™). Then G,, = 7, (D™), where the domain G, is the so called symmetrized polydisc
(see e.g. [1I [42] [43] B3] B54]).

Example below shows that in the case when n = 2 the implication from (2) to
(3) in Theorem is, in general, not true.

EXAMPLE 8.14 ([73]). Let D? = {(z,w) € C?: |z| < 1, |w| < 1} be the unit polydisc in
C? and let f: OD? — R be defined by
F(¢,€) = Re(CE).

The function f is pluriharmonic on dD? in the sense of Definition we will prove that
condition (3) in Theorem is not true for f.

Let ¢ : D — D? be an analytic disc (i.e. an injective holomorphic map) with ¢(0) =
(a1,az). If v € PSH(D?) N C(D2) satisfies v = f on dD?, then

v(ar,az) < %/O ﬂf(¢(ei9))d6.

Furthermore, using a theorem by Poletsky ([72]) we have
PBy(z) = sup{v(z) : u € PSH(D?),limsupv(§) < f(w),Yw € OD?*}

§—w
1 2m )
= inf{2 f(0(e'))df : ¢ an analytic disc, ¢(0) = z}
T Jo
We restrict our considerations to analytic discs of the form ¢({) = (B1(¢), B2(()), where
ciC + aj .
Bi(¢) =22 =12
](C) 1+(_1jcj<’ J ) <y
and aj,as € D, |¢1] = |ea] = 1. Note that ¢(0) = (a1,a2). By the classical residue

theorem,
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1 27 " 1 27 R
— 9))dh = — R B1(e")By(ei?) df
o [ st = oore( [ B B )
1 Re/% cleiie—i—a‘l 1+§2026i9 0
o l+aicie?? coet? + as

2r
=re( g [, (1 andee Lo )
_ Re(a PGl
R (

1(52) +a)(1 + 0202(_‘12)))
2))e2(=22)

1
as (14 aiei (=2
1(1—1a1]? — |as]?) + 418202\ _ Rof 9% +k
Co — G1a2C] a—h )’

2, g =a1as and h = Gras. We want to calculate

ety as = it re(20E5E).

|a]=1

where o = ¢z /e1, k=1 —|ay|? — \a2|

inf
le1]= \CQ| 127

Note that the function
ga+k

‘1/ =
(@) ="——

maps 9D to 0D(wy, r), where
g+kh _ aias2—lai]?* — agf?)

)

wo = 1-— |h|2 - 1-— |a1a2|2
_ kgl _ (= Jar?)(1— Jaa]?)
= [hf? I—faal?

Hence

inf Re(ga + k) = Re(wo) — 7

la|=1 a—nh
Re(a1a2)(2 — |ai]? — |as)?) (1= |aa|2)(1 —
_ Relwm)@ P ) (=)0 la)
1— |a1a2| 1-— |a1a2\
We will show that v € PSH(D?) N C(D?), u(z,w) = Re(z, w) onialD)2 and (dd‘u)? = 0,
which will imply that u = PBy. It is clear that u € C*°(D?) N C(D?), and
( l)im(C E)u(z,w) =Re(¢€) for every (¢, &) € OD?.

‘We have
0 (1= [wP)*|1 = 2w

uzi(z7w) = %(z’w) - (1 — |Z‘2‘w|2)3

Pu_ = WP = ) — )
(1 —]z)2w[?)?

- B (1—|Z|2)(1— |w|2)(1—zﬂ))2

Uz (2, W) = 828w<z’w) = (1 —|2[?|wl|?)?

_ P s

wa(z7w) - awaw( ’ ) - (1 - |Z|2|w‘2)3

)

b

)
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Since U,z > 0, Uy > 0 and

R )

Uz (2, W) Uy (2, W)
it follows that u is a maximal plurisubharmonic function D? and u = PB;. We will next
obtain an explicit formula for PB_;. Let F'(z,w) = (—z,w). Then — Re(zw) = Re(zw)oF
and PB_; = PBy o F' by Lemma Thus,
—Re(ew)(2 —[2|* — [w) (1 —[2[*)(1 - |[wf*)

PB_ = —
£z w) 1—|zw|? 1— |zw|?

and we get PBy + PB_; # 0, hence PBy is not pluriharmonic on D? and therefore
condition (3) in Theorem is not true for f.

Example below shows that there exists a compliant function f for which PBy is
not pluriharmonic. Note that when n > 3 this is not possible (Theorem [8.1)).
ExAMPLE 8.15 ([§]). Let D? = {(z,w) € C? : |z| < 1,|w| < 1} be the unit polydisc in C?
and let f(z,w) = Re(zw) be as in Example Since
(1 — =)@ —[w]?)
1—|zw|?

)

(PBf +PB_f)(z,w) = -2

it is clear that
lim(PBf + PB_f)(Z) =0
o]
for every £ € 0f). By straightforward calculations we get
(1 —[21%)*(1 = Jwl*)

AP 2

(dd°(PBy + PB_¢))? = 128
and
1—|z2)2(1 — |w[?)? 6472
“(PB PB_;))?2 =12 ( =
/Dz (dd*(PB; + PB_y)) 8/@2 Ao dValew) = S5

where dV5 is the Lebesgue measure on C2. Thus, f is a compliant function on 9D?.

In [77) Rudin proved the following theorem which characterizes those continuous func-
tions on the boundary of the unit bidisc in C? which can be extended inside the bidisc
to pluriharmonic functions continuous up to the boundary.

THEOREM 8.16. Let f € C(OD x ID), and let do be the normalized Lebesgue measure on
OD. Then the Poisson integral of f defined by

1—|z1)2)(1 — |22]?

P[f](zl,ZQ):/ ( | 1‘ )( | 2| )

apxop w1 — z1]2|lwa — z2]?

f(wl, ’(1)2) da(wl) dO’(U)Q)

is a 2-harmonic function (i.e. harmonic in each variable separately) on D? which is
continuous on D2. Furthermore, P[f] is pluriharmonic function in D? if, and only if,

/ W wk? f(wy, wy) do(wy) do(ws) = 0
oD x oD

for every ki,ky € N. Moreover, if u is a 2-harmonic function on D?, and continuous
on D2, then u = Plu).
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Using Rudin’s result we obtain a similar result for 9€),:

PROPOSITION 8.17. Let U be an open neighborhood of the closure of D? in C2, and let
7 : U — C2 be a proper holomorphic map. Let Q, := 7(D?), and let f : 9Q, — R be a
continuous function. The following are then equivalent:

(1) there ewists a function u which is pluriharmonic on ., continuous on 0, and

ulaq, = f,
(2) f is harmonic in the sense of Defz'm'tion and satisfies
(8.5) / WL @2 f(r (w1, ws))do(wy )dor(ws) = 0
DX oD

for every ki, ks € N.

Proof. (1)=-(2): Similarly to the proof of the implication (1)=-(2) in Theorem one
can show that f is harmonic in the sense of Definition [8.8 By assumption it follows also
that PBy is a pluriharmonic function on 2. Therefore by Lemma PBfor = PBfom
and PBj o7 is pluriharmonic on D?, continuous on D2, and PBfom = fon on dD?.
Then PBjo, = P[f o] is the Poisson integral of f o, so by Theorem we conclude
that holds.

(2)=(1): Assume that f satisfies (2), so holds for every ki, k2 € N. By Theo-
rem again, P[f o] is pluriharmonic on D?. The assumption that f is harmonic in the
sense of Definition implies that P[f 07| = PBjfor is pluriharmonic on D?, continuous
on dD?, and PBfo, = fom on dD?. Therefore by Lemma P By is pluriharmonic on
Q. and the proof is complete. m

We end this chapter by proving a sufficient condition for a continuous function defined
on OD? to be compliant.

PROPOSITION 8.18 ([8]). If f : OD? — R is a pluriharmonic function in the sense of
Definition B8 which satisfies

oo
Z V K1k |a’k1’k2| < o0,
k1,k2=0

then f is compliant on D?. Here

ki -k
Ak kg = / witws? f (wy, ws) do(wy) do(ws),
ODx oD
where do is normalized Lebesque measure on OD.

Proof. For all integers k,l > 1 let fr; = Re(¢C*¢") and gi; = Im(C*€"). Then it follows
by Example [B.15] that

~/1D>2 (ddC(PBfk‘z + PB—fk,l))z = /]D)Q (ddc(Png,L JrPB—gk,l))z

4 2
—kl [ (dd(PBy,, + PB_;, )2 =" 7; M
]D2

and therefore fj; and gj; are compliant. Let
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s 12)(1 — |22
u(zl,zg):/a (1= |1 )1 = || )f(w1,w2)da(w1)do(w2)a

pxop w1 — z1]?|wa — z2|?

Then v is 2-harmonic on D, continuous on D and u|sp = f. Note that u is, in general,
not pluriharmonic. Then there exists a holomorphic function U defined on ID? such that

k
u(zlsz) § akl,k’zzll ’+ E akhk’zzl

(see e.g. [77]), hence

oo
f(z1,22) = Re(U) + Z bi, by Re(211 252) 4 Z Chy by I (251 252),

k1,k2=0 k1,k2=0
where by, 1, = 2Re(ak, k,) and ck, g, = —2Im(ay, i,)- By (8.2) we have

PBf +PB*f 2 Z (|bk1,k2|v(fk1,k2) + |Ck1,k2|v(gk1,k2))7
k1,k2=0

where U(fk17k2) = PBfkl,k2 + PB_fkl,k2 and U(gklka) = Pngl,kQ + PB—gkl,kz' Now it
follows from Corollaries and [3.15] that

(/D (dde(PBy + PB_f))2>1/2

) 1/2
([ (@ 3 (onnalotinsn + b slotan, )

<
k1,k2=0
oo 1/2 ) 1/2
<y |bk1,k2|( / (ddﬂv(fkl,@))?) s |ck1,k2|( / <dd@v<gk1,k2>>2>
D2 D2
k1,k2=0 k1,k2=0

16V21
< Z Vk1ka([bky ks | + [Chy ks ]) < Z Vkiks |ak, k,| < 0.
f k1,k2=0 \/g k1,k2=0

Thus, f is compliant. m
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the set of natural numbers

the set of rational numbers

the field of real numbers

the field of complex numbers

{zeC:lz|<r},r>0

the unit disc in C

the unit ball in C"

the ball with center at a and radius r

the complement of the set A

the set A is relatively compact in the set B

the characteristic function of the set A

the convolution of the functions v and v

the Lebesgue measure defined on R?" (~ C™)

the Lebesgue measure on 0B

almost everywhere

the Dirac measure at z

the support of the measure

the upper semicontinuous regularization of v

the smallest maximal plurisubharmonic majorant of a
plurisubharmonic function u

the Levi form of u

the family of plurisubharmonic functions on 2

the family of non-positive plurisubharmonic functions on
the family of maximal plurisubharmonic functions on 2
see Definition page

see Definition [2.9)
see Definition [4.5]
see Definition [2.9) page [10] 1
the definition 1s stated o age “
see Definition 2 page i

the Perron— Bremermann envelope (Definition [2. , page i

the Bedford—Taylor C™-capacity

quasi-everywhere, i.e. everywhere except on a set of C,,-capacity zero

the relative extremal function of the set E

the Monge-Ampeére boundary measure associated

with a function u € F

generalized boundary values of a bounded plurisubharmonic function ¢
with respect the boundary measure p, with u € F

the set of functions u defined in Q such that D%u € L} (Q) for all |o| = k
the set of functions u such that u € C*(Q) and for any |3| = F,

DPu is a-Holder continuous, 0 < a < 1

the set of all Jensen measures with barycenter at z
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