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Abstract

The complex Monge–Ampère operator is a useful tool not only within pluripotential theory, but
also in algebraic geometry, dynamical systems and Kähler geometry. In this self-contained survey
we present a unified theory of Cegrell’s framework for the complex Monge–Ampère operator.
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1. Introduction

Let ∂, ∂̄ be the usual differential operators, i the imaginary unit, d = ∂ + ∂̄ and dc =
i(∂̄ − ∂). The complex Monge–Ampère operator is then defined by

(u1, . . . , un) 7→ (ddcu1) ∧ · · · ∧ (ddcun) ∈M

where u1, . . . , un ∈ PSH(Ω) ∩ C2(Ω), andM is the set of Radon measures. If u = u1 =
· · · = un, then

(ddcu)n = 4n n! det
(

∂2u

∂zj∂z̄k

)
dVn,

where

dVn = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn =
(
i

2

)n
dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

is the volume form on R2n (' Cn), and the n× n matrix(
∂2u

∂zj∂z̄k

)
is the complex Hessian of u. The history of the extending of the complex Monge–Ampère
operator is rich and colorful so let us just mention a few results here; for further in-
formation we refer to [13, 60, 65, 70]. It follows from the work of Chern, Levine, and
Nirenberg [40] that there exists a continuous extension (in the weak∗-topology) of the
complex Monge–Ampère operator to PSH(Ω) ∩ C(Ω). Bedford and Taylor proved in
their seminal article [16] that it is possible to extend the operator in question to locally
bounded plurisubharmonic functions, and later they proved in [17, Proposition 3.6] that
their extension is also valid for plurisubharmonic functions in the usual Sobolev space
W 1,2. In the light of these positive results one might expect that it is possible to construct
a continuous extension to the whole space of plurisubharmonic function. This is not the
case, since Shiffman and Taylor [80] gave an example which shows that such an extension
is not possible if we want to have the range of the complex Monge–Ampère operator in
the space of Radon measures. Here the underlying problem is multiplication of distribu-
tions. It is worth noting that Kiselman [59] defined the complex Monge–Ampère operator
with the help of multiplication of distributions in the sense of Colombeau. This approach
of using more up to date distribution theory has still to be explored.

In 1998 Cegrell [30] introduced a class of negative unbounded plurisubharmonic func-
tions in which he solved the Dirichlet problem for the complex Monge–Ampère equation.
Since then the complex Monge–Ampère operator in this new setting was investigated by
many mathematicians.

[5]



6 R. Czyż

The goal of this survey is to present the theory of the complex Monge–Ampère op-
erator in the framework introduced by Cegrell [30, 32, 33]. We shall use methods which
are developments of the classical work for locally bounded plurisubharmonic functions.
Our purpose is to collect the recent developments in the theory of the complex Monge–
Ampère operator spread throughout the literature. We shall make improvements, simplify
proofs, and unify the presentation to make this theory more accessible to the reader. The
only demand on the reader is the knowledge of the fundamental facts concerning locally
bounded plurisubharmonic functions and the Monge–Ampère operator acting on them
(see e.g. [62]). To make this survey self-contained we present, in Chapter 2, the basic
definitions and facts.

Let us start to give some perimeters of the setting. All definitions and notions can
be found in Chapter 2 along with the necessary facts from the locally bounded case.
Let Ω ⊂ Cn, n ≥ 1, be a hyperconvex domain. In Chapter 3 we shall focus on extend-
ing the complex Monge–Ampère operator to the Cegrell class E . The set E of negative
plurisubharmonic functions was introduced by Cegrell in [32], and he proved that this
is the largest set of non-positive plurisubharmonic functions defined on Ω for which the
complex Monge–Ampère operator can be continuously extended (Theorem 3.9). B locki
proved in [22] that if n = 2, then

E = {ϕ ∈ PSH(Ω) ∩W 1,2
loc (Ω) : ϕ ≤ 0}.

Later, in [23], he obtained a complete characterization of E for n ≥ 1.
Consider the following example by Kiselman [59]:

u(z1, . . . , zn) = (− log |z1|)1/n(|z2|2 + · · ·+ |zn|2 − 1).

It is well-known that u 6∈ E , and u ∈W 1,2
loc (Ω) ∩ PSH(Ω) if, and only if, n ≥ 3.

An important question is to describe the boundary values of functions in E . To study
this problem we shall need the notion of maximal plurisubharmonic functions introduced
by Sadullaev in [79]. By using a theorem of Cegrell [34] (see Theorem 4.2 below) we are
able in a convenient way to construct the smallest maximal plurisubharmonic majorant
ũ of a function u in E . We set N = {u ∈ E : ũ = 0}. Functions in the Cegrell class N
are therefore (in a way) functions with zero boundary values. To proceed we say that a
plurisubharmonic function u is in N (H) (= N (Ω, H)), H ∈ E , if there exists a function
ϕ ∈ N such that

(1.1) H ≥ u ≥ ϕ+H,

and therefore we say that any function in N (H) has boundary values H. Note that
if u ∈ N (H), then u ∈ N (ũ) so our interest in describing the boundary value of a
function in E can be rephrased as: If u ∈ E , then is u in N (ũ)? At the point of writing
this survey, this question is not settled. In Theorem 4.10 and Proposition 6.5 we give
two positive answers to the above question. In Chapter 7.1 we shall first show that the
classical approach to boundary values coincides with the boundary values arising from
the generalized Demailly–Hörmander boundary measures from [36] (Theorem 7.9). Then
we prove that the notion of boundary values associated to inequality (1.1) is the same as
the generalized Demailly–Hörmander boundary measures (Theorem 7.10). Thus, we can
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view the boundary values arising from (1.1) as a generalization of the classical point of
view.

Now we present two main theorems from Chapter 6.

Theorem 6.22. Assume that µ is a non-negative Radon measure. If there exists a func-
tion w ∈ E such that µ ≤ (ddcw)n, then for every maximal plurisubharmonic function
H ∈ E there exists a function u ∈ E such that w +H ≤ u ≤ H and (ddcu)n = µ.

Theorem 6.22 is a generalization of the Ko lodziej subsolution theorem for bounded
plurisubharmonic functions (Theorem 2.7). Example 6.24 shows that there exists a non-
negative Radon measure µ such that there does not exist any function u ∈ E that satisfies
(ddcu)n = µ. On the other hand, it is not yet clear whether it is possible to solve the
Monge–Ampère equation when the given measure has finite total mass.

Let us now give an outline of the proof of Theorem 6.22. Using the Radon–Nikodym
theorem we have µ = τ(ddcw)n, 0 ≤ τ ≤ 1, and by the Cegrell–Lebesgue decomposition
of Monge–Ampère measures [30, 32] we have

µ = τ(ddcw)n = τf(ddcϕ)n + τν,

where ϕ ∈ E0, 0 ≤ f ∈ L1
loc((ddcϕ)n), and ν is a positive measure carried by {u = −∞}.

The measures f(ddcϕ)n and ν are mutually singular and therefore they will be referred to
as µ’s regular and singular part, respectively. Lemma 6.21 shows that we can work with
the regular and singular part separately. In Chapter 6.1 we prove the following theorem.

Theorem 6.6. Assume that µ is a non-negative Radon measure defined by µ = (ddcϕ)n,
ϕ ∈ N with µ(A) = 0 for every pluripolar set A ⊆ Ω. Then for every H ∈ E such that
(ddcH)n ≤ µ there exists a uniquely determined function u ∈ N (H) such that (ddcu)n = µ

on Ω.

The two main tools in the proof of Theorem 6.6 are the so called comparison principle
established in Corollary 5.10, and Ko lodziej’s subsolution theorem.

In the proof of Theorem 6.22 the singular part is more delicate to handle. One reason
for this is that the comparison principle is not in general valid for measures that charge a
pluripolar set (see e.g. [16]). Let u ∈ E and 0 ≤ g ≤ 1 be a χ{u=−∞}(ddcu)n-measurable
function that vanishes outside {u = −∞}. Then consider

ug = inf
f∈T
f≤g

(sup{uτ : f ≤ τ, τ is a bounded lower semicontinuous function})∗,

where uτ is as in Definition 6.10, T is a family of certain simple functions, and w∗ denotes
the upper semicontinuous regularization of w. In particular, Theorem 6.15 in Chapter 6.2
implies that (ddcuχE )n = χE(ddcu)n, where χE is the characteristic function of the set
E in Ω. In this way we have sufficient control over the singular part.

In Chapter 7.2 we prove a stability theorem for the complex Monge–Ampère equation
in N (H). We also show the existence and stability of solutions of Monge–Ampère type
equations. Both results generalize Cegrell and Ko lodziej’s work [37]. In Chapter 7.3,
we present a theorem concerning subextension of plurisubharmonic functions without
increasing the total Monge–Ampère mass. This type of theorem has proven to be a useful
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tool in, for example, approximation of plurisubharmonic functions [35], and estimating
the volume of plurisubharmonic sublevel sets [5]. We shall end this survey with some
applications. In Chapter 8 we shall study continuous pluriharmonic boundary values
on images of product domains, i.e. we shall discuss the following question: Let D ⊂
Cn be a product domain, and let f : ∂D → R be a continuous function. Under what
condition does there exist a function h that is pluriharmonic on Ωπ, continuous on Ω̄π
and h|∂Ωπ = f? The methods presented here are not only useful within pluripotential
theory, but also as a tool in algebraic geometry, dynamical systems and Kähler geometry
(see e.g. [5, 51, 52, 56]).

The author’s contributions are as follows:

• Chapter 2: Theorem 2.17 is from [4].
• Chapter 3: Proposition 3.16 is from [46].
• Chapter 4: Example 4.12 is from [6].
• Chapter 5: Theorems 5.7 to 5.14 are from [4].
• Chapter 6.1: Theorem 6.6 is from [4].
• Chapter 6.2: all results are from [4].
• Chapter 6.3: all results are from [4] except Example 6.24.
• Chapter 7.1: Example 7.7 was constructed by the author.
• Chapter 7.2: the results in this chapter are exclusively published in this survey.
• Chapter 7.3: all results are from [47] except Example 7.22.
• Chapter 8: all results are from [6, 8, 45].

2. Preliminaries

In this chapter we present some fundamental results concerning the complex Monge–
Ampère operator: the comparison principle (Theorem 2.2), quasicontinuity of plurisub-
harmonic functions (Theorem 2.5), continuity of the complex Monge–Ampère operator
with respect to monotone sequences (Theorem 2.1) or sequences converging in capacity
(Theorem 2.6). We also introduce the Cegrell classes of negative plurisubharmonic func-
tions E0,F , E , E0(H),F(H), and E(H) (Definitions 2.8, 2.9 and 2.12), and prove some
basic properties.

A domain is an open and connected set. Recall that a bounded domain Ω ⊆ Cn is
called hyperconvex if there exists a plurisubharmonic function ϕ : Ω→ (−∞, 0) such that
the closure of the set

{z ∈ Ω : ϕ(z) < c}
is compact in Ω for every c ∈ (−∞, 0), i.e., the level set {z ∈ Ω : ϕ(z) < c} is relatively
compact in Ω. If there can be no misinterpretation, a sequence [ · ]∞j=1 will be denoted
by [ · ]. In this article, PSH(Ω) is the family of plurisubharmonic functions defined on Ω,
and PSH−(Ω) stands for the negative plurisubharmonic functions.

We start by recalling the most fundamental results concerning the complex Monge–
Ampère operator acting on locally bounded plurisubharmonic functions.

The Monge–Ampère operator is continuous with respect to monotone sequences.
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Theorem 2.1 ([16]). Let [ukj ]∞j=1 be a locally uniformly bounded monotone (decreasing
or increasing) sequence of plurisubharmonic functions in Ω for k = 1, . . . , n; and let
ukj → uk ∈ PSH(Ω) ∩ L∞loc(Ω) as j →∞ for k = 1, . . . , n. Then

ddcu1
j ∧ · · · ∧ ddcunj → ddcu1 ∧ · · · ∧ ddcun

in the weak∗-topology.

Theorem 2.2 ([19], comparison principle). Let Ω ⊆ Cn be a bounded, open set and let
u, v ∈ PSH(Ω) ∩ L∞(Ω) be such that

lim inf
z→ξ
z∈Ω

(u(z)− v(z)) ≥ 0

for every ξ ∈ ∂Ω. Then ∫
{u<v}

(ddcv)n ≤
∫
{u<v}

(ddcu)n.

If in addition u ≥ v then ∫
Ω

(ddcu)n ≤
∫

Ω

(ddcv)n.

On the other hand, if (ddcu)n ≤ (ddcv)n, then u ≥ v.

Let Ω b Cn be an open set. For every Borel set A ⊆ Ω the Cn-capacity, introduced
by Bedford and Taylor in [19], of the set A is defined by

Cn(A) = Cn(A,Ω) = sup
{∫

A

(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0
}
.

Moreover, Cn is a subadditive Choquet capacity and it vanishes exactly on pluripolar
sets. Recall that a set E in Cn is pluripolar if for any z ∈ E there exists a neighborhood
V of z and v ∈ PSH(V ) such that E ∩ V ⊂ {v = −∞}.

Definition 2.3 ([84]). A sequence [uj ] of functions defined in Ω is said to converge in
capacity to u if for any t > 0 and K b Ω,

lim
j→∞

Cn(K ∩ {|u− uj | > t},Ω) = 0.

For further information about convergence in capacity see e.g. [84].
Recall that for E ⊆ Ω the relative extremal function hE,Ω for E in Ω is defined by

hE(z) = hE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), u < 0 and u ≤ −1 on E}

for every z ∈ Ω.

Theorem 2.4 ([11, 12, 19]). Let Ω be an open set. Then for any open or compact set
E b Ω, h∗E is bounded plurisubharmonic function, supp (ddch∗E)n ⊂ Ē and

Cn(E,Ω) =
∫

Ω

(ddch∗E)n,

where h∗E,Ω denotes the upper semicontinuous regularization of the function hE,Ω. More-
over, if E is an open set then hE,Ω = h∗E,Ω.
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Theorem 2.5 ([19], quasicontinuity of plurisubharmonic functions). For any plurisub-
harmonic function u defined in Ω and any ε > 0 there exists an open set U ⊂ Ω with
Cn(U,Ω) < ε such that u restricted to Ω \ U is continuous.

The Monge–Ampère operator is continuous with respect to sequences of plurisubhar-
monic functions converging in capacity.

Theorem 2.6 ([84]). Let [ukj ]∞j=1 be a locally uniformly bounded sequence of plurisubhar-
monic functions in Ω for k = 1, . . . , n; and let ukj → uk ∈ PSH(Ω) ∩ L∞loc(Ω) in capacity
as j →∞ for k = 1, . . . , n. Then

ddcu1
j ∧ · · · ∧ ddcunj → ddcu1 ∧ · · · ∧ ddcun

in the weak∗-topology.

The following subsolution theorem was proved by Ko lodziej in [63].

Theorem 2.7 ([63], Ko lodziej’s subsolution theorem). Let Ω be a bounded hyperconvex
domain in Cn. Let u ∈ PSH(Ω)∩L∞loc(Ω) with limz→w u(z) = f(w) for all w ∈ ∂Ω, where
f ∈ C(∂Ω). If µ is a positive, finite measure such that µ ≤ (ddcu)n, then there exists a
unique bounded plurisubharmonic function v such that (ddcv)n = µ and limz→w v(z) =
f(w) for all w ∈ ∂Ω.

Definition 2.8 ([30]). Let Ω ⊆ Cn be a bounded hyperconvex domain. Define the Cegrell
class E0 (= E0(Ω)) to be the class of bounded plurisubharmonic functions ϕ defined on
Ω such that

lim
z→ξ
z∈Ω

ϕ(z) = 0

for every ξ ∈ ∂Ω, and ∫
Ω

(ddcϕ)n <∞.

Definition 2.9 ([32]). Let Ω ⊆ Cn be a bounded hyperconvex domain. Define the Cegrell
class E (= E(Ω)) to be the class of plurisubharmonic functions ϕ defined on Ω such that
for each z0 ∈ Ω there exists a neighborhood ω of z0 in Ω and a decreasing sequence [ϕj ],
ϕj ∈ E0, which converges pointwise to ϕ on ω and

sup
j

∫
Ω

(ddcϕj)n <∞.

If [ϕj ] can also be chosen such that it converges pointwise to ϕ on the whole Ω, then ϕ
is said to be in the Cegrell class F (= F(Ω)).

Proposition 2.10 ([32]). Let K ∈ {E0,F , E}. Then K is a convex cone. Moreover, if
u ∈ K and v ∈ PSH−(Ω) then max(u, v) ∈ K. In particular, if u ∈ K and v ∈ PSH−(Ω),
u ≤ v then v ∈ K.

Proof. Observe that just from the definition of F and E it is enough to prove that E0 is
a convex cone and for any u ∈ E0 and any negative plurisubharmonic function v we have
max(u, v) ∈ E0.

It is obvious that if t > 0, u ∈ K then tu ∈ K. Let u ∈ E0 and v be a negative
plurisubharmonic function. Then max(u, v) ∈ L∞(Ω) and limz→ξ max(u, v) = 0 for all
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ξ ∈ ∂Ω. Theorem 2.2 yields∫
Ω

(ddc max(u, v))n ≤
∫

Ω

(ddcu)n,

since u ≤ max(u, v).
Now take u, v ∈ E0. Since Ut = {u = tv}, for t ∈ (1, 2), is an uncountable family of

disjoint sets, there exists t ∈ (1, 2) such that
∫
{u=tv}(dd

c(u+v))n = 0. By the comparison
principle (Theorem 2.2) we obtain∫

Ω

(ddc(u+ v))n =
∫
{u<tv}

(ddc(u+ v))n +
∫
{u>tv}

(ddc(u+ v))n

=
∫
{ 1+t

t u<v+u}
(ddc(u+ v))n +

∫
{u+v>(1+t)v}

(ddc(u+ v))n

≤
(

1 + t

t

)n ∫
{ 1+t

t u<v+u}
(ddcu)n + (1 + t)n

∫
{u+v>(1+t)v}

(ddcv)n

≤ 3n
(∫

Ω

(ddcu)n +
∫

Ω

(ddcv)n
)
.

This means that u+ v ∈ E0.

Proposition 2.11 ([32]). Let u ∈ E, and let ω be an open set such that ω b Ω. Then
there exists vω ∈ F such that u = vω on ω. Moreover, if

ψ = sup{w ∈ PSH(Ω) : w ≤ u on ω},

then ψ ≥ u on Ω, ψ = u on ω, and ψ ∈ F .

Proof. The first part follows just from the definition of E . To prove the second statement
observe that ψ ≥ vω, so ψ ∈ F by Proposition 2.10.

We are now going to define new classes of plurisubharmonic functions with a weak
type of boundary values. In classical potential theory, the Riesz decomposition theorem
(see [9]) says that any non-positive subharmonic function defined on a bounded domain
can be written as a sum of a Green potential and a harmonic function. The smallest
harmonic majorant of the Green potential is zero and the harmonic function is deter-
mined by its behavior near the boundary. Thus, one can interpret the boundary values
of the given subharmonic function as the harmonic part in Riesz’s decomposition theo-
rem. A straightforward generalization of this decomposition theorem to the context of
pluripotential theory is not possible. Instead we make the following definition.

Definition 2.12 ([4, 30, 32]). Let K ∈ {E0, F , E}. We say that a plurisubharmonic
function u defined on Ω belongs to the Cegrell class K(Ω, H), H ∈ E , if there exists a
function ϕ ∈ K such that

H ≥ u ≥ ϕ+H.

Sometimes we shall simply write K(H) instead of K(Ω, H).

In Chapter 7 we prove that under certain assumptions, the boundary values arising
from F(H) and the classical boundary values coincide.
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Definition 2.13. Let Ω ⊆ Cn be a bounded domain, and f ∈ C(∂Ω) a real-valued
function. Define

PBf (z) = sup{w(z) : w ∈ PSH(Ω) : lim sup
z→ξ
z∈Ω

w(z) ≤ f(ξ) for every ξ ∈ ∂Ω}.

Remark 2.14.

(1) The function PBf is nowadays usually referred to as the Perron–Bremermann enve-
lope. If Ω ⊆ Cn is a bounded hyperconvex domain, and f : ∂Ω → R is a continuous
function, then PBf ∈ PSH(Ω). We shall sometimes simplify the notation by writing
u ∈ K(f) if u ∈ K(PBf ) in the sense of Definition 2.12. In [44], we considered K(f)
with upper semicontinuous boundary data f .

(2) If u ∈ E(H), then u ∈ E . Furthermore, if f ∈ C(∂Ω), f ≤ 0, then PBf is a bounded
negative plurisubharmonic function and therefore E(f) ⊂ E . Without loss of gener-
ality we only consider negative functions, since PBf−c = PBf − c.

(3) K(Ω, 0) = K.

We will need the following theorem of Walsh.

Theorem 2.15 ([81], Walsh theorem). Let Ω ⊆ Cn be a bounded domain and let f :
∂Ω→ R be a continuous function. If

lim inf
z→ξ
z∈Ω

PBf (z) = lim sup
z→ξ
z∈Ω

PBf (z) = f(ξ)

for every ξ ∈ ∂Ω, then PBf ∈ C(Ω̄).

Definition 2.16. A fundamental sequence [Ωj ] is an increasing sequence of strictly pseu-
doconvex subsets of Ω such that for every j ∈ N we have Ωj b Ωj+1 and

⋃∞
j=1 Ωj = Ω.

Here b denotes that Ωj is relatively compact in Ωj+1.

The following theorem was proved in [32] for H = 0; for arbitrary H ∈ E it was proved
by the author together with Per Åhag, Urban Cegrell, and Phạm Hoàng Hiệp in [4].

Theorem 2.17 ([4, 32]). Let H ∈ E and u ∈ PSH(Ω) be such that u ≤ H. Then there
exists a decreasing sequence [uj ], uj ∈ E0(H), that converges pointwise to u on Ω as j
tends to ∞. Moreover, if H ∈ PSH(Ω) ∩ C(Ω̄), then the decreasing sequence [uj ] can be
chosen such that uj ∈ E0(H) ∩ C(Ω̄).

Proof. First assume that H ∈ PSH(Ω) ∩ C(Ω̄) and let ϕ ∈ E0 ∩ C(Ω̄), not identically 0.
Choose a fundamental sequence [Ωj ] in Ω such that for each j ∈ N we have ϕ ≥ −1/(2j2)
on Ωcj . Let [vj ], vj ∈ PSH(Ωj) ∩ C∞(Ωj), be a decreasing sequence that converges
pointwise to u as j →∞, and vj ≤ H + 1/(2j) on Ωj+1. Set

u′j =

{
max(vj − 1/j, jϕ+H) on Ωj ,

jϕ+H on Ωcj .

Then [u′j ], u
′
j ∈ E0(H) ∩ C(Ω̄), converges pointwise to u on Ω as j → ∞, but [u′j ] is not

necessarily decreasing. Let uj = supk≥j u′k. The construction of u′j implies that

u′j +
1
j
≥ u′j+1 +

1
j + 1
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and therefore for each j ∈ N fixed it follows that

[max(u′j , u
′
j+1, . . . , u

′
m−1, u

′
m + 1/m)]∞m=j

decreases pointwise on Ω to uj as m→∞. Thus, uj is an upper semicontinuous function
and we have uj ∈ PSH(Ω) ∩ C(Ω̄). Moreover, [uj ] is decreasing and converges pointwise
to u on Ω as j →∞.

Now let H ∈ E be an arbitrary plurisubharmonic function. Since u ≤ H ≤ 0, the first
part of the proof implies that there exists a decreasing sequence [ϕj ], ϕj ∈ E0∩C(Ω̄), that
converges pointwise to u as j → ∞. If vj = max(u, ϕj + H), then [vj ], vj ∈ E0(H), is a
decreasing sequence that converges pointwise to u as j →∞, and the proof is complete.

Remark 2.18. If H is unbounded, then each function uj is necessarily unbounded.

Theorem 2.19 ([32]). C∞0 (Ω) ⊂ E0 ∩ C(Ω̄)− E0 ∩ C(Ω̄).

Proof. Fix ϕ ∈ E0 ∩ C(Ω̄). Let f ∈ C∞0 (Ω). Then there exists k > 0 such that

f + k|z|2 ∈ PSH(Ω).

Now fix a, b such that
a < inf

Ω
f < sup

Ω
(f + k|z|2) < b

and define
u = max(f + k|z|2 − b,Mϕ),

where M > 0 is chosen such that Mϕ < a − b on supp f . Then from Proposition 2.10,
u ∈ E0 ∩ C(Ω̄) since u ≥Mϕ. Observe that

v = max(k|z|2 − b,Mϕ) ∈ E0 ∩ C(Ω̄)

and f = u− v. This ends the proof.

3. The domain of definition of the complex
Monge–Ampère operator

The aim of this chapter is to extend the definition of the complex Monge–Ampère op-
erator to the Cegrell class E . We prove that E is the optimal domain of definition for
the complex Monge–Ampère operator (Theorem 3.9). We also present two other results
in that direction, the first one proved by Cegrell, Ko lodziej and Zeriahi (Theorem 3.10)
and the second by B locki (Theorem 3.11). Several results concerning the convergence of
the Monge–Ampère measures are also proved. In particular, it is shown that the com-
plex Monge–Ampère operator is continuous with respect to monotone sequences in E
(Corollary 3.7 and Proposition 3.8). Furthermore, we give some inequalities for the total
Monge–Ampère mass (Lemma 3.12, Theorem 3.14, and Corollary 3.15). Most results in
this chapter originate from [32].

In [32] Cegrell proved the following integration by parts theorem for negative pluri-
subharmonic functions.
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Theorem 3.1 ([32]). Suppose u, v ∈ PSH−(Ω), u 6≡ 0, limz→ξ u(z) = 0 for all ξ ∈ ∂Ω,
and T a positive and closed current of bidegree (n − 1, n − 1). Then ddcu ∧ T is a well
defined positive measure on Ω. Furthermore, if

∫
Ω
v ddcu ∧ T > −∞, then ddcv ∧ T is

also a well defined positive measure on Ω and∫
Ω

v ddcu ∧ T ≤
∫

Ω

u ddcv ∧ T.

Moreover, if in addition limz→ξ v(z) = 0, then
∫

Ω
uddcv ∧ T > −∞ and∫

Ω

v ddcu ∧ T =
∫

Ω

u ddcv ∧ T.

Proof. First suppose that u, v ∈ PSH(Ω) ∩ C(Ω̄), u = v = 0 on ∂Ω and
∫

Ω
v ddcu ∧ T >

−∞. By [48], ddcu ∧ T and ddcv ∧ T are well defined positive measures on Ω. Let ε > 0.
Then by the monotone convergence theorem∫

Ω

uddcv ∧ T = lim
ε→0

∫
Ω

(u−max(u, ε))ddcv ∧ T,

and ∫
Ω

(u−max(u, ε))ddcv ∧ T = lim
j→∞

∫
Ω

(u−max(u, ε)) ∗ ρ1/jdd
cv ∧ T,

where ρ ∈ C∞0 (Cn), supp ρ = B(0, 1),
∫

Cn ρ(z) dVn(z) = 1, ρ(z) = ρ(|z|), ρε(z) =
1
ε2n ρ(z/ε).

Let Ω′ b Ω be such that {u−max(u, ε) 6= 0} ⊂ Ω′. Then∫
Ω

(u−max(u, ε)) ∗ ρ1/jdd
cv ∧ T =

∫
Ω

vddc((u−max(u, ε)) ∗ ρ1/j) ∧ T

≥
∫

Ω′
vddc(u ∗ ρ1/j) ∧ T.

Since v is upper semicontinuous, when ε→ 0 and j →∞, by the dominated convergence
theorem we obtain ∫

Ω

v ddcu ∧ T ≤
∫

Ω

u ddcv ∧ T

and similarly, using that −∞ <
∫
u ddcv ∧ T , we find that∫

Ω

u ddcv ∧ T =
∫

Ω

vddcu ∧ T.

To complete the proof of Theorem 3.1, we use Theorem 2.17 and choose uj , vj ∈ E0∩C(Ω̄)
such that uj ↘ u, vj ↘ v as j →∞. By [48], ddcu∧ T is a well defined positive measure
on Ω. From the first part of the proof and using the dominated convergence theorem we
have ∫

Ω

vkdd
cu ∧ T = lim

j→∞

∫
Ω

vkdd
cuj ∧ T = lim

j→∞

∫
Ω

ujdd
cvk ∧ T =

∫
Ω

uddcvk ∧ T.

Since u is upper semicontinuous we finally get∫
Ω

vddcu ∧ T ≤
∫

Ω

uddcv ∧ T,

which ends the proof of the first part of Theorem 3.1. The second part follows from the
first one.
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To define the complex Monge–Ampère operator for functions from the Cegrell class
E we need the following convergence of Monge–Ampère measures of functions from the
Cegrell class E0.

Theorem 3.2 ([32]). Suppose uk ∈ E(Ω), 1 ≤ k ≤ n. If ukj ∈ E0(Ω) decreases to uk as
j →∞, then ddcu1

j ∧ddcu2
j ∧· · ·∧ddcunj is convergent in the weak∗-topology and the limit

measure does not depend on the particular sequences [ukj ]∞j=1.

Proof. Fix a compact set K ⊂ Ω. From Definition 2.9 for every z ∈ K there exist a
neighborhood U of z, a decreasing sequence [wkj ], wkj ∈ E0, wkj → uk on U such that
supj

∫
Ω

(ddcwkj )n < ∞ for k = 1, . . . , n. Since K is a compact set we can choose finitely
many neighborhoods Us, s = 1, . . . , N , such thatK ⊂ U1∪· · ·∪UN . Let [wksj ]∞j=1, 1 ≤ s ≤
N , 1 ≤ k ≤ n, be the sequence corresponding to Us. Let vkj =

∑N
s=1 w

ks
j . Then vkj ∈ E0 by

Proposition 2.10 and supj
∫

Ω
(ddcvkj )n <∞. Thus, if we define ûkj = liml→∞max(ukj , v

k
l ),

then supj
∫

Ω
(ddcûkj )n <∞ and ûkj = ukj on the neighborhood

⋃N
s=1 U

s of K.
Therefore we can assume that supj

∫
Ω

(ddcukj )n <∞. Then, for h ∈ E0(Ω),[ ∫
Ω

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj
]

is a decreasing sequence by Theorem 3.1 and since∫
Ω

h(ddcukj )n ≥ (inf
Ω
h) sup

j

∫
Ω

(ddcukj )n > −∞,

the limit limj→∞
∫

Ω
hddcu1

j ∧ ddcu2
j ∧ · · · ∧ ddcunj exists for all h ∈ E0. By Theorem 2.19,

ddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj is convergent in the weak∗-topology.
If [vkj ] is another sequence decreasing to uk, we get, again by Theorem 3.1,∫

Ω

hddcv1
j ∧ ddcv2

j ∧ · · · ∧ ddcvnj =
∫

Ω

v1
jdd

ch ∧ ddcv2
j ∧ · · · ∧ ddcvnj

≥
∫

Ω

u1ddch ∧ ddcv2
j ∧ · · · ∧ ddcvnj = lim

s1→∞

∫
Ω

u1
s1dd

ch ∧ ddcv2
j ∧ · · · ∧ ddcvnj

= lim
s1→∞

∫
Ω

v2
jdd

ch ∧ ddcu1
s1 ∧ · · · ∧ dd

cvnj ≥ · · ·

≥ lim
s1,...,sn→∞

∫
Ω

hddcu1
s1 ∧ · · · ∧ dd

cunsn ≥ lim
s→∞

∫
Ω

hddcu1
s ∧ ddcu2

s ∧ · · · ∧ ddcuns .

Therefore, limj→∞
∫
hddcv1

j ∧ ddcv2
j ∧ · · · ∧ ddcvnj exists and

lim
j→∞

∫
Ω

hddcv1
j ∧ ddcv2

j ∧ · · · ∧ ddcvnj ≥ lim
j→∞

∫
Ω

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj .

Similarly one can obtain the reverse inequality, so we conclude that the limits are equal.

By using Theorem 3.2 we are now able to define the complex Monge–Ampère operator
on E .

Definition 3.3 ([32]). For uk ∈ E , 1 ≤ k ≤ n, we define ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun to
be the limit measure obtained in Theorem 3.2.
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Proposition 3.4 ([32]). Suppose uk ∈ F(Ω), 1 ≤ k ≤ n, and h ∈ PSH−(Ω). If ukj ∈
E0(Ω) decreases to uk as j →∞, then

(3.1) lim
j→∞

∫
Ω

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj =
∫

Ω

hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun.

Moreover, if
∫

Ω
−hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun < ∞ then hddcu1

j ∧ ddcu2
j ∧ · · · ∧ ddcunj

converges in the weak∗-topology to hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun as j →∞.

Proof. Since Ω is open, uk ∈ F(Ω), 1 ≤ k ≤ n, and ddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj converges
in the weak∗-topology to ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun, we have

∞ > lim
j→∞

∫
Ω

ddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj ≥
∫

Ω

ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun.

If h ∈ E0 ∩ C(Ω̄) then by the proof of Theorem 3.2 we obtain (3.1).
Now suppose that h ∈ PSH−(Ω) and

∫
Ω
hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun > −∞. Let

[hj ] ⊂ E0 ∩ C(Ω̄) be a decreasing sequence converging to h (see Theorem 2.17). By the
monotone convergence theorem, [

∫
Ω

(−hj)ddcv1 ∧ · · · ∧ ddcvn] is an increasing sequence
tending to

∫
Ω

(−h)ddcv1 ∧ · · · ∧ ddcvn for any v1, . . . , vn ∈ F . Moreover, for any ϕ ∈ E0
the sequence [

∫
Ω
ϕddcu1

j ∧ ddcu2
j ∧ · · · ∧ ddcunj ] is decreasing by Theorem 3.1 and

lim
j→∞

∫
Ω

ϕddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj =
∫

Ω

ϕddcuj ∧ ddcuj ∧ · · · ∧ ddcuj .

Therefore for each j ∈ N there exist qj , sj ∈ N such that∫
Ω

(−h)ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun ≤ 1
j
−
∫

Ω

hjdd
cu1 ∧ ddcu2 ∧ · · · ∧ ddcun

≤ 2
j
−
∫

Ω

hjdd
cu1
qj ∧ · · · ∧ dd

cunqj ≤
2
j
−
∫

Ω

hddcu1
qj ∧ dd

cu2
qj ∧ · · · ∧ dd

cunqj

≤ 4
j
−
∫

Ω

hsjdd
cu1
qj ∧ dd

cu2
qj ∧ · · · ∧ dd

cunqj

≤ 4
j
−
∫

Ω

hsjdd
cu1 ∧ ddcu2 ∧ · · · ∧ ddcun ≤ 4

j
−
∫

Ω

hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun.

This proves (3.1). Note that if
∫

Ω
hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun = −∞, then

lim
j→∞

∫
Ω

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj = −∞.

This ends the proof of the first part of Proposition 3.4.
Now assume that in addition

∫
Ω

(−h)ddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun <∞. Then from the
first part of Proposition 3.4,

lim
j→∞

∫
Ω

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj =
∫

Ω

hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun.

Since h is upper semicontinuous,

lim
j→∞

hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj ≤ hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun,

but since both measures have the same total mass, they must be equal.
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Remark 3.5. A consequence of Proposition 3.4 is that if u ∈ F(Ω), then∫
Ω

(ddcu)n <∞.

Corollary 3.6 ([2]). Let u, v ∈ F be such that u ≤ v. Then for all h ∈ PSH−(Ω),∫
Ω

(−h)(ddcv)n ≤
∫

Ω

(−h)(ddcu)n.

In particular, ∫
Ω

(ddcv)n ≤
∫

Ω

(ddcu)n.

Proof. There exist uj , vj ∈ E0, uj ≤ vj such that uj ↘ u, vj ↘ v as j → ∞, and
supj

∫
Ω

(ddcuj)n < ∞, supj
∫

Ω
(ddcvj)n < ∞. By Theorem 2.17 there exist hk ∈ E0 such

that hk ↘ h as k →∞. By Theorem 3.1 we have∫
Ω

(−hk)(ddcvj)n =
∫

Ω

(−vj)ddchk ∧ (ddcvj)n−1 ≤
∫

Ω

(−uj)ddchk ∧ (ddcvj)n−1

=
∫

Ω

(−hk)ddcuj ∧ (ddcvj)n−1 ≤ · · · ≤
∫

Ω

(−hk)(ddcuj)n.

Therefore by Proposition 3.4 we obtain∫
Ω

(−hk)(ddcv)n ≤
∫

Ω

(−hk)(ddcu)n,

thus the monotone convergence theorem gives the desired inequality. To prove the second
part of Corollary 3.6 take h = −1.

Corollary 3.7 ([33]). Suppose uk, ukj ∈ E(Ω), 1 ≤ k ≤ n, ukj ≥ uk. If h ∈ PSH−(Ω) ∩
L∞(Ω) and ukj tends to uk in L1

loc(Ω) as j → ∞ then hddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj
converges in the weak∗-topology to hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun as j →∞.

Proof. Since the result is local we can assume that uk, ukj ∈ F(Ω). Take wkj ∈ E0 such
that wkj ↘ uk and supj

∫
Ω

(ddcwkj )n <∞. Define vkj = (sups≥j(wkj , u
k
s))∗. It follows from

Proposition 3.4 that

lim
j→∞

∫
Ω

hddcv1
j ∧ ddcv2

j ∧ · · · ∧ ddcvnj =
∫

Ω

hddcu1 ∧ ddcu2 ∧ · · · ∧ ddcun,

and hddcv1
j ∧ ddcv2

j ∧ · · · ∧ ddcunj converges in the weak∗-topology to hddcu1 ∧ ddcu2 ∧
· · · ∧ ddcun as j →∞. By Theorem 3.1 we obtain∫

Ω

hddcv1
j ∧ · · · ∧ ddcvnj ≥

∫
Ω

hddcu1
j ∧ · · · ∧ ddcunj ≥

∫
Ω

hddcu1 ∧ · · · ∧ ddcun.

Therefore

lim
j→∞

∫
Ω

hddcv1
j ∧ · · · ∧ ddcvnj = lim

j→∞

∫
Ω

hddcu1
j ∧ · · · ∧ ddcunj =

∫
Ω

hddcu1 ∧ · · · ∧ ddcun

and
lim
j→∞

ddcv1
j ∧ · · · ∧ ddcvnj = lim

j→∞
ddcu1

j ∧ · · · ∧ ddcunj = ddcu1 ∧ · · · ∧ ddcun.

Hence
lim
j→∞

hddcu1
j ∧ · · · ∧ ddcunj ≤ hddcu1 ∧ · · · ∧ ddcun

and since both measures have the same total mass, they must be equal.
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It follows from Corollary 3.7 that the complex Monge–Ampère operator is continuous
with respect to decreasing sequences. The next proposition shows that it is continuous
also with respect to increasing sequences. Both results are generalizations of Theorem 2.1.

Proposition 3.8 ([32]). Suppose uk ∈ E(Ω), 1 ≤ k ≤ n. If ukj ∈ E(Ω) increases to uk

as j → ∞ then ddcu1
j ∧ ddcu2

j ∧ · · · ∧ ddcunj converges in the weak∗-topology to ddcu1 ∧
ddcu2 ∧ · · · ∧ ddcun as j →∞.

Proof. Since the result is local we can assume that uk, ukj ∈ F(Ω). The same argument as
in the proof of Theorem 3.2 shows that for all h ∈ E0 the sequence [

∫
Ω
hddcu1

j ∧ ddcu2
j ∧

· · · ∧ ddcunj ] is increasing and the limit does not depend on the particular sequences [ukj ].
We prove that for 1 ≤ k ≤ n, ddcu1

j ∧ · · · ∧ ddcukj ∧ Tn−k converges in the weak∗-
topology to ddcu1 ∧ · · · ∧ ddcuk ∧ Tn−k as j → ∞, where Tn−k = ddcvk+1 ∧ · · · ∧ ddcvn,
vj ∈ F . By Theorem 2.19 it is enough to prove that for any h ∈ E0,

(3.2) lim
j→∞

∫
Ω

hddcu1
j ∧ · · · ∧ ddcukj ∧ Tn−k =

∫
Ω

hddcu1 ∧ · · · ∧ ddcuk ∧ Tn−k.

For k = 1 we obtain by the monotone convergence theorem

lim
j→∞

∫
Ω

hddcu1
j ∧ Tn−1 = lim

j→∞

∫
Ω

u1
jdd

ch ∧ Tn−1 =
∫

Ω

uddch ∧ Tn−1

=
∫

Ω

hddcu ∧ Tn−1.

Now suppose that (3.2) is valid for k = p. We show that it holds for k = p+ 1. From our
assumption we have

lim
j→∞

∫
Ω

hddcu1
j ∧ · · · ∧ ddcu

p
j ∧ dd

cup+1 ∧ Tn−p−1

=
∫

Ω

hddcu1 ∧ · · · ∧ ddcup ∧ ddcup+1 ∧ Tn−p−1,

so it is enough to prove that

lim
j→∞

∫
Ω

hddcu1
j ∧ · · · ∧ ddcu

p
j ∧ dd

cup+1
j ∧ Tn−p−1

= lim
j→∞

∫
Ω

hddcu1
j ∧ · · · ∧ ddcu

p
j ∧ dd

cup+1 ∧ Tn−p−1.

Since the limit (3.2) does not depend on the particular sequence the above limits are
equal.

Cegrell proved that E is the natural domain of definition of the complex Monge–
Ampère operator (Theorem 4.5 in [32]).

Theorem 3.9 ([32]). The Cegrell class E has the following properties:

(1) If u ∈ E , v ∈ PSH−(Ω) then max(u, v) ∈ E,
(2) If u ∈ E , ϕj ∈ PSH−(Ω)∩L∞loc(Ω), ϕj↘u as j →∞, then the sequence [(ddcϕj)n]∞j=1

is convergent in the weak∗-topology.

Moreover, if a class K = K(Ω) ⊂ PSH−(Ω) has properties (1) and (2), then K ⊂ E.
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Proof. Suppose u ∈ E . Then (1) holds true by Theorem 2.10 and (2) follows from Corol-
lary 3.7.

Conversely, suppose u ∈ K and ω is open and relatively compact in Ω. By Theorem
2.17, we can find hj ∈ E0 ∩ C(Ω̄), hj ↘ u on Ω as j →∞. Define

ĥj = sup{v ∈ PSH−(Ω) : v ≤ hj on ω}.
Then ĥj ∈ PSH(Ω) ∩ L∞(Ω), supp (ddcĥj)n ⊂ ω̄ and ĥj ↘ u on ω, ĥj decreases on Ω,
and ĥj ≥ u on Ω.

Since u ∈ K, (1) yields limj→∞ ĥj = ĥ ∈ K since ĥ ≥ u. Therefore, by (2), (ddcĥj)n

is convergent in the weak∗-topology and since supp (ddcĥj)n ⊂ ω̄ b Ω it follows that
supj

∫
Ω

(ddcĥj)n <∞ and we have proved that u ∈ E .
Another characterization of E was proved in [38] in terms of the so-called ϕ-capacity.

For given ϕ ∈ PSH−(Ω), K ⊂ Ω we define

Cϕ(K; Ω) = sup
{∫

K

(ddcψ)n : ψ ∈ PSH−(Ω) ∩ L∞(Ω), ϕ ≤ ψ ≤ 0
}
.

Theorem 3.10 ([38]). ϕ ∈ E(Ω) if and only if for any compact set K ⊂ Ω we have
Cϕ(K; Ω) <∞.

In [22], B locki proved that E = {ϕ ∈ PSH(Ω) ∩W 1,2
loc (Ω) : ϕ ≤ 0} when n = 2, and

showed that this equality is not valid for n ≥ 3. Recall that u ∈W k,p
loc (Ω) ifDαu ∈ Lploc(Ω),

for all |α| = k. Later, in [23], he obtained a complete characterization of E for n ≥ 1.

Theorem 3.11 ([23]). For u ∈ PSH−(Ω) the following are equivalent:

(1) u ∈ E(Ω);
(2) there exists a measure µ in Ω such that if U ⊂ Ω is open and a sequence uj ∈
PSH(U)∩ C∞(U) is decreasing to u in U then (ddcuj)n tends in the weak∗-topology
to µ in U ;

(3) for every open U ⊂ Ω and any sequence uj ∈ PSH(U) ∩ C∞(U) decreasing to u in
U the sequence [(ddcuj)n] is locally bounded in U in the weak∗-topology;

(4) for every open U ⊂ Ω and any sequence uj ∈ PSH(U) ∩ C∞(U) decreasing to u in
U the sequences

(3.3) |uj |n−p−2duj ∧ dcuj ∧ (ddcuj)p ∧ (ddc|z|2)n−p−1, p = 0, 1, . . . , n− 2,

are locally bounded in U in the weak∗-topology;
(5) for every z ∈ Ω there exist an open neighborhood U of z in Ω and a sequence uj ∈
PSH(U) ∩ C∞(U) decreasing to u in U such that the sequences (3.3) are locally
bounded in U in the weak∗-topology.

At the end of this chapter we are going to prove some inequalities for the total Monge–
Ampère mass for functions from the Cegrell class F . We will need the following lemma
proved in [67]. Inequality (3.4) was originally proved in [21].

Lemma 3.12 ([21, 67]). Let u, v ∈ PSH(Ω) ∩ L∞(Ω) be such that u ≤ v on Ω and
limz→∂Ω[u(z)− v(z)] = 0. Then∫

Ω

(v − u)kddcw ∧ T ≤ k
∫

Ω

(−w)(v − u)k−1ddcu ∧ T
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for all w ∈ PSH−(Ω)∩L∞(Ω) and all positive closed currents T of bidegree (n−1, n−1).
In particular, if w ∈ PSH−(Ω) ∩ L∞(Ω) and ψ ∈ F then

(3.4)
∫

Ω

(−ψ)n(ddcw)n ≤ n!(sup(−w))n−1

∫
Ω

(−w)(ddcψ)n.

Proof. First, assume u, v ∈ PSH(Ω) ∩ L∞(Ω), u ≤ v on Ω and u = v on Ω \K, K b Ω.
Then, using the Stokes formula we obtain∫

Ω

(v − u)kddcw ∧ T =
∫

Ω

wddc(v − u)k ∧ T

= −k(k − 1)
∫

Ω

(−w)d(v − u) ∧ dc(v − u) ∧ T + k

∫
Ω

(−w)(v − u)k−1ddc(u− v) ∧ T

≤ k
∫

Ω

(−w)(v − u)k−1ddc(u− v) ∧ T ≤ k
∫

Ω

(−w)(v − u)k−1ddcu ∧ T.

In the general case, for each ε > 0 we set vε = max(u, v − ε). Then vε ↗ v on Ω, vε ≥ u
on Ω and vε = u on Ω \K for some K b Ω. Hence∫

Ω

(vε − u)kddcw ∧ T ≤ k
∫

Ω

(−w)(vε − u)k−1ddcu ∧ T.

Since 0 ≤ vε − u↗ v − u as ε↘ 0, letting ε↘ 0 we get∫
Ω

(v − u)kddcw ∧ T ≤ k
∫

Ω

(−w)(v − u)k−1ddcu ∧ T.

To prove the second part of Lemma 3.12 it is enough to take a sequence ψj ∈ E0 decreasing
to ψ from the definition of the Cegrell class F and apply the first part of Lemma 3.12.
We get ∫

Ω

(−ψj)n(ddcw)n ≤ n
∫

Ω

(−w)(−ψj)n−1ddcψj ∧ (ddcw)n−1

≤ n(sup
Ω

(−w))
∫

Ω

(−ψj)n−1ddcψj ∧ (ddcw)n−1

≤ · · · ≤ n!(sup(−w))n−1

∫
Ω

(−w)(ddcψj)n.

By the monotone convergence theorem and Proposition 3.4 the proof is finished.

Lemma 3.13 ([68]). Assume that X is a non-empty set, n ≥ 1 an integer and that
F : Xn → [0,∞) is a function such that F (x1, . . . , xn) = F (xσ(1), . . . , xσ(n)) for any
permutation σ : {1, . . . , n} → {1, . . . , n}. If

F (x1, . . . , xn) ≤ F (x1, x1, x3, . . . , xn)1/2F (x2, x2, x3, . . . , xn)1/2,

then for any p, q ∈ N such that 2 ≤ p+ q ≤ n we have

F (
p-times︷ ︸︸ ︷

x1, . . . , x1,

q-times︷ ︸︸ ︷
x2, . . . , x2, xp+q+1, . . . , xn)

≤ F (
p+q-times︷ ︸︸ ︷
x1, . . . , x1, xp+q+1, . . . , xn)p/(p+q)F (

p+q-times︷ ︸︸ ︷
x2, . . . , x2, xp+q+1, . . . , xn)q/(p+q).

Furthermore,

F (x1, . . . , xn) ≤ F (x1, . . . , x1)1/n · · ·F (xn, . . . , xn)1/n.
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Theorem 3.14 ([32]). Suppose u1, . . . , un ∈ F and h ∈ PSH−(Ω)∩L∞(Ω). Let p, q ∈ N
be such that 2 ≤ p+ q ≤ n and let T = ddcup+q+1 ∧ · · · ∧ ddcun. Then∫

Ω

(−h)(ddcu1)p ∧ (ddcu2)q ∧ T

≤
(∫

Ω

(−h)(ddcu1)p+q ∧ T
)p/(p+q)(∫

Ω

(−h)(ddcu2)p+q ∧ T
)q/(p+q)

.

Furthermore,∫
Ω

(−h)ddcu1 ∧ · · · ∧ ddcun ≤
(∫

Ω

(−h)(ddcu1)n
)1/n

. . .

(∫
Ω

(−h)(ddcun)n
)1/n

.

Proof. Using the definition of F and Proposition 3.4, we see that it is enough to consider
the case when u1, . . . , un ∈ E0. From Theorem 2.17 there exists a sequence hj ∈ E0
decreasing to h. Let T ′ = ddcu3 ∧ · · · ∧ ddcun. Observe that by the Cauchy–Schwarz
inequality we have∫

Ω

(−hj)ddcu1 ∧ ddcu2 ∧ T ′

=
∫

Ω

(−u1)ddcu2 ∧ ddchj ∧ T ′ =
∫

Ω

du1 ∧ dcu2 ∧ ddchj ∧ T ′

≤
(∫

Ω

du1 ∧ dcu1 ∧ ddchj ∧ T ′
)1/2(∫

Ω

du2 ∧ dcu2 ∧ ddchj ∧ T ′
)1/2

=
(∫

Ω

(−u1)ddcu1 ∧ ddchj ∧ T ′
)1/2(∫

Ω

(−u2)ddcu2 ∧ ddchj ∧ T ′
)1/2

=
(∫

Ω

(−hj)(ddcu1)2 ∧ T ′
)1/2(∫

Ω

(−hj)(ddcu2)2 ∧ T ′
)1/2

.

By the monotone convergence theorem we get, as j →∞,∫
Ω

(−h)ddcu1 ∧ ddcu2 ∧ T ′ ≤
(∫

Ω

(−h)(ddcu1)2 ∧ T ′
)1/2(∫

Ω

(−h)(ddcu2)2 ∧ T ′
)1/2

.

Now it is enough to note that Lemma 3.13 gives the desired inequalities.

Corollary 3.15 ([32]). Suppose u1, . . . , un ∈ F . Then∫
Ω

ddcu1 ∧ · · · ∧ ddcun ≤
(∫

Ω

(ddcu1)n
)1/n

. . .

(∫
Ω

(ddcun)n
)1/n

.

In particular, if u, v ∈ F then(∫
Ω

(ddc(u+ v))n
)1/n

≤
(∫

Ω

(ddcu)n
)1/n

+
(∫

Ω

(ddcv)n
)1/n

.

The next proposition was proved by the author in [46], and it shows that F is closed
with respect to convergence of plurisubharmonic functions with uniformly bounded total
Monge–Ampère mass in L1

loc space.
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Proposition 3.16 ([46]). Let Ω be a bounded hyperconvex domain in Cn. If a sequence
uj ∈ F satisfies the condition

sup
j

∫
Ω

(ddcuj)n <∞,

and if there exists u ∈ PSH(Ω) such that uj → u in L1
loc(Ω), then u ∈ F .

Proof. From Theorem 2.17 there exists wj ∈ E0∩C(Ω̄) such that wj ↘ u as j →∞. Note
that since uj → u in L1

loc(Ω), we have u = limj→∞ vj , where

vj = (sup
k≥j

uk)∗.

Observe that vj is a decreasing sequence, vj ≥ uj , so vj ∈ F and from Corollary 3.6 we
have ∫

Ω

(ddcvj)n ≤
∫

Ω

(ddcuj)n.

Define ϕj = max(wj , vj). Then ϕj ∈ E0, ϕj ↘ u and again from Corollary 3.6 we get

sup
j

∫
Ω

(ddcϕj)n ≤ sup
j

∫
Ω

(ddcvj)n ≤ sup
j

∫
Ω

(ddcuj)n <∞,

which means that u ∈ F .

4. Maximal plurisubharmonic functions

In this chapter we will characterize maximal plurisubharmonic functions in E (Corollar-
ies 4.3 and 4.6). Next we introduce the set N of negative plurisubharmonic functions
which have the least maximal plurisubharmonic majorant equal to zero (Definition 4.5).
We shall also prove some basic properties of the Cegrell classN (Propositions 4.7 and 4.8).

In [79], Sadullaev introduced the concept of maximal plurisubharmonic functions.
Following Sadullaev we say that a plurisubharmonic function u is maximal if for every
relatively compact open set ω of Ω, and for each upper semicontinuous function v on ω̄
such that v is plurisubharmonic on ω and v ≤ u on ∂ω, we have v ≤ u on ω. The family
of maximal plurisubharmonic functions defined on Ω will be denoted by MPSH(Ω). If
n = 1, then the maximal plurisubharmonic functions are precisely the harmonic functions
defined on Ω. For further information on maximal plurisubharmonic functions see e.g. [62,
79].

Lemma 4.1 ([79]). Let u be a plurisubharmonic function on Ω. The following are then
equivalent:

(1) the function u is maximal on Ω,
(2) if v ∈ PSH(Ω), ω is a relatively compact open subset of Ω, and u ≥ v on ∂ω, then

u ≥ v on Ω,
(3) if v ∈ PSH(Ω) is such that {v > u} is relatively compact in Ω, then {v > u} = ∅.

Proof. (1)⇒(2): This is an immediate consequence of the definition of maximal plurisub-
harmonic function.
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(2)⇒(3): Assume that (2) holds and let v ∈ PSH(Ω) be such that {v > u} is relatively
compact in Ω. It is then possible to choose a relatively compact open subset Ω′ of Ω such
that {v > u} is relatively compact in Ω′. Then v ≤ u on ∂Ω′ and by assumption (2) it
follows that v ≤ u on ∂Ω. Thus, {v > u} = ∅.

(3)⇒(1): Assume that (3) holds and let ω be a relatively compact open set in Ω and
v an upper semicontinuous function on ω̄ that is plurisubharmonic on ω and v ≤ u on
∂ω. Let ϕ be defined by

ϕ(z) =

{
max(u(z), v(z)) if z ∈ ω,
u(z) if z ∈ Ω \ ω.

Then ϕ ∈ PSH(Ω) and {ϕ > u} is relatively compact in Ω. Assumption (3) now yields
{ϕ > u} = ∅. Thus, ϕ ≤ u everywhere, in particular on ω, which implies that u is
maximal on Ω.

The “if ” part in Theorem 4.2 was first proved in [79] under the assumption that the
sequence [uj ] is decreasing (for an alternative proof see [21]).

Theorem 4.2 ([34]). Assume that Ω ⊆ Cn is a hyperconvex domain, and u ∈ PSH−(Ω).
Then u is maximal if, and only if, there exists a sequence [uj ], uj ∈ E0 ∩ C(Ω̄), u ≤ uj,
which converges pointwise to u on Ω and the sequence of measures [(ddcuj)n] converges
in the weak∗-topology to 0 as j tends to ∞.

Proof. Assume that u ∈ MPSH(Ω), u ≤ 0. Theorem 2.17 implies that there exists a
decreasing sequence [vk] ⊂ E0∩C(Ω̄) which converges pointwise to u as k →∞. Consider
the function

vjk(z) = sup{ϕ(z) : ϕ ∈ PSH(Ω), ϕ ≤ vk on Ωcj},

where [Ωj ] is a fundamental sequence of Ω. Hence, vjk ∈ E0,
∫

Ωj
(ddcvjk)n = 0 and u ≤ vjk.

Moreover, limk→∞ vjk ≤ u on Ωcj . Hence u = limk→∞ vjk for all j, since u is maximal. For
each j it is now possible to choose kj such that

vjkj < vj + 1/j on Ωj .

We conclude the first part of this proof by letting uj = vjkj .
For the converse, assume that there exists a sequence [uj ], uj ∈ E0 ∩ C(Ω̄), u ≤ uj ,

which converges pointwise to u and the sequence of measures [(ddcuj)n] converges in the
weak∗-topology to 0 as j → ∞. Let also ω be a relatively compact open set in Ω and v
an upper semicontinuous function on ω̄ that is plurisubharmonic on ω and v ≤ u on ∂ω.
By the proof of Lemma 4.1 we may assume that v ≤ u on Ω \ ω. To complete the proof
we must now prove that v ≤ u on Ω. Consider the function

uj(z) = sup{ϕ(z) : ϕ ∈ PSH(Ω), ϕ ≤ uj on Ω′c},

where Ω′ is a strictly pseudoconvex set such that ω b Ω′ b Ω. There exist A,B > 0 such
that α(z) = A(|z|2 − B) ≤ 0 in Ω and (ddcα)n = dVn, where dVn is Lebesgue measure
in Cn. Lemma 3.12 implies that∫

Ω

(uj − uj)ndVn =
∫

Ω′
(uj − uj)n(ddcα)n ≤ n!(sup

Ω′
(−α))n

∫
Ω′

(ddcuj)n,
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and therefore uj converges to u in L1
loc(Ω) as j → ∞, since uj converges pointwise to u

on Ω and by assumption [(ddcuj)n] converges in the weak∗-topology to 0. Therefore there
exists a subsequence [ujk ] that converges to u a.e. dVn as jk →∞. We now have v ≤ ujk
on Ω′c and since ujk is maximal on Ω′ we get v ≤ ujk on Ω′. Hence, v ≤ limjk→∞ ujk

almost everywhere on Ω′, which completes the proof.

As a direct consequence of Theorem 4.2 we get Corollaries 4.3 and 4.6 below. Corol-
lary 4.3 was proved in [79] for u ∈ PSH(Ω)∩C(Ω) and as a consequence of results in [16]
and [19] it also holds for u ∈ PSH(Ω) ∩ L∞loc(Ω). If u ∈ E , then Corollary 4.3 was first
proved in [22, Proposition 2.2].

Corollary 4.3 ([22]). Let u ∈ E. Then (ddcu)n = 0 if, and only if, u is maximal.

Proof. Assume that (ddcu)n = 0. Theorem 2.17 implies that there exists a decreasing
sequence [uj ] ⊂ E0 ∩ C(Ω̄) which converges pointwise to u as j →∞, and [(ddcuj)n] con-
verges in the weak∗-topology to (ddcu)n, since u ∈ E . The assumption that (ddcu)n = 0
and Theorem 4.2 then conclude the first part of the proof. Conversely, assume that
u is maximal plurisubharmonic. Then by Theorem 4.2 there exists a sequence [uj ],
uj ∈ E0∩C(Ω̄), u ≤ uj , which converges pointwise to u on Ω and the sequence of measures
[(ddcuj)n] converges in the weak∗-topology to 0 as j →∞. Hence, (ddcu)n = 0.

Definition 4.4 ([33]). Let u ∈ PSH(Ω), u ≤ 0, and let [Ωj ] be a fundamental sequence.
Set

uj = sup{ϕ ∈ PSH(Ω) : ϕ ≤ u on Ωcj},

where Ωcj denotes the complement of Ωj in Ω.

Let [Ωj ] be a fundamental sequence and let u ∈ PSH(Ω), u ≤ 0. Then uj ∈ PSH(Ω)
and uj = u on Ωcj . Definition 4.4 implies that [uj ] is an increasing sequence and therefore
limj→∞ uj exists q.e. (quasi-everywhere, i.e. everywhere except on a set of Cn capacity
zero) on Ω. Hence, the function ũ defined by

(4.1) ũ = ( lim
j→∞

uj)∗

is plurisubharmonic on Ω. Moreover, if u ∈ E , then ũ ∈ E , since u ≤ ũ ≤ 0, and by
Theorem 4.2 it follows that ũ is maximal on Ω.

In Definition 4.5 we introduce a new class of negative plurisubharmonic functions.

Definition 4.5 ([4, 33]). Set

N = {u ∈ E : ũ = 0}.

We say that a plurisubharmonic function u defined on Ω belongs to the Cegrell class
N (Ω, H) = N (H), H ∈ E , if there exists a function ϕ ∈ N such that

H ≥ u ≥ ϕ+H.

Corollary 4.6 ([33]). Let u ∈ E and ũ be as in (4.1). Then

E ∩MPSH(Ω) = {u ∈ E : ũ = u}.

Proposition 4.7 ([33]). N is a convex cone and N is precisely the set of functions in
E with smallest maximal plurisubharmonic majorant identically zero. Moreover, if u ∈ N
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and v ∈ PSH−(Ω) then max(u, v) ∈ N . In particular, if u ∈ N and v ∈ PSH−(Ω),
u ≤ v then v ∈ N .

Proof. Let u, v ∈ E and α ∈ R, α ≥ 0. Then it follows from Definition 4.4 that ũ+ v ≥
ũ+ ṽ and α̃ u = α ũ. Moreover, if u ≥ v, then ũ ≥ ṽ. This ends the proof.

Proposition 4.8 yields a complete characterization of those functions in E which are
also in N .

Proposition 4.8 ([57]). Let u ∈ E. Then the following assertions are equivalent:

(1) u ∈ N ,
(2) there exists a plurisubharmonic function ϕ =

∑∞
j=1 ϕj, ϕj ∈ F , such that u ≥ ϕ

on Ω.

Proof. Assume that u ∈ N , i.e., ũ = 0. The sequence [uj ], where uj is defined as in
Definition 4.4, increases pointwise to ũ on Ω \ A, where A is a pluripolar subset of Ω.
Hence there exists a point a ∈ Ω and a subsequence [ujk ] of [uj ] with u(a) > −∞ and
ujk(a) ≥ −1/2jk . To simplify the notation, [uj ] and [−1/2j ] will be used instead of [ujk ]
and [−1/2jk ]. The original sequence will not be used any more. Let ωj be a connected
and open set such that ω̄j ⊆ Ω and for each j ≥ 1 define

ϕj = sup{ψ ∈ PSH(Ω) : ψ ≤ u on ωj}.

In particular, this construction shows that ϕj ≥ u on Ω, ϕj = u on ωj , and ϕj ∈ F by
Proposition 2.11. Set

ωj =

{
Ω2 if j = 1,

Ωj+1 \ Ω̄j−1 if j ≥ 2.

This construction implies that Ω =
⋃∞
j=1 ωj , ωj ⊆ Ωcj−1 and ϕj ≥ uj−1 on Ω for each

j ≥ 2. Then we have
∞∑
j=1

ϕj(a) = ϕ1(a) +
∞∑
j=2

ϕj(a) ≥ u(a) +
∞∑
j=2

uj−1(a) ≥ u(a)−
∞∑
j=2

1
2j−1

> −∞,

since u(a) > −∞. Thus, the function defined by ϕ =
∑∞
j=1 ϕj is plurisubharmonic, since

[
∑k
j=1 ϕj ]

∞
k=1 is a decreasing sequence of plurisubharmonic functions which converges

pointwise to a function ϕ which is not identically −∞ as k →∞. To complete the proof
of this implication we need to prove that u ≥ ϕ on Ω. Let z ∈ Ω. Then there exists a j0,
not necessarily uniquely determined, such that z ∈ ωj0 and therefore

u(z) = ϕj0(z) ≥
∞∑
j=1

ϕj(z) = ϕ(z).

For the converse assume that u ∈ E is such that (2) holds. Let vk =
∑k
j=1 ϕj . Then [vk],

vk ∈ F , is a decreasing sequence which converges pointwise to ϕ ∈ PSH(Ω), ϕ ≤ 0, as
k →∞. The assumption that u ≥ ϕ and the definition of the ˜-operator yield

ũ ≥ ϕ̃ ≥
∞∑
j=k

ϕj
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for every k ≥ 1. Let k →∞. Then it follows that ũ(z) = 0, since [vk] converges pointwise
to ϕ. Thus, u ∈ N , since u ∈ E by assumption.

Example 4.9 shows that Proposition 4.8 is not true if we remove the assumption that
u ∈ E .

Example 4.9 ([57]). Let D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1} be the unit polydisc in
C2 and for every j ∈ N define

uj(z1, z2) = max
(
j2 ln |z1|,

1
j2

ln |z2|
)
.

Then uj ∈ PSH(D2), limz→ξ uj(z) = 0 for every ξ ∈ ∂D2, and (ddcuj)2 = (2π)2δ(0,0),
where δ(0,0) denotes the Dirac measure at (0, 0) ∈ C2. Hence, uj ∈ F(D2). Let vk : D2 →
R ∪ {−∞} be defined by vk =

∑k
j=1 uj . The sequence [vk] is decreasing and for every

point (z1, z2) ∈ D2, z2 6= 0, we have

lim
k→∞

vk =
∞∑
j=1

uj ≥ 2 ln |z2| > −∞,

which implies that u = limk→∞ vk ∈ PSH(D2). Moreover, for each k ≥ 1,

0 ≥ ũ ≥
∞∑
j=k

uk,

since (
∑k
j=1 uk) ∈ F ⊆ N . Hence, ũ = 0 q.e. on D2, which implies that ũ = 0 everywhere

on D2. Assume now that u ∈ E . Then for every open neighborhood ω b D2 of (0, 0),∫
ω

(ddcvk)2 =
∫
ω

(ddc(u1 + · · ·+ uk))2 ≥
k∑
j=1

∫
ω

(ddcuj)2 = (2π)2k.

Thus, limk→∞
∫
ω

(ddcvk)2 =∞, which contradicts u ∈ E (see Proposition 2.11).

Theorem 4.10 ([33]). Suppose u ∈ E with
∫

Ω
(ddcu)n < ∞. Then u ∈ F(ũ), and u ≥

ψ + ũ for some ψ ∈ F with
∫

Ω
(ddcψ)n ≤

∫
Ω

(ddcu)n.

Proof. Choose uj ∈ E0 ∩ C(Ω̄) decreasing to u and let [Ωj ] be a fundamental sequence
in Ω. Then for each j there is sj > sj−1 such that for s ≥ sj ,∫

Ω

χΩj (dd
cus)n ≤

∫
Ω

(ddcu)n + 1.

By the Ko lodziej subsolution theorem (Theorem 2.7) there exists vs,j ∈ E0 such that

(ddcvs,j)n = χΩ̄j (dd
cus)n.

Since (ddcus)n ≤ (ddc(us,j+ujs))
n, we have us ≥ vs,j+ujs by Theorem 2.2, so if t ≥ s ≥ sj ,

then
us ≥ ut ≥ vt,j + ujt .

In particular,
us ≥ (sup

t≥s
vt,j)∗ + uj
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and

u ≥ lim
s→∞

(sup
t≥s

vt,j)∗ + uj = ψj + uj .

Now, [ψj ] is a decreasing sequence of functions in F ,
∫

Ω
(ddcψj)n ≤

∫
Ω

(ddcu)n + 1,
so from Proposition 3.16, ψ = limψj ∈ F and since uj increases a.e. to ũ as j →∞, we
have u ≥ ψ + ũ, which completes the proof.

Remark 4.11. The condition
∫

Ω
(ddcu)n <∞ is not necessary for u to be in F(ũ). There

exists a function u ∈ E0(ũ) with
∫

(ddcu)n =∞ (see Example 4.12).

The following example was constructed by the author and Per Åhag in [6].

Example 4.12 ([6]). Let D2 be the unit polydisc in C2. Let f : ∂D2 → R be defined
by f(z1, z2) = |z2|2. Then f ∈ C∞(∂D2) and PBf (z1, z2) = |z2|2. For each j ∈ N define
ϕj : D2 → R by ϕj(z) = ϕj(z1, z2) = max(aj log |z1|, bj log |z2|, cj), where aj , bj , cj ∈ R,
aj , bj > 0 and cj < 0. Then ϕj ∈ PSH(D2) ∩ C(D2),

lim
(z1,z2)→(ξ1,ξ2)

ϕj(z1, z2) = 0 for every (ξ1, ξ2) ∈ ∂D2,

and

(4.2)
∫

D2
(ddcϕj)2 = (2π)2ajbj <∞,

hence ϕj ∈ E0. Let vk : D2 → R be defined by vk =
∑k
j=1 ϕj . Then vk ∈ E0 and [vk] is a

decreasing sequence on D2. Corollary 3.15 and (4.2) yield

(4.3)
∫

D2
(ddcvk)2 ≤

( k∑
j=1

(∫
D2

(ddcϕj)2

)1/2)2

≤ (2π)2

( k∑
j=1

(ajbj)1/2

)2

.

Assume that

(4.4)
∞∑
j=1

(ajbj)1/2 <∞ and
∞∑
j=1

cj > −∞

and let v(z) = limk→∞ vk(z). The construction of v implies that

lim
(z1,z2)→(ξ1,ξ2)

v(z1, z2) = 0 for every (ξ1, ξ2) ∈ ∂D2.

The assumptions in (4.4) imply that v ∈ PSH(D2) ∩ L∞(D2) and by inequality (4.3) it
follows that v ∈ E0. Let u : D2 → R be defined by u = v + PBf , hence u = (v + |z2|2) ∈
E0(f). Then it follows that

(4.5)
∫

D2
(ddc(vk + |z2|2))2 =

∫
D2

(ddcvk)2 + 4i
∫

D2
(ddcvk) ∧ dz2 ∧ dz̄2

=
∫

D2
(ddcvk)2 + 32

∫
D2

∂2vk
∂z1∂z̄1

dV2((z1, z2))
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=
∫

D2
(ddcvk)2 + 32

∫
D2

k∑
j=1

∂2ϕj
∂z1∂z̄1

dV2((z1, z2))

≥ 32
k∑
j=1

∫
D2

∂2ϕj
∂z1∂z̄1

dV2((z1, z2)),

where dV2 is the Lebesgue measure on C2. Let 0 < ε < 1 and Dε = {z ∈ C : |z| < ε}.
Choose χ1, χ2 ∈ C∞0 (D) such that 0 ≤ χ1, χ2 ≤ 1 and χ1 = 1 = χ2 on D1−ε. For fixed
|z2| ≤ min(1− ε, (1− ε)aj/bj ), it follows that

(4.6)
∫

D
χ1(z1)

∂2ϕj
∂z1∂z̄1

dV1(z1) = 8πaj .

Under the assumption that aj ≥ bj inequality (4.5) together with (4.6) yield∫
D2

(ddc(vk + |z2|2))2 ≥ 32
k∑
j=1

∫
D2

(χ1(z1)χ2(z2))
∂2ϕj
∂z1∂z̄1

dV2((z1, z2))(4.7)

≥ c
k∑
j=1

aj(min(1− ε, (1− ε)aj/bj ))2,

where c > 0 is a constant. Let ε→ 0+. Then (4.7) implies that∫
D2

(ddc(vk + |z2|2))2 ≥ c
k∑
j=1

aj .

Thus

(4.8)
∫

D2
(ddcu)2 = lim

k→∞

∫
D2

(ddc(vk + |z2|2))2 ≥ c
∞∑
j=1

aj .

Let aj = 1/j, bj = 1/j3 and cj = −1/j2. Thus the assumptions (4.4) and aj ≥ bj are
satisfied, which implies that the function defined on D2 by

u(z1, z2) =
∞∑
j=1

max
(

1
j

log |z1|,
1
j3

log |z2|,−
1
j2

)
+ |z2|2

belongs to E0(f) and
∫

D2 (ddcu)2 =∞, by (4.8).

Theorem 4.13 ([70]). The function u belongs to F if, and only if, u ∈ N and∫
Ω

(ddcu)n <∞.

Proof. If u ∈ F , then it is clear that
∫

Ω
(ddcu)n < ∞ and by Proposition 4.8, u ∈ N .

For the converse, let u ∈ N and
∫

Ω
(ddcu)n < ∞. Theorem 4.10 shows that there exists

a function ϕ ∈ F such that

ũ ≥ u ≥ ϕ+ ũ.

But u ∈ N , hence ũ = 0 and therefore u ∈ F .
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5. The comparison principle

In this chapter we generalize Theorem 2.2 to functions in F and N (H). Those results are
crucial when proving uniqueness for the Dirichlet problem in Chapter 6.1. First we prove a
more general version of the comparison principle for bounded plurisubharmonic functions
(Lemma 5.4), then for the functions in the Cegrell class F (Theorem 5.5), and finally for
E (Theorem 5.7). Then by using the convergence result for N (H) (Corollary 5.12), and
the decomposition theorem for the positive measures (Theorem 5.6), we shall prove the
comparison principle (Corollaries 5.9 and 5.10) and the identity principle (Theorem 5.14)
for the functions in N (H).

The results of the first part of Chapter 5 were proved by Nguyễn and Phạm in [67],
and the results of the second part of this chapter were a collaboration between the present
author, Per Åhag, Urban Cegrell, and Phạm Hoàng Hiệp (see [4]).

We will need the following lemma.

Lemma 5.1 ([67]). Let µ be a Borel measure on Ω and let f : Ω → R be a positive
measurable function. The following are then equivalent:

(1) µ(A) = 0 for all Borel sets A ⊂ {f 6= 0},
(2) for every Borel set A we have

∫
A
f dµ = 0.

Proof. (1)⇒(2): Let A ⊂ Ω be a Borel set. Then it follows that∫
A

f dµ =
∫
A\{f=0}

f dµ+
∫
A∩{f=0}

f dµ = 0.

(2)⇒(1): Let Xδ = {f > δ > 0} for δ > 0. It is sufficient to prove that µ(Xδ) = 0
for all δ > 0. Hahn’s decomposition theorem implies that there exist measurable subsets
X+
δ and X−δ of Xδ such that Xδ = X+

δ ∪X
−
δ , X

+
δ ∩X

−
δ = ∅, µ ≥ 0 on X+

δ and µ ≤ 0
on X−δ . By the assumption we have

δµ(X+
δ ) ≤

∫
X+
δ

f dµ = 0, δµ(X−δ ) ≥
∫
X−δ

f dµ = 0,

and therefore µ(X+
δ ) = µ(X−δ ) = 0. Thus, µ = 0 on Xδ.

The following lemma was proved by Demailly for locally bounded plurisubharmonic
functions ([49]).

Lemma 5.2 ([67]). Let u, u1, . . . , un−1 ∈ E, v ∈ PSH−(Ω) and T = ddcu1∧· · ·∧ddcun−1.
The two non-negative measures ddc max(u, v) ∧ T and ddcu ∧ T then coincide on the set
{u > v}.

Proof. Let w ∈ F . Since the result is local there is no loss of generality to assume
that u, u1, . . . , un−1 ∈ F . Theorem 2.17 implies that for each k = 1, . . . , n − 1 there
exists a decreasing sequence [ujk]∞j=1, u

j
k ∈ E0 ∩ C(Ω̄), which converges pointwise on Ω

to uk as j → ∞. Moreover, there exists a decreasing sequence [wj ]∞j=1, w
j ∈ E0 ∩ C(Ω̄),

which converges pointwise to w as j → ∞. Set T j = ddcuj1 ∧ · · · ∧ ddcu
j
n−1 and T =

ddcu1 ∧ · · · ∧ ddcun−1. Fix a < 0. Then the set {wj > a} is open, since wj is continuous,
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and therefore ddc max(wj , a) ∧ T j = ddcwj ∧ T j on {wj > a}. Proposition 3.4 yields

lim
j→∞

max(w − a, 0) ddc max(wj , a) ∧ T j = max(w − a, 0) ddc max(w, a) ∧ T

and
lim
j→∞

max(w − a, 0) ddcwj ∧ T j = max(w − a, 0) ddcw ∧ T

in the weak∗-topology. Hence,

max(w − a, 0)[ddc max(w, a) ∧ T − ddcw ∧ T ] = 0

and therefore it follows by Lemma 5.1 that

(5.1) ddc max(w, a) ∧ T = ddcw ∧ T on {w > a}.

Fix b < 0. By using (5.1) with w = max(u, v) ∈ F we get

(5.2) ddc max(u, v) ∧ T = ddc max(u, v, b) ∧ T on {max(u, v) > b}

and with w = u,

(5.3) ddcu ∧ T = ddc max(u, b) ∧ T on {u > b}.

The function v is upper semicontinuous, which implies that {b > v} is open and therefore

(5.4) ddc max(u, v, b) ∧ T = ddc max(u, b) ∧ T on {b > v}.

On the set {u > b > v} we now have ddc max(u, v) ∧ T = ddcu ∧ T , by combining (5.2)–
(5.4). To complete the proof note that {u > v} =

⋃
b∈Q−{u > b > v}, where Q− is the

set of non-positive rational numbers. Thus, the non-negative measures ddc max(u, v)∧ T
and ddcu ∧ T coincide on {u > v}.

The following lemma was proved by Demailly for locally bounded plurisubharmonic
functions ([49]).

Lemma 5.3 ([67]). Let Ω ⊆ Cn be a bounded hyperconvex domain.

(1) Let u, v ∈ E be such that (ddcu)n({u = v = −∞}) = 0. Then

(ddc max(u, v))n ≥ χ{u≥v}(ddcu)n + χ{u<v}(ddcv)n,

where χE denotes the characteristic function of E.
(2) Let µ be a positive measure which vanishes on all pluripolar subsets of Ω. Suppose

u, v ∈ E are such that (ddcu)n ≥ µ, (ddcv)n ≥ µ. Then (ddc max(u, v))n ≥ µ.

Proof. (1): For each ε > 0 put Aε = {u = v − ε} \ {u = v = −∞}. Since Aε ∩Aδ = ∅ for
ε 6= δ, there exist εj ↘ 0 such that (ddcu)n(Aεj ) = 0 for j ≥ 1. On the other hand, since
(ddcu)n({u = v = −∞}) = 0 we have (ddcu)n({u = v − εj}) = 0 for j ≥ 1. It follows
from Lemma 5.2 that

(ddc max(u, v − εj))n

≥ χ{u>v−εj}(dd
c max(u, v − εj))n + χ{u<v−εj}(dd

c max(u, v − εj))n

= χ{u≥v−εj}(dd
cu)n + χ{u<v−εj}(dd

cv)n ≥ χ{u≥v}(ddcu)n + χ{u<v−εj}(dd
cv)n.
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Since max(u, v−εj)↗ max(u, v) and χ{u<v−εj} ↗ χ{u<v} as j →∞, by Proposition 3.8
we get

(ddc max(u, v))n ≥ χ{u≥v}(ddcu)n + χ{u<v}(ddcv)n.

(2): The proof is similar to the proof of (1). By the same argument as in the proof
of (1), there exists εj ↘ 0 such that µ({u = v − εj}) = 0 for j ≥ 1. It follows from
Lemma 5.2 that

(ddc max(u, v − εj))n

≥ χ{u>v−εj}(dd
c max(u, v − εj))n + χ{u<v−εj}(dd

c max(u, v − εj))n

= χ{u>v−εj}(dd
cu)n + χ{u<v−εj}(dd

cv)n ≥ χ{u6=v−εj}dµ = dµ.

Since max(u, v − εj)↗ max(u, v) as j →∞, by Proposition 3.8 we get

(ddc max(u, v))n ≥ dµ.

Lemma 5.4 ([67]). Let u, v ∈ PSH(Ω) ∩ L∞(Ω) be such that u ≤ v on Ω, and

lim
z→∂Ω

[u(z)− v(z)] = 0.

Then for 1 ≤ k ≤ n, for all w1, . . . , wk ∈ PSH(Ω), −1 ≤ wj ≤ 0, j = 1, . . . , k,
wk+1, . . . , wn ∈ E, the following inequality holds:

(5.5)
1
k!

∫
Ω

(v − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcv)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫

Ω

(−w1)(ddcu)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn.

Proof. To simplify the notation we set T = ddcwk+1 ∧ · · · ∧ ddcwn. First, assume that
u, v ∈ PSH(Ω) ∩ L∞(Ω), u ≤ v on Ω, and u = v on Ω \ K for some K b Ω. Using
Lemma 3.12 we get∫

Ω

(v − u)kddcw1 ∧ · · · ∧ ddcwn ≤ k
∫

Ω

(v − u)k−1ddcw1 ∧ · · · ∧ ddcwk−1 ∧ ddcu ∧ T

≤ · · · ≤ k!
∫

Ω

(v − u)ddcw1 ∧ (ddcu)k−1 ∧ T

≤ k!
∫

Ω

(v − u)ddcw1 ∧
[ k−1∑
i=0

(ddcu)i ∧ (ddcv)k−i−1

]
∧ T

= k!
∫

Ω

w1dd
c(v − u) ∧

[ k−1∑
i=0

(ddcu)i ∧ (ddcv)k−i−1

]
∧ T

= k!
∫

Ω

(−w1)[(ddcu)k − (ddcv)k] ∧ T.

In the general case, for each ε > 0 we put vε = max(u, v − ε). Then vε ↗ v on Ω, vε ≥ u
on Ω and vε = u on Ω \K for some K b Ω. Hence

1
k!

∫
Ω

(vε − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcvε)k ∧ T ≤
∫

Ω

(−w1)(ddcu)k ∧ T.
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Observe that 0 ≤ vε − u↗ v − u and (ddcvε)k ∧ T → (ddcv)k ∧ T in the weak∗-topology
as ε↘ 0, furthermore −w1 is lower semicontinuous and so by letting ε↘ 0 we have

1
k!

∫
Ω

(v − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcv)k ∧ T ≤
∫

Ω

(−w1)(ddcu)k ∧ T.

Theorem 5.5 ([67]). Let Ω ⊆ Cn be a bounded hyperconvex domain.

(1) Let u, v ∈ F be such that u ≤ v on Ω. Then for 1 ≤ k ≤ n, for all wj ∈ PSH(Ω),
−1 ≤ wj ≤ 0, j = 1, . . . , k, wk+1, . . . , wn ∈ F , inequality (5.5) holds.

(2) Let u, v ∈ E be such that u ≤ v on Ω and u = v on Ω \K for some K b Ω. Then
for 1 ≤ k ≤ n, for all wj ∈ PSH(Ω), −1 ≤ wj ≤ 0, j = 1, . . . , k, wk+1, . . . , wn ∈ E
inequality (5.5) holds.

Proof. (1): Let E0 3 uj ↘ u and E0 3 vj ↘ v be decreasing sequences from the definition
of F . Replacing vj by max(uj , vj) we may assume that uj ≤ vj for j ≥ 1. By Lemma 5.4,

1
k!

∫
Ω

(vj − ut)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcvj)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫

Ω

(−w1)(ddcut)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

for t ≥ j ≥ 1. By Proposition 3.4 letting t→∞ in the above inequality we have

1
k!

∫
Ω

(vj − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcvj)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫

Ω

(−w1)(ddcu)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

for j ≥ 1. Next letting j →∞ again by Proposition 3.4 we get the desired conclusion.
(2): Let G,W be open sets such that K b G b W b Ω. By Proposition 2.11 we can

choose a function v̂ ∈ F such that v̂ ≥ v and v̂ = v on W . Set

û =

{
u on G,

v̂ on Ω \G.

Since u = v = v̂ on W \K we have û ∈ PSH−(Ω). It is easy to see that û ∈ F , û ≤ v̂

and û = u on W . By (1) we have

1
k!

∫
Ω

(v̂ − û)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcv̂)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫

Ω

(−w1)(ddcû)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn.

Since ũ = v̂ on Ω \G we have

1
k!

∫
W

(v̂ − û)kddcw1 ∧ · · · ∧ ddcwn +
∫
W

(−w1)(ddcv̂)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫
W

(−w1)(ddcû)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn.
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Since û = u, v̂ = v on W and u = v on Ω \K we obtain

1
k!

∫
Ω

(v − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcv)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫

Ω

(−w1)(ddcu)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn.

We will need the following decomposition theorem for positive measures.

Theorem 5.6 ([30, 32]). Let µ be a positive measure in a bounded hyperconvex domain
Ω ⊂ Cn. Then there exist ϕ ∈ E0, 0 ≤ f ∈ L1

loc((ddcϕ)n) and a positive measure ν carried
by a pluripolar set in Ω such that

µ = f(ddcϕ)n + ν.

In particular, if u ∈ E, then there exist ϕ ∈ E0, 0 ≤ f ∈ L1
loc((ddcϕ)n) and a positive

measure ν carried by {u = −∞} such that

(ddcu)n = f(ddcϕ)n + ν.

Theorem 5.7 ([4]). Assume that Ω ⊆ Cn, n ≥ 1, is a bounded hyperconvex domain.
Let u, v ∈ E be such that limz→ζ(u(z) − v(z)) ≥ 0 for every ζ ∈ ∂Ω. Then for all
wj ∈ PSH(Ω), −1 ≤ wj ≤ 0, j = 1, . . . , k, wk+1, . . . , wn ∈ E, the following inequality
holds:

(5.6)
1
k!

∫
{u<v}

(v − u)kddcw1 ∧ · · · ∧ ddcwn

+
∫
{u<v}

(−w1)(ddcv)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn

≤
∫
{u<v}∪{u=v=−∞}

(−w1)(ddcu)k ∧ ddcwk+1 ∧ · · · ∧ ddcwn.

Proof. Let ε > 0 and let T = ddcwk+1 ∧ · · · ∧ ddcwn. By using Theorem 5.5(2) for u and
vε = max(u, v − ε) we get

1
k!

∫
Ω

(vε − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcvε)k ∧ T ≤
∫

Ω

(−w1)(ddcu)k ∧ T.

From the fact that {u < vε} = {u < v − ε} together with Lemma 5.2 it follows that

χ{u<v−ε}(ddcv)k ∧ T = χ{u<v−ε}(ddc max(u, v − ε))k ∧ T,

where χ{u<v−ε} is the characteristic function of the set {u < v − ε} in Ω. Then

(5.7)
1
k!

∫
{u<v−ε}

(v − ε− u)kddcw1 ∧ · · · ∧ ddcwn +
∫
{u<v−ε}

(−w1)(ddcv)k ∧ T

+
∫
{u>v−ε}

(−w1)(ddcvε)k ∧ T
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≤ 1
k!

∫
{u≤vε}

(vε − u)kddcw1 ∧ · · · ∧ ddcwn

+
∫
{u<v−ε}

(−w1)(ddcvε)k ∧ T +
∫
{u>v−ε}

(−w1)(ddcvε)k ∧ T

≤ 1
k!

∫
Ω

(vε − u)kddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcvε)k ∧ T

≤
∫

Ω

(−w1)(ddcu)k ∧ T =
∫
{u≤v−ε}

(−w1)(ddcu)k ∧ T +
∫
{u>v−ε}

(−w1)(ddcu)k ∧ T.

But {u > vε} = {u > v − ε} and by Lemma 5.2 we have

χ{u>vε}(dd
cvε)k ∧ T = χ{u>vε}(dd

cu)k ∧ T,

and therefore from (5.7) we obtain

(5.8)
1
k!

∫
{u<v−ε}

(v − ε− u)kddcw1 ∧ · · · ∧ ddcwn +
∫
{u<v−ε}

(−w1)(ddcv)k ∧ T ≤∫
{u≤v−ε}

(−w1)(ddcu)k ∧ T ≤
∫
{u<v}∪{u=v=−∞}

(−w1)(ddcu)k ∧ T,

since for every ε > 0,

{u ≤ v − ε} ⊂ {u < v} ∪ {u = v = −∞}.

The sequence [χ{u<v−ε}] is increasing to χ{u<v} as ε→ 0+, therefore by letting ε→ 0+

inequality (5.8) implies that (5.6) holds and the proof is complete.

Remark 5.8. Recall that limz→ζ(u(z)− v(z)) ≥ 0 for every ζ ∈ ∂Ω means that for any
ε > 0 there exists a set A b Ω such that u(z)− v(z) ≥ −ε for every z ∈ Ω \A.

By using Theorems 5.6 and 5.7 we get

Corollary 5.9 ([4]). Assume that Ω ⊆ Cn is a bounded hyperconvex domain and H ∈ E.
If u ∈ N (H) and v ∈ E is such that v ≤ H on Ω, then for all wj ∈ PSH(Ω), −1 ≤ wj ≤ 0,
j = 1, . . . , n, (5.6) holds.

Proof. Let u ∈ N (H). Then there exists a function ϕ ∈ N such that

H ≥ u ≥ ϕ+H.

Let [Ωj ] be a fundamental sequence in Ω and let ϕj be as in Definition 4.4. The assumption
that v ≤ H implies that for ε > 0,

u ≥ ϕ+H = ϕj +H ≥ ϕj + v − ε on Ωcj .

Theorem 5.7 implies that

1
n!

∫
{u<v−ε+ϕj}

(v − ε+ ϕj − u)nddcw1 ∧ · · · ∧ ddcwn +
∫
{u<v−ε+ϕj}

(−w1)(ddcv)n

≤
∫
{u≤v−ε}

(−w1)(ddcu)n .

We see that

(5.9) [χ{u<v−ε+ϕj}(v − ε+ ϕj − u)n]∞j=1 and [χ{u<v−ε+ϕj}]∞j=1
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are two increasing sequences of functions that converge q.e. on Ω to χ{u<v−ε}(v− ε−u)n

and χ{u<v−ε}, respectively, as j → ∞. Theorem 5.6 implies that the measures ddcw1 ∧
· · · ∧ ddcwn and χ{v>−∞}(ddcv)n vanish on pluripolar sets. Therefore

[χ{u<v−ε+ϕj}(v − ε+ ϕj − u)n]∞j=1 converges to χ{u<v−ε}(v − ε− u)n

a.e. w.r.t. ddcw1 ∧ · · · ∧ ddcwn, and [χ{u<v−ε+ϕj}]∞j=1 converges to χ{u<v−ε} a.e. w.r.t.
χ{v>−∞}(ddcv)n. The monotone convergence theorem yields

1
n!

∫
{u<v−ε}

(v − ε− u)nddcw1 ∧ · · · ∧ ddcwn +
∫
{u<v−ε}

(−w1)(ddcv)n

≤
∫
{u≤v−ε}

(−w1)(ddcu)n.

Inequality (5.6) is now obtained by letting ε→ 0+.

Corollary 5.10 ([4], comparison principle). Let u, v,H ∈ E be such that (ddcu)n van-
ishes on all pluripolar sets in Ω and (ddcu)n ≤ (ddcv)n. Consider the following two
conditions:

(1) limz→ζ(u(z)− v(z)) ≥ 0 for every ζ ∈ ∂Ω,
(2) u ∈ N (H), v ≤ H.

If one of the above conditions is satisfied, then u ≥ v on Ω.

Proof. Assume that u, v ∈ E is such that (ddcu)n vanishes on all pluripolar sets in Ω and
(ddcu)n ≤ (ddcv)n.

(1): Moreover, assume that

lim
z→ζ

(u(z)− v(z)) ≥ 0

for every ζ ∈ ∂Ω. Let ε > 0. Theorem 5.7 implies that

(5.10)
εn

n!
Cn({u+ 2ε < v})

≤ sup
{

1
n!

∫
{u+2ε<v}

(v − u− 2ε)n(ddcw)n : w ∈ PSH(Ω), −1 ≤ w ≤ 0
}

≤ sup
{

1
n!

∫
{u+ε<v}

(v − u− ε)n(ddcw)n : w ∈ PSH(Ω), −1 ≤ w ≤ 0
}

≤ sup
{∫
{u+ε<v}

(−w)((ddcu)n − (ddcv)n), −1 ≤ w ≤ 0
}
≤ 0.

Thus, u+ 2ε ≥ v. Letting ε→ 0+ yields u ≥ v on Ω.
(2): In this case assume that u ∈ N (H) and v ≤ H. Since u ∈ N (H), there exists

ϕ ∈ N such that H + ϕ ≤ u ≤ H. Let ϕj be as in Definition 4.4 and let ε > 0. As
in (5.10), we get u+ 2ε ≥ v + ϕj . Let ε→ 0+. Hence u ≥ v on Ω.

Lemma 5.11 ([4]). Let u, v ∈ N (H) be such that u ≤ v and
∫

Ω
(−ϕ)ddcu ∧ T < ∞,

ϕ ∈ PSH(Ω), ϕ ≤ 0. Then
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(5.11)
∫

Ω

(−ϕ)ddcu ∧ T ≥
∫

Ω

(−ϕ)ddcv ∧ T,

where T = ddcw2 ∧ · · · ∧ ddcwn, w2, . . . , wn ∈ E.

Proof. Let [Ωj ] be a fundamental sequence in Ω. As u ∈ N (H) there exists ψ ∈ N such
that H ≥ u ≥ ψ + H. For each j ∈ N define vj = max(u, ψj + v), where ψj is as in
Definition 4.4. This construction implies that vj ∈ E , vj = u on Ωcj , u ≤ vj , and [vj ] is
an increasing sequence that converges pointwise to v q.e. on Ω as j →∞. Theorem 2.17
implies that there exists a decreasing sequence [ϕk], ϕk ∈ E0 ∩ C(Ω̄), that converges
pointwise to ϕ as j →∞. By Stokes’ theorem, for each s ≥ j,∫

Ωs

(−ϕk)ddcu ∧ T −
∫

Ωs

(−ϕk)ddcvj ∧ T =
∫

Ωs

(vj − u)ddcϕk ∧ T ≥ 0.

By letting s→∞ we get

(5.12)
∫

Ω

(−ϕk)ddcu ∧ T ≥
∫

Ω

(−ϕk)ddcvj ∧ T.

The function ϕk is bounded and therefore Proposition 3.8 implies that (−ϕk)ddcvj ∧ T
converges to (−ϕk)ddcv ∧ T in the weak∗-topology as j →∞, which yields

(5.13) lim
j→∞

∫
Ω

(−ϕk)ddcvj ∧ T ≥
∫

Ω

(−ϕk)ddcv ∧ T.

Inequalities (5.12) and (5.13) imply (5.11) for ϕk, and the monotone convergence theorem
completes the proof, when we let k →∞.

Corollary 5.12 ([4]). Let H ∈ E and ϕ ∈ PSH(Ω), ϕ ≤ 0. If [uj ], uj ∈ N (H), is a
decreasing sequence that converges pointwise on Ω to a function u ∈ N (H) as j tends
to ∞, then

(5.14) lim
j→∞

∫
Ω

(−ϕ)(ddcuj)n =
∫

Ω

(−ϕ)(ddcu)n.

Proof. Let ϕ ∈ PSH(Ω), ϕ ≤ 0, and let uj , u ∈ N (H) be such that u ≤ uj . If∫
Ω

(−ϕ)(ddcu)n = ∞, then (5.14) follows immediately and therefore we can assume
that

∫
Ω

(−ϕ)(ddcu)n < ∞. Lemma 5.11 implies that [
∫

Ω
(−ϕ) (ddcuj)n] is an increas-

ing sequence bounded above by
∫

Ω
(−ϕ) (ddcu)n. From Proposition 3.4 it follows that

[(−ϕ)(ddcuj)n] converges to (−ϕ)(ddcu)n in the weak∗-topology as j → ∞, and the
desired limit of the total masses is valid.

Lemma 5.13 ([4]). Let H ∈ E and let u, v ∈ N (H) be such that u ≤ v. Then for all
wj ∈ PSH(Ω) ∩ L∞(Ω), −1 ≤ wj ≤ 0, j = 1, . . . , n,

∫
Ω

(−w1)(ddcu)n <∞, we have

(5.15)
1
n!

∫
Ω

(v − u)nddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddcv)n ≤
∫

Ω

(−w1)(ddcu)n.

Proof. First we assume that u, v ∈ E0(H). By definition there exists ϕ ∈ E0 such that
H ≥ u ≥ ϕ + H. For each ε > 0 small enough choose K b Ω such that ϕ ≥ −ε on Kc.
Hence,

u ≥ ϕ+H ≥ −ε+H ≥ −ε+ v on Kc,
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and therefore max(u, v − ε) = u on Kc. By using Lemma 5.3 we get

1
n!

∫
Ω

(max(u, v − ε)− u)nddcw1 ∧ · · · ∧ ddcwn +
∫

Ω

(−w1)(ddc max(u, v − ε))n

≤
∫

Ω

(−w1)(ddcu)n.

By letting ε → 0+ we obtain (5.15) in the case when u, v ∈ E0(H). Using this case
together with Proposition 2.17 and Corollary 5.12 we complete the proof.

An immediate consequence of Lemma 5.13 is the following identity principle, which
plays a prominent technical role.

Theorem 5.14 ([4]). Let H ∈ E. If u, v ∈ N (H) are such that u ≤ v, (ddcu)n = (ddcv)n

and
∫

Ω
(−w)(ddcu)n <∞ for some w ∈ E which is not identically 0, then u = v on Ω.

6. The Dirichlet problem

In this chapter we study the Dirichlet problem for the complex Monge–Ampère operator
in a given subset of negative plurisubharmonic functions, say K. More precisely, for a
given positive measure µ on a bounded hyperconvex domain Ω ⊂ Cn, the problem is to
find a plurisubharmonic function u ∈ K solving the equation

(6.1) (ddcu)n = µ.

Our aim is to generalize Ko lodziej’s subsolution theorem from locally bounded plurisub-
harmonic functions to functions in E . In Chapter 6.1, we shall prove that for a large
class of measures µ there exists a unique solution to (6.1) in F(f) (Theorem 6.1), in N
(Theorem 6.3), and in N (H) (Theorem 6.6). In Chapter 6.2 we shall consider measures
carried by some pluripolar set. We provide the construction of a function u such that
(ddcu)n = χK(ddcv)n, where χK is the characteristic function of a pluripolar compact
set K and v ∈ E (Theorem 6.10). This allows us to prove the subsolution theorem for
measures carried by pluripolar sets. Namely, we shall prove that if v ∈ E , then for any
measure µ carried by a pluripolar set such that µ ≤ (ddcv)n there exists u ∈ E that
satisfies (6.1) (Theorem 6.15). In Chapter 6.3 we shall prove the most general version of
the subsolution theorem: any measure µ dominated by the Monge–Ampère measure of
a function v ∈ E , µ ≤ (ddcv)n, is the Monge–Ampère measure of some function from E
(Theorem 6.22). We also give an example of a positive measure which does not belong to
the range of the complex Monge–Ampère operator (Example 6.24).

Results in Chapter 6.1 were proved in [4, 32, 33]. Almost all results from Chapter 6.2
and Chapter 6.3 were proved by the author together with Per Åhag, Urban Cegrell, and
Phạm Hoàng Hiệp in [4].

6.1. Regular measures. We start by solving the Dirichlet problem in F(f) with con-
tinuous boundary values f .
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Theorem 6.1 ([32]). Assume that µ is a positive measure on Ω and f ∈ C(∂Ω) is such
that limz→w PBf (z) = f(w) for all w ∈ ∂Ω. If µ(Ω) < ∞ and if µ vanishes on all
pluripolar sets, then there exists a unique function u ∈ F(f) such that (ddcu)n = µ.

Proof. Without loss of generality we can assume that f ≤ 0. It follows from Theorem 5.6
that there exist ϕ ∈ E0 and 0 ≤ g ∈ L1((ddcϕ)n) such that µ = g(ddcϕ)n. Define
µj = min(g, j)(ddcϕ)n and observe that

µj ≤ (ddc(j1/nϕ))n ≤ (ddc(j1/nϕ+ PBf ))n.

By the Ko lodziej subsolution theorem (Theorem 2.7) there exist vj ∈ E0 such that
(ddcvj)n = µj and uj ∈ PSH(Ω) ∩ L∞(Ω), (ddcuj)n = µj and limz→w uj(z) = f(w).
Since

(ddcvj)n = µj ≤ µj+1 = (ddcvj+1)n

and lim vj = lim vj+1 = 0 on ∂Ω, it follows from the comparison principle (Theorem 2.2)
that vj ≥ vj+1. Similarly one can prove that [uj ] is a decreasing sequence and

PBf ≥ uj ≥ vj + PBf .

Let u = limj→∞ uj and v = limj→∞ vj . There exist A,B > 0 such that ψ(z) = A(|z|2 −
B) ≤ 0 in Ω and (ddcψ)n = dVn, where dVn is Lebesgue measure in Cn. It follows from
Lemma 3.12 that

(6.2)
∫

Ω

(−vj)ndVn =
∫

Ω

(−vj)n(ddcψ)n ≤ n!(sup
Ω

(−ψ))n−1

∫
Ω

(−ψ)(ddcvj)n

≤ n!(sup
Ω

(−ψ))nµ(Ω) <∞,

so the sequence [vj ] is convergent in L1
loc(Ω). This implies that u, v are plurisubharmonic

functions and therefore v ∈ F and u ∈ F(f). Moreover, by Corollary 3.7, (ddcu)n = µ.
The uniqueness follows from the comparison principle (Corollary 5.10).

The next lemma will help us determine when the limit of a decreasing sequence of
functions from E0 belongs to E .

Lemma 6.2 ([33]). Let u ∈ PSH−(Ω) and let [uj ] be a sequence such that uj ∈ E0,
uj ↘ u as j →∞. If there exists ψ ∈ E0 such that ψ < 0 and

sup
j

∫
Ω

(−ψ)(ddcuj)n <∞,

then u ∈ E.

Proof. Fix ω b Ω and define
vj = sup{w ∈ PSH−(Ω) : w|ω ≤ uj |ω}.

Then vj ≥ uj , vj ∈ E0, vj ↘ u as j → ∞, on ω. Since supp (ddcvj)n ⊂ ω̄ we have, by
Lemma 5.11,

sup
j

∫
Ω

(ddcvj)n ≤ (inf
ω

(−ψ))−1 sup
j

∫
Ω

(−ψ)(ddcvj)n

≤ (inf
ω

(−ψ))−1 sup
j

∫
Ω

(−ψ)(ddcuj)n <∞,

which implies that limj→∞ vj ∈ F and therefore u ∈ E .
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In [33] Cegrell proved Theorem 6.3 below. Here we present a slightly modified proof.

Theorem 6.3 ([33]). Let µ be a non-negative measure defined on Ω such that µ vanishes
on pluripolar subsets of Ω and there exists ϕ∈PSH(Ω), ϕ<0, such that

∫
Ω

(−ϕ) dµ<∞.
Then there exists a unique u ∈ N such that (ddcu)n = µ.

Proof. The uniqueness follows by the comparison principle in Corollary 5.10. From The-
orem 2.17 there exists a sequence [ϕj ], ϕj ∈ E0 ∩ C(Ω̄), such that ϕj ↘ ϕ. Then∫

Ω

(−ϕj) dµ ≤
∫

Ω

(−ϕ) dµ <∞,

so we can assume that ϕ ∈ E0 ∩ C(Ω̄).
It follows from Theorem 5.6 that there exist ψ ∈ E0 and 0 ≤ f ∈ L1

loc((ddcψ)n) such
that µ = f(ddcψ)n. Set µj = min(f, j)(ddcψ)n and observe that µj ≤ (ddc(j1/nψ))n.
By the Ko lodziej subsolution theorem (Theorem 2.7) there exists vj ∈ E0 such that
(ddcvj)n = µj . It follows from the comparison principle (Theorem 2.2) that vj ↘ u.
Observe that by Lemma 3.12,

sup
j

∫
Ω

(−vj)n(ddcψ)n ≤ n!(sup
Ω

(−ψ))n−1 sup
j

∫
Ω

(−ψ)(ddcvj)n

≤ n!(sup
Ω

(−ψ))n−1

∫
Ω

(−ψ)dµ <∞,

which means that u ∈ PSH−(Ω). Then u ∈ E by Lemma 6.2. We shall prove that u ∈ N .
Let [Ωk] be a fundamental sequence. By the Ko lodziej subsolution theorem there exist
αkj , β

k
j ∈ E0 such that

(ddcαkj )n = χΩk min(f, j)(ddcψ)n, (ddcβkj )n = (1− χΩk) min(f, j)(ddcψ)n.

Note that
(ddc(αkj + βkj ))n ≥ (ddcαkj )n + (ddcβkj )n = (ddcvj)n,

so by the comparison principle,

(6.3) vj ≥ αkj + βkj .

It follows from Theorem 2.2 that [αkj ]∞j=1, [βkj ]∞j=1 are decreasing sequences. From the first
part of the proof it follows that there exist αk, βk ∈ E such that αkj ↘ αk, βkj ↘ βk as
j →∞. Therefore

(ddcαk)n = χΩk(ddcψ)n, (ddcβk)n = (1− χΩk)(ddcψ)n,

and from (6.3),
u ≥ αk + βk.

It follows from Proposition 3.16 that αk ∈ F . Then

ũ ≥ α̃k + β̃k = β̃k ≥ βk.

To prove that u ∈ N it is enough to show that βk → 0 as k → ∞. First note that from
the comparison principle, βkj ≤ β

k+1
j , so [βk] is increasing. By Lemma 3.12,
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Ω

(−βkj )n(ddcϕ)n ≤ n! sup
Ω

(−ϕ)n−1

∫
Ω

(−ϕ)(ddcβkj )n

= n! sup
Ω

(−ϕ)n−1

∫
Ω\Ωk

(−ϕ) min(f, j)(ddcψ)n,

and then, in view of the assumption on ϕ, we obtain∫
Ω

(−βk)n(ddcϕ)n ≤ n! sup
Ω

(−ϕ)n−1

∫
Ω\Ωk

(−ϕ)dµ→ 0

as k → ∞, by the monotone convergence theorem. Therefore limk→∞ βk = 0 on
supp (ddcϕ)n, so by the maximum principle for plurisubharmonic functions we conclude
that limk→∞ βk = 0 on Ω.

The following example shows that the condition in Theorem 6.3 is only sufficient.

Example 6.4 ([33]). Let B = B(0, 1) be the unit ball in Cn. We show that there exists
u ∈ N (B) ∩ L∞(B) such that limz→w u(z) = 0 for all w ∈ ∂B and∫

B
(−ϕ)(ddcu)n =∞

for all ϕ ∈ E0, ϕ 6= 0. Let us define

vj(z) = max(j2 log |z|,−1/j2),

and observe that vj ∈ E0, (ddcvj)n = j2ndσj , where dσj is the Lebesgue measure on the
sphere Sj = {z ∈ B : |z| = e−1/j4} and∫

Sj

(ddcvj)n = j2n(2π)n.

Moreover, ∫
B
(−v1)(ddcvj)n = j2n(2π)n

1
j4
.

Define uk =
∑k
j=1 vj . Then uk ∈ E0 and uk ↘ u =

∑∞
j=1 vj . Moreover, u ∈ N (B)∩L∞(B)

by Proposition 4.8 since

−
∞∑
j=1

1
j2
≤ u ≤ 0,

and supp (ddcu)n ⊂ B(0, 1) \ B(0, e−1). Fix ϕ ∈ E0, ϕ 6= 0. Since the function v1 is
maximal on B(0, 1) \B(0, e−1), there exists a constant c such that

ϕ ≤ cv1

on B(0, 1) \B(0, e−1). Therefore we have∫
B
(−ϕ)(ddcu)n =

∫
B(0,1)\B(0,e−1)

(−ϕ)(ddcu)n

≥ c
∫
B(0,1)\B(0,e−1)

(−v1)(ddcu)n = c

∫
B
(−v1)(ddcu)n

≥ c
∞∑
j=1

∫
B
(−v1)(ddcvj)n = c

∞∑
j=1

j2n−4(2π)n =∞.
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Proposition 6.5 ([69]). If u ∈ E is such that (ddcu)n vanishes on all pluripolar sets in
Ω and there exists a function ϕ ∈ PSH(Ω), ϕ < 0, such that

∫
Ω

(−ϕ)(ddcu)n <∞, then
u ∈ N (ũ).

Proof. As in the proof of Theorem 6.3 we can assume that ϕ ∈ E0.
Choose uj ∈ E0 ∩ C(Ω̄) decreasing to u (see Theorem 2.17) and let [Ωj ] be a funda-

mental sequence in Ω. Then for each j there is sj > sj−1 such that for s ≥ sj ,∫
Ω

(−ϕ)χΩj (dd
cus)n ≤

∫
Ω

(−ϕ)(ddcu)n + 1.

By Theorem 2.7 there exists vs,j ∈ E0 such that (ddcvs,j)n = χΩ̄j (dd
cus)n. Theorem 2.2

yields us ≥ vs,j + ujs, since (ddcus)n ≤ (ddc(us,j + ujs))
n. Hence, if t ≥ s ≥ sj , then

us ≥ ut ≥ vt,j + ujt .

In particular,
us ≥ (sup

t≥s
vt,j)∗ + uj

and
u ≥ lim

s→∞
(sup
t≥s

vt,j)∗ + uj = ψj + uj .

Now, [ψj ] is a decreasing sequence of functions in F ,∫
Ω

(−ϕ)(ddcψj)n ≤
∫

Ω

(−ϕ)(ddcu)n + 1,

so from Theorem 6.3, ψ = limψj ∈ N since∫
Ω

(−ϕ)(ddcψ)n ≤
∫

Ω

(−ϕ)(ddcu)n + 1,

Moreover, uj increases a.e. to ũ as j →∞, and we have u ≥ ψ + ũ.

In Theorem 6.6 we solve the Dirichlet problem in N (H) with given generalized bound-
ary values H. Here we give a slightly modified proof compared to the original one in [4].

Theorem 6.6 ([4]). Assume that µ is a non-negative measure defined on Ω by µ =
(ddcϕ)n, ϕ ∈ N with µ(A) = 0 for every pluripolar set A ⊆ Ω. Then for every H ∈ E
such that (ddcH)n ≤ µ there exists a unique u ∈ N (H) such that (ddcu)n = µ on Ω.

Proof. The uniqueness follows by the comparison principle in Corollary 5.10. We proceed
with the existence part. Theorem 2.17 implies that there exists a decreasing sequence [Hk],
Hk ∈ E0 ∩ C(Ω̄), that converges pointwise to H as j → ∞. Let [Ωj ] be a fundamental
sequence in Ω. For each j, k ∈ N let Hj

k be as in Definition 4.4, i.e.,

Hj
k = sup{ϕ ∈ PSH(Ω) : ϕ ≤ Hk on Ωcj},

ThenHk ≤ Hj
k,Hk = Hj

k on Ωcj ,H
j
k ∈ E0(Ω) andHj

k is maximal on Ωj . Let f
j
k = Hk|∂Ωj .

We show that Hj
k = PBfjk

on Ωj . Since H
j
k is upper semicontinuous, for all ξ ∈ ∂Ωj ,

lim sup
Ωj3z→ξ

Hj
k(z) ≤ lim sup

Ω3z→ξ
Hj
k(z) ≤ Hj

k(ξ) = Hk(ξ) = fkj (ξ).
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But we have also

lim inf
Ωj3z→ξ

Hj
k(z) ≥ lim inf

Ωj3z→ξ
Hk(z) = Hk(ξ) = fkj (ξ),

since Hk ≤ Hj
k and Hk is continuous. Thus we have proved that

lim
Ωj3z→ξ

Hj
k(z) = fkj (ξ),

so by the Walsh theorem (Theorem 2.15) and the fact that Hj
k is maximal on Ωj , H

j
k is

the Perron–Bremermann envelope of f jk on Ωj . Consider the measure µj = χΩjµ defined
on Ω, where χΩj is the characteristic function of Ωj in Ω. For each j ∈ N the measure µj
is a compactly supported Borel measure defined on Ω, µj vanishes on all pluripolar sets in
Ω and µj(Ωj) < µj(Ω) <∞. Therefore by Theorem 6.1 there exists a unique ϕj ∈ F(Ωj)
such that (ddcϕj)n = µj on Ωj . Moreover, from Theorem 6.1 there exist uj,k ∈ F(Ωj , fkj )
such that (ddcuj,k)n = µj on Ωj . The comparison principle (Corollary 5.10) implies that

(6.4) Hj
k ≥ uj,k ≥ ϕj +Hj

k on Ωj ,

since (ddcuj,k)n ≤ (ddc(ϕj +Hj
k))n and Hj

k is maximal on Ωj . The comparison principle
shows that [uj,k]∞k=1 is a decreasing sequence. Let k → ∞ and set uj = limk→∞ uj,k.
Then (6.4) gives us that Hj ≥ uj ≥ ϕj + Hj on Ωj , i.e., uj ∈ F(Ωj , Hj) ⊆ N (Ωj , Hj).
From the assumption that µ ≥ (ddcH)n we get (ddcuj)n = µj = χΩjµ = µ ≥ (ddcH)n

on Ωj and therefore from the comparison principle, uj ≤ H on Ωj . The construction of
µj and the fact that [Ωj ] is an increasing sequence imply that (ddcuj)n = (ddcuj+1)n on
Ωj . Hence [uj ] is decreasing and

(6.5) H ≥ uj ≥ ϕ+H on Ωj .

Thus, the function u = (limj→∞ uj) ∈ N (Ω, H) is such that (ddcu)n = µ on Ω.

Remark 6.7. Let Ω be a bounded hyperconvex domain in Cn, and f ∈ C(∂Ω) be a
real-valued function such that

lim
z→ξ
z∈Ω

PBf (z) = f(ξ) for all ξ ∈ ∂Ω.

Let ϕ ∈ N be such that limz→ξ ϕ(z) = 0 for all ξ ∈ ∂Ω, and set µ = (ddcϕ)n. Assume
that µ(A) = 0 for every pluripolar set A ⊆ Ω. Then there exists a unique u ∈ N (f) such
that

(ddcu)n = µ on Ω and lim
z→ξ
z∈Ω

u(z) = f(ξ) for all ξ ∈ ∂Ω

(see (6.5)).

Remark 6.8. Assume that µ is a non-negative Radon measure defined on Ω such that
µ vanishes on all pluripolar sets, and µ(Ω) < ∞. Let H ∈ E be such that (ddcH)n ≤ µ.
Then there exists a unique u ∈ F(H) with (ddcu)n = µ. In particular, if H ∈ E ∩
MPSH(Ω), then there always exists a unique u ∈ F(H) with (ddcu)n = µ, since
(ddcH)n = 0.
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6.2. Singular measures. Inequality (6.6) below was originally proved in [49].

Lemma 6.9 ([4, 49]). Let u, uk, v ∈ E, k = 1, . . . , n − 1, with u ≥ v on Ω and set
T = ddcu1 ∧ · · · ∧ ddcun−1. Then

(6.6) χ{u=−∞}dd
cu ∧ T ≤ χ{v=−∞}dd

cv ∧ T.

In particular, if (ddcv)n vanishes on pluripolar sets, then (ddcu)n vanishes on pluripolar
sets. Moreover, if uj , vj ∈ E, uj ≥ vj, for j = 1, . . . , n, then∫

A

ddcu1 ∧ · · · ∧ ddcun ≤
∫
A

ddcv1 ∧ · · · ∧ ddcvn

for every pluripolar Borel set A ⊆ Ω.

Proof. Let ε > 0. Set wj = max((1− ε)u− j, v). Then wj = (1− ε)u− j on the open set
{v < −j/ε} and therefore

ddcwj ∧ T = (1− ε)ddcu ∧ T on {v < −j/ε}.

Hence ddcwj ∧ T ≥ (1− ε)χ{u=−∞}dd
cu ∧ T . Let j →∞. Then

ddcv ∧ T ≥ (1− ε)χ{u=−∞}dd
cu ∧ T on Ω.

The proof of the first part is completed by letting ε→ 0+.
The second part follows from the first one.

Definition 6.10 ([4]). Let u ∈ E and 0 ≤ τ be a bounded lower semicontinuous function.
Then we define

uτ = sup{ϕ ∈ PSH(Ω) : ϕ ≤ τ1/nu}.

Definition 6.10 yields the following elementary properties:

(1) If u, v ∈ E with u ≤ v, then uτ ≤ vτ .
(2) If u ∈ E , then 0 ≥ uτ ≥ ‖τ‖1/nL∞(Ω)u ∈ E . Hence, by Proposition 2.10 we have uτ ∈ E .
(3) If τ1, τ2 are bounded lower semicontinuous functions with τ1 ≤ τ2, then uτ1 ≥ uτ2 .
(4) If u ∈ E , then supp (ddcuτ )n ⊆ supp τ and if supp τ is compact then uτ ∈ F .
(5) If [τj ], 0 ≤ τj , is an increasing sequence of bounded lower semicontinuous functions

that converges pointwise to a bounded lower semicontinuous function τ as j → ∞,
then [uτj ] is a decreasing sequence that converges pointwise to uτ as j →∞.

Lemma 6.11 ([4]). Let u ∈ E and let K be a compact pluripolar subset of Ω. Then

(ddcuK)n = χK(ddcu)n,

where uχO is as in Definition 6.10 and

uK = (sup{uχO : K ⊂ O ⊂ Ω, O is open})∗.

Proof. Choose a decreasing sequence [Oj ], Oj ⊆ Ω, such that K =
⋂
j Oj . Then [uχOj ]

is an increasing sequence that converges to uK outside a pluripolar set as j → ∞, and
supp (ddcuK)n ⊆

⋂
Ōj = K. We have uχOj = u on Oj , hence (ddcuχOj )n ≥ χK(ddcu)n,

so (ddcuK)n ≥ χK(ddcu)n. On the other hand, uK ≥ u and therefore by Lemma 6.9,
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K

(ddcuK)n ≤
∫
K

(ddcu)n

and hence (ddcuK)n = χK(ddcu)n.

Lemma 6.12 ([4]). Let u1, . . . , un ∈ E. Then∫
A

ddcu1 ∧ · · · ∧ ddcun ≤
(∫

A

(ddcu1)n
)1/n

· · ·
(∫

A

(ddcun)n
)1/n

,

for every pluripolar Borel set A ⊂ Ω.

Proof. Without loss of generality we can assume that A is a compact pluripolar set and
u1, . . . , un ∈ F . Let [Gj ] be a decreasing sequence of open subsets of Ω with

⋂
j Gj = A.

Corollary 3.15 yields∫
Ω

ddcu1Gj
∧ · · · ∧ ddcunGj ≤

(∫
Ω

(ddcu1Gj
)n
)1/n

· · ·
(∫

Ω

(ddcunGj )n
)1/n

For 1 ≤ k ≤ n we have ukGj = uk on Gj and supp (ddcukGj )n ⊂ Ḡj ⊂ Ḡ1, hence∫
Gj

ddcu1 ∧ · · · ∧ ddcun ≤
(∫

Ḡj

(ddcu1Gj
)n
)1/n

· · ·
(∫

Ḡj

(ddcunGj )n
)1/n

.

Let j →∞. Lemma 6.11 then yields the conclusion.

For u ∈ E we write µu = χ{u=−∞}(ddcu)n and define S to be the class of simple
functions f =

∑m
j=1 αjχEj , αj > 0, where Ej are pairwise disjoint and µ-measurable

such that f is compactly supported and vanishes outside {u = −∞}. We also define T to
be the subclass of simple functions f ∈ S, f =

∑m
j=1 αjχEj , such that Ej ’s are compact

sets.

Definition 6.13 ([4]). Let u ∈ E and 0 ≤ g ≤ 1 be a µu-measurable function. We define

ug = inf
f∈T
f≤g

(sup{uτ : f ≤ τ, τ is a bounded lower semicontinuous function})∗.

From Definition 6.13 it follows that u ≤ ug ≤ 0, so ug ∈ E by Proposition 2.10, and
if g1 ≤ g2, then ug1 ≥ ug2 . Furthermore, if g ∈ T , then

ug = (sup{uτ : g ≤ τ, τ is a bounded lower semicontinuous function})∗ ∈ F .

Lemma 6.14 ([4]). Let u ∈ E and g ∈ S. Then ug ∈ F and (ddcug)n = g(ddcu)n.

Proof. Assume first that g ∈ T . Then ug ∈ F as already noted. Let g =
∑m
k=1 αkχAk

and consider uk = uαkχAk . Then for 1 ≤ k ≤ m we have u1 + · · · + um ≤ ug ≤ uk so if
B ⊆

⋃m
k=1Ak, then it follows from Lemma 6.9 that∫

B

(ddcuk)n ≤
∫
B

(ddcug)n ≤
∫
B

(ddc(u1 + · · ·+ um))n, 1 ≤ k ≤ m.

Hence, if B ⊂ Ak, then it follows from Lemma 6.11 that∫
B

(ddcuk)n = αk

∫
B

(ddcu)n,
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since (ddcuk)n = αkχAk(ddcu)n. From Lemma 6.12 we have

αk

∫
B

(ddcu)n =
∫
B

(ddc(u1 + · · ·+ um))n,

since (ddcuj)n(B) = 0 for all j 6= k. Hence,

αk

∫
B

(ddcu)n ≤
∫
B

(ddcug)n ≤ αk
∫
B

(ddcu)n, 1 ≤ k ≤ m,

for all Borel sets B ⊂ Ak, k = 1, . . . ,m. Thus (ddcug)n = g(ddcu)n.
Assume now that g ∈ S, i.e., g =

∑m
j=1 αjχEj , αj > 0, Ej are pairwise disjoint

and µu-measurable such that g is compactly supported and vanishes outside {u = −∞}.
Choose for each Ej , 1 ≤ j ≤ m, an increasing sequence [Kp

j ]∞p=1 of compact subsets of
Ej such that χp =

∑m
j=1 χKp

j
converges to χ =

∑m
j=1 χEj a.e. w.r.t. µu as p→∞. Then

χp ∈ T and gχp ∈ T . Furthermore, if f ∈ T with f ≤ g, then fχp ∈ T and fχp ≤ gχp.
Hence ufχp ≥ ugχp . By the first part of the proof we have (ddcufχp)n = fχp(ddcu)n and
(ddcugχp)n = gχp(ddcu)n. Since χp ↗ χ and fχp ↗ f , [ufχp ] is a decreasing sequence
and uf ≤ ufχp . Therefore there exist ϕ ∈ E such that limp→∞ ufχp = ϕ ≥ uf . Similarly
one can prove that limp→∞ ugχp ≥ ug. Moreover, since (ddcuf )n = (ddcϕ)n = f(ddcu)n,
Theorem 5.14 implies that ϕ = uf . Thus,

uf = lim
p→∞

ufχp ≥ lim
p→∞

ugχp

for every f ∈ T with f ≤ g, so Definition 6.13 yields ug = limp→∞ ugχp ∈ F and

(ddcug)n = lim
p→∞

(ddcugχp)n = lim
p→∞

gχp(ddcu)n = g(ddcu)n.

Theorem 6.15 ([4]). Let u ∈ E and let 0 ≤ g ≤ 1 be a µu-measurable function that
vanishes outside {u = −∞}. Then ug ∈ E and (ddcug)n = g(ddcu)n.

Proof. Let [gj ], gj ∈ S, be an increasing sequence that converges pointwise to g as j →∞.
If f ∈ T with f ≤ g, then min(f, gj) ∈ S and by Lemma 6.14 we have (ddcumin(f,gj))n =
min(f, gj)(ddcu)n. Since min(f, gj) ↗ f , [umin(f,gj)] is a decreasing sequence and uf ≤
umin(f,gj). Therefore there exist ϕ ∈ E such that limj→∞ umin(f,gj) = ϕ ≥ uf . Similarly
one can prove that limj→∞ ugj ≥ ug. Moreover, since (ddcuf )n = (ddcϕ)n = f(ddcu)n,
Theorem 5.14 implies that ϕ = uf . Thus,

uf = lim
j→∞

umin(f,gj) ≥ lim
j→∞

ugj

for every f ∈ T with f ≤ g, so Definition 6.13 yields ug = limj→∞ ugj ∈ E and
Lemma 6.14 implies that

(ddcug)n = lim
j→∞

(ddcugj )n = lim
j→∞

gj(ddcu)n = g(ddcu)n.

Remark 6.16. Let u and g be as in Theorem 6.15. If (ddcu)n vanishes on pluripolar sets,
then it follows from Theorem 6.15 that ug = 0 on Ω.

Corollary 6.17 ([4]). Let u ∈ E and f, g, 0 ≤ f, g ≤ 1, be two µu-measurable functions
which vanish outside {u = −∞}. If f = g a.e. w.r.t. µu, then uf = ug.
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Proof. Let u ∈ E and assume for now that f, g ∈ S. Then by Lemma 6.14 we have
uf , ug ∈ F , uf ≥ umax(f,g) and

(ddcuf )n = f(ddcu)n = max(f, g)(ddcu)n = (ddcumax(f,g))n.

Hence, by Theorem 5.14 we have uf = umax(f,g). Similarly we get ug = umax(f,g). Thus,
uf = ug.

For the general case let [Ωj ] be a fundamental sequence and let f, g, 0 ≤ f, g ≤ 1, be
two µu-measurable functions that vanish outside {u = −∞}. Our assumption that f = g

a.e. w.r.t. µu implies that χΩjf = χΩjg a.e. w.r.t. µu and by the first part of the proof
we get uχΩj f = uχΩj g. The proof is then completed by letting j →∞.

Example 6.18 shows that there exists a measure g(ddcu)n carried by a pluripolar set
that is not a discrete measure.

Example 6.18 ([4]). Let µ be a positive measure with no atoms and with support in
a compact polar subset of the unit disc D (see e.g. [74, p. 82] and [26, Chapter IV,
Theorem 1]). Let u be the subharmonic Green potential of µ. Consider ν = µ × · · · × µ
(n-times) and v(z1, . . . , zn) = max(u(z1), . . . , u(zn)) on D×· · ·×D (n-times). Then v ∈ F ,
(ddcv)n = ν, ν has no atoms and it is supported by a pluripolar set.

6.3. The general case

Lemma 6.19 ([4]). Assume that α, β1, β2 are non-negative measures defined on Ω which
satisfy the following conditions:

(1) α vanishes on every pluripolar subset of Ω,
(2) there exists a pluripolar sets A ⊂ Ω such that β1(Ω \A) = β2(Ω \A) = 0.
(3) for every ρ ∈ E0 ∩ C(Ω̄),∫

Ω

(−ρ) dβ1 ≤
∫

Ω

(−ρ)(dα+ dβ2) <∞.

Then ∫
Ω

(−ρ) dβ1 ≤
∫

Ω

(−ρ) dβ2

for every ρ ∈ E0 ∩ C(Ω̄).

Proof. Since A is pluripolar and Ω is bounded there exists a function ϕ ∈ PSH(Ω),
ϕ ≤ 0, such that A ⊆ {ϕ = −∞}. Take ρ ∈ E0 ∩ C(Ω̄) and set ρj = max(ρ, ϕ/j). Then∫

Ω
(−ρj) dβ1 ≤

∫
Ω

(−ρj)(dα+ dβ2) <∞ and by letting j →∞ we get∫
{ϕ=−∞}

(−ρ) dβ1 ≤
∫
{ϕ=−∞}

(−ρ)(dα+ dβ2).

But α vanishes on pluripolar sets and β1 and β2 are carried by sets contained in {ϕ =
−∞}. This yields the conclusion.

Let u ∈ E . Then by Theorem 5.6 there exist φu ∈ E0 and fu ∈ L1
loc((ddcφu)n),

fu ≥ 0, such that (ddcu)n = fu (ddcφu)n + βu. The non-negative measure βu is such
that there exists a pluripolar set A ⊆ Ω with βu(Ω \ A) = 0. In Lemma 6.20 we will use
αu = fu (ddcφu)n and the fact that βu is the singular part of (ddcu)n.
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Lemma 6.20 ([4]). Let u, v ∈ E. If there exists a function ϕ ∈ E such that (ddcϕ)n

vanishes on pluripolar sets and |u− v| ≤ −ϕ, then βu = βv.

Proof. Let Ω′ b Ω. Without loss of generality we can assume that u, v, ϕ ∈ F , since it is
sufficient to prove that βu = βv on Ω′. The assumption that |u−v| ≤ −ϕ yields v+ϕ ≤ u
and therefore it follows from Lemma 5.11 that

(6.7)
∫

Ω

(−ρ)(ddcu)n ≤
∫

(−ρ)(ddc(v + ϕ))n <∞

for all ρ ∈ E0. Since (ddcϕ)n vanishes on pluripolar sets, by Lemma 6.12 the measure∑n
j=1

(
n
j

)
(ddcϕ)j ∧ (ddcv)n−j also vanishes on pluripolar sets. Therefore βv+ϕ = βv and

αv+ϕ = αv +
n∑
j=1

(
n

j

)
(ddcϕ)j ∧ (ddcv)n−j .

Lemma 6.19 and inequality (6.7) yield∫
Ω

(−ρ) dβu ≤
∫

Ω

(−ρ) dβv

for every ρ ∈ E0. In a similar manner we get∫
Ω

(−ρ) dβv ≤
∫

Ω

(−ρ) dβu

for every ρ ∈ E0. From Theorem 2.19 it now follows that βu = βv.

Lemma 6.21 ([4]). Let H ∈ E ∩MPSH(Ω).

(1) If v ∈ N , (ddcv)n is carried by a pluripolar set, and
∫

Ω
(−ρ)(ddcv)n < ∞ for all

ρ ∈ E0 ∩ C(Ω̄), then

u = sup{ϕ ∈ PSH(Ω) : ϕ ≤ min(v,H)} ∈ N (H)

satisfies (ddcu)n = (ddcv)n.
(2) Assume that ψ ∈ N , (ddcψ)n vanishes on pluripolar sets, v ∈ N (H), (ddcv)n is

carried by a pluripolar set, and
∫

Ω
(−ρ)((ddcψ)n+(ddcv)n) <∞ for all ρ ∈ E0∩C(Ω̄).

If u is the function defined on Ω by

u = sup{ϕ : ϕ ∈ B((ddcψ)n, v))},

where

B((ddcψ)n, v) = {ϕ ∈ E : (ddcψ)n ≤ (ddcϕ)n and ϕ ≤ v},

then u ∈ N (H) and (ddcu)n = (ddcψ)n + (ddcv)n.

Proof. (1): Since min(v,H) is a negative and upper semicontinuous function we have
u ∈ PSH(Ω) andH ≥ u ≥ v+H. Furthermore, u ∈ N (H), since v ∈ N . By Theorem 2.17
we can choose a decreasing sequence [vj ], vj ∈ E0∩C(Ω̄), that converges pointwise to v as
j →∞, and use Theorem 6.6 to solve (ddcwj)n = (ddcvj)n, wj ∈ N (H), j ∈ N. Consider

uj = sup{ϕ ∈ PSH(Ω) : ϕ ≤ min(vj , H)} ∈ E0(H).
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Then uj ≥ wj , so by Lemma 5.11,
∫

Ω
(−ρ)(ddcuj)n ≤

∫
D

(−ρ)(ddcwj)n. Corollary 5.12
now yields ∫

Ω

(−ρ)(ddcu)n ≤
∫

Ω

(−ρ)(ddcv)n for all ρ ∈ E0 ∩ C(Ω̄),

and therefore (ddcu)n is carried by some pluripolar set. It follows from Theorem 5.6 that
(ddcu)n is carried by {u = −∞}. Since v ≥ u ≥ v +H it follows from Lemma 6.20 that
(ddcu)n = (ddcv)n. Thus, part (1) is proved.

(2): The function (ψ+v) belongs to B((ddcψ)n, v) and therefore we have v+ψ ≤ u ≤ v,
hence u ∈ N (H). Theorem 5.6 gives (ddcu)n = α+β, where α and β are positive measures
defined on Ω such that α vanishes on all pluripolar sets and β is carried by a pluripolar set.
By the classical Choquet lemma (see e.g. [62]) there exist functions ϕj ∈ B((ddcψ)n, v)
such that u = (supj ϕj)∗. Since for all j we have (ddcϕj)n ≥ (ddcψ)n, Lemma 5.3 yields
(ddcu)n ≥ (ddcψ)n. By Lemma 6.20 we have β = (ddcv)n, and we have already noted
that α ≥ (ddcψ)n. Theorem 2.17 implies that there exists a decreasing sequence [vj ],
vj ∈ E0(H), that converges pointwise to v as j →∞. Now,∫

Ω

(−ρ)((ddcψ)n + (ddcvj)n) <∞ for all ρ ∈ E0 ∩ C(Ω̄),

so by Theorems 6.3 and 6.6, there exists a unique wj ∈ N (H) such that (ddcwj)n =
(ddcψ)n + (ddcvj)n. It follows from the comparison principle (Corollary 5.10) that wj ∈
B((ddcψ)n, vj), so if we let

uj = sup{ϕ : ϕ ∈ B((ddcψ)n, vj)},

then [uj ] decreases pointwise to u as j → ∞. Furthermore, since ψ + vj ≤ wj ≤ uj
Lemma 5.11 implies that∫

Ω

(−ρ)(ddcuj)n ≤
∫

Ω

(−ρ)(ddcwj)n =
∫

Ω

(−ρ)((ddcψ)n + (ddcvj)n).

Let j →∞. Then Corollary 5.12 yields∫
Ω

(−ρ)(ddcu)n ≤
∫

Ω

(−ρ)((ddcψ)n + dβ).

Hence
∫

Ω
(−ρ)(dα + dβ) ≤

∫
Ω

(−ρ)((ddcψ)n + dβ). Since we know that α ≥ (ddcψ)n

it follows that for all ρ ∈ E0 ∩ C(Ω̄) we have
∫

Ω
ρdα =

∫
Ω
ρ(ddcψ)n, and therefore by

Theorem 2.19, α = (ddcψ)n. Thus, the proof is complete.

The main result of this chapter is the following generalization of Ko lodziej’s subsolu-
tion theorem.

Theorem 6.22 ([4], subsolution theorem). Assume that µ is a non-negative measure with
the decomposition (given by Theorem 5.6)

µ = f (ddcφ)n + ν,

where φ ∈ E0, f ∈ L1
loc((ddcφ)n), f ≥ 0 and ν is a non-negative measure carried by a

pluripolar subset of Ω.
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(1) If there exists a function w ∈ E with µ ≤ (ddcw)n, then there exist functions ψ, v ∈ E,
v, ψ ≥ w, such that

(ddcψ)n = f(ddcφ)n and (ddcv)n = ν,

where ν is carried by {v = −∞}.
(2) If there exists a function w ∈ E with µ ≤ (ddcw)n, then for every H ∈ E∩MPSH(Ω)

there exists a function u ∈ E, w + H ≤ u ≤ H, with (ddcu)n = µ. In particular, if
w ∈ N , then u ∈ N (H).

Proof. (1): Using the Radon–Nikodym theorem and the decomposition of µ we obtain

f(ddcφ)n = τχ{w>−∞}(ddcw)n and ν = τχ{w=−∞}(ddcw)n,

where 0 ≤ τ ≤ 1 is a Borel function. For each j ∈ N, let µj be the measure defined by
µj = min(f, j)(ddcφ)n. Hence, µj ≤ (ddc(j1/n ψ))n and therefore by Theorem 2.7 there
exists a unique function ψj ∈ E0 such that (ddcψj)n = µj . The comparison principle
(Corollary 5.10) implies that ψj ≥ w and that [ψj ] is a decreasing sequence. The function
ψ = limj→∞ ψj is then in E and (ddcψ)n = f (ddcφ)n. Theorem 6.15 implies that there
exists v ∈ E such that (ddcv)n = ν and v ≥ w. Thus,

(ddcψ)n = f(ddcφ)n and (ddcv)n = ν.

(2): Continuing with the same notations as in (1), we choose an increasing sequence
of simple functions [gj ], supp gj b Ω, that converges to g = χ{w=−∞}τ as j → ∞.
By Theorem 6.15 we have wgj ∈ F , (ddcwgj )n = gj(ddcw)n and [wgj ] is a decreasing
sequence that converges pointwise to wg as j →∞. Moreover, wg ≥ w. Hence (ddcwg)n =
χ{w=−∞}τ(ddcw)n. Set

uj = sup{ϕ ∈ B((ddcψj)n,min(wgj , H))},

where

B((ddcψj)n,min(wgj , H)) = {ϕ ∈ E : (ddcψj)n ≤ (ddcϕ)n and ϕ ≤ min(wgj , H)}.

This construction implies that [uj ] is a decreasing sequence. The sequence [uj ] converges
to some plurisubharmonic function u as j → ∞, and by Lemma 6.21, uj ∈ N (H) with
(ddcuj)n = (ddcψj)n + (ddcwgj )n. Furthermore, we have w +H ≤ uj ≤ H. We conclude
the proof by letting j →∞.

Remark 6.23. Let u1, . . . , un ∈ E . Then it follows from the subsolution theorem (Theo-
rem 6.22) that there exists u ∈ E such that (ddcu)n = ddcu1 ∧ · · · ∧ ddcun.

In the following example we construct a positive measure µ for which there does not
exist u ∈ E such that (ddcu)n = µ.

Example 6.24 ([33]). Let B ⊂ Cn. In this example we shall construct a decreasing
sequence [us], us ∈ E0(B), that converges pointwise to −∞ as s→∞, and

sup
s≥1

∫
B
(log |z|2)2(ddcus)n <∞.

This means that if µ is an accumulation point of [(ddcus)n], then there is no u ∈ E(B)
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with (ddcu)n = µ, since by the comparison principle (Corollary 5.10) we have u ≤ us,
and therefore u = −∞ everywhere.

For j ≥ 2, let aj = 1/j1/2, and bj = 1/(j1/2 log j). Then
∑∞
j=2 a

2
j =∞,

∑∞
j=2 b

2
j <∞,

and
∑∞
j=2 ajbj =∞. Furthermore, aj

∑j
k=2 ak ≤ 6 for all j ≥ 2. Now define

ϕj =
aj
2π

max(log |z|, log(1− bj)), j ≥ 2.

Then

ddcϕj ∧ ddcϕk =

{
a2
jdσ1−bj , j = k,

ajakdσmax(1−bj ,1−bk), j 6= k,

where dσr is the normalized Lebesgue measure on the sphere with radius r. We then have∫
B
(log |z|2)2(ddc

∑s
j=2 ϕj)

n =
s∑

j,k=2

∫
B
(log |z|2)2ddcϕj ∧ ddcϕk

≤ 2
s∑
j=2

j∑
k=2

∫
B
(log |z|2)2ddcϕj ∧ ddcϕk

≤ 2
s∑
j=2

log(1− bj)2aj

j∑
k=1

ak

≤ 12
s∑
j=2

log(1− bj)2 <∞.

To conclude this example set us =
∑s
j=2 ϕj .

7. Generalized boundary values

In this chapter we shall study the boundary behavior of plurisubharmonic functions. It
follows directly from the definition of E0 (Definition 2.8) that every function u ∈ E0 has
zero boundary values in the sense that

lim
z→ξ
z∈Ω

ϕ(z) = 0

for every ξ ∈ ∂Ω. This is no longer true for functions in N . Instead, for all u ∈ N we
have
(7.1) lim sup

z→ξ
z∈Ω

ϕ(z) = 0

for every ξ ∈ ∂Ω (Theorem 7.1). On the other hand, there exists u ∈ F such that
lim inf
z→ξ
z∈Ω

ϕ(z) = −∞

for every ξ ∈ ∂Ω (Example 7.3). For functions in E we cannot even expect that (7.1) holds.
Therefore for a better understanding of boundary behavior of plurisubharmonic functions,
following Cegrell ([36]), we introduce another concept of boundary values for plurisub-
harmonic functions. We prove that so called generalized boundary values are a natural
extension of the classical notion of boundary values. This topic is discussed in Chapter 7.1.
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In Chapter 7.2 we prove a stability theorem for the complex Monge–Ampère operator in
N (H) (Theorem 7.12). Using the stability theorem we will show the existence and stabil-
ity of solutions of the complex Monge–Ampère type equation (Theorems 7.16 and 7.18).
Chapter 7.3 is devoted to a subextension theorem for functions in F(H) (Theorem 7.19).

7.1. Monge–Ampère boundary measures. In this chapter we define, using some
convergence results for the Monge–Ampère measures of functions from F (Theorem 7.4),
the boundary measure µu associated with u ∈ F (Definition 7.8). Furthermore, we shall
show that such a construction is not possible for every function from N (Example 7.7).
For every bounded plurisubharmonic function ϕ we also define the boundary values ϕu of
ϕ with respect to the measure µu. We prove that under certain assumptions the boundary
values arising from the Monge–Ampère boundary measures, the boundary values for func-
tions in the Cegrell class F(H), and the classical boundary values coincide (Theorems 7.9
and 7.10). Most results in this chapter originate from [36].

We start with the classical boundary values of negative plurisubharmonic functions.
We prove the following theorem.

Theorem 7.1 ([3]). If u ∈ N then lim supz→ξ u(z) = 0 for all ξ ∈ ∂Ω.

Proof. Let u ∈ N . Suppose that there exists ξ ∈ ∂Ω such that lim supz→ξ u(z) < 0.
Then there exists f ∈ C(∂Ω) such that u∗ ≤ f ≤ 0 and f(ξ) < 0. Since Ω is a bounded
hyperconvex domain, there exists a harmonic function h in Ω, continuous on Ω̄ such that
h = f on ∂Ω (see [9]). The smallest maximal plurisubharmonic majorant of u ∈ N is
ũ = 0, by the definition of the Cegrell class N . Since 0 ≥ h ≥ ũ, we have h = 0, but
h(ξ) < 0 and we obtain a contradiction.

Proposition 7.2 ([32]). For every pluripolar set E in Ω there exists u ∈ F such that
E ⊂ {u = −∞}.

Proof. Since E is pluripolar, there exists a sequence [Uj ] of open sets Uj ⊂ Ω such that
E ⊂ Uj and Cn(Uj) ≤ 1/2j . Let [Ωj ] be the fundamental sequence. Define by hj = hUj∩Ωj

the relative extremal function of Uj ∩ Ωj . Then hj ∈ E0, −1 ≤ hj ≤ 0 and hj = −1 on
Uj ∩ Ωj . Let uk =

∑k
j=1 hj . Fix v ∈ E0, −1 ≤ v < 0 in Ω. Then from Theorem 3.14,

Lemma 3.12 and Theorem 2.4 we have(∫
Ω

(−uk)n(ddcv)n
)1/n

≤ (n!)1/n

(∫
Ω

(−v)(ddcuk)n
)1/n

≤ (n!)1/n
k∑
j=1

(∫
Ω

(−v)(ddchj)n
)1/n

≤ (n!)1/n
k∑
j=1

(∫
Ω

(ddchj)n
)1/n

≤ (n!)1/n
k∑
j=1

Cn(Uj ∩ Ωj)1/n ≤ (n!)1/n
k∑
j=1

Cn(Uj)1/n ≤ (n!)1/n
∞∑
j=1

2−j/n <∞.

Then u = limk→∞ uk is a negative plurisubharmonic function and u ∈ F since by Theo-
rem 3.14, (∫

Ω

(ddcu)n
)1/n

≤
∞∑
j=1

(∫
Ω

(ddchj)n
)1/n

=
∞∑
j=1

2−j/n <∞.
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To finish the proof note that if z ∈ E, then there exists j0 such that z ∈ Ωj0 and then
z ∈ Uj∩Ωj for all j ≥ j0. Therefore hj(z) = −1 for j ≥ j0, so u(z) =

∑∞
j=1 hj(z) = −∞.

Example 7.3 ([2]). We construct a function u ∈ F such that lim infz→ξ u(z) = −∞ for
all ξ ∈ ∂Ω. Let E = {zj , j ∈ N} ⊂ Ω be such that ∂Ω ⊂ Ē. Since E is a pluripolar
set, from Proposition 7.2 there exists u ∈ F such that E ⊂ {u = −∞}. Therefore
lim infz→ξ u(z) = −∞ for all ξ ∈ ∂Ω.

Let [Ωj ] be a fundamental sequence for Ω. Let u ∈ F(Ω) and let [uj ] be the sequence
from Definition 4.4. Then u ≤ uj ≤ uj+1 ≤ 0 and uj ∈ F(Ω). Moreover, by Stokes’
theorem

∫
Ω

(ddcuj)n =
∫

Ω
(ddcu)n and also supp (ddcuj)n ⊂ Ω \ Ωj .

The following theorem allows us to define a boundary measure associated with a
function in F .

Theorem 7.4 ([36]). Let u ∈ F(Ω). Then there exists a measure µu on ∂Ω such that
(ddcuj)n is convergent in the weak∗-topology to µu. For all ϕ ∈ PSH(Ω) ∩ L∞(Ω) the
limit

lim
j→∞

∫
Ω

ϕ(ddcuj)n

exists. Moreover, if ψ ∈ PSH(Ω) ∩ L∞(Ω) then the sequence [ψ(ddcuj)n] is convergent
in the weak∗-topology.

Proof. Let U be a strictly pseudoconvex set containing Ω̄. Let ϕ ∈ PSH(Ω) ∩ L∞(Ω).
Since

∫
Ω

(ddcuj)n =
∫

Ω
(ddcu)n, without loss of generality we can assume that ϕ ≤ 0. By

Theorem 2.17 there exists a decreasing sequence [ϕk] ⊂ E0 ∩ C(Ω) converging to ϕ. Then
by Theorem 3.1 we have

−∞ <

∫
Ω

ϕk(ddcu)n ≤
∫

Ω

ϕk(ddcuj)n ≤
∫

Ω

ϕk(ddcuj+1)n

and using the monotone convergence theorem we find that for ϕ ∈ PSH(Ω) ∩ L∞(Ω),

(7.2) −∞ <

∫
Ω

ϕ(ddcu)n ≤
∫

Ω

ϕ(ddcuj)n ≤
∫

Ω

ϕ(ddcuj+1)n ≤ sup
Ω
ϕ

∫
Ω

(ddcu)n.

Thus
∫

Ω
ϕ(ddcuj)n is a bounded increasing sequence, so limj→∞

∫
Ω
ϕ(ddcuj)n exists.

In particular, this limit exists for all ϕ ∈ C∞0 (U) ⊂ E0(U) ∩ C(Ū) − E0(U) ∩ C(Ū) by
Theorem 2.19, which means that it holds for any ϕ ∈ C0. This implies that the limit
limj→∞(ddcuj)n defines a positive functional on C0, so by the Riesz theorem there exists
a positive measure µu on U such that (ddcuj)n is convergent in the weak∗-topology to µu.
It follows from the construction that suppµu ⊂ ∂Ω.

Fix ψ ∈ PSH(Ω)∩L∞(Ω). To prove the second part of Theorem 7.4 it is enough, by
Theorem 2.19, to prove that for any ϕ ∈ PSH−(Ω) ∩ L∞(Ω) the limit

lim
j→∞

∫
Ω

ψϕ(ddcuj)n

exists. For given ϕ,ψ there exist a, b > 0 such that ϕ + a ≥ 0, ψ + b ≥ 0, and then
(ϕ + a)2, (ψ + b)2, (ϕ + ψ + a + b)2 ∈ PSH(Ω) ∩ L∞(Ω). Let w denote any of those
functions. Then by the first part of the proof, limj→∞

∫
Ω
w(ddcuj)n exists. Then the

limit exists for w = (ϕ+ a)(ψ + b) and finally for w = ψϕ. This ends the proof.
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Example 7.5 ([36]). Let B be the unit ball in Cn, and let u(z) = log |z|. In this example,
we show that µu = dσ. Let Ωj = B(0, e−1/j) be a fundamental sequence. Then uj(z) =
max(log |z|,−1/j). Therefore, (ddcuj)n = dσj , where dσj is the Lebesgue measure on
∂B(0, e−1/j). Hence, µu = dσ, since (ddcuj)n tends to dσ in the weak∗-topology.

Example 7.6 ([36]). Let D2 be the unit polydisc in C2, and let u be the function defined
on D by

u(z, w) = max(log |z|, log |w|).

We shall prove that µu = dσ ⊗ dσ, where dσ is the Lebesgue measure on ∂D. Let Ωj =
D1−1/j × D1−1/j be the fundamental sequence. Then

uj(z, w) = max(log |z|, log |w|, log(1− 1/j)).

Hence, (ddcuj)n = dσj ⊗ dσj , where dσj is the Lebesgue measure on ∂D1−1/j , which
means that µu = dσ ⊗ dσ since (ddcuj)n tends to dσ ⊗ dσ in the weak∗-topology.

Theorem 7.4 is not valid for functions in N (Example 7.7), and therefore it is not
possible to define the boundary measure µu for u ∈ N .

Example 7.7. Let B be the unit ball in Cn. Define uj(z) = max(log |z|,−1/2j). Then
uj ∈ E0, (ddcuj)n = (2π)ndσj , where dσj is the Lebesgue measure on the sphere {|z| =
e−1/2j}. Let u =

∑∞
j=1 uj . Then u ∈ N by Proposition 4.8 since u(0) = −1. Moreover,∫

B
(ddcu)n ≥

∞∑
j=1

∫
B
(ddcuj)n =

∞∑
j=1

(2π)n =∞.

Let Ωj = B(0, e−1/2j ) be the fundamental sequence. Note that

uj =
∞∑
k=j

uk,

and therefore
∫

B(ddcuj)n =∞.

Based on Theorem 7.4 we can state the following definition.

Definition 7.8 ([36]). For u ∈ F(Ω) and ϕ ∈ PSH(Ω)∩L∞(Ω), let ϕu be the function
in L∞(∂Ω, µu) such that

lim
j→∞

ϕ(ddcuj)n = ϕudµu.

We may consider ϕu as the boundary values of ϕ with respect to µu. Note that at
least formally ϕu depends on both ϕ and u. However, the following theorems describe
some situations when this definition agrees with other notions of boundary values. In
Theorem 7.9, we present a slightly modified proof compared to the original one.

Theorem 7.9 ([36]). Let u ∈ F(Ω) be such that (ddcu)n vanishes on pluripolar sets in Ω,
and ϕ ∈ PSH−(W )∩L∞(W ), where W is a bounded hyperconvex domain containing Ω̄.
Then ϕu = ϕ|∂Ω almost everywhere with respect to µu.
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Proof. Let ϕ ∈ PSH−(W )∩L∞(W ). By Theorem 2.17 there exists ϕk ∈ E0∩C(W ) such
that ϕk ↘ ϕ. Then by Theorem 7.4,

lim
j→∞

∫
Ω

ϕ(ddcuj)n ≤ lim
j→∞

∫
Ω

ϕk(ddcuj)n =
∫
∂Ω

ϕkdµu.

By letting k →∞ we obtain

(7.3) lim
j→∞

∫
Ω

ϕ(ddcuj)n ≤
∫
∂Ω

ϕdµu.

Fix f ∈ C(Ω̄), f ≥ 0. It follows as above that∫
∂Ω

fϕu dµu = lim
j→∞

∫
Ω

fϕ(ddcuj)n ≤
∫
∂Ω

fϕ dµu.

Thus ϕu ≤ ϕ a.e w.r.t. µu, so it remains to prove that
∫
∂Ω
ϕu dµu =

∫
∂Ω
ϕdµu. Choose

a hyperconvex set U such that Ω b U b W . For a given ε > 0 by the quasicontinuity of
plurisubharmonic functions (Theorem 2.5) there exist an open set Uε ⊂ U , Cn(Uε, U) < ε

and ϕε ∈ C0(U) such that infU ϕ ≤ ϕε ≤ 0 and U \ Uε ⊂ {z ∈ U : ϕ(z) = ϕε(z)}. It
follows that∫

∂Ω

ϕudµu = lim
j→∞

∫
Ω

ϕ(ddcuj)n = lim
j→∞

∫
Ω∩Uε

ϕ(ddcuj)n + lim
j→∞

∫
Ω\Uε

ϕε(ddcuj)n(7.4)

≥ lim
j→∞

∫
Ω∩Uε

ϕ(ddcuj)n +
∫
∂Ω

ϕεdµu

= lim
j→∞

∫
Ω∩Uε

ϕ(ddcuj)n +
∫
∂Ω∩Uε

ϕεdµu +
∫
∂Ω\Uε

ϕdµu

≥ lim
j→∞

∫
Ω∩Uε

ϕ(ddcuj)n +
∫
∂Ω∩Uε

ϕεdµu +
∫
∂Ω

ϕdµu.

Let hε = sup{ψ ∈ PSH−(W ) : ψ|Uε ≤ −1} be the relative extremal function for Uε.
Then by (7.2), (7.3) and (7.4) we obtain

0 ≥
∫
∂Ω

ϕudµu −
∫
∂Ω

ϕdµu ≥ lim
j→∞

∫
Ω∩Uε

ϕ(ddcuj)n +
∫
∂Ω∩Uε

ϕεdµu

≥ inf
U
ϕ

(
lim
j→∞

∫
Ω∩Uε

(ddcuj)n +
∫
∂Ω∩Uε

dµu

)
= − inf

U
ϕ

(
lim
j→∞

∫
Ω∩Uε

hε(ddcuj)n +
∫
∂Ω∩Uε

hεdµu

)
≥ − inf

U
ϕ

(
lim
j→∞

∫
Ω

hε(ddcuj)n +
∫
∂Ω

hεdµu

)
≥ −2 inf

U
ϕ

∫
Ω

hε(ddcu)n.

To finish the proof it is now enough to show that

lim
ε→0

∫
Ω

hε(ddcu)n = 0.

Since (ddcu)n does not put mass on pluripolar sets, by Theorem 5.6 there exist ψ ∈ E0(W ),
f ≥ 0, f ∈ L1((ddcψ)n) such that µ = f(ddcψ)n. Define µk = min(f, k)(ddcψ)n for k ∈ N.
Then by the Ko lodziej subsolution theorem (Theorem 2.7) there exists ψk ∈ E0(W ) such
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that (ddcψk)n = µk. Therefore by Corollary 3.15 and Theorem 2.4,∫
Ω

(−hε)dµk =
∫
W

(−hε)(ddcψk)n =
∫
W

(−ψk)ddchε ∧ (ddcψk)n

≤ sup
W

(−ψk)
(∫

W

(ddchε)n
)1/n(∫

W

(ddcψk)n
)(n−1)/n

≤ µk(W )(n−1)/n sup
W

(−ψk)Cn(Uε,W )1/n

< Cµk(W )(n−1)/n sup
W

(−ψk)Cn(Uε, U)1/n

= C(k)ε1/n,

where the constants C,C(k) do not depend on ε. So we have proved that

lim
ε→0

∫
W

hεdµk = 0.

Hence by the monotone convergence theorem

0 ≥ lim
ε→0

∫
W

hε(ddcu)n = lim
ε→0

∫
W

hεdµk + lim
ε→0

∫
W

hε(f −min(k, f))(ddcψ)n

≥
∫
W

(min(k, f)− f)(ddcψ)n → 0, k →∞,

since −1 ≤ hε ≤ 0.

Theorem 7.10 ([36]). Let H be a bounded maximal plurisubharmonic function and let
u ∈ F(Ω) be such that (ddcu)n vanishes on pluripolar sets in Ω. Then for every ϕ ∈
F(Ω, H) such that

∫
Ω
ϕ(ddcu)n > −∞ we have ϕu = Hu.

Proof. Note that by Theorem 7.4 the limit limj→∞H(ddcuj)n exists. We have to prove
that

lim
j→∞

ϕ(ddcuj)n = lim
j→∞

H(ddcuj)n.

By the same argument as in the proof of Theorem 7.4 it is enough to prove that for all
w ∈ PSH−(Ω) ∩ L∞(Ω) we have

lim
j→∞

∫
Ω

wϕ(ddcuj)n = lim
j→∞

∫
Ω

wH(ddcuj)n.

Since ϕ ∈ F(Ω, H), there exists ψ ∈ F(Ω) such that ψ + H ≤ ϕ ≤ H. We may assume
that ψ ≥ ϕ (taking ψ0 = max(ψ,ϕ) if necessary) and that −1 ≤ w,H ≤ 0. We have∫

Ω

wϕ(ddcuj)n =
∫

Ω

w(ϕ−H)(ddcuj)n +
∫

Ω

wH(ddcuj)n.

Note that by Theorem 3.1,

0 ≤
∫

Ω

w(ϕ−H)(ddcuj)n =
∫

Ω

(−w)(H − ϕ)(ddcuj)n ≤
∫

Ω

(−w)(−ψ)(ddcuj)n

≤
∫

Ω

(−ψ)(ddcuj)n =
∫

Ω

(−uj)ddcψ ∧ (ddcuj)n−1 ≤
∫

Ω

(−u)ddcψ ∧ (ddcuj)n−1
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=
∫

Ω

(−uj)ddcψ ∧ ddcu ∧ (ddcuj)n−2 ≤ · · · ≤
∫

Ω

(−uj)ddcψ ∧ (ddcu)n−1 = Ij

≤
∫

Ω

(−u)ddcψ ∧ (ddcu)n−1 =
∫

Ω

(−ψ)(ddcu)n ≤
∫

Ω

(−ϕ)(ddcu)n <∞.

Since uj increases to zero outside a pluripolar set and the measure ddcψ∧ (ddcu)n−1 does
not put mass on pluripolar sets, we have Ij ↘ 0 as j →∞. This ends the proof.

Remark 7.11. If ϕ ∈ L∞(Ω), then
∫

Ω
ϕ(ddcu)n > −∞ for every u ∈ F . Furthermore,

ψ ≥ ϕ. This implies that ψ is bounded, and therefore the measure ddcψ∧ (ddcu)n−1 does
not put mass on any pluripolar set. Thus, for any bounded function ϕ ∈ F(Ω, H) we
have

ϕuµu = lim
j→∞

ϕ(ddcuj)n = lim
j→∞

H(ddcuj)n = Huµu

for every u ∈ F .

7.2. Stability of solutions and the complex Monge–Ampère type equation.
In [37], Cegrell and Ko lodziej proved a stability theorem for the complex Monge–Ampère
equation in F(PBg), where g is a continuous function on ∂Ω such that limz→ξ PBg(z) =
g(ξ) for all ξ ∈ ∂Ω. Consider the Monge–Ampère equation

(7.5) (ddcu)n = µ.

By stability of solutions to (7.5) in a class K we mean that after a small perturbation µ′

of the measure µ one still can find a solution u′ to the equation (ddcu′)n = µ′ that also
belongs to K. Furthermore u′ should be in some sense close to u. We prove the stability
theorem in N (H) (Theorem 7.12).

In [28], Cegrell proved that convergence in the sense of distributions of plurisubhar-
monic functions does not in general imply convergence of their Monge–Ampère measures.
In other words, the complex Monge–Ampère operator is not continuous on the set of pluri-
subharmonic functions equipped with its natural topology, i.e. weak topology. Recall that
a sequence of plurisubharmonic functions that converges in the sense of distributions is
also convergent in Lploc for any p ∈ [1,∞), i.e. it is weakly convergent (see e.g. [58]).
Later Lelong proved that every locally bounded plurisubharmonic function defined on a
bounded pseudoconvex domain can be approximated in the weak topology by continu-
ous maximal plurisubharmonic functions [66]. It was proved by Xing [84], Cegrell [31],
Phạm [71], Åhag and the author [7], among others, that it is better to consider other
types of convergence for plurisubharmonic function to ensure continuity of the complex
Monge–Ampère operator. In particular, Cegrell proved that if a sequence of plurisub-
harmonic functions is bounded from below by a function from the Cegrell class E and if
it is convergent in capacity then the corresponding Monge–Ampère measures are weak∗

convergent. We shall give an example, using the stability theorem, that on a certain set
of plurisubharmonic functions weak convergence is equivalent to convergence in capacity
(Theorem 7.15).

Bedford and Taylor proved in [18] the existence of a solution to the following Monge–
Ampère type equation:

(7.6) (ddcu)n = F (u(z), z)µ.
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They assumed that µ is the Lebesgue measure, and F 1/n ≥ 0 is bounded, continuous,
convex, and increasing in the first variable. Later in [29], Cegrell showed that the convexity
and monotonicity conditions are superfluous. The case when F is smooth was proved
in [24]. In [64], Ko lodziej proved existence and uniqueness of solution to (7.6) when F is a
bounded, nonnegative function that is nondecreasing and continuous in the first variable.
Furthermore, µ was assumed to be a Monge–Ampère measure generated by some bounded
plurisubharmonic function. The underlying domain of (7.6) has so far been assumed to
be strictly pseudoconvex. A generalization to hyperconvex domains was made by Cegrell
and Ko lodziej in [37]. There assumptions were that µ is finite, vanishing on pluripolar
sets, and F ≥ 0 is continuous in the first variable, upper bounded by a function from
L1(dµ). Here we shall prove existence and stability of the solution of the Monge–Ampère
type equation (7.6) for some unbounded measures µ (Theorems 7.16 and 7.18).

The results in this chapter are exclusively published in this survey.
The aim of this chapter is the following stability result:

Theorem 7.12 (Stability theorem). Let Ω be a bounded hyperconvex domain, and let µ be
a measure vanishing on pluripolar sets such that there exists v ∈ N with µ = (ddcv)n, and
let H ∈ E ∩MPSH(Ω). Let 0 ≤ f, fj ≤ 1 be measurable functions such that fjµ → fµ

in the weak∗-topology as j →∞. Then for uj , u ∈ N (H) which solve

(ddcuj)n = fjµ, (ddcu)n = fµ

we have uj → u in capacity.

Theorem 7.12 is a generalization of Cegrell and Ko lodziej’s stability theorem ([37]).
From quasi-continuity of plurisubharmonic functions and the monotone convergence the-
orem we have the following well-known lemma ([84]).

Lemma 7.13. If [uj ] is a monotone sequence of plurisubharmonic functions converging
to a plurisubharmonic function u, then uj → u in capacity as j →∞.

Proof. Fix K b Ω, ε > 0, δ > 0. By Theorem 2.5 there exists an open set G ⊂ Ω such
that Cn(G) < δ/2, and functions uj , u are continuous on Gc. Thus, |u− uj | ↘ 0 locally
uniformly on Gc. Therefore, there exists j0 such that for all j ≥ j0, on K \G we have

|u− uj | ≤
δε

2Cn(K)
.

For all w ∈ PSH(Ω), −1 ≤ w ≤ 0,∫
{|uj−u|>ε}∩K

(ddcw)n ≤
∫
G

(ddcw)n +
1
ε

∫
K\G
|u− uj |(ddcw)n

≤ Cn(G) +
1
ε

δε

2Cn(K)

∫
K\G

(ddcw)n ≤ δ.

This means that, after taking the supremum over all w ∈ PSH(Ω), −1 ≤ w ≤ 0,

Cn({|uj − u| > ε} ∩K) ≤ δ,

and the proof is complete.
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Proposition 7.14. Let Ω be a bounded hyperconvex domain, and let u ∈ E be such
that µ = (ddcu)n vanishes on pluripolar sets. Let [Ωk] be the fundamental sequence. The
following two assertions are then equivalent:

(1) there exists ϕ ∈ N such that (ddcϕ)n = µ,
(2) there exists a sequence [uk] such that uk ∈ E, (ddcuk)n = (1 − χΩk)µ, and uk ↗ 0

a.e. in Ω.

Proof. (1)⇒(2): Assume that u ∈ N . Since (1−χΩk)µ ≤ µ = (ddcu)n, by the subsolution
theorem (Theorem 6.22) there exists uk ∈ N such that (ddcuk)n = (1 − χΩk)µ. The
comparison principle (Corollary 5.10) implies that the sequence [uk] is increasing. It
remains to show that uk ↗ 0 a.e. To prove this take another fundamental sequence [ωk]
such that

ωk b Ωk b ωk+1 b Ωk+1,

and define
vk = sup{w ∈ E : w ≤ u on ωck}.

Since vk = u on ωck, we have (ddcvk)n ≥ (ddcuk)n, and from the comparison principle
we obtain uk ≥ vk. Since u ∈ N , by definition vk ↗ 0 a.e. and therefore uk ↗ 0 a.e. as
k →∞.

(2)⇒(1): Assume that there exists a sequence [uk] such that uk ∈ E , (ddcuk)n =
(1−χΩk)µ and uk ↗ 0 a.e. in Ω. It follows from Theorem 5.6 that there exist ψ ∈ E0 and
0 ≤ f ∈ L1

loc((ddcψ)n) such that µ = f(ddcψ)n. By the Ko lodziej subsolution theorem
(Theorem 2.7) there exist ujk ∈ E0 such that

(ddcujk)n = min(f, j)(1− χΩk)(ddcψ)n.

It follows from the comparison principle that [ujk] is a decreasing sequence for fixed k, and
ujk ≥ uk. Then there exists vk ∈ E such that (ddcvk)n = (1−χΩk)µ and ujk ↘ vk ≥ uk as
j →∞. Furthermore, again by Corollary 5.10, [vk] is an increasing sequence and vk ↗ 0
a.e. as k →∞, since vk ≥ uk.

By the Ko lodziej subsolution theorem there exists ϕjk ∈ E0 such that

(ddcujk)n = min(f, j)χΩk(ddcψ)n.

It follows from the comparison principle that [ϕjk] is a decreasing sequence for fixed j,
and ϕjk ↘ ϕj as k → ∞, where ϕj ∈ F and (ddcϕj)n = min(f, j)(ddcψ)n. Similarly
[ϕjk] is a decreasing sequence, for fixed k, and ϕjk ↘ ϕk as j → ∞, where ϕk ∈ F and
(ddcϕk)n = χΩk(ddcψ)n.

The comparison principle implies that [ϕj ] is a decreasing sequence and ϕj ≥ u, and
therefore there exists ϕ ∈ E such that ϕj ↘ ϕ ≥ u and (ddcϕ)n = µ. Now we prove that
ϕ ∈ N . Note that

(ddc(ϕjk + ujk))n ≥ (ddcϕjk)n + (ddcujk)n = (ddcϕj)n,

so by the comparison principle we have

ϕj ≥ ϕjk + ujk.
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Letting j →∞ we obtain

ϕ ≥ ϕk + vk,

and since ϕ̃k = 0 we have

ϕ̃ ≥ ϕ̃k + ṽk ≥ vk ↗ 0, k →∞,

which means that ϕ̃ = 0 a.e, so ϕ̃ ≡ 0 and ϕ ∈ N .

Proof of Theorem 7.12. First note that it follows from the subsolution theorem (Theo-
rem 6.22) that there exist uj , u ∈ N (H) such that (ddcuj)n = fjµ and (ddcu)n = fµ.
Moreover, the comparison principle (Corollary 5.10) implies that uj , u are uniquely de-
termined.

Let [Ωk] be a fundamental sequence. By Theorem 6.6 there exist ukj , u
k ∈ F(H) such

that

(ddcukj )n = χΩkfjµ, (ddcuk)n = χΩkfµ.

It follows from the comparison principle that [ukj ], [uk] are decreasing sequences and
ukj ↘ uj , uk ↘ u, as k →∞. By the subsolution theorem there exists vk ∈ N such that
(ddcvk)n = (1 − χΩk)µ. By our assumptions µ = (ddcv)n with v ∈ N , so by Proposi-
tion 7.14, vk ↗ 0. Observe that

(ddcuj)n = fjµ ≤ (1− χΩk)µ+ fjχΩkµ = (ddcvk)n + (ddcukj )n ≤ (ddc(vk + ukj ))n

and then by the comparison principle uj ≥ vk + ukj . Therefore

(7.7) u− uj ≤ (uk − ukj ) + (ukj − uj) ≤ uk − ukj − vk

and

(7.8) uj − u ≤ ukj − u = (ukj − uk) + (uk − u).

Now fix K b Ω and δ, ε > 0. Since [vk], [uk] are monotone sequences, by Lemma 7.13
vk → 0 and uk → u in capacity as k →∞, and so there exists k0 such that for all k ≥ k0,

(7.9) Cn({vk < −ε/4} ∩K) < δ/4, Cn({|uk − u| > ε/4} ∩K) < δ/4.

Now for fixed k we prove that ukj → uk in capacity as j →∞. Note that by Corollary 5.9
we have for all w ∈ PSH(Ω), −1 ≤ w ≤ 0,∫

{uk>ukj }
(uk − ukj )n(ddcw)n ≤ n!

∫
{uk>ukj }

(−w)((ddcukj )n − (ddcuk)n)(7.10)

≤ n!
∫

Ωk∩{uk>ukj }
(−w)|fj − f |dµ,

and similarly

(7.11)
∫
{ukj>uk}

(ukj − uk)n(ddcw)n ≤ n!
∫

Ωk∩{ukj>uk}
(−w)|f − fj |dµ.

Now fix K b Ω, ε > 0 and w ∈ PSH(Ω), −1 ≤ w ≤ 0. Then by (7.10) and (7.11) we
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obtain∫
{|ukj−uk|>ε}∩K

(ddcw)n ≤ 1
εn

∫
{|ukj−uk|>ε}∩K

|ukj − uk|n(ddcw)n

≤ 1
εn

∫
{ukj>uk}

(ukj − uk)n(ddcw)n +
1
εn

∫
{ukj>uk}

(ukj − uk)n(ddcw)n

≤ n!
εn

∫
Ωk

(−w)|fj − f |dµ ≤
n!
εn

∫
Ωk

|fj − f |dµ.

Since fjµ → fµ, taking supremum over all w ∈ PSH(Ω), −1 ≤ w ≤ 0, we get ukj → uk

in capacity as j →∞. Fix k ≥ k0. Then there exists j0 such that for all j ≥ j0,

(7.12) Cn({|ukj − uk| > ε/4} ∩K) < δ/4.

Inequalities (7.7), (7.8), (7.9), and (7.12) yield, for j ≥ j0,

Cn({|uj − u| > ε} ∩K) ≤ 2Cn({|ukj − uk| > ε/4} ∩K)

+ Cn({|uk − u| > ε/4} ∩K) + Cn({vk < −ε/4} ∩K) < δ.

This ends the proof.

Corollary 7.15. Let Ω be a bounded hyperconvex domain, let µ be a measure vanishing
on pluripolar sets such that there exists v ∈ N with µ = (ddcv)n, and let H ∈ E ∩
MPSH(Ω). Let A(µ,H) denote the set of all solutions of the Dirichlet problem

u ∈ N (H), (ddcu)n = gµ,

where g varies over all µ-measurable function with 0 ≤ g ≤ 1. Then weak convergence
and convergence in capacity are equivalent in A(µ,H).

Proof. We follow the proof given in [37]. Suppose that uj → u in L1
loc(Ω) and let

(ddcuj)n = fjµ. Choose a subsequence fjk converging to some f in the weak∗-topology.
Then by Theorem 7.12, (ddcu)n = fµ and ujk → u in capacity. This argument works for
any subsequence of the original sequence, and therefore uj → u in capacity.

The stability theorem (Theorem 7.12) coupled with the Schauder–Tikhonov fixed
point theorem (see e.g. [78]) allow us to show a very general existence theorem for the
complex equation of Monge–Ampère type (7.6).

Theorem 7.16. Let Ω be a bounded hyperconvex domain, µ a non-negative measure
vanishing on pluripolar sets, and let H ∈ E ∩MPSH(Ω). Assume also that F (x, z) ≥ 0
is a dx × dµ-measurable function on (−∞, 0] × Ω that is continuous in the x variable.
Consider the following two conditions:

(1) there exist ϕ ∈ PSH−(Ω) and g ∈ L1((−ϕ)µ) such that

0 ≤ F (x, z) ≤ g(z),

(2) there exist w ∈ N such that µ = (ddcw)n, and a bounded function g such that

0 ≤ F (x, z) ≤ g(z).
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If one of the above conditions is satisfied, then there exists a function u ∈ N (H) that
satisfies

(ddcu)n = F (u(z), z)µ.

Furthermore, if F is a nondecreasing function in the first variable, then the solution u is
uniquely determined.

Proof. We follow the proof given in [37].
(1): By Theorem 6.3 there exists a unique ψ0 ∈ N such that (ddcψ0)n = g µ, and there-

fore Theorem 6.6 implies that there exists a unique ψ1 ∈ N (H) such that (ddcψ1)n = gµ.
Set

K = {u ∈ N (H) : u ≥ ψ1}.

The set K is convex, and compact in the L1
loc-topology. Let us define a map T : K → K

so that
if (ddcv)n = F (u(z), z)µ, then T (u) = v.

Note that if u ∈ K, then F (u(z), z)µ ≤ (ddcψ0)n. Theorem 6.6 implies that there exists
a unique v ∈ N (H) such that (ddcv)n = F (u(z), z)µ, and by Corollary 5.10 we have
v ≥ ψ1. Thus, v ∈ K, i.e. T is well defined.

We proceed to prove that T is continuous, and then the Schauder–Tikhonov fixed
point theorem concludes the existence part of the proof. Assume that uj ∈ K with
uj → u. By [37] there exists a subsequence (still denoted by [uj ]) converging to u in
L1

loc(dµ). Theorem 7.12 applied to the measure gµ implies that the sequence vj = T (uj)
converges in capacity to some v ∈ K. Since vj , v ∈ K we can use [31] to find that (ddcvj)n

tends to (ddcv)n in the weak∗-topology. Hence,

(ddcv)n = lim
j→∞

(ddcvj)n = lim
j→∞

F (uj(z), z)µ = F (u(z), z)µ = (ddcT (u))n,

which implies that v = T (u) by Corollary 5.10. Thus, limj→∞ T (uj) = T (u), i.e. T is
continuous.

We now proceed with the uniqueness part. Assume that F is nondecreasing in the
first variable, and there exist u, v ∈ N (H) such that

(ddcu)n = F (u(z), z)µ and (ddcv)n = F (v(z), z)µ.

On the set {z ∈ Ω : u(z) < v(z)} we have

(ddcu)n = F (u(z), z)µ ≤ F (v(z), z)µ = (ddcv)n.

Corollary 5.9 yields ∫
{u<v}

(ddcv)n ≤
∫
{u<v}

(ddcu)n,

hence (ddcu)n = (ddcv)n on {z ∈ Ω : u(z) < v(z)}. In a similar manner, we get (ddcu)n =
(ddcv)n on {z ∈ Ω : u(z) > v(z)}. Furthermore, on {u = v} we have

(ddcu)n = F (u(z), z)µ = F (v(z), z)µ = (ddcv)n.

Hence, (ddcu)n = (ddcv)n on Ω. Thus u = v, by Corollary 5.10.
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(2): Let g be a bounded function such that 0 ≤ F (x, z) ≤ g(z). By Theorem 6.6 there
exist unique ψ0 ∈ N and ψ1 ∈ N (H) with

(ddcψ0)n = (ddcψ1)n = g dµ.

The rest of the proof is the same as for (1).

Remark 7.17. Condition (1) in the above theorem is satisfied by a smaller class of
measures, but with a wider class of functions F . On the other hand, condition (2) gives
a more general class of measures, but then we must assume a more restrictive conditions
on F . Note that Theorem 7.16 is a generalization of the corresponding result in [37], since
for a finite measure µ it is enough to take ϕ = −1 in condition (1).

We end this chapter by proving a stability theorem for the Monge–Ampère type
equation.

Theorem 7.18. Let Ω be a bounded hyperconvex domain, let µ be a non-negative measure
vanishing on pluripolar sets and let H ∈ E ∩MPSH(Ω). Suppose also that F (x, z) ≥ 0
is a dx×dµ-measurable function on (−∞, 0]×Ω which is continuous and non-decreasing
in x. Assume that one of the conditions below is satisfied:

(1) there exist ϕ ∈ PSH−(Ω) and g ∈ L1((−ϕ)µ) such that

0 ≤ F (x, z) ≤ g(z),

(2) there exist w ∈ N such that µ = (ddcw)n and a bounded function g such that

0 ≤ F (x, z) ≤ g(z).

Let 0 ≤ f, fj ≤ 1 be measurable functions such that fjµ → fµ in the weak∗-topology as
j →∞. Then for uj , u ∈ N (H) which solve

(ddcuj)n = F (uj(z), z)fj(z)µ, (ddcu)n = F (u(z), z)f(z)µ

we have uj → u in capacity.

Proof. Theorem 7.16 yields unique functions uj ∈ N (H) such that

(ddcuj)n = F (uj(z), z)fj(z)µ.

Theorem 6.6 together with Corollary 5.10 implies that there exists a unique function
ψ ∈ N (H) such that (ddcψ)n = g µ, and uj ≥ ψ, since (ddcuj)n = F (uj(z), z)fj(z)dµ ≤
g µ = (ddcψ)n. Therefore there exists a subsequence, still denoted by [uj ], that converges
to u in the weak topology. Furthermore, H ≥ u ≥ ψ, since H ≥ uj ≥ ψ. Thus, u ∈ N (H).
Corollary 7.15 yields uj → u in capacity, and then [31] implies that [(ddcuj)n] tends to
(ddcu)n in the weak∗-topology. Passing to a subsequence, still denoted by [fj ], we may
assume that fj → f pointwise a.e. w.r.t. [µ]. The dominated convergence theorem gives
us

(ddcu)n = lim
j→∞

(ddcuj)n = lim
j→∞

F (uj(z), z)fj(z)µ = F (u(z), z)f(z)µ.

Hence, u is a solution to
(ddcu)n = F (u(z), z)f(z)µ.

Since this argument works for any subsequence taken from the original sequence, we
conclude that uj → u in capacity.
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7.3. Subextension. The problem of finding the domains of existence for plurisubhar-
monic functions was considered by Bedford and Burns ([14]), and by Cegrell ([27]), i.e.
they studied domains for which there exists a plurisubharmonic function that cannot
be extended to any larger domain. They proved that any smooth bounded domain in
Cn satisfying a certain non-degeneracy condition on the Levi form is a domain of exis-
tence. Plurisubharmonic functions are defined as functions satisfying certain inequalities,
and therefore it is more natural to consider for them the subextension problem: for
Ω1 ⊂ Ω2 b Cn and for a given u ∈ PSH(Ω1) find v ∈ PSH(Ω2) such that v ≤ u on Ω1.
Bedford and Taylor improved an example by Fornæss and Sibony [55] by constructing a
smooth negative plurisubharmonic function on an arbitrary bounded domain in Cn with
C2-boundary that does not subextend [20]. Cegrell and Zeriahi [39] proved that plurisub-
harmonic functions with bounded Monge–Ampère mass on a bounded hyperconvex do-
main admit a plurisubharmonic subextension to any larger bounded hyperconvex domain
with control of the Monge–Ampère mass. Cegrell, Ko lodziej and Zeriahi [38] proved sev-
eral results showing that plurisubharmonic functions with bounded total Monge–Ampère
mass admit global plurisubharmonic subextension with logarithmic growth at infinity.
We prove that subextension is possible in F(H) (Theorem 7.19 and Proposition 8.17).
Wiklund constructed an example that shows that subextension is not possible in N (Ex-
ample 7.22). Subextension theorems proved their usefulness for example in estimation
of the volume of sublevel sets of plurisubharmonic functions and in estimation of the
integrability index for plurisubharmonic functions ([5, 7, 39], see e.g. [41, 75] for further
applications).

This chapter is mainly based on the joint work of the author and Lisa Hed in [47].
Here we shall prove the following theorem.

Theorem 7.19 ([47]). Let Ω1 and Ω2 be two bounded hyperconvex domains such that
Ω1 ⊂ Ω2 ⊂ Cn, n ≥ 1 and let F ∈ E(Ω1), G ∈ E(Ω2) ∩MPSH(Ω2) be such that

(7.13) F ≥ G on Ω1.

If u ∈ F(Ω1, F ), then there exists v ∈ F(Ω2, G) such that v ≤ u on Ω1 and∫
Ω2

(ddcv)n ≤
∫

Ω1

(ddcu)n.

Without the control of the total Monge–Ampère mass, the subextension in F(H),
H ∈ E , would follow as in the second part of the proof of Theorem 7.19 by using Theo-
rem 2.2 in [39]. At this point it is not known if the assumption that G ∈ MPSH(Ω2) is
necessary, but we observe that it is necessary that

∫
Ω2

(ddcG)n ≤
∫

Ω1
(ddcF )n.

To prove Theorem 7.19 we need the following proposition.

Proposition 7.20 ([47]). Let H ∈ E. If u ∈ F(H) is such that

(7.14)
∫

Ω

(ddcu)n <∞,

then there exists a decreasing sequence [uj ], uj ∈ E0(H), that converges pointwise to u as
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j tends to ∞, and

(7.15) sup
j

∫
Ω

(ddcuj)n <∞.

Furthermore, if [uj ], uj ∈ F(H), is a decreasing sequence that converges pointwise to a
function u as j tends to ∞, such that (7.15) is satisfied, then u ∈ F(H) and (7.14) holds.

Proof. Assume that u ∈ F(H) is such that (7.14) holds. It follows from Theorem 2.17
that there exists a decreasing sequence [uj ], uj ∈ E0(H), that converges pointwise to u
on Ω as j →∞. By Corollary 5.12 and assumption (7.14) we have

sup
j

∫
Ω

(ddcuj)n <∞.

Now assume first that [uj ], uj ∈ E0(H), is a decreasing sequence such that (7.15) holds
and [uj ] converges pointwise to a function u as j → ∞. From (7.15) and Lemma 5.11
we have

∫
Ω

(ddcH)n < ∞, since uj , H ∈ F(H) and uj ≤ H. Theorem 4.10 implies that
H ∈ F(H̃), where H̃ is defined as in Definition 4.4. Hence, we can, without loss of
generality, assume that (ddcH)n = 0. The measure (ddcuj)n has finite total mass and
vanishes on pluripolar sets by Lemma 6.20. Therefore Theorem 6.6 implies that there
exists a unique ϕj ∈ F such that (ddcϕj)n = (ddcuj)n. Furthermore,

(ddc(ϕj +H))n ≥ (ddcuj)n.

Thus, uj ≥ ϕj +H, by the comparison principle (Corollary 5.10). Let ϕ′j be the function
defined by ϕ′j = (supk≥j ϕk)∗. This construction implies that [ϕ′j ], ϕ

′
j ∈ F , is a decreasing

sequence and

sup
j

∫
Ω

(ddcϕ′j)
n ≤ sup

j

∫
Ω

(ddcϕj)n <∞,

by (7.15) and the fact that (ddcϕj)n = (ddcuj)n. Thus, by Proposition 3.16, ϕ =
(limj→∞ ϕ′j) ∈ F . For every k ∈ N we have uj ≥ u(j+k) ≥ ϕ(j+k) + H. Hence, for
every j ∈ N we have uj ≥ ϕ + H. By letting j → ∞ we get u ∈ F(H). Now (7.15) and
Corollary 5.12 imply that∫

Ω

(ddcu)n = lim
j→∞

∫
Ω

(ddcuj)n <∞.

If uj ∈ F(H) only, we can take ψ ∈ E0(Ω), ψ 6= 0 and define

u′j = max{uj , jψ +H}.

Since jψ +H ∈ E0(H) for every fixed j, we know that u′j ∈ E0(H). By the construction,
u′j ↘ u as j →∞ and then Lemma 5.11 and (7.15) imply that

∫
Ω

(ddcu′j)
n ≤

∫
Ω

(ddcuj)n.
It follows from (7.15) that

sup
j

∫
Ω

(ddcu′j)
n <∞

and the result follows.
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Proof of Theorem 7.19. Let u ∈ F(Ω1, F ). First assume that

(7.16)
∫

Ω1

(ddcu)n <∞.

This assumption and Lemma 5.11 imply that
∫

Ω1
(ddcF )n < ∞, since u, F ∈ F(Ω1, F )

and u ≤ F . Theorem 4.10 implies that F ∈ F(Ω1, F̃ ), where F̃ is defined as in Defi-
nition 4.4. Hence, we can, without loss of generality, assume that (ddcF )n = 0. Propo-
sition 7.20 implies that there exists a decreasing sequence [uj ], uj ∈ E0(Ω1, F ), which
converges pointwise to u on Ω1 as j →∞, and

(7.17) sup
j

∫
Ω1

(ddcuj)n <∞.

Consider the measure µj = χΩ1(ddcuj)n defined on Ω2, where χΩ1 is the characteris-
tic function defined in Ω2 for the set Ω1. The measure µj is a Borel measure in Ω2

and it vanishes on pluripolar sets by Lemma 6.20. Moreover, from (7.17) it follows that
µj(Ω2) <∞. Theorem 6.6 together with Theorem 4.10 implies that there exists a unique
ψj ∈ F(Ω2, G) such that (ddcψj)n = µj on Ω2. Theorem 5.6 implies that there exist
wj ∈ E0(Ω2, 0) and ϕj ∈ L1(Ω2, (ddcwj)n), ϕj ≥ 0, such that µj = ϕj(ddcwj)n on Ω2.
For k ∈ N let the measure µjk be defined on Ω2 by

µjk = min(ϕj , k)(ddcwj)n.

It follows from Theorems 6.6 and 4.10 that there exist decreasing sequences [ψjk]∞k=1,
ψjk ∈ F(Ω2, G), [ϕjk]∞k=1, ϕjk ∈ F(Ω1, F ), such that

(ddcψjk)n = µjk on Ω2 and (ddcϕjk)n = µjk on Ω1.

Furthermore, [ψjk]∞k=1 converges pointwise to ψj on Ω2 and [ϕjk]∞k=1 converges pointwise
to uj on Ω1 as k →∞. The comparison principle (Corollary 5.10) and (7.13) yield

ψjk ≤ ϕjk on Ω1.

Thus, ψj ≤ uj on Ω1. For each j ∈ N let vj = (supl≥j ψl)∗. By the construction we have
vj ∈ F(Ω2, G),

(7.18) vj ≤ uj on Ω1,

and vj ≥ ψj on Ω2 and therefore it follows that∫
Ω2

(ddcvj)n ≤
∫

Ω2

(ddcψj)n =
∫

Ω1

(ddcuj)n,

hence

(7.19) sup
j

∫
Ω2

(ddcvj)n ≤ sup
j

∫
Ω1

(ddcuj)n <∞.

Thus, limj→∞ vj ∈ F(Ω2, G), by Proposition 7.20. Let v = limj→∞ vj . Then it follows
from (7.18) that v ≤ u on Ω1 and by (7.19) and Corollary 5.12 we have∫

Ω2

(ddcv)n ≤
∫

Ω1

(ddcu)n,

which completes the proof in this case.
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Now assume that u ∈ F(Ω1, F ) is such that

(7.20)
∫

Ω1

(ddcu)n =∞.

Then it suffices to construct a function v in F(Ω2, G) such that v ≤ u on Ω1. By definition
there exists u′ ∈ F(Ω1, 0) such that

F ≥ u ≥ u′ + F.

From the first part of the proof there exists v′ ∈ F(Ω2, 0) such that v′ ≤ u′ on Ω1. Now
let v = v′ +G. Then v ∈ F(Ω2, G) and it follows by assumption (7.13) that

u ≥ u′ + F ≥ v′ +G = v

on Ω1. Thus the proof is complete.

The next example shows that condition (7.13) in Theorem 7.19 is relevant.

Example 7.21 ([7]). Let Ω1 = D×D and Ω2 = D2×D2 be polydiscs in C2. Then define
f(z, w) = |z|2 on ∂Ω1, and g(z, w) = |w|2 on ∂Ω2. If u(z, w) = |z|2, then (ddcu)2 = 0
on Ω1. Now suppose that there exists v ∈ F(Ω2, |w|2) such that v ≤ u with∫

Ω2

(ddcv)2 ≤
∫

Ω1

(ddcu)2 = 0.

This means that v must be a maximal plurisubharmonic function. In other words, v is
the solution to the Dirichlet problem

lim sup
(z,w)→∂Ω2

v(z, w) = |w|2, (ddcv)2 = 0.

By uniqueness we have v(z, w) = |w|2. Hence, v(0, 1/2) = 1/4 > 0 = u(0, 1/2), which is
impossible.

The following example shows that there exists a function in N \ F that cannot be
subextended.

Example 7.22 ([57, 83]). Let Ω be a bounded hyperconvex domain in Cn and let z ∈ Ω.
Recall that the pluricomplex Green function with the pole at z is defined as follows:

gΩ(z, w) = sup
{
u(w) : u ∈ PSH(Ω), u ≤ 0,

∣∣u(ξ)− log |ξ − z|
∣∣ ≤ C near z

}
.

It is well known that gΩ(z, ·) ∈ PSH(Ω) ∩ C(Ω \ {z}), gΩ(z, w) = 0 for w ∈ ∂Ω and
(ddcgΩ(z, ·))n = (2π)nδz, where δz is the Dirac measure at z (see [62]). Carlehed, Cegrell
and Wikstöm proved in [25] that for every z0 ∈ ∂Ω there exists a pluripolar set E ⊂ Ω
such that

lim sup
z→z0

gΩ(z, w) = 0

for every w ∈ Ω \E. Take p /∈ E. Then choose {wj} ⊂ Ω such that g(p, wj) > −1/j3 and
wj → w ∈ ∂Ω. Let u be the function defined on Ω by

u(z) =
∞∑
j=1

j g(z, wj).
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Note that u ∈ PSH−(Ω) since u(p) > −∞. Proposition 4.8 yields u ∈ N (Ω). Recall also
the definition of the Lelong number:

ν(u, z0) = lim
r→0

1
(2π)n

∫
B(z0,r)

ddcu ∧ (ddc log |z − z0|)n−1.

It is well known that ν(u, z0) is finite for any plurisubharmonic function.
Now suppose that v is a subextension of u to a domain Ω′ ⊃ Ω and w ∈ Ω′. Since

v ≤ u, we have ν(v, wj) ≥ ν(u,wj) ≥ j and therefore ν(v, w) =∞, a contradiction which
means that u cannot be subextended to a larger domain.

8. The homogeneous Dirichlet problem for
pluriharmonic functions

Pluriharmonic functions, as locally real parts of holomorphic functions, play an impor-
tant role in complex analysis. It is well known that for a continuous function f : ∂Ω→ R
there does not always exist a pluriharmonic function u which is continuous on Ω̄ such that
u|∂Ω = f . This Dirichlet problem has been extensively studied for the case of smoothly
bounded domains, like the unit ball, strictly pseudoconvex domains or the unit poly-
disc. Bedford [10] and Bedford and Federbush [15] proved that on the smooth boundary
of a strictly pseudoconvex domain any smooth function satisfying a certain tangential
equation can be extended inside the domain to a pluriharmonic function (see also [77]).
In [76] Rudin proved that a continuous function on the boundary of a polydisc with some
of its Fourier coefficients vanishing can be extended inside a polydisc to a pluriharmonic
function. We shall give a complete characterization of this Dirichlet problem in a domain
which is a proper image of bounded hyperconvex product domains (Theorem 8.1). Nearly
all results in this chapter were proved by the author in [45].

The aim of this chapter is the following theorem:

Theorem 8.1 ([45]). Let Dj be a bounded hyperconvex domain in Cnj , nj ≥ 1. Set
D = D1 × · · · ×Ds, j = 1, . . . , s, s ≥ 3. Moreover, let U be an open neighborhood of D̄,
let π : U → Cn, n = n1 + · · · + ns, be a proper holomorphic map and let Ωπ = π(D).
If f : ∂Ωπ → R, n ≥ 3, is a continuous function, then the following assertions are
equivalent:

(1) there exists a function h that is pluriharmonic on Ωπ, continuous on Ω̄π and h|∂Ωπ =f ,
(2) f is pluriharmonic on ∂Ωπ in the sense of Definition 8.8,
(3) the Perron–Bremermann envelope PBf is pluriharmonic on Ωπ and

PB−f = −PBf ,

(4) f is a compliant function (see Definition 8.2),
(5)

(8.1) lim
Ωπ3z→ξ

(PBf + PB−f )(z) = 0 for every ξ ∈ ∂Ωπ,
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(6) for every z0 ∈ ∂Ωπ and every Jensen measure µ ∈ Jz0 with barycenter z0 we have

f(z0) =
∫
∂Ωπ

f dµ.

Definition 8.2 ([2, 30]). Let f : ∂Ω→ R be a continuous function such that

lim
z→ξ
z∈Ω

PBf (z) = f(ξ)

for every ξ ∈ ∂Ω. If
PBf + PB−f ∈ E0

then the function f is said to be compliant.

The notion of compliant functions was first introduced in [2].

Remark 8.3. It was proved in [6] that the compliant functions form a linear space.
Moreover, if f, g are compliaint functions then

(8.2)
PBf+g + PB−f−g ≥ PBf + PB−f + PBg + PB−g,

PBtf = |t|PBf ,

where t ∈ R.

Proposition 8.4 ([6]). Let K ∈ {E0, F } and let f be a compliant function. If u ∈ K(f),
then ∫

Ω

(ddcu)n <∞,

and u+ PB−f ∈ K.

Proof. Since f is a compliant function, PBf + PB−f ∈ E0. If u ∈ K(f) then there exists
v ∈ K such that PBf ≥ u ≥ v+PBf , so u+PB−f ≥ v+PBf +PB−f , so u+PB−f ∈ K.
Moreover, ∫

Ω

(ddcu)n ≤
∫

Ω

(ddc(u+ PB−f ))n <∞.

This ends the proof.

Proposition 8.5 ([6]). If D ⊆ Cn is a bounded, strictly pseudoconvex domain with C2-
boundary and f ∈ C2(∂D), then f is a compliant function.

Proof. The domainD is in particular B-regular, the function f is continuous and therefore
PBf + PB−f = 0 on the boundary ∂D. There exists an open neighborhood U of D
and a strictly plurisubharmonic C2-function ρ : U → R such that ρ = 0 on ∂D, since
D is a strictly pseudoconvex domain with C2-boundary. By Theorem I in [82] there
exists a C2-function f̂ : Cn → R such that f̂ = f on ∂D. Choose A > 0 such that
u = f̂ + Aρ ∈ PSH(D) and B > 0 such that v = −f̂ + Bρ ∈ PSH(D). Hence,
u, v ∈ PSH(U) ∩ C2(U), u = −v = f on ∂D. Thus

(8.3)
∫
D

(ddc(u+ v))n =
∫
D

n∑
k=0

(
n

k

)
(ddcu)n−k ∧ (ddcv)k <∞.
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The construction of PBf and PB−f implies that u+ v ≤ PBf + PB−f , hence∫
D

(ddc(PBf + PB−f ))n ≤
∫
D

(ddc(u+ v))n <∞,

by (8.3) and Theorem 2.2. This ends the proof.

Example 8.6 shows that for any α < 1 there exists f ∈ C1,α(∂B) such that f is not
a compliant function. Recall that f ∈ Ck,α, 0 < α ≤ 1, if f ∈ Ck and for any |β| = k

function Dβf is α-Hölder continuous.

Example 8.6 ([6]). Let B ⊆ Cn be the unit ball and z = (z′, zn) ∈ B. For fixed 0 < p < 1,
let fp : ∂B→ R be defined by fp(z′, zn) = |zn|2p. Then

PBfp(z′, zn) = |zn|2p and PB−fp(z′, zn) = −(1− |z′|2)p.

Set A = {(z′, zn) ∈ B : zn = 0} ∪ {(z′, zn) ∈ B : |z′| = 1}. The set A is pluripolar, hence∫
B

(ddc(PBfp + PB−fp))n =
∫

B\A
(ddc(PBfp + PB−fp))n

= C

∫ 1

0

r2np−2n+1(1− r2)n−1dr,

where C > 0 is a constant only depending on n and p. Thus fp is not compliant if, and
only if, p ≤ (n− 1)/n. For n > 2, the function f(n−1)/n belongs to C1,1−2/n(∂B).

Let Dj be a bounded hyperconvex domain in Cnj , nj ≥ 1 and set

D = D1 × · · · ×Ds ⊆ Cn,

where n = n1 + · · · + ns. For an open neighborhood U of D̄ and a proper holomorphic
map π : U → Cn we use the notation Ωπ = π(D).

Let Ik = (j1, . . . , jk) be an increasing multi-index of length k: 1 ≤ j1 < · · · < jk ≤ s,
where 1 ≤ k ≤ s. Denote

ΛIk = D1 × · · · ×
j1︷ ︸︸ ︷

∂Dj1 × · · · ×
jk︷ ︸︸ ︷

∂Djk × · · · ×Ds and ΛIkπ = π(ΛIk).

Hence,
∂D =

⋃
Ik

ΛIk and ∂Ωπ = π(∂D) =
⋃
Ik

ΛIkπ .

Finally, let the distinguished boundary of D be denoted by ∂D+, i.e.

∂D+ = ∂D1 × · · · × ∂Ds.

Proposition 8.7 ([45]). The domain Ωπ is hyperconvex.

Proof. For every j, 1 ≤ j ≤ s, the set Dj is hyperconvex in Cnj and ϕj is an exhaustion
function for Dj . Let u be the function defined on D by

u(ζ1, . . . , ζs) = max{ϕ1(ζ1), . . . , ϕs(ζs)},

hence u is a plurisubharmonic exhaustion function for the set D in Cn. Let us now define

ϕ(w) = max{u(z) : z ∈ π−1(w)}.
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From [61] it follows that ϕ is a plurisubharmonic exhaustion function for Ωπ. Thus, Ωπ
is hyperconvex.

Definition 8.8 ([8, 45]). A continuous function u : ∂Ωπ → R is pluriharmonic if u is
pluriharmonic on every ΛIkπ for every increasing multi-index Ik of length k ∈ {1, . . . , s−1}
i.e., for every 1 ≤ j1 < · · · < jk ≤ s, k ∈ {1, . . . , s−1} and for every wj1 ∈ ∂Dj1 , . . . , wjk ∈
∂Djk , the function defined by

(8.4) uwj1 ,...,wjk : (z1, . . . , zs−k) 7→ u ◦ π(z1, . . . , wj1 , . . . , wjk , . . . , zs−k)

is pluriharmonic on the set

DIk = D1 × · · · × ∂̂Dj1 × · · · × ∂̂Djk × · · · ×Ds.

In a similar manner an upper semicontinuous function u : ∂Ωπ → R ∪ {−∞} is pluri-
subharmonic if u is plurisubharmonic on every ΛIkπ for every increasing multi-index Ik
of length k ∈ {1, . . . , s− 1}. The identically −∞ function is by fiat not considered to be
plurisubharmonic.

Remark 8.9. Note that, if we take π = idD in Definition 8.8, then a continuous function
u is pluriharmonic on ∂D if for every increasing multi-index Ik the restriction of u to ΛIk

is pluriharmonic.

Definition 8.10. Let Ω ⊆ Cn be a bounded domain and let µ be a non-negative, regular
Borel measure on Ω̄. The measure µ is a Jensen measure with barycenter at z ∈ Ω̄ for
continuous plurisubharmonic functions if

u(z) ≤
∫

Ω̄

u dµ

for every continuous function u ∈ PSH(Ω). The set of all Jensen measures with barycen-
ter at z for continuous plurisubharmonic functions will be denoted by Jz.

It is clear that {δz} ⊂ Jz, where δz denotes the Dirac measure at z. If Ω is hyperconvex
domain, then suppµ ⊂ ∂Ω for all z ∈ ∂Ω and all µ ∈ Jz (see [25]).

Lemma 8.11 ([45]). Let D be a bounded hyperconvex domain in Cn, and let U be an open
neighborhood of D̄. Let π : U → Cn be a proper holomorphic map and let Ωπ = π(D). If
f : ∂Ωπ → R is a continuous function such that PBf◦π ∈ PSH(D)∩C(D̄), PBf◦π = f ◦π
on ∂D, then

PBf◦π = PBf ◦ π.

Furthermore, PBf◦π is pluriharmonic in D if, and only if, PBf is pluriharmonic on Ωπ.

Proof. We start by defining g = f ◦ π : ∂D → R. By our assumption the Perron–
Bremermann envelope PBg is plurisubharmonic on D and continuous on D̄. Define

ϕ(w) = max{PBg(z) : z ∈ π−1(w)}.

From [61] it follows that ϕ ∈ PSH(Ωπ) ∩ C(Ωπ). We prove that ϕ|∂Ωπ = f . Let Ωπ 3
wj → w ∈ ∂Ωπ. Then there exist finitely many z1

j , . . . , z
kj
j ∈ π−1(wj). Take z

lj
j such

that ϕ(wj) = PBg(z
lj
j ). Since π is a proper map, we have zljj → z0 ∈ ∂D and then

ϕ(wj) = PBg(z
lj
j )→ PBg(z0) = g(z0) = f(π(z0)) = f(w0).
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Hence ϕ ≤ PBf ∈ PSH(Ωπ) ∩ C(Ω̄π), by the Walsh theorem (Theorem 2.15).
Therefore PBf ◦ π ∈ PSH(D) and (PBf ◦ π)|∂D = g. Thus, for z ∈ π−1(w) we get
(PBf ◦ π)(z) ≤ PBg(z) and then PBf (w) ≤ ϕ(w), which implies that ϕ = PBf . There-
fore

PBf◦π = PBf ◦ π,
since both functions are maximal with the same boundary values g.

Now we prove the second part of Lemma 8.11. From the first part it is clear that if
PBf is pluriharmonic on Ωπ, then PBf◦π is pluriharmonic on D.

Now assume that PBg is pluriharmonic on D. Note that PBg = −PB−g, since PBg
is pluriharmonic on D and continuous on D̄ and by the first part of the proof,

PBf (w) = max{PBg(z) : z ∈ π−1(w)}
= max{−PB−g(z) : z ∈ π−1(w)}
= −min{PB−g(z) : z ∈ π−1(w)}.

In a similar manner we get PB−f (w) = max{PB−g(z) : z ∈ π−1(w)}. Combining these
two representations we obtain

0 ≥ PBf + PB−f = max{PB−g(z) : z ∈ π−1(w)}
−min{PB−g(z) : z ∈ π−1(w)} ≥ 0,

and so PBf = −PB−f , which means that PBf is pluriharmonic.

Proof of Theorem 8.1. The following implications are straightforward: (3)⇒(1), (3)⇒(4),
and (4)⇒(5).

(1)⇒(2): Let Ik be an increasing multi-index of length k ∈ {1, . . . , s − 1}, and let
wj1 ∈ ∂Dj1 , . . . , wjk ∈ ∂Djk . Let fwj1 ,...,wjk : DIk → R ∪ {−∞} be defined as in (8.4).
We need to prove that this function is pluriharmonic under the assumption that there
exists u ∈ PSH(Ωπ) ∩ C(Ω̄π) such that u|∂Ωπ = f . Take a sequence [(wmj1 , . . . , w

m
jk

)]∞m=1

in Dj1 × · · · ×Djk which converges to (wj1 , . . . , wjk) as m → ∞. Moreover, let [um] be
the sequence of real-valued functions on DIk defined by

um(z1, . . . , zs−k) = u ◦ π(z1, . . . w
m
j1 , . . . , w

m
jk
, . . . , zs−k).

This construction implies that um is pluriharmonic on DIk , and continuous up to the
boundary. The sequence [um] converges uniformly to fwj1 ,...,wjk on DIk as m→∞, and
hence f is pluriharmonic in the sense of Definition 8.8.

(5)⇒(6): First we prove that assumption (8.1) implies that

lim
z→ζ
z∈Ωπ

PBf (z) = f(ζ) and lim
z→ξ
z∈Ωπ

PB−f (z) = −f(ξ)

for every ζ, ξ ∈ ∂Ωπ. Assume that this is not the case, for example there exists a ξ ∈ ∂Ωπ
such that lim supz→ξ PBf (z) < f(ξ). This assumption yields

0 = lim
z→ξ
z∈Ωπ

(PBf + PB−f )(z) = lim sup
z→ξ
z∈Ωπ

(PBf + PB−f )(z)

≤ lim sup
z→ξ
z∈Ωπ

PBf (z) + lim sup
z→ξ
z∈Ωπ

PB−f (z) < f(ξ)− f(ξ) = 0,
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a contradiction, hence lim supPBf = f and lim supPB−f = −f on ∂Ω. Assume now that
there exists ζ ∈ ∂Ωπ such that lim infz→ζ PBf (z) < f(ζ). Then there exists a sequence
[zj ] in Ωπ which converges to ζ such that limj→∞ PBf (zj) < f(ζ), hence

0 = lim
j→∞

(PBf + PB−f )(zj) = lim inf
j→∞

(PBf + PB−f )(zj)

= lim
j→∞

PBf (zj) + lim inf
j→∞

PB−f (zj) < f(ζ)− f(ζ) = 0,

a contradiction once again. Now it follows by Walsh’s theorem (Theorem 2.15) that
PBf , PB−f ∈ C(Ω̄π). Fix z0 ∈ ∂Ωπ and take µ ∈ Jz0 . Then

f(z0) = PBf (z0) ≤
∫

Ω̄π

PBf dµ.

Thus

f(z0) ≤ inf
{∫

Ω̄π

PBf dµ : µ ∈ Jz0
}
.

If µ = δz0 , then we obtain

f(z0) = inf
{∫

Ω̄π

PBf dµ : µ ∈ Jz0
}
.

In a similar manner the corresponding formula for −f can be obtained, and therefore

sup
{∫

Ω̄π

−PB−f dµ : µ ∈ Jz0
}

= − inf
{∫

Ω̄π

PB−f dµ : µ ∈ Jz0
}

= f(z0).

The maximum principle for plurisubharmonic functions and assumption (8.1) yield

inf
{∫

Ω̄π

PBf dµ : µ ∈ Jz0
}

= f(z0) ≥ sup
{∫

Ω̄π

PBf dµ : µ ∈ Jz0
}
.

Thus, for every z0 ∈ ∂Ω and every µ ∈ Jz0 we have

f(z0) =
∫

Ω̄π

PBf dµ =
∫
∂Ωπ

f dµ

since Ωπ is hyperconvex and PBf = f on the boundary ∂Ωπ.
(6)⇒(2): Let Ik be an increasing multi-index 1 ≤ j1 < · · · < jk ≤ s of length

k ∈ {1, . . . , s − 1} and z0 ∈ ΛIk . Take any complex line l through z0 and r > 0 such
that z0 + Dr ⊂ l ∩ ΛIk , where Dr = {z ∈ C : |z| < r}. Since the Lebesgue measure dV1

on the unit disc D is a Jensen measure at z0, the measure µπ(A) = V1(π−1(A)), where
A ⊂ z0 + rD, is a Jensen measure at π(z0). We have by assumption

f(π(z0)) =
∫
π(z0+Dr)

fdµπ =
∫
z0+Dr

f ◦ π dV1,

which implies that f is harmonic on π(z0 + Dr) and therefore f is pluriharmonic on ∂Ωπ.
(2)⇒(3): Let g = f ◦ π : ∂D → R. This definition implies that g is a pluriharmonic

on ∂D and we will prove that PBg pluriharmonic on D, continuous on D̄ and PBg = g

on ∂D. Therefore Lemma 8.11 will finish the proof.
Assume that g : ∂D → R is a continuous function and let u be defined by

u(z1, . . . , zs) =
∫
∂D+

g(t1, . . . , ts) dωz1(t1) · · · dωzs(ts),
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where ωzj is the harmonic measure relative Dj and zj . The function u is s-harmonic on
D, continuous on D̄ and u|∂D = g. We will now show that u is pluriharmonic on D.
Let z0 = (z1, . . . , zs) ∈ D, X = (X1, . . . , Xs) ∈ Cn (Xj ∈ Cnj ) be such that Xs = 0
and choose r > 0 such that {z0 + ζX : ζ ∈ C, |ζ| < r} = z0 + XDr ⊆ D. For every
w1 ∈ D1, . . . , ws−1 ∈ Ds−1, ws ∈ ∂Ds, w′ = (w1, . . . , ws−1), X ′ = (X1, . . . , Xs−1),
ζ ∈ Br, t′ = (t1, . . . , ts−1), where tj ∈ Dj , 1 ≤ j ≤ s − 1 denote dω′w′+ζX′(t

′) =
dωw1+ζX1(t1) · · · dωws−1+ζXs−1(ts−1). The assumption that g is pluriharmonic in the sense
of Definition 8.8 implies in particular that g is pluriharmonic on D1×· · ·×Ds−1×{ws},
hence

1
πr2

∫
Dr
g(w′ + ζX ′, ws) dλ(ζ) = g(w′, ws) =

∫
∂D+

g dωw1 · · · dωws ,

and

g(w′ + ζX ′, ws) =
∫
∂D1×···×∂Ds−1

g(t′, ws) dω′w′+ζX′

Therefore,

1
πr2

∫
Dr
u(z0 + ζX) dλ(ζ) =

1
πr2

∫
Dr

∫
∂D+

g(t′, ts) dω′z′+ζX′(t
′)dωzs(ts) dλ(ζ)

=
∫
∂Ds

1
πr2

∫
Dr

∫
∂D1×···×∂Ds−1

g(t′, ts) dω′z′+ζX′(t
′)dλ(ζ)dωzs(ts)

=
∫
∂Ds

1
πr2

∫
Dr
g(z′ + ζX ′, ts)dλ(ζ)dωzs(ts) =

∫
∂Ds

g(z′, ts)dωzs(ts)

=
∫
∂D1×···×∂Ds

g(t1, . . . , ts) dωz1(t1) · · · dωzs(ts) = u(z0),

which proves that u is pluriharmonic on D1 × · · · × Ds−1 × {zs} for all zs ∈ Ds. By
repeating the same argument for X ∈ Cn such that Xk = 0, 1 ≤ k ≤ s− 1, we reach the
conclusion that for each k fixed, 1 ≤ k ≤ s, the function u is pluriharmonic on the set

D1 × · · · × {zk} × · · · ×Ds ⊆ D

for all zk ∈ Dk. This means that u is pluriharmonic on D since the Levi form of u is

Lu(z1, . . . , zs)(X1, . . . , Xs)

=
1

s− 2

s∑
j=1

L(u ◦ ρj)(z1, . . . , zj−1, zj+1, . . . , zs)(X1, . . . , Xj−1, Xj+1, . . . , Xs)

− 1
s− 2

n1+···+ns∑
k=1

∂2u

∂zk∂z̄k
(z1, . . . , zs)|Xk|2 = 0,

where (z1, . . . , zs) ∈ D, X = (X1, . . . , Xs) ∈ Cn, Xj ∈ Cnj , ρj(z1, . . . , ẑj , . . . , zs) =
(z1, . . . , zj , . . . , zs), Xj ∈ Cnj and s ≥ 3.

Since u is pluriharmonic on D, continuous on D̄ and u|∂D = f , we have (ddcu)n = 0
and therefore u = PBf . By the same arguments we see that the function v defined by

v(z1, . . . , zs) =
∫
∂D+

(−g(t1, . . . , ts)) dωz1(t1) · · · dωzs(ts)
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is pluriharmonic on D, continuous on D̄ and v|∂D = −f . Thus v = PB−f , which implies
that PB−f = −PBf on D, by the construction of u and v.

Remark 8.12. Similarly to the proof of Theorem 8.1 the author proved in [45] that a
continuous function f : ∂Ωπ → R can be extended inside the domain Ωπ := π(D) to a
plurisubharmonic function continuous up to the boundary if and only if f is plurisubhar-
monic in the sense of Definition 8.8. Here π : U → Cn is a proper holomorphic map, U is
an open neighborhood of the closure of a bounded hyperconvex domain D = D1×· · ·×Dn

in Cn, Dj b C, n ≥ 2.

Example 8.13 ([8]). Let D be the open unit disc in C. If we take Dj = D and π = id,
then Ωπ = Dn.

Let πn = (πn,1, . . . , πn,n) : Cn → Cn, n ≥ 1, be defined as follows:

πn,k(z1, . . . , zn) =
∑

1≤j1<···<jk≤n

zj1 · · · zjk

for 1 ≤ k ≤ n. Then πn is a proper holomorphic mapping and so too is πn|Dn : Dn →
πn(Dn). Then Gn = πn(Dn), where the domain Gn is the so called symmetrized polydisc
(see e.g. [1, 42, 43, 53, 54]).

Example 8.14 below shows that in the case when n = 2 the implication from (2) to
(3) in Theorem 8.1 is, in general, not true.

Example 8.14 ([73]). Let D2 = {(z, w) ∈ C2 : |z| < 1, |w| < 1} be the unit polydisc in
C2 and let f : ∂D2 → R be defined by

f(ζ, ξ) = Re(ζξ̄).

The function f is pluriharmonic on ∂D2 in the sense of Definition 8.8; we will prove that
condition (3) in Theorem 8.1 is not true for f .

Let φ : D → D2 be an analytic disc (i.e. an injective holomorphic map) with φ(0) =
(a1, a2). If v ∈ PSH(D2) ∩ C(D2) satisfies v = f on ∂D2, then

v(a1, a2) ≤ 1
2π

∫ 2π

0

f(φ(eiθ)) dθ.

Furthermore, using a theorem by Poletsky ([72]) we have

PBf (z) = sup{v(z) : u ∈ PSH(D2), lim sup
ξ→w

v(ξ) ≤ f(w),∀w ∈ ∂D2}

= inf
{

1
2π

∫ 2π

0

f(φ(eiθ))dθ : φ an analytic disc, φ(0) = z

}
.

We restrict our considerations to analytic discs of the form φ(ζ) = (B1(ζ), B2(ζ)), where

Bj(ζ) =
cjζ + aj
1 + ājcjζ

, j = 1, 2,

and a1, a2 ∈ D, |c1| = |c2| = 1. Note that φ(0) = (a1, a2). By the classical residue
theorem,



The complex Monge–Ampère operator 75

1
2π

∫ 2π

0

f(φ(eiθ)) dθ =
1

2π
Re
(∫ 2π

0

B1(eiθ)B2(eiθ) dθ
)

=
1

2π
Re
∫ 2π

0

c1e
iθ + a1

1 + ā1c1eiθ
1 + ā2c2e

iθ

c2eiθ + a2
dθ

= Re
(

1
2πi

∫
|ζ|=1

(c1ζ + a1)(1 + ā2c2ζ)
(1 + ā1c1ζ)(c2ζ + a2)ζ

dζ

)
= Re

(
a1

a2
+

(c1(−a2
c2

) + a1)(1 + ā2c2(−a2
c2

))

(1 + ā1c1(−a2
c2

))c2(−a2
c2

)

)
= Re

(
c1(1− |a1|2 − |a2|2) + a1ā2c2

c2 − ā1a2c1

)
= Re

(
gα+ k

α− h

)
,

where α = c2/c1, k = 1− |a1|2 − |a2|2, g = a1ā2 and h = ā1a2. We want to calculate

inf
|c1|=|c2|=1

1
2π

∫ 2π

0

f(φ(eiθ)) dθ = inf
|α|=1

Re
(
gα+ k

α− h

)
.

Note that the function

Ψ(α) =
gα+ k

α− h
maps ∂D to ∂D(w0, r), where

w0 =
g + kh̄

1− |h|2
=
a1ā2(2− |a1|2 − |a2|2)

1− |a1a2|2
,

r =
|k + gh|
1− |h|2

=
(1− |a1|2)(1− |a2|2)

1− |a1a2|2
.

Hence

inf
|α|=1

Re
(
gα+ k

α− h

)
= Re(w0)− r

=
Re(a1ā2)(2− |a1|2 − |a2|2)

1− |a1a2|2
− (1− |a1|2)(1− |a2|2)

1− |a1a2|2
= u(a1, a2).

We will show that u ∈ PSH(D2) ∩ C(D2), u(z, w) = Re(z, w) on ∂D2 and (ddcu)2 = 0,
which will imply that u = PBf . It is clear that u ∈ C∞(D2) ∩ C(D2), and

lim
(z,w)→(ζ,ξ)

u(z, w) = Re(ζξ̄) for every (ζ, ξ) ∈ ∂D2.

We have

uzz̄(z, w) =
∂2u

∂z∂z̄
(z, w) =

(1− |w|2)2|1− zw̄|2

(1− |z|2|w|2)3
,

uzw̄(z, w) =
∂2u

∂z∂w̄
(z, w) =

(1− |z|2)(1− |w|2)(1− z̄w)2

(1− |z|2|w|2)3
,

uz̄w(z, w) =
∂2u

∂z̄∂w
(z, w) =

(1− |z|2)(1− |w|2)(1− zw̄)2

(1− |z|2|w|2)3
,

uww̄(z, w) =
∂2u

∂w∂w̄
(z, w) =

(1− |z|2)2|1− z̄w|2

(1− |z|2|w|2)3
.
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Since uzz̄ ≥ 0, uww̄ ≥ 0 and

det
(

uzz̄(z, w) uzw̄(z, w)
uz̄w(z, w) uww̄(z, w)

)
= 0,

it follows that u is a maximal plurisubharmonic function D2 and u = PBf . We will next
obtain an explicit formula for PB−f . Let F (z, w) = (−z, w). Then −Re(zw̄) = Re(zw̄)◦F
and PB−f = PBf ◦ F by Lemma 8.11. Thus,

PB−f (z, w) =
−Re(zw̄)(2− |z|2 − |w|2)

1− |zw|2
− (1− |z|2)(1− |w|2)

1− |zw|2

and we get PBf + PB−f 6= 0, hence PBf is not pluriharmonic on D2 and therefore
condition (3) in Theorem 8.1 is not true for f .

Example 8.15 below shows that there exists a compliant function f for which PBf is
not pluriharmonic. Note that when n ≥ 3 this is not possible (Theorem 8.1).

Example 8.15 ([8]). Let D2 = {(z, w) ∈ C2 : |z| < 1, |w| < 1} be the unit polydisc in C2

and let f(z, w) = Re(zw̄) be as in Example 8.14. Since

(PBf + PB−f )(z, w) = −2
(1− |z|2)(1− |w|2)

1− |zw|2
,

it is clear that
lim
z→ξ
z∈Ω

(PBf + PB−f )(z) = 0

for every ξ ∈ ∂Ω. By straightforward calculations we get

(ddc(PBf + PB−f ))2 = 128
(1− |z|2)2(1− |w|2)2

(1− |z|2|w|2)4
dV2

and ∫
D2

(ddc(PBf + PB−f ))2 = 128
∫

D2

(1− |z|2)2(1− |w|2)2

(1− |z|2|w|2)4
dV2(z, w) =

64π2

3
,

where dV2 is the Lebesgue measure on C2. Thus, f is a compliant function on ∂D2.

In [77] Rudin proved the following theorem which characterizes those continuous func-
tions on the boundary of the unit bidisc in C2 which can be extended inside the bidisc
to pluriharmonic functions continuous up to the boundary.

Theorem 8.16. Let f ∈ C(∂D× ∂D), and let dσ be the normalized Lebesgue measure on
∂D. Then the Poisson integral of f defined by

P [f ](z1, z2) =
∫
∂D×∂D

(1− |z1|2)(1− |z2|2)
|w1 − z1|2|w2 − z2|2

f(w1, w2) dσ(w1) dσ(w2)

is a 2-harmonic function (i.e. harmonic in each variable separately) on D2 which is
continuous on D2. Furthermore, P [f ] is pluriharmonic function in D2 if, and only if,∫

∂D×∂D
wk1

1 w̄k2
2 f(w1, w2) dσ(w1) dσ(w2) = 0

for every k1, k2 ∈ N. Moreover, if u is a 2-harmonic function on D2, and continuous
on D2, then u = P [u].
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Using Rudin’s result we obtain a similar result for ∂Ωπ:

Proposition 8.17. Let U be an open neighborhood of the closure of D2 in C2, and let
π : U → C2 be a proper holomorphic map. Let Ωπ := π(D2), and let f : ∂Ωπ → R be a
continuous function. The following are then equivalent:

(1) there exists a function u which is pluriharmonic on Ωπ, continuous on Ω̄π and
u|∂Ωπ = f ,

(2) f is harmonic in the sense of Definition 8.8 and satisfies

(8.5)
∫
∂D×∂D

wk1
1 w̄k2

2 f(π(w1, w2))dσ(w1)dσ(w2) = 0

for every k1, k2 ∈ N.

Proof. (1)⇒(2): Similarly to the proof of the implication (1)⇒(2) in Theorem 8.1 one
can show that f is harmonic in the sense of Definition 8.8. By assumption it follows also
that PBf is a pluriharmonic function on Ωπ. Therefore by Lemma 8.11, PBf◦π = PBf ◦π
and PBf ◦ π is pluriharmonic on D2, continuous on D2, and PBf ◦ π = f ◦ π on ∂D2.
Then PBf◦π = P [f ◦ π] is the Poisson integral of f ◦ π, so by Theorem 8.16 we conclude
that (8.5) holds.

(2)⇒(1): Assume that f satisfies (2), so (8.5) holds for every k1, k2 ∈ N. By Theo-
rem 8.16 again, P [f ◦π] is pluriharmonic on D2. The assumption that f is harmonic in the
sense of Definition 8.8 implies that P [f ◦π] = PBf◦π is pluriharmonic on D2, continuous
on ∂D2, and PBf◦π = f ◦π on ∂D2. Therefore by Lemma 8.11, PBf is pluriharmonic on
Ωπ and the proof is complete.

We end this chapter by proving a sufficient condition for a continuous function defined
on ∂D2 to be compliant.

Proposition 8.18 ([8]). If f : ∂D2 → R is a pluriharmonic function in the sense of
Definition 8.8 which satisfies

∞∑
k1,k2=0

√
k1k2 |ak1,k2 | <∞,

then f is compliant on D2. Here

ak1,k2 =
∫
∂D×∂D

wk1
1 w̄k2

2 f(w1, w2) dσ(w1) dσ(w2),

where dσ is normalized Lebesgue measure on ∂D.

Proof. For all integers k, l ≥ 1 let fk,l = Re(ζk ξ̄l) and gk,l = Im(ζk ξ̄l). Then it follows
by Example 8.15 that∫

D2
(ddc(PBfk,l + PB−fk,l))

2 =
∫

D2
(ddc(PBgk,l + PB−gk,l))

2

= kl

∫
D2

(ddc(PBf1,1 + PB−f1,1))2 =
64π2kl

3
,

and therefore fk,l and gk,l are compliant. Let
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u(z1, z2) =
∫
∂D×∂D

(1− |z1|2)(1− |z2|2)
|w1 − z1|2|w2 − z2|2

f(w1, w2)dσ(w1)dσ(w2),

Then u is 2-harmonic on D, continuous on D̄ and u|∂D = f . Note that u is, in general,
not pluriharmonic. Then there exists a holomorphic function U defined on D2 such that

u(z1, z2) = Re(U) +
∞∑

k1,k2=0

ak1,k2 z̄
k1
1 zk2

2 +
∞∑

k1,k2=0

āk1,k2z
k1
1 z̄k2

2

(see e.g. [77]), hence

f(z1, z2) = Re(U) +
∞∑

k1,k2=0

bk1,k2 Re(zk1
1 z̄k2

2 ) +
∞∑

k1,k2=0

ck1,k2Im(zk1
1 z̄k2

2 ),

where bk1,k2 = 2 Re(ak1,k2) and ck1,k2 = −2Im(ak1,k2). By (8.2) we have

PBf + PB−f ≥
∞∑

k1,k2=0

(|bk1,k2 |v(fk1,k2) + |ck1,k2 |v(gk1,k2)),

where v(fk1,k2) = PBfk1,k2
+ PB−fk1,k2

and v(gk1,k2) = PBgk1,k2
+ PB−gk1,k2

. Now it
follows from Corollaries 3.6 and 3.15 that(∫

D2
(ddc(PBf + PB−f ))2

)1/2

≤
(∫

D2

(
ddc

∞∑
k1,k2=0

(|bk1,k2 |v(fk1,k2) + |ck1,k2 |v(gk1,k2))
)2
)1/2

≤
∞∑

k1,k2=0

|bk1,k2 |
(∫

D2
(ddcv(fk1,k2))2

)1/2

+
∞∑

k1,k2=0

|ck1,k2 |
(∫

D2
(ddcv(gk1,k2))2

)1/2

≤ 8π√
3

∞∑
k1,k2=0

√
k1k2(|bk1,k2 |+ |ck1,k2 |) ≤

16
√

2π√
3

∞∑
k1,k2=0

√
k1k2 |ak1,k2 | <∞.

Thus, f is compliant.
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[44] R. Czyż, Convergence in capacity of the Perron–Bremermann envelope, Michigan Math.

J. 53 (2005), 497–509.

[45] —, Pluriharmonic extension in proper image domains, Ann. Polon. Math. 96 (2009), 163–

174.

[46] —, On a Monge–Ampère type equation in the Cegrell class Eχ, ibid., to appear.
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List of symbols

N the set of natural numbers
Q the set of rational numbers
R the field of real numbers
C the field of complex numbers
Dr {z ∈ C : |z| < r}, r > 0
D = D1 the unit disc in C
B the unit ball in Cn
B(a, r) the ball with center at a and radius r
Ac the complement of the set A
A b B the set A is relatively compact in the set B
χA the characteristic function of the set A
u ∗ v the convolution of the functions u and v
dVn the Lebesgue measure defined on R2n (' Cn)
dσ the Lebesgue measure on ∂B
a.e. almost everywhere
δz the Dirac measure at z
suppµ the support of the measure µ
v∗ the upper semicontinuous regularization of v
ũ the smallest maximal plurisubharmonic majorant of a

plurisubharmonic function u
Lu the Levi form of u
PSH(Ω) the family of plurisubharmonic functions on Ω
PSH−(Ω) the family of non-positive plurisubharmonic functions on Ω
MPSH(Ω) the family of maximal plurisubharmonic functions on Ω
E0 see Definition 2.8, page 10
F see Definition 2.9, page 10
N see Definition 4.5, page 24
E see Definition 2.9, page 10
K(f) the definition is stated on page 12
K(H) see Definition 2.12, page 11
PBf the Perron–Bremermann envelope (Definition 2.13, page 12)
Cn the Bedford–Taylor Cn-capacity
q.e. quasi-everywhere, i.e. everywhere except on a set of Cn-capacity zero
hE the relative extremal function of the set E
µu the Monge–Ampère boundary measure associated

with a function u ∈ F
ϕu generalized boundary values of a bounded plurisubharmonic function ϕ

with respect the boundary measure µu with u ∈ F
W k,p

loc (Ω) the set of functions u defined in Ω such that Dαu ∈ Lploc(Ω) for all |α| = k
Ck,α(Ω) the set of functions u such that u ∈ Ck(Ω) and for any |β| = k,

Dβu is α-Hölder continuous, 0 < α ≤ 1
Jz the set of all Jensen measures with barycenter at z
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