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Abstract

Fix an integer N ≥ 2. To each diagram of a link colored by 1, . . . , N we associate a chain
complex of graded matrix factorizations. We prove that the homotopy type of this chain complex
is invariant under Reidemeister moves. When every component of the link is colored by 1, this
chain complex is isomorphic to the chain complex defined by Khovanov and Rozansky. The
homology of this chain complex decategorifies to the Reshetikhin–Turaev sl(N) polynomial of
links colored by exterior powers of the defining representation.

2010 Mathematics Subject Classification: Primary 57M27.
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1. Introduction

1.1. Background. In the early 1980s, Jones [15] defined the Jones polynomial, which

was generalized to the HOMFLYPT polynomial in [11, 35]. Later, Reshetikhin and Tu-

raev [38] constructed a large family of polynomial invariants for framed links whose com-

ponents are colored by finite-dimensional representations of a complex semisimple Lie

algebra. The HOMFLYPT polynomial is a special example of the Reshetikhin–Turaev

invariants corresponding to the defining representation of sl(N ;C).

In general, the Reshetikhin–Turaev invariants for links are rather abstract. But, when

the Lie algebra is sl(N ;C) and every component of the link is colored by an exterior power

of the defining representation, Murakami, Ohtsuki and Yamada [32] gave a state sum

formula for the corresponding sl(N) Reshetikhin–Turaev invariant. Their construction

comes with a set of graphical relations, which is known as the MOY calculus.

If every component of the link is colored by the defining representation, then the con-

struction in [32] recovers the uncolored sl(N) HOMFLYPT polynomial. Modeling on this,

Khovanov and Rozansky [19] categorified the uncolored sl(N) HOMFLYPT polynomial

using matrix factorizations. Their construction generalizes the Khovanov homology [18].

1.2. Some conventions. Throughout this paper, N is a fixed integer not less than 2.

All links and tangles in this paper are oriented and colored. That is, every component

of the link or tangle is assigned an orientation and an element of {0, 1, . . . , N}, which

we call the color (1) of this component. A link that is completely colored by 1 is called

uncolored.

Following the convention in [19], the degree of a polynomial in this paper is twice its

usual degree.

1.3. The colored sl(N) link homology. Our goal is to generalize Khovanov and

Rozansky’s construction in [19] to categorify the Reshetikhin–Turaev sl(N) polynomial

of links colored by exterior powers of the defining representation. The following are our

main results.

Theorem 1.1. Let D be a diagram of a tangle whose components are colored by elements

of {0, 1, . . . , N}, and C(D) be the chain complex defined in Definition 12.4. Then:

(i) C(D) is a bounded chain complex over a homotopy category of graded matrix fac-

torizations.

(1) In this paper, instead of saying that an object is colored by the k-fold exterior power of
the defining representation of sl(N ;C), we simply say that it is colored by k.

[6]
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(ii) C(D) is Z2⊕Z⊕Z-graded, where the Z2-grading is the Z2-grading of the underlying

matrix factorization, the first Z-grading is the quantum grading of the underlying

matrix factorization, and the second Z-grading is the homological grading.

(iii) The homotopy type of C(D), with its Z2 ⊕Z⊕Z-grading, is invariant under Reide-

meister moves.

(iv) If every component of D is colored by 1, then C(D) is isomorphic to the chain

complex defined by Khovanov and Rozansky in [19].

Since the homotopy category hmfR,w of graded matrix factorizations is not abelian,

we cannot directly define the homology of C(D). But, as in [19], we can still construct a

homology H(D) from C(D). Recall that each matrix factorization comes with a differen-

tial map dmf . If D is a link diagram, then the base ring R is C, and the potential w = 0.

So all the matrix factorizations in C(D) are actually cyclic chain complexes. Taking the

homology with respect to dmf , we change C(D) into a chain complex (H(C(D), dmf ), d
∗)

of finite-dimensional graded vector spaces, where d∗ is the differential map induced by

the differential map d of C(D). We define

H(D) = H
(
H(C(D), dmf ), d

∗
)
. (1.3.1)

If D is a diagram of a tangle with end points, then R is a graded polynomial ring

with homogeneous indeterminates of positive gradings, and w is in the maximal homo-

geneous ideal I of R generated by all the indeterminates. So (C(D)/I · C(D), dmf ) is a

cyclic chain complex. Its homology
(
H(C(D)/I · C(D), dmf ), d

∗
)
is a chain complex of

finite-dimensional graded vector spaces, where d∗ is the differential map induced by the

differential map d of C(D). We define

H(D) = H
(
H(C(D)/I · C(D), dmf ), d

∗
)
. (1.3.2)

In either case, H(D) inherits the Z2 ⊕Z⊕Z-grading of C(D). We call H(D) the colored

sl(N) homology of D. The corollary below follows easily from Theorem 1.1.

Corollary 1.2. Let D be a diagram of a tangle whose components are colored by ele-

ments of {0, 1, . . . , N}. Then H(D) is a finite-dimensional Z2⊕Z⊕Z-graded vector space

over C. Furthermore, Reidemeister moves of D induce isomorphisms of H(D) preserving

its Z2 ⊕ Z⊕ Z-grading.

For a tangle T , denote by Hε,i,j(T ) the subspace of H(T ) of homogeneous elements

of Z2-degree ε, quantum degree i and homological degree j. The Poincaré polynomial

PT (τ, q, t) of H(T ) is defined to be

PT (τ, q, t) =
∑

ε,i,j

τεqitj dimHε,i,j(T ) ∈ C[τ, q, t]/(τ2 − 1). (1.3.3)

Based on the construction by Murakami, Ohtsuki and Yamada [32], we give in Def-

inition 2.5 a renormalization RTL(q) of the Reshetikhin–Turaev sl(N) polynomial for

links colored by non-negative integers. For a link L colored by non-negative integers,

the graded Euler characteristic of H(L) is equal to RTL(q). More precisely, we have the

following theorem.
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Theorem 1.3. Let L be a link colored by non-negative integers. Then

PL(1, q,−1) = RTL(q).

Moreover, define the total color tc(L) of L to be the sum of the colors of the components

of L. Then Hε,i,j(L) = 0 if ε− tc(L) = 1 ∈ Z2 and therefore

PL(τ, q, t) = τ tc(L)
∑

i,j

qitj dimHtc(L),i,j(L).

1.4. Deformations and applications. The construction of the colored sl(N) link ho-

mology H is based on matrix factorizations associated to MOY graphs with potentials

induced by XN+1. One can modify this construction by considering matrix factorizations

with potentials induced by

f(X) = XN+1 +

N∑

k=1

BkX
N+1−k,

where Bk is a homogeneous indeterminate of degree 2k. This gives an equivariant

sl(N) link homology Hf . We observe that Hf is a finitely generated Z2 ⊕ Z ⊕ Z-graded

C[B1, . . . , BN ]-module. The construction of Hf and the proof of its invariance are given

in [50], which generalizes the work of Krasner [22] in the uncolored case.

For any b1, . . . , bN ∈ C, one can perform the above construction using matrix factor-

izations associated to MOY graphs with potentials induced by

P (X) = XN+1 +

N∑

k=1

bkX
N+1−k,

which gives a deformed sl(N) link homology HP . For any link L, HP (L) is a finite-

dimensional Z2 ⊕ Z-graded and Z-filtered vector space over C. The quotient map

π : C[B1, . . . , BN ]→ C (∼= C[B1, . . . , BN ]/(B1 − b1, . . . , BN − bN))

given by π(Bk) = bk induces a functor ̟ between categories of matrix factorizations.

Using this functor, one can easily show that the invariance of Hf implies the invariance

of HP . As in the uncolored case, the filtration of HP induces a spectral sequence converg-

ing to HP with E1-page isomorphic to the undeformed sl(N) link homology H . Proofs

of these results can be found in [50].

When P (X) is generic, that is, when P ′(X) has N distinct root in C, then HP (L)

admits a basis that generalizes the basis given by Lee [26] and Gornik [14]. See [49] for the

construction. [49] also contains the definition of the colored sl(N) Rasmussen invariants

and the bounds for slice genus and self-linking number given by these invariants.

The sl(N) link homology H itself also gives new bounds for the self-linking number

and the braid index. (See [51].) These bounds generalize the well known Morton–Franks–

Williams inequality [10, 31].

1.5. Other approaches to the colored sl(N) link homology. The Reshetikhin–

Turaev sl(N) polynomial of links colored by exterior powers of the defining representation

has been categorified via several different approaches. Next we quickly review some recent

results in this direction.
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Using matrix factorizations, Yonezawa [54] defined essentially the Poincaré polynomial

PT of the colored sl(N) link homology H .

Stroppel [40] gave a Lie-theoretic construction of the Khovanov homology, which is

proved in [5] to be isomorphic to Khovanov’s original construction. (See also [41, Sec-

tion 5].) Mazorchuk and Stroppel [30] described a Koszul dual construction for the sl(N)

link homology, which is conjecturally isomorphic to the colored sl(N) link homology H .

Mackaay, Stosic and Vaz [29] constructed a Z⊕3-graded HOMFLYPT homology for

1, 2-colored links which generalizes Khovanov and Rozansky’s construction in [20]. Web-

ster and Williamson [45] further generalized this homology to links colored by any non-

negative integers using the equivariant cohomology of general linear groups and related

spaces.

Cautis and Kamnitzer [7, 8] constructed a link homology using the derived category

of coherent sheaves on certain flag-like varieties. Their homology is conjectured to be

isomorphic to the sl(N) Khovanov–Rozansky homology of [19]. Using sl(2) actions on

certain categories of D-modules and coherent sheaves, they [6] also categorified the sl(N)

polynomial for links in S3 colored by exterior powers of the defining representation.

Using categorifications of the tensor products of integrable representations of Kac–

Moody algebras and quantum groups, Webster [43, 44] categorified, for any simple com-

plex Lie algebra g, the quantum g invariant for links colored by any finite-dimensional

representations of g. All the aforementioned categorifications of the colored Reshetikhin–

Turaev sl(N) polynomial are expected to agree with Webster’s categorification for g =

sl(N ;C).

1.6. Outline of the proof. The present paper contains all the background knowledge

needed to understand the construction of the colored sl(N) link homology. Next we

explain the structure of this paper and outline our proof.

We review in Section 2 the Murakami–Ohtsuki–Yamada construction of the Reshe-

tikhin–Turaev sl(N) polynomial for links colored by non-negative integers. In particular,

we demonstrate that the sl(N) MOY graph polynomial is uniquely determined by the

MOY relations.

Sections 3 to 5 are reviews of algebraic structures used in our categorification. In

Section 3, we recall the definition and properties of graded matrix factorizations. Then,

in Section 4, we take a closer look at graded matrix factorizations over polynomial rings.

Section 5 is devoted to rings of symmetric polynomials, which serve as base rings in our

construction.

In Sections 6 to 11, we define and study matrix factorizations associated to MOY

graphs. In particular, we prove direct sum decompositions (I)–(V), among which decom-

positions (I), (II), (IV), (V) are essential in our construction of the colored sl(N) homo-

logy (2). Decompositions (I)–(IV) are generalizations of the corresponding decompositions

(2) Decomposition (III) is not explicitly used in the construction of the colored sl(N) ho-
mology. The reader can skip this decomposition and its proof, that is, Subsections 8.8–8.10 and
Section 9.
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in [19]. We prove these four decompositions by explicit constructions (3). Decomposition

(V) is a further generalization of (IV) and is far more complex. We prove this decompo-

sition by an induction based on decomposition (IV) using the Krull–Schmidt property of

graded matrix factorizations. Note that these MOY decompositions decategorify to the

corresponding MOY relations of the sl(N) MOY graph polynomial. Thus, the graded

dimension of our graph homology satisfies all the MOY relations and must be equal to

the sl(N) MOY graph polynomial.

The chain complex associated to a knotted MOY graph is defined in Section 12. We

resolve each knotted MOY graph into a collection of MOY graphs as in [32] and then

build a chain complex using the matrix factorizations associated to these MOY graphs.

The homology of this chain complex is the sl(N) homology of the knotted MOY graph.

We observe that the graded Euler characteristic of the sl(N) homology of a colored link

is equal to its renormalized Reshetikhin–Turaev sl(N) polynomial.

We prove in Sections 13 and 14 that the homotopy type of the above chain complex is

invariant under Reidemeister moves, which implies the invariance of the sl(N) homology.

In Section 13, we prove the invariance of the homotopy type of our chain complex under

fork sliding. With this in hand, we prove the colored invariance theorem in Section 14 by

reducing it to Khovanov and Rozansky’s uncolored case [19] using “sliding bi-gons”.

Acknowledgments. I would like to thank Mikhail Khovanov, Ben Webster and Ya-

suyoshi Yonezawa for interesting and helpful discussions. I am grateful to Yasuyoshi

Yonezawa for sharing his lemma about graded Krull–Schmidt categories (see Lemma 4.20)

and to Mikhail Khovanov for suggesting an approach to understanding the Euler char-

acteristic and the Z2-grading of the sl(N) homology for colored links. (The proof of

Theorem 2.4 uses this approach.)

Most of the above-mentioned discussions happened during Knots in Washington Con-

ferences. I would like to thank the National Science Foundation and The George Wash-

ington University for supporting the Knots in Washington Conference Series.

I would also like to thank the referee for carefully reading the paper and providing

many helpful comments and suggestions.

(3) Using similar techniques, Yonezawa [53] independently proved decompositions (I)–(III)
and a special case of (IV).



2. The MOY calculus

2.1. The HOMFLYPT polynomial. The HOMFLYPT polynomial defined in [11, 35]

is an invariant for oriented links in S3 in the form of a two-variable polynomial P. We

normalize the HOMFLYPT polynomial using the following skein relations:




xP( I� )− x−1
P( �I ) = yP( 66 ),

P(unknot) =
x− x−1

y
.

The specialization PN = P|x=qN , y=q−q−1 is the sl(N) HOMFLYPT polynomial and

is determined by the skein relations




qNPN ( I� )− q−N
PN ( �I ) = (q − q−1)PN ( 66 ),

PN (unknot) =
qN − q−N

q − q−1
.

PN is a renormalization of the Reshetikhin–Turaev polynomial of links colored by 1, that

is, the defining representation of sl(N ;C).

The general definition of the Reshetikhin–Turaev polynomials is rather abstract.

In [32], Murakami, Ohtsuki and Yamada gave a combinatorial construction of the Reshe-

tikhin–Turaev sl(N) polynomial for links colored by non-negative integers, that is, ex-

terior powers of the defining representation of sl(N ;C). Their construction generalizes

Kuperberg’s spider construction for the sl(3) link polynomial [23]. The construction of

our colored sl(N) link homology H is modeled on their construction.

In the remainder of this section, we review Murakami, Ohtsuki and Yamada’s con-

struction. Our notations and normalizations are slightly different from those used in [32].

2.2. MOY graphs

Definition 2.1. An abstract MOY graph is an oriented graph with each edge colored by

a non-negative integer such that, for every vertex v with valence at least 2, the sum of

the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.

We call this common sum the width of v.

A vertex of valence 1 in an abstract MOY graph is called an end point. A vertex of

valence greater than 1 is called an internal vertex (cf. Figure 1). An abstract MOY graph

Γ is said to be closed if it has no end points. We say that an abstract MOY graph is

trivalent if all of its internal vertices have valence 3.

[11]
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I

i1

K

i2 · · ·

�

ik

vLv i1 + i2 + · · · + ik = j1 + j2 + · · · + jl

�
j1

�
j2 · · ·I jl

Fig. 1. An internal vertex of a MOY graph

A MOY graph is an embedding of an abstract MOY graph into R2 such that, through

each internal vertex v, there is a straight line Lv so that all the edges entering v enter

through one side of Lv and all edges leaving v leave through the other side of Lv.

2.3. The MOY graph polynomial. To each closed trivalent MOY graph, Murakami,

Ohtsuki and Yamada [32] associated a polynomial, which we call the MOY graph polyno-

mial. They express the colored Reshetikhin–Turaev sl(N) polynomial as a combination

of MOY graph polynomials. We review the MOY graph polynomial in this subsection.

Define N = {−N + 1,−N + 3, . . . , N − 3, N − 1} and P(N ) to be the set of subsets

of N . For a finite set A, denote by #A the cardinality of A. Define a function π :

P(N )× P(N )→ Z≥0 by

π(A1, A2) = #{(a1, a2) ∈ A1 ×A2 | a1 > a2} for A1, A2 ∈ P(N ).

Let Γ be a closed trivalent MOY graph, and E(Γ) the set of edges of Γ. Denote by

c : E(Γ)→ N the color function of Γ. That is, for every edge e of Γ, c(e) ∈ N is the color

of e. A state of Γ is a function σ : E(Γ)→ P(N ) such that

(i) For every edge e of Γ, #σ(e) = c(e).

(ii) For every vertex v of Γ, as depicted in Figure 2, we have σ(e) = σ(e1) ∪ σ(e2). (In

particular, this implies that σ(e1) ∩ σ(e2) = ∅.)

6

�I

e

e2e1

or

6

�I

e

e2
e1

Fig. 2

For a state σ of Γ and a vertex v of Γ (as depicted in Figure 2), the weight of v with

respect to σ is defined to be

wt(v;σ) = qc(e1)c(e2)/2−π(σ(e1),σ(e2)).

Given a state σ of Γ, replace each edge e of Γ by c(e) parallel edges, assign to each of

these new edges a different element of σ(e) and, at every vertex, connect each pair of new

edges assigned the same element of N . This changes Γ into a collection C of embedded

oriented circles, each of which is assigned an element of N . By abusing notation, we

denote by σ(C) the element of N assigned to C ∈ C. Note that:
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• There may be intersections between different circles in C. But, each circle in C is

embedded, that is, without self-intersections or self-tangency.

• There may be more than one way to do this. But if we view C as a virtual link and the

intersection points between different elements of C as virtual crossings, then the above

construction is unique up to purely virtual regular Reidemeister moves.

For each C ∈ C, define the rotation number rot(C) the usual way. That is,

rot(C) =

{
1 if C is counterclockwise,

−1 if C is clockwise.
(2.3.1)

The rotation number rot(σ) of σ is then defined to be

rot(σ) =
∑

C∈C

σ(C)rot(C).

The sl(N) MOY polynomial of Γ is defined to be

〈Γ〉N :=
∑

σ

(∏

v

wt(v;σ)
)
qrot(σ) ∈ Z≥0[q, q

−1], (2.3.2)

where σ runs through all states of Γ and v runs through all vertices of Γ.

2.4. The MOY calculus. Murakami, Ohtsuki and Yamada [32] established a set of

graphical relations for the sl(N) MOY polynomial, which is known as the MOY calculus.

The MOY calculus plays an important role in guiding us through the construction of the

colored sl(N) homology.

Before stating the MOY calculus, we need to introduce our normalization of quantum

integers.

Definition 2.2. Quantum integers are elements of Z[q, q−1]. In this paper, we use the

normalization

[j] :=
qj − q−j

q − q−1
,

[j]! := [1] · [2] · · · [j],
[
j

k

]
:=

[j]!

[k]! · [j − k]!
.

The following theorem is the MOY calculus.

Theorem 2.3 ([32]). The sl(N) MOY graph polynomial 〈∗〉N for close trivalent MOY

graphs satisfies:

(1) 〈©m〉N =
[
N
m

]
, where ©m is a circle colored by m.

(2)

〈

6

I
�
I�

i + j + k

j + k

i j k 〉

N

=

〈

6

�
I
�I

i + j + k

i + j

kji 〉

N

.
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(3)

〈

6

6

6 6

m+n

m+n

nm

〉

N

=
[
m+n
n

]
·

〈 6m+n 〉

N

.

(4)

〈

6

6

6

?

m

m

m+n

n
〉

N

=
[
N−m

n

]
·

〈 6m 〉

N

.

(5)

〈

�
-6

R

�

?

I 	

1

1

1

m

m

m

m+1

m+1

〉

N

=

〈 6

?

1 m

〉

N

+ [N −m− 1] ·

〈

� R

?

I 	

1

1

m

m

m−1

〉

N

.

(6)

〈

6

6

6
-
6

�
6

6

1

l

l+n

m+l−1

m

m−n

l+n−1

n

〉

N

=
[
m−1
n

]
·

〈

6

6

6

6

�

1 m+l−1

l m

l−1

〉

N

+
[
m−1
n−1

]
·

〈

�]

6

] �

1 m+l−1

l m

m+l

〉

N

.

(7)

〈

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m+l

n+l

m+l−k

〉

N

=
∑m

j=max{m−n,0}

[
l

k−j

]
·

〈

6

6

6

6

6

6
�

-

n

m

m−j

j

n+j−m

m+l

n+l

n+l+j

〉

N

.

The above equations remain true if we reverse the orientation of the MOY graph or the

orientation of R2.

In fact, the equations in Theorem 2.3 uniquely determine the MOY graph polynomial.

Some experts apparently knew this. But I did not find a written proof. So we include a

proof here for the convenience of the reader.

Theorem 2.4. The equations in Theorem 2.3 uniquely determine the sl(N) MOY graph

polynomial 〈∗〉N .

Proof. We use a double induction on the highest color of edges of Γ and on the number

of edges of Γ with the highest color.

Assume that 〈〈∗〉〉N also satisfies all the equations in Theorem 2.3. Kauffman and

Vogel [17] proved that, for closed trivalent MOY graphs colored by 1, 2, the polynomial

satisfying all the relations in Theorem 2.3 is unique. That is, 〈〈Γ〉〉N = 〈Γ〉N if all edges

of the MOY graph Γ are colored by 1 or 2.

Now assume that, for somem ≥ 2, 〈〈Γ〉〉N = 〈Γ〉N if all edges of the MOY graph Γ are

colored by positive integers no greater than m. We use this to prove that 〈〈Γ〉〉N = 〈Γ〉N
if all edges of Γ are colored by positive integers no greater than m + 1. To do this we

induct on the number of edges colored by m+ 1 in Γ.
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Rephrasing our induction hypothesis, we can say that 〈〈Γ〉〉N = 〈Γ〉N if all edges of

Γ are colored by positive integers no greater than m + 1 and exactly 0 edges of Γ are

colored by m + 1. Assume that, for some k ≥ 0, 〈〈Γ〉〉N = 〈Γ〉N whenever all edges of

Γ are colored by positive integers no greater than m + 1 and exactly k edges of Γ are

colored by m+ 1.

Let Γ be a MOY graph such that

• all edges of Γ are colored by positive integers no greater than m+ 1,

• exactly k + 1 edges of Γ are colored by m+ 1.

We claim that 〈〈Γ〉〉N = 〈Γ〉N .

Case 1. Assume that there is a circle ©m+1 colored by m + 1 in Γ. Let Γ̃ be Γ with

©m+1 removed. Then all edges of Γ̃ are colored by positive integers no greater than

m + 1, and exactly k edges of Γ̃ are colored by m + 1. So 〈〈Γ̃〉〉N = 〈Γ̃〉N and therefore

〈〈Γ〉〉N =
[
N
m

]
〈〈Γ̃〉〉N =

[
N
m

]
〈Γ̃〉N = 〈Γ〉N .

Case 2. Assume there are no circles colored by m+1 in Γ. Then every edge in Γ colored

by m + 1 is of the form depicted in Figure 3, where 1 ≤ j, l ≤ m. Let e be an edge of

Γ as in Figure 3. We modify Γ locally near e as in Figure 4. This gives us new MOY

graphs Γ0, Γ1 and Γ2, which are identical to Γ except in the neighborhoods shown in

Figure 4. Note that each of Γ0 and Γ2 has exactly k edges colored by m+1 and therefore

〈〈Γ0〉〉N = 〈Γ0〉N and 〈〈Γ2〉〉N = 〈Γ2〉N . Using equations (2), (3) and (6) in Theorem 2.3,

we get

〈〈Γ1〉〉N = [j] · [l] · 〈〈Γ〉〉N , (2.4.1)

〈〈Γ0〉〉N = 〈〈Γ1〉〉N + [m− 1] · 〈〈Γ2〉〉N , (2.4.2)

6

�I

�I

m+1

m+1−ll

m+1−jj

Fig. 3

6 6

6 6

6 6

6 6

6 6�

�

-

-

m+1−ll

2 m−1

1 m

1 m

l−1

m+1−jj
j−1

1

1

Γ0

6

�]

�]

� ]

�]
�

-

m+1

m+1−ll

1 m

l−1

m+1−jj

1 m

j−1

Γ1

6 6

6 6

6 6�

-

m+1−ll

1 m

l−1

m+1−jj
j−1

Γ2

Fig. 4
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〈Γ1〉N = [j] · [l] · 〈Γ〉N , (2.4.3)

〈Γ0〉N = 〈Γ1〉N + [m− 1] · 〈Γ2〉N . (2.4.4)

It clearly follows that 〈〈Γ〉〉N = 〈Γ〉N .

This completes the double induction and proves Theorem 2.4.

2.5. The colored Reshetikhin–Turaev sl(N) polynomial

Definition 2.5 ([32]). For a link diagram D colored by non-negative integers, define

〈D〉N by applying the following at every crossing of D:

〈
�Im n
〉

N

=

m∑

k=max{0,m−n}

(−1)m−kqk−m〈

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m

n

m−k 〉N ,

〈
I �m n

〉

N

=

m∑

k=max{0,m−n}

(−1)k−mqm−k〈

6

6

6

6

6

6

�

-

n

m

n+k

k

n+k−m

m

n

m−k 〉N .

Also, for each crossing c of D, define the shifting factor s(c) of c by

s

(
�Im n
)

=

{
(−1)−mqm(N+1−m) if m = n,

1 if m 6= n,

s

(
I �m n

)
=

{
(−1)mq−m(N+1−m) if m = n,

1 if m 6= n.

The renormalized Reshetikhin–Turaev sl(N) polynomial RTD(q) of D is defined to be

RTD(q) = 〈D〉N ·
∏

c

s(c),

where c runs through all crossings of D.

Theorem 2.6 ([32]). 〈D〉N is invariant under regular Reidemeister moves. RTD(q) is

invariant under all Reidemeister moves and is a renormalization of the Reshetikhin–

Turaev sl(N) polynomial for links colored by non-negative integers.



3. Graded matrix factorizations

In this section, we review the definition and properties of graded matrix factorizations

over graded C-algebras, most of which can be found in [19, 20, 21, 37, 48]. Some of these

properties are stated slightly more precisely here for the convenience of later applications.

3.1. Z-pregraded and Z-graded linear spaces. Let V be a C-linear space. A Z-

pregrading of V is a collection {V (i) | i ∈ Z} of C-linear spaces such that there exist

injective C-linear maps
⊕

i∈Z
V (i) →֒ V and V →֒

∏
i∈Z

V (i) that make diagram (3.1.1)

commutative, where the horizontal map is the standard inclusion map from the direct

sum to the direct product:

⊕
i∈Z

V (i)
� r

$$I
II

II
II

II

�

� // ∏
i∈Z

V (i)

V
,

�

::vvvvvvvvv

(3.1.1)

From now on, we will identify V (i) with its image in V . An element v of V (i) is called a

homogeneous element of V of degree i. In this case, we write deg v = i.

A Z-pregrading {V (i) | i ∈ Z} of V is called a Z-grading if the C-linear map
⊕

i∈Z
V (i)

→֒ V is an isomorphism.

Remark 3.1. The Z-gradings defined here are the Z-gradings in the usual sense. The

dual of a Z-graded module is not necessarily Z-graded. But it admits a natural Z-

pregrading. See Lemma 3.2 below. This is why we introduced the more general concept

of Z-pregradings.

We say that a Z-pregrading {V (i) | i ∈ Z} of V is bounded from below (resp. above)

if there is an m ∈ Z such that V (i) = 0 whenever i < m (resp. i > m). We call a

Z-pregrading bounded if it is bounded from both below and above.

Let V and W be Z-pregraded linear spaces with pregradings {V (i)} and {W (i)}.

A C-linear map f : V →W is called homogeneous of degree k if f(V (i)) ⊂W (i+k) for all

i ∈ Z.

Let V be a Z-pregraded linear space with pregrading {V (i)}. For any j ∈ Z, define

V {qj} to be V with the pregrading shifted by j. That is, the pregrading {V {qj}(i)} of

V {qj} is defined by V {qj}(i) = V (i−j). More generally, for

F (q) =

l∑

j=k

ajq
j ∈ Z≥0[q, q

−1],

[17]
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we define the Z-pregraded linear space V {F (q)} to be

V {F (q)} =
l⊕

j=k

(V {qj} ⊕ · · · ⊕ V {qj}︸ ︷︷ ︸
aj-fold

)

with the obvious pregrading {V {F (q)}(i)} given by

V {F (q)}(i) =
l⊕

j=k

(V (i−j) ⊕ · · · ⊕ V (i−j)

︸ ︷︷ ︸
aj-fold

).

3.2. Graded modules over a graded C-algebra. In the rest of this section, R will be

a graded commutative unital C-algebra, where “graded” means that we fix a Z-grading

{R(i)} on the underlying C-space of R that satisfies R(i) ·R(j) ⊂ R(i+j). It is easy to see

that 1 ∈ R(0).

A Z-grading of an R-module M is a Z-grading {M (i)} of its underlying C-space

satisfying R(i) · M (j) ⊂ M (i+j). A graded R-module is an R-module with a fixed Z-

grading. For a graded R-module M and F (q) ∈ Z≥0[q, q
−1], M{F (q)} is defined as

above.

Lemma 3.2. Let M1 and M2 be graded R-modules. Then HomR(M1,M2) has a natural

Z-pregrading. If M1 is finitely generated over R, then this pregrading is a grading.

Proof. Let {M
(i)
1 } and {M

(i)
2 } be the gradings of M1 and M2. Define

HomR(M1,M2)
(k) = {f ∈ HomR(M1,M2) | f(M

(i)
1 ) ⊂M

(i+k)
2 }.

We claim that {HomR(M1,M2)
(k)} is a Z-pregrading of HomR(M1,M2). To prove this,

we only need to show that:

(i) Any f ∈ HomR(M1,M2) can be uniquely expressed as a sum
∑∞

k=−∞ fk, where fk
is in HomR(M1,M2)

(k) and is called the homogeneous part of degree k of f .

(ii) For f, g ∈ HomR(M1,M2), f = g only if all of their corresponding homogeneous parts

are equal.

(ii) and the uniqueness part of (i) are simple and left to the reader. We only check the

existence part of (i).

For l = 1, 2, let J
(i)
l :M

(i)
l →Ml and P

(i)
l :Ml →M

(i)
l be the inclusion and projection

in

Ml =
⊕

i∈Z

M
(i)
l .

For k ∈ Z, define a C-linear map fk :M1 →M2 by fk|M(i)
1

= P
(i+k)
2 ◦f ◦J

(i)
1 . Letm ∈M1.

Then there exist i1 ≤ i2 and j1 ≤ j2 such that m ∈
⊕i2

i=i1
M

(i)
1 and f(m) ∈

⊕j2
j=j1

M
(j)
2 .

It is easy to see that fk(m) = 0 if k > j2 − i1 or k < j1 − i2. So
∑∞

k=−∞ fk(m) is a finite

sum for any m ∈ M1. Thus the infinite sum
∑∞

k=−∞ fk is a well defined C-linear map

from M1 to M2. One can easily see that f =
∑∞

k=−∞ fk as C-linear maps, and that fk
is a homogeneous C-linear map of degree k. It remains to check that fk is an R-module

map for every k. Let m ∈M
(i)
1 and r ∈ R(j). Then rm ∈M

(i+j)
1 and
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fk(rm) = P
(i+j+k)
2 (f(rm)) = P

(i+j+k)
2 (rf(m)) = P

(i+j+k)
2

(
r ·

∞∑

n=−∞

fn(m)
)
= rfk(m).

This implies that fk is an R-module map and, therefore, fk ∈ HomR(M1,M2)
(k). Thus,

{HomR(M1,M2)
(k)} is a Z-pregrading of HomR(M1,M2).

Now assume that M1 is generated by a finite subset {m1, . . . ,mp}. Then for any

f ∈ HomR(M1,M2), there exist i1 ≤ i2, j1 ≤ j2 such that m1, . . . ,mp ∈
⊕i2

i=i1
M

(i)
1 and

f(m1), . . . , f(mp) ∈
⊕j2

j=j1
M

(j)
2 . It follows easily that fk = 0 if k > j2− i1 or k < j1− i2.

So

f =

j2−i1∑

k=j1−i2

fk ∈
∞⊕

k=−∞

HomR(M1,M2)
(k).

Thus,

HomR(M1,M2) =
∞⊕

k=−∞

HomR(M1,M2)
(k),

which implies that {HomR(M1,M2)
(k)} is a Z-grading of HomR(M1,M2).

In the present paper, we are especially interested in free graded modules over R. Note

that a free graded module need not have a basis consisting of homogeneous elements.

Following [33, Chapter 13], we introduce the following definition.

Definition 3.3. A graded module M over R is called graded-free if it is a free module

over R with a homogeneous basis.

All the modules involved in the construction of the sl(N) homology are modules over

polynomial rings. We will see in Section 4 that, if the grading of a free graded module

over a polynomial ring is bounded below, then this module is graded-free.

3.3. Graded matrix factorizations. Recall that N (≥ 2) is a fixed integer throughout

the present paper. (It is the “N” in “sl(N)”.)

Definition 3.4. Let R be a graded commutative unital C-algebra, and w a homogeneous

element of R of degree 2N + 2. A graded matrix factorization M over R with potential

w is a collection of two free graded R-modules M0, M1 and two homogeneous R-module

maps d0 :M0 →M1, d1 :M1 →M0 of degree N + 1, called differential maps, such that

d1 ◦ d0 = w · idM0 , d0 ◦ d1 = w · idM1 .

We usually write M as

M0
d0−→M1

d1−→M0.

We observe that M has two gradings: a Z2-grading that takes value ε on Mε, and a

quantum grading which is the Z-grading of the underlying graded R-module. We denote

by degZ2
the degree from the Z2-grading and by deg the degree from the quantum grading.

Following [19], we denote by M〈1〉 the matrix factorization

M1
d1−→M0

d0−→M1,

and write M〈j〉 =M 〈1〉 · · · 〈1〉︸ ︷︷ ︸
j times

.
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For graded matrix factorizations M with potential w and M ′ with potential w′, the

tensor product M ⊗M ′ is the graded matrix factorization with

(M ⊗M ′)0 = (M0 ⊗M
′
0)⊕ (M1 ⊗M

′
1), (M ⊗M ′)1 = (M1 ⊗M

′
0)⊕ (M1 ⊗M

′
0),

and the differential is given by the signed Leibniz rule. That is, for m ∈Mε and m
′ ∈M ′,

d(m⊗m′) = (dm)⊗m′ + (−1)εm⊗ (dm′).

The potential of M ⊗M ′ is w + w′.

Definition 3.5. If a0, a1 ∈ R are homogeneous elements with deg a0 +deg a1 = 2N +2,

then denote by (a0, a1)R the matrix factorization R
a0−→ R{qN+1−dega0}

a1−→ R, which

has potential a0a1. More generally, if a1,0, a1,1, . . . , ak,0, ak,1 ∈ R are homogeneous with

deg aj,0 + deg aj,1 = 2N + 2, then denote by



a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

the tensor product

(a1,0, a1,1)R ⊗R (a2,0, a2,1)R ⊗R · · · ⊗R (ak,0, ak,1)R,

which is a graded matrix factorization with potential
∑k

j=1 aj,0aj,1, and is called the

Koszul matrix factorization associated to the above matrix. We drop “R” from the nota-

tion when it is clear from the context. Note that the above Koszul matrix factorization

is finitely generated over R.

Since the Koszul matrix factorizations we use in this paper are more complex than

those in [19, 20, 37, 48], it is generally harder to compute them. So it is more important

to keep good track of the signs. For this reason, we introduce the following notations.

Definition 3.6.

• Let I = {0, 1}. Define 1 = 0 and 0 = 1.

• For ε = (ε1, . . . , εk) ∈ Ik, define |ε| =
∑k

j=1 εj, and for 1 ≤ i ≤ k, define |ε|i =
∑i−1

j=1 εj.

Also define ε = (ε1, . . . , εk) and ε
′ = (εk, εk−1, . . . , ε1).

• In (a0, a1)R, denote by 10 the unit element of the copy of R with Z2-grading 0, and

by 11 the unit element of the copy of R with Z2-grading 1. Note that {10, 11} is an

R-basis for (a0, a1)R.

• In

M =



a1,0 a1,1
. . . . . .

ak,0 ak,1




R

,

for any ε = (ε1, . . . , εk) ∈ Ik, define 1ε = 1ε1 ⊗ · · · ⊗ 1ε1 in the tensor product

(a1,0, a1,1)R ⊗R · · · ⊗R (ak,0, ak,1)R.

Note that {1ε | ε ∈ Ik} is an R-basis for M , and 1ε is a homogeneous element with

Z2-degree |ε| and quantum degree
∑k

j=1 εj(N + 1 − deg aj,0). In the above notations,
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the differential of M is given by

d(1ε) =
k∑

j=1

(−1)|ε|jaj,εj · 1(ε1,...,εj−1,εj ,εj+1,...εk). (3.3.1)

Remark 3.7. In many cases, only the parity of εj matters and I can be viewed as Z2.

But in some situations, we need more information and I cannot be identified with Z2.

3.4. Morphisms of graded matrix factorizations. Given two graded matrix factor-

izations M with potential w and M ′ with potential w′ over R, consider the R-module

HomR(M,M ′). It admits a Z2-grading that takes value
{
0 on Hom0

R(M,M ′) = HomR(M0,M
′
0)⊕HomR(M1,M

′
1),

1 on Hom1
R(M,M ′) = HomR(M1,M

′
0)⊕HomR(M0,M

′
1).

By Lemma 3.2, it also admits a quantum pregrading induced by the quantum gradings

of homogeneous elements. Moreover, HomR(M,M ′) has a differential map d given by

d(f) = dM ′ ◦ f − (−1)εf ◦ dM for f ∈ Homε
R(M,M ′).

Note that d is homogeneous of degree N + 1 and satisfies

d2 = (w′ − w) · idHomR(M,M ′) .

Following [19], we write M• = HomR(M,R).

In general, HomR(M,M ′) is not a graded matrix factorization since HomR(M,M ′) is

not necessarily a free R-module and its quantum pregrading is not necessarily a grading.

But we have the following easy lemma.

Lemma 3.8. Let M and M ′ be as above. Assume that M is finitely generated over R.

Then HomR(M,M ′) is a graded matrix factorization over R of potential w′ − w. In

particular, M• = HomR(M,R) is a graded matrix factorization over R of potential −w.

Proof. Since M is finitely generated, we know that HomR(M,M ′) is a free R-module

and, by Lemma 3.2, the quantum pregrading is a grading.

Definition 3.9. Let M and M ′ be two graded matrix factorizations over R with poten-

tial w. Then HomR(M,M ′), with the above differential map d, is a chain complex with

a Z2 homological grading.

(1) We say that an R-module map f :M →M ′ is a morphism of matrix factorizations if

df = 0. Equivalently, for f ∈ Homε
R(M,M ′), f is a morphism of matrix factorizations

if dM ′ ◦ f = (−1)εf ◦ dM .

(2) We call f an isomorphism of matrix factorizations if it is a morphism of matrix

factorizations and an isomorphism of the underlying R-modules.

(3) We say that M,M ′ are isomorphic as graded matrix factorizations, or M ∼= M ′, if

there is a homogeneous isomorphism f : M →M ′ that preserves the Z2⊕Z-grading.

(4) Two morphisms f, g : M →M ′ of Z2-degree ε are homotopic if f − g is a boundary

element in HomR(M,M ′), that is, if there exists h ∈ Homε+1
R (M,M ′) such that

f − g = d(h) = dM ′ ◦ h− (−1)ε+1h ◦ dM .
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(5) We say that M,M ′ are homotopic as graded matrix factorizations, or M ≃ M ′, if

there are homogeneous morphisms f : M → M ′ and g : M ′ → M preserving the

Z2 ⊕ Z-grading such that g ◦ f ≃ idM and f ◦ g ≃ idM ′ .

Lemma 3.10. Let M and M ′ be two graded matrix factorizations over R with poten-

tials w and w′. Assume that M is finitely generated over R. Then the natural R-module

isomorphism

M ′ ⊗M• =M ′ ⊗HomR(M,R)
∼=
−→ HomR(M,M ′)

is a homogeneous isomorphism preserving the Z2⊕Z-grading. In particular, HomR(M,M ′)
∼=M ′ ⊗M• as graded matrix factorizations.

Proof. By Lemma 3.8,M ′⊗M• and HomR(M,M ′) are both graded matrix factorizations

over R with potential w′ − w. The natural isomorphism F between them is given by

F (m′ ⊗ f)(m) = f(m) ·m′ for all m′ ∈M ′, f ∈M• and m ∈M . It is easy to check that

F preserves the Z2 ⊕ Z-grading and commutes with the differential maps.

The following lemma specifies the sign convention we use when tensoring two mor-

phisms of matrix factorizations.

Lemma 3.11. Let R be a graded commutative unital C-algebra, and M, M ′, M, M′

graded matrix factorizations over R such that M,M have the same potential and M ′,M′

have the same potential. Assume that f : M → M and f ′ : M ′ → M′ are morphisms

of matrix factorizations of Z2-degrees j and j′. Define F : M ⊗ M ′ → M ⊗M′ by

F (m⊗m′) = (−1)i·j
′

f(m)⊗ f ′(m′) for m ∈Mi and m
′ ∈M ′. Then F is a morphism of

matrix factorizations of Z2-degree j + j′. In particular, if f or f ′ is homotopic to 0, then

so is F .

From now on, we will write F = f ⊗ f ′.

Proof. We compute

F ◦ d(m⊗m′) = F ((dm) ⊗m′ + (−1)im⊗ (dm′))

= (−1)(i+1)j′f(dm)⊗ f ′(m′) + (−1)i+ij′f(m)⊗ f ′(dm′),

d ◦ F (m⊗m′) = (−1)ij
′

d(f(m)⊗ f ′(m′))

= (−1)ij
′

(d(f(m))⊗ f ′(m′) + (−1)i+jf(m)⊗ d(f ′(m′)))

= (−1)ij
′+jf(dm)⊗ f ′(m′) + (−1)ij

′+i+j+j′f(m)⊗ f ′(dm′).

So F ◦ d = (−1)j+j′d ◦ F , that is, F is a morphism of matrix factorizations of Z2-degree

j + j′.

If f is homotopic to 0, then there exists h ∈ Homj+1
R (M,M) such that

f = d(h) = d ◦ h− (−1)j+1h ◦ d.

Define H ∈ Homj+j′+1
R (M ⊗M ′,M⊗M′) by

H(m⊗m′) := (−1)ij
′

h(m)⊗ f ′(m′) for m ∈Mi and m
′ ∈M ′.

Then d(H) = d ◦H − (−1)j+j′+1H ◦ d = F . So F is homotopic to 0.

If f ′ is homotopic to 0, then there exists h′ ∈ Homj′+1
R (M ′,M′) such that

f ′ = d(h′) = d ◦ h′ − (−1)j
′+1h′ ◦ d.
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Define H ′ ∈ Homj+j′+1
R (M ⊗M ′,M⊗M′) by

H ′(m⊗m′) := (−1)i(j
′+1)f(m)⊗ h′(m′) for m ∈Mi and m

′ ∈M ′.

Then d(H ′) = d ◦H ′ − (−1)j+j′+1H ′ ◦ d = (−1)jF . So F is homotopic to 0.

Lemma 3.12 ([19, Proposition 2]). Let R be a graded commutative unital C-algebra, and

a1,0, a1,1, . . . , ak,0, ak,1 homogeneous elements of R with deg aj,0 + deg aj,1 = 2N + 2 for

all j. Let

M =




a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

.

If x is an element of the ideal (a1,0, a1,1, . . . , ak,0, ak,1) of R, then multiplication by x is

a null homotopic endomorphism of M .

Proof (following [19]). Multiplications by ai,0 and ai,1 are null homotopic endomorphisms

of (a1,0, a1,1), and therefore, by Lemma 3.11, are null homotopic endomorphisms ofM .

Next we give precise definitions of several isomorphisms used in [19], which allow us

to keep track of signs in later applications.

Lemma 3.13. Let R be a graded commutative unital C-algebra, and a1,0, a1,1, . . . , ak,0, ak,1
homogeneous elements of R with deg aj,0 + deg aj,1 = 2N + 2 for all j. Let

M =




a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

and M ′ =




−ak,1 ak,0
−ak−1,1 ak−1,0

. . . . . .

−a1,1 a1,0




R

.

Denote by {1∗ε | ε ∈ Ik} the basis of M• dual to {1ε | ε ∈ Ik}, that is, 1∗ε(1ε) = 1

and 1∗ε(1σ) = 0 if σ 6= ε. Recall that, by Definition 3.6, ε′ = (εk, εk−1, . . . , ε1) for ε =

(ε1, ε2, . . . , εk) ∈ Ik. Then the R-homomorphism F : M• → M ′ given by F (1∗ε) = 1ε′ is

an isomorphism of matrix factorizations that preserves the Z2⊕Z-grading. In particular,

M•
∼=M ′ as graded matrix factorizations.

Proof. F is clearly an isomorphism of R-modules. We only need to prove that F is a mor-

phism of matrix factorizations that preserves the Z2⊕Z-grading. To simplify expressions,

we use the notations |ε|, |ε|j and εj introduced in Definition 3.6.

The element 1∗ε of M• has Z2-grading |ε| and quantum grading −
∑k

j=1 εj(N + 1 −

deg aj,0) =
∑k

j=1 εj(N+1−deg aj,1). And the element 1ε′ ofM
′ has Z2-grading |ε

′| = |ε|

and quantum grading
∑k

j=1 εj(N + 1 − deg aj,1). So F preserves the Z2 ⊕ Z-grading. It

remains to show that F is a morphism of matrix factorizations. For ε = (ε1, . . . , εk) ∈ Ik,

a straightforward calculation shows that
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d(1∗ε) =

k∑

j=1

(−1)|ε|−|ε|j+1aj,εj · 1
∗
(ε1,...,εj−1,εj ,εj+1,...,εk)

,

d(1ε′) =

k∑

j=1

(−1)|ε|−|ε|j+1aj,εj · 1(εk,...,εj+1,εj ,εj−1,...,ε1).

So dM ′ ◦ F = F ◦ dM• .

Lemma 3.14. Let R be a graded commutative unital C-algebra, and a1,0, a1,1, . . . , ak,0, ak,1
homogeneous elements of R with deg aj,0 + deg aj,1 = 2N + 2 ∀j. Let

M =




a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

and M ′ =




ak,0 ak,1
ak−1,0 ak−1,1

. . . . . .

a1,0 a1,1




R

.

Define an R-homomorphism F : M → M ′ by F (1ε) = (−1)|ε|(|ε|−1)/21ε′ ∀ε ∈ Ik. (See

Definition 3.6 for the definitions of |ε| and ε′.) Then F is an isomorphism of matrix

factorizations that preserves the Z2⊕Z-grading. In particular, M ∼=M ′ as graded matrix

factorizations.

Proof. F is clearly an isomorphism of R-modules and preserves the Z2 ⊕ Z-grading. It

remains to show that F is a morphism of matrix factorizations. When k = 1, there is

nothing to prove. When k = 2, F is given by the following diagram:

(
R · 1(0,0)
R · 1(1,1)

) (
a1,0 −a2,1
a2,0 a1,1

)

−−−−−−−−−→

(
R · 1(1,0)
R · 1(0,1)

) ( a1,1 a2,1

−a2,0 a1,0

)

−−−−−−−−−→

(
R · 1(0,0)
R · 1(1,1)

)

y
(
1 0
0 −1

) y( 0 1
1 0 )

y
(
1 0
0 −1

)

(
R · 1(0,0)
R · 1(1,1)

) (
a2,0 −a1,1
a1,0 a2,1

)

−−−−−−−−−→

(
R · 1(1,0)
R · 1(0,1)

) ( a2,1 a1,1

−a1,0 a2,0

)

−−−−−−−−−→

(
R · 1(0,0)
R · 1(1,1)

)

where the first row is M , the second row is M ′, and F is given by the vertical arrows.

A direct computation shows that F is a morphism. The general k ≥ 2 case follows from

the k = 2 case by a straightforward induction using Lemma 3.11.

Lemma 3.15. Let R be a graded commutative unital C-algebra, and a1,0, a1,1, . . . , ak,0, ak,1
homogeneous elements of R with deg aj,0 + deg aj,1 = 2N + 2 ∀j. Let

M =




a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

and M ′ =




a1,1 a1,0
a2,1 a2,0
. . . . . .

ak,1 ak,0




R

.

For ε = (ε1, . . . , εk) ∈ Ik, write s(ε) =
∑k−1

j=1 (k − j)εj. Define an R-homomorphism

F : M → M ′ by F (1ε) = (−1)|ε|+s(ε)1ε for ε ∈ Ik. (See 3.6 for the definitions of |ε|

and ε.) Then F is an isomorphism of matrix factorizations of Z2-degree k and quantum

degree
∑k

j=1(N + 1− deg aj,1).
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Proof. F is clearly an isomorphism of R-modules. And the claims about its two gradings

are easy to verify. One only needs to check that F is a morphism of matrix factorizations.

This is easy when k = 1. The general k ≥ 1 case follows from the k = 1 case by a

straightforward induction using Lemma 3.11.

Corollary 3.16 ([19]). Let R be a graded commutative unital C-algebra, and a1,0, a1,1,

. . . , ak,0, ak,1 homogeneous elements of R with deg aj,0 + deg aj,1 = 2N + 2 for all j.

Assume M is a graded matrix factorization over R with potential
∑k

j=1 aj,0aj,1. Then,

as graded matrix factorizations of 0,

HomR







a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

,M


 ∼=M ⊗R




a1,0 −a1,1
a2,0 −a2,1
. . . . . .

ak,0 −ak,1




R

〈k〉
{ k∑

j=1

(N + 1− deg aj,1)
}
.

Proof. Since 


a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

is a finitely generated matrix factorization with potential
∑k

j=1 aj,0aj,1 over R, we know

by Lemma 3.8 that

HomR







a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




R

,M




is a graded matrix factorization of 0. The isomorphism in the corollary follows easily from

Lemmas 3.10, 3.13, 3.14 and 3.15.

3.5. Elementary operations on Koszul matrix factorizations. Khovanov and

Rozansky [19, 20] and Rasmussen [37] introduced several elementary operations on Koszul

matrix factorizations that give isomorphic or homotopic graded matrix factorizations. In

this subsection, we recall these operations.

Lemma 3.17 ([37, 48]). Let M be the graded matrix factorization

M0
d0−→M1

d1−→M0

over R with potential w. Suppose that Hi : Mi → Mi are graded homomorphisms with

H2
i = 0. Define d̃i :Mi →Mi+1 by

d̃i = (idMi+1 −Hi+1) ◦ di ◦ (idMi
+Hi),

and M̃ by

M0
d̃0−→M1

d̃1−→M0.

Then M̃ is also a graded matrix factorization over R with potential w. And M ∼= M̃ .
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Corollary 3.18 ([37]). Suppose a1,0, a1,1, a2,0, a2,1, k are homogeneous elements in R

satisfying deg aj,0 + deg aj,1 = 2N + 2 and deg k = deg a1,0 + deg a2,0 − 2N − 2. Then
(
a1,0 a1,1
a2,0 a2,1

)

R

∼=

(
a1,0 + ka2,1 a1,1
a2,0 − ka1,1 a2,1

)

R

.

Corollary 3.19 ([19, 37]). Suppose a1,0, a1,1, a2,0, a2,1, c are homogeneous elements in

R satisfying deg aj,0 + deg aj,1 = 2N + 2 and deg c = deg a1,0 − deg a2,0. Then
(
a1,0 a1,1
a2,0 a2,1

)

R

∼=

(
a1,0 + ca2,0 a1,1

a2,0 a2,1 − ca1,1

)

R

.

The proofs of the above can be found in [19, 20, 37, 48] and are omitted.

Definition 3.20. Let R be a commutative ring, and a1, . . . , ak ∈ R. The sequence

{a1, . . . , ak} is called R-regular if a1 is not a zero divisor in R and aj is not a zero divisor

in R/(a1, . . . , aj−1) for j = 2, . . . , k.

The next lemma is [21, Theorem 2.1] and a generalization of [37, Lemma 3.10].

Lemma 3.21 ([21, 37]). Let R be a graded commutative unital C-algebra. Suppose that

{a1, . . . , ak} is an R-regular sequence of homogeneous elements of R with deg aj ≤ 2N+2

for j = 1, . . . , k. Assume that f1, . . . , fk, g1, . . . , gk are homogeneous elements of R such

that deg fj = deg gj = 2N + 2− deg aj and
∑k

j=1 fjaj =
∑k

j=1 gjaj. Then



f1 a1
. . . . . .

fk ak




R

∼=



g1 a1
. . . . . .

gk ak




R

.

Proof. Induct on k. If k = 1, then a1 is not a zero divisor in R and (f1 − g1)a1 = 0. So

f1 = g1 and (f1, a1)R = (g1, a1)R. Assume that the lemma is true for k = m. Consider

the case k = m+ 1. Then am+1 is not a zero divisor in R/(a1 . . . , am). But

(fm+1 − gm+1)am+1 =

m∑

j=1

(gj − fj)aj ∈ (a1 . . . , am).

So fm+1 − gm+1 ∈ (a1 . . . , am), that is, there exist c1, . . . , cm ∈ R such that

fm+1 − gm+1 =

m∑

j=1

cjaj .

Thus, by Corollary 3.18,



f1 a1
. . . . . .

fm am
fm+1 am+1




R

∼=




f1 + c1am+1 a1
. . . . . .

fm + cmam+1 am
gm+1 am+1




R

.

It is easy to see that
m∑

j=1

(fj + cjam+1)aj =

m∑

j=1

gjaj .
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By induction hypothesis,


f1 + c1am+1 a1
. . . . . .

fm + cmam+1 am




R

∼=



g1 a1
. . . . . .

gm am




R

.

Therefore,



f1 a1
. . . . . .

fm am
fm+1 am+1




R

∼=




f1 + c1am+1 a1
. . . . . .

fm + cmam+1 am
gm+1 am+1




R

∼=




g1 a1
. . . . . .

gm am
gm+1 am+1




R

.

Next we give six versions of [19, Proposition 9], which give a method of simplifying

matrix factorizations. Their proofs also give a method of finding cycles representing a

given homology class in some chain complexes and finding morphisms of matrix factor-

izations representing a given homotopy class, which is important for our purpose. So we

include their full proofs here.

Proposition 3.22 (strong version). Let R be a graded commutative unital C-algebra,

and x a homogeneous indeterminate with deg x ≤ 2N + 2. Let P : R[x] → R be the

evaluation map at x = 0, that is, P (f(x)) = f(0) for all f(x) ∈ R[x]. Suppose that

a1, . . . , ak, b1, . . . , bk are homogeneous elements of R[x] such that

• deg aj + deg bj = 2N + 2 for j = 1, . . . , k,

•
∑k

j=1 ajbj ∈ R,

• there exists i ∈ {1, . . . , k} such that bi = x.

Then

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R[x]

and M ′ =




P (a1) P (b1)

P (a2) P (b2)

. . . . . .

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

. . . . . .

P (ak) P (bk)




R

are homotopic as graded matrix factorizations over R.

Proof. For j 6= i, write a′j = P (aj) ∈ R and b′j = P (bj) ∈ R. Then there are unique

cj , kj ∈ R[x] such that aj = a′j + kjx and bj = b′j + cjx. By Corollaries 3.18 and 3.19,

M ∼=M ′′ :=




a′1 b′1
a′2 b′2
· · · . . .

a′i−1 b′i−1

a x

a′i+1 b′i+1

. . . . . .

a′k b′k




R[x]

,
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where a = ai +
∑

j 6=i kjbj +
∑

j 6=i cja
′
j . Since M,M ′′ have the same potential, we know

that ax =
∑k

j=1 ajbj −
∑

j 6=i a
′
jb

′
j ∈ R. So a = 0. Thus,

M ′′ =




a′1 b′1
. . . . . .

a′i−1 b′i−1

0 x

a′i+1 b′i+1

. . . . . .

a′k b′k




R[x]

.

Define R-module homomorphisms F :M ′′ →M ′ and G :M ′ →M ′′ by

F (f(x)1ε) =

{
f(0)1(ε1,...,εi−1,εi+1,...,εk) if εi = 0,

0 if εi = 1,

for f(x) ∈ R[x] and ε = (ε1, . . . , εk) ∈ Ik (see 3.6 for the definition of 1ε), and

G(r · 1(ε1,...,εi−1,εi+1,...,εk)) = r · 1(ε1,...,εi−1,0,εi+1,...,εk)

for r ∈ R and (ε1, . . . , εi−1, εi+1, . . . , εk) ∈ Ik−1.

One can easily check that F and G are morphisms of matrix factorizations preserving

the Z2 ⊕ Z-grading and F ◦G = idM ′ . Note that M ′′ = kerF ⊕ ImG and

G ◦ F |kerF = 0, G ◦ F |ImG = idImG .

Define an R-module homomorphism h :M ′′ →M ′′ by

h(1(ε1,...,εi−1,1,εi+1,...,εk)) = 0,

h((r + xf(x)) · 1(ε1,...,εi−1,0,εi+1,...,εk)) = (−1)
∑i−1

j=1 εjf(x) · 1(ε1,...,εi−1,1,εi+1,...,εk)

for r ∈ R, f(x) ∈ R[x] and ε1, . . . , εi−1, εi+1, . . . , εk ∈ I. A straightforward computation

shows that

(d ◦ h+ h ◦ d)|kerF = idkerF , (d ◦ h+ h ◦ d)|ImG = 0.

So idM ′′ −G ◦ F = d ◦ h + h ◦ d. Thus, we have M ′′ ≃ M ′ and, therefore, M ≃ M ′ as

graded matrix factorizations over R.

Proposition 3.23 (weak version). Let R be a graded commutative unital C-algebra, and

a1, . . . , ak, b1, . . . , bk homogeneous elements of R such that deg aj + deg bj = 2N + 2 and∑k
j=1 ajbj = 0. Then the matrix factorization

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R

is a chain complex with a Z2 homological grading. Assume that, for a given i ∈ {1, . . . , k},

bi is not a zero divisor in R. Define R′ = R/(bi), which inherits the grading of R. Let

P : R→ R′ be the standard projection. Then
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M ′ =




P (a1) P (b1)

P (a2) P (b2)

. . . . . .

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

. . . . . .

P (ak) P (bk)




R′

is also a chain complex with a Z2 homological grading. And H(M) ∼= H(M ′) as Z2 ⊕ Z-

graded R-modules.

Proof. Define an R-module homomorphism F :M →M ′ by

F (r1ε) =

{
P (r) · 1(ε1,...,εi−1,εi+1,...,εk) if εi = 0,

0 if εi = 1,

for r ∈ R and ε = (ε1, . . . , εk) ∈ Ik. (See 3.6 for the definition of 1ε.) It is easy to check

that F is a surjective morphism of matrix factorizations preserving the Z2 ⊕ Z-grading.

The kernel of F is the subcomplex

kerF =
⊕

(ε1,...,εi−1,εi+1,...,εk)∈Ik−1

(R · 1(ε1,...,εi−1,1,εi+1,...,εk) ⊕ biR · 1(ε1,...,εi−1,0,εi+1,...,εk)).

Since bi is not a zero divisor, the division map ϕ : biR → R given by ϕ(bir) = r is well

defined. Define an R-module homomorphism h : kerF → kerF by

h(1(ε1,...,εi−1,1,εi+1,...,εk)) = 0,

h(bi1(ε1,...,εi−1,0,εi+1,...,εk)) = (−1)
∑i−1

j=1 εj1(ε1,...,εi−1,1,εi+1,...,εk).

Then
d|kerF ◦ h+ h ◦ d|kerF = idkerF ,

where d is the differential map of M . In particular, this means that H(kerF ) = 0. Then,

using the long exact sequence induced by

0→ kerF →M
F
−→M ′ → 0,

it is easy to see that F is a quasi-isomorphism.

Remark 3.24. The above proof of Proposition 3.23 also gives a method of finding cycles

inM whose image under F is a given cycle inM ′. Indeed, for every cycle α inM ′, one can

find an element β ∈ M such that F (β) = α. Then F (dβ) = d′F (β) = d′α = 0, where d′

is the differential map of M ′. So dβ ∈ kerF and dβ = dh(dβ) + hd(dβ) = dh(dβ). Thus,

β−h(dβ) is a cycle inM . By definition, it clear that F ◦h = 0. So F (β−h(dβ)) = α. This

observation is useful in finding cycles representing a given homology class and morphisms

representing a given homotopy class. (In the situation of Proposition 3.22, one can also

do the same by explicitly computing the morphism M ′ ≃
−→ M ′′

∼=−→ M , which is usually

not any easier in practice.) This method also applies to the situation of Corollaries 3.27

and 3.28, that is, contracting the matrix factorization using an entry in the left column.

Next we give the dual version of Proposition 3.23.

Corollary 3.25 (dual version). Let R be a graded commutative unital C-algebra, and R̂

a graded commutative unital subalgebra of R such that R is a free R̂-module. Suppose that
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a1, . . . , ak, b1, . . . , bk are homogeneous elements of R such that deg aj + deg bj = 2N + 2

and
∑k

j=1 ajbj = w ∈ R̂. Assume that, for a given i ∈ {1, . . . , k}, bi is not a zero divisor

in R and R′ = R/(bi) is also a free R̂-module. Define

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R

and M ′ =




P (a1) P (b1)

P (a2) P (b2)

· · · · · ·

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

· · · · · ·

P (ak) P (bk)




R′

,

where P : R → R′ is the standard projection. Then, for any matrix factorization M ′′

over R̂ with potential w, there is a homogeneous quasi-isomorphism

HomR̂(M
′,M ′′)→ HomR̂(M,M ′′)

preserving both the Z2-grading and the quantum pregrading.

Proof. Define an R-module homomorphism F :M →M ′ by

F (r · 1ε) =

{
P (r) · 1(ε1,...,εi−1,εi+1,...,εk) if εi = 0,

0 if εi = 1,

for r ∈ R and ε = (ε1, . . . , εk) ∈ Ik. (See 3.6 for the definition of 1ε.) Then F is a

surjective morphism of matrix factorizations preserving the Z2 ⊕ Z-grading. So we have

a short exact sequence

0→ kerF →M
F
−→M ′ → 0.

Note that kerF and M are free R-modules and M ′ is a free R′-module. Thus, the above

is a short exact sequence of free R̂-modules. This implies that

0→ HomR̂(M
′,M ′′)

F ♯

−−→ HomR̂(M,M ′′)→ HomR̂(kerF,M
′′)→ 0

is also exact. Similarly to the proof of Proposition 3.23, there exists an R-module map

h : kerF → kerF of Z2-degree 1 such that idkerF = dM |kerF ◦ h+ h ◦ dM |kerF . Define

H : HomR̂(kerF,M
′′)→ HomR̂(kerF,M

′′)

by H(f) = (−1)jf ◦ h if f has Z2-degree j. Then H has Z2-degree 1 and, for f ∈

HomR̂(kerF,M
′′) of Z2-degree j,

(d ◦H +H ◦ d)(f) = d(H(f)) +H(d(f)) = (−1)jd(f ◦ h) + (−1)j+1(df) ◦ h

= (−1)j(dM ′′ ◦ f ◦ h− (−1)j+1f ◦ h ◦ dM |kerF )

+ (−1)j+1(dM ′′ ◦ f ◦ h− (−1)jf ◦ dM |kerF ◦ h)

= f ◦ (dM |kerF ◦ h+ h ◦ dM |kerF ) = f.

This shows that d ◦H +H ◦ d = idHomR̂(kerF,M ′′). Thus, HomHMF(kerF,M
′′) = 0 and,

therefore,

F ♯ : HomR̂(M
′,M ′′)→ HomR̂(M,M ′′)

is a quasi-isomorphism preserving the Z2 ⊕ Z-grading.
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Remark 3.26. Note that F ♯ : HomR̂(M
′,M ′′) → HomR̂(M,M ′′) maps a morphism

of matrix factorizations to a morphism of matrix factorizations. By successively using

this map, we can sometimes find morphisms representing a given homotopy class. This

method also applies to Corollary 3.29.

The following three corollaries describe how to contract a Koszul matrix factorization

using an entry in the left column. Their proofs are very close to those of Propositions

3.22, 3.23 and 3.25, and are omitted.

Corollary 3.27 (strong version). Let R be a graded commutative unital C-algebra, and

x a homogeneous indeterminate with deg x ≤ 2N +2. Let P : R[x]→ R be the evaluation

map at x = 0, that is, P (f(x)) = f(0) for all f(x) ∈ R[x].

Suppose that a1, . . . , ak, b1, . . . , bk are homogeneous elements of R[x] such that

• deg aj + deg bj = 2N + 2 for all j = 1, . . . , k,

•
∑k

j=1 ajbj ∈ R,

• there exists i ∈ {1, . . . , k} such that ai = x.

Then

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R[x]

and M ′ =




P (a1) P (b1)

P (a2) P (b2)

· · · · · ·

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

· · · · · ·

P (ak) P (bk)




R

{qN+1−degx}〈1〉

are homotopic as graded matrix factorizations over R.

Corollary 3.28 (weak version). Let R be a graded commutative unital C-algebra, and

a1, . . . , ak, b1, . . . , bk homogeneous elements of R such that deg aj + deg bj = 2N + 2 and∑k
j=1 ajbj = 0. Then the matrix factorization

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R

is a chain complex with a Z2 homological grading. Assume that, for a given i ∈ {1, . . . , k},

ai is not a zero divisor in R. Define R′ = R/(ai), which inherits the grading of R. Let

P : R→ R′ be the standard projection. Then

M ′ =




P (a1) P (b1)

P (a2) P (b2)

· · · · · ·

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

· · · · · ·

P (ak) P (bk)




R′
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is also a chain complex with a Z2 homological grading. And

H(M) ∼= H(M ′){qN+1−deg ai}〈1〉

as Z2 ⊕ Z-graded R-modules.

Corollary 3.29 (dual version). Let R be a graded commutative unital C-algebra, and R̂

a graded commutative unital subalgebra of R such that R is a free R̂-module. Suppose that

a1, . . . , ak, b1, . . . , bk are homogeneous elements of R such that deg aj + deg bj = 2N + 2

and
∑k

j=1 ajbj = w ∈ R̂. Assume that, for a given i ∈ {1, . . . , k}, ai is not a zero divisor

in R and R′ = R/(ai) is also a free R̂-module. Define

M =




a1 b1
a2 b2
· · · · · ·

ak bk




R

and M ′ =




P (a1) P (b1)

P (a2) P (b2)

· · · · · ·

P (ai−1) P (bi−1)

P (ai+1) P (bi+1)

· · · · · ·

P (ak) P (bk)




R′

,

where P : R → R′ is the standard projection. Then, for any matrix factorization M ′′

over R̂ with potential w, there is a homogeneous quasi-isomorphism

HomR̂(M
′,M ′′)→ HomR̂(M,M ′′)

of Z2-degree 1 and quantum degree deg ai −N − 1.

3.6. Categories of homotopically finite graded matrix factorizations. R is again

a graded commutative unital C-algebra in this subsection.

Definition 3.30. Let M be a graded matrix factorization over R with potential w.

We say that M is homotopically finite if there exists a finitely generated graded matrix

factorizationM over R with potential w such that M ≃M.

Definition 3.31. Let M and M ′ be any two graded matrix factorizations over R with

potential w. Denote by d the differential map of HomR(M,M ′).

HomMF(M,M ′) is defined to be the submodule of HomR(M,M ′) consisting of mor-

phisms of matrix factorizations from M to M ′. Equivalently, HomMF(M,M ′) := ker d.

HomHMF(M,M ′) is defined to be the R-module of homotopy classes of morphisms of

matrix factorizations from M to M ′. Equivalently, HomHMF(M,M ′) is the homology of

the chain complex (HomR(M,M ′), d).

It is clear that HomMF(M,M ′) and HomHMF(M,M ′) inherit the Z2-grading of

HomR(M,M ′). Recall that HomR(M,M ′) has a natural quantum pregrading, and d

is homogeneous (with deg d = N + 1). So HomMF(M,M ′) and HomHMF(M,M ′) also

inherit the quantum pregrading from HomR(M,M ′).

Definition 3.32. Let M and M ′ be as in Definition 3.31.

Hommf(M,M ′) is defined to be the C-linear subspace of HomMF(M,M ′) consisting

of homogeneous morphisms with Z2-degree 0 and quantum degree 0.
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Homhmf(M,M ′) is defined to be the C-linear subspace of HomHMF(M,M ′) consisting

of homogeneous elements with Z2-degree 0 and quantum degree 0.

Now we introduce four categories of homotopically finite graded matrix factorizations

relevant to our construction. We require the grading of the base ring to be bounded below.

We will be mainly concerned with the homotopy categories HMFR,w and hmfR,w.

Definition 3.33. Let R be a graded commutative unital C-algebra whose grading is

bounded below. Let w ∈ R be a homogeneous element of degree 2N + 2. We define

MFR,w, HMFR,w, mfR,w and hmfR,w by the following table:

Category Objects Morphisms

MFR,w all homotopically finite graded matrix factorizations over R HomMF

of potential w with quantum gradings bounded below

HMFR,w all homotopically finite graded matrix factorizations over R HomHMF

of potential w with quantum gradings bounded below

mfR,w all homotopically finite graded matrix factorizations over R Hommf

of potential w with quantum gradings bounded below

hmfR,w all homotopically finite graded matrix factorizations over R Homhmf

of potential w with quantum gradings bounded below

Remark 3.34.

(i) The above categories are additive.

(ii) The definitions of these categories here are slightly different from those in [19].

(iii) The grading of a finitely generated graded matrix factorization over R is bounded

below. So finitely generated graded matrix factorizations are objects of the above

categories.

(iv) Comparing Definition 3.33 to Definition 3.9, one can see that, for any objects M

and M ′ of the above categories, M ∼= M ′ means they are isomorphic as objects of

mfR,w, and M ≃M ′ means they are isomorphic as objects of hmfR,w.

Lemma 3.35. Let M and M ′ be any two graded matrix factorizations over R with po-

tential w. Assume that M is homotopically finite. Then the quantum pregrading on

HomHMF(M,M ′) is a grading. In particular, if the grading of R is bounded below and M

and M ′ are objects of MFR,w, then HomHMF(M,M ′) has a quantum grading.

Proof. SinceM is homotopically finite, there is a finitely generated graded matrix factor-

izationM over R with potential w such that M ≃M. That is, there exist homogeneous

morphisms f : M → M and g : M → M preserving both the Z2-grading and the

quantum grading such that g ◦ f ≃ idM and f ◦ g ≃ idM.

Denote by dM , dM ′ , d the differential maps of M , M ′ and HomR(M,M ′). Let f ♯ :

HomR(M,M ′) → HomR(M,M ′) and g♯ : HomR(M,M ′) → HomR(M,M ′) be the R-

module maps induced by f and g. One can easily check that f ♯ and g♯ are chain maps.

Since g ◦ f ≃ idM , we know that there exists a homogeneous R-module map h :M →M

of Z2-degree 1 and quantum degree −N − 1 such that

g ◦ f − idM = dM ◦ h+ h ◦ dM .



34 3. Graded matrix factorizations

Define an R-module map H : HomR(M,M ′) → HomR(M,M ′) so that, for any α ∈

HomR(M,M ′) with Z2-degree ε, H(α) = (−1)εα ◦ h. Then, for such an α, we have

(dH +Hd)(α) = (−1)εd(α ◦ h) + (−1)ε+1(dα) ◦ h

= (−1)ε(dM ′ ◦ α ◦ h− (−1)ε+1α ◦ h ◦ dM ) + (−1)ε+1(dM ′ ◦ α− (−1)εα ◦ dM ) ◦ h

= α ◦ (h ◦ dM + dM ◦ h) = α ◦ (g ◦ f − idM ) = f ♯ ◦ g♯(α) − α.

This shows that f ♯ ◦ g♯ ≃ idHomR(M,M ′). Similarly, g♯ ◦ f ♯ ≃ idHomR(M,M ′). Thus,

HomR(M,M ′) ≃ HomR(M,M ′) and this homotopy equivalence preserves both the Z2-

grading and the quantum pregrading. So HomHMF(M,M ′) ∼= HomHMF(M,M ′) and

the isomorphism preserves both the Z2-grading and the quantum pregrading. But, by

Lemma 3.8, the quantum pregrading of HomR(M,M ′) is a grading. So the quantum

pregrading of HomHMF(M,M ′) ∼= HomHMF(M,M ′) is also a grading.

3.7. Categories of chain complexes. Now we introduce our notations for categories

of chain complexes.

Definition 3.36. Let C be an additive category. We denote by Ch
b(C) the category of

bounded chain complexes over C. More precisely:

• An object of Chb(C) is a chain complex

· · ·
di−1 // Ai

di // Ai+1
di+1 // Ai+2

di+2 // · · · (3.7.1)

where Ai’s are objects of C, di’s are morphisms of C such that di+1 ◦ di = 0 for i ∈ Z,

and there exist integers k ≤ K such that Ai = 0 if i > K or i < k.

• A morphism f of Chb(C) is a commutative diagram

· · ·
di−1 // Ai

di //

fi

��

Ai+1

di+1 //

fi+1

��

Ai+2

di+2 //

fi+2

��

· · ·

· · ·
d′
i−1 // A′

i

d′
i // A′

i+1

d′
i+1 // A′

i+2

d′
i+2 // · · ·

where each row is an object of Chb(C) and vertical arrows are morphisms of C.

Chain homotopy in Ch
b(C) is defined the usual way.

We denote by hCh
b(C) the homotopy category of chain complexes over C, or simply

the homotopy category of C. The category hCh
b(C) is defined as follows:

• An object of hChb(C) is an object of Chb(C).

• For any two objects A and B of hChb(C), HomhChb(C)(A,B) is HomChb(C)(A,B) modulo

the subgroup of null homotopic morphisms.

An isomorphism in Ch
b(C) is denoted by ∼=. Isomorphism in hCh

b(C) is commonly

known as homotopy equivalence and denoted by ≃.

Let A be the object of Chb(C) (and hCh
b(C)) given in (3.7.1). Then A admits an

obvious bounded homological grading degh with deghAi = i. Morphisms of Chb(C) and

hCh
b(C) preserve this grading. Denote by A‖k‖ the object of Chb(C) obtained by shifting
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the homological grading by k. That is, A‖k‖ is the same chain complex as A except that

deghAi = i+ k in A‖k‖.

Let us try to understand how to compute HomChb(C)(A,B) and HomhChb(C)(A,B) for

objects A, B of Chb(C).

Definition 3.37. Let C be an additive category, and (A, d), (B, d′) objects of Chb(C).

Let Kom0(A,B) be the set of diagrams of the form

· · ·
di−1 // Ai

di //

fi

��

Ai+1

di+1 //

fi+1

��

Ai+2

di+2 //

fi+2

��

· · ·

· · ·
d′
i−1 // Bi

d′
i // Bi+1

d′
i+1 // Bi+2

d′
i+2 // · · ·

where vertical arrows are morphisms of C, and we do not require any commutativity.

Note that Kom0(A,B) is an abelian group.

For any k ∈ Z, define Komk(A,B) := Kom0(A‖k‖, B). Note that, if f ∈ Komk(A,B),

then Dkf := f ◦ d− (−1)kd′ ◦ f is an element of Komk+1(A,B). Clearly,
(
Kom(A,B) :=

⊕

k∈Z

Komk(A,B), D :=
⊕

k∈Z

Dk

)

is a bounded chain complex of abelian groups with an obvious homological grading, in

which Komk(A,B) has grading k.

The following lemma is obvious from the definitions of Hom
Ch

b(C)(A,B) and

HomhChb(C)(A,B).

Lemma 3.38. Using notations from Definition 3.37, we have

HomChb(C)(A,B) = kerD0,

HomhChb(C)(A,B) = H0(Kom(A,B), D) = kerD0/ ImD−1.
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Here, we review the algebraic properties of graded matrix factorizations over polynomial

rings. Most of these properties can be found in [19].

We assume in this section that R = C[X1, . . . , Xm] is a polynomial ring over C,

where X1, . . . , Xm are homogeneous indeterminates of positive integer degrees. There is

a natural grading {R(i)} of R. It is clear that, for each i, R(i) is finite-dimensional. In

particular, R(i) = 0 if i < 0 and R(0) = C. Also, R has a unique maximal homogeneous

ideal I = (X1, . . . , Xm).

Definition 4.1. For a homogeneous element w ∈ I of degree 2N +2, the Jacobian ideal

of w is defined to be Iw =
(

∂w
∂X1

, . . . , ∂w
∂Xm

)
. We call w non-degenerate if the Jacobian

algebra Rw := R/Iw is finite-dimensional over C. Otherwise, we call w degenerate (4).

Note that, for any homogeneous element w ∈ I of degree 2N + 2, Euler’s formula

gives

w =
1

2N + 2

m∑

i=1

(degXi) ·Xi
∂w

∂Xi
.

Thus, w is in its Jacobian ideal.

Lemma 4.2 ([19, Propositions 5]). Let M and M ′ be objects of HMFR,w. Then the action

of R on HomHMF(M,M ′) factors through the Jacobian ring Rw.

Proof (following [19]). Choose a basis for M and express the differential d of M as a

matrix D. Differentiating D2 = w · id by Xi, we get ∂D
∂Xi
◦D + D ◦ ∂D

∂Xi
= ∂w

∂Xi
· id. So

multiplication by ∂w
∂Xi

on M is a morphism homotopic to 0. Thus multiplication by ∂w
∂Xi

on HomHMF(M,M ′) is the zero map.

4.1. Homogeneous basis. In general, a free graded module over a graded ring is not

necessarily graded-free, that is, need not have a basis consisting of homogeneous elements.

(See Definition 3.3.) However, if the base ring is R, and the grading on the free mod-

ule is bounded below, then the module has a homogeneous basis. We prove this using

an argument in [33, Chapter 13]. First, we introduce the following definition from [33,

Chapter 13].

Definition 4.3. Let P be a graded R-module. We say that P is graded-projective if,

whenever we have a diagram

(4) In [19], the word “potential” refers to a non-degenerate element of I2. We adopt a more
relaxed convention here. A potential can be any element of I, degenerate or non-degenerate.

[36]
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P

β

��
V

α // W // 0

of graded R-modules with exact row, where α and β are homogeneous R-module maps

preserving the grading, there exists a homogeneous R-module map γ : P → V that

preserves the grading and makes the following diagram commutative:

P

β

��

γ

~~}
}
}
}

V
α // W // 0

Lemma 4.4 ([33]). LetM be a free graded R-module whose grading is bounded below. Then

M is graded-free over R, that is, M admits a homogeneous basis over R. In particular,

for any homogeneous element w ∈ I of degree 2N + 2, every object of MFR,w admits a

homogeneous basis.

Proof. SinceM is graded and free, it is graded and projective. By [33, Lemma 13.3],M is

graded-projective. Recall that R(0) = C and any C-linear space has a basis. So, according

to [33, p. 130, Exercise 3], M is graded-free.

By definition, the quantum grading of every object of MFR,w is bounded below. So

the above argument applies to objects of MFR,w.

4.2. Homology of graded matrix factorizations over R. Let w ∈ I be a homo-

geneous element of degree 2N + 2, and M a graded matrix factorization over R with

potential w. Note that M/IM is a chain complex over C, and it inherits the gradings

of M .

Definition 4.5. The homology HR(M) of M over R is defined to be the homology of

the chain complex M/IM . It inherits the gradings of M . If R is clear from the context,

we drop it from the notation.

Denote by Hε,i
R (M) the subspace of HR(M) consisting of homogeneous elements of

Z2-degree ε and quantum degree i. If dimHε,i
R (M) < ∞ ∀ε, i, we define the graded

dimension of M to be

gdimR(M) =
∑

ε,i

τεqi dimCH
ε,i
R (M) ∈ Z[[q]][τ ]/(τ2 − 1).

Again, if R is clear from the context, we drop it from the notation.

Remark 4.6. One needs to be careful when dropping R from notations. For example,

when w = 0, M is itself a chain complex. Denote by HC(M) the usual homology of M .

In general, HR(M) ≇ HC(M). Carelessly dropping R from notations in such situations

may lead to confusion.

Any homogeneous morphism of graded matrix factorizations induces a homogeneous

homomorphism of the homology, and homotopic morphisms induce the same homomor-

phism of the homology. In particular, f :M
≃
−→M ′ being a homotopy equivalence implies



38 4. Graded matrix factorizations over a polynomial ring

that the induced map f∗ : HR(M)
∼=
−→ HR(M

′) is an isomorphism. Surprisingly, accord-

ing to [19, Proposition 8], the converse is also true. Next we review properties of the

homology of matrix factorizations given in [19].

Lemma 4.7. Let M be a free graded R-module whose grading is bounded below. Let V =

M/IM . Then there is a homogeneous R-module map F : V ⊗C R → M preserving the

grading. In particular, if {vβ | β ∈ B} is a homogeneous C-basis for V , then {F (vβ ⊗ 1) |

β ∈ B} is a homogeneous R-basis for M .

Proof. By Lemma 4.4, M has a homogeneous basis {eα | α ∈ A}. Then, as graded vector

spaces, V ∼=
⊕

α∈A C · eα. So, as graded R-modules,

M ∼=
⊕

α∈A

R · eα ∼= V ⊗C R.

This proves the existence of F . The second part of the lemma follows easily.

The next proposition is a reformulation of [19, Proposition 7]. For the convenience of

the reader, we give a detailed proof here.

Proposition 4.8 ([19, Proposition 7]). Let M be a graded matrix factorization over R

with homogeneous potential w ∈ I of degree 2N + 2. Assume the quantum grading of M

is bounded below. Then there exist graded matrix factorizations Mc and Mes over R with

potential w such that

(i) M ∼=Mc ⊕Mes,

(ii) Mc ≃ 0 and, therefore, M ≃Mes,

(iii) Mes
∼= HR(M) ⊗C R as graded R-modules, and HR(M) ∼= Mes/IMes as graded

C-spaces.

Proof (following [19]). Write M as M0
d0−→ M1

d1−→ M0. Then the chain complex V :=

M/IM is given by V0
d̂0−→ V1

d̂1−→ V0, where Vε = Mε/IMε for ε = 0, 1. By Lemma

4.4, Mε has a homogeneous basis {eσ | σ ∈ Sε}, which induces a homogeneous C-basis

{êσ | σ ∈ Sε} for Vε. Under this homogeneous basis, the entries of the matrices of d0 and

d1 are homogeneous polynomials. And the matrices of d̂0 and d̂1 are obtained by letting

X1 = · · · = Xm = 0 in the matrices of d0 and d1, which preserves scalar entries and kills

entries with positive degrees.

We call {(ûρ, v̂ρ) | ρ ∈ P} a “good” set if

• {ûρ | ρ ∈ P} is a set of linearly independent homogeneous elements in V0,

• {v̂ρ | ρ ∈ P} is a set of linearly independent homogeneous elements in V1,

• d̂0(ûρ) = v̂ρ and d̂1(v̂ρ) = 0.

By Zorn’s Lemma, we find a maximal “good” set G = {(ûα, v̂α) | α ∈ A}. Using Zorn’s

Lemma again, we extend {ûα | α ∈ A} to a homogeneous basis {ûα | α ∈ A∪B0} for V0,

and {v̂α | α ∈ A} to a homogeneous basis {v̂α|α ∈ A ∪ B1} for V1. For each β ∈ B0, we

can write d̂0ûβ =
∑

α∈A∪B1
cαβ · v̂α, where cαβ ∈ C, and the right hand side is a finite

sum.

By Lemma 4.7, there is a homogeneous isomorphism Fε : Vε ⊗C R
∼=
−→Mε preserving

the Z2 ⊕ Z-grading. Let uα = F0(ûα ⊗ 1) and vα = F1(v̂α ⊗ 1). Then {uα | α ∈ A ∪ B0}
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and {vα | α ∈ A ∪ B1} are homogeneous R-bases for M0 and M1. Under these bases we

have, for any α ∈ A,

duα = vα +
∑

β∈A∪B1, β 6=α

fβαvβ ,

where fβα ∈ I and the sum on the right hand side is finite. That is, for each α,

fβα = 0 for all but finitely many β. (4.2.1)

Also, using d̂0(ûα) = v̂α for α ∈ A, one can see that

fβα = 0 if β 6= α and deg vβ ≥ deg vα. (4.2.2)

For α ∈ A and k > 0, let

Ck
∗α = {(γ0, . . . , γk) ∈ A

k+1 | γk = α, deg vγ0 < · · · < deg vγk
, fγ0γ1 · · · fγk−1γk

6= 0}.

By (4.2.1), Ck
∗α is a finite set. For each α, Ck

∗α = ∅ for large k’s since the quantum grading

of M is bounded below. For α, β ∈ A and k > 0, let

Ck
βα = {(γ0, . . . , γk) ∈ C

k
∗α | γ0 = β}.

Then
⋃

β∈AC
k
βα = Ck

∗α. So each Ck
βα is finite. And, for each k, Ck

βα 6= ∅ for only finitely

many β. Also, by definition, it is easy to see that Ck
βα = ∅ if deg vβ ≥ deg vα. Moreover,

for each α, there is a k0 > 0 such that Ck
βα = ∅ for any β whenever k > k0.

Now define tβα ∈ R by

tβα =





1 if β = α,

0 if β 6= α, deg vβ ≥ deg vα,∑
k≥1(−1)

k
∑

(γ0,...,γk)∈Ck
βα
fγ0γ1 · · · fγk−1γk

if deg vβ < deg vα.

From the above discussion, we know that the sum on the right hand side is always finite.

So tβα is well defined. Furthermore, given an α ∈ A, we have tβα = 0 for all but finitely

many β. So, for α ∈ A, u′α :=
∑

β∈A tβαuβ is well defined. And {u′α | α ∈ A} ∪ {uβ |

β ∈ B0} is also a homogeneous R-basis for M0. One can check that, for α ∈ A,

du′α = vα +
∑

β∈B1

f ′
βαvβ ,

where the right hand side is a finite sum, and f ′
βα ∈ I. Now let

v′α =

{
vα +

∑
β∈B1

f ′
βαvβ if α ∈ A,

vα if α ∈ B1.

Then {v′α | α ∈ A ∪ B1} is a homogeneous R-basis for M1. Under this basis, we have
{
du′α = v′α if α ∈ A,

duβ =
∑

α∈A gαβv
′
α +

∑
γ∈B1

gγβv
′
γ if β ∈ B0,

where the sums on the right hand side are finite. For β ∈ B0, we let

u′β = uβ −
∑

α∈A

gαβu
′
α.
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Then {u′α | α ∈ A ∪ B0} is again a homogeneous R-basis for M0, and
{
du′α = v′α if α ∈ A,

du′β =
∑

γ∈B1
g′γβv

′
γ if β ∈ B0,

where the sum on the right hand side is finite. Using that d2 = w idM , one can check that
{
dv′α = w · v′α if α ∈ A,

dv′β =
∑

γ∈B0
g′′γβu

′
γ if β ∈ B1,

where the sum on the right hand side is finite.

Define M(1,w) to be the submodule of M spanned by {u′α | α ∈ A} ∪ {v
′
α | α ∈ A},

and M ′ the submodule ofM spanned by {u′β | β ∈ B0}∪{v
′
β | β ∈ B1}. Then M(1,w) and

M ′ are both graded matrix factorizations and M =M(1,w) ⊕M
′. Note that

(a) M(1,w) is a direct sum of components of the form (1, w)R{qk},

(b) under the standard projection M → M/IM , we have u′α 7→ ûα and v′α 7→ v̂α for

α ∈ A.

In particular, (b) above means thatM ′ does not have direct sum components of the form

(1, w)R{qk}. Otherwise, we can enlarge the “good” set G, which contradicts the fact

that G is maximal. We then apply a similar argument to M ′ and find a decomposition

M ′ =M(w,1) ⊕Mes of graded matrix factorizations satisfying

• M(w,1) is a direct sum of components of the form (w, 1)R{q
k},

• Mes has no direct sum component of the form (1, w)R{qk} or (w, 1)R{qk}.

Let Mc =M(1,w)⊕M(w,1). Then M =Mc ⊕Mes. Since (1, w)R{qk} and (w, 1)R{qk} are

both homotopic to 0, Mc ≃ 0. So M ≃ Mes. It is clear that, under any homogeneous

basis for Mes, all entries of the matrices representing the differential map of Mes must

be in I. Otherwise, a simple change of basis would show that Mes has a component of

the form (1, w)R{qk} or (w, 1)R{qk}. Therefore, HR(M) ∼= HR(Mes) ∼= Mes/IMes. So,

by Lemma 4.7, Mes
∼= HR(M)⊗C R as graded modules.

The following corollaries are from [19].

Corollary 4.9 ([19, Proposition 8]). LetM andM ′ be graded matrix factorizations over

R with homogeneous potential w ∈ I of degree 2N + 2. Assume the quantum gradings of

M and M ′ are bounded below. Suppose that f : M → M ′ is a homogeneous morphism

preserving the Z2⊕Z-grading. Then f is a homotopy equivalence if and only if it induces

an isomorphism of the homology f∗ : HR(M)→ HR(M
′).

Proof (following [19]). If f is a homotopy equivalence, then f∗ is clearly an isomorphism.

Let us now prove the converse. Assume f∗ is an isomorphism. Let M = Mc ⊕Mes and

M ′ =M ′
c ⊕M

′
es be decompositions of M and M ′ given by Proposition 4.8. So f induces

a morphism fes : Mes → M ′
es. Note that HR(M) ∼= Mes/IMes, HR(M

′) ∼= M ′
es/IM

′
es,

Mes = HR(M) ⊗C R and M ′
es = HR(M

′) ⊗C R. So fes is an isomorphism since f∗ is an

isomorphism. It follows that f is a homotopy equivalence.
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Corollary 4.10 ([19, Proposition 7]). Let M be a graded matrix factorization over R

with homogeneous potential w ∈ I of degree 2N + 2. Assume the quantum grading of M

is bounded below. Then

(i) M ≃ 0 if and only if HR(M) = 0 or, equivalently, gdimR(M) = 0;

(ii) M is homotopically finite if and only if HR(M) is finite-dimensional over C or,

equivalently, gdimR(M) is a well defined element of Z[q, τ ]/(τ2 − 1).

Proof. For (i), we have

M ≃ 0 ⇒ HR(M) = 0 ⇒ Mes
∼= HR(M)⊗C R = 0 ⇒ M ≃ 0.

Now consider (ii). If M is homotopically finite, then there is a finitely generated

graded matrix factorizationM such thatM ≃M. Note thatM/IM is finite-dimensional

over C. This implies that HR(M) ∼= HR(M) is finite-dimensional over C. If HR(M) is

finite-dimensional over C, then Mes
∼= HR(M) ⊗C R is finitely generated over R. But

M ≃Mes. So M is homotopically finite.

4.3. The Krull–Schmidt property. In this subsection, we review the Krull–Schmidt

property of matrix factorizations and chain complexes of matrix factorizations. We follow

the approach in [9, Section 1] and [19, Section 5].

Definition 4.11 ([9]). An additive category C is called a C-category if all morphism sets

HomC(A,B) are C-linear spaces and the composition of morphisms is C-bilinear.

A C-category C is called fully additive if every idempotent morphism of C splits, that

is, induces a direct sum decomposition.

A C-category C is called locally finite-dimensional if, for every pair A,B of objects

of C, HomC(A,B) is finite-dimensional over C.

A C-category C is called Krull–Schmidt if

• every object of C is isomorphic to a finite direct sum A1 ⊕ · · · ⊕An of indecomposable

objects of C, and

• if A1⊕· · ·⊕An
∼= A′

1⊕· · ·⊕A
′
l, where A1, . . . An, A

′
1, . . . , A

′
l are indecomposable objects

of C, then n = l and there is a permutation σ of {1, . . . , n} such that Ai
∼= A′

σ(i) for

i = 1, . . . , n.

Note that, for any homogeneous potential w ∈ I of degree 2N + 2, the categories

MFR,w, HMFR,w, mfR,w and hmfR,w are all C-categories. Moreover, if C is a C-category,

then Ch
b(C) and hCh

b(C) are also C-categories. Then following lemma is from [9, Sec-

tion 1].

Lemma 4.12 ([9, Section 1]). If C is a fully additive and locally finite-dimensional C-

category, then C is Krull–Schmidt. Moreover, if C is a fully additive and locally finite-

dimensional C-category, then Ch
b(C) and hCh

b(C) are both fully additive, locally finite-

dimensional and, therefore, Krull–Schmidt.

Sketch of proof (following [9]). A C-category C is called local if every object of C decom-

poses into a finite direct sum of objects with local endomorphism rings. One can check that

C is local if it is fully additive and locally finite-dimensional. By [2, Theorem 3.6], local
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C-categories are Krull–Schmidt. So fully additive locally finite-dimensional C-categories

are Krull–Schmidt.

If C is a fully additive and locally finite-dimensional C-category, then Ch
b(C) is also

fully additive and locally finite-dimensional. So Ch
b(C) is local and, therefore, Krull–

Schmidt. For every pair (A,B) of objects of hCh
b(C), HomhChb(C)(A,B) is a quotient

space of HomChb(C)(A,B). Thus, hChb(C) is also locally finite-dimensional. Since Ch
b(C)

is local, any object A of hChb(C) decomposes into

A ∼= A1 ⊕ · · · ⊕Am,

where Hom
Ch

b(C)(Ai, Ai) is a local ring for each i = 1, . . . ,m. But Hom
hCh

b(C)(Ai, Ai) is

a quotient ring of HomChb(C)(Ai, Ai). So, for each i, HomhChb(C)(Ai, Ai) is either a local

ring or 0. In the latter case, Ai is homotopic to 0. This shows that hCh
b(C) is local

and, therefore, Krull–Schmidt. Since local C-categories are fully additive, hChb(C) is fully

additive.

Remark 4.13. In [9, Section 1], the above lemma is actually proved for categories over

any complete local Noetherian ring. (It is trivial to verify that C is such a ring.)

In the rest of this subsection, we assume that w is a homogeneous element of I with

degw = 2N +2. The next lemma is the lifting idempotent property from [19, Section 5].

Lemma 4.14 ([19, Section 5]). Any idempotent in hmfR,w can be lifted to an idempotent

in mfR,w.

Proof (following [19]). Let M be an object of hmfR,w, and f : M → M a homogeneous

morphism of matrix factorizations preserving the Z2⊕Z-grading and satisfying f ◦f≃f .

We need to show that there is a homogeneous morphism g : M → M of matrix factor-

izations preserving the Z2 ⊕ Z-grading such that g ≃ f and g ◦ g = g.

Denote by P : M → Mes and J : Mes → M the projection and inclusion from the

decomposition in Proposition 4.8. Then f induces a morphism fes = P ◦f ◦J :Mes →Mes

which satisfies fes◦fes ≃ fes. Note that, as an object of hmfR,w,M is homotopically finite

and its quantum grading is bounded below. So, by Proposition 4.8 and Corollary 4.10,

Mes is finitely generated over R.

Let

α : Hommf(Mes,Mes)→ Homhmf(Mes,Mes)

be the natural projection taking each morphism to its homotopy class, and

β : Hommf(Mes,Mes)→ HomC(HR(M), HR(M))

the map taking each morphism to the induced map on the homology. Then kerα and

kerβ are ideals of the ring Hommf(Mes,Mes), and kerα ⊂ kerβ.

Choose a homogeneous basis {e1, . . . , en} for Mes over R. For any h ∈ kerβ, let H be

its matrix under this basis. By Proposition 4.8, HR(M) ∼=Mes/IMes. Since β(h) = 0, we

know that entries of H are elements of I. This implies that, if h ∈ (kerβ)k, then entries

of H are elements of Ik. But the matrix of a homogeneous morphism preserving the

quantum grading cannot have entries of arbitrarily large degrees. Thus, (kerβ)k = 0 for

k ≫ 0 and, therefore, (kerα)k = 0 for k ≫ 0. This shows that kerα is a nilpotent ideal
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of Hommf(Mes,Mes). By [4, Theorem 1.7.3], nilpotent ideals have the lifting idempotent

property. Thus, there is a homogeneous morphism ges : Mes → Mes of matrix factoriza-

tions preserving the Z2 ⊕ Z-grading of Mes that satisfies ges ≃ fes and ges ◦ ges = ges.

Now define a morphism g : M → M by g = J ◦ ges ◦ P . It is easy to check that g

preserves the Z2 ⊕ Z-grading of M and satisfies g ≃ f and g ◦ g = g.

Lemma 4.15 ([19, Proposition 24]). hmfR,w is fully additive.

Proof (following [19]). Let M be an object of hmfR,w, and f : M → M a homoge-

neous morphism of matrix factorizations preserving the Z2 ⊕ Z-grading of M and satis-

fying f ◦ f ≃ f . By the lifting idempotent property (Lemma 4.14), there is a morphism

g : M → M preserving the Z2 ⊕ Z-grading of M such that g ≃ f and g ◦ g = g. Now g

induces a decomposition of graded R-modules M = gM ⊕ (id−g)M . In particular, gM

and (id−g)M are both projective modules over R. Recall that R = C[X1, . . . , Xm] is

a polynomial ring. The well known Quillen–Suslin Theorem tells us that any projective

R-module is a free R-module. So gM and (id−g)M are graded free R-modules. Since

g is a morphism of matrix factorizations, the differential map on M preserves gM and

(id−g)M , which makes them objects of hmfR,w and the above decomposition a decom-

position of objects of hmfR,w.

In [19], Khovanov and Rozansky proved that HMFR,w is locally finite-dimensional

under the assumption that w is non-degenerate. Since we only need hmfR,w to be locally

finite-dimensional, the assumption of non-degeneracy is not necessary. The following is a

modified version of [19, Proposition 6].

Lemma 4.16 ([19, Propositions 6]). hmfR,w is locally finite-dimensional.

Proof. Let M and M ′ be objects of hmfR,w. Then there exist finitely generated graded

matrix factorizationsM andM′ over R of potential w such thatM ≃M and M ′ ≃M′.

So HomHMF(M,M ′) ∼= HomHMF(M,M′). Recall that R is a polynomial ring and,

therefore, Noetherian. Thus, HomHMF(M,M′) is finitely generated over R since

HomR(M,M′) is finitely generated over R. Let v1, . . . , vk be a finite set of homogeneous

generators of HomHMF(M,M ′) over R and a = mini=1,...,k deg vi. Then Homhmf(M,M ′)

is a quotient space of a subspace of the finite-dimensional space

( k⊕

i=1

C · vi
)
⊗C

( −a⊕

j=0

R(j)
)
,

where R(j) is the C-subspace of R of homogeneous elements of degree j. Therefore,

Homhmf(M,M ′) is finite-dimensional over C.

The Krull–Schmidt property follows easily from Lemmas 4.12, 4.15 and 4.16.

Proposition 4.17 ([19, Proposition 25]). Assume that w is a homogeneous element of

I with degw = 2N + 2. Then hmfR,w, Ch
b(hmfR,w) and hCh

b(hmfR,w) are all Krull–

Schmidt.

4.4. Yonezawa’s lemma. Yonezawa [56] introduced a lemma about isomorphisms in a

graded Krull–Schmidt category that is very useful in the proof of the invariance of the
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colored sl(N) homology. Next we review this lemma and show that it applies to hmfR,w

and hCh
b(hmfR,w). Our statement of Yonezawa’s lemma is slightly different from the

original version in [56].

First, we recall a simple property of Krull–Schmidt categories.

Lemma 4.18. Let C be a Krull–Schmidt category, and A,B,C objects of C. If A ⊕ C ∼=
B ⊕ C, then A ∼= B.

Proof. Decompose both sides of A ⊕ C ∼= B ⊕ C into direct sums of indecomposable

objects and compare the components of these direct sums.

Definition 4.19. Let C be an additive category, and F : C → C an autofunctor with

inverse functor F−1. We say that F is strongly non-periodic if, for any object A of C and

k ∈ Z, F k(A) ∼= A implies that either A ∼= 0 or k = 0.

Denote by Z≥0[F, F
−1] the ring of formal Laurent polynomials of F whose coeffi-

cients are non-negative integers. Each G =
∑l

i=k biF
i ∈ Z≥0[F, F

−1] admits a natural

interpretation as an endofunctor on C, that is, for any object A of C,

G(A) =
l⊕

i=k

(F i(A) ⊕ · · · ⊕ F i(A)︸ ︷︷ ︸
bi-fold

).

The following is Yonezawa’s lemma.

Lemma 4.20 ([56]). Let C be a Krull–Schmidt category, and F : C → C a strongly

non-periodic autofunctor. Suppose that A, B are objects of C, and there exists a G ∈

Z≥0[F, F
−1] such that G 6= 0 and G(A) ∼= G(B). Then A ∼= B.

Proof. For any objects C and C′, we say that they are in the same orbit if C ∼= F k(C′)

for some k ∈ Z. If C and C′ are in the same orbit, and C ≇ 0, then we can define a

relative degree so that deg(C,C′) = k if C ∼= F k(C′). This relative degree is well defined

since F is strongly non-periodic.

Clearly, F preserves direct sum decompositions, maps isomorphic objects to isomor-

phic objects and maps indecomposable objects to indecomposable objects.

For any object C of C, if C ∼= C1 ⊕ · · · ⊕ Cl, where C1, . . . , Cl are indecomposable

objects of C, then we call l the length of C and denote it by L(C). Since C is Krull–

Schmidt, L(C) is well defined. Clearly, L(C) = L(F (C)) = L(F k(C)). More generally,

for any X ∈ Z≥0[F, F
−1], let X(1) = X |F=1 ∈ Z≥0. Then, L(X(C)) = X(1)L(C) for any

object C.

If X 6= 0, define the degree degX of X to be the maximal k so that the coefficient

of F k in X is non-zero.

We prove the lemma by inducting on the length of A. If L(A) = 0, then A ∼= 0 and

L(B)G(1) = L(A)G(1) = 0. Since G(1) > 0, this implies that L(B) = 0 and, therefore,

B ∼= 0. So A ∼= B. Assume that the lemma is true if L(A) = l − 1. Now suppose

L(A) = l. Decompose G(A) ∼= G(B) into indecomposable objects and find all the orbits

of indecomposable objects that appear in this decomposition. This gives us

G(A) ∼= G(B) ∼= G1(C1)⊕ · · · ⊕Gk(Ck),
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where G1, . . . , Gk are non-zero elements of Z≥0[F, F
−1], and C1, . . . , Ck are indecompos-

able objects in disjoint orbits. Thus,

A ∼= f1(C1)⊕ · · · ⊕ fk(Ck), B ∼= g1(C1)⊕ · · · ⊕ gk(Ck),

where f1, . . . , fk, g1, . . . , gk are non-zero elements of Z≥0[F, F
−1]. Compare deg f1 and

deg g1. Using the strong non-periodicity of F and the uniqueness of the decomposition

into indecomposable objects, it is easy to conclude that deg f1 + degG = degG1 =

deg g1+degG. So deg f1 = deg g1 , d. Define f̂1 := f1−F d, ĝ1 := g1−F d ∈ Z≥0[F, F
−1].

Let

Â = f̂1(C1)⊕ f2(C2)⊕ · · · ⊕ fk(Ck), B̂ = ĝ1(C1)⊕ g2(C2)⊕ · · · ⊕ gk(Ck).

Then

G(Â)⊕ (F d ·G)(C1) ∼= G(A) ∼= G(B) ∼= G(B̂)⊕ (F d ·G)(C1).

By Lemma 4.18, we have G(Â) ∼= G(B̂). But L(Â) = l − 1. So, by induction hypothesis,

Â ∼= B̂. Thus, A ∼= Â⊕ F d(C1) ∼= B̂ ⊕ F d(C1) ∼= B.

Note that the quantum grading shift functor {q} on hmfR,w induces a quantum grad-

ing shift functor on hCh
b(hmfR,w), which we again denote by {q}. The following is an

easy consequence of Lemma 4.20 and is very useful later in our construction.

Proposition 4.21. Assume that w is a homogeneous element of I with degw = 2N +2.

The functor {q} is strongly non-periodic on both hmfR,w and hCh
b(hmfR,w). Therefore,

for any non-zero element f(q) ∈ Z≥0[q, q
−1],

• if M and M ′ are objects of hmfR,w, and M{f(q)} ≃M ′{f(q)}, then M ≃M ′;

• if C and C′ are objects of hChb(hmfR,w), and C{f(q)} ≃ C′{f(q)}, then C ≃ C′.

Proof. We only need to show that {q} is strongly non-periodic on both hmfR,w and

hCh
b(hmfR,w). The second half of the proposition follows from this and Proposition 4.17

and Lemma 4.20.

Let M be any object of hmfR,w. Assume that M ≃ M{qk} for some k 6= 0. Without

loss of generality, assume k > 0. Since M is homotopically finite, there exists a finitely

generated object M of hmfR,w such that M ≃ M. So M ≃ M{qk}, and therefore

M ≃ M{qak} for any a ∈ Z>0. Let {e1, . . . , en} be a homogeneous basis for M. Set

u = max1≤i≤n deg ei and l = min1≤i≤n deg ei. Note that l is the lowest grading for any

non-vanishing homogeneous elements of M. Choose an a ∈ Z>0 such that ak > u − l.

Then M ≃ M{qak} implies that there are homogeneous morphisms f : M → M of

degree −ak and g : M → M of degree ak such that f ◦ g ≃ g ◦ f ≃ idM. Note that

deg f(ei) ≤ −ak + u < l for i = 1, . . . , n, which implies that f(ei) = 0 for i = 1, . . . , n.

So f = 0 and, therefore, idM ≃ 0. Thus, M ≃ M ≃ 0. This shows that {q} is strongly

non-periodic on hmfR,w.

Note that any object of hChb(hmfR,w) is isomorphic to an object whose underlying

R-module is finitely generated, and any morphism of hChb(hmfR,w) can be realized as

a finite collection of homogeneous morphisms of graded matrix factorizations. So the

above argument works for hChb(hmfR,w) too. Thus, {q} is also strongly non-periodic on

hCh
b(hmfR,w).
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In this section, we review properties of symmetric polynomials used in this paper. Most

of these materials can be found in, for example, [12, 13, 24, 25, 27, 57].

5.1. Notations and basic examples. In this paper, an alphabet means a finite collec-

tion of homogeneous indeterminates of degree 2. For an alphabet X = {x1, . . . , xm}, we

denote by C[X] the polynomial ring C[x1, . . . , xm] and by Sym(X) the ring of symmet-

ric polynomials over C in X. Note that the grading on C[X] (and Sym(X)) is given by

deg xj = 2. For k = 1, . . . ,m, we denote by Xk the kth elementary symmetric polynomial

in X. That is,

Xk :=
∑

1≤i1<i2<···<ik≤m

xi1xi2 · · ·xik .

Xk is a homogeneous symmetric polynomial of degree 2k. It is well known thatX1, . . . , Xm

are independent and Sym(X) = C[X1, . . . , Xm]. For convenience, we define

X0 = 1 and Xk = 0 if k < 0 or k > m.

There are two more relevant families of basic symmetric polynomials: the power sum

symmetric polynomials {pk(X) | k ∈ Z} given by

pk(X) =

{∑m
i=1 x

k
i if k ≥ 0,

0 if k < 0,

and the complete symmetric polynomials {hk(X) | k ∈ Z} given by

hk(X) =





∑
1≤i1≤i2≤···≤ik≤m xi1xi2 · · ·xik if k > 0,

1 if k = 0,

0 if k < 0.

Consider the generating functions of {Xk}, {pk(X)} and {hk(X)}, that is, the power

series

E(t) =
m∑

k=0

(−1)kXkt
k =

m∏

i=1

(1− xit),

P (t) =

∞∑

k=0

pk+1(X)t
k =

m∑

i=1

xi
1− xit

,

H(t) =
∞∑

k=0

hk(X)t
k =

m∏

i=1

(1− xit)
−1.

[46]
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It is easy to see that E(t) · H(t) = 1, E′(t) · H(t) = −P (t) and E(t) · P (t) = −E′(t).

Hence,

l∑

k=0

(−1)kXkhl−k(X) =

{
0 if l > 0,

1 if l = 0,
(5.1.1)

l∑

k=1

(−1)k−1kXkhl−k(X) = pl(X), (5.1.2)

l−1∑

k=0

(−1)kXkpl−k(X) = (−1)l+1lXl, (5.1.3)

where (5.1.3) is known as Newton’s Identity.

Since Sym(X) = C[X1, . . . , Xm], pk(X) and hk(X) can be uniquely expressed as poly-

nomials in X1, . . . , Xm. In fact, we know that

pk(X) = pm,k(X1, . . . , Xm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 X2 X3 · · · Xk−1 kXk

1 X1 X2 · · · Xk−2 (k − 1)Xk−1

0 1 X1 · · · Xk−3 (k − 2)Xk−2

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · X1 2X2

0 0 0 · · · 1 X1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.1.4)

and

hk(X) = hm,k(X1, . . . , Xm) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X1 X2 X3 · · · Xk−1 Xk

1 X1 X2 · · · Xk−2 Xk−1

0 1 X1 · · · Xk−3 Xk−2

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · X1 X2

0 0 0 · · · 1 X1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.1.5)

Equations (5.1.4) and (5.1.5) can be proved inductively using (5.1.1) and (5.1.3).

Lemma 5.1.

∂

∂Xj
pm,l(X1, . . . , Xm) = (−1)j+1lhm,l−j(X1, . . . , Xm).

Proof. Induct on l. If l < j, then both sides of the above equation are 0, and therefore

the lemma is true. If l = j, by Newton’s Identity (5.1.3), we have

pm,j +

j−1∑

k=1

(−1)kXkpm,j−k = (−1)j+1jXj .

Differentiating along Xj , we get

∂

∂Xj
pm,j = (−1)j+1j.

So the lemma is true when l ≤ j.
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Assume that there exists n ≥ j such that the lemma is true for all l ≤ n. Consider

l = n+ 1. Using Newton’s Identity (5.1.3) again, we get

pm,n+1 +

n∑

k=1

(−1)kXkpm,n+1−k = (−1)n(n+ 1)Xn+1.

Differentiating along Xj leads to

∂

∂Xj
pm,n+1 + (−1)jpm,n+1−j +

n∑

k=1

(−1)kXk
∂

∂Xj
pm,n+1−k = 0.

So, by induction hypothesis,

∂

∂Xj
pm,n+1 = (−1)j+1pm,n+1−j +

n+1−j∑

k=1

(−1)k+j(n+ 1− k)Xkhm,n+1−k−j

=

n+1−j∑

k=1

(−1)k+j(n+ 1)Xkhm,n+1−k−j (by (5.1.2))

= (−1)j+1(n+ 1)hm,n+1−j (by (5.1.1)).

5.2. Partitions and linear bases for the space of symmetric polynomials. A par-

tition λ is a finite non-increasing sequence of non-negative integers (λ1 ≥ · · · ≥ λm). Two

partitions are considered the same if one can be changed into the other by adding or

removing 0’s at the end. For a partition λ = (λ1 ≥ · · · ≥ λm), write |λ| =
∑m

j=1 λj
and l(λ) = #{j | λj > 0}. There is a natural ordering of partitions. For two partitions

λ = (λ1 ≥ · · · ≥ λm) and µ = (µ1 ≥ · · · ≥ µn), we say that λ > µ if the first non-vanishing

λj − µj is positive.

It is well known that [
m+ n

n

]
= q−mn

∑

λ: l(λ)≤m,λ1≤n

q2|λ|, (5.2.1)

where λ runs through partitions satisfying the given conditions.

The Ferrers diagram of a partition λ = (λ1 ≥ · · · ≥ λm) has λi boxes in the ith

row from the top with rows of boxes lined up on the left. Reflecting this Ferrers diagram

across the northwest-southeast diagonal, we get the Ferrers diagram of another partition

λ′ = (λ′1 ≥ · · · ≥ λ′k), which is called the conjugate of λ (see Figure 5). Clearly, λ′i =

#{j | λj ≥ i} and (λ′)′ = λ.

λ = (3 ≥ 2 ≥ 2 ≥ 1):

λ′ = (4 ≥ 3 ≥ 1):

Fig. 5. Ferrers diagrams of a partition and its conjugate
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We are interested in partitions because they are used to index linear bases for the

space of symmetric polynomials. We are particularly interested in two of such bases:

complete symmetric polynomials and Schur polynomials.

Given an alphabet X = {x1, . . . , xm} of m indeterminates and a partition λ = (λ1 ≥

· · · ≥ λm) of length l(λ) ≤ m, define

hλ(X) = hλ1(X) · hλ2(X) · · ·hλm
(X),

where hλj
(X) is defined as in the previous subsection. hλ(X) is called the complete sym-

metric polynomial in X associated to λ. This generalizes the definition of complete sym-

metric polynomials given in the previous subsection. It is known that the set {hλ(X) | l(λ)

≤ m} is a C-linear basis for Sym(X). In particular, {hλ(X) | l(λ) ≤ m, |λ| = d} is a

C-linear basis for the subspace of Sym(X) of homogeneous symmetric polynomials of

degree 2d. (Recall that our degree is twice the usual degree.)

For the alphabet X = {x1, . . . , xm} and a partition λ = (λ1 ≥ · · · ≥ λm) of length

l(λ) ≤ m, the Schur polynomial in X associated to λ is

Sλ(X) =

∣∣∣∣∣∣∣∣∣∣∣∣

xλ1+m−1
1 xλ2+m−2

1 · · · x
λm−1+1
1 xλm

1

xλ1+m−1
2 xλ2+m−2

2 · · · x
λm−1+1
2 xλm

2

· · · · · · · · · · · · · · ·

xλ1+m−1
m−1 xλ2+m−2

m−1 · · · x
λm−1+1
m−1 xλm

m−1

xλ1+m−1
m xλ2+m−2

m · · · x
λm−1+1
m xλm

m

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

xm−1
1 xm−2

1 · · · x1 1

xm−1
2 xm−2

2 · · · x2 1

· · · · · · · · · · · · · · ·

xm−1
m−1 xm−2

m−1 · · · xm−1 1

xm−1
m xm−2

m · · · xm 1

∣∣∣∣∣∣∣∣∣∣∣

.

Note that the denominator here is the Vandermonde polynomial, which equals∏
i<j(xi − xj). We notice that Sλ(X) can also be also computed using the following

formulas:

Sλ(X) = det(hλi−i+j(X)) =

∣∣∣∣∣∣∣∣

hλ1(X) hλ1+1(X) . . . hλ1+m−1(X)

hλ2−1(X) hλ2(X) . . . hλ2+m−2(X)

. . . . . . . . . . . .

hλm−m+1(X) hλm−m+2(X) . . . hλm
(X)

∣∣∣∣∣∣∣∣
(5.2.2)

and

Sλ(X) = det(Xλ′
i
−i+j) =

∣∣∣∣∣∣∣∣

Xλ′
1

Xλ′
1+1 . . . Xλ′

1+k−1

Xλ′
2−1 Xλ′

2
. . . Xλ′

2+k−2

. . . . . . . . . . . .

Xλ′
k
−k+1 Xλ′

k
−k+2 . . . Xλ′

k

∣∣∣∣∣∣∣∣
, (5.2.3)

where λ′ = (λ′1 ≥ · · · ≥ λ
′
k) is the conjugate of λ. In particular, for j ≥ 0,

hj(X) = S(j)(X), Xj = S(1≥1≥···≥1︸ ︷︷ ︸
j parts

)(X).

The set {Sλ(X) | l(λ) ≤ m, |λ| = d} is also a basis for the C-space of homogeneous
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symmetric polynomials in X of degree 2d. (Again, recall that our degree is twice the

usual degree.)

The above two bases for the space of symmetric polynomials are related by

hλ(X) =
∑

µ

KµλSµ(X), (5.2.4)

where Kµλ is the Kostka number defined by

• Kµλ = 0 if |µ| 6= |λ|;

• for partitions µ = (µ1 ≥ · · · ≥ µm) and λ = (λ1 ≥ · · · ≥ λm) with |µ| = |λ|, Kµλ is the

number of ways to fill boxes of the Ferrers diagram of µ with λ1 1’s, λ2 2’s, . . . , λm
m’s, such that the numbers in each row are non-decreasing from left to right, and the

numbers in each column are strictly increasing from top to bottom.

Lemma 5.2. Kλλ = 1 and Kµλ = 0 if λ > µ, that is, if the first non-vanishing λj − µj

is positive.

For an alphabet X = {x1, . . . , xm}, there is also a notion of Schur polynomial in −X,

which will be useful in the next subsection. First, for any j ∈ Z, define

hj(−X) = (−1)jXj .

More generally, for any partition λ = (λ1 ≥ · · · ≥ λn) with λ1 ≤ m,

Sλ(−X) = det(hλi−i+j(−X)) =

∣∣∣∣∣∣∣∣

hλ1(−X) hλ1+1(−X) . . . hλ1+n−1(−X)

hλ2−1(−X) hλ2(−X) . . . hλ2+n−2(−X)

. . . . . . . . . . . .

hλn−n+1(−X) hλn−n+2(−X) . . . hλn
(−X)

∣∣∣∣∣∣∣∣
.

(5.2.5)

If we write the Schur polynomial in X as Sλ(X) = Sλ(x1, . . . , xm), then, by comparing

(5.2.5) to (5.2.3), one can see that the Schur polynomial in −X is given by

Sλ(−X) = Sλ′(−x1, . . . ,−xm), (5.2.6)

where λ′ is the conjugate of λ.

See, for example, [13, Appendix A] and [25] for more on partitions and symmetric

polynomials.

5.3. Partially symmetric polynomials. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn}

be two disjoint alphabets. Then X ∪ Y is also an alphabet. Denote by Sym(X|Y) the

ring of polynomials in X ∪Y over C that are symmetric in X and symmetric in Y. Then

Sym(X∪Y), the ring of symmetric polynomials over C in X∪Y, is a subring of Sym(X|Y).

In other words, Sym(X|Y) is a Sym(X ∪ Y)-module. The following theorem explains the

structure of this module. (See [25, pp. 16–19] for a detailed discussion.)

Theorem 5.3 ([25, Proposition Gr5]). Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be

two disjoint alphabets. Then Sym(X|Y) is a graded-free Sym(X ∪ Y)-module.

Denote by Λm,n the set of partitions Λm,n = {λ | l(λ) ≤ m, λ1 ≤ n}. Then

{Sλ(X) | λ ∈ Λm,n} and {Sλ(−Y) | λ ∈ Λm,n}

are two homogeneous bases for the Sym(X ∪Y)-module Sym(X|Y).
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Moreover, there is a unique Sym(X ∪ Y)-module homomorphism

ζ : Sym(X|Y)→ Sym(X ∪Y),

called the Sylvester operator, such that, for λ, µ ∈ Λm,n,

ζ(Sλ(X) · Sµ(−Y)) =

{
1 if λj + µm+1−j = n for j = 1, . . . ,m,

0 otherwise.

Comparing Theorem 5.3 to equation (5.2.1), we get the following corollary.

Corollary 5.4. Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be two disjoint alphabets.

Then, as graded Sym(X ∪ Y)-modules,

Sym(X|Y) ∼= Sym(X ∪ Y)

{[
m+ n

n

]
· qmn

}
.

More generally, given a collection {X1, . . . ,Xl} of pairwise disjoint alphabets, we de-

note by Sym(X1| · · · |Xl) the ring of polynomials in X1∪· · ·∪Xl over C that are symmetric

in each Xi, which is naturally a graded-free Sym(X1 ∪ · · · ∪ Xl)-module. Moreover,

Sym(X1| · · · |Xl) ∼= Sym(X1)⊗C · · · ⊗C Sym(Xl).

5.4. The cohomology ring of a complex Grassmannian. Denote by Gm,N the

complex (m,N)-Grassmannian, that is, the manifold of all complex m-dimensional sub-

spaces of CN . The cohomology ring of Gm,N is isomorphic to a quotient ring of a ring of

symmetric polynomials. See for example [12, Lecture 6] for more.

Theorem 5.5. Let X be an alphabet of m independent indeterminates. Then H∗(Gm,N ;C)
∼= Sym(X)/(hN+1−m(X), hN+2−m(X), . . . , hN (X)) as graded C-algebras. As a graded

C-linear space, H∗(Gm,N ;C) has a homogeneous basis

{Sλ(X) | λ = (λ1 ≥ · · · ≥ λm), l(λ) ≤ m, λ1 ≤ N −m}.

Under the above basis, the Poincaré duality of H∗(Gm,N ;C) is given by a C-linear trace

map

Tr : Sym(X)/(hN+1−m(X), hN+2−m(X), . . . , hN (X))→ C

satisfying

Tr(Sλ(X) · Sµ(X)) =

{
1 if λj + µm+1−j = N −m for j = 1, . . . ,m,

0 otherwise.

Comparing Theorem 5.5 to equation (5.2.1), we get the following corollary.

Corollary 5.6. As graded C-linear spaces,

H∗(Gm,N ;C) ∼= C

{[
N

m

]
· qm(N−m)

}
,

where C on the right hand side has grading 0.



6. Matrix factorizations associated to MOY graphs

6.1. Markings of MOY graphs

Definition 6.1. A marking of a MOY graph Γ (see Figure 6) consists of the following:

(1) a finite collection of marked points on Γ such that

• every edge of Γ has at least one marked point;

• all the end points (vertices of valence 1) are marked;

• none of the internal vertices (vertices of valence at least 2) are marked;

(2) an assignment of pairwise disjoint alphabets to the marked points such that the

alphabet associated to a marked point on an edge of color m has m independent

indeterminates (recall that an alphabet is a finite collection of homogeneous indeter-

minates of degree 2).

I

i1

X1

K

i2

X2
· · ·

�

ik

Xk

vLv i1 + i2 + · · · + ik = j1 + j2 + · · · + jl

�
j1

Y1

�
j2

Y2

· · ·I jl

Yl

Fig. 6

6.2. The matrix factorization associated to a MOY graph. Recall that N is a

fixed positive integer. (It is the N in sl(N).) For a MOY graph Γ with a marking, cut

it at its marked points. This gives a collection of marked MOY graphs, each of which is

a star-shaped neighborhood of a vertex in G and is marked only at its endpoints. (If an

edge of Γ has two or more marked points, then some of these pieces may be oriented arcs

from one marked point to another. In this case, we consider such an arc as a neighborhood

of an additional vertex of valence 2 in the middle of that arc.)

Let v be a vertex of Γ with coloring and marking around it given as in Figure 6. Set

m = i1 + · · ·+ ik = j1 + · · ·+ jl (the width of v.) Define

R = Sym(X1| · · · |Xk|Y1| · · · |Yl).

Write X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yl. Denote by Xj the jth elementary

symmetric polynomial in X and by Yj the jth elementary symmetric polynomial in Y.

For j = 1, . . . ,m, define

[52]
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Uj =
pm,N+1(Y1, . . . , Yj−1, Xj , . . . , Xm)− pm,N+1(Y1, . . . , Yj , Xj+1, . . . , Xm)

Xj − Yj
, (6.2.1)

where pm,N+1 is the polynomial given by equation (5.1.4). The matrix factorization as-

sociated to the vertex v is

C(v) =



U1 X1 − Y1
· · · · · ·

Um Xm − Ym




R

{q−
∑

1≤s<t≤k isit}, (6.2.2)

whose potential is
∑m

j=1(Xj−Yj)Uj = pN+1(X)−pN+1(Y), where pN+1(X) and pN+1(Y)

are the (N +1)th power sum symmetric polynomials in X and Y. (See Subsection 5.1 for

the definition.)

Remark 6.2.

(1) The definition of C(v) in equation (6.2.2) is a direct generalization of the correspond-

ing definitions in [19]. In fact, the definitions of C(v) in the m = 1, 2, 3 cases are given

in [19]. So it is not hard to infer from [19] what the “correct” general definition of

C(v) should be. In Section 7, we will see that the homology of an m-colored circle

is isomorphic to the cohomology of the the complex (m,N)-Grassmannian, which

generalizes the fact that the sl(N) Khovanov–Rozansky homology of an uncolored

circle is isomorphic to the cohomology of CPN .

(2) Since

Sym(X|Y) = C[X1, . . . , Xm, Y1, . . . , Ym] = C[X1 − Y1, . . . , Xm − Ym, Y1, . . . , Ym],

it is clear that {X1 − Y1, . . . , Xm − Ym} is Sym(X|Y)-regular. (See Definition 3.20.)

By Theorem 5.3, R is a free Sym(X|Y)-module. So {X1 − Y1, . . . , Xm − Ym} is also

R-regular. Thus, by Lemma 3.21, the isomorphism type of C(v) does not depend on

the particular choice of U1, . . . , Um as long as they are homogeneous with the right

degrees and the potential of C(v) remains
∑m

j=1(Xj − Yj)Uj = pN+1(X)− pN+1(Y).

From now on, we will only specify our choice for U1, . . . , Um when it is actually used

in the computation. Otherwise, we will simply denote them by ∗’s.

Definition 6.3. We define the matrix factorization associated to Γ to be

C(Γ) :=
⊗

v

C(v),

where v runs through all the interior vertices of Γ (including those additional 2-valent

vertices). Here, the tensor product is done over the common end points. More precisely, for

two sub-MOY graphs Γ1 and Γ2 of Γ intersecting only at (some of) their open end points,

let W1, . . . ,Wn be the alphabets associated to these common end points. Then, in the

above tensor product, C(Γ1)⊗C(Γ2) is the tensor product C(Γ1)⊗Sym(W1|···|Wn) C(Γ2).

C(Γ) has a Z2-grading and a quantum grading.

If Γ is closed, that is, has no end points, then C(Γ) is considered a matrix factorization

over C.

Assume Γ has end points. Let E1, . . . ,En be the alphabets assigned to all end points

of Γ, among which E1, . . . ,Ek are assigned to exits and Ek+1, . . . ,En are assigned to
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entrances. Then the potential of C(Γ) is

w =
k∑

i=1

pN+1(Ei)−
n∑

j=k+1

pN+1(Ej).

Let R∂ = Sym(E1| · · · |En). Although the alphabets assigned to all marked points on Γ

are used in its construction, C(Γ) is viewed as a matrix factorization over R∂ . Note that,

in this case, w is a non-degenerate element of R∂ .

We allow the MOY graph to be empty. In this case, we define

C(∅) = C→ 0→ C,

where the Z2-grading and the quantum grading of C are both 0.

Lemma 6.4. If Γ is a MOY graph, then the homotopy type of C(Γ) does not depend on

the choice of the marking.

Proof. We only need to show that adding or removing an extra marked point corresponds

to a homotopy of matrix factorizations preserving the Z2⊕Z-grading. This follows easily

from Proposition 3.22.

Definition 6.5. Let Γ be a MOY graph with a marking. We define the homology of Γ

as follows:

(i) If Γ is closed, that is, has no open end points, then C(Γ) is a chain complex. Denote

by H(Γ) the homology of C(Γ). Note that H(Γ) inherits the Z2⊕Z-grading of C(Γ).

(ii) If Γ has end points, let E1, . . . ,En be the alphabets assigned to all end points of Γ,

and R∂ = Sym(E1| · · · |En). Denote by Ei,j the jth elementary symmetric polynomial

in Ei and by I the maximal homogeneous ideal of R∂ generated by {Ei,j}. Then H(Γ)

is defined to be HR∂
(C(Γ)), that is, the homology of the chain complex C(Γ)/I·C(Γ).

Clearly, H(Γ) inherits the Z2 ⊕ Z-grading of C(Γ).

Note that (i) is a special case of (ii).

Lemma 6.6. If Γ is a MOY graph with a vertex of width greater than N , then C(Γ) ≃ 0.

Proof. Suppose the vertex v of Γ has width m > N . Then, by Newton’s Identity (5.1.3),

it is easy to check that, in (6.2.1), UN+1 = (−1)N(N + 1). By Lemma ??, we have

idC(v) ≃ 0. This implies that C(v) ≃ 0 and, therefore, C(Γ) ≃ 0.

Since rectangular partitions come up frequently in this paper, we introduce the fol-

lowing notations.

Definition 6.7. Denote by λm,n the partition

λm,n := (n ≥ · · · ≥ n︸ ︷︷ ︸
m parts

),

and by Λm,n the set of partitions

Λm,n := {µ = (µ1 ≥ · · · ≥ µm) | µ1 ≤ n}.

The following is a generalization of [14, Proposition 2.4].
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Lemma 6.8. Let Γ be a MOY graph, and X = {x1, . . . , xm} an alphabet associated to a

marked point on an edge of Γ of color m. Suppose that µ is a partition with µ > λm,N−m,

that is, µ1−(N−m) > 0. Then multiplication by Sµ(X) is a null homotopic endomorphism

of C(Γ).

Proof. Cut Γ at all the marked points into local pieces, and let Γ′ be a local piece

containing the point marked by X (as an end point). Let W1, . . . ,Wl be the alphabets

marking the other end points of Γ′. Then C(Γ′) is of the form

C(Γ′) =




a1,0 a1,1
a2,0 a2,1
. . . . . .

ak,0 ak,1




Sym(X|W1|···|Wl)

,

and has potential

±pN+1(X) +

l∑

i=1

±pN+1(Wi) =

k∑

j=1

aj,0aj,1.

Let Xj be the jth elementary symmetric polynomial in X. Derive the above equation

by Xj . By Lemma 5.1, we get

±(N + 1)hN+1−j(X) =

k∑

j=1

(
∂aj,0
∂Xj

· aj,1 + aj,0 ·
∂aj,1
∂Xj

)
.

Therefore hN (X), hN−1(X), . . . , hN−m+1(X) are in the ideal (a1,0, a1,1, . . . , ak,0, ak,1) of

Sym(X|W1| · · · |Wl). By Lemma 3.12, multiplications by these polynomials are null-homo-

topic endomorphisms of C(Γ′) and, by Lemma 3.11, of C(Γ). By equation (5.2.2) and

recursive relation (5.1.1), if µ > λm,N−m, then Sµ(X) is in the ideal (hN (X), hN−1(X), . . . ,

hN−m+1(X)). So multiplication by Sµ(X) is null homotopic.

Lemma 6.9. Let Γ be a MOY graph, and E1, . . . ,En the alphabets assigned to all end

points of Γ, among which E1, . . . ,Ek are assigned to exits and Ek+1, . . . ,En are assigned

to entrances. (Here we allow n = 0, that is, Γ to be closed.) Write R∂ = Sym(E1| · · · |En)

and w =
∑k

i=1 pN+1(Ei)−
∑n

j=k+1 pN+1(Ej). Then C(Γ) is an object of hmfR∂ ,w.

Proof. Let W1, . . . ,Wm be the alphabets assigned to interior marked points of Γ. Then

C(Γ) is a finitely generated Koszul matrix factorization over

R̃ = Sym(W1| · · · |Wm|E1| · · · |En).

This implies that the quantum grading of C(Γ) is bounded below. So, to show that C(Γ) is

an object of hmfR∂ ,w, it remains to prove that C(Γ) is homotopically finite. By Corollary

4.10, we only need to demonstrate that H(Γ) is finite-dimensional.

Let I be the maximal homogeneous ideal of R∂ = Sym(E1| · · · |En). Then C(Γ)/IC(Γ)

is a chain complex of finitely generated modules over R′ = Sym(W1| · · · |Wm). Note that

R′ is a polynomial ring and, therefore, a Noetherian ring. So the homology of C(Γ)/IC(Γ),

that is, H(Γ), is also finitely generated over R′. But Lemma 6.8 implies that the action

of R′ on H(Γ) factors through a finite-dimensional quotient ring of R′. So H(Γ) is finite-

dimensional over C.
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Lemma 6.10. Let Γ, Γ1 and Γ2 be the MOY graphs shown in Figure 7. Then C(Γ1) ≃

C(Γ2) ≃ C(Γ).
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Proof. We only prove that C(Γ1) ≃ C(Γ). The proof of C(Γ2) ≃ C(Γ) is similar. Set

m = i1 + · · · + ik = j1 + · · · + jl. Let R = Sym(X1| · · · |Xk|Y1| · · · |Yl), and R̃ =

Sym(X1| · · · |Xk|Y1| · · · |Yl|A). Set X = X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yl. Denote

by Xj the jth elementary symmetric polynomial in X, by Yj the jth elementary symmet-

ric polynomial in Y, and by Aj the jth elementary symmetric polynomial in A. Moreover,

denote by X ′
j the jth elementary symmetric polynomial in X1∪· · ·∪Xs−1∪Xs+2∪· · ·∪Xk,

and, for i = s, s+ 1, by Xi,j the jth elementary symmetric polynomial in Xi. Then

Xj =
∑

p+q+r=j

X ′
pXs,qXs+1,r,

the jth elementary symmetric polynomial in Xs ∪ Xs+1 is∑

p+q=j

Xs,pXs+1,q,

and the jth elementary symmetric polynomial in X1 ∪ · · · ∪Xs−1 ∪Xs+2 ∪ · · · ∪Xk ∪A is∑

p+q=j

X ′
pAq.

Note that

R̃ = R
[
A1 −Xs,1 −Xs+1,1, . . . , Aj −

∑

p+q=j

Xs,pXs+1,q, . . . , Ais+is+1 −Xs,isXs+1,is+1

]
.

So, by Proposition 3.22,

C(Γ1) ∼=




∗ X ′
1 +A1 − Y1

. . . . . .

∗
∑

p+q=j X
′
pAq − Yj

. . . . . .

∗ X ′
m−is−is+1

Ais+is+1 − Ym
∗ A1 −Xs,1 −Xs+1,1

. . . . . .

∗ Aj −
∑

p+q=j Xs,pXs+1,q

. . . . . .

∗ Ais+is+1 −Xs,isXs+1,is+1




R̃

{q−
∑

1≤t1<t2≤k it1 it2 }
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≃



∗ X1 − Y1
. . . . . .

∗ Xm − Ym




R

{q−
∑

1≤t1<t2≤k it1 it2 } ∼= C(Γ).

Lemma 6.10 implies that the matrix factorization associated to any MOY graph is

homotopic to that associated to a trivalent MOY graph. So, theoretically, we do not lose

any information by considering only the trivalent MOY graphs. But, in some cases, it is

more convenient to use vertices of higher valence.

Corollary 6.11. Suppose that Γ1, Γ
′
1, Γ2 and Γ′

2 are the MOY graphs shown in Figure 8.

Then C(Γ1) ≃ C(Γ
′
1) and C(Γ2) ≃ C(Γ

′
2).
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Proof. This is a special case of Lemma 6.10.

6.3. Direct sum decomposition (II). We now generalize direct sum decomposition

(II) in [19].

Theorem 6.12 (Direction sum decomposition (II)). Suppose that Γ and Γ1 are the MOY

graphs shown in Figure 9, where n ≥ m ≥ 0.

6

6 6

6n Y

n X

m

A
n − m

B

Γ

6Y

n

X
Γ1

Fig. 9

Then

C(Γ) ≃ C(Γ1)

{[
n

m

]}
.

Proof. Denote by Xj be jth elementary symmetric polynomial in X, and use similar

notations for the other alphabets. Let W = A ∪ B. Then the jth elementary symmetric

polynomial in W is

Wj =
∑

p+q=j

ApBq.
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By Theorem 5.3 and Corollary 5.4,

Sym(X|Y|A|B) = Sym(X|Y|W)

{
qm(n−m)

[
n

m

]}
.

So

C(Γ) ∼=




∗ Y1 −W1

· · · · · ·

∗ Yn −Wn

∗ W1 −X1

· · · · · ·

∗ Wn −Xm




Sym(X|Y|A|B)

{q−m(n−m)}

∼=




∗ Y1 −W1

· · · · · ·

∗ Yn −Wn

∗ W1 −X1

· · · · · ·

∗ Wn −Xm




Sym(X|Y|W)

{[
n

m

]}

≃



∗ Y1 −X1

· · · · · ·

∗ Yn −Xn




Sym(X|Y)

{[
n

m

]}
∼= C(Γ1)

{[
n

m

]}
.

where the homotopy is given by Proposition 3.22.

6.4. Direct sum decomposition (I). We now generalize direct sum decomposition (I)

in [19]. We start with a special case.

Lemma 6.13. Suppose that Γ and Γ1 are the MOY graphs shown in Figure 10. Then

C(Γ) ≃ C(Γ1)〈N −m〉.
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Proof. By Lemma 6.10, we have C(Γ) ≃ C(Γ′). So we only need to show that C(Γ′) ≃

C(Γ1)〈N −m〉. We put markings on Γ′ and Γ1 as in Figure 10. Denote by Xj the jth

elementary symmetric polynomial in X, and use similar notations for the other alphabets.

Write A = Y∪W and B = X∪W. Then the jth elementary symmetric polynomials in A

and B are

Aj =
∑

k+l=j

YkWl, Bj =
∑

k+l=j

XkWl.
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Define

Uj =
pN,N+1(B1, . . . , Bj−1, Aj , . . . , Am)− pN,N+1(B1, . . . , Bj , Aj+1, . . . , Am)

Aj −Bj
.

Then

C(Γ′) =




U1 A1 −B1

U2 A2 −B2

. . . . . .

UN AN −BN




Sym(X|Y|W)

{q−m(N−m)}.

Using the relation Aj − Bj =
∑

k+l=j(Yk −Xk)Wl and, especially, A1 − B1 = Y1 −X1,

we can inductively change the entries in the right column into Y1 − X1, Y2 − X2, . . . ,

Ym − Xm, 0, . . . , 0 by the row operation given in Corollary 3.19. Note that these row

operations do not change Um+1, . . . , UN in the left column. Thus,

C(Γ′) ∼=




∗ Y1 −X1

. . . . . .

∗ Ym −Xm

Um+1 0

. . . . . .

UN 0




Sym(X|Y|W)

{q−m(N−m)}.

Using Newton’s Identity (5.1.3), one can verify that

pN,N+1(A1, . . . , AN ) = fj +AN+1−j(cjAj + gj),

where fj is a polynomial in A1, . . . , AN−j, AN+2−j , . . . , AN , and gj is a polynomial in

A1, . . . , Aj−1, and

cj =

{
(−1)N+1(N + 1)/2 if N + 1− j = j,

(−1)N+1(N + 1) if N + 1− j 6= j.

Therefore,

UN+1−j =





(−1)N+1(N + 1)Bj + αj(B1, . . . , Bj−1) if N + 1− j > j,

(−1)N+1N+1
2 (Aj +Bj) + βj(B1, . . . , Bj−1) if N + 1− j = j,

(−1)N+1(N + 1)Aj

+ γj(B1, . . . , BN+1−j, AN+1−j , . . . , Aj−1) if N + 1− j < j,

where αj , βj, γj are polynomials in the given indeterminates.

So, for j = 1, . . . , N −m, UN+1−j can be expressed as a polynomial

UN+1−j = (−1)N+1(N + 1)Wj + uj(X1, . . . , Xm, Y1, . . . , Ym,W1, . . . ,Wj−1).

This implies that UN , . . . , Um+1 are independent indeterminates over Sym(X|Y), and

Sym(X|Y|W) = Sym(X|Y)[UN , . . . , Um+1]. Hence, by Corollary 3.27,
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


∗ Y1 −X1

. . . . . .

∗ Ym −Xm

Um+1 0

. . . . . .

UN 0




Sym(X|Y|W)

{q−m(N−m)}

≃



∗ Y1 −X1

. . . . . .

∗ Ym −Xm




Sym(X|Y)

{q−m(N−m)+
∑N

j=m+1(N+1−degUj)}〈N−m〉 ∼= C(Γ1)〈N−m〉.

Thus, C(Γ) ≃ C(Γ′) ≃ C(Γ1)〈N −m〉.

The general case follows easily from Lemma 6.13.

Theorem 6.14 (Direct sum decomposition (I)). Suppose that Γ and Γ1 are the MOY

graphs shown in Figure 11.
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Fig. 11

Then

C(Γ) ≃ C(Γ1)

{[
N −m

n

]}
〈n〉.

Proof. Consider the MOY graphs in Figure 11. By Lemma 6.13, we have C(Γ) ≃

C(Γ2)〈N − m − n〉. By Corollary 6.11, C(Γ2) ≃ C(Γ3). By Theorem 6.12, C(Γ3) ≃

C(Γ4)
[
N−m

n

]
. And by Lemma 6.13 again, C(Γ4) ≃ C(Γ1)〈N − m〉. Putting everything

together, we get C(Γ) ≃ C(Γ1)
{[

N−m
n

]}
〈n〉.



7. Circles

In this section, we study matrix factorizations associated to circles. The results will be

useful in Section 8.

7.1. Homotopy type. The following describes the homotopy type of the matrix factor-

ization associated to a colored circle and follows easily from direct sum decompositions

(I) and (II) (Theorems 6.14 and 6.12).

Corollary 7.1. If Γ is a circle colored by m, then C(Γ) ≃ C(∅)
{[

N
m

]}
〈m〉, where C(∅)

is the matrix factorization C→ 0→ C. As a consequence, H(Γ) ∼= C(∅)
{[

N
m

]}
〈m〉.

Proof. Consider Γ3 in Figure 12 first, which is the special case when m = N . Note that,

by Lemma 5.1,

C(Γ3) ∼=




∂pN+1(X)
∂X1

0

· · · · · ·
∂pN+1(X)

∂Xk
0

· · · · · ·
∂pN+1(X)

∂XN
0




Sym(X)

=




(N + 1)hN (X) 0

· · · · · ·

(−1)k+1(N + 1)hN+1−k(X) 0

· · · · · ·

(−1)N+1(N + 1)h1(X) 0




Sym(X)

where Xk is the kth elementary symmetric polynomial in X. But

Sym(X) = C[h1(X), . . . , hN(X)].

So, by applying Corollary 3.27 repeatedly, we get C(Γ3) ≃ C(∅)〈N〉.

6

Γ

m

6 ??

Γ1

N N − m m

6 ? ?N N − m m

Γ2

6

Γ3

N X

Fig. 12

For the general case, using Theorem 6.12 and Lemma 6.13, we have

C(Γ) ≃ C(Γ1)〈N −m〉 = C(Γ2)〈N −m〉 ≃ C(Γ3)

{[
N

m

]}
〈N −m〉.

So C(Γ) ≃ C(∅)
{[

N
m

]}
〈m〉.

[61]
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7.2. Module structure of the homology. Now let ©m be a circle colored by m and

marked by a single point as shown in Figure 13. ThenH(©m) is a graded Sym(X)-module.

In this subsection, we show that, after a grading shift, this module is isomorphic to the

cohomology of the complex (m,N)-Grassmannian Gm,N . In particular, as a Sym(X)-

module, H(©m) is generated by a single generator.

6
m

X

Fig. 13

We need the following fact about symmetric polynomials to carry out our proof.

Proposition 7.2. Let X = {x1, . . . , xm} be an alphabet with m independent indetermi-

nates. If n ≥ m, then the sequence {hn(X), hn−1(X), . . . , hn+1−m(X)} is Sym(X)-regular.

(See Definition 3.20.)

Proof. For n, j ≥ 1, define a ideal In,j of Sym(X) by In,1 = {0} and In,j = (hn(X),

hn−1(X), . . . , hn+2−j(X)) for j ≥ 2. For 1 ≤ j ≤ m ≤ n, let Pm,n,j and Qm,n,j be the

following statements:

• Pm,n,j: “hn+1−j(X) is not a zero divisor in Sym(X)/In,j”.

• Qm,n,j: “Xm = x1 · · ·xm is not a zero divisor in Sym(X)/In,j”.

We prove these two statements by induction for all m,n, j satisfying 1 ≤ j ≤ m ≤ n.

Note that, by Definition 3.20, {hn(X), hn−1(X), . . . , hn+1−m(X)} is Sym(X)-regular if and

only if Pm,n,j is true for 1 ≤ j ≤ m.

If m = 1, then 1 ≤ j ≤ m forces j = 1. Since In,1 = {0}, P1,n,1 and Q1,n,1 are

trivially true for all n ≥ 1. Assume that, for some m ≥ 2, Pm−1,n,j and Qm−1,n,j are

true for all n, j with 1 ≤ j ≤ m − 1 ≤ n. Consider Pm,n,j and Qm,n,j for n, j satisfying

1 ≤ j ≤ m ≤ n.

(i) First, we prove Qm,n,j for all n, j with 1 ≤ j ≤ m ≤ n by induction on j. When

j = 1, In,j = In,1 = {0}. So Qm,n,1 is trivially true. Assume that Qm,n,j−1 is true for

some j ≥ 2. Assume g, gn, . . . , gn+2−j ∈ Sym(X) satisfy

gXm =

n∑

k=n+2−j

gkhk(X). (7.2.1)

Note that g, gn, . . . , gn+2−j are polynomials in X1, . . . , Xm. We shall write

g = g(X1, . . . , Xm), gn = g(X1, . . . , Xm), . . . , gn+2−j = g(X1, . . . , Xm).

Denote by X ′
j the jth elementary symmetric polynomial in X′ = {x1, . . . , xm−1}.

Then Xj |xm=0 = X ′
j and hj(X)|xm=0 = hj(X

′). Plug xm = 0 into (7.2.1). We get

n∑

k=n+2−j

gk(X
′
1, . . . , X

′
m−1, 0)hk(X

′) = 0.
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In particular,

gn+2−j(X
′
1, . . . , X

′
m−1, 0)hn+2−j(X

′) ∈ (hn(X
′), hn−1(X

′), . . . , hn+3−j(X
′)) ⊂ Sym(X′).

But statement Pm−1,n,j−1 is true. So

gn+2−j(X
′
1, . . . , X

′
m−1, 0) ∈ (hn(X

′), hn−1(X
′), . . . , hn+3−j(X

′)).

That is,

gn+2−j(X
′
1, . . . , X

′
m−1, 0) =

n∑

k=n+3−j

αk(X
′
1, . . . , X

′
m−1)hk(X

′)

=

n∑

k=n+3−j

αk(X
′
1, . . . , X

′
m−1)hm,k(X

′
1, . . . , X

′
m−1, 0).

Note that X ′
1, . . . , X

′
m−1 are independent indeterminates over C. So the above equation

remains true when we replace X ′
1, . . . , X

′
m−1 by any other variables. In particular,

gn+2−j(X1, . . . , Xm−1, 0) =
n∑

k=n+3−j

αk(X1, . . . , Xm−1)hm,k(X1, . . . , Xm−1, 0),

which implies that there exists α ∈ Sym(X) such that

gn+2−j(X1, . . . , Xm−1, Xm) = αXm +

n∑

k=n+3−j

αk(X1, . . . , Xm−1)hm,k(X1, . . . , Xm−1, Xm)

= αXm +
n∑

k=n+3−j

αk(X1, . . . , Xm−1)hk(X).

Plug this into (7.2.1). We get

(g − αhn+2−j(X))Xm =
n∑

k=n+3−j

(gk + αk(X1, . . . , Xm−1)hn+2−j(X))hk(X).

But Qm,n,j−1 is true. So g − αhn+2−j(X) ∈ In,j−1 and, therefore, g ∈ In,j . This proves

Qm,n,j. Thus, Qm,n,j is true for all n, j satisfying 1 ≤ j ≤ m ≤ n.

(ii) Now we prove Pm,n,j for all n, j with 1 ≤ j ≤ m ≤ n.

Case A: 1 ≤ j ≤ m−1. Assume that hn+1−j(X) is a zero divisor in Sym(X)/In,j . Define

Λ = {g ∈ Sym(X) | g is homogeneous, g /∈ In,j , ghn+1−j(X) ∈ In,j}.

Then Λ 6= ∅. Write 2ν = ming∈Λ deg g. (Recall that we use the degree convention deg xj
= 2.) Let g be such that g ∈ Λ and deg g = 2ν. Then there exist gn, gn−1, . . . , gn+2−j ∈

Sym(X) such that deg gk = 2(ν + n+ 1− j − k) and

ghn+1−j(X) =

n∑

k=n+2−j

gkhk(X). (7.2.2)

Note that g, gn, . . . , gn+2−j are polynomials in X1, . . . , Xm. We shall write

g = g(X1, . . . , Xm), gn = g(X1, . . . , Xm), . . . , gn+2−j = g(X1, . . . , Xm).
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In particular,

g = g(X1, . . . , Xm) =

⌊ν/m⌋∑

l=0

fl(X1, . . . , Xm−1)X
l
m, (7.2.3)

where fl(X1, . . . , Xm−1) ∈ Sym(X) is homogeneous of degree 2(ν − lm).

Plugging xm = 0 into (7.2.2), we get

f0(X
′
1, . . . , X

′
m−1)hn+1−j(X

′) =

n∑

k=n+2−j

gk(X
′
1, . . . , X

′
m−1, 0)hk(X

′),

where X′ = {x1, . . . , xm−1} and X ′
j is the jth elementary symmetric polynomial in X′.

But Pm−1,n,j is true since 1 ≤ j ≤ m− 1 < n. So

f0(X
′
1, . . . , X

′
m−1) ∈ (hn(X

′), hn−1(X
′), . . . , hn+2−j(X

′)) ⊂ Sym(X′).

Thus,

f0(X
′
1, . . . , X

′
m−1) =

n∑

k=n+2−j

αk(X
′
1, . . . , X

′
m−1)hk(X

′)

=

n∑

k=n+2−j

αk(X
′
1, . . . , X

′
m−1)hm,k(X

′
1, . . . , X

′
m−1, 0),

where αk(X
′
1, . . . , X

′
m−1) ∈ Sym(X′) is homogeneous of degree 2(ν−k). ButX ′

1, . . . , X
′
m−1

are independent indeterminates over C. So the above equation remains true when we re-

place X ′
1, . . . , X

′
m−1 by any other variables. In particular,

f0(X1, . . . , Xm−1) =

n∑

k=n+2−j

αk(X1, . . . , Xm−1)hm,k(X1, . . . , Xm−1, 0)

= αXm +

n∑

k=n+2−j

αk(X1, . . . , Xm−1)hk(X), (7.2.4)

where α ∈ Sym(X) is homogeneous of degree 2(ν −m). Plug this into (7.2.2). We get

Xm

(
α+

⌊ν/m⌋∑

l=1

fl(X1, . . . , Xm−1)X
l−1
m )hn+1−j(X

)

=

n∑

k=n+2−j

(gk − αk(X1, . . . , Xm−1)hn+1−j(X))hk(X) ∈ In,j.

By Qm,n,j, we have (α +
∑⌊ν/m⌋

l=1 fl(X1, . . . , Xm−1)X
l−1
m )hn+1−j(X) ∈ In,j . But α +∑⌊ν/m⌋

l=1 fl(X1, . . . , Xm−1)X
l−1
m is homogeneous of degree 2(ν−m) < 2ν. By the definition

of ν, this implies that α +
∑⌊ν/m⌋

l=1 fl(X1, . . . , Xm−1)X
l−1
m ∈ In,j . Then, by (7.2.3) and

(7.2.4), we have

g = Xm

(
α+

⌊ν/m⌋∑

l=1

fl(X1, . . . , Xm−1)X
l−1
m

)
+

n∑

k=n+2−j

αk(X1, . . . , Xm−1)hk(X) ∈ In,j .

This is a contradiction. So Pm,n,j is true for all n, j such that 1 ≤ j ≤ m− 1, m ≤ n.
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Case B: j = m. We induct on n. Note that hm(X), hm−1(X), . . . , h1(X) are independent

over C, and Sym(X) = C[hm(X), hm−1(X), . . . , h1(X)]. When n = m, hn+1−m(X) = h1(X)

and Sym(X)/Im,m
∼= C[h1(X)]. So Pm,m,m is true. Assume that Pm,n−1,m is true for some

n > m. Suppose that gn, . . . , gn+1−m ∈ Sym(X) satisfy

n∑

k=n+1−m

gkhk(X) = 0. (7.2.5)

By equation (5.1.1), we have

hn(X) =

n−1∑

k=n−m

(−1)n−k+1Xn−khk(X).

Plugging this into (7.2.5), we get

(−1)m+1Xmgnhn−m(X) +

n−1∑

k=n+1−m

(gk + (−1)n−k+1Xn−kgn)hk(X) = 0. (7.2.6)

So Xmgnhn−m(X) ∈ In−1,m. Since Pm,n−1,m and Qm,n−1,m are both true, this implies

that gn ∈ In−1,m. Hence, there exist αn−1, . . . , αn+1−m ∈ Sym(X) such that

gn =
n−1∑

k=n+1−m

αkhk(X). (7.2.7)

Plugging this into (7.2.6), we get

n−1∑

k=n+1−m

(gk + (−1)n−k+1Xn−kgn + (−1)m+1αkXmhn−m(X))hk(X) = 0.

By Pm,n−1,m−1, this implies

gn+1−m + (−1)mXm−1gn + (−1)m+1αn+1−mXmhn−m(X) ∈ In−1,m−1.

Comparing this with (7.2.7), we get

gn+1−m + αn+1−m((−1)mXm−1hn+1−m(X) + (−1)m+1Xmhn−m(X)) ∈ In−1,m−1.

Therefore,

gn+1−m + αn+1−mhn(X) = gn+1−m + αn+1−m

n−1∑

k=n−m

(−1)n−k+1Xn−khk(X) ∈ In−1,m−1.

Thus, gn+1−m ∈ In,m. This proves Pm,n,m. So Pm,n,m is true for all n ≥ m.

Combining Cases A and B, we know that Pm,n,j is true for all n, j such that 1 ≤ j ≤

m ≤ n.

(i) and (ii) show that Pm,n,j and Qm,n,j are true for all n, j satisfying 1 ≤ j ≤ m ≤ n.

This completes the induction.

Proposition 7.3. Let ©m be a circle colored by m (≤ N) and marked by a single

alphabet X of m indeterminates. Then, as Z2 ⊕ Z-graded Sym(X)-modules,

H(©m) ∼= Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)){q−m(N−m)}〈m〉,
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where Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)) has Z2-grading 0. In particular, as

graded modules over Sym(X), H(©m) ∼= H∗(Gm,N ){q−m(N−m)}, where Gm,N is the

complex (m,N)-Grassmannian.

Proof. By definition,

C(©m) =



U1 0

· · · · · ·

Um 0




Sym(X)

,

where Uj =
∂

∂Xj
pm,N+1(X1, . . . , Xm). By Lemma 5.1, we know

Uj = (−1)j+1(N + 1)hm,N+1−j(X1, . . . , Xm).

Then, by Proposition 7.2, Uj is not a zero divisor in Sym(X)/(U1, . . . , Uj−1). Thus, we

can apply Corollary 3.28 successively to the rows of C(©m) from top to bottom and

conclude that

H(©m) ∼= Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)){q−m(N−m)}〈m〉.

The last statement in the proposition follows from Theorem 5.5.

Definition 7.4. From the above proposition, we know that H(©m) is generated, as a

Sym(X)-module, by the homology class corresponding to

1 ∈ Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)).

We call this homology class the generating class and denote it by G.

7.3. Cycles representing the generating class. To understand the action of a mor-

phism of matrix factorizations on the homology of a colored circle, we need to understand

its action on the generating class G. In order to do that, we sometimes need to represent

G by cycles in a matrix factorization associated to that circle. In particular, we will find

such cycles in matrix factorizations associated to a colored circle with one or two marked

points. To describe these cycles, we invoke the “1ε” notation introduced in Definition 3.6.

Lemma 7.5. Let ©m be a circle colored by m (≤ N) and marked by a single alphabet X

of m indeterminates. (See Figure 13.) Write Uj =
∂

∂Xj
pm,N+1(X1, . . . , Xm). Then, in

C(©m) =



U1 0

· · · · · ·

Um 0




Sym(X)

,

the element 1(1,...,1) is a cycle representing (a non-zero scalar multiple of ) the generating

class G ∈ H(©m).

Proof. Write

Mj =



Uj 0

· · · · · ·

Um 0




Sym(X)/(U1,...,Uj−1)

.



7.3. Cycles representing the generating class 67

Then the homology of Γ is computed by

H(©m) = H(M1) ∼= H(M2){q
N+1−degU1}〈1〉 ∼= · · ·

∼= H(Mm){q(m−1)(N+1)−
∑m−1

j=1 degUj}〈m− 1〉

∼= Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)){q−m(N−m)}〈m〉.

It is easy to see that 11 ∈ Mm represents G. Next, we use the method described in Re-

mark 3.24 to inductively construct a cycle in C(©m) representing the generating class. As-

sume, for some j, that 1(1,...,1) ∈Mj is a cycle representingG. Note that 1(1,...,1) ∈Mj−1 is

mapped to 1(1,1,...,1) ∈Mj by the quasi-isomorphismMj−1 →Mj{q
N+1−degUj−1}〈1〉 (5).

But every entry in the right column ofMj−1 is 0. So d(1(1,...,1)) = 0, and therefore 1(1,...,1)
is a cycle representing G. This shows that 1(1,...,1) ∈M1 = C(©m) is a cycle representing

the generating class G ∈ H(©m).

Lemma 7.6. Let ©m be a circle colored by m (≤ N) and marked by two alphabets X, Y.

(See Figure 14.) Use the definition

C(©m) =




U1 X1 − Y1
· · · · · ·

Um Xm − Ym
U1 Y1 −X1

· · · · · ·

Um Ym −Xm




Sym(X|Y)

,

where Xj and Yj are the jth elementary symmetric polynomials in X and in Y, and

Uj ∈ Sym(X|Y) is homogeneous of degree 2(N + 1− j) and satisfies

m∑

j=1

(Xj − Yj)Uj = pN+1(X)− pN+1(Y).

Then the element
∑

ε=(ε1,...,εm)∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj1ε ⊗ 1ε ∈ C(©m)

is a cycle representing (a non-zero scalar multiple of ) the generating class G ∈ H(©m).

6

?

Γ

m
XY

Fig. 14

(5) See the proof of Proposition 3.23 for the definition of this quasi-isomorphism. Note that
the setup there is slightly different. In the proof of Proposition 3.23, bi is in the right column,
while here Uj−1 is in the left column.
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Proof. Although this lemma can be proved by the method used in 7.5, the computation

is much more complex. So here we use a different approach by considering morphisms of

matrix factorizations. From Proposition 7.1, we have H(©m) ∼= C(∅)
{[

N
m

]}
〈m〉. So the

subspace of H(©m) of elements of quantum degree −m(N − m) is 1-dimensional over

C and is spanned by the generating class G. Hence, to prove the lemma, we only need

to show that the above element of C(©m) is a homogeneous cycle of quantum degree

−m(N −m) representing a non-zero homology class.

Let Γ1 be the oriented arc shown in Figure 15. Then, by Corollary 3.16,

HomSym(X|Y)(C(Γ1), C(Γ1)) ∼= C(Γ1)⊗Sym(X|Y) C(Γ1)• ∼= C(©m){qm(N−m)}〈m〉.

Consider the identity map id : C(Γ1)→ C(Γ1). It is a morphism of matrix factorizations

and, therefore, a cycle in HomSym(X|Y)(C(Γ1), C(Γ1)). Assume id is homotopic to 0, that

is, there exists h ∈ HomSym(X|Y)(C(Γ1), C(Γ1)) of Z2-degree 1 such that id = d◦h+h◦d.

Then, for any cycle f ∈ HomSym(X|Y)(C(Γ1), C(Γ1)) of Z2-degree i, we have

f = f ◦ id = f ◦ (d ◦ h+ h ◦ d) = (−1)i(d ◦ (f ◦ h)− (−1)i+1(f ◦ h) ◦ d),

which is a boundary element in HomSym(X|Y)(C(Γ1), C(Γ1)). This implies that the homol-

ogy of HomSym(X|Y)(C(Γ1), C(Γ1)) is 0, which is a contradiction since H(©m) 6= 0. Thus,

id is a cycle representing a non-zero homology class. Under the above isomorphism, id is

mapped to a homogeneous cycle in C(©m) of quantum degree −m(N −m) representing

a non-zero homology class. Thus, the image of id is a cycle representing a non-zero scalar

multiple of the generating class G.

6 ?
Γ1

m

XY

Fig. 15

Next, we check that the image of id is in fact the cycle given in the lemma. Under the

homogeneous isomorphism

HomSym(X|Y)(C(Γ1), C(Γ1))
∼=
−→ C(Γ1)⊗Sym(X|Y) C(Γ1)•

preserving the Z2 ⊕ Z-grading, we have

id 7→
∑

ε∈Im

1ε ⊗ 1∗ε ∈ C(Γ1)⊗Sym(X|Y) C(Γ1)•.

By Lemma 3.13, under the homogeneous isomorphism

C(Γ1)⊗Sym(X|Y) C(Γ1)•
∼=
−→M1 :=




U1 X1 − Y1
· · · · · ·

Um Xm − Ym
Ym −Xm Um

· · · · · ·

Y1 −X1 U1




Sym(X|Y)
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preserving the Z2 ⊕ Z-grading, we have∑

ε∈Im

1ε ⊗ 1∗ε ∈ C(Γ1) 7→
∑

ε=(ε1,...,εm)∈Im

1ε ⊗ 1(εm,...,ε1) ∈M1.

By Lemma 3.14, under the homogeneous isomorphism

M1

∼=
−→M2 :=




U1 X1 − Y1
· · · · · ·

Um Xm − Ym
Y1 −X1 U1

· · · · · ·

Ym −Xm Um




Sym(X|Y)

preserving the Z2 ⊕ Z-grading, we have∑

ε=(ε1,...,εm)∈Im

1ε ⊗ 1(εm,...,ε1) 7→
∑

ε∈Im

(−1)|ε|(|ε|−1)/21ε ⊗ 1ε ∈M2.

And, by Lemmas 3.11 and 3.15, under the homogeneous isomorphism

M2 → C(©m) =




U1 X1 − Y1
· · · · · ·

Um Xm − Ym
U1 Y1 −X1

· · · · · ·

Um Ym −Xm




Sym(X|Y)

of Z2-degree m and quantum degree −m(N −m), we have
∑

ε∈Im

(−1)|ε|(|ε|−1)/21ε ⊗ 1ε

7→
∑

ε=(ε1,...,εm)∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj1ε ⊗ 1ε ∈ C(©m).

Thus, ∑

ε=(ε1,...,εm)∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj1ε ⊗ 1ε ∈ C(©m)

is the image of id ∈ HomSym(X|Y)(C(Γ1), C(Γ1)) under the isomorphism

HomSym(X|Y)(C(Γ1), C(Γ1))
∼=
−→ C(©m).



8. Morphisms induced by local changes of MOY graphs

In this section, we define several morphisms of matrix factorizations induced by basic

local changes of MOY graphs, some of which have implicitly appeared in Sections 6

and 7. These morphisms are building blocks of more complex morphisms in direct sum

decompositions (III)–(V) and in chain complexes of colored link diagrams.

8.1. A strategy in defining and comparing morphisms. All morphisms in this

section are defined following essentially the same strategy. Before going into technical

details of each morphism, we outline this strategy here:

1. Isolating the smallest part of the MOY graph involved in each local change and con-

sidering the desired morphism as a homogeneous morphism between the matrix fac-

torizations associated to these local MOY graphs.

2. Determining the quantum degree of the desired morphism by considering the sl(N)

link polynomial. Interestingly, it turns out that, in all the cases considered in this

section, the quantum degree of the morphism is the lowest possible quantum degree of

a homotopically non-trivial morphism between the matrix factorizations of the relevant

MOY graphs.

3. Computing the space of homotopy classes of homogeneous morphisms of the desired

quantum degree between the matrix factorizations of the relevant MOY graphs. For-

tunately, in all the cases considered in this section, this space is 1-dimensional.

4. Defining the desired morphism to be a morphism whose homotopy class spans the

above 1-dimensional space. It is clear that the desired morphism is uniquely defined

up to homotopy and scaling.

Note that the above definition is implicit. If further information about the morphism is

needed, then we will give an explicit or partially explicit construction of the morphism.

In the remainder of this paper, we will need to repeatedly prove that pairs of homo-

geneous morphisms are equal to each other up to homotopy and scaling by a non-zero

scalar. The above strategy generalizes to a standard argument to establish such equality,

which we sketch below.

Let Γ and Γ′ be two MOY graphs and f, g : C(Γ) → C(Γ′) two homogeneous mor-

phisms of quantum degree i. To prove that f and g are equal to each other up to homotopy

and scaling by a non-zero scalar, we often use the following standard argument:

1. Compute the space of homotopy classes of homogeneous morphisms of quantum de-

gree i from C(Γ) to C(Γ′).

[70]
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2. The standard argument works when this space is 1-dimensional. In this case, one only

needs to show that both f and g are homotopically non-trivial.

3. To do this, we close or partially close Γ and Γ′ and show that the homomorphisms

induced by f and g on the homology of the closed MOY graphs are non-zero.

The fact that our construction of the colored sl(N) homology relies so heavily on this

standard argument is somewhat surprising. It seems to imply that the matrix factoriza-

tion construction of link homologies is very rigid. That is, once we made our choices in

Subsection 6.2, the morphisms involved in later proofs are all determined up to homotopy

and scaling. In particular, this means the chain complex of a colored link diagram is also

determined up to isomorphism by the choices we made in Subsection 6.2.

As indicated above, most morphisms in the rest of this paper are defined only up to

homotopy and scaling by a non-zero scalar. To simplify our exposition, we introduce the

following notations.

Definition 8.1. Suppose that V is a linear space over C and u, v ∈ V . We write u ∝ v

if there exists c ∈ C \ {0} such that u = c · v.

Suppose that W is a chain complex over a C-algebra and u, v are cycles in W . We

write u ≈ v if there exists c ∈ C \ {0} such that u is homologous to c · v. In particular, if

M,M ′ are matrix factorizations of the same potential over a graded commutative unital

C-algebra and f, g : M → M ′ are morphisms of matrix factorizations, we write f ≈ g if

there exists c ∈ C \ {0} such that f ≃ c · g.

Let Γ1,Γ2 be two MOY graphs with a one-to-one correspondence F between their

end points such that

• every exit corresponds to an exit, and every entrance corresponds to an entrance,

• edges adjacent to corresponding end points have the same color.

Mark Γ1,Γ2 so that every pair of corresponding end points are assigned the same alpha-

bet. Assume X1, . . . ,Xn are the alphabets assigned to the end points of Γ1 and Γ2.

Definition 8.2. We let

HomF (C(Γ1), C(Γ2)) := HomSym(X1|···|Xn)(C(Γ1), C(Γ2)),

which is a Z2-graded chain complex, where the Z2-grading is induced by the Z2-gradings

of C(Γ1), C(Γ2). The quantum gradings of C(Γ1), C(Γ2) induce a quantum pregrading

on HomF (C(Γ1), C(Γ2)).

Denote by HomHMF,F (C(Γ1), C(Γ2)) the homology of the chain complex HomF (C(Γ1),

C(Γ2)), that is, the Sym(X1| · · · |Xn)-module of homotopy classes of morphisms from

C(Γ1) to C(Γ2). It inherits the Z2-grading from HomF (C(Γ1), C(Γ2)). The quantum pre-

grading of HomF (C(Γ1), C(Γ2)) induces a quantum grading on HomHMF,F (C(Γ1), C(Γ2)).

(See Lemmas 3.35 and 6.9.)

We drop F from the above notations if it is clear from the context.

Lemma 8.3. HomHMF,F (C(Γ1), C(Γ2)) does not depend on the choice of markings.

Proof. This follows easily from Proposition 3.22 and Corollary 3.25.
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8.2. Bouquet move. First we recall the homotopy equivalence induced by the bouquet

moves in Figure 15. From Corollary 6.11, we know bouquet moves induce homotopy

equivalence. In this subsection, we show that, up to homotopy and scaling, a bouquet

move induces a unique homotopy equivalence.

Γ1:

6

I
�
I�

i + j + k

j + k

i j k

←→ Γ′
1:

6

�
I
�I

i + j + k

i + j

kji

Γ2:

?
R	
R	

i + j + k

j + k

i j k

←→ Γ′
2:

?
	R

	R

i + j + k

i + j

kji

Fig. 15

Lemma 8.4. Suppose that Γ1, Γ
′
1, Γ2 and Γ′

2 are the MOY graphs shown in Figure 15.

Then, as Z2 ⊕ Z-graded vector spaces over C,

HomHMF(C(Γ1), C(Γ
′
1))
∼= HomHMF(C(Γ2), C(Γ

′
2))

∼= C(∅)

{[
N

i+ j + k

][
i+ j + k

k

][
i+ j

j

]
q(i+j+k)(N−i−j−k)+ij+jk+ki

}
.

In particular, the subspaces of the above spaces of homogeneous elements of quantum

degree 0 are 1-dimensional.

Proof. We compute HomHMF(C(Γ1), C(Γ
′
1)). The computation of HomHMF(C(Γ2), C(Γ

′
2))

is similar. By Corollaries 6.11 and 3.16, one can see that

HomHMF(C(Γ1), C(Γ
′
1))
∼= HomHMF(C(Γ

′
1), C(Γ

′
1))

∼= H(Γ)〈i+ j + k〉{q(i+j+k)(N−i−j−k)+ij+jk+ki},

?
6

6

-

6 6
i + j + k

i + j

i + j

kji

Γ

Fig. 16

where Γ is the MOY graph in Figure 16. Using decomposition (II) (Theorem 6.12) and

Corollary 7.1, we find that

H(Γ) ∼= C(∅)〈i+ j + k〉

{[
N

i+ j + k

][
i+ j + k

k

][
i+ j

j

]}
.

The lemma follows from these isomorphisms.
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Remark 8.5. From Corollary 6.11 and Lemma 8.4, one can see that, up to homotopy

and scaling, a bouquet move induces a unique homotopy equivalence. In the rest of this

paper, we usually denote such a homotopy equivalence by h.

8.3. Circle creation and annihilation

Lemma 8.6. Let ©m be a circle colored by m. Then, as Z2 ⊕ Z-graded vector spaces

over C,

HomHMF(C(©m), C(∅)) ∼= HomHMF(C(∅), C(©m)) ∼= C(∅)

{[
N

m

]}
〈m〉,

where C(∅) is the matrix factorization C → 0 → C. In particular, the subspaces of

HomHMF(C(∅), C(©m)) and HomHMF(C(©m), C(∅)) of elements of quantum degree

−m(N −m) are 1-dimensional.

Proof. The natural isomorphism HomC(C(∅), C(©m)) ∼= C(©m) is an isomorphism of

matrix factorizations preserving the Z2 ⊕ Z-grading. So, by Corollary 7.1,

HomHMF(C(∅), C(©m)) ∼= H(©m) ∼= C(∅)

{[
N

m

]}
〈m〉.

Using Corollary 7.1 again, we get

HomHMF(C(©m), C(∅)) ∼= HomC(C(∅)

{[
N

m

]}
〈m〉, C(∅)) ∼= C(∅)

{[
N

m

]}
〈m〉.

Lemma 8.6 leads to the following definitions, which generalize the corresponding ones

in [19].

Definition 8.7. Let ©m be a circle colored by m. Associate to the circle creation a

homogeneous morphism

ι : C(∅) (∼= C)→ C(©m)

of quantum degree −m(N −m) not homotopic to 0.

Associate to the circle annihilation a homogeneous morphism

ǫ : C(©m)→ C(∅) (∼= C)

of quantum degree −m(N −m) not homotopic to 0.

By Lemma 8.6, ι and ǫ are unique up to homotopy and scaling. Both have Z2-degreem.

Using the natural isomorphism HomC(C(∅), C(©m)) ∼= C(©m), one can see that

ι(1) ≈ G, (8.3.1)

where G is the generating class of H(©m).

Mark©m by a single alphabet X. By Lemma 7.5, the element 1(1,...,1) of C(©m) is a

cycle representing (a non-zero scalar multiple of) the generating class G ∈ H(©m). From

the proof of Proposition 7.3, we know that there is a Sym(X)-linear quasi-isomorphism

P : C(©m)→ Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)){q−m(N−m)}〈m〉
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satisfying P (1(1,...,1)) = 1. By Corollary 3.29 and Remark 3.26, P induces a quasi-

isomorphism

HomC(Sym(X)/(hN (X), hN−1(X), . . . , hN+1−m(X)){q−m(N−m)}〈m〉,C)

P ♯

−−→ HomC(C(©m), C(∅)).

Recall that, by Theorem 5.5, there is a C-linear trace map

Tr : Sym(X)/(hN+1−m(X), hN+2−m(X), . . . , hN (X))→ C

satisfying

Tr(Sλ(X) · Sµ(X)) =

{
1 if λj + µm+1−j = N −m ∀j = 1, . . . ,m,

0 otherwise,

where λ, µ ∈ Λm,N−m = {(λ1 ≥ · · · ≥ λm) | λ1 ≤ N − m} and Sλ(X) is the Schur

polynomial in X associated to the partition λ. Note that P ♯(Tr) = Tr◦P : C(©m)→ C(∅)

is homogeneous of Z2-grading m and quantum grading −m(N −m), and

P ♯(Tr)(Sλ(X) · Sµ(X) · 1(1,...,1))

= Tr(Sλ(X) · Sµ(X) · P (1(1,...,1))) = Tr(Sλ(X) · Sµ(X) · 1)

=

{
1 if λj + µm+1−j = N −m ∀j = 1, . . . ,m,

0 otherwise.

(8.3.2)

This implies that P ♯(Tr) induces a non-zero homomorphism on the homology. So P ♯(Tr)

is homotopically non-trivial. Therefore,

ǫ ≈ P ♯(Tr) = Tr ◦ P. (8.3.3)

Corollary 8.8. Denote by m(Sλ(X)) the morphism C(©m)→ C(©m) induced by mul-

tiplication by Sλ(X). Then, for any λ, µ ∈ Λm,N−m,

ǫ ◦m(Sλ(X)) ◦m(Sµ(X)) ◦ ι ≈

{
idC(∅) if λj + µm+1−j = N −m ∀j = 1, . . . ,m,

0 otherwise.

Proof. This follows easily from (8.3.1)–(8.3.3).

8.4. Edge splitting and merging. Let Γ0 and Γ1 be the MOY graphs in Figure 17.

We call the change Γ0 ; Γ1 an edge splitting and the change Γ1 ; Γ0 an edge merging.

In this subsection, we define the morphisms φ and φ associated to edge splitting and

merging.

m + n

6X

A ∪ B

Y

Γ0

-
�

φ

φ 6

6

6 6

m + n

m + n

nm

X

Y

A B

Γ1

Fig. 17
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Lemma 8.9. Let Γ0 and Γ1 be the MOY graphs in Figure 17. Then, as Z2 ⊕ Z-graded

vector spaces over C,

HomHMF(C(Γ0), C(Γ1)) ∼= HomHMF(C(Γ1), C(Γ0))

∼= C(∅)

{
q(N−m−n)(m+n)

[
N

m+ n

][
m+ n

m

]}
.

In particular, the lowest quantum gradings of the above spaces are −mn, and the subspaces

of these spaces of homogeneous elements of quantum grading −mn are 1-dimensional.

Proof. By Theorem 6.12, C(Γ1) ≃ C(Γ0)
{[

m+n
m

]}
. So

Hom(C(Γ0), C(Γ1)) ≃ Hom(C(Γ0), C(Γ0))

{[
m+ n

m

]}
≃ Hom(C(Γ1), C(Γ0)).

Denote by ©m+n the circle colored by m + n. Then, from the proof of Lemma 7.6, we

have

Hom(C(Γ0), C(Γ0)) ∼= C(©m+n){q
(N−m−n)(m+n)}〈m+ n〉

≃ C(∅)

{
q(N−m−n)(m+n)

[
N

m+ n

]}
.

Definition 8.10. Let Γ0 and Γ1 be the MOY graphs in Figure 17. Associate to the edge

splitting a homogeneous morphism

φ : C(Γ0)→ C(Γ1)

of quantum degree −mn not homotopic to 0.

Associate to the edge merging a homogeneous morphism

φ : C(Γ1)→ C(Γ0)

of quantum degree −mn not homotopic to 0.

By Lemma 8.9, the morphisms φ and φ are well defined up to scaling and homotopy,

and both of them have Z2-grading 0.

It is not hard to find explicit forms of these morphisms. In fact, φ is the composition

C(Γ0)
id
−→ C(Γ0){q

−mn} →֒ C(Γ0)

{[
m+ n

m

]}
≃
−→ C(Γ1),

and φ is the composition

C(Γ1)
≃
−→ C(Γ0)

{[
m+ n

m

]}
։ C(Γ0){q

mn}
id
−→ C(Γ0),

where →֒ and ։ are the natural inclusion and projection maps.

More precisely, from the proof of Theorem 6.12, we know that

C(Γ1) ≃ C(Γ0)⊗Sym(A∪B) (Sym(A|B)){q−mn}.

The natural inclusion map Sym(A ∪ B) →֒ Sym(A|B), which is Sym(A ∪ B)-linear and

has grading 0, induces a homogeneous morphism

C(Γ0)
φ′

−→ C(Γ1) (≃ C(Γ0)⊗Sym(A∪B) (Sym(A|B)){q−mn})

of Z2-degree 0 and quantum degree −mn given by φ′(r) = r ⊗ 1.
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From Theorem 5.3, there is a unique Sym(A ∪ B)-linear homogeneous projection ζ :

Sym(A|B) → Sym(A ∪ B) of degree −2mn, called the Sylvester operator, satisfying, for

λ, µ ∈ Λm,n = {(λ1 ≥ · · · ≥ λm) | λ1 ≤ n},

ζ(Sλ(A) · Sµ(−B)) =

{
1 if λj + µm+1−j = n for j = 1, . . . ,m,

0 otherwise,

The Sylvester operator ζ induces a homogeneous morphism

(C(Γ0)⊗Sym(A∪B) (Sym(A|B)){q−mn} ≃) C(Γ1)
φ′

−→ C(Γ0)

of Z2-degree 0 and quantum degree −mn given by

φ′(r ⊗ (Sλ(A) · Sµ(−B))) =

{
r if λj + µm+1−j = n for j = 1, . . . ,m,

0 otherwise,

where λ, µ ∈ Λm,n.

Clearly, φ′(Sλm,n
(A) · φ′(r)) = r for all r ∈ C(Γ0). So φ

′ and φ′ are not homotopic

to 0. Thus, φ ≈ φ′ and φ ≈ φ′. In particular, we have the following lemma.

Lemma 8.11. Let Γ0 and Γ1 be the MOY graphs in Figure 17. Then

φ ◦m(Sλ(A) · Sµ(−B)) ◦ φ ≈

{
idC(Γ0) if λj + µm+1−j = n for j = 1, . . . ,m,

0 otherwise,

where λ, µ ∈ Λm,n and m(Sλ(A) · Sµ(−B)) is the morphism induced by the multiplication

of Sλ(A) · Sµ(−B).

8.5. Adjoint Koszul matrix factorizations. Let Γ0 and Γ1 be the MOY graphs

in Figure 18. Khovanov and Rozansky [19] defined morphisms C(Γ0)
χ0

−→ C(Γ1) and

C(Γ1)
χ1

−→ C(Γ0), which play an important role in the construction of their link homology.

We generalize these χ-morphisms in two subsections. In this subsection, we introduce the

concept of adjoint Koszul matrix factorizations and, for each pair of adjoint Koszul matrix

factorizations, construct a pair of morphisms between them satisfying certain algebraic

properties. The main result here is Proposition 8.13. In the next subsection, we will show

that the matrix factorizations of the MOY graphs in Figure 19 are homotopic to a pair

of adjoint Koszul matrix factorizations. The general χ-morphisms will then be defined by

applying Proposition 8.13 to this pair of adjoint Koszul matrix factorizations.

1 1

1 1

2

�I

I �

6

Γ1

-

�

χ1

χ0

6 6

11

Γ0

Fig. 18

Definition 8.12. Let R be a graded commutative unital C-algebra. Suppose, for i, j =

1, . . . , n, that aj, bi and tij are homogeneous elements of R satisfying deg aj + deg bi +

degTij = 2N + 2. Let
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A =




a1
a2
· · ·

an


 , B =




b1
b2
· · ·

bn


 , T =




T11 T12 . . . T1n
T21 T22 . . . T2n
· · · · · · · · · · · ·

Tn1 Tn2 . . . Tnn


 .

ThenM := (A, T tB)R andM ′ := (TA,B)R are both graded Koszul matrix factorizations

over R with potential w =
∑n

i,j=1 ajbiTij . Here, T
t is the transposition of T . We call M

and M ′ adjoint Koszul matrix factorizations and T the relation matrix.

Proposition 8.13. Let M and M ′ be as in Definition 8.12. Then there exist morphisms

F : M →M ′ and G : M ′ →M satisfying:

(i) degZ2
F = degZ2

G = 0, degF = 0 and

degG = deg det(T ) = 2n(N + 1)−
n∑

k=1

(deg ak + deg bk),

(ii) G ◦ F = det(T ) · idM and F ◦G = det(T ) · idM ′ .

As a special case of Proposition 8.13, we have the following corollary, which was

established in [20, Subsection 2.1].

Corollary 8.14 ([20]). Let a, b, t be homogeneous elements of R with deg a + deg b +

deg t = 2N + 2. Then there exist homogeneous morphisms

f : (a, tb)R → (ta, b)R, g : (ta, b)R → (a, tb)R,

such that

(i) degZ2
f = degZ2

g = 0, deg f = 0 and deg g = deg t.

(ii) g ◦ f = t · id(a,tb)R and f ◦ g = t · id(ta,b)R .

From [19, Section 2], we know that a Koszul matrix factorization can be interpreted

as the exterior algebra of a free module equipped with a differential map. A pair of

adjoint Koszul matrix factorizations are basically the same exterior algebra equipped

with two different differential maps. In this setup, the morphism F in Proposition 8.13

is induced by the relation matrix T in an obvious fashion. We can also define a Hodge

⋆-operator on this exterior algebra. Then, except some sign changes, the morphism G in

Proposition 8.13 is just ⋆T t⋆.

Next, we recall the construction in [19, Section 2] and use it to prove Proposition 8.13.

Let
Rn = R⊕ · · · ⊕R︸ ︷︷ ︸

n-fold

, and ei = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0)t.

Then {e1, . . . , en} is an R-basis for Rn. Define T : Rn → Rn by T (ej) =
∑n

i=1 Tijei. Let

(Rn)∗ be the dual of Rn over R, {e∗1, . . . , e
∗
n} the basis of (Rn)∗ dual to {e1, . . . , en}, and

T ∗ : (Rn)∗ → (Rn)∗ the dual map of T . Then T ∗(e∗i ) =
∑n

j=1 Tije
∗
j .

Set

α =

n∑

i=1

aiei = (e1, . . . , en)A ∈ R
n, β =

n∑

i=1

bie
∗
i = (e∗1, . . . , e

∗
n)B ∈ (Rn)∗.

Then Tα = (e1, . . . , en)TA and T ∗β = (e∗1, . . . , e
∗
n)T

tB.
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From [19, Section 2], we know that M = (A, T tB)R is the matrix factorization

∧

even

Rn ∧α+¬T∗β
−−−−−−−→

∧

odd

Rn ∧α+¬T∗β
−−−−−−−→

∧

even

Rn,

in which, for any i1 < · · · < ik, ei1 ∧ · · · ∧ eik is homogeneous with Z2-grading k and

quantum grading k(N + 1)−
∑k

l=1 deg ail .

Similarly, M ′ = (TA,B)R is the matrix factorization

∧

even

Rn ∧Tα+¬β
−−−−−−→

∧

odd

Rn ∧Tα+¬β
−−−−−−→

∧

even

Rn,

in which, for any i1 < · · · < ik, ei1 ∧ · · · ∧ eik is homogeneous with Z2-grading k and

quantum grading −k(N + 1) +
∑k

l=1 deg bil .

Note that T induces an R-algebra endomorphism T :
∧
Rn →

∧
Rn by

T (ei1 ∧ · · · ∧ eik) := Tei1 ∧ · · · ∧ Teik .

Define an R-module map D : Rn⊕(Rn)∗ → Rn⊕(Rn)∗ by D(ei) = e∗i and D(e∗i ) = ei.

Then D2 = id. We define T t : Rn → Rn by T t = D◦T ∗ ◦D. Then the matrix of T t under

the basis {e1, . . . , en} is the transposition of T . Furthermore, T t induces an R-algebra

endomorphism T t :
∧
Rn →

∧
Rn by

T t(ei1 ∧ · · · ∧ eik) := T tei1 ∧ · · · ∧ T
teik .

Next we introduce the Hodge ⋆-operator. Namely, ⋆ :
∧
Rn →

∧
Rn is an R-module

map defined so that, for any i1 < · · · < ik, ⋆(ei1 ∧ · · · ∧ eik) = ej1 ∧ · · · ∧ ejn−k
, where

(ei1 , . . . , eik , ej1 , . . . , ejn−k
) is an even permutation of (e1, . . . , en).

To simplify the exposition, we use the following notations in the rest of this subsection:

• Ik := {I = (i1, . . . , ik) | 1 ≤ i1 < · · · < ik ≤ n}.

• For any I = (i1, . . . , ik) ∈ Ik, Ī is the unique element Ī = (j1, . . . , jn−k) ∈ In−k such

that {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n}.

• (I, Ī) is the parity of the permutation (i1, . . . , ik, j1, . . . , jn−k) of (1, . . . , n).

• eI := ei1 ∧ · · · ∧ eik . Note that ⋆eI = (−1)(I,Ī)eĪ .

• For I = (i1, . . . , ik), L = (l1, . . . , lk) ∈ Ik, we denote by TLI the matrix

TLI =




Tl1i1 Tl1i2 . . . Tl1ik
Tl2i1 Tl2i2 . . . Tl2ik
. . . . . . . . . . . .

Tlki1 Tlki2 . . . Tlkik


 .

Lemma 8.15. For any I = (i1, . . . , ik) ∈ Ik,

⋆T t⋆T (eI) = T⋆T t ⋆ (eI) = (−1)k(n−k) det(T ) · eI .

Proof. We first prove

⋆T t⋆T (eI) = (−1)k(n−k) det(T ) · eI . (8.5.1)
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Note that

T (eI) = Tei1 ∧ · · · ∧ Teik =
( n∑

j1=1

Tj1i1ej1

)
∧ · · · ∧

( n∑

jk=1

Tjkikejk

)
=
∑

J∈Ik

det(TJI) · eJ ,

⋆eJ = (−1)(J,J̄)eJ̄ ,

T t(eJ̄) =
∑

L∈Ik

det(T t
L̄J̄) · eL̄ =

∑

L∈Ik

det(TJ̄L̄) · eL̄,

⋆eL̄ = (−1)(L̄,L)eL.

Also, if we write J = (j1, . . . , jk) and L = (l1, . . . , lk), then

(J, J̄) =

k∑

m=1

(jm −m) =

k∑

m=1

jm −
k(k + 1)

2
,

(L̄, L) =

k∑

m=1

(n− k +m− lm) = k(n− k) +
k(k + 1)

2
−

k∑

m=1

lm.

Using the above equations and the Laplace Formula, we get

⋆T t⋆T (eI) = (−1)k(n−k)
∑

L∈Ik

∑

J∈Ik

(−1)
∑k

m=1 jm−
∑k

m=1 lm det(TJ̄L̄) · det(TJI) · eL

= (−1)k(n−k) det(T ) · eI .

Thus, (8.5.1) is true. In particular, if T = id, then T t = id and (8.5.1) implies that

⋆⋆(eI) = (−1)k(n−k) · eI . (8.5.2)

Replacing T by T t in (8.5.1), we get

⋆T⋆T t(eI) = (−1)k(n−k) det(T t) · eI = (−1)k(n−k) det(T ) · eI . (8.5.3)

Note that (8.5.1)–(8.5.3) are true for all k and all I ∈ Ik. So we have

T⋆T t⋆(eI) = (−1)k(n−k)⋆⋆T⋆T t⋆(eI) = (−1)k(n−k)⋆(⋆T⋆T t(⋆eI))

= (−1)k(n−k) · (−1)k(n−k) · det(T ) · ⋆⋆eI = (−1)k(n−k) det(T ) · eI .

Lemma 8.16.

T ◦ (∧α) = (∧Tα) ◦ T, (8.5.4)

T ◦ (¬T ∗β) = (¬β) ◦ T. (8.5.5)

Proof. For any I = (i1, . . . , ik) ∈ Ik,

T ◦ (∧α)(ei1 ∧ · · · ∧ eik) = T (ei1 ∧ · · · ∧ eik ∧ α) = T (ei1 ∧ · · · ∧ eik) ∧ Tα

= (∧Tα) ◦ T (ei1 ∧ · · · ∧ eik).

So (8.5.4) is true.
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Similarly,

T ◦ (¬T ∗β)(ei1 ∧ · · · ∧ eik) = T (

k∑

m=1

(−1)m−1β(Teim) · ei1 ∧ · · · êim · · · ∧ eik)

=
k∑

m=1

(−1)m−1β(Teim) · T (ei1) ∧ · · · T̂ (eim) · · · ∧ T (eik)

= (¬β)(T (ei1 ) ∧ · · · ∧ T (eik)) = (¬β) ◦ T (ei1 ∧ · · · ∧ eik).

So (8.5.5) is true.

Lemma 8.17.

⋆ ◦ (∧α) = (¬Dα) ◦ ⋆, (8.5.6)

⋆ ◦ (¬β) = (−1)n−1(∧Dβ) ◦ ⋆. (8.5.7)

Proof. For any I = (i1, . . . , ik) ∈ Ik, let Ī = (j1, . . . , jn−k). Then

⋆ ◦ (∧α)(ei1 ∧ · · · ∧ eik) = ⋆(ei1 ∧ · · · ∧ eik ∧ α) = ⋆
(n−k∑

m=1

ajm · ei1 ∧ · · · ∧ eik ∧ ejm

)

=

n−k∑

m=1

ajm · ⋆(ei1 ∧ · · · ∧ eik ∧ ejm)

=

n−k∑

m=1

ajm · (−1)
(I,Ī)+m−1 · ej1 ∧ · · · êjm · · · ∧ ejn−k

= (¬Dα) ◦ ⋆(ei1 ∧ · · · ∧ eik).

So (8.5.6) is true.

Similarly,

⋆ ◦ (¬β)(ei1 ∧ · · · ∧ eik) = ⋆
( k∑

m=1

(−1)m−1bim · ei1 ∧ · · · êim · · · ∧ eik

)

=

k∑

m=1

(−1)m−1bim · ⋆(ei1 ∧ · · · êim · · · ∧ eik)

=

k∑

m=1

(−1)m−1bim · (−1)
(I,Ī)+n−m · eĪ ∧ eim

= (−1)n−1⋆(eI) ∧ Dβ = (−1)n−1(∧Dβ) ◦ ⋆(ei1 ∧ · · · ∧ eik).

So (8.5.7) is true.

Lemma 8.18.

D ◦ T t ◦ D = T ∗, (8.5.8)

D ◦ T (α) = (T t)∗ ◦ D(α). (8.5.9)

Proof. Recall that T t is defined by T t = D ◦ T ∗ ◦ D and that D2 = id. Formula (8.5.8)

follows immediately. Replace T by T t in (8.5.8) to get D ◦ T ◦D = (T t)∗. Plugging D(α)

into this equation leads to (8.5.9).
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Lemma 8.19.

(⋆T t⋆) ◦ (∧Tα) = (−1)n−1(∧α) ◦ (⋆T t⋆), (8.5.10)

(⋆T t⋆) ◦ (¬β) = (−1)n−1(¬T ∗β) ◦ (⋆T t⋆). (8.5.11)

Proof. Note that Lemmas 8.16 through 8.18 are true for any α ∈ Rn, β ∈ (Rn)∗ and

T ∈ HomR(R
n, Rn). So

(⋆T t⋆) ◦ (∧Tα) = (⋆T t) ◦ (¬DTα) ◦ ⋆ by (8.5.6)

= (⋆T t) ◦ (¬(T t)∗Dα) ◦ ⋆ by (8.5.9)

= ⋆ ◦ (¬Dα) ◦ (T t⋆) by (8.5.5)

= (−1)n−1(∧D2α) ◦ (⋆T t⋆) by (8.5.7)

= (−1)n−1(∧α) ◦ (⋆T t⋆) since D2 = id .

This proves (8.5.10).

Similarly, we have

(⋆T t⋆) ◦ (¬β) = (−1)n−1(⋆T t) ◦ (∧Dβ) ◦ ⋆ by (8.5.7)

= (−1)n−1 ⋆ ◦(∧T tDβ) ◦ (T t⋆) by (8.5.4)

= (−1)n−1(¬DT tDβ) ◦ (⋆T t⋆) by (8.5.6)

= (−1)n−1(¬T ∗β) ◦ (⋆T t⋆) by (8.5.8).

This proves (8.5.11).

Proof of Proposition 8.13. Define F : M → M ′ by F = T :
∧
Rn →

∧
Rn. Also,

define G : M ′ → M by G(eI) = (−1)k(n−k)⋆T t⋆(eI) for I = (i1, . . . , ik) ∈ Ik. Then

Lemmas 8.16 and 8.19 imply that F and G are morphisms of matrix factorizations.

Lemma 8.15 implies that G ◦ F = det(T ) · idM and F ◦ G = det(T ) · idM ′ . It is easy to

see that degZ2
F = degZ2

G = 0. It remains to show that F and G are homogeneous with

the correct quantum gradings.

For I = (i1, . . . , ik) ∈ Ik, let

S(I) =
k∑

m=1

im, Sa(I) =
k∑

m=1

deg aim , Sb(I) =
k∑

m=1

deg bim .

Recall that eI is a homogeneous element of both M and M ′. The quantum grading of

eI as an element of M is degM eI = k(N + 1) − Sa(I). And its quantum grading as an

element of M ′ is degM ′ eI = Sb(I) − k(N + 1). It is easy to check that, for I, J ∈ Ik,

deg TJI is homogeneous with degTJI = 2k(N + 1)− Sa(I)− Sb(J). So

degM ′ det(TJI)eJ = 2k(N + 1)− Sa(I)− Sb(J) + Sb(J)− k(N + 1)

= k(N + 1)− Sa(I) = degM eI .

But

F (eI) = T (eI) =
∑

J∈Ik

det(TJI)eJ .

This shows that F is homogeneous with quantum degree 0.
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Similarly,

G(eI) = (−1)k(n−k)⋆T t⋆(eI) =
∑

J∈Ik

(−1)S(I)+S(J) det(T t
J̄Ī)eJ

=
∑

J∈Ik

(−1)S(I)+S(J) det(TĪJ̄)eJ .

Note that each term det(TĪJ̄ )eJ is homogeneous in M with quantum degree

degM det(TĪJ̄)eJ = 2(n− k)(N + 1)− Sa(J̄)− Sb(Ī) + k(N + 1)− Sa(J)

= (2n− k)(N + 1)− Sa(1, . . . , n)− (Sb(1, . . . , n)− Sb(I))

= (2n(N + 1)− Sa(1, . . . , n)− Sb(1, . . . , n)) + (Sb(I)− k(N + 1))

= deg det(T ) + degM ′ eI .

This shows that G is homogeneous with quantum degree deg det(T ).

Remark 8.20. First, note that Lemma 3.14 and Corollary 3.19 are both special cases

of Proposition 8.13. Second, recall that Rasmussen [37] explained that the Z2-grading of

a Koszul matrix factorization can be lifted to a Z-grading. F and G in Proposition 8.13

preserve this Z-grading.

8.6. General χ-morphisms. The following proposition is the main result of this sub-

section.

Proposition 8.21. Let Γ0 and Γ1 be the MOY graphs in Figure 19, where 1 ≤ l ≤

n < m + n ≤ N . Then there exist homogeneous morphisms χ0 : C(Γ0) → C(Γ1) and

χ1 : C(Γ1)→ C(Γ0) such that

(i) both χ0 and χ1 have Z2-degree 0 and quantum degree ml;

(ii) we have

χ1 ◦ χ0 ≃
( ∑

λ∈Λl,m

(−1)|λ|Sλ′(X)Sλc(B)
)
· idC(Γ0),

χ0 ◦ χ1 ≃
( ∑

λ∈Λl,m

(−1)|λ|Sλ′(X)Sλc(B)
)
· idC(Γ1),

where Λl,m = {µ = (µ1 ≥ · · · ≥ µl) | µ1 ≤ m}, λ′ ∈ Λm,l is the conjugate of λ,

and λc is the complement of λ in Λl,m, that is, if λ = (λ1 ≥ · · · ≥ λl) ∈ Λl,m, then

λc = (m− λl ≥ · · · ≥ m− λ1).
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Before proving Proposition 8.21, we first simplify C(Γ0) and C(Γ1) to show that they

are homotopic to a pair of adjoint Koszul matrix factorizations.

Let R = Sym(X|Y|A|B). Denote by Xi the ith elementary symmetric polynomial in

X and so on. Recall that

C(Γ0) =




∗ X1 +D1 −A1

. . . . . .

∗
∑n−l

i=0 Xk−iDi −Ak

. . . . . .

∗ XmDn−l −Am+n−l

∗ Y1 −D1 −B1

. . . . . .

∗ Yk −
∑n−l

i=0 Bk−iDi

. . . . . .

∗ Yn −BlDn−l




Sym(X|Y|A|B|D)

{q−m(n−l)}.

We exclude D from the base ring by applying Proposition 3.22 to the rows


∗ Y1 −D1 −B1

. . . . . .

∗ Yn−l −
∑n−l

i=0 Bn−l−iDi


 .

This gives us

C(Γ0) ≃




∗ X1 +D1 −A1

. . . . . .

∗
∑n−l

i=0 Xk−iDi −Ak

. . . . . .

∗ XmDn−l −Am+n−l

∗ Yn−l+1 −
∑n−l

i=0 Bn−l+1−iDi

. . . . . .

∗ Yn−l+k −
∑n−l

i=0 Bn−l+k−iDi

. . . . . .

∗ Yn −BlDn−l




R

{q−m(n−l)}, (8.6.1)

where

Dk =

{∑k
i=0(−1)

ihi(B)Yk−i if k = 0, 1, . . . , n− l,

0 otherwise.
(8.6.2)

Since the above sum will appear repeatedly in this subsection, we set

Tk =

{∑k
i=0(−1)

ihi(B)Yk−i if k ≥ 0,

0 if k < 0.
(8.6.3)

Now consider Yn−l+k −
∑n−l

i=0 Bn−l+k−iDi. For k = 1, using equation (5.1.1), we get

Yn−l+1 −
n−l∑

i=0

Bn−l+1−iDi = Yn−l+1 −
n−l∑

i=0

Bn−l+1−i

i∑

j=0

(−1)i−jhi−j(B)Yj
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= Yn−l+1 −
n−l∑

j=0

Yj

n−l∑

i=j

(−1)i−jhi−j(B)Bn−l+1−i

= Yn−l+1 −
n−l∑

j=0

Yj

n−l−j∑

i=0

(−1)ihi(B)Bn−l+1−j−i

= Yn−l+1 +
n−l∑

j=0

(−1)n−l+1−jYjhn−l+1−j(B) = Tn−l+1.

If k > 1, then

Yn−l+k −
n−l∑

i=0

Bn−l+k−iDi = Yn−l+k −
n−l∑

i=0

Bn−l+k−i

i∑

j=0

(−1)i−jhi−j(B)Yj

= Yn−l+k −
n−l∑

j=0

Yj

n−l∑

i=j

(−1)i−jhi−j(B)Bn−l+k−i

= Yn−l+k −
n−l∑

j=0

Yj

n−l−j∑

i=0

(−1)ihi(B)Bn−l+k−j−i

= Yn−l+k +

n−l∑

j=0

Yj

n−l−j+k∑

i=n−l−j+1

(−1)ihi(B)Bn−l+k−j−i

= Yn−l+k +

n−l∑

j=0

Yj

k−1∑

i=0

(−1)n−l+k−j−ihn−l+k−j−i(B)Bi

= Yn−l+k +
k−1∑

i=0

Bi

n−l∑

j=0

Yj(−1)
n−l+k−j−ihn−l+k−j−i(B)

= Yn−l+k +

k−1∑

i=0

Bi

(
Tn−l+k−i −

n−l+k−i∑

j=n−l+1

Yj(−1)
n−l+k−j−ihn−l+k−j−i(B)

)

= Yn−l+k +

k−1∑

i=0

BiTn−l+k−i −
k−1∑

i=0

Bi

n−l+k−i∑

j=n−l+1

Yj(−1)
n−l+k−j−ihn−l+k−j−i(B).

But, by (5.1.1),

k−1∑

i=0

Bi

n−l+k−i∑

j=n−l+1

Yj(−1)
n−l+k−j−ihn−l+k−j−i(B)

=
k−1∑

i=0

Bi

k−1−i∑

j=0

Yj+n−l+1(−1)
k−1−j−ihk−1−j−i(B)

=
k−1∑

j=0

Yj+n−l+1

k−1−j∑

i=0

(−1)k−1−j−ihk−1−j−i(B)Bi = Yk+n−l.
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So

Yn−l+k −
n−l∑

i=0

Bn−l+k−iDi = Yn−l+k +

k−1∑

i=0

BiTn−l+k−i − Yk+n−l =

k−1∑

i=0

BiTn−l+k−i

and, therefore,

Yn−l+k −
n−l∑

i=0

Bn−l+k−iDi −
k−1∑

i=1

BiTn−l+k−i = Tn−l+k.

Thus, we can apply Corollary 3.19 successively to the right hand side of (8.6.1) to get

C(Γ0) ≃




∗ X1 +D1 −A1

. . . . . .

∗
∑n−l

i=0 Xk−iDi −Ak

. . . . . .

∗ XmDn−l −Am+n−l

∗ Tn−l+1

. . . . . .

∗ Tn




R

{q−m(n−l)}. (8.6.4)

Lemma 8.22. If k > n, then Tk = −
∑l

j=1 BjTk−j.

Proof. For k > n,

Tk =

k∑

i=0

(−1)ihi(B)Yk−i =

n∑

i=0

(−1)k−ihk−i(B)Yi

= −
n∑

i=0

(−1)k−iYi

l∑

j=1

(−1)jBjhk−i−j(B) (by (5.1.1); note that k > n)

= −
l∑

j=1

Bj

n∑

i=0

(−1)k−i−jYihk−i−j(B) = −
l∑

j=1

BjTk−j .

Lemma 8.23. For any k ≥ 0, define Wk =
∑k

i=0 TiXk−i. Then

C(Γ0) ≃




∗ W1 −A1

. . . . . .

∗ Wk −Ak

. . . . . .

∗ Wm+n−l −Am+n−l

∗ Tn−l+1

. . . . . .

∗ Tn




R

{q−m(n−l)}. (8.6.5)

Proof. Consider
∑n−l

i=0 Xk−iDi −Ak. If k ≤ n− l, then, by (8.6.2) and (8.6.3),

n−l∑

i=0

Xk−iDi −Ak =

k∑

i=0

Xk−iTi − Ak =Wk −Ak.

So the row (∗,
∑n−l

i=0 Xk−iDi − Ak) in (8.6.4) is already (∗,Wk −Ak).
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If k > n− l, then, by (8.6.2) and (8.6.3),

n−l∑

i=0

Xk−iDi −Ak =

n−l∑

i=0

Xk−iTi −Ak =Wk −Ak −
k∑

i=n−l+1

Xk−iTi.

By Lemma 8.22, if i ≥ n− l + 1, then Ti can be expressed as a combination of Tn−l+1,

. . . , Tn. So we can apply Corollary 3.19 to the row (∗,
∑n−l

i=0 Xk−iDi−Ak) and the bottom

l rows in (8.6.4) to change the former into (∗,Wk −Ak).

Now consider Γ1 in Figure 19. Recall that

C(Γ1) ≃




∗ X1 + Y1 −A1 −B1

. . . . . .

∗
∑k

i=0XiYk−i −
∑k

i=0 AiBk−i

. . . . . .

∗ XmYn −Am+n−lBl




R

{q−mn}. (8.6.6)

Lemma 8.24.

C(Γ1) ≃




∗ W1 −A1

. . . . . .

∗ Wk −Ak

. . . . . .

∗ Wm+n−l −Am+n−l

∗ Wm+n−l+1

. . . . . .

∗ Wm+n




R

{q−mn}, (8.6.7)

where, as in Lemma 8.23, Wk =
∑k

i=0 TiXk−i.

Proof. We have
k∑

j=0

(−1)k−jhk−j(B)

j∑

i=0

XiYj−i =
k∑

i=0

Xi

k∑

j=i

(−1)k−jhk−j(B)Yj−i

=

k∑

i=0

Xi

k−i∑

j=0

(−1)k−i−jhk−i−j(B)Yj =

k∑

i=0

XiTk−i =Wk

and, by (5.1.1),
k∑

j=0

(−1)k−jhk−j(B)

j∑

i=0

AiBj−i =

k∑

i=0

Ai

k∑

j=i

(−1)k−jhk−j(B)Bj−i

=
k∑

i=0

Ai

k−i∑

j=0

(−1)k−i−jhk−i−j(B)Bj = Ak.

Thus,

k∑

j=1

(−1)k−jhk−j(B)
( j∑

i=0

XiYj−i −

j∑

i=0

AiBj−i

)

=
k∑

j=0

(−1)k−jhk−j

(
B)(

j∑

i=0

XiYj−i −

j∑

i=0

AiBj−i

)
=Wk −Ak.



8.6. General χ-morphisms 87

This implies that we can get (8.6.7) by successively applying Corollary 3.19 to the right

hand side of (8.6.6).

By the definition of Wk in Lemma 8.23, we know that



Wm+n

Wm+n−1

· · ·

Wm+n−l+1


 = Ω




Tm+n

Tm+n−1

· · ·

Tn−l+1


 ,

where

Ω = (Xj−i)l×(m+l), (8.6.8)

that is, Ω is the l× (m+ l) matrix whose (i, j)th entry is Xj−i. By Lemma 8.22, we have,

for k ≥ 1, 


Tn+k

Tn+k−1

· · ·

Tn−l+1


 = Θk




Tn+k−1

Tn+k−2

· · ·

Tn−l+1


 ,

where Θk is the (k+ l)×(k+ l−1) matrix whose first row is (−B1,−B2, . . . ,−Bl, 0, . . . , 0)

and whose next k+ l− 1 rows form the (k + l− 1)× (k + l− 1) identity matrix Idk+l−1.

Define

Θ = ΘmΘm−1 · · ·Θ2Θ1. (8.6.9)

Then 


Wm+n

Wm+n−1

· · ·

Wm+n−l+1


 = ΩΘ




Tn
Tn−1

· · ·

Tn−l+1


 ,

where ΩΘ is clearly an l × l matrix. So



W1 −A1

· · ·

Wm+n−l −Am+n−l

Wm+n

· · ·

Wm+n−l+1




=

(
Idm+n−l 0

0 ΩΘ

)




W1 −A1

· · ·

Wm+n−l −Am+n−l

Tn
· · ·

Tn−l+1



. (8.6.10)

Lemma 8.25. C(Γ0){q
m(n−l)} and C(Γ1){q

mn} are homotopic to a pair of adjoint Koszul

matrix factorizations with the relation matrix

(
Idm+n−l 0

0 ΩΘ

)t

=

(
Idm+n−l 0

0 ΘtΩt

)
.

Proof. This follows from (8.6.10), Lemmas 8.23, 8.24 and Remark 6.2.

The morphisms χ0 and χ1 in Proposition 8.21 are constructed by applying Proposi-

tion 8.13 to the pair of adjoint matrix factorizations in Lemma 8.25. To prove that χ0
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and χ1 satisfy all the requirements in Proposition 8.21, all we need to do is to compute

det

(
Idm+n−l 0

0 ΩΘ

)t

= det(ΩΘ).

For this purpose, we introduce some properties of Schur polynomials associated to hook

partitions.

For i, j ≥ 0, let Li,j = (i + 1 ≥ 1 ≥ · · · ≥ 1︸ ︷︷ ︸
j 1s

), the (i, j)-hook partition. Note that

L′
i,j = Lj,i. So, by (5.2.2) and (5.2.3),

SLi,j
(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

hi+1(B) hi+2(B) hi+3(B) · · · hi+j(B) hi+j+1(B)

1 h1(B) h2(B) · · · hj−1(B) hj(B)

0 1 h1(B) · · · hj−2(B) hj−1(B)

0 0 1 · · · hj−3(B) hj−2(B)

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 h1(B)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(8.6.11)

and

SLi,j
(B) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Bj+1 Bj+2 Bj+3 · · · Bj+i Bj+i+1

1 B1 B2 · · · Bi−1 Bi

0 1 B1 · · · Bi−3 Bi−1

0 0 1 · · · Bi−3 Bi−2

· · · · · · · · · · · · · · · · · ·

0 0 0 · · · 1 B1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (8.6.12)

Using (8.6.11) and (8.6.12), we can extend the definition of SLi,j
(B) to allow one of i, j

to be negative. This gives:

(i) if j ≥ 0, then

SLi,j
(B) =





SLi,j
(B) as in (8.6.11) if i ≥ 0,

(−1)j if i = −j − 1,

0 if i < 0 and i 6= −j − 1;

(ii) if i ≥ 0, then

SLi,j
(B) =





SLi,j
(B) as in (8.6.12) if j ≥ 0,

(−1)i if j = −i− 1,

0 if j < 0 and j 6= −i− 1.

Lemma 8.26. Define τi,j = (−1)i+1SLi,j
(B). Then, for i, j ≥ 0,

Bi+j+1 = −
i∑

k=0

Bkτi−k,j , (8.6.13)

(−1)i+j+1hi+j+1(B) =

j∑

k=0

(−1)khk(B)τi,j−k . (8.6.14)
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Proof. We prove (8.6.13) first. Note that, for any i ≥ 0,

hi+1(B) =
∞∑

k=1

(−1)k+1Bkhi+1−k(B),

where the right hand side is in fact a finite sum. Applying this equation to every entry

in the first row of (8.6.11), we get

SLi,j
(B) =

∞∑

k=1

(−1)k+1BkSLi−k,j
(B)

=

i∑

k=1

(−1)k+1BkSLi−k,j
(B) + (−1)iBi+j+1 by (i) above.

Equation (8.6.13) follows from this and the definition of τi,j .

Now we prove (8.6.14). For any j ≥ 0,

Bj+1 =
∞∑

k=1

(−1)k+1hk(B)Bj+1−k,

where the right hand side is again a finite sum. Applying this equation to every entry in

the first row of (8.6.12), we get

SLi,j
(B) =

∞∑

k=1

(−1)k+1hk(B)SLi,j−k
(B)

=

j∑

k=1

(−1)k+1hk(B)SLi,j−k
(B) + (−1)jhi+j+1(B) by (ii) above.

Equation (8.6.14) follows from this and the definition of τi,j .

Lemma 8.27. Let Θ be the matrix defined in (8.6.9). Then

Θ = (τm−i,j−1)(l+m)×l =




τm−1,0 τm−1,1 · · · τm−1,l−1

τm−2,0 τm−2,1 · · · τm−2,l−1

· · · · · · · · · · · ·

τ0,0 τ0,1 · · · τ0,l−1

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·

0 0 · · · 1




.

Proof. Note that τ0,j−1 = −Bj . Recall that

Θ1 =




−B1 −B2 · · · −Bl

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·

0 0 · · · 1




=




τ0,0 τ0,1 · · · τ0,l−1

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·

0 0 · · · 1




and

Θk =

(
Θ1 0

0 Idk−1

)
.
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Using equation (8.6.13) from Lemma 8.26, it is easy to prove by induction that

ΘkΘk−1 · · ·Θ1 = (τk−i,j−1)(l+k)×l =




τk−1,0 τk−1,1 · · · τk−1,l−1

τk−2,0 τk−2,1 · · · τk−2,l−1

· · · · · · · · · · · ·

τ0,0 τ0,1 · · · τ0,l−1

1 0 · · · 0

0 1 · · · 0

· · · · · · · · · · · ·

0 0 · · · 1




.

But Θ = ΘmΘm−1 · · ·Θ1. So the lemma is the k = m case of the above equation.

Define

ui,j = (−1)j−ihj−i(B) for 1 ≤ i, j ≤ l,

vi,j = (−1)j+m−ihj+m−i(B) for 1 ≤ i ≤ l +m and 1 ≤ j ≤ l.

Let

U = (ui,j)l×l =




1 −h1(B) · · · (−1)l−2hl−2(B) (−1)l−1hl−1(B)

0 1 · · · (−1)l−3hl−3(B) (−1)l−2hl−2(B)

· · · · · · · · · · · · · · ·

0 0 · · · 1 −h1(B)

0 0 · · · 0 1




and

V = (vi,j)(l+m)×l

=





(−1)mhm(B) (−1)m+1hm+1(B) · · · (−1)m+l−2hm+l−2(B) (−1)m+l−1hm+l−1(B)
· · · · · · · · · · · · · · ·
−h1(B) h2(B) · · · (−1)l−1hl−1(B) (−1)lhl(B)

1 −h1(B) · · · (−1)l−2hl−2(B) (−1)l−1hl−1(B)

0 1 · · · (−1)l−3hl−3(B) (−1)l−2hl−2(B)
· · · · · · · · · · · · · · ·
0 0 · · · 1 −h1(B)
0 0 · · · 0 1





,

Lemma 8.28. Let Θ be the matrix defined in (8.6.9). Then ΘU = V .

Proof. This follows from Lemma 8.27 and equation (8.6.14) of Lemma 8.26.

Lemma 8.29. Let Ω and Θ be the matrices defined in (8.6.8) and (8.6.9). Then

det

(
Idm+n−l 0

0 ΩΘ

)t

= det(ΩΘ) = (−1)ml
∑

λ∈Λl,m

(−1)|λ|Sλ′(X)Sλc (B).

Proof. Note that detU = 1. So, by Lemma 8.28, det(ΩΘ) = det(ΩΘU) = det(ΩV ). Let

I := {I = (i1, . . . , il) | 1 ≤ i1 < · · · < il ≤ l +m}.

For any I = (i1, . . . , il) ∈ I, define

• ΩI to be the l × l minor matrix of Ω consisting of the i1, . . . , il-th columns of Ω,

• VI to be the l × l minor matrix of V consisting of the i1, . . . , il-th rows of V .
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Then, by the Binet–Cauchy Theorem,

det(ΩΘ) = det(ΩV ) =
∑

I∈I

detΩI · detVI . (8.6.15)

Recall that Λl,m = {µ = (µ1 ≥ · · · ≥ µl) | µ1 ≤ m}. Note that there is a one-to-one

correspondence  : I → Λl,m given by

(I) = (il − l ≥ il−1 − l + 1 ≥ · · · ≥ i1 − 1)

for any I = (i1, . . . , il) ∈ I. The inverse of  is given by

−1(λ) = (λl + 1, λl−1 + 2, . . . , λ1 + l)

for any λ = (λ1 ≥ · · · ≥ λl) ∈ Λl,m.

For any I = (i1, . . . , il) ∈ I,

detΩI =

∣∣∣∣∣∣∣∣∣∣

Xi1−1 Xi2−1 . . . Xil−1−1 Xil−1

Xi1−2 Xi2−2 . . . Xil−1−2 Xil−2

· · · · · · · · · · · · · · ·

Xi1−l+1 Xi2−l+1 . . . Xil−1−l+1 Xil−l+1

Xi1−l Xi2−l . . . Xil−1−l Xil−l

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

Xil−l Xil−l+1 . . . Xil−2 Xil−1

Xil−1−l Xil−1−l+1 . . . Xil−1−2 Xil−1−1

· · · · · · · · · · · · · · ·

Xi2−l Xi2−l+1 . . . Xi2−2 Xi2−1

Xi1−l Xi1−l+1 . . . Xi1−2 Xi1−1

∣∣∣∣∣∣∣∣∣∣

= S(I)′(X).

To shorten the equation, we let hi = hi(B) and ~i = (−1)ihi(B). Then, for any I =

(i1, . . . , il) ∈ I,

detVI =

∣∣∣∣∣∣∣∣∣∣

~m+1−i1 ~m+2−i1 . . . ~m+l−1−i1 ~m+l−i1

~m+1−i2 ~m+2−i2 . . . ~m+l−1−i2 ~m+l−i2

· · · · · · · · · · · · · · ·

~m+1−il−1
~m+2−il−1

. . . ~m+l−1−il−1
~m+l−il−1

~m+1−il ~m+2−il . . . ~m+l−1−il ~m+l−il

∣∣∣∣∣∣∣∣∣∣

= (−1)ml+ l(l+1)
2 −

∑l
k=1 ik

∣∣∣∣∣∣∣∣∣∣

hm+1−i1 hm+2−i1 . . . hm+l−1−i1 hm+l−i1

hm+1−i2 hm+2−i2 . . . hm+l−1−i2 hm+l−i2

· · · · · · · · · · · · · · ·

hm+1−il−1
hm+2−il−1

. . . hm+l−1−il−1
hm+l−il−1

hm+1−il hm+2−il . . . hm+l−1−il hm+l−il

∣∣∣∣∣∣∣∣∣∣

= (−1)ml+|(I)|S(I)c(B).

So (8.6.15) gives

det(ΩΘ) = (−1)ml
∑

I∈I

(−1)|(I)|S(I)′(X)S(I)c(B) = (−1)ml
∑

λ∈Λl,m

(−1)|λ|Sλ′(X)Sλc(B).

Proof of Proposition 8.21. The result now follows easily from Proposition 8.13 and Lem-

mas 8.25 and 8.29.
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Proposition 8.30. Let Γ0, Γ1, χ
0 and χ1 be as in Proposition 8.21. Then χ0 and χ1

are homotopically non-trivial. Moreover, up to homotopy and scaling, χ0 (resp. χ1) is

the unique homotopically non-trivial homogeneous morphism of quantum degree ml from

C(Γ0) to C(Γ1) (resp. from C(Γ1) to C(Γ0)).

Proof. Using Lemmas 8.23 and 8.24, one can check that, as graded vector spaces,

HomHMF(C(Γ1), C(Γ0)) ∼= H(Γ)〈m+ n〉{q(m+n)(N−m−n)+mn+ml+nl−l2},

HomHMF(C(Γ0), C(Γ1)) ∼= H(Γ)〈m+ n〉{q(m+n)(N−m−n)+mn+ml+nl−l2},

where Γ is the MOY graph in Figure 20, and Γ is Γ with orientation reversed.

�
?

Rm+n−l

l

n−l

Γ

�
R -
m

n

m+n

1
R m+n−lm+n−l

m

l

n−l

Γ′

�
R -m+n

Fig. 20

By Corollary 6.11, we have H(Γ) ∼= H(Γ′). Then, by decomposition (II) (Theorem

6.12) and Corollary 7.1, we have

H(Γ) ∼= H(Γ′) ∼= C(∅)〈m+ n〉

{[
m+ n− l

m

][
m+ n

l

][
N

m+ n

]}
.

Similarly,

H(Γ) ∼= C(∅)〈m+ n〉

{[
m+ n− l

m

][
m+ n

l

][
N

m+ n

]}
.

Thus, as graded vector spaces,

HomHMF(C(Γ1), C(Γ0)) ∼= HomHMF(C(Γ0), C(Γ1))

∼= C(∅)

{[
m+ n− l

m

][
m+ n

l

][
N

m+ n

]
q(m+n)(N−m−n)+mn+ml+nl−l2

}
.

In particular, the lowest non-vanishing quantum grading of the above spaces is ml, and

the subspaces of these spaces of homogeneous elements of quantum degree ml are 1-

dimensional. So, to prove the proposition, we only need to show that χ0 and χ1 are

homotopically non-trivial. To prove this, we use the diagram in Figure 21.

6m+n

φ1⊗φ2 //

6

6

6

6 6

6 6

m+n

n

l

m

m+n−l

m+n

m+n

X

A

Y

B

φ1⊗φ2

oo
χ1

//

6

-

6

6 6

6 6

m+n

n

l

m

m+n−l

n−l

X

A

Y

B

χ0

oo

Fig. 21
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Consider the morphisms in Figure 21, where φ1 and φ1 (resp. φ2 and φ2) are induced

by the edge splitting and merging of the upper (resp. lower) bubble, and χ0 and χ1 are

the morphisms from Proposition 8.21. Let us compute the composition

(φ1 ⊗ φ2) ◦m(Sλm,n
(−Y) · Sλl,n−l

(−A)) ◦ χ0 ◦ χ1 ◦ (φ1 ⊗ φ2),

where m(Sλm,n
(−Y) · Sλl,n−l

(−A)) is the morphism induced by multiplication by

Sλm,n
(−Y) · Sλl,n−l

(−A). By Proposition 8.21, we have

(φ1 ⊗ φ2) ◦m(Sλm,n
(−Y) · Sλl,n−l

(−A)) ◦ χ0 ◦ χ1 ◦ (φ1 ⊗ φ2)

≃ (φ1 ⊗ φ2) ◦m
(
Sλm,n

(−Y) · Sλl,n−l
(−A) ·

( ∑

λ∈Λl,m

(−1)|λ|Sλ′(X)Sλc(B)
))
◦ (φ1 ⊗ φ2)

=
∑

λ∈Λl,m

(−1)|λ|
(
φ1 ◦m(Sλm,n

(−Y) · Sλ′(X)) ◦ φ1
)
⊗
(
φ2 ◦m(Sλl,n−l

(−A) · Sλc(B)) ◦ φ2
)
.

But, by Lemma 8.11, for λ ∈ Λl,m we have

φ1 ◦m(Sλm,n
(−Y) · Sλ′(X)) ◦ φ1 ≈

{
id if λ = (0 ≥ · · · ≥ 0),

0 if λ 6= (0 ≥ · · · ≥ 0),

φ2 ◦m(Sλl,n−l
(−A) · Sλc(B)) ◦ φ2 ≈

{
id if λ = (0 ≥ · · · ≥ 0),

0 if λ 6= (0 ≥ · · · ≥ 0).

So,

(φ1 ⊗ φ2) ◦m(Sλm,n
(−Y) · Sλl,n−l

(−A)) ◦ χ0 ◦ χ1 ◦ (φ1 ⊗ φ2) ≈ id,

which implies that χ0 and χ1 are not homotopic to 0.

8.7. Adding and removing a loop. Using the χ-morphisms and the morphisms as-

sociated to circle creation and annihilation, one can construct morphisms associated to

adding and removing loops.

Lemma 8.31. Let Γ0 and Γ1 be the MOY graphs in Figure 22. Then, as Z2 ⊕ Z-graded

vector spaces over C,

HomHMF(C(Γ0), C(Γ1)) ∼= HomHMF(C(Γ1), C(Γ0))

∼= C(∅)

{[
N

m

][
N−m

n

]
qm(N−m)

}
〈n〉.

In particular, the subspaces of these spaces of homogeneous elements of quantum degree

−n(N − n) +mn are 1-dimensional.

m

6X

Γ0

-
�

ψ

ψ 6

6

6

?

m

m

n

m + n

X

B
Y

Γ1

Fig. 22
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Proof. By Theorem 6.14, we have C(Γ1) ≃ C(Γ0)
{[

N−m
n

]}
〈n〉. So

HomHMF(C(Γ0), C(Γ1)) ∼= HomHMF(C(Γ0), C(Γ0))

{[
N −m

n

]}
〈n〉

∼= HomHMF(C(Γ1), C(Γ0)).

Denote by ©m a circle colored by m. Then, from the proof of Lemma 7.6, we have

HomHMF(C(Γ0), C(Γ0)) ∼= H(©m){qm(N−m)}〈m〉 ∼= C(∅)

{[
N

m

]
qm(N−m)

}
.

Definition 8.32. Let Γ0 and Γ1 be the MOY graphs in Figure 22. Associate to the loop

addition a homogeneous morphism

ψ : C(Γ0)→ C(Γ1)

of quantum degree −n(N − n) +mn not homotopic to 0.

Associate to the loop removal a homogeneous morphism

ψ : C(Γ1)→ C(Γ0)

of quantum degree −n(N − n) +mn not homotopic to 0.

By Lemma 8.31, ψ and ψ are well defined up to homotopy and scaling. Both of them

have Z2-grading n.

6m

Γ0

ι //

6

?

m

n

X

B

Γ2

ǫ
oo

χ0

//

6

6

6

?

m

m

m+n

n

X

Y

B

Γ1

χ1

oo

Fig. 23

The above definitions of ψ and ψ here are implicit. Next we give explicit constructions

of ψ and ψ. Consider the diagram in Figure 23, where χ0, χ1 are the morphisms given

by Proposition 8.21, ι, ǫ are the morphisms induced by the apparent circle creation

and annihilation. Then χ0 ◦ ι : C(Γ0) → C(Γ1) and ǫ ◦ χ1 : C(Γ1) → C(Γ0) are both

homogeneous morphisms of Z2-degree n and quantum degree −n(N − n) +mn.

Proposition 8.33. We have ψ ≈ χ0 ◦ ι, ψ ≈ ǫ ◦ χ1. Moreover,

ψ ◦m(Sµ(B)) ◦ ψ ≈

{
idC(Γ0) if µ = λn,N−m−n,

0 if |µ| < n(N −m− n),
(8.7.1)

ψ ◦m(Sµ(Y)) ◦ ψ ≈

{
idC(Γ0) if µ = λn,N−m−n,

0 if |µ| < n(N −m− n),
(8.7.2)

where m(∗) is the morphism given by multiplication by ∗, and |µ| =
∑n

j=1 µj for µ =

(µ1 ≥ · · · ≥ µn).
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Proof. To prove ψ ≈ χ0 ◦ ι and ψ ≈ ǫ ◦ χ1, we only need to show that χ0 ◦ ι and ǫ ◦ χ1

are not homotopic to 0. We prove this by showing that

ǫ ◦ χ1 ◦m(Sµ(B)) ◦ χ
0 ◦ ι ≈

{
idC(Γ0) if µ = λn,N−m−n,

0 if |µ| < n(N −m− n),
(8.7.3)

which also implies (8.7.1).

Note that the lowest non-vanishing quantum grading of HomHMF(C(Γ0), C(Γ0)) is 0

and, if |µ| < n(N − m − n), then the quantum degree of ǫ ◦ χ1 ◦ m(Sµ(B)) ◦ χ0 ◦ ι is

negative. This implies that ǫ ◦ χ1 ◦ m(Sµ(B)) ◦ χ0 ◦ ι ≃ 0 if |µ| < n(N −m − n). Now

consider the case µ = λn,N−m−n. By Proposition 8.21, ee have

ǫ ◦ χ1 ◦m(Sλn,N−m−n
(B)) ◦ χ0 ◦ ι = ǫ ◦m(Sλn,N−m−n

(B)) ◦ χ1 ◦ χ0 ◦ ι

= ǫ ◦m(Sλn,N−m−n
(B) ·

∑

λ∈Λn,m

(−1)|λ|Sλ′(X)Sλc (B)) ◦ ι

=
∑

λ∈Λn,m

(−1)|λ|Sλ′(X) · ǫ ◦m(Sλn,N−m−n
(B) · Sλc(B)) ◦ ι

where Λn,m = {µ = (µ1 ≥ · · · ≥ µn) | µ1 ≤ m}, λ′ ∈ Λm,n is the conjugate of λ,

and λc is the complement of λ in Λn,m. That is, if λ = (λ1 ≥ · · · ≥ λn) ∈ Λn,m, then

λc = (m− λn ≥ · · · ≥ m− λ1). By Corollary 8.8, for λ ∈ Λn,m we have

ǫ ◦m(Sλn,N−m−n
(B) · Sλc(B)) ◦ ι ≈

{
idC(Γ0) if λ = (0 ≥ · · · ≥ 0),

0 if λ 6= (0 ≥ · · · ≥ 0).

This completes the proof for (8.7.3). Thus, we have proved ψ ≈ χ0 ◦ ι, ψ ≈ ǫ ◦ χ1 and

(8.7.1).

It remains to prove (8.7.2). Note that, as endomorphisms of C(Γ1),

m(Sµ(Y)) ≃ m(Sµ(B ∪ X)) = m(Sµ(B) + Fµ(B,X)),

where Fµ(B,X) ∈ Sym(B|X) and its total degree in B is strictly less than 2|µ|. Then, by

(8.7.1), we see that, for any partition µ with |µ| ≤ n(N −m− n),

ψ ◦m(Sµ(Y))◦ψ ≃ ψ◦m(Sµ(B∪X))◦ψ ≃ ψ◦m(Sµ(B)+Fµ(B,X))◦ψ ≃ ψ◦m(Sµ(B))◦ψ.

So (8.7.2) follows from (8.7.1).

8.8. Saddle move. Next we define the morphism η induced by a saddle move. Unlike

the morphisms in the previous subsections, we will not give an explicit formula for η.

Instead, we prove two composition lemmas for η, which are all we need to know about η

in this paper.

Lemma 8.34. Let Γ0 and Γ1 be the MOY graphs in Figure 24. Then, as Z2 ⊕ Z-graded

vector spaces over C,

HomHMF(C(Γ0), C(Γ1)) ∼= C(∅)

{[
N

m

]
q2m(N−m)

}
〈m〉.

In particular, the subspace of HomHMF(C(Γ0), C(Γ1)) of homogeneous elements of quan-

tum degree m(N −m) is 1-dimensional.
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η -
I

R

X

m

A

m

Y

B

Γ0

R

I
X

m

A

Y

m B

Γ1

Fig. 24

Proof. Let©m be a circle colored by m with four marked points. By Corollary 3.16, one

can see that Hom(C(Γ0), C(Γ1)) ∼= C(©m){q2m(N−m)}. The lemma follows from this

and Corollary 7.1.

Definition 8.35. Let Γ0 and Γ1 be the MOY graphs in Figure 24. Associate to the

saddle move Γ0 ; Γ1 a homogeneous morphism

η : C(Γ0)→ C(Γ1)

of quantum degree m(N − m) that is not homotopic to 0. By Lemma 8.34, η is well

defined up to homotopy and scaling, and degZ2
η = m.

8.9. The first composition formula. In this subsection, we prove that the compo-

sition in Figure 25 gives, up to homotopy and scaling, the identity map of the matrix

factorization. Topologically, this means that a pair of canceling 0- and 1-handles induce

the identity morphism.

m

6

ι -

Γ

m

6 m

6

Γ1

η -

6

m

Γ

Fig. 25

Lemma 8.36. Let Γ0 and Γ1 be the MOY graphs in Figure 24. Denote by Xj the jth

elementary symmetric polynomial in X and so on. Then under the identification

Hom(C(Γ0), C(Γ1)) ∼= C(Γ1)⊗Sym(X|Y|A|B)C(Γ0)• ∼=




∗ X1 − Y1
. . . . . .

∗ Xm − Ym
∗ B1 −A1

. . . . . .

∗ Bm −Am

A1 −X1 ∗

. . . . . .

Am −Xm ∗

Y1 −B1 ∗

. . . . . .

Ym −Bm ∗




Sym(X|Y|A|B)

,
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we have

η ≈ ρ+
( ∑

ε=(ε1,...εm)∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj · 1ε ⊗ 1ε

)
⊗ 1(1,...,1︸︷︷︸

2m

),

where I = {0, 1} and ρ is of the form

ρ =
∑

ε1,ε2∈Im, ε3∈I2m, ε3 6=(1,1,...,1)

f(ε1,ε2,ε3) · 1ε1 ⊗ 1ε2 ⊗ 1ε3 .

Proof. Write R0 = Sym(X|Y|A|B), and

Rk =

{
R/(A1 −X1, . . . , Ak −Xk) if 1 ≤ k ≤ m,

R/(A1 −X1, . . . , Am −Xm, Y1 −B1, . . . , Yk−m −Bk−m) if m+ 1 ≤ k ≤ 2m.

Define

Mk =








∗ X1 − Y1
. . . . . .

∗ Xm − Ym

∗ B1 −A1

. . . . . .

∗ Bm −Am

Ak+1 −Xk+1 ∗

. . . . . .

Am −Xm ∗

Y1 −B1 ∗

. . . . . .

Ym −Bm ∗




Rk

if 0 ≤ k ≤ m− 1,




∗ X1 − Y1
. . . . . .

∗ Xm − Ym

∗ B1 −A1

. . . . . .

∗ Bm −Am

Yk−m+1 −Bk−m+1 ∗

. . . . . .

Ym −Bm ∗




Rk

if m ≤ k ≤ 2m− 1,




∗ X1 − Y1
. . . . . .

∗ Xm − Ym

∗ B1 −A1

. . . . . .

∗ Bm −Am




R2m

∼= C(Γ) if k = 2m,
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where Γ is a circle colored by m with two marked points shown in Figure 15. Then

HomHMF(C(Γ0), C(Γ1)) can be computed by the following homotopy:

Hom(C(Γ0), C(Γ1)) ∼=M0 ≃ · · · ≃Mk{q
nk}〈k〉 ≃ · · · ≃M2m{q

n2m}〈2m〉

∼= C(Γ){q2m(N−m)} ≃ C(∅)

{[
N

m

]
q2m(N−m)

}
〈m〉,

where nk can be inductively determined using Corollary 3.28. In particular, n2m =

2m(N − m). Let ηk ∈ Mk be the image of η under the above homotopy. Then ηk is

a cycle and represents, up to scaling, the unique homology class in H(Mk) of quantum

degree m(N −m)− nk.

By Lemma 7.6,

η2m ≈
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε ∈M2m,

where s(ε) =
∑m−1

j=1 (m− j)εj for ε = (ε1, . . . , εm) ∈ Im. Assume that

ηk ≈ ρk +
(∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε

)
⊗ 1(1,...,1︸︷︷︸

2m−k

) ∈Mk,

where ρk is of the form

ρk =
∑

ε1,ε2∈Im, ε3∈I2m−k, ε3 6=(1,...,1)

fk,(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1ε3 .

Note that

η̃k ≈ ρ̃k +
(∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε

)
⊗ 1(1,...,1︸︷︷︸

2m−k+1

)

is a chain in Mk−1 mapped to ηk under the homotopy

Mk−1{q
nk−1}〈k − 1〉

≃
−→Mk{q

nk}〈k〉,

where

ρ̃k =
∑

ε1,ε2∈Im, ε3∈I2m−k, ε3 6=(1,...,1)

fk,(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1(1,ε3).

Then, by Corollary 3.28 and Remark 3.24, we have

ηk−1 ≈ η̃k − h ◦ d(η̃k)

= ρ̃k − h ◦ d(η̃k) +
(∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε

)
⊗ 1(1,...,1︸︷︷︸

2m−k+1

).

See the proof of Proposition 3.23 for the definition of h and note the slightly different

setup here (6). By the definition of h (again, note the difference in the setup), one can

check that h ◦ d(η̃k) is of the form

h ◦ d(η̃k) =
∑

ε1,ε2∈Im, ε3∈I2m−k

gk,(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1(0,ε3).

(6) We are eliminating a row here using its left entry rather than the right entry as in
Proposition 3.23.
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Therefore, ρk−1 := ρ̃k − h ◦ d(η̃k) is of the form

ρk−1 =
∑

ε1,ε2∈Im, ε3∈I2m−k+1, ε3 6=(1,...,1)

fk−1,(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1ε3 .

Thus, we have inductively constructed a ρ = ρ0 ∈M0 of the form

ρ =
∑

ε1,ε2∈Im, ε3∈I2m, ε3 6=(1,...,1)

f(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1ε3

such that

η ≈ ρ+
(∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε

)
⊗ 1(1,...,1︸︷︷︸

2m

).

Proposition 8.37. Let Γ and Γ1 be the MOY graphs in Figure 25, ι : C(Γ) → C(Γ1)

the morphism associated to the circle creation and η : C(Γ1) → C(Γ) the morphism

associated to the saddle move. Then η ◦ ι ≈ idC(Γ).

Proof. From the proof of Lemma 7.6, we know that

HomHMF(C(Γ), C(Γ)) ∼= C(∅)

{[
N

m

]
qm(N−m)

}
.

In particular, the subspace of HomHMF(C(Γ), C(Γ)) of elements of quantum degree 0 is

1-dimensional and spanned by idC(Γ). Note that the quantum degree of η ◦ ι is 0. So, to

prove that η ◦ ι ≈ idC(Γ), we only need to show that η ◦ ι is not homotopic to 0. We do

so by identifying the two ends of Γ and showing that η∗ ◦ ι∗ 6= 0.

Identify the two end points in each of the MOY graphs in Figure 25 and put markings

on them as in Figure 26. Denote by Γ̃ and Γ̃1 the resulting MOY graphs. Denote by G

the generating class of H(Γ̃) and by GX,GY the generating classes of the homology of

the two circles in H(Γ̃1). Then ι∗(G) ∝ GX ⊗GY.

m

6X
ι -

Γ̃

m

6

m

X ? Y

Γ̃1

η - X

m

6Y

Γ̃

Fig. 26

By Lemmas 3.13 and 8.36, under the identification HomSym(X|Y)(C(Γ̃1), C(Γ̃)) ∼=

C(Γ̃)⊗Sym(X|Y) HomSym(X|Y)(C(Γ̃1), Sym(X|Y)), we have

η ≈ ρ+
( ∑

ε=(ε1,...εm)∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj1ε ⊗ 1ε

)
⊗ 1∗(1,...,1︸︷︷︸

2m

),

where ρ is of the form

ρ =
∑

ε1,ε2∈Im, ε3∈I2m, ε3 6=(1,...,1)

f(ε1,ε2,ε3)1ε1 ⊗ 1ε2 ⊗ 1∗ε3 .

Note that:
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• By Lemma 7.5, 1(1,...,1︸︷︷︸
2m

) is a cycle in C(Γ̃1) representing GX ⊗GY.

• By Lemma 7.6,
∑

ε=(ε1,...,εm)∈Im(−1)|ε|(|ε|−1)/2+(m+1)|ε|+
∑m−1

j=1 (m−j)εj1ε⊗ 1ε is a cycle

in C(Γ̃) representing G.

• ρ(1(1,...,1︸︷︷︸
2m

)) = 0.

Putting these together, we get η∗(GX ⊗GY) ∝ G. Thus, η∗ ◦ ι∗(G) ∝ G. This shows that

η ◦ ι is not homotopic to 0 and, therefore, η ◦ ι ≈ idC(Γ).

Remark 8.38. From the proof of Proposition 8.37, we can see that η gives H(Γ̃) a ring

structure and H(Γ̃){qm(N−m)} ∼= H∗(Gm,N ;C) as Z-graded C-algebras, where Gm,N is

the complex (m,N)-Grassmannian.

8.10. The second composition formula. In this subsection, we show that the compo-

sition in Figure 27 also gives, up to homotopy and scaling, the identity map. Topologically,

this means that a pair of canceling 1- and 2-handles induce the identity morphism. The

key to the proof is a good choice of entries in the left columns of the matrix factorizations

involved. Our choice is given in the following lemma.

6

m
η -

Γ

m

6 m

ε -

Γ1

m

6

Γ

Fig. 27

Lemma 8.39. Let X,Y be disjoint alphabets, each having m (≤N) indeterminates. For

j = 1, . . . ,m, define

Uj(X,Y) = (−1)j−1pN+1−j(Y) +

m∑

k=1

(−1)k+jjXkhN+1−k−j(Y)

+

m∑

k=1

m∑

l=1

(−1)k+llXkXlξN+1−k−l,j(X,Y),

where Xj and Yj are the jth elementary symmetric polynomials in X and Y, and

ξn,j(X,Y) =
hm,n(Y1, . . . , Yj−1, Xj, . . . , Xm)− hm,n(Y1, . . . , Yj , Xj+1, . . . , Xm)

Xj − Yj
.

Then Uj(X,Y) is homogeneous of degree 2(N + 1− j) and
m∑

j=1

(Xj − Yj)Uj(X,Y) = pN+1(X)− pN+1(Y).

Proof. The claims about the homogeneity and degree of Uj(X,Y) are easy to verify and

left to the reader. We only prove the last equation. Since N ≥ m, by Newton’s Identity
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(5.1.3), we have

pN+1(X)− pN+1(Y) =

m∑

k=1

(−1)k−1(XkpN+1−k(X)− YkpN+1−k(Y))

=

m∑

k=1

(−1)k−1(Xk − Yk)pN+1−k(Y) +

m∑

k=1

(−1)k−1Xk(pN+1−k(X)− pN+1−k(Y)).

By (5.1.2),

pN+1−k(X)− pN+1−k(Y) =

m∑

l=1

(−1)l−1l(XlhN+1−k−l(X)− YlhN+1−k−l(Y))

=

m∑

l=1

(−1)l−1l(Xl − Yl)hN+1−k−l(Y) +

m∑

l=1

(−1)l−1lXl(hN+1−k−l(X)− hN+1−k−l(Y))

=

m∑

l=1

(−1)l−1l(Xl − Yl)hN+1−k−l(Y) +

m∑

l=1

(−1)l−1lXl

m∑

j=1

ξN+1−k−l,j(X,Y)(Xj − Yj).

Substituting this back into the first equation, we get

pN+1(X)− pN+1(Y)

=

m∑

k=1

(−1)k−1(Xk − Yk)pN+1−k(Y) +

m∑

k=1

(−1)k−1Xk

m∑

l=1

(−1)l−1l(Xl − Yl)hN+1−k−l(Y)

+
m∑

k=1

(−1)k−1Xk

m∑

l=1

(−1)l−1lXl

m∑

j=1

ξN+1−k−l,j(X,Y)(Xj − Yj)

=

m∑

j=1

(Xj − Yj)Uj(X,Y).

In the rest of this subsection, we use heavily the notations introduced in Definition 3.6.

The next lemma is a special case of Remark 3.24.

Lemma 8.40. Let R be a graded commutative unital C-algebra, and X a homogeneous in-

determinate over R. Assume that f1,0(X), f1,1(X), . . . , fk,0(X), fk,1(X) are homogeneous

elements in R[X ] such that

deg fj,0(X) + deg fj,1(X) = 2N + 2,

k∑

j=1

fj,0(X)fj,1(X) = 0.

Suppose that f1,1(X) = X−A, where A ∈ R is a homogeneous element of degree degA =

degX. Define

M =




f1,0(X) f1,1(X)

f2,0(X) f2,1(X)

. . . . . .

fk,0(X) fk,1(X)




R[X]

and M ′ =




f2,0(A) f2,1(A)

f3,0(A) f3,1(A)

. . . . . .

fk,0(A) fk,1(A)




R

.

Then M and M ′ are homotopic graded chain complexes over R.
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Let F :M →M ′ be the quasi-isomorphism from the proof of Proposition 3.23. If

α =
∑

ε∈Ik−1

aε1ε

is a cycle in M ′, where aε ∈ R, then

α̃ =
∑

ε∈Ik−1

aε1(0,ε) −
∑

ε=(ε2,...,εk)∈Ik−1

aε

( k∑

j=2

(−1)|(0,ε)|jgj,εj (X)1(1,ε2,...,εj−1,εj ,εj+1,...,εk)

)

is a cycle in M and F (α̃) = α, where |(0, ε)|j =
∑j−1

l=2 εl and gj,εj (X) =
fj,εj (X)−fj,εj (A)

X−A .

Proof. Let β =
∑

ε∈Ik−1 aε1(0,ε) ∈ M . Then F (β) = α. By Remark 3.24, we know that

d(β) ∈ kerF , β−h◦d(β) is a cycle inM and F (β−h◦d(β)) = α, where h : kerF → kerF

is defined in the proof of Proposition 3.23. But

h ◦ d(β) = h ◦ d
( ∑

ε∈Ik−1

aε1(0,ε)

)

= h
( ∑

ε=(ε2,...,εk)∈Ik−1

aε

(
f1,0(X)1(1,ε)+

k∑

j=2

(−1)|(0,ε)|jfj,εj (X)1(0,ε2,...,εj−1,εj ,εj+1,...,εk)

))
.

By the definition of h, we know that h(1(1,ε)) = 0. Moreover, since α is a cycle in M ′, we

have

0 = dα =
∑

ε=(ε2,...,εk)∈Ik−1

aε

( k∑

j=2

(−1)|(0,ε)|jfj,εj (A)1(ε2,...,εj−1,εj ,εj+1,...,εk)

)
.

So, in M , we have

0 =
∑

ε=(ε2,...,εk)∈Ik−1

aε

( k∑

j=2

(−1)|(0,ε)|jfj,εj (A)1(0,ε2,...,εj−1,εj ,εj+1,...,εk)

)
.

Thus,

h ◦ d(β)

= h
( ∑

ε=(ε2,...,εk)∈Ik−1

aε

( k∑

j=2

(−1)|(0,ε)|j (fj,εj (X)− fj,εj (A))1(0,ε2,...,εj−1,εj ,εj+1,...,εk)

))

=
∑

ε=(ε2,...,εk)∈Ik−1

aε

( k∑

j=2

(−1)|(0,ε)|jgj,εj (X)1(1,ε2,...,εj−1,εj ,εj+1,...,εk)

)
,

where the last equality comes from the definition of h. This shows that β − h ◦ d(β) = α̃

and proves the lemma.

Let Γ0 and Γ1 be the MOY graphs in Figure 28, and η : C(Γ0)→ C(Γ1) the morphism

induced by the saddle move. We have
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η -
I

R

X

A

Y

B

m

m

Γ0

R

I
X

A

Y

B

mm

Γ1

Fig. 28

Hom(C(Γ0), C(Γ1)) ∼= C(Γ)⊗Sym(X|Y|A|B) C(Γ0)•

∼=




V1(A,X) X1 − A1

. . . . . .

Vm(A,X) Xm − Am

V1(B,Y) B1 − Y1
. . . . . .

Vm(B,Y) Bm − Ym
A1 −B1 U1(A,B)

. . . . . .

Am −Bm Um(A,B)

Y1 −X1 U1(X,Y)

. . . . . .

Ym −Xm Um(X,Y)




Sym(X|Y|A|B)

,

where Xj is the jth elementary symmetric polynomial in X, Uj is given by Lemma 8.39,

and

Vj(X,Y) :=
pm,N+1(Y1, . . . , Yj−1, Xj, . . . , Xm)− pm,N+1(Y1, . . . , Yj , Xj+1, . . . , Xm)

Xj − Yj
.

By definition, it is easy to see that

∂

∂Xk
Vj(X,Y) = 0 if j > k, (8.10.1)

∂

∂Yk
Vj(X,Y) = 0 if j < k. (8.10.2)

Set R0 = Sym(X|Y|A|B) = C[X1, . . . , Xm, Y1, . . . , Ym, A1, . . . , Am, B1, . . . , Bm], and,

for 1 ≤ k ≤ m,

Rk = R0/(X1 −A1, . . . , Xk −Ak)

∼= C[X1, . . . , Xm, Y1, . . . , Ym, Ak+1, . . . , Am, B1, . . . , Bm],

Rm+k = R0/(X1 −A1, . . . , Xm −Am, B1 − Y1, . . . , Bk − Yk)

∼= C[X1, . . . , Xm, Y1, . . . , Ym, Bk+1, . . . , Bm].
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Define

Mk =




Vk+1(A,X) Xk+1 −Ak+1

. . . . . .

Vm(A,X) Xm −Am

V1(B,Y) B1 − Y1
. . . . . .

Vm(B,Y) Bm − Ym
A1 −B1 U1(A,B)

. . . . . .

Am −Bm Um(A,B)

Y1 −X1 U1(X,Y)

. . . . . .

Ym −Xm Um(X,Y)




Rk

for k = 0, 1, . . . ,m− 1,

Mm+k =




Vk+1(B,Y) Bk+1 − Yk+1

. . . . . .

Vm(B,Y) Bm − Ym
A1 −B1 U1(A,B)

. . . . . .

Am −Bm Um(A,B)

Y1 −X1 U1(X,Y)

. . . . . .

Ym −Xm Um(X,Y)




Rm+k

for k = 0, 1, . . . ,m− 1,

M2m =




X1 − Y1 U1(X,Y)

. . . . . .

Xm − Ym Um(X,Y)

Y1 −X1 U1(X,Y)

. . . . . .

Ym −Xm Um(X,Y)




Sym(X|Y)

.

By Proposition 3.22, M0 ≃ M1 ≃ · · · ≃ M2m. Let ηk be the image of η in Mk. Then,

using the method in the proof of Lemma 7.6, one can check that

η2m ≈
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+|ε|+s(ε)1ε ⊗ 1ε,

where s(ε) :=
∑m−1

j=1 (m− j)εj for ε = (ε1, . . . , εm) ∈ Im.

Next, we apply Lemma 8.40 to find a cycle representing η in M0.

Write

θj,0(X1, . . . , Xm, Y1, . . . , Ym) = Xj − Yj ,

θj,1(X1, . . . , Xm, Y1, . . . , Ym) = Uj(X,Y).

And define, for k = 1, . . . ,m, ε ∈ Z2,
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Θk
j,ε=

θj,ε(X1, . . . , Xk−1, Ak . . . , Am, B1, . . . , Bm)−θj,ε(X1, . . . , Xk, Ak+1 . . . , Am, B1, . . . , Bm)

Xk−Ak

,

Θm+k
j,ε =

θj,ε(X1, . . . , Xm, Y1 . . . , Yk−1, Bk, . . . , Bm)−θj,ε(X1, . . . , Xm, Y1 . . . , Yk, Bk+1, . . . , Bm)

Bk−Yk

.

It is easy to see that, for 1 ≤ k, j ≤ m,

Θk
j,0 = Θm+k

j,0 =

{
−1 if j = k,

0 if j 6= k.
(8.10.3)

In the following computation, we shall call an element of M0 an “irrelevant term” if

it is of the form c · 1ε1 ⊗ 1ε2 ⊗ 1ε3 where c ∈ R0, ε1 ∈ I2m and ε2, ε3 ∈ Im are such that

either ε1 6= (1, . . . , 1) or ε2 6= ε3.

Define F to be the set of functions from {1, . . . , 2m} to {1, . . . ,m} and

Feven = {f ∈ F | #f−1(j) is even for j = 1, . . . ,m},

F2 = {f ∈ F | #f−1(j) = 2 for j = 1, . . . ,m}.

For f ∈ F , k = 1, . . . , 2m, define

νf,k = #{k′ | k < k′ ≤ 2m, f(k′) < f(k)}, νf =
2m∑

k=1

νf,k,

µf,k = #{k′ | k < k′ ≤ 2m, f(k′) = f(k)}.

For f ∈ F , ε = (ε1, . . . , εm) ∈ Im, define ϕf (ε) = (e1, . . . , em) ∈ Im, where ej ∈ I

satisfies

ej ≡ εj +#{k | 1 ≤ k ≤ 2m, f(k) = j} mod 2.

Applying Lemma 8.40 repeatedly, we get

η0 ≈
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+|ε|+s(ε)+2m

×
∑

f∈F

( 2m∏

k=1

(−1)|ε|f(k)+νf,kΘk
f(k),εf(k)+µf,k

)
1(1,...,1) ⊗ 1ϕf(ε) ⊗ 1ε + irrelevant terms,

where εj is the jth entry in ε. Note that, if f /∈ Feven, then ϕf (ε) 6= ε and the corre-

sponding term in the above sum is also irrelevant. So we can simplify the formula and

get

η0 ≈
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+|ε|+s(ε)
∑

f∈Feven

(−1)νf
( 2m∏

k=1

Θk
f(k),εf(k)+µf,k

)
1(1,...,1) ⊗ 1ε ⊗ 1ε

+irrelevant terms.

In Figure 28, identify the two end points of Γ0 marked by X and A, and identify the

two end points of Γ0 marked by Y and B. This changes Γ0 into Γ̃ in Figure 29. Similarly,

by identifying the two end points of Γ1 in Figure 28 marked by X and A and identifying

the two end points of Γ1 marked by Y and B, we change Γ1 into Γ̃1 in Figure 29. Let G

be the generating class of H(Γ̃), and GX, GY the generating classes of the homology of
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m
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η -
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ǫ - X
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Γ̃

Fig. 29

the two circles in Γ̃1. By Lemma 7.6, G is represented in

C(Γ̃) =




U1(X,Y) Y1 −X1

· · · · · ·

Um(X,Y) Ym −Xm

U1(X,Y) X1 − Y1
· · · · · ·

Um(X,Y) Xm − Ym




Sym(X|Y)

by the cycle

G =
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)1ε ⊗ 1ε.

Define Θ̃k
j,0, Θ̃

m+k
j,0 , Θ̃k

j,1, Θ̃
m+k
j,1 by substituting A1 = X1, . . . , Am = Xm, B1 = Y1,

. . . , Bm = Ym into Θk
j,0, Θ

m+k
j,0 , Θk

j,1, Θ
m+k
j,1 . Then, for 1 ≤ k, j ≤ m,

Θ̃k
j,0 = Θ̃m+k

j,0 =

{
−1 if j = k,

0 if j 6= k,
(8.10.4)

Θ̃k
j,1 := Θk

j,1|A1=X1,...,Am=Xm, B1=Y1,...,Bm=Ym
= −

∂

∂Xk
Uj(X,Y), (8.10.5)

Θ̃m+k
j,1 := Θm+k

j,1 |A1=X1,...,Am=Xm, B1=Y1,...,Bm=Ym
=

∂

∂Yk
Uj(X,Y). (8.10.6)

Using the formula for η0 and Lemmas 3.13, 3.14, we find that η(G) is represented in

C(Γ̃1) =




V1(X,X) 0

· · · · · ·

Vm(X,X) 0

V1(Y,Y) 0

· · · · · ·

Vm(Y,Y) 0




Sym(X|Y)

by the cycle

η(G) ≈
∑

ε∈Im

(−1)|ε|(|ε|−1)/2+|ε|+s(ε)+|ε|(|ε|−1)/2+(m+1)|ε|+s(ε)+m(m−1)/2

×
∑

f∈Feven

(−1)νf
( 2m∏

k=1

Θ̃k
f(k),εf(k)+µf,k

)
1(1,...,1)

+ irrelevant terms,

where the “irrelevant terms” are terms not of the form c ·1(1,...,1). By definition, it is easy
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to see that

|ε|+ |ε| = m, s(ε) + s(ε) =

m−1∑

j=1

(m− j) =
m(m− 1)

2
.

Then one can check that

|ε|(|ε| − 1)

2
+ |ε|+ s(ε) +

|ε|(|ε| − 1)

2
+ (m+ 1)|ε|+ s(ε) +

m(m− 1)

2

≡ |ε|2 +
m(m+ 1)

2
≡ |ε|+

m(m+ 1)

2
mod 2.

Therefore,

η(G) ≈ (−1)m(m+1)/2
∑

ε∈Im

∑

f∈Feven

(−1)|ε|+νf
( 2m∏

k=1

Θ̃k
f(k),εf(k)+µf,k

)
1(1,...,1)

+ irrelevant terms.

This shows that

η∗(G) ∝ (−1)m(m+1)/2
∑

ε∈Im

∑

f∈Feven

(−1)|ε|+νf
( 2m∏

k=1

Θ̃k
f(k),εf(k)+µf,k

)
· (GX ⊗GY).

Hence,

ǫ∗ ◦ η∗(G) ∝ (−1)m(m+1)/2ǫ∗

(∑

ε∈Im

∑

f∈Feven

(−1)|ε|+νf
( 2m∏

k=1

Θ̃k
f(k),εf(k)+µf,k

)
·GY

)
·G,

where ǫ : C(Γ̃1) → C(Γ̃) is the morphism associated to the annihilation of the circle

marked by Y.

Since η is homogeneous of degree m(N −m), the polynomial

Ξ̃ =
∑

ε∈Im

∑

f∈Feven

(−1)|ε|+νf
( 2m∏

k=1

Θ̃k
f(k),εf(k)+µf,k

)

is homogeneous of degree 2m(N −m). Let Ξ̃+ be the part of Ξ̃ with positive total degree

in X. Then the total degree of Ξ̃+ in Y is less than 2m(N −m). By Corollary 8.8, we

know that ǫ∗(Ξ̃
+ ·GY) = 0. So

ǫ∗(Ξ̃ ·GY) = ǫ∗((Ξ̃ − Ξ̃+) ·GY) = ǫ∗((Ξ̃|X1=X2=···=Xm=0) ·GY).

Next, consider Ξ̂ := Ξ̃|X1=X2=···=Xm=0. Let Θ̂
k
j,ε = Θ̃k

j,ε|X1=X2=···=Xm=0. Then

Ξ̂ =
∑

ε∈Im

∑

f∈Feven

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
.

Moreover, by (8.10.4)–(8.10.6), the definition of Uj in Lemma 8.39, and Lemma 5.1, for
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1 ≤ k, j ≤ m we have

Θ̂k
j,0 = Θ̂m+k

j,0 =

{
−1 if j = k,

0 if j 6= k,

Θ̂k
j,1 = −

∂

∂Xk
Uj(X,Y)

∣∣∣∣
X1=···=Xm=0

= (−1)k+j+1j · hN+1−k−j(Y),

Θ̂m+k
j,1 =

∂

∂Yk
Uj(X,Y)

∣∣∣∣
X1=···=Xm=0

= (−1)k+j(N + 1− j) · hN+1−k−j(Y).

Now split Ξ̂ into Ξ̂ = Ξ̂1 + Ξ̂2, where

Ξ̂1 =
∑

ε∈Im

∑

f∈F2

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
,

Ξ̂2 =
∑

ε∈Im

∑

f∈Feven\F2

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
.

We compute Ξ̂1 first. For every pair of f ∈ F2 and ε = (ε1, . . . , εm) ∈ Im, there is a

bijection

fε : {1, . . . , 2m} → {1, . . . ,m} × Z2

given by fε(k) = (f(k), εf(k) +µf,k). Note that (f, ε) 7→ fε is a bijection from F2× Im to

the set of bijections {1, . . . , 2m} → {1, . . . ,m} × Z2. Define an order on {1, . . . ,m} × Z2

by

(1, 1) < (1, 0) < (2, 1) < (2, 0) < · · · < (m, 1) < (m, 0).

Then, for (f, ε) ∈ F2 × Im,

|ε|+ νf = #{(k, k′) | 1 ≤ k < k′ ≤ 2m, fε(k) > fε(k
′)}.

Thus,

Ξ̂1 =
∑

ε∈Im

∑

f∈F2

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

Θ̂1
1,1 Θ̂1

1,0 Θ̂1
2,1 Θ̂1

2,0 . . . Θ̂1
m,1 Θ̂1

m,0

Θ̂2
1,1 Θ̂2

1,0 Θ̂2
2,1 Θ̂2

2,0 . . . Θ̂2
m,1 Θ̂2

m,0

· · · · · · · · · · · · · · · · · · · · ·

Θ̂2m−1
1,1 Θ̂2m−1

1,0 Θ̂2m−1
2,1 Θ̂2m−1

2,0 . . . Θ̂2m−1
m,1 Θ̂2m−1

m,0

Θ̂2m
1,1 Θ̂2m

1,0 Θ̂2m
2,1 Θ̂2m

2,0 . . . Θ̂2m
m,1 Θ̂2m

m,0

∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)m(m+1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Θ̂1
1,0 . . . Θ̂1

m,0 Θ̂1
1,1 . . . Θ̂1

m,1

· · · · · · · · · · · · · · · · · ·

Θ̂m
1,0 . . . Θ̂m

m,0 Θ̂m
1,1 . . . Θ̂m

m,1

Θ̂m+1
1,0 . . . Θ̂m+1

m,0 Θ̂m+1
1,1 . . . Θ̂m+1

m,1

· · · · · · · · · · · · · · · · · ·

Θ̂2m
1,0 . . . Θ̂2m

m,0 Θ̂2m
1,1 . . . Θ̂2m

m,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Note that both m×m blocks on the left are −I, where I is the m×m unit matrix. So

Ξ̂1 = (−1)m(m+1)/2 · (−1)m

∣∣∣∣∣∣

Θ̂m+1
1,1 − Θ̂1

1,1 . . . Θ̂m+1
m,1 − Θ̂1

m,1

· · · · · · · · ·

Θ̂2m
1,1 − Θ̂m

1,1 . . . Θ̂2m
m,1 − Θ̂m

m,1

∣∣∣∣∣∣

= (−1)m(m−1)/2 det((−1)k+j(N + 1)hN+1−k−j(Y))1≤k,j≤m

= (−1)m(m−1)/2(N + 1)m det(hN+1−k−j(Y))1≤k,j≤m

= (N + 1)m det(hN−m−k+j(Y))1≤k,j≤m = (N + 1)mSλm,N−m
(Y),

where λm,N−m = (N −m ≥ · · · ≥ N −m︸ ︷︷ ︸
m parts

).

The sum Ξ̂2 is harder to understand. But, to determine ǫ∗(Ξ̂2 ·GY), we only need to

find the coefficient of Sλm,N−m
(Y) in the decomposition of Ξ̂2 into Schur polynomials,

which is not very hard to do. First, we consider the decomposition of Ξ̂2 into complete

symmetric polynomials. Since Ξ̂2 is homogeneous of degree 2m(N −m), we have

Ξ̂2 =
∑

|λ|=m(N−m), l(λ)≤m

cλ · hλ(Y),

where cλ ∈ C. Note that Ξ̂2 is defined by

Ξ̂2 =
∑

ε∈Im

∑

f∈Feven\F2

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
,

in which every term is a scalar multiple of a complete symmetric polynomial associated

to a partition of length ≤ m. If the term corresponding to ε ∈ Im and f ∈ Feven \ F2

makes a non-zero contribution to cλm,N−m
, then we know that, for every k = 1, . . . ,m,

f(k) =

{
k if εf(k) + µf,k = 0,

m+ 1− k if εf(k) + µf,k = 1,

f(m+ k) =

{
k if εf(m+k) + µf,m+k = 0,

m+ 1− k if εf(m+k) + µf,m+k = 1.

In particular,

f ∈ F⋄ := {g ∈ Feven \ F2 | g(k), g(m+ k) ∈ {k,m+ 1− k}, ∀k = 1, . . . ,m}.

Now, for an f ∈ F⋄, we have f ∈ Feven \ F2. So there is a j ∈ {1, . . . ,m} such that

#f−1(j) is an even number greater than 2. From the above definition of F⋄, we can

see that f−1(j) ⊂ {j,m + j,m + 1 − j, 2m + 1 − j}. Thus, #f−1(j) = 4 and f−1(j) =

{j,m+ j,m+ 1 − j, 2m+ 1 − j}, which implies that f−1(m+ 1 − j) = ∅. Let ε, σ ∈ Im

be such that εm+1−j 6= σm+1−j and εl = σl if l 6= m+ 1− j. Then

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
= −(−1)|σ|+νf

( 2m∏

k=1

Θ̂k
f(k),σf(k)+µf,k

)
.

This implies that, for every f ∈ F⋄,

∑

ε∈Im

(−1)|ε|+νf
( 2m∏

k=1

Θ̂k
f(k),εf(k)+µf,k

)
= 0.
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Therefore, cλm,N−m
= 0. By Lemma 5.2, one can see that the coefficient of Sλm,N−m

(Y)

is also 0 in the decomposition of Ξ̂2 into Schur polynomials. So ǫ∗(Ξ̂2 ·GY) = 0.

Altogether, we have shown that

ǫ∗ ◦ η∗(G) ∝ (−1)m(m+1)/2ǫ∗(Ξ̂ ·GY) ·G

= (−1)m(m+1)/2ǫ∗(Ξ̂1 ·GY) ·G+ (−1)m(m+1)/2ǫ∗(Ξ̂2 ·GY) ·G

= (−1)m(m+1)/2(N + 1)mǫ∗(Sλm,N−m
(Y) ·GY) ·G

∝ (−1)m(m+1)/2(N + 1)mG 6= 0,

which proves the following lemma.

Lemma 8.41. Let Γ̃ and Γ̃1 be the MOY graphs in Figure 29, η : C(Γ̃) → C(Γ̃1) the

morphism associated to the saddle move and ǫ : C(Γ̃1)→ C(Γ̃) the morphism associated

to the annihilation of the circle marked by Y. Then ǫ∗ ◦ η∗(G) ∝ G, where G is the

generating class of H(Γ̃). In particular, ǫ∗ ◦ η∗ 6= 0.

Now, using an argument similar to the proof of Proposition 8.37, we can easily prove

the following main conclusion of this subsection.

Proposition 8.42. Let Γ and Γ1 be the MOY graphs in Figure 27, η : C(Γ)→ C(Γ1) the

morphism associated to the saddle move and ǫ : C(Γ1)→ C(Γ) the morphism associated

to circle annihilation. Then ǫ ◦ η ≈ idC(Γ).

Proof. We know that the subspace of HomHMF(C(Γ), C(Γ)) of elements of quantum

degree 0 is 1-dimensional and spanned by idC(Γ). Note that the quantum degree of ǫ ◦ η

is 0. So, to prove that ǫ ◦ η ≈ idC(Γ), we only need the fact that ǫ ◦ η is not homotopic

to 0, which follows from Lemma 8.41.



9. Direct sum decomposition (III)

In this section, we prove Theorem 9.1, which categorifies [32, Lemma 5.2] and generalizes

direct sum decomposition (III) of [19].

�
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1

1

1
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m

m + 1

m + 1

Γ
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Theorem 9.1. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 30, where m ≤ N − 1.

Then

C(Γ) ≃ C(Γ0)⊕ C(Γ1){[N −m− 1]}〈1〉.

Remark 9.2. Theorem 9.1 is not directly used in the proof of the invariance of the

colored sl(N) homology.

9.1. Relating Γ and Γ0. In this subsection, we generalize the method of [48, Subsec-

tion 3.3] to construct morphisms between C(Γ) and C(Γ0). In fact, the result we get is

slightly more general than what is needed to prove Theorem 9.1.

Lemma 9.3. Let Γ be the MOY graph in Figure 31. Then, as graded matrix factorizations

over Sym(A ∪ B),

C(Γ)≃C(∅)⊗C

(
Sym(A|B)/(hN (A∪B), . . . , hN−m−n+1(A∪B))

)
{q−(m+n)(N−m−n)}〈m+n〉,

6

??

m n

m + n
A BX

Γ

Fig. 31

[111]



112 9. Direct sum decomposition (III)

and, as graded C-linear spaces,

HomHMF(C(∅), C(Γ)) ∼= HomHMF(C(Γ), C(∅)) ∼= H(Γ)

∼= C(∅)

{[
N

m+ n

][
m+ n

n

]}
〈m+ n〉.

In particular, the subspaces of these spaces of homogeneous elements of quantum degree

−(m+ n)(N −m− n)−mn are 1-dimensional.

Proof. The homotopy equivalence follows from Proposition 7.3 and the proof of The-

orem 6.12. The rest of the lemma follows from this homotopy equivalence and Theo-

rems 5.3, 5.5.

Denote by ©m+n a circle colored by m+ n. Then there are morphisms C(©m+n)
φ
−→

C(Γ) and C(Γ)
φ
−→ C(©m+n) induced by the edge splitting and merging. Denote by ι and

ǫ the morphisms associated to creating and annihilating ©m+n. Then C(∅)
ι̃:=φ◦ι
−−−−→ C(Γ)

and C(Γ)
ǫ̃:=ǫ◦φ
−−−−→ C(∅) are homogeneous morphisms of quantum degree −(m + n)(N −

m− n)−mn and Z2-degree m+ n.

Lemma 9.4. The maps ι̃ and ǫ̃ are not homotopic to 0. Therefore, they span the 1-

dimensional subspaces of HomHMF(C(∅), C(Γ)) and HomHMF(C(Γ), C(∅)) of homoge-

neous elements of quantum degree −(m+ n)(N −m− n)−mn.

Proof. By Corollary 8.8 and Lemma 8.11, we have

ǫ̃ ◦m(Sλm,n
(A) · Sλm+n,N−m−n

(X)) ◦ ι̃ = ǫ ◦ φ ◦m(Sλm,n
(A) · Sλm+n,N−m−n

(X)) ◦ φ ◦ ι

≈ ǫ ◦m(Sλm+n,N−m−n
(X)) ◦ φ ◦m(Sλm,n

(A)) ◦ φ ◦ ι

≈ ǫ ◦m(Sλm+n,N−m−n
(X)) ◦ ι ≈ id .

This shows that ι̃ and ǫ̃ are not homotopic to 0. The rest of the lemma follows from this

and Lemma 9.3.

Lemma 9.5. Denote by Γ2 the MOY graph in Figure 32 and by ©m+n a circle colored

by m+ n. As C-linear spaces,

HomHMF(C(∅), C(Γ2)) ∼= HomHMF(C(Γ2), C(∅)) ∼= C(∅)

{[
N

m+ n

][
m+ n

n

]2}
〈m+ n〉.

In particular, the subspaces of these spaces consisting of homogeneous elements of quan-

tum degree −(m + n)(N − m − n) − 2mn are 1-dimensional, and are spanned by the

�

? -

6

?

6
n nmm

m + n

m + n

Γ2

Fig. 32
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compositions

C(∅)
ι
−→ C(©m+n)

φ1⊗φ2
−−−−→ C(Γ2) and C(Γ2)

φ1⊗φ2−−−−→ C(©m+n)
ǫ
−→ C(∅),

where ι and ǫ are morphisms associated to creating and annihilating ©m+n, and φ1, φ2
(resp. φ1, φ2) are morphisms associated to the two apparent edge splittings (resp.

mergings).

In the rest of this section, we denote by ι̂ the composition C(∅)
(φ1⊗φ2)◦ι
−−−−−−−→ C(Γ2), and

by ǫ̂ the composition C(Γ2)
ǫ◦(φ1⊗φ2)−−−−−−−→ C(∅).

Proof of Lemma 9.5. By Theorem 6.12 and Proposition 7.1, we have

C(Γ2) ≃ C(∅)

{[
N

m+ n

][
m+ n

n

]2}
〈m+ n〉.

The structures of HomHMF(C(∅), C(Γ2)) and HomHMF(C(Γ2), C(∅)) are a consequence

of this. It then follows that the subspaces of these spaces consisting of homogeneous

elements of quantum degree −(m+ n)(N −m− n)− 2mn are 1-dimensional.

It is easy to check that ι̂ and ǫ̂ are both homogeneous with quantum degree −(m+

n)(N −m − n) − 2mn and Z2-degree m + n. Similarly to the proof of Lemma 9.4, one

can use Corollary 8.8 and Lemma 8.11 to show that ι̂ and ǫ̂ are not homotopic to 0.

Lemma 9.6. Denote by ©m ⊔©n the disjoint union of two circles colored by m and n.

Define the morphism f : C(∅) → C(©m ⊔©n) to be the composition in Figure 33, that

is, f = ǫ̂ ◦ (η† ⊗ η‡) ◦ ι̂. Then f ≈ ιm ⊗ ιn, where ιm, ιn are the morphisms associated to

creating the two circles in ©m ⊔©n.

∅ -ι̂

�

? -

6

?

6
‡† n

n

m

m m + n

m + n

Γ2

-η† ⊗ η‡ 6

�

? -

6

?

6

?
n n

n

m

m

m

m + n

m + n

Γ2 ⊔©m ⊔©n

-ǫ̂ 6
?

m n

©m ⊔©n

Fig. 33

Proof. It is easy to check that

HomHMF(C(∅), C(©m ⊔©n)) ∼= H(©m ⊔©n) ∼= C(∅)

{[
N

m

][
N

n

]}
〈m+ n〉.

In particular, the subspace of HomHMF(C(∅), C(©m ⊔©n)) of homogeneous elements of

quantum degree −m(N −m)− n(N − n) is 1-dimensional and spanned by ιm ⊗ ιn. One

can see that f is homogeneous of quantum degree −m(N −m)− n(N − n). So, to prove

the lemma, we only need to check that f is not null homotopic. We do this by showing

that f∗(1) 6= 0.

Note that f = ǫ̂ ◦ (η† ⊗ η‡) ◦ ι̂ = (ǫ̂ ◦ η‡) ◦ (η† ◦ ι̂).

We consider η† ◦ ι̂ first. By Proposition 8.33, one can see ι̂ ≈ φ ◦ ψ ◦ ιm, where

the morphisms on the right hand side are given in Figure 34. So η† ◦ ι̂ is given by the

composition in Figure 34. If we choose marked points appropriately, then φ ◦ ψ and η†
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act on different factors in the tensor product of matrix factorizations. So they commute.

Thus η† ◦ ι̂ = (φ ◦ψ) ◦ (η† ◦ ιm), where the composition on the right hand side is given in

Figure 35. Denote by ιX and ǫX (resp. ιY and ǫY) the morphisms associated to creating

and annihilating the circle marked by X (resp. Y). Then (ιX)∗(1) and (ιY)∗(1) are the

generating classes of the homology of the circles marked by X and Y. By Proposition 8.42,

we have ǫY ◦η†◦ ιm ≈ ιX. So (ǫY ◦η†◦ ιm)∗(1) ∝ (ιX)∗(1). By Theorem 5.5, Proposition 7.3

and Corollary 8.8, this implies that

(η† ◦ ιm)∗(1) ∝ (Sλm,N−m
(Y) +H) · (ιX)∗(1)⊗ (ιY)∗(1),

where H is an element in Sym(X|Y) whose total degree in Y is less than 2m(N −m). By

Proposition 8.33 and the definition of ι̂, we have

(φ ◦ ψ)∗((ιY)∗(1)) ∝ ι̂∗(1).

Thus,

(η† ◦ ι̂)∗(1) ∝ (Sλm,N−m
(Y) +H) · (ιX)∗(1)⊗ ι̂∗(1).

Next we consider ǫ̂ ◦ η‡. Since the circle marked by X is not affected by these mor-

phisms, we temporarily drop that circle from our figures. By Proposition 8.33, ǫ̂ ≈

ǫA ◦ ψ ◦ φ, where the morphisms on the right hand side are given in Figure 36. So ǫ̂ ◦ η‡
is given by the composition in Figure 36. If we choose marked points appropriately, then

ψ ◦ φ and η‡ act on different factors in the tensor product of matrix factorizations. So

they commute. Therefore, ǫ̂ ◦ η‡ is also given by the composition in Figure 37. By Propo-

sition 8.42, ǫA◦η‡ ≈ id. So ǫ̂◦η‡ ≈ ψ◦φ, where ψ and φ are given in Figure 37. Denote by
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ι̃ the morphism given in Lemma 9.4 associated to creating Γ3 in Figure 37. Then, by [25,

Proposition Gr3] and the explicit description of φ in Subsection 8.4, we have

φ((Sλm,N−m
(Y) +H) · (ιX)∗(1)⊗ ι̂∗(1)) ∝ (Sλm,N−m−n

(W) + h) · (ιX)∗(1)⊗ ι̃∗(1),

where h = ζ(H) is an element of Sym(X|W) with total degree in W less than 2m(N −

m− n), and ζ is the Sylvester operator given in Theorem 5.3. Let ψn : C(©n)→ C(Γ3)

be the morphism associated to the loop addition. (Note that this morphism is not the ψ

in Figures 34, 35.) Then, by Proposition 8.33, one can see that ι̃ ≈ ψn ◦ ιn.

Altogether, we have

f∗(1) ∝ (ǫ̂ ◦ η‡)∗ ◦ (η† ◦ ι̂)∗(1) ∝ (ǫ̂ ◦ η‡)∗((Sλm,N−m
(Y) +H) · (ιX)∗(1)⊗ ι̂∗(1))

∝ (ψ ◦ φ)∗((Sλm,N−m
(Y) +H) · (ιX)∗(1)⊗ ι̂∗(1))

∝ ψ∗((Sλm,N−m−n
(W) + h) · (ιX)∗(1)⊗ ι̃∗(1))

∝ (ιX)∗(1)⊗ (ψ∗ ◦m(Sλm,N−m−n
(W) + h) ◦ (ψn)∗ ◦ (ιn)∗(1))

∝ (ιX)∗(1)⊗ (ιn)∗(1),

where the last step follows from equation (8.7.2) of Proposition 8.33. It is clear that

the circle marked by X is the ©m in ©m ⊔©n. So the above computation shows that

f∗(1) ∝ (ιm)∗(1)⊗ (ιn)∗(1) 6= 0. This proves Lemma 9.6.
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Definition 9.7. Let Γ and Γ0 be the MOY graphs in Figure 38. (They are slightly more

general than those in Theorem 9.1.) Define the morphism

F : C(Γ0)→ C(Γ)

to be the composition in Figure 39, and the morphism

G : C(Γ)→ C(Γ0)
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Fig. 39. Definition of F

to be the composition in Figure 40, where ι̂, ǫ̂ are defined in Lemma 9.5, and η2, η△, η†,

η‡ are the morphisms associated to the corresponding saddle moves.
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Fig. 40. Definition of G

Proposition 9.8. Let F and G be the morphisms given in Definition 9.7. Then F and G

are both homogeneous morphisms of quantum degree 0 and Z2-degree 0. Moreover, G ◦F

≈ idC(Γ0).

Proof. Recall that ι̂, ǫ̂ are homogeneous morphisms of quantum degree −(m + n)(N −

m−n)− 2mn and Z2-degree m+n, and η2⊗ η3, η†⊗ η‡ are homogeneous morphisms of

quantum degreem(N−m)+n(N−n) and Z2-degreem+n. So F and G are homogeneous

morphisms of quantum degree 0 and Z2-degree 0.

Next we consider the composition G◦F . With appropriate markings of MOY graphs,

η2 ⊗ η3 and G act on different factors of a tensor product, so they commute. Hence,

G ◦ F = (η2 ⊗ η3) ◦G ◦ ι̂ = (η2 ⊗ η3) ◦ (ǫ̂ ◦ (η† ⊗ η‡) ◦ ι̂),

where the right hand side is the composition in Figure 41. By Lemma 9.6,

ǫ̂ ◦ (η† ⊗ η‡) ◦ ι̂ ≈ ιn ⊗ ιm,
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?
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where ιm and ιn are the morphisms associated to creating ©m and ©n. So, by Proposi-

tion 8.37,

G ◦ F ≈ (η2 ⊗ η3) ◦ (ιn ⊗ ιm) = (η2 ◦ ιn)⊗ (η3 ◦ ιm) ≈ idC(Γ0) .

9.2. Relating Γ and Γ1. Let Γ and Γ1 be the MOY graphs in Figure 30. In this

subsection, we generalize the method in [19, Section 6] to construct morphisms between

C(Γ) and C(Γ1). To do this, we need the following special case of Proposition 8.21.

Corollary 9.9. Let Γ′
4 and Γ′

5 be the MOY graphs in Figure 42. Then there exist

homogeneous morphisms

χ0 : C(Γ′
4)→ C(Γ′

5), χ1 : C(Γ′
5)→ C(Γ′

4)

such that

• both χ0 and χ1 have quantum degree 1 and Z2-degree 0,

• χ1 ◦ χ0 ≃ (s− t) · idC(Γ′
4)

and χ0 ◦ χ1 ≃ (s− t) · idC(Γ′
5)
.
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If we cut Γ horizontally in half, then we get two copies of Γ′
5 in Figure 42. These

correspond to two copies of Γ′
4 in Figure 42. Now we glue these two copies of Γ′

4 to-

gether along the original cutting points. This gives us Γ7 in Figure 43. There are two

χ0 morphisms and two χ1 morphisms corresponding to the two pairs of Γ′
4 and Γ′

5. The

morphism χ0⊗χ0 (resp. χ1⊗χ1) is the tensor product of these two χ0 morphisms (resp.

χ1 morphisms). Denote by ψ : C(Γ1)→ C(Γ7) (resp. ψ : C(Γ7)→ C(Γ1)) the morphism

associated to the apparent loop addition (resp. removal) as defined in Subsection 8.7.
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Definition 9.10. Define morphisms

α : C(Γ1)〈1〉 → C(Γ), β : C(Γ)→ C(Γ1)〈1〉

by α = (χ0⊗χ0) ◦ψ and β = ψ ◦ (χ1⊗χ1). Moreover, for j = 0, 1, . . . , N −m− 2, define

morphisms
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αj : C(Γ1){q
N−m−2−2j}〈1〉 → C(Γ), βj : C(Γ)→ C(Γ1){q

N−m−2−2j}〈1〉

by αj = m(sN−m−2−j) ◦ α and βj = β ◦m(hj), where m(•) is the morphism induced by

multiplication by •, and hj = hj({r, s, t}) is the jth complete symmetric polynomial in

{r, s, t}.

Lemma 9.11. αj and βj are homogeneous morphisms that preserve the Z2 ⊕ Z-grading.

Moreover,

βj ◦ αi ≈

{
id if i = j,

0 if i > j.

Proof. It is easy to verify the homogeneity and gradings of αj and βj . We leave it to the

reader. Note that χ0 ⊗ χ0 and χ1 ⊗ χ1 are both C[r, s, t]-linear. So, by Corollary 9.9,

βj ◦ αi = ψ ◦ (χ1 ⊗ χ1) ◦m(hj) ◦m(sN−m−2−i) ◦ (χ0 ⊗ χ0) ◦ ψ

= ψ ◦m(hj) ◦ (χ
1 ⊗ χ1) ◦ (χ0 ⊗ χ0) ◦m(sN−m−2−i) ◦ ψ

≃ ψ ◦m(hj) ◦m((r − s)(s− t)) ◦m(sN−m−2−i) ◦ ψ.

Denote by ĥj the jth complete symmetric polynomial in {r, t}. Then, for j ≥ 0, hj =∑j
l=0 s

lĥj−l and ĥj+1 = (r + t)ĥj − rtĥj−1. So

sN−m−2−i(r − s)(s− t)hj

=

j∑

l=0

sN−m−2−i+l(−s2 + (r + t)s− rt)ĥj−l

= −

j∑

l=0

sN−m−i+lĥj−l +

j−1∑

l=−1

sN−m−i+l(r + t)ĥj−l−1 −

j−2∑

l=−2

sN−m−i+lrtĥj−l−2

= −sN−m−i+j + sN−m−i−1ĥj+1 − s
N−m−i−2rtĥj

+

j−2∑

l=0

sN−m−i+l(−ĥj−l + (r + t)ĥj−l−1 − rtĥj−l−2)

= −sN−m−i+j + sN−m−i−1ĥj+1 − s
N−m−i−2rtĥj .

Note that ψ is C[r, t]-linear. Thus, by Proposition 8.33,

βj ◦ αi ≃ ψ ◦m(hj) ◦m((r − s)(s− t)) ◦m(sN−m−2−i) ◦ ψ

= −ψ ◦m(sN−m−i+j) ◦ ψ +m(ĥj+1) ◦ ψ ◦m(sN−m−i−1) ◦ ψ

−m(rtĥj) ◦ ψ ◦m(sN−m−i−2) ◦ ψ

≈

{
id if i = j,

0 if i > j.

Proposition 9.12. Let Γ and Γ1 be as in Theorem 9.1. Then there exist homogeneous

morphisms

~α : C(Γ1){[N −m− 1]}〈1〉 → C(Γ), ~β : C(Γ)→ C(Γ1){[N −m− 1]}〈1〉,

that preserve the Z2 ⊕ Z-grading and satisfy ~β ◦ ~α ≃ id .
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Proof. The βj in Definition 9.10 is defined up to homotopy and scaling. From Lemma 9.11,

we know

βj ◦ αi ≈

{
id if i = j,

0 if i > j.

So, by choosing an appropriate scalar for each βj , we can make

βj ◦ αi ≃

{
id if i = j,

0 if i > j.
(9.2.1)

We assume (9.2.1) is true in the rest of this proof.

Define τj,i : C(Γ1){qN−m−2−2i}〈1〉 → C(Γ1){qN−m−2−2j}〈1〉 by

τj,i =





∑
l≥1

∑
i<k1<···<kl−1<j(−1)

l(βj ◦ αkl−1
) ◦ (βkl−1

◦ αkl−2
) ◦ · · · ◦ (βk1 ◦ αi)

if i < j,

id if i = j,

0 if i > j.

Then define β̂j : C(Γ)→ C(Γ1){qN−m−2−2j}〈1〉 by

β̂j =
N−m−2∑

k=0

τj,k ◦ βk.

Note that

C(Γ1){[N −m− 1]}〈1〉 ∼=

N−m−2⊕

j=0

C(Γ1){q
N−m−2−2j}〈1〉.

We define ~α : C(Γ1){[N −m− 1]}〈1〉 → C(Γ) by

~α = (α0, . . . , αN−m−2),

and define ~β : C(Γ)→ C(Γ1){[N −m− 1]}〈1〉 by

~β =




β̂0
· · ·

β̂N−m−2


 .

It is easy to check that αi and β̂j are homogeneous morphisms preserving the Z2 ⊕ Z-

grading. So are ~α and ~β.

Next we prove that ~β ◦ ~α ≃ id. Consider

β̂j ◦ αi =

N−m−2∑

k=0

τj,k ◦ (βk ◦ αi).

By (9.2.1) and the definition of τj,k, it is easy to see that

β̂j ◦ αi ≃

{
id if i = j,

0 if i > j.
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Now assume i < j. Again, by (9.2.1) and the definition of τj,k, we have

β̂j ◦ αi =

N−m−2∑

k=0

τj,k ◦ (βk ◦ αi) ≃

j∑

k=i

τj,k ◦ (βk ◦ αi)

= τj,i ◦ (βi ◦ αi) + τj,j ◦ (βj ◦ αi) +
∑

i<k<j

τj,k ◦ (βk ◦ αi)

≃ τj,i + βj ◦ αi

+
∑

l≥1

∑

i<k<k1<···<kl−1<j

(−1)l(βj ◦ αkl−1
) ◦ (βkl−1

◦ αkl−2
) ◦ · · · ◦ (βk1 ◦ αk) ◦ (βk ◦ αi)

= τj,i − τj,i = 0.

Altogether, we have ~β ◦ ~α ≃ id.

9.3. Proof of Theorem 9.1. With the morphisms constructed in the previous two

subsections, we are now ready to prove Theorem 9.1. Our method is a generalization of

that in [19] and [48].

Lemma 9.13. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 30. Suppose that F and G

are the morphisms defined in Definition 9.7 (for n = 1), and ~α and ~β are the morphisms

given in Proposition 9.12. Then ~β ◦ F ≃ 0 and G ◦ ~α ≃ 0.

Proof. Let Γ8 be the MOY graph in Figure 44. Denote by Γ0 (resp. Γ1, Γ8) the MOY

graph obtained by reversing the orientation of all edges of Γ0 (resp. Γ1, Γ8.) Let ©m be

a circle colored by m. Then

HomHMF(C(Γ0), C(Γ1)) ∼= H(C(Γ1)⊗ C(Γ0)){q
m(N−m)+N−1}〈m+ 1〉

∼= H(Γ8){q
m(N−m)+N−1}〈m+ 1〉

∼= H(©m){[m] · qm(N−m)+N−1}〈m+ 1〉

∼= C(∅)

{[
N

m

]
· [m] · qm(N−m)+N−1

}
〈1〉.

In particular, the lowest non-vanishing quantum grading of HomHMF(C(Γ0), C(Γ1)) is

N −m. But when viewed as a morphism C(Γ0)→ C(Γ1), the quantum degree of β̂j ◦ F

is −N +m+ 2+ 2j, which is less than N −m for j = 0, 1, . . . , N −m− 2. So β̂j ◦F ≃ 0

for j = 0, 1, . . . , N −m− 2. That is, ~β ◦ F ≃ 0.

?

6

?

1 m

m − 1

Γ8

Fig. 44

Clearly, the matrix factorization of Γ1 is the same as that of Γ′
4 in Figure 42. Similarly

to Lemma 8.23, one can check that
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C(Γ1) ≃M
′ :=




∗ (X1 − Y1) + (s− t)

· · · · · ·

∗ (Xk − Yk) + (s− t)
∑k−1

l=0 (−t)
k−1−lXl

· · · · · ·

∗ (Xm − Ym) + (s− t)
∑m−1

l=0 (−t)m−1−lXl

∗
∑m

l=0(−t)
m−lXl




Sym(X|Y|{s}|{t})

{q−m+1},

where X, Y, {s}, {t} are markings of Γ′
4 in Figure 42. Mark the corresponding end points

of Γ0 by the same alphabets. Then

HomHMF(C(Γ1), C(Γ0)) ∼= HomHMF(M
′, C(Γ0)) ∼= H(C(Γ0)⊗M

′
•)

∼= H(C(Γ0)⊗ C(Γ1)){q
m(N−m)+N−1}〈m+ 1〉

∼= H(Γ8){q
(m(N−m)+N−1}〈m+ 1〉

∼= H(Γ8){q
(m(N−m)+N−1}〈m+ 1〉

∼= C(∅)

{[
N

m

]
[m]qm(N−m)+N−1

}
〈1〉.

In particular, the lowest non-vanishing quantum grading of HomHMF(C(Γ1), C(Γ0)) is

N −m. But when viewed as a morphism C(Γ1)→ C(Γ0), the quantum degree of G ◦ αj

is N −m− 2 − 2j, which is less than N −m for j = 0, 1, . . . , N −m− 2. So G ◦ αj ≃ 0

for j = 0, 1, . . . , N −m− 2. That is, G ◦ ~α ≃ 0.

Recall that the morphisms F and G are defined only up to scaling and homotopy,

and, by Proposition 9.8, we have G ◦ F ≈ idC(Γ0). So, by choosing appropriate scalars,

we can make

G ◦ F ≃ idC(Γ0) . (9.3.1)

For minor technical convenience, we assume that (9.3.1) is true for the rest of this section.

Lemma 9.14. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 30. Then there exists a

graded matrix factorization M such that

C(Γ) ≃ C(Γ0)⊕ C(Γ1){[N −m− 1]}〈1〉 ⊕M.

Proof. Define morphisms

F̃ : C(Γ0)⊕ C(Γ1){[N −m− 1]}〈1〉 → C(Γ),

G̃ : C(Γ)→ C(Γ0)⊕ C(Γ1){[N −m− 1]}〈1〉

by

F̃ = (F, ~α) and G̃ =

(
G
~β

)
.

Then, by Proposition 9.8 (especially (9.3.1) above), Proposition 9.12 and Lemma 9.13,

F̃ and G̃ are homogeneous morphisms preserving the Z2 ⊕ Z-grading and satisfy

G̃ ◦ F̃ ≃ idC(Γ0)⊕C(Γ1){[N−m−1]}〈1〉 .

Therefore, F̃ ◦ G̃ : C(Γ)→ C(Γ) preserves the Z2 ⊕ Z-grading and satisfies

(F̃ ◦ G̃) ◦ (F̃ ◦ G̃) ≃ F̃ ◦ G̃.
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By Lemma 4.15, there exists a graded matrix factorization M such that

C(Γ) ≃ C(Γ0)⊕ C(Γ1){[N −m− 1]}〈1〉 ⊕M.

Lemma 9.15. Let M be as in Lemma 9.14. Then M ≃ 0.

Proof. Mark Γ, Γ0 and Γ1 as in Figure 45.
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Fig. 45

Consider homology of matrix factorizations with non-vanishing potentials as in Defi-

nition 4.5. By Corollary 4.10, to prove M ≃ 0, we only need to show that H(M) = 0, or

equivalently, gdim(M) = 0. But, by Lemma 9.14, we have

H(Γ) ∼= H(Γ0)⊕H(Γ1){[N −m− 1]}〈1〉 ⊕H(M).

So,

gdim(C(Γ)) = gdim(C(Γ0)) + τ [N −m− 1] gdim(C(Γ1)) + gdim(M).

Therefore, to prove the lemma, we only need to show that

gdim(C(Γ)) = gdim(C(Γ0)) + τ [N −m− 1] gdim(C(Γ1)) (9.3.2)

In the rest of this argument, we prove (9.3.2) by directly computing gdim(C(Γ)),

gdim(C(Γ0)) and gdim(C(Γ1)).

We start with gdim(C(Γ)). Let A = X ∪ {s}, B = Y ∪ {r}, D = Y ∪ {t}, E = Z ∪ {s}.

By Lemma 6.10, we contract the two edges in Γ of color m+ 1 and get

C(Γ) ≃




U1 A1 −B1

· · · · · ·

Um+1 Am+1 −Bm+1

V1 D1 − E1

· · · · · ·

Vm+1 Dm+1 − Em+1




Sym(X|Y|Z|{r}|{s}|{t})

{q−2m},

where Aj is the jth elementary symmetric function in A and so on, and

Uj =
pm+1,N+1(B1, . . . , Bj−1, Aj , . . . , Am+1)− pm+1,N+1(B1, . . . , Bj , Aj+1, . . . , Am+1)

Aj −Bj
,

Vj =
pm+1,N+1(E1, . . . , Ej−1, Dj , . . . , Dm+1)− pm+1,N+1(E1, . . . , Ej , Dj+1, . . . , Dm+1)

Dj − Ej
.

Recall that C(Γ) is viewed as a matrix factorization over Sym(X|Z|{r}|{t}). So the cor-

responding maximal ideal for C(Γ) is the ideal I = (X1, . . . , Xm, Z1, . . . , Zm, r, t) of
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Sym(X|Z|{r}|{t}). Identify

Sym(X|Y|Z|{r}|{s}|{t})/I · Sym(X|Y|Z|{r}|{s}|{t}) = Sym(Y|{s})

by the relations

X1 = · · · = Xm = Z1 = · · · = Zm = r = t = 0. (9.3.3)

Then

C(Γ)/I · C(Γ) ≃




U1 s− Y1
U2 −Y2
· · · · · ·

Um −Ym
Um+1 0

V1 Y1 − s

V2 Y2
· · · · · ·

Vm Ym
Vm+1 0




Sym(Y|{s})

{q−2m} ≃




Um+1 0

V1 0

V2 0

· · · · · ·

Vm 0

Vm+1 0




C[s]

{q−2m},

where we applied Proposition 3.22 successively to the firstm rows. This gives the relations

Y1 − s = Y2 = · · · = Ym = 0. (9.3.4)

Under (9.3.3) and (9.3.4), we have

Aj = Bj = Dj = Ej =

{
s if j = 1,

0 if i = 2, . . . ,m+ 1.

So, by Lemma 5.1,

Uj = Vj =
∂pm+1,N+1(A1, . . . , Am+1)

∂Aj

∣∣∣∣
A1=s,A2=···+Am+1=0

= (−1)j(N + 1)hm+1,N+1−j(s, 0, . . . , 0) = (−1)j(N + 1)sN+1−j .

Using Lemma 8.14 and Corollary 3.28, we then have

H(Γ) ∼= H







sN−m 0

sN 0

sN−1 0

· · · · · ·

sN−m 0




C[s]



{q−2m} ∼= H







0N 0

0N−1 0

· · · · · ·

0N−m 0




C[s]/(sN−m)


 {q

1−N}〈1〉

∼=




0N 0

0N−1 0

· · · · · ·

0N−m 0




C[s]/(sN−m)

{q1−N}〈1〉,
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where 0j is “a 0 that has degree 2j”. So

gdim(C(Γ)) = τ · q1−N ·
(N−m−1∑

k=0

q2k
)
·
m+1∏

j=1

(1 + τq2j−N−1)

= τ · q−m · [N −m] ·
m+1∏

j=1

(1 + τq2j−N−1).

Next, we compute gdim(C(Γ0)). Let

Û =
tN+1 − rN+1

t− r
,

Ûj =
pm,N+1(Z1, . . . , Zj−1, Xj, . . . , Xm)− pm,N+1(Z1, . . . , Zj, Xj+1, . . . , Xm)

Xj − Zj
.

Then

C(Γ0) =




Û t− r

Û1 X1 − Z1

. . . . . .

Ûm Xm − Zm




Sym(X|Z|{r}|{t})

.

So

C(Γ0)/I · C(Γ0) ∼=




0N 0

0N 0

0N−1 0

. . . . . .

0N−m+1 0




C

and

gdim(C(Γ0)) = (1 + τq1−N ) ·
m∏

j=1

(1 + τq2j−N−1).

Now we compute gdim(C(Γ1)). Let F = W ∪ {t} and G = W ∪ {r}. Define

Ūj =
pm,N+1(Z1, . . . , Zj−1, Fj , . . . , Fm)− pm,N+1(Z1, . . . , Zj, Fj+1, . . . , Fm)

Fj − Zj
,

V̄j =
pm,N+1(G1, . . . , Gj−1, Xj, . . . , Xm)− pm,N+1(G1, . . . , Gj , Xj+1, . . . , Xm)

Xj −Gj
.

Then

C(Γ1) =




Ū1 F1 − Z1

· · · · · ·

Ūm Fm − Zm

V̄1 X1 −G1

· · · · · ·

V̄m Xm −Gm




Sym(X|Z|W|{r}|{t})

{q1−m}.

Identify

Sym(X|Z|W|{r}|{t})/I · Sym(X|Z|W|{r}|{t}) = Sym(W)



9.3. Proof of Theorem 9.1 125

by relations (9.3.3). Then, by Proposition 3.22,

C(Γ1)/I · C(Γ1) ∼=




Ū1 W1

· · · · · ·

Ūm−1 Wm−1

Ūm 0

V̄1 −W1

· · · · · ·

V̄m−1 −Wm−1

V̄m 0




Sym(W)

{q1−m} ≃




0N+1−m 0

0N 0

0N−1 0

· · · · · ·

0N−m+1 0




C

{q1−m}.

So

gdim(C(Γ1)) = q1−m · (1 + τq2m−N−1) ·
m∏

j=1

(1 + τq2j−N−1).

Write

P =

m∏

j=1

(1 + τq2j−N−1).

Then

gdim(C(Γ)) = τ · q−m · [N −m] · (1 + τq2m−N+1) · P,

gdim(C(Γ0)) = (1 + τq1−N ) · P,

gdim(C(Γ1)) = q1−m · (1 + τq2m−N−1) · P.

Note that

[N −m] = [N −m− 1]q + q−(N−m−1).

So,

gdim(C(Γ)) − gdim(C(Γ0))− τ [N −m− 1] gdim(C(Γ1))

= ((τq−m + qm−N+1)[N −m]− 1− τq1−N − (q1−m + τqm−N )[N −m− 1])P

= ((τq−m + qm−N+1)([N −m− 1]q + q−(N−m−1))− 1− τq1−N

− (q1−m + τqm−N )[N −m− 1])P

= ([N −m− 1](q − q−1)qm−N+1 + q2(m−N+1) − 1)P = 0.

This shows that (9.3.2) is true.

Proof of Theorem 9.1. Lemmas 9.14 and 9.15 imply Theorem 9.1.



10. Direct sum decomposition (IV)

The objective of this section is to prove Theorem 10.1, which categorifies [32, Lemma A.7]

and generalizes direct sum decomposition (IV) in [19].

Theorem 10.1. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 46, where l,m, n are

integers satisfying 0 ≤ n ≤ m ≤ N and 0 ≤ l,m+ l − 1 ≤ N . Then

C(Γ) ≃ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
. (10.0.1)

Similarly, if Γ,Γ0,Γ1 are Γ,Γ0,Γ1 with the orientation of every edge reversed, then

C(Γ) ≃ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
. (10.0.2)
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The proofs of decompositions (10.0.1) and (10.0.2) are almost identical. So we only

prove (10.0.1) in this paper and leave (10.0.2) to the reader.

Remark 10.2. Although direct sum decomposition (IV) is formulated in a different form

in [19], its proof there comes down to establishing the decomposition

C(Γ′) ≃ C(Γ′
0)⊕ C(Γ

′
1), (10.0.3)

where Γ′, Γ′
0 and Γ′

1 are given in Figure 47. This is also what is actually used in the

proof of the invariance of the sl(N) Khovanov–Rozansky homology under Reidemeister

move III. Clearly, if we specify that l = n = 1,m = 2 in Theorem 10.1, then we get

decomposition (10.0.3).

[126]
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To prove Theorem 10.1, we need the following special case of Proposition 8.21.

Corollary 10.3. Let Γ4 and Γ5 be the MOY graphs in Figure 48, where m,n are integers

such that 0 ≤ n ≤ m ≤ N . Then there exist homogeneous morphisms

χ0 : C(Γ4)→ C(Γ5), χ1 : C(Γ5)→ C(Γ4),

both of quantum degree m− n and Z2-degree 0 such that

χ1 ◦ χ0 ≃
(m−n∑

k=0

(−r)m−n−kYk

)
· idC(Γ4),

χ0 ◦ χ1 ≃
(m−n∑

k=0

(−r)m−n−kYk

)
· idC(Γ5),

where Yk is the kth elementary symmetric polynomial in Y.

�
R

?

�
Rn + 1

m − n

1

m

n

S

X

A

Y

{r}

Γ4

-
�

χ0

χ1 �
R -

�

R

n + 1

m − n

1

m

m + 1

S

XY

{r}

Γ5

Fig. 48

10.1. Relating Γ and Γ0. Consider the diagram in Figure 49, in which

• φ and φ are the morphisms associated to the apparent edge splitting and merging,

• h0 and h1 are the homotopy equivalences induced by the apparent bouquet moves and

are inverses of each other,

• χ0 and χ1 are the morphisms coming from applying Corollary 10.3 to the left half

of Γ.

All these morphisms are Sym(X|W|T|{r})-linear. Moreover, h0, h1, χ
0 and χ1 are also

Sym(A|Y)-linear. By Corollary 10.3, we know that

χ1 ◦ χ0 =
( n∑

k=0

(−r)kAn−k

)
· idC(Γ10) . (10.1.1)
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Definition 10.4. Define f : C(Γ0)→ C(Γ) by f = χ0 ◦ h0 ◦φ and g : C(Γ)→ C(Γ0) by

g = φ ◦ h1 ◦ χ1.

Note that f and g are both homogeneous morphisms of quantum degree −n(m−n−1)

and Z2-degree 0.

Definition 10.5. Let Λ = Λn,m−n−1 = {λ | l(λ) ≤ n, λ1 ≤ m − n − 1}. For λ =

(λ1 ≥ · · · ≥ λn) ∈ Λ, define λc = (λc1 ≥ · · · ≥ λcn) ∈ Λ by λcj = m − n− 1 − λn+1−j for

j = 1, . . . , n.

For λ ∈ Λ, define fλ : C(Γ0)→ C(Γ) by fλ = m(Sλ(A)) ◦ f , where Sλ(A) is the Schur

polynomial in A associated to λ, and m(Sλ(A)) is the morphism given by multiplication

by Sλ(A). Then fλ is a homogeneous morphism of quantum degree 2|λ| − n(m− n− 1)

and Z2-degree 0.

Also, define gλ : C(Γ)→ C(Γ0) by gλ = g ◦m(Sλc(−Y)), where Sλc(−Y) is the Schur

polynomial in −Y associated to λc. Then gλ is a homogeneous morphism of quantum

degree n(m− n− 1)− 2|λ| and Z2-degree 0.

Lemma 10.6. Let A be an alphabet with n indeterminates. Denote by Ak the kth elemen-

tary symmetric polynomial in A. For any k=1, . . . , n and any partition λ=(λ1≥· · ·≥λn),

there is an expansion

Ak · Sλ(A) =
∑

l(µ)≤n

cµ · Sµ(A),

where cµ ∈ Z≥0. If cµ 6= 0, then |µ| − |λ| = k and λj ≤ µj ≤ λj + 1 for j = 1, . . . , n.
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In particular,

An · Sλ(A) = S(λ1+1≥λ2+1≥···≥λn+1)(A).

Proof. Note that Ak = Sλk,1
(A) = S(1≥···≥1︸ ︷︷ ︸

k parts

)(A). This lemma is a special case of the

Littlewood–Richardson rule (see for example [13, Appendix A]).

Lemma 10.7. For λ, µ ∈ Λ,

gµ ◦ fλ ≈

{
idC(Γ0) if λ = µ,

0 if λ < µ.

Proof. For λ, µ ∈ Λ, by (10.1.1), we have

gµ ◦ fλ = g ◦m(Sµc(−Y)) ◦m(Sλ(A)) ◦ f

= φ ◦ h1 ◦ χ
1 ◦m(Sµc(−Y) · Sλ(A)) ◦ χ

0 ◦ h0 ◦ φ

= φ ◦ h1 ◦ χ
1 ◦ χ0 ◦ h0 ◦m(Sµc(−Y) · Sλ(A)) ◦ φ

≃ φ ◦m
(( n∑

k=0

(−r)kAn−k

)
· Sλ(A) · Sµc(−Y)

)
◦ φ.

Write λ = (λ1 ≥ · · · ≥ λn) and λ̃ = (λ1 + 1 ≥ · · · ≥ λn + 1). By Lemma 10.6, we know

that
( n∑

k=0

(−r)kAn−k

)
· Sλ(A) = Sλ̃(A) +

∑

λ≤ν<λ̃

cν(r) · Sν(A),

where cν(r) ∈ Z[r]. So

gµ ◦ fλ ≃ φ ◦m(Sλ̃(A) · Sµc(−Y)) ◦ φ+
∑

λ≤ν<λ̃

cν(r) · φ ◦m(Sν(A) · Sµc(−Y)) ◦ φ.

Now the result follows from Lemma 8.11.

Lemma 10.8. There exist homogeneous morphisms F : C(Γ0){
[
m−1
n

]
} → C(Γ) and G :

C(Γ)→ C(Γ0)
{[

m−1
n

]}
preserving the Z2 ⊕ Z-grading such that G ◦ F ≃ idC(Γ0){[m−1

n ]}.

Proof. Note that

C(Γ0)

{[
m− 1

n

]}
=
⊕

λ∈Λ

C(Γ0){q
2|λ|−n(m−n−1)}.

We view fλ as a homogeneous morphism

fλ : C(Γ0){q
2|λ|−n(m−n−1)} → C(Γ)

preserving the Z2 ⊕ Z-grading, and gλ as a homogeneous morphism

gλ : C(Γ)→ C(Γ0){q
2|λ|−n(m−n−1)}

preserving the Z2 ⊕ Z-grading. Also, by choosing appropriate constants, we make

gµ ◦ fλ ≃

{
idC(Γ0) if λ = µ,

0 if λ < µ.
(10.1.2)
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Define Hµλ : C(Γ0){q
2|λ|−n(m−n−1)} → C(Γ0){q

2|µ|−n(m−n−1)} by

Hµλ =





idC(Γ0) if λ = µ,

0 if λ < µ,
∑

k≥1

∑
µ<ν1<···<νk−1<λ(−1)

k(gµ ◦ fν1) ◦ (gν1 ◦ fν2)

◦ · · · ◦ (gνk−2
◦ fνk−1

) ◦ (gνk−1
◦ fλ) if λ > µ.

Then define g̃µ : C(Γ)→ C(Γ0){q2|µ|−n(m−n−1)} by

g̃µ =
∑

ν≥µ

Hµν ◦ gν .

Note that g̃µ is a homogeneous morphism preserving the Z2 ⊕ Z-grading.

Next consider g̃µ ◦ fλ.

(i) Suppose λ < µ. Then, by (10.1.2),

g̃µ ◦ fλ =
∑

ν≥µ

Hµν ◦ gν ◦ fλ ≃ 0.

(ii) Suppose λ = µ. Then, by (10.1.2),

g̃µ ◦ fλ =
∑

ν≥µ

Hµν ◦ gν ◦ fµ ≃ Hµµ ◦ gµ ◦ fµ ≃ idC(Γ0) .

(iii) Suppose λ > µ. Then

g̃µ ◦ fλ =
∑

ν≥µ

Hµν ◦ gν ◦ fλ ≃ Hµλ ◦ gλ ◦ fλ +Hµµ ◦ gµ ◦ fλ +
∑

µ<ν<λ

Hµν ◦ gν ◦ fλ

≃ Hµλ + gµ ◦ fλ

+
∑

k≥1

∑

µ<ν1<···<νk−1<ν<λ

(−1)k(gµ ◦ fν1) ◦ (gν1 ◦ fν2) ◦ · · · ◦ (gνk−1
◦ fν) ◦ (gν ◦ fλ)

= Hµλ −Hµλ = 0.

Now define

F : C(Γ0)

{[
m− 1

n

]}(
=
⊕

λ∈Λ

C(Γ0){q
2|λ|−n(m−n−1)}

)
→ C(Γ) by F =

∑

λ∈Λ

fλ,

and

G : C(Γ)→ C(Γ0)

{[
m− 1

n

]}(
=
⊕

λ∈Λ

C(Γ0){q
2|λ|−n(m−n−1)}

)
by G =

∑

λ∈Λ

g̃λ.

Then F and G are homogeneous morphisms preserving the Z2 ⊕ Z-grading, and

G ◦ F ≃ idC(Γ0){[m−1
n ]} .

10.2. Relating Γ and Γ1. Consider the diagram in Figure 50, in which

• φ and φ are the morphisms associated to the apparent edge splitting and merging,

• h0 and h1 are the homotopy equivalences induced by the apparent bouquet moves and

are inverses of each other,
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• χ0 and χ1 are the morphisms coming from applying Corollary 10.3 to the lower half

of Γ.

All these morphisms are Sym(X|W|T|{r})-linear. Moreover, h0, h1, χ
0 and χ1 are also

Sym(A|Y)-linear. By Corollary 10.3, we know that

χ0 ◦ χ1 =
(m−n∑

k=0

(−r)kYm−n−k

)
· idC(Γ12) . (10.2.1)

Definition 10.9. Define α : C(Γ1) → C(Γ) by α = χ1 ◦ h1 ◦ φ and β : C(Γ) → C(Γ1)

by β = φ ◦ h0 ◦ χ0.

Note that α and β are both homogeneous morphisms with quantum degree

−(n− 1)(m− n) and Z2-degree 0.

Definition 10.10. Let Λ′ = Λm−n,n−1 = {λ | l(λ) ≤ m − n, λ1 ≤ n − 1}. For λ =

(λ1 ≥ · · · ≥ λm−n) ∈ Λ′, define λ∗ = (λ∗1 ≥ · · · ≥ λ
∗
m−n) ∈ Λ′ by λ∗j = n− 1− λm−n+1−j

for j = 1, . . . ,m− n.

For λ ∈ Λ′, define αλ : C(Γ1)→ C(Γ) by αλ = m(Sλ(Y))◦α, where Sλ(Y) is the Schur

polynomial in Y associated to λ. Then αλ is a homogeneous morphism with quantum

degree 2|λ| − (n− 1)(m− n) and Z2-degree 0.

Also, define βλ : C(Γ)→ C(Γ1) by βλ = β ◦m(Sλ∗(−A)), where Sλ∗(−A) is the Schur

polynomial in −A associated to λ∗. Then βλ is a homogeneous morphism with quantum

degree (n− 1)(m− n)− 2|λ| and Z2-degree 0.
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Lemma 10.11. For λ, µ ∈ Λ′,

βµ ◦ αλ ≈

{
idC(Γ1) if λ = µ,

0 if λ < µ.

Proof. For λ, µ ∈ Λ′, by (10.2.1), we have

βµ ◦ αλ = β ◦m(Sµ∗(−A)) ◦m(Sλ(Y)) ◦ α

= φ ◦ h0 ◦ χ
0 ◦m(Sµ∗(−A) · Sλ(Y)) ◦ χ

1 ◦ h1 ◦ φ

= φ ◦ h0 ◦ χ
0 ◦ χ1 ◦ h1 ◦m(Sµ∗(−A) · Sλ(Y)) ◦ φ

≃ φ ◦m
((m−n∑

k=0

(−r)kYm−n−k

)
· Sλ(Y) · Sµ∗(−A)

)
◦ φ.

Write λ = (λ1 ≥ · · · ≥ λm−n) and λ̃ = (λ1 + 1 ≥ · · · ≥ λm−n + 1). By Lemma 10.6, we

know that

(m−n∑

k=0

(−r)kYm−n−k

)
· Sλ(Y) = Sλ̃(Y) +

∑

λ≤ν<λ̃

cν(r) · Sν(Y),

where cν(r) ∈ Z[r]. So

βµ ◦ αλ ≃ φ ◦m(Sλ̃(Y) · Sµ∗(−A)) ◦ φ+
∑

λ≤ν<λ̃

cν(r) · φ ◦m(Sν(Y) · Sµ∗(−A)) ◦ φ.

Now the assertion follows from Lemma 8.11.

Lemma 10.12. There exist homogeneous morphisms ~α : C(Γ1)
{[

m−1
n−1

]}
→ C(Γ) and

~β : C(Γ)→ C(Γ1)
{[

m−1
n−1

]}
preserving the Z2⊕Z-grading such that ~β◦~α ≃ idC(Γ1){[m−1

n−1]}
.

Proof. Note that

C(Γ1)

{[
m− 1

n− 1

]}
=
⊕

λ∈Λ′

C(Γ1){q
2|λ|−(n−1)(m−n)}.

We view αλ as a homogeneous morphism

αλ : C(Γ1){q
2|λ|−(n−1)(m−n)} → C(Γ)

preserving the Z2 ⊕ Z-grading, and βλ as a homogeneous morphism

βλ : C(Γ)→ C(Γ1){q
2|λ|−(n−1)(m−n)}

preserving the Z2 ⊕ Z-grading. Also, by choosing appropriate constants, we make

βµ ◦ αλ ≃

{
idC(Γ1) if λ = µ,

0 if λ < µ.
(10.2.2)

Define τµλ : C(Γ1){q2|λ|−(n−1)(m−n)} → C(Γ1){q2|µ|−(n−1)(m−n)} by

τµλ =





idC(Γ1) if λ = µ,

0 if λ < µ,
∑

k≥1

∑
µ<ν1<···<νk−1<λ(−1)

k(βµ ◦ αν1) ◦ (βν1 ◦ αν2)

◦ · · · ◦ (βνk−2
◦ ανk−1

) ◦ (βνk−1
◦ αλ) if λ > µ.
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Then define β̃µ : C(Γ)→ C(Γ0){q
2|µ|−(n−1)(m−n)} by

β̃µ =
∑

ν≥µ

τµν ◦ βν .

Note that β̃µ is a homogeneous morphism preserving the Z2 ⊕ Z-grading.

Next consider β̃µ ◦ αλ.

(i) Suppose λ < µ. Then, by (10.2.2),

β̃µ ◦ αλ =
∑

ν≥µ

τµν ◦ βν ◦ αλ ≃ 0.

(ii) Suppose λ = µ. Then, by (10.2.2) again,

β̃µ ◦ αλ =
∑

ν≥µ

τµν ◦ βν ◦ αµ ≃ τµµ ◦ βµ ◦ αµ ≃ idC(Γ1) .

(iii) Suppose λ > µ. Then

β̃µ ◦ αλ =
∑

ν≥µ

τµν ◦ βν ◦ αλ ≃ τµλ ◦ βλ ◦ αλ + τµµ ◦ βµ ◦ αλ +
∑

µ<ν<λ

τµν ◦ βν ◦ αλ

≃ τµλ + βµ ◦ αλ

+
∑

k≥1

∑

µ<ν1<···<νk−1<ν<λ

(−1)k(βµ ◦ αν1) ◦ (βν1 ◦ αν2) ◦ · · · ◦ (βνk−1
◦ αν) ◦ (βν ◦ αλ)

= τµλ − τµλ = 0.

Now define

~α : C(Γ1)

{[
m− 1

n− 1

]} (
=
⊕

λ∈Λ′

C(Γ1){q
2|λ|−(n−1)(m−n)}

)
→ C(Γ) by ~α =

∑

λ∈Λ′

αλ,

and

~β : C(Γ)→ C(Γ1)

{[
m− 1

n− 1

]} (
=
⊕

λ∈Λ′

C(Γ1){q
2|λ|−(n−1)(m−n)}

)
by ~β =

∑

λ∈Λ′

β̃λ.

Then ~α and ~β are homogeneous morphisms preserving the Z2 ⊕ Z-grading, and

~β ◦ ~α ≃ idC(Γ1){[m−1
n−1]}

.

10.3. Homotopic nilpotency of ~β ◦ F ◦G ◦ ~α and G ◦ ~α ◦ ~β ◦ F

Lemma 10.13. Let Γ0 and Γ1 be as in Figure 46. Then

HomHMF(C(Γ0), C(Γ1)) ∼= HomHMF(C(Γ1), C(Γ0))

∼= C(∅)

{[
l+m− 1

m

][
l +m

1

][
N

l +m

]
q(l+m)(N+1−l−m)+ml−1

}
,

where C(∅) is C → 0 → C. In particular, the lowest non-vanishing quantum grading of

these spaces is m.
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Proof. Mark Γ0 and Γ1 as in Figure 46. Then

C(Γ0) =




∗ T1 − r −D1

· · · · · ·

∗ Tk − rDk−1 −Dk

· · · · · ·

∗ Tl − rDl−1

∗ D1 +X1 −W1

· · · · · ·

∗
∑k

j=0DjXk−j −Wk

· · · · · ·

∗ Dl−1Xm −Wm+l−1




Sym(X|W|D|T|{r})

{q−(l−1)m},

where Xk is the kth elementary symmetric polynomial in X and so on. By Proposi-

tion 3.22, we exclude D1, . . . , Dl−1 from this matrix factorization using the right entries

of the first l − 1 rows. We get the relations

Dk =

{∑k
j=0(−r)

jTk−j if 0 ≤ k ≤ l− 1,

0 if k < 0 or k > l − 1,

and

C(Γ0) ≃




∗
∑l

j=0(−r)
jTl−j

∗ T1 − r +X1 −W1

· · · · · ·

∗
∑l−1

j=0

∑j
i=0(−r)

iTj−iXk−j −Wk

· · · · · ·

∗
∑l−1

i=0(−r)
iTl−1−iXm −Wm+l−1




Sym(X|W|T|{r})

{q−(l−1)m}.

So

C(Γ0)• ≃




∗ −
∑l

j=0(−r)
jTl−j

∗ −(T1 − r +X1 −W1)

· · · · · ·

∗ −(
∑l−1

j=0

∑j
i=0(−r)

iTj−iXk−j−Wk)

· · · · · ·

∗ −(
∑l−1

i=0(−r)
iTl−1−iXm −Wm+l−1)




Sym(X|W|T|{r})

{q(l+m)(N+1−l−m)+(l−1)m}〈l+m〉.

Let Γ0 be Γ0 with the orientation reversed. Similarly to the above, we have

C(Γ0) ≃




∗ −
∑l

j=0(−r)
jTl−j

∗ −(T1 − r +X1 −W1)

· · · · · ·

∗ −(
∑l−1

j=0

∑j
i=0(−r)

iTj−iXk−j −Wk)

· · · · · ·

∗ −(
∑l−1

i=0(−r)
iTl−1−iXm −Wm+l−1)




Sym(X|W|T|{r})

{q−l+1}.

Thus, C(Γ0)• ≃ C(Γ0){q(l+m)(N+1−l−m)+lm−1}〈l+m〉 and, therefore,

Hom(C(Γ0), C(Γ1)) ∼= C(Γ1)⊗C(Γ0)• ≃ C(Γ1)⊗C(Γ0){q
(l+m)(N+1−l−m)+lm−1}〈l+m〉.
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Let Γ14, . . . ,Γ17 be the MOY graphs in Figure 51. Then

C(Γ0)⊗ C(Γ1) ≃ C(Γ14) ≃ C(Γ15) ≃ C(Γ16)

{[
m+ l − 1

m

]}

≃ C(Γ17)

{[
m+ l

1

]
·

[
m+ l− 1

m

]}

≃ C(∅)

{[
N

m+ l

]
·

[
m+ l

1

]
·

[
m+ l − 1

m

]}
.

So

HomHMF(C(Γ0), C(Γ1)) ∼= C(∅)

{[
l +m− 1

m

]
·

[
l +m

1

]
·

[
N

l +m

]
·q(l+m)(N+1−l−m)+ml−1

}
.

The computation of HomHMF(C(Γ1), C(Γ0)) is very similar. Using the fact that

C(Γ1) ≃




∗ T1 +X1 − r −W1

· · · · · ·

∗
∑k

j=0 TjXk−j − rWk−1 −Wk

· · · · · ·

∗ TlXm − rWm+l−1




Sym(X|W|T|{r})

{q−lm},

one gets C(Γ1)• ≃ C(Γ1){q(l+m)(N+1−l−m)+lm−1}〈l+m〉, where Γ1 is Γ1 with the orien-

tation reversed. So

Hom(C(Γ1), C(Γ0)) ∼= C(Γ0)⊗ C(Γ1)•

≃ C(Γ0)⊗ C(Γ1){q
(l+m)(N+1−l−m)+lm−1}〈l+m〉

≃ C(Γ14){q
(l+m)(N+1−l−m)+lm−1}〈l +m〉 ≃ · · · ≃

≃ C(∅)

{[
l +m− 1

m

]
·

[
l +m

1

]
·

[
N

l+m

]
· q(l+m)(N+1−l−m)+ml−1

}
,

where Γ14 is Γ14 with the orientation reversed.

Lemma 10.14. For µ ∈ Λ and λ ∈ Λ′, let αλ, β̃λ, fµ and g̃µ be the morphisms defined in

the two preceding subsections. We have:

• If |λ| − |µ| < n, then g̃µ ◦ αλ ≃ 0.

• If |µ| − |λ| < m− n, then β̃λ ◦ fµ ≃ 0.

Proof. Note that g̃µ ◦ αλ : C(Γ1) → C(Γ0) is a homogeneous morphism of quantum

degree

2|λ| − (n− 1)(m− n)− 2|µ|+ n(m− n− 1) = 2(|λ| − |µ| − n) +m,
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and β̃λ ◦ fµ : C(Γ0)→ C(Γ1) is a homogeneous morphism of quantum degree

−2|λ|+ (n− 1)(m− n) + 2|µ| − n(m− n− 1) = 2(|µ| − |λ| − (m− n)) +m.

The result follows from Lemma 10.13.

Lemma 10.15. Let ~α, ~β, F and G be the morphisms defined in the preceding two subsec-

tions. Then ~β ◦ F ◦G ◦ ~α and G ◦ ~α ◦ ~β ◦ F are both homotopically nilpotent.

Proof. For λ, µ ∈ Λ′, the (µ, λ)-component of (~β ◦ F ◦G ◦ ~α)k is
∑

λ1,...,λk−1∈Λ′, ν1,...,νk∈Λ

(β̃µ◦fν1 ◦ g̃ν1 ◦αλ1)◦(β̃λ1 ◦fν2 ◦ g̃ν2 ◦αλ2)◦· · ·◦(β̃λk−1
◦fνk ◦ g̃νk ◦αλ).

By Lemma 10.14, for the term corresponding to λ1, . . . , λk−1 ∈ Λ′, ν1, . . . , νk ∈ Λ to be

homotopically non-trivial, we must have

|λ| − |νk| ≥ n,

|ν1| − |µ| ≥ m− n,

|λj | − |νj | ≥ n for j = 1, . . . , k − 1,

|νj+1| − |λj | ≥ m− n for j = 1, . . . , k − 1.

Adding all these inequalities together, we get |λ| − |µ| ≥ km. Note that |λ| − |µ| ≤

(n − 1)(m − n). This implies that (~β ◦ F ◦ G ◦ ~α)k ≃ 0 if km > (n − 1)(m − n). Thus,
~β ◦ F ◦G ◦ ~α is homotopically nilpotent. Since

(G ◦ ~α ◦ ~β ◦ F )k+1 = G ◦ ~α ◦ (~β ◦ F ◦G ◦ ~α)k ◦ ~β ◦ F,

G ◦ ~α ◦ ~β ◦ F is also homotopically nilpotent.

10.4. Graded dimensions of C(Γ), C(Γ0) and C(Γ1)

Lemma 10.16. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 46, where l,m, n are

integers satisfying 0 ≤ n ≤ m ≤ N and 0 ≤ l,m+ l − 1 ≤ N . Then

gdimC(Γ0) = q−lm+m(1 + τq2l−N−1)

m+l−1∏

j=1

(1 + τq2j−N−1),

gdimC(Γ1) =

{
q−lm

∏m+l
j=1 (1 + τq2j−N−1) if l +m ≤ N,

0 if l +m = N + 1,

gdimC(Γ) =





q−lm+m−n
[
m
n

]
(1 + τq2n+2l−N−1)

∏m+l−1
j=1 (1 + τq2j−N−1)

if l +m ≤ N,

q−lm+m
[
m−1
n

]
(1 + τqN+1−2m)

∏m+l−1
j=1 (1 + τq2j−N−1)

if l +m = N + 1.

In particular,

gdimC(Γ) =

[
m− 1

n

]
· gdimC(Γ0) +

[
m− 1

n− 1

]
· gdimC(Γ1). (10.4.1)
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Proof. We mark Γ, Γ0 and Γ1 as in Figure 46. Then C(Γ), C(Γ0) and C(Γ1) are matrix

factorizations over Sym(X|W|T|{r}). The corresponding maximal ideal is

I = (X1, . . . , Xm,W1, . . . ,Wl+m−1, T1, . . . , Tl, r),

where Xj is the jth elementary symmetric polynomial in X and so on.

We compute gdimC(Γ0) first.

From the proof of Lemma 10.13, we know that

C(Γ0) ≃




∗
∑l

j=0(−r)
jTl−j

∗ T1 − r +X1 −W1

· · · · · ·

∗
∑k

j=0

∑j
i=0(−r)

iTj−iXk−j −Wk

· · · · · ·

∗
∑l−1

i=0(−r)
iTl−1−iXm −Wm+l−1




Sym(X|W|T|{r})

{q−(l−1)m}.

So

C(Γ0)/I · C(Γ0) ≃




0 0l
0 01
· · · · · ·

0 0m+l−1




C

{q−(l−1)m},

where 0j means “a 0 of degree 2j”. Then it follows easily that

gdimC(Γ0) = q−lm+m(1 + τq2l−N−1)

m+l−1∏

j=1

(1 + τq2j−N−1).

Next we compute gdimC(Γ1).

If l +m = N + 1, then C(Γ1) ≃ 0. So gdimC(Γ1) = 0.

If l +m ≤ N , then

C(Γ1) ≃




∗ T1 +X1 − r −W1

· · · · · ·

∗
∑k

j=0 TjXk−j − rWk−1 −Wk

· · · · · ·

∗ TlXm − rWm+l−1




Sym(X|W|T|{r})

{q−lm}

and, therefore,

C(Γ1)/I · C(Γ1) ≃




0 01
· · · · · ·

0 0m+l




C

{q−lm}.

So

gdimC(Γ1) = q−lm
m+l∏

j=1

(1 + τq2j−N−1).

Now we compute C(Γ).

Let D = A∪T and E = {r}∪B. Denote by Dj and Ej the jth elementary symmetric

polynomials in D and E. Define
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Uj =
pl+n,N+1(E1, . . . , Ej−1, Dj , . . . , Dl+n)− pl+n,N+1(E1, . . . , Ej , Dj+1, . . . , Dl+n)

Dj − Ej
,

Vj = (−1)j−1pN+1−j(A ∪ Y) +
m∑

k=1

(−1)k+jjXkhN+1−j−k(A ∪ Y)

+
m∑

k=1

m∑

i=1

(−1)k+iiXkXiξN+1−k−i,j(X,A ∪ Y),

V̂j = (−1)j−1pN+1−j(B ∪ Y) +

m+l−1∑

k=1

(−1)k+jjWkhN+1−j−k(B ∪Y)

+

m+l−1∑

k=1

m+l−1∑

i=1

(−1)k+iiWkWiξN+1−k−i,j(W,B ∪ Y),

where ξk,j is defined as in Lemma 8.39. Then, by that lemma, we have

C(Γ) ∼=




U1 D1 − E1

· · · · · ·

Un+l Dn+l − En+l

V1 X1 −A1 − Y1
· · · · · ·

Vm Xm −AnYm−n

V̂1 B1 + Y1 −W1

. . . . . .

V̂m+l−1 Bn+l−1Ym−n −Wm+l−1




Sym(X|Y|W|A|B|T|{r})

{q−ln−(l+n−1)(m−n)}.

Note that

Vj |X1=···=Xm=0 = (−1)j−1pN+1−j(A ∪ Y),

V̂j |W1=···=Wm+l−1=0 = (−1)j−1pN+1−j(B ∪ Y),

Dj |T1=···=Tl=0 = Aj , Ej |r=0 = Bj .

So

C(Γ)/I · C(Γ)

∼=




Ũ1 A1 −B1

· · · · · ·

Ũn An −Bn

Ũn+1 −Bn+1

· · · · · ·

Ũn+l−1 −Bn+l−1

Ũn+l 0

pN (A ∪Y) −A1 − Y1
· · · · · ·

(−1)m−1pN+1−m(A ∪ Y) −AnYm−n

pN (B ∪ Y) B1 + Y1
· · · · · ·

(−1)m+l−2pN+1−(m+l−1)(B ∪ Y) Bn+l−1Ym−n




Sym(Y|A|B)

{q−ln−(l+n−1)(m−n)},
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where

Ũj = Uj |T1=···=Tl=r=0.

Next, we exclude B1, . . . , Bn+l−1 by applying Proposition 3.22 to the first n + l − 1

rows of this matrix factorization. This gives the relations

Bj = Aj =

{
Aj if 1 ≤ j ≤ n,

0 if n+ 1 ≤ j ≤ n+ l − 1,

and

C(Γ)/I·C(Γ) ≃




Ũn+l|Bj=Aj
0

pN (A ∪ Y) −A1 − Y1
· · · · · ·

(−1)m−1pN+1−m(A ∪ Y) −AnYm−n

pN (A ∪ Y) A1 + Y1
· · · · · ·

(−1)m−1pN+1−m(A ∪ Y) AmYm−n

(−1)mpN+1−(m+1)(A ∪ Y) 0m+1

· · · · · ·

(−1)m+l−2pN+1−(m+l−1)(A ∪ Y) 0m+l−1




Sym(Y|A)

{q−ln−(l+n−1)(m−n)}.

By Corollary 3.19, we have

C(Γ)/I·C(Γ) ≃




Ũn+l|Bj=Aj
0

0 −A1 − Y1
· · · · · ·

0 −AnYm−n

pN (A ∪ Y) 01
· · · · · ·

(−1)m+l−2pN+1−(m+l−1)(A ∪ Y) 0m+l−1




Sym(Y|A)

{q−ln−(l+n−1)(m−n)}.

Since m+ l− 1 ≤ N , pN+1−(m+l−1)(A∪Y), . . . , pN (A∪Y) belong to the ideal generated

by A1 + Y1, . . . ,
∑k

j=0 AjYk−j , . . . , AnYm−n. So, by Corollary 3.18, we have

C(Γ)/I · C(Γ) ≃




∗Ũn+l|Bj=Aj
0

0 −A1 − Y1
· · · · · ·

0 −AnYm−n

0 01
· · · · · ·

0 0m+l−1




Sym(Y|A)

{q−ln−(l+n−1)(m−n)}.

Note that, by Lemma 5.1,

Ũn+l|Bj=Aj
= Un+l|T1=···=Tl=r=0,Bj=Aj

=
∂

∂Dl+n
pl+n,N+1(D1, . . . , Dl+n)|Dj=Aj

= (−1)l+n+1(N + 1)hl+n,N+1−l−n(A1, . . . , An, 0 . . . , 0)

= (−1)l+n+1(N + 1)hN+1−l−n(A).
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Using Corollary 8.14, it is easy to see that

C(Γ)/I · C(Γ) ≃




hN+1−l−n(A) 0

0 −A1 − Y1
· · · · · ·

0 −AnYm−n

0 01
· · · · · ·

0 0m+l−1




Sym(Y|A)

{q−ln−(l+n−1)(m−n)}.

Now we exclude Y1, . . . , Ym−n by applying Proposition 3.22 to the second row through

the (m− n+ 1)th row. This gives the relations

Yj = (−1)jhj(A) for j = 0, 1, . . . ,m− n,

and

C(Γ)/I · C(Γ)

≃




hN+1−l−n(A) 0

0 −
∑m−n

j=0 (−1)jhj(A)Am−n+1−j

· · · · · ·

0 −
∑m−n

j=0 (−1)jhj(A)Ak−j

· · · · · ·

0 −(−1)m−nhm−n(A)An

0 01
· · · · · ·

0 0m+l−1




Sym(A)

{q−ln−(l+n−1)(m−n)}.

By (5.1.1), for k = m− n+ 1, . . .m we have

m−n∑

j=0

(−1)jhj(A)Ak−j = −
k∑

j=m−n+1

(−1)jhj(A)Ak−j .

So, using Corollaries 3.19 and 8.14, we get

C(Γ)/I · C(Γ) ≃




hN+1−l−n(A) 0

0 hm−n+1(A)

· · · · · ·

0 hm(A)

0 01
· · · · · ·

0 0m+l−1




Sym(A)

{q−ln−(l+n−1)(m−n)}.

If m+ l ≤ N , then N + 1− l − n ≥ m− n+ 1 and, therefore, hN+1−l−n(A) is in the

ideal (hm−n+1(A), . . . , hm(A)). So, by Corollary 3.18,
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C(Γ)/I · C(Γ) ≃




0 0n+l

0 hm−n+1(A)

· · · · · ·

0 hm(A)

0 01
· · · · · ·

0 0m+l−1




Sym(A)

{q−ln−(l+n−1)(m−n)}.

Thus, by Proposition 3.23,

H(C(Γ)/I · C(Γ)) ∼=




0 0n+l

0 01
. . . . . .

0 0m+l−1




Sym(A)/(hm−n+1(A),...,hm(A))

{q−ln−(l+n−1)(m−n)}.

Since the graded dimension of Sym(A)/(hm−n+1(A), . . . , hm(A)) is
[
m
n

]
qn(m−n), it follows

that

gdimC(Γ) = q−lm+m−n

[
m

n

]
(1 + τq2n+2l−N−1)

m+l−1∏

j=1

(1 + τq2j−N−1).

If m+ l = N +1, then N +1− l−n = m−n and hm(A) is in the ideal (hm−n(A), . . . ,

hm−1(A)). By Lemma 3.15 and Corollary 3.19, we have

C(Γ)/I · C(Γ) ≃




0 hm−n(A)

0 hm−n+1(A)

· · · · · ·

0 hm(A)

0 01
· · · · · ·

0 0m+l−1




Sym(A)

{q−ln−(l+n−1)(m−n)+N+1−2(m−n)}〈1〉

≃




0 hm−n(A)

· · · · · ·

0 hm−1(A)

0 0m
0 01
· · · · · ·

0 0m+l−1




Sym(A)

{q−ln−(l+n+1)(m−n)+N+1}〈1〉.

Thus, by Proposition 3.23,

H(C(Γ)/I · C(Γ)) ≃




0 0m
0 01
. . . . . .

0 0m+l−1




Sym(A)/(hm−n(A),...,hm−1(A))

{q−ln−(l+n+1)(m−n)+N+1}〈1〉.

Since the graded dimension of Sym(A)/(hm−n(A), . . . , hm−1(A)) is
[
m−1
n

]
qn(m−n−1), it

follows that
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gdimC(Γ)

= τq−ln−(l+n+1)(m−n)+N+1+n(m−n−1)

[
m− 1

n

]
(1 + τq2m−N−1)

m+l−1∏

j=1

(1 + τq2j−N−1)

= q−lm+m

[
m− 1

n

]
(1 + τqN+1−2m)

m+l−1∏

j=1

(1 + τq2j−N−1).

Finally, let us consider equation (10.4.1).

Assume m + l = N + 1. Then gdimC(Γ1) = 0 and it is straightforward to see that

gdimC(Γ) =
[
m−1
n

]
gdimC(Γ0). So (10.4.1) is true.

Assume m+ l ≤ N . Note that
[
m

n

]
= q−n

[
m− 1

n

]
+ qm−n

[
m− 1

n− 1

]
= qn

[
m− 1

n

]
+ q−m+n

[
m− 1

n− 1

]
.

So
[
m

n

]
(1 + τq2n+2l−N−1)

=

(
qn
[
m− 1

n

]
+ q−m+n

[
m− 1

n− 1

])
+ τq2n+2l−N−1

(
q−n

[
m− 1

n

]
+ qm−n

[
m− 1

n− 1

])

= qn
[
m− 1

n

]
(1 + τq2l−N−1) + q−m+n

[
m− 1

n− 1

]
(1 + τq2m+2l−N−1).

Multiplying by q−lm+m−n
∏m+l−1

j=1 (1 + τq2j−N−1), we get (10.4.1).

10.5. Proof of Theorem 10.1. After all the above preparations, we are now ready to

prove Theorem 10.1.

Lemma 10.17. Let Γ, Γ0 and Γ1 be the MOY graphs in Figure 46, where l,m, n are

integers satisfying 0 ≤ n ≤ m ≤ N and 0 ≤ l,m+l−1 ≤ N . Then there exist homogeneous

morphisms

Φ : C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
→ C(Γ),

Ψ : C(Γ)→ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}

preserving the Z2 ⊕ Z-grading such that

Ψ ◦ Φ ≃ idC(Γ0){[m−1
n ]}⊕C(Γ1){[m−1

n−1]}
.

Proof. Let F,G, ~α, ~β be the morphisms defined in Subsections 10.1 and 10.2. Define

Φ0 : C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
→ C(Γ),

Ψ0 : C(Γ)→ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
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by Φ0 = (F, ~α) and Ψ0 = (G, ~β)T . Then

Ψ0 ◦ Φ0 ≃

(
id G ◦ ~α

~β ◦ F id

)
.

By Lemma 10.15, ~β ◦F ◦G ◦ ~α and G ◦ ~α ◦ ~β ◦F are homotopically nilpotent. Therefore,

id−~β◦F ◦G◦~α and id−G◦~α◦ ~β◦F are homotopically invertible. In fact, their homotopic

inverses are

(id−~β ◦ F ◦G ◦ ~α)−1 ≃
∞∑

k=0

(~β ◦ F ◦G ◦ ~α)k,

(id−G ◦ ~α ◦ ~β ◦ F )−1 ≃
∞∑

k=0

(G ◦ ~α ◦ ~β ◦ F )k.

Note that the sums on the right hand side are finite sums in the HomHMF. Now define

Φ = Φ0,

Ψ =

(
(id−G ◦ ~α ◦ ~β ◦ F )−1 0

0 (id−~β ◦ F ◦G ◦ ~α)−1

)
◦

(
id −G ◦ ~α

−~β ◦ F id

)
◦Ψ0.

It is straightforward to check that Φ and Ψ satisfy all the requirements in the lemma.

Proof of Theorem 10.1. By Lemmas 10.17 and 4.15, we know that there exists a graded

matrix factorization M such that

C(Γ) ≃ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
⊕M.

But, by Lemma 10.16,

gdimM = gdimC(Γ)−

[
m− 1

n

]
· gdimC(Γ0)−

[
m− 1

n− 1

]
· gdimC(Γ1) = 0.

Thus, by Corollary 4.10, M ≃ 0. So

C(Γ) ≃ C(Γ0)

{[
m− 1

n

]}
⊕ C(Γ1)

{[
m− 1

n− 1

]}
.



11. Direct sum decomposition (V)

The objective of this section is to prove Theorem 11.1, which categorifies [32, Proposi-

tion A.10] and further generalizes direct sum decomposition (IV) (Theorem 10.1). The

proof of decomposition (V) is different from that of decompositions (I)–(IV) in the sense

that we do not explicitly construct the homotopy equivalences in decomposition (V). In-

stead, we use the Krull–Schmidt property of the category hmf to prove this decomposition.

Theorem 11.1. Let m,n, l be non-negative integers satisfying n + l,m + l ≤ N . For

max{m− n, 0} ≤ k ≤ m+ l and max{m−n, 0} ≤ j ≤ m, define Γ1
k, Γ

3
k, Γ

2
j and Γ4

j to be

the MOY graphs in Figure 52. Then, for max{m− n, 0} ≤ k ≤ m+ l,

C(Γ1
k) ≃

m⊕

j=max{m−n,0}

C(Γ2
j )

{[
l

k − j

]}
, (11.0.1)

C(Γ3
k) ≃

m⊕

j=max{m−n,0}

C(Γ4
j )

{[
l

k − j

]}
, (11.0.2)

where we use the convention
[
a
b

]
= 0 if b < 0 or b > a.
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11.1. The proof. The cases n ≥ m and n < m of Theorem 11.1 may seem different.

But, by flipping Γ1
k, Γ

3
k, Γ

2
j and Γ4

j horizontally and shifting the indicies k, j, one can

easily check that the n ≥ m (resp. m ≥ n) case of equation (11.0.1) is equivalent to the

m ≥ n (resp. n ≥ m) case of equation (11.0.2). So, without loss of generality, we prove

Theorem 11.1 under the assumption n ≥ m.

[144]
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We prove Theorem 11.1 by inducting on k. If k = 0, then decompositions (11.0.1) and

(11.0.2) are trivially true. We prove the k = 1 case in the following lemma.
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Lemma 11.2. Let Γ1
k, Γ

3
k, Γ

2
j and Γ4

j to be as in Theorem 11.1. Assume that n ≥ m.

Then

C(Γ1
1) ≃ C(Γ

2
1)⊕ C(Γ

2
0){[l]}, (11.1.1)

C(Γ3
1) ≃ C(Γ

4
1)⊕ C(Γ

4
0){[l]}. (11.1.2)

Proof. The proofs of (11.1.1) and (11.1.2) are very similar. So we only prove (11.1.1)

here and leave (11.1.2) to the reader.
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Consider the MOY graph Γ in Figure 54. Applying decomposition (IV) (Theorem 10.1)

to the left square in Γ, we get C(Γ) ≃ C(Γ1
1) ⊕ C(Γ′){[m − 1]}, where Γ′ is given in

Figure 55. By Corollary 6.11 and decomposition (II) (Theorem 6.12), we have C(Γ′) ≃

C(Γ′′) ≃ C(Γ2
0){[m+ l]}. Thus,

C(Γ) ≃ C(Γ1
1)⊕ C(Γ

2
0){[m− 1][m+ l]}. (11.1.3)
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Now apply decomposition (IV) to the right square in Γ. This gives C(Γ) ≃ C(Γ2
1) ⊕

C(Γ′′′){[m+ l − 1]}, where Γ′′′ is given in Figure 56. By Corollary 6.11 and decomposi-

tion (II) , we have C(Γ′′′) ≃ C(Γ′′′′) ≃ C(Γ2
0){[m]}. Thus,

C(Γ) ≃ C(Γ2
1)⊕ C(Γ

2
0){[m][m+ l − 1]}. (11.1.4)

6

6

-*

Y

6

6

6

n

m

m − 1

m + l

m + l

1
n − m

n − m + 1

Γ′′′

6

6

6

-

6

6 6

6

n

m

m

1m − 1

n − m

m + l

n + l

Γ′′′′

Fig. 56

Note that [m][m + l − 1] − [m − 1][m + l] = [l]. So, by the Krull–Schmidt property

of the category hmf (Proposition 4.17 and Lemma 4.18), we deduce that (11.1.3) and

(11.1.4) imply (11.1.1).

With the above initial case in hand, we are ready to prove Theorem 11.1 in general.

Proof of Theorem 11.1. From the above, we know that (11.0.1) and (11.0.2) are true for

k = 0, 1. Now assume (11.0.1) and (11.0.2) are true for a given k ≥ 1 and all m,n, l

satisfying the conditions in Theorem 11.1. We claim that (11.0.1) and (11.0.2) are also

true for k+1. The proofs for the k+1 cases of (11.0.1) and (11.0.2) are very similar. We

only prove (11.0.1) for k + 1 here and leave (11.0.2) to the reader.

Recall that Γ1
k+1 and Γ2

j+1 are the MOY graphs in the first row of Figure 57. We define

Γ̃1
k+1 and Γ̃2

j+1 to be the MOY graphs in the second row in Figure 57. By Corollary 6.11
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and decomposition (II) (Theorem 6.12), we have

C(Γ̃1
k+1) ≃ C(Γ

1
k+1){[k + 1]}, C(Γ̃2

j+1) ≃ C(Γ
2
j+1){[j + 1]}.

Case 1: k ≤ l. Apply (11.1.1) to the upper rectangle in Γ̃1
k+1. This gives

C(Γ̃1
k+1) ≃ C(Γ̂

1
k)⊕ C(Γ

1
k){[l − k]},

where Γ̂1
k is the MOY graph in Figure 58 and Γ1

k is given in Figure 52.
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Recall that we assume (11.0.1) is true for the given k and all m,n, l satisfying the con-

ditions in Theorem 11.1. Thus, we can apply (11.0.1) to the lower rectangle in Γ̂1
k and

get

C(Γ̂1
k) ≃

m−1⊕

j=0

C(Γ̃2
j+1)

{[
l + 1

k − j

]}

≃
m−1⊕

j=0

C(Γ2
j+1)

{
[j + 1]

[
l + 1

k − j

]}
=

m⊕

j=0

C(Γ2
j )

{
[j]

[
l + 1

k − j + 1

]}
.

Again, recall that we assume (11.0.1) is true for Γ1
k. That is,

C(Γ1
k) ≃

m⊕

j=0

C(Γ2
j)

{[
l

k − j

]}
.

Note that [j]
[

l+1
k−j+1

]
+ [l − k]

[
l

k−j

]
=
[

l
k+1−j

]
[k + 1]. So, combining the above, we get

C(Γ1
k+1){[k + 1]} ≃ C(Γ̃1

k+1) ≃
m⊕

j=0

C(Γ2
j )

{[
l

k + 1− j

]
[k + 1]

}
.

By Proposition 4.21, this implies

C(Γ1
k+1) ≃

m⊕

j=0

C(Γ2
j )

{[
l

k + 1− j

]}
.

So (11.0.1) is true for k + 1 if k ≤ l.

Case 2: k > l. In this case, we apply (11.1.2) to the upper rectangle of Γ̂1
k. This gives

C(Γ̂1
k) ≃ C(Γ̃

1
k+1)⊕ C(Γ

1
k){[k − l]}.

Note that, in this case, we also have

C(Γ̂1
k) ≃

m⊕

j=0

C(Γ2
j)

{
[j]

[
l + 1

k − j + 1

]}
and C(Γ1

k) ≃
m⊕

j=0

C(Γ2
j )

{[
l

k − j

]}
.
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Note that [j]
[

l+1
k−j+1

]
− [k − l]

[
l

k−j

]
=
[

l
k+1−j

]
[k + 1]. So, by Lemma 4.18, we have

C(Γ1
k+1){[k + 1]} ≃ C(Γ̃1

k+1) ≃
m⊕

j=0

C(Γ2
j )

{[
l

k + 1− j

]
[k + 1]

}
.

By Proposition 4.21, this implies

C(Γ1
k+1) ≃

m⊕

j=0

C(Γ2
j )

{[
l

k + 1− j

]}
.

So (11.0.1) is true for k + 1 if k > l.



12. Chain complexes associated to knotted MOY graphs

Definition 12.1. A knotted MOY graph is an immersion of an abstract MOY graph into

R2 such that

• the only singularities are finitely many transversal double points in the interior of edges

(that is, away from the vertices),

• we specify the upper edge and the lower edge at each of these transversal double points.

Each transversal double point in a knotted MOY graph is called a crossing. We follow

the usual sign convention for crossings given in Figure 59.

�I

+

I �

−

Fig. 59

If there are crossings in an edge, these crossing divide this edge into several parts. We

call each part a segment of the edge.

Note that colored oriented link/tangle diagrams and (embedded) MOY graphs are

special cases of knotted MOY graphs.

Definition 12.2. A marking of a knotted MOY graph D consists of the following:

1. A finite collection of marked points on D such that

• every segment of every edge of D has at least one marked point;

• all the end points (vertices of valence 1) are marked;

• none of the crossings and internal vertices (vertices of valence at least 2) are marked.

2. An assignment of pairwise disjoint alphabets to the marked points such that the al-

phabet associated to a marked point on an edge of colorm hasm independent indeter-

minates. (Recall that an alphabet is a finite collection of homogeneous indeterminates

of degree 2.)

Given a knotted MOY graph D with a marking, we cut D at the marked points. This

produces a collection {D1, . . . , Dm} of simple knotted MOY graphs marked only at their

end points. We call each Di a piece of D. It is easy to see that each Di is one of the

following:

[149]
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(i) an oriented arc from one marked point to another,

(ii) a star-shaped neighborhood of a vertex in an (embedded) MOY graph,

(iii) a crossing with colored branches.

For a given Di, let X1, . . . ,Xni
be the alphabets assigned to the end points of Di,

among which X1, . . . ,Xki
are assigned to exits and Xki+1, . . . ,Xni

are assigned to en-

trances. Let Ri = Sym(X1| · · · |Xni
) and wi =

∑ki

j=1 pN+1(Xj) −
∑ni

j=ki+1 pN+1(Xj).

Then the chain complex C(Di) associated to Di is an object of hChb(hmfRi,wi
).

If Di is of type (i) or (ii), then it is an (embedded) MOY graph, and its matrix

factorization C(Di) is an object of hmfRi,wi
. We define both the unnormalized chain

complex Ĉ(Di) and the normalized chain complex C(Di) to be

Ĉ(Di) = C(Di) = 0→ C(Di)→ 0, (12.0.1)

where C(Di) has homological grading 0. (The abuse of notations here should not be

confusing.)

If Di is of type (iii), that is, a colored crossing, then the definitions of Ĉ(Di) and

C(Di) are much more complex. The chain complexes associated to colored crossings will

be defined in Definition 12.16 below.

Remark 12.3. In the present paper, Ĉ(∗) stands for the unnormalized chain complex of

∗ and C(∗) stands for the normalized chain complex of ∗. For pieces of types (i) and (ii),

there is no difference between their normalized and unnormalized chain complexes. For

a piece of type (iii), that is, a colored crossing, these two complexes differ by a shift of

the Z2 ⊕ Z⊕2-grading. See Definition 12.16 below for details.

Definition 12.4. The chain complex associated to D is defined to be

Ĉ(D) :=

m⊗

i=1

Ĉ(Di),

C(D) :=

m⊗

i=1

C(Di),

where the tensor product is done over the common end points. For example, for two

pieces Di1 and Di2 of D, let W1, . . . ,Wl be the alphabets associated to their common

end points. Then, in the above tensor product,

C(Di1 )⊗ C(Di2 ) = C(Di1)⊗Sym(W1|···|Wl) C(Di2 ).

If D is closed, that is, has no endpoints, then Ĉ(D) and C(D) are objects of

hCh
b(hmfC,0).

If D has endpoints, denote by E1, . . . ,En the alphabets assigned to all end points ofD.

Assume that E1, . . . ,Ek are assigned to exits and Ek+1, . . . ,En are assigned to entrances.

Let R = Sym(E1| · · · |En) and w =
∑k

i=1 pN+1(Ei)−
∑n

j=k+1 pN+1(Ej). Then Ĉ(D) and

C(D) are objects of hChb(hmfR,w).

As objects of hChb(hmfR,w), Ĉ(D) and C(D) have a Z2-grading, a quantum grading

and a homological grading.
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In the rest of this section, we define and study the chain complexes associated to

colored crossings. For this purpose, we need to understand morphisms between matrix

factorizations associated to MOY graphs of the type shown in Figure 60.
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12.1. Change of base ring. There is a change of base ring involved in the computation

of HomHMF(C(Γ
2
k), ∗), which is the subject of this subsection.

Let A = {a1, . . . , am}, B = {b1, . . . , bn} and X = {x1, . . . , xm+n} be alphabets. Denote

by Ak, Bk and Xk the kth elementary symmetric polynomials in A, B and X. Define

Ek = Xk −
k∑

j=0

AjBk−j , (12.1.1)

Hk =

k∑

j=0

(−1)jhj(A)Xk−j −Bk (12.1.2)

=

{∑k
j=0(−1)

jhj(A)Xk−j −Bk if k = 0, 1, . . . , n,
∑k

j=0(−1)
jhj(A)Xk−j if k = n+ 1, . . . , n+m.

Define I1 and I2 to be the homogeneous ideals of Sym(A|B|X) given by

I1 = (E1, . . . , Em+n), I2 = (H1, . . . , Hm+n).

Lemma 12.5. I1 = I2.

Proof. First, note that

k∑

i=0

(−1)ihi(A)Ek−i =
k∑

i=0

(−1)ihi(A)Xk−i −
k∑

i=0

k−i∑

j=0

(−1)ihi(A)Ak−i−jBj

=
k∑

i=0

(−1)ihi(A)Xk−i −
k∑

j=0

Bj

k−j∑

i=0

(−1)ihi(A)Ak−i−j

=

k∑

i=0

(−1)ihi(A)Xk−i −Bk = Hk (by (5.1.1)).

This shows that I2 ⊂ I1.
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Next, we have

k∑

i=0

AiHk−i =

k∑

i=0

Ai

k−i∑

j=0

(−1)k−i−jhk−i−j(A)Xj −
k∑

i=0

AiBk−i

=

k∑

j=0

Xj

k−j∑

i=0

(−1)k−i−jhk−i−j(A)Ai −
k∑

i=0

AiBk−i

= Xk −
k∑

i=0

AiBk−i = Ek (by (5.1.1)).

So I1 ⊂ I2. Altogether, we have I1 = I2.

Note that, for k = n+1, . . . , n+m, Hk ∈ Sym(A|X). Define I3 to be the homogeneous

ideal of Sym(A|X) given by I3 = (Hn+1, . . . , Hn+m).

Lemma 12.6. The quotient ring Sym(A|X)/I3 is a finitely generated graded-free Sym(X)-

module of graded rank
[
m+n
n

]
. As graded Sym(A|X)/I3-modules,

HomSym(X)(Sym(A|X)/I3, Sym(X)) ∼= Sym(A|X)/I3 {q
−2mn}. (12.1.3)

Proof. Note that

Sym(A|X)/I3 ∼= Sym(A|B|X)/I2 ∼= Sym(A|B|X)/I1,

where the isomorphisms preserve both the graded ring structure and the graded Sym(X)-

module structure.

By Theorem 5.3, Sym(A|B|X)/I1 is a finitely generated graded-free Sym(X)-module

of graded rank
[
m+n
n

]
. From the above isomorphism, so is Sym(A|X)/I3.

Note that Sym(A|X)/I3 ∼= Sym(A|B|X)/I1 ∼= Sym(A|B). By Theorem 5.3, there are

a Sylvester operator on Sym(A|B) and a pair of homogeneous Sym(A ∪ B)-bases for

Sym(A|B) that are duals of each other under the Sylvester operator. These induce a pair

of homogeneous Sym(X)-bases {Sλ | λ ∈ Λm,n} and {S′
λ | λ ∈ Λm,n} for Sym(A|X)/I3

and a Sylvester operator

ζ : Sym(A|X)/I3 → Sym(X)

such that, for λ, µ ∈ Λm,n,

ζ(Sλ · S
′
µ) =

{
1 if µ = λc,

0 if µ 6= λc.

(Recall that Λm,n = {λ = (λ1 ≥ · · · ≥ λm) | λ1 ≤ n}, and λc = (n−λm ≥ · · · ≥ n−λ1).)

One can deduce from the above that {ζ(Sλ · ∗) | λ ∈ Λm,n} is the Sym(X)-basis of

HomSym(X)(Sym(A|X)/I3, Sym(X)) dual to {S′
λ | λ ∈ Λm,n}. So the Sym(X)-module map

Sym(A|X)/I3 → HomSym(X)(Sym(A|X)/I3, Sym(X))

given by u 7→ ζ(u ·∗) is a homogeneous isomorphism of Sym(X)-modules of degree −2mn.

It is easy to see that this map is also Sym(A|X)/I3-linear. This proves (12.1.3).

Lemma 12.7. Let A = {a1, . . . , am}, X = {x1, . . . , xm+n}, Y1, . . . ,Yk be alphabets. De-

fine

R = Sym(A|X|Y1| · · · |Yk)/(Hn+1, . . . , Hn+m), R̂ = Sym(X|Y1| · · · |Yk),
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where Hn+1, . . . , Hn+m are the polynomials given in (12.1.2). Then R̂ is a subring

of R through the composition of the standard inclusion and quotient maps R̂ →֒

Sym(A|X|Y1| · · · |Yk)→ R.

Suppose that w is a homogeneous element of R̂ of degree 2(N+1), and M is a finitely

generated graded matrix factorization over R with potential w. Then HomR̂(M, R̂) and

HomR(M,HomR̂(R, R̂)) are both graded matrix factorizations over R of potential −w.

Moreover, as graded matrix factorizations over R,

HomR̂(M, R̂) ∼= HomR(M,HomR̂(R, R̂))
∼= HomR(M,R){q−2mn}. (12.1.4)

Proof. Recall that the R-module structures on HomR̂(M, R̂) and HomR̂(R, R̂) are given

by “multiplication on the inside”. From Lemma 12.6, we know that, as graded R̂-modules,

R ∼= R̂
{[

m+n
n

]}
and, as graded R-modules, HomR̂(R, R̂)

∼= R{q−2mn}. So

HomR(M,HomR̂(R, R̂))
∼= HomR(M,R){q−2mn}

is a graded matrix factorization over R of potential −w.

Define α : HomR̂(M, R̂) → HomR(M,HomR̂(R, R̂)) by α(f)(m)(r) = f(r · m) for

f ∈ HomR̂(M, R̂), m ∈ M, r ∈ R. Define β : HomR(M,HomR̂(R, R̂)) → HomR̂(M, R̂)

by β(g)(m) = g(m)(1) for g ∈ HomR(M,HomR̂(R, R̂)), m ∈ M . It is straightforward to

check that

• α and β are R-module isomorphisms and are inverses of each other;

• α and β preserve both the Z2-grading and the quantum grading.

This implies that HomR̂(M, R̂) is a Z2 ⊕ Z-graded-free R-module isomorphic to

HomR(M,HomR̂(R, R̂))
∼= HomR(M,R){q−2mn}. The differential of M induces on

HomR̂(M, R̂) an R-linear differential making it a graded matrix factorization over R

of potential −w.

To prove the lemma, it remains to check that α and β commute with the differentials

of HomR̂(M, R̂) and HomR(M,HomR̂(R, R̂)). Since α and β are inverses of each other, we

only need to show that α commutes with the differentials. Recall that, if f ∈ HomR̂(M, R̂)

and g ∈ HomR(M,HomR̂(R, R̂)) have Z2-degree ε, then df = (−1)ε+1f ◦ dM and dg =

(−1)ε+1g ◦ dM . So, for any f ∈ HomR̂(M, R̂) with Z2-degree ε and m ∈ M, r ∈ R, we

have

α(df)(m)(r) = (df)(r ·m) = (−1)ε+1f(dM (r ·m)) = (−1)ε+1f(r · dM (m))

= (−1)ε+1α(f)(dM (m))(r) = d(α(f))(m)(r).

This shows that α ◦ d = d ◦ α.

12.2. Computing HomHMF(C(Γ
2
k), ∗). Let Γ2

k be the MOY graph in Figure 60. We

mark it as in Figure 61, where we omit the markings on the two horizontal edges since

these are not explicitly used.



154 12. Chain complexes associated to knotted MOY graphs

6

6

6

6

6

6
�

-

n

m

m−k

k

n+k−m

m+l

n+l

n+l+k

A

X

D

B

Y

E

Γ2
k

6

6

6

6
�

m

m−k

k

n+l

n+l+k

X

D

Y

E

Γupper

6
6

6
6-

n

m−k

n+k−m

m+l

n+l+k

A

D

B

E

Γlower

Fig. 61

Lemma 12.8.

C(Γ2
k) ≃




∗ S1 + Y1 − T1 −B1

· · · · · ·

∗
∑j

i=0(SiYj−i − TiBj−i)

· · · · · ·

∗
∑n+l+k

i=0 (SiYn+l+k−i − TiBn+l+k−i)

∗ Sm

· · · · · ·

∗ Sk+1

∗ Tn
· · · · · ·

∗ Tn−k+m+1




Sym(X|Y|A|B|D)

{q−k(n+l)−(m−k)(n+k−m)},

where

Sj =

j∑

i=0

(−1)ihi(D)Xj−i,

Tj =

j∑

i=0

(−1)ihi(D)Aj−i,

and Xj, Yj, Aj, Bj, Dj, Ej are the jth elementary symmetric polynomials in the corre-

sponding alphabets.

Proof. Cutting Γ2
k horizontally in the middle, we obtain the MOY graphs Γupper and

Γlower in Figure 61. Applying Lemma 8.23 to Γupper, we get

C(Γupper) ≃




∗ S1 + Y1 − E1

· · · · · ·

∗ (
∑j

i=0 SiYj−i)− Ej

· · · · · ·

∗ (
∑n+l+k

i=0 SiYn+l+k−i)− En+l+k

∗ Sm

· · · · · ·

∗ Sk+1




Sym(X|Y|D|E)

{q−k(n+l)}.
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Applying Lemma 8.23 to Γlower, we get

C(Γlower) ≃




∗ E1 − T1 −B1

· · · · · ·

∗ Ej −
∑j

i=0 TiBj−i

· · · · · ·

∗ En+l+k −
∑n+l+k

i=0 TiBn+l+k−i

∗ Tn
· · · · · ·

∗ Tn−k+m+1




Sym(A|B|D|E)

{q−(m−k)(n+k−m)},

Thus,

C(Γ2
k) ≃ C(Γupper)⊗Sym(D|E) C(Γlower)

≃




∗ S1 + Y1 − E1

· · · · · ·

∗ (
∑j

i=0 SiYj−i)− Ej

· · · · · ·

∗ (
∑n+l+k

i=0 SiYn+l+k−i)− En+l+k

∗ Sm

· · · · · ·

∗ Sk+1

∗ E1 − T1 −B1

· · · · · ·

∗ Ej −
∑j

i=0 TiBj−i

· · · · · ·

∗ En+l+k −
∑n+l+k

i=0 TiBn+l+k−i

∗ Tn
· · · · · ·

∗ Tn−k+m+1




Sym(X|Y|A|B|D|E)

{q−k(n+l)−(m−k)(n+k−m)},

From here on, the lemma is obtained by excluding E1, . . . , En+l+k from the base ring by

applying Proposition 3.22 to the rows



∗ E1 − T1 −B1

· · · · · ·

∗ Ej −
∑j

i=0 TiBj−i

· · · · · ·

∗ En+l+k −
∑n+l+k

i=0 TiBn+l+k−i




in the above Koszul matrix factorization.

Lemma 12.9. Let Γ2
k be the MOY graph in Figure 61, and Γ2

k the MOY graph obtained

by reversing the orientation of Γ2
k. Suppose that M is a matrix factorization over R̂ :=

Sym(X|Y|A|B) with potential

w = pN+1(X) + pN+1(Y)− pN+1(A)− pN+1(B).
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Then

HomHMF,R̂(C(Γ
2
k),M) ∼= H(M ⊗R̂ C(Γ

2
k))〈m + n+ l〉{q(l+m+n)(N−l)−m2−n2

},

where H(M ⊗R̂ C(Γ
2
k)) is the usual homology of the chain complex M ⊗R̂ C(Γ

2
k).

Proof. Let Sj and Tj be as in Lemma 12.8. Define

R = Sym(X|Y|A|B|D)/(Sk+1, . . . , Sm).

Let

M =




∗ S1 + Y1 − T1 −B1

· · · · · ·

∗
∑j

i=0(SiYj−i − TiBj−i)

· · · · · ·

∗
∑n+l+k

i=0 (SiYn+l+k−i − TiBn+l+k−i)

∗ Tn
· · · · · ·

∗ Tn−k+m+1




R

,

M =




∗ −(S1 + Y1 − T1 −B1)

· · · · · ·

∗ −
∑j

i=0(SiYj−i − TiBj−i)

· · · · · ·

∗ −
∑n+l+k

i=0 (SiYn+l+k−i − TiBn+l+k−i)

∗ −Tn
· · · · · ·

∗ −Tn−k+m+1




R

.

Then

HomR(M, R) ∼=M〈m+ n+ l〉{q(m+n+l)(N+1)−
∑n+l+k

i=1 2i−
∑n

j=n−k+m+1 2j}.

By Lemma 12.8 and Proposition 3.25,

HomHMF,R̂(C(Γ
2
k),M) := H(HomR̂(C(Γ

2
k),M))

= H(HomR̂(M{q
−k(n+l)−(m−k)(n+k−m)},M))

= H(HomR̂(M,M)){qk(n+l)+(m−k)(n+k−m)}.

Note thatM is finitely generated over R and over R̂. By Lemma 12.7,

HomR̂(M,M) ∼=M ⊗R̂ HomR̂(M, R̂) ∼=M ⊗R̂ HomR(M, R){q−2k(m−k)}.

Altogether, we have

HomHMF,R̂(C(Γ
2
k),M) ∼= H(HomR̂(M,M)){qk(n+l)+(m−k)(n+k−m)}

∼= H(M ⊗R̂ HomR(M, R)){qk(n+l)+(m−k)(n+k−m)−2k(m−k)}

∼= H(M ⊗R̂M)〈m+ n+ l〉{qς},
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where

ς = k(n+ l) + (m− k)(n+ k −m)− 2k(m− k)

+ (m+ n+ l)(N + 1)−
n+l+k∑

i=1

2i−
n∑

j=n−k+m+1

2j.

On the other hand,

H(M ⊗R̂ C(Γ
2
k))
∼= H(M ⊗R̂M){q−k(m−k)−(m+l)(n+k−m)}.

So

HomHMF,R̂(C(Γ
2
k),M) ∼= H(M ⊗R̂ C(Γ

2
k))〈m + n+ l〉{qς+k(m−k)+(m+l)(n+k+m)}.

One can check that

ς + k(m− k) + (m+ l)(n+ k +m) = (l +m+ n)(N − l)−m2 − n2.

This proves the lemma.

12.3. The chain complex associated to a colored crossing. Let c+m,n and c−m,n

be the colored crossings with marked end points in Figure 62. In this subsection, we

define the chain complexes associated to them, which completes the definition of chain

complexes associated to knotted MOY graphs.

�I

c+m,n

m n

A

X

B

Y I �

c−m,n

m n

A

X

B

Y

Fig. 62

For max{m − n, 0} ≤ k ≤ m, we call ΓL
k and ΓR

k in Figure 63 the kth left and

right resolutions of c±m,n. The following lemma is a special case of decomposition (V)

(Theorem 11.1).

Lemma 12.10. Let m,n be integers such that 0 ≤ m,n ≤ N . For max{m−n, 0} ≤ k ≤ m,

define ΓL
k and ΓR

k to be the MOY graphs in Figure 63. Then C(ΓL
k ) ≃ C(Γ

R
k ).
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Lemma 12.11. Let m,n be integers such that 0 ≤ m,n ≤ N . For max{m − n, 0}

≤ j, k ≤ m,
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HomHMF(C(Γ
L
j ), C(Γ

L
k ))
∼= HomHMF(C(Γ

R
j ), C(Γ

L
k ))

∼= HomHMF(C(Γ
L
j ), C(Γ

R
k ))
∼= HomHMF(C(Γ

R
j ), C(Γ

R
k ))

∼= C(∅)

{[
n+j+k−m

k

][
n+j+k−m

j

][
N+m−n−j−k

m−k

][
N+m−n−j−k

m−j

][
N

n+j+k−m

]
q(m+n)N−n2−m2

}
.

In particular,

• the lowest non-vanishing quantum gradings of these spaces are all (k − j)2,

• the subspaces of homogeneous elements of quantum degree (k − j)2 of these spaces are

1-dimensional and have Z2-grading 0.

Proof. By Lemma 12.10, the above four HomHMF spaces are isomorphic. So, to prove the

lemma, we only need to compute one of these, say HomHMF(C(Γ
R
j ), C(Γ

L
k )).

Let R̂ = Sym(X|Y|A|B). By Lemma 12.9,

HomHMF(C(Γ
R
j ), C(Γ

L
k ))
∼= H(C(ΓL

k )⊗R̂ C(Γ
R
j ))〈m+ n〉{q(m+n)N−n2−m2

},

where ΓR
j is ΓR

j with the orientation reversed.
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Let Γ, Γ′ and Γ′′ be the MOY graphs in Figure 64. Then, by Corollary 6.11 and

decompositions (I)–(II) (Theorems 6.14 and 6.12), we have

C(ΓL
k )⊗R̂ C(Γ

R
j ) = C(Γ) ≃ C(Γ′)

{[
n+j+k−m

k

][
n+j+k−m

j

]}

≃ C(Γ′′)〈j + k〉

{[
n+j+k−m

k

][
n+j+k−m

j

][
N+m−n−j−k

m−k

][
N+m−n−j−k

m−j

]}

≃ C(∅)〈m+ n〉

{[
n+j+k−m

k

][
n+j+k−m

j

][
N+m−n−j−k

m−k

][
N+m−n−j−k

m−j

][
N

n+j+k−m

]}
.

This shows that

HomHMF(C(Γ
R
j ), C(Γ

L
k ))

∼= C(∅)

{[
n+j+k−m

k

][
n+j+k−m

j

][
N+m−n−j−k

m−k

][
N+m−n−j−k

m−j

][
N

n+j+k−m

]
q(m+n)N−n2−m2

}
.

The rest of the lemma follows from the above isomorphism.

Corollary 12.12. Let m,n be integers such that 0 ≤ m,n ≤ N . For max{m− n, 0} ≤

k ≤ m, the matrix factorizations C(ΓL
k ) and C(Γ

R
k ) are naturally homotopic in the sense

that the homotopy equivalences C(ΓL
k )

≃
−→ C(ΓR

k ) and C(Γ
R
k )

≃
−→ C(ΓL

k ) are unique up to

homotopy and scaling.
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Proof. The existence of the homotopy equivalences follows from Lemma 12.10. Their

uniqueness follows from the j = k case of Lemma 12.11.

Corollary 12.13. Let m,n be integers such that 0 ≤ m,n ≤ N . For max{m− n, 0} ≤

j, k ≤ m, up to homotopy and scaling, there exist unique homogeneous morphisms

dLL
j,k : C(ΓL

j )→ C(ΓL
k ), dLR

j,k : C(ΓL
j )→ C(ΓR

k ),

dRL
j,k : C(ΓR

j )→ C(ΓL
k ), dRR

j,k : C(ΓR
j )→ C(ΓR

k )

which

• have quantum degree (j − k)2 and Z2-degree 0,

• are homotopically non-trivial.

Moreover, up to homotopy and scaling, every square in the diagram below commutes,

where the vertical morphisms are either identity or the natural homotopy equivalences

from Corollary 12.12.

C(ΓL
j )

dLL
j,k //

≃

��

C(ΓL
k )

=

��
C(ΓR

j )
dRL
j,k //

≃

��

C(ΓL
k )

≃

��
C(ΓL

j )
dLR
j,k //

≃

��

C(ΓR
k )

=

��
C(ΓR

j )
dRR
j,k // C(ΓR

k )

Proof. This follows easily from Lemma 12.11.

From Corollary 12.13, we know that, up to homotopy and scaling, the morphisms dLL
j,k ,

dRL
j,k , d

LR
j,k and dRR

j,k are identified with each other under the natural homotopy equivalences

C(ΓL
j ) ≃ C(ΓR

j ) and C(ΓL
k ) ≃ C(ΓR

k ). So, without creating any confusion, we drop the

superscripts in the notations and simple denote these morphisms by dj,k.

Definition 12.14. Letm,n be integers such that 0 ≤ m,n ≤ N . For max{m−n, 0}+1 ≤

k ≤ m, define d+k = dk,k−1. For max{m − n, 0} ≤ k ≤ m − 1, define d−k = dk,k+1. Note

that these are homogeneous morphisms of quantum degree 1 and Z2-degree 0.

Theorem 12.15. Let m,n be integers such that 0 ≤ m,n ≤ N .

• For max{m− n, 0}+ 2 ≤ k ≤ m, d+k−1 ◦ d
+
k ≃ 0.

• For max{m− n, 0} ≤ k ≤ m− 2, d−k+1 ◦ d
−
k ≃ 0.

Proof. For max{m−n, 0}+2 ≤ k ≤ m, d+k−1 ◦ d
+
k : C(ΓL

k )→ C(ΓL
k−2) is a homogeneous

morphism of quantum degree 2. But, by Lemma 12.11, the lowest non-vanishing quantum

grading of HomHMF(C(Γ
L
k ), C(Γ

L
k−2)) is 22 = 4. This implies that d+k−1 ◦ d

+
k ≃ 0. The

proof of d−k+1 ◦ d
−
k ≃ 0 is very similar and left to the reader.
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Definition 12.16. Let c±m,n be the colored crossings in Figure 62, R̂ = Sym(X|Y|A|B)

and
w = pN+1(X) + pN+1(Y)− pN+1(A)− pN+1(B).

We first define the unnormalized chain complexes Ĉ(c±m,n).

If m ≤ n, then Ĉ(c+m,n) is defined to be the object

0→ C(ΓL
m)

d+
m−−→ C(ΓL

m−1){q
−1}

d+
m−1
−−−→ · · ·

d+
1−−→ C(ΓL

0 ){q
−m} → 0

of hChb(hmf R̂,w), where the homological grading on Ĉ(c+m,n) is so defined that the term

C(ΓL
k ){q

−(m−k)} has homological grading m− k.

If m > n, then Ĉ(c+m,n) is defined to be the object

0→ C(ΓL
m)

d+
m−−→ C(ΓL

m−1){q
−1}

d+
m−1
−−−→ · · ·

d+
m−n+1
−−−−−→ C(ΓL

m−n){q
−n} → 0

of hChb(hmf R̂,w), where the homological grading on Ĉ(c+m,n) is so defined that the term

C(ΓL
k ){q

−(m−k)} has homological grading m− k.

If m ≤ n, then Ĉ(c−m,n) is defined to be the object

0→ C(ΓL
0 ){q

m}
d−
0−−→ · · ·

d−
m−2
−−−→ C(ΓL

m−1){q}
d−
m−1
−−−→ C(ΓL

m)→ 0

of hChb(hmf R̂,w), where the homological grading on Ĉ(c−m,n) is so defined that the term

C(ΓL
k ){q

m−k} has homological grading k −m.

If m > n , then Ĉ(c−m,n) is defined to be the object

0→ C(Γm−n){q
n}

d−
m−n
−−−−→ · · ·

d−
m−2
−−−→ C(ΓL

m−1){q}
d−
m−1
−−−→ C(ΓL

m)→ 0

of hChb(hmf R̂,w), where the homological grading on Ĉ(c−m,n) is so defined that the term

C(ΓL
k ){q

m−k} has homological grading k −m.

The normalized chain complex C(c±m,n) is defined to be

C(c+m,n) =

{
Ĉ(c+m,m)〈m〉‖ −m‖{qm(N+1−m)} if m = n,

Ĉ(c+m,n) if m 6= n,

C(c−m,n) =

{
Ĉ(c−m,m)〈m〉‖m‖{q−m(N+1−m)} if m = n,

Ĉ(c−m,n) if m 6= n.

(Recall that ‖m‖ means shifting the homological grading by m. See Definition 3.36.)

Corollary 12.17. Replacing the left resolutions ΓL
k in Definition 12.16 by the right

resolutions ΓR
k does not change the isomorphism types of Ĉ(c±m,n) and C(c

±
m,n) as objects

of Chb(hmf R̂,w).

Proof. This is an easy consequence of Lemma 12.10 and Corollaries 12.12 and 12.13.

Corollary 12.18. The isomorphism type of the chain complexes Ĉ(D) and C(D) as-

sociated to a knotted MOY graph D (see Definition 12.4) is independent of the choice of

the marking of D.

Proof. We only need to show that adding or removing an extra marked point on a segment

of D does not change the isomorphism type. Note that adding or removing such an extra
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marked point is equivalent to adding or removing an internal marked point in a piece Dj

of D. (See Definition 12.2.)

If Dj is of type (i) or (ii), that is, an (embedded) MOY graph, then, by Lemma 6.4,

adding or removing an internal marked point does not change the homotopy type of the

matrix factorization of this piece. Moreover, it is easy to see that the differential map of

this piece is 0 with or without the extra internal marked point. So, in this case, the addi-

tion or removal of the extra marked point does not change the isomorphism type of C(D).

If Dj is of type (iii), that is, a colored crossing, then, by Lemma 6.4, adding or

removing an internal marked point does not change the homotopy types of the matrix

factorizations associated to the resolutions of this colored crossing. Moreover, by the

uniqueness part of Corollary 12.13, up to homotopy and scaling, the differential map is

the same with or without the extra internal marked point. So, again, the addition or

removal of the extra marked point does not change the isomorphism type of C(D).

12.4. A null homotopic chain complex. In this subsection, we construct a null

homotopic chain complex that will be useful in Section 13 below. The construction of

this chain complex is similar to the chain complex of a colored crossing.

The following lemma is a special case of decomposition (V) (Theorem 11.1).

Lemma 12.19. Let m,n be integers such that 0 ≤ m,n ≤ N − 1. For max{m− n, 0} ≤

k ≤ m + 1 and max{m − n, 0} ≤ j ≤ m, define Γk and Γ′
j to be the MOY graphs in

Figure 65. Then, for max{m− n, 0} ≤ k ≤ m+ 1,

C(Γk) ≃





C(Γ′
m) if k = m+ 1,

C(Γ′
k)⊕ C(Γ

′
k−1) if max{m− n, 0}+ 1 ≤ k ≤ m,

C(Γ′
max{m−n,0}) if k = max{m− n, 0}.
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Lemma 12.20. Let Γk and Γ′
j be as in Lemma 12.19. Then

HomHMF(C(Γ
′
j), C(Γk)) ∼= C(∅)

{[
n+k+j−m

k

][
n+k+j−m

j

]

[
N+m−n−k−j

m−j

][
N+m−n−k−j

m+1−k

][
N

n+k+j−m

]
q(m+n+1)(N−1)−m2−n2

}
.

In particular,

• HomHMF(C(Γ
′
j), C(Γk)) is supported in Z2-degree 0,

• the lowest non-vanishing quantum grading of HomHMF(C(Γ
′
j), C(Γk)) is equal to

(j − k)(j − k + 1),
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• the subspace of homogeneous elements of HomHMF(C(Γ
′
j), C(Γk)) of quantum degree

(j − k)(j − k + 1) is 1-dimensional.

Proof. By Lemma 12.9, we have

HomHMF(C(Γ
′
j), C(Γk)) ∼= H(C(Γk)⊗R̂ C(Γ

′
j))〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2

},

where R̂ = Sym(X|Y|A|B) and Γ′
j is Γ′

j with its orientation reversed.
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Let Γ, Γ′ and Γ′′ be the MOY graphs in Figure 66. Then, by Corollary 6.11 and

decompositions (I)–(II) (Theorems 6.14 and 6.12), we have

C(Γk)⊗R̂ C(Γ
′
j) = C(Γ) ≃ C(Γ′)

{[
n+k+j−m

k

][
n+k+j−m

j

]}

≃ C(Γ′′)〈j + k + 1〉

{[
n+k+j−m

k

][
n+k+j−m

j

][
N+m−n−k−j

m−j

][
N+m−n−k−j

m+1−k

]}

≃ C(∅)〈m+ n+ 1〉

{[
n+k+j−m

k

][
n+k+j−m

j

][
N+m−n−k−j

m−j

][
N+m−n−k−j

m+1−k

][
N

n+k+j−m

]}
.

Thus,

HomHMF(C(Γ
′
j), C(Γk)) ∼= C(∅)

{[
n+k+j−m

k

][
n+k+j−m

j

]

[
N+m−n−k−j

m−j

][
N+m−n−k−j

m+1−k

][
N

n+k+j−m

]
q(m+n+1)(N−1)−m2−n2

}
.

The rest of the lemma follows from this isomorphism.

Lemma 12.21. For max{m− n, 0} ≤ i, j ≤ m,

Homhmf(C(Γ
′
i), C(Γ

′
j))
∼=

{
C if i = j,

0 if i 6= j.

In the case i = j, Homhmf(C(Γ
′
i), C(Γ

′
i)) is spanned by idC(Γ′

i)
.

Proof. If i > j, then (i−j)(i−j+1) > 0. So Homhmf(C(Γ
′
i), C(Γj)) = 0 by Lemma 12.20.

But, by Lemma 12.19, C(Γj)=C(Γ
′
j)⊕C(Γ

′
j−1). This implies that Homhmf(C(Γ

′
i), C(Γ

′
j))

∼= 0.

If i < j, then (i − (j + 1))(i − (j + 1) + 1) > 0. So Homhmf(C(Γ
′
i), C(Γj+1)) = 0

by Lemma 12.20. But, by Lemma 12.19, C(Γj+1) = C(Γ′
j+1)⊕ C(Γ

′
j). This implies that

Homhmf(C(Γ
′
i), C(Γ

′
j))
∼= 0.
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If i = j, then by Lemma 12.20, Homhmf(C(Γ
′
i), C(Γi+1)) ∼= C. But, by Lemma 12.19,

C(Γi+1) = C(Γ′
i+1) ⊕ C(Γ

′
i) and, from the above, Homhmf(C(Γ

′
i), C(Γ

′
i+1)) = 0. Con-

sequently, Homhmf(C(Γ
′
i), C(Γ

′
i))
∼= C. It follows that C(Γ′

i) is not null homotopic and,

therefore, idC(Γ′
i)

is not null homotopic. So idC(Γ′
i)

spans the 1-dimensional space

Homhmf(C(Γ
′
i), C(Γ

′
i)).

Lemma 12.22. For max{m− n, 0} ≤ j, k ≤ m+ 1,

Homhmf(C(Γj), C(Γk)) ∼=





C⊕ C if max{m− n, 0}+ 1 ≤ j = k ≤ m,

C if j = k = max{m− n, 0} or m+ 1,

C if |j − k| = 1,

0 if |j − k| > 1.

Proof. This follows easily from Lemmas 12.19 and 12.21.

Definition 12.23. Denote by

Jk,k : C(Γ′
k)→ C(Γk), Pk,k : C(Γk)→ C(Γ′

k),

Jk,k−1 : C(Γ′
k−1)→ C(Γk), Pk,k−1 : C(Γk)→ C(Γ′

k−1)

the inclusion and projection morphisms in the decomposition

C(Γk) ≃ C(Γ
′
k)⊕ C(Γ

′
k−1).

Define

δ+k = Jk−1,k−1 ◦ Pk,k−1 : C(Γk)→ C(Γk−1), δ−k = Jk+1,k ◦ Pk,k : C(Γk)→ C(Γk+1).

Then δ+k and δ−k are both homotopically non-trivial homogeneous morphisms preserving

both the Z2-grading and the quantum grading. By Lemma 12.22, up to homotopy and

scaling, δ+k and δ−k are the unique morphisms with such properties.

Lemma 12.24. δ+k−1 ◦ δ
+
k ≃ 0, δ−k+1 ◦ δ

−
k ≃ 0.

Proof. From Lemma 12.22, we have

Homhmf(C(Γk), C(Γk−2)) ∼= Homhmf(C(Γk), C(Γk+2)) ∼= 0.

The assertion follows from this.

Let R̂ = Sym(X|Y|A|B) and w = pN+1(X) + pN+1(Y) − pN+1(A) − pN+1(B). The

above discussion implies the following.

Proposition 12.25. Let k1 and k2 be integers such that max{m−n, 0}+1 ≤ k1 ≤ k2 ≤

m. Then

0→ C(Γ′
k2
)

Jk2,k2−−−−→ C(Γk2 )
δ+
k2−−→ · · ·

δ+
k1+1

−−−−→ C(Γk1)
Pk1,k1−1

−−−−−−→ C(Γ′
k1−1)→ 0,

0→ C(Γ′
k1−1)

Jk1,k1−1

−−−−−−→ C(Γk1)
δ−
k1−−→ · · ·

δ−
k2−1

−−−−→ C(Γk2)
Pk2 ,k2−−−−→ C(Γ′

k2
)→ 0

are both chain complexes over hmfR̂,w and are isomorphic in Ch
b(hmfR̂,w) to

k2⊕

j=k1−1

(0→ C(Γ′
j)

≃
−→ C(Γ′

j)→ 0),

which is homotopic to 0 (that is, isomorphic in hCh
b(hmfR̂,w) to 0).
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12.5. Explicit forms of the differential maps. In the proof of the invariance of sl(N)

homology, we need to use explicit forms of the differential maps in the chain complexes

defined in the previous two subsections. In this subsection, we give one construction of

such explicit forms. (There is more than one explicit construction of the same differential

map. See for example [29, Figure 17].)
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Consider the MOY graphs and morphisms in Figure 67. Observe that

• φk,1, φk,1, φk,2, φk,2 are the morphisms associated to the apparent edge splittings and

mergings (see Definition 8.10).

• χ0 and χ1 are the morphisms from Proposition 8.21 (more precisely, Corollary 10.3).

• hk, hk are the morphisms induced by the bouquet moves (see Corollary 6.11, Lemma 8.4

and Remark 8.5).

We define d+k and d−k−1 to be

d+k = φk,2 ◦ hk ◦ (χ
1 ⊗ χ1) ◦ φk,1,

d−k−1 = φk,1 ◦ (χ
0 ⊗ χ0) ◦ hk ◦ φk,2.

Theorem 12.26. d+k and d−k−1 are homotopically non-trivial homogeneous morphisms of

Z2-degree 0 and quantum degree 1− l.

When l = 0, d+k and d−k−1 are explicit forms of the differential maps of the chain

complexes associated to colored crossings defined in Definition 12.16.

When l = 1, d+k and d−k−1 are explicit forms of the differential maps δ+k and δ−k−1 of

the null homotopic chain complexes in Proposition 12.25.

Consider the diagram in Figure 68, where the morphisms are induced by the apparent

local changes of MOY graphs. To prove Theorem 12.26, we need the following lemma.
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Lemma 12.27.

(φ′1 ⊗ φ
′
2) ◦ φ

′
3 ≈ h ◦ (χ

1 ⊗ χ1) ◦ φ3 ◦ (φ1 ⊗ φ2),

φ′3 ◦ (φ
′
1 ⊗ φ

′
2) ≈ (φ1 ⊗ φ2) ◦ φ3 ◦ (χ

0 ⊗ χ0) ◦ h.

That is, the diagram in Figure 68 commutes up to homotopy and scaling in both directions.

Proof. Let

f = (φ′1 ⊗ φ
′
2) ◦ φ

′
3, f = φ′3 ◦ (φ

′
1 ⊗ φ

′
2),

g = h ◦ (χ1 ⊗ χ1) ◦ φ3 ◦ (φ1 ⊗ φ2), g = (φ1 ⊗ φ2) ◦ φ3 ◦ (χ
0 ⊗ χ0) ◦ h.

Then f, f , g, g are homogeneous morphisms of Z2-degree 0 and quantum degree τ :=

m− k + 1−m(n+ k −m)− nk.

Using decomposition (II) (Theorem 6.12), we have

C(Γ′) ≃ C(Γ)

{
[n+ k]

[
n+ k − 1

m

][
n+ k − 1

n

]}
.

Denote by ©n+k an oriented circle colored by n+ k. It is easy to check that

HomHMF(C(Γ), C(Γ
′)) ∼= HomHMF(C(Γ

′), C(Γ))

∼= H(©n+k)〈n+ k〉

{
[n+ k]

[
n+ k − 1

m

][
n+ k − 1

n

]
q(n+k)(N−n−k)

}

∼= C(∅)

{[
N

n+ k

]
[n+ k]

[
n+ k − 1

m

][
n+ k − 1

n

]
q(n+k)(N−n−k)

}
.

Observe that:

• These spaces are supported in Z2-degree 0.

• The lowest non-vanishing quantum grading of these spaces is τ .
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• The subspaces of these spaces of homogeneous elements of quantum grading τ are

1-dimensional.

Thus, to prove that f ≈ g and f ≈ g, we only need to show that f, f, g, g are all

homotopically non-trivial.

By Lemma 8.11, we have

f ◦m(Sλm,n+k−1−m
(A) · Sλn,k−1

(B) · (−r)n+k−1) ◦ f ≈ idC(Γ) .

This implies that f, f are not homotopic to 0.

By Corollary 10.3, we have

g ◦m(Sλm,n+k−1−m
(−X) · Sλn,k−1

(−Y) · (−r)n+k−1) ◦ g

≈ (φ1 ⊗ φ2) ◦ φ3 ◦m(Sλm,n+k−1−m
(−X) · Sλn,k−1

(−Y) · (−r)n+k−1) ◦ (χ0 ⊗ χ0)

◦ (χ1 ⊗ χ1) ◦ φ3 ◦ (φ1 ⊗ φ2)

≈ (φ1 ⊗ φ2) ◦ φ3 ◦m
(
Sλm,n+k−1−m

(−X) · Sλn,k−1
(−Y) · (−r)n+k−1

·
( m∑

j=0

(−r)m−jAj

)
·
( n∑

i=0

(−r)n−iBi

))
◦ φ3 ◦ (φ1 ⊗ φ2)

=
m∑

j=0

n∑

i=0

(φ1 ⊗ φ2) ◦ φ3 ◦m(Sλm,n+k−1−m
(−X) · Aj · Sλn,k−1

(−Y)

· Bi · (−r)
2n+m+k−1−i−j) ◦ φ3 ◦ (φ1 ⊗ φ2),

where Aj , Bj are the jth elementary symmetric polynomials in A and B. But, by Lem-

ma 8.11, the only homotopically non-trivial term on the right hand side is the one with

j = m, i = n. So

g ◦m(Sλm,n+k−1−m
(−X) ·Sλn,k−1

(−Y) · (−r)n+k−1)◦g ≈ φ3 ◦m((−r)n+k−1)◦φ3 ≈ idC(Γ) .

Thus, g, g are not homotopic to 0.

Proof of Theorem 12.26. It is easy to check that d+k and d−k−1 are homogeneous mor-

phisms of Z2-degree 0 and quantum degree 1− l. Recall that the differential maps of the

complexes in Definition 12.16 and Proposition 12.25 are homotopically non-trivial homo-

geneous morphisms uniquely determined up to homotopy and scaling by their quantum

degrees. So, to prove Theorem 12.26, we only need to show that, as morphisms of matrix

factorizations, d+k and d−k−1 are not null homotopic.

Consider the MOY graphs in Figure 69, where the morphisms are induced by the

apparent local changes of the MOY graphs. Note that, as morphisms between C(Γ̂k) and

C(Γ̂k−1),

d+k = φ4 ◦ h2 ◦ (χ
1 ⊗ χ1) ◦ φ3, d−k−1 = φ3 ◦ (χ

0 ⊗ χ0) ◦ h2 ◦ φ4.

So, by Lemma 12.27, we have

h3 ◦ d
+
k ◦ h1 ◦ (φ1 ⊗ φ2) ≈ φ4 ◦ (φ5 ⊗ φ6) ◦ h4 ◦ φ3,

(φ1 ⊗ φ2) ◦ h1 ◦ d
−
k−1h3 ≈ φ3 ◦ h4 ◦ (φ5 ⊗ φ6) ◦ φ4 ≈ φ3 ◦ h4 ◦ φ4 ◦ (φ5 ⊗ φ6),
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where the morphisms on the right hand side are depicted in Figure 70. Note that some

morphisms in Figures 69 and 70 are given the same notations. This is because they are

induced by the same local changes of MOY graphs.
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Note that φ7 ◦ (φ5 ⊗ φ6) ◦ φ4 ≈ φ0 ◦ φ3 ◦ h4 ◦ (φ5 ⊗ φ6). So, by Lemma 8.11, we have

φ7 ◦ (φ5 ⊗ φ6) ◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E) · Bn+k−1)

◦ h3 ◦ d
+
k ◦ h1 ◦ (φ1 ⊗ φ2) ◦m(Sλn+k,m+l−k

(−X)) ◦ φ0

≈ φ7 ◦ (φ5 ⊗ φ6) ◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E) · Bn+k−1)

◦ φ4 ◦ (φ5 ⊗ φ6) ◦ h4 ◦ φ3 ◦m(Sλn+k,m+l−k
(−X)) ◦ φ0

≈ φ7 ◦ (φ5 ⊗ φ6) ◦ φ4 ◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E) · Bn+k−1)

◦ (φ5 ⊗ φ6) ◦ h4 ◦ φ3 ◦m(Sλn+k,m+l−k
(−X)) ◦ φ0

≈ φ0 ◦ φ3 ◦ h4 ◦ (φ5 ⊗ φ6) ◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E) ·Bn+k−1)

◦ (φ5 ⊗ φ6) ◦ h4 ◦ φ3 ◦m(Sλn+k,m+l−k
(−X)) ◦ φ0

≈ φ0 ◦m(Sλn+k,m+l−k
(−X)) ◦ φ0 ≈ idC(Γ),

where Bn+k−1 is the (n+ k − 1)th elementary symmetric polynomial in B. This implies

that d+k is not null homotopic.

Similarly, note that φ0 ◦ φ3 ≈ φ7 ◦ φ4 ◦ h4. So, by Lemma 8.11 again, we have

φ0 ◦m(Xm+l−k) ◦ (φ1 ⊗ φ2) ◦ h1 ◦ d
−
k−1h3 ◦m(Sλm,n+k−1−m

(D) · Sλn,k−1
(E))

◦ (φ5 ⊗ φ6) ◦m(Sλn+k−1,m+l+1−k
(B)) ◦ φ7

≈ φ0 ◦m(Xm+l−k) ◦ φ3 ◦ h4 ◦ φ4 ◦ (φ5 ⊗ φ6)

◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E)) ◦ (φ5 ⊗ φ6) ◦m(Sλn+k−1,m+l+1−k
(B)) ◦ φ7

≈ φ0 ◦ φ3 ◦ h4 ◦m(Xm+l−k) ◦ φ4 ◦ (φ5 ⊗ φ6)

◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E)) ◦ (φ5 ⊗ φ6) ◦m(Sλn+k−1,m+l+1−k
(B)) ◦ φ7
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≈ φ7 ◦ φ4 ◦m(Xm+l−k) ◦ φ4 ◦ (φ5 ⊗ φ6)

◦m(Sλm,n+k−1−m
(D) · Sλn,k−1

(E)) ◦ (φ5 ⊗ φ6) ◦m(Sλn+k−1,m+l+1−k
(B)) ◦ φ7

≈ φ7 ◦m(Sλn+k−1,m+l+1−k
(B)) ◦ φ7 ≈ idC(Γ),

where Xj is the jth elementary symmetric polynomial in X. This implies that d−k−1 is not

null homotopic.

If, in a colored crossing, one of the two branches is colored by 1, then we have a

simpler explicit description of the chain complex associated to this crossing.

Consider the colored crossings c+1,n and c−1,n in Figure 71. Their MOY resolutions are

given in Figure 72.

�I1 n

c+1,n

I �1 n

c−1,n

Fig. 71
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6
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1 n

n+1

Γ1

Fig. 72

Recall that Proposition 8.21 (or, more precisely, Corollary 9.9) gives homogeneous mor-

phisms χ0 : C(Γ0)→ C(Γ1) and χ
1 : C(Γ1)→ C(Γ0) that have Z2-degree 0 and quantum

degree 1. By Proposition 8.30, up to homotopy and scaling, χ0 and χ1 are the unique

homotopically non-trivial homogeneous morphisms with such degrees. Thus, we have the

following corollary.

Corollary 12.28. The unnormalized chain complexes of c+1,n and c−1,n are

Ĉ(c+1,n) = “0→ C(Γ1)︸ ︷︷ ︸
0

χ1

−→ C(Γ0){q
−1}︸ ︷︷ ︸

1

→ 0”,

Ĉ(c−1,n) = “0→ C(Γ0){q}︸ ︷︷ ︸
−1

χ0

−→ C(Γ1)︸ ︷︷ ︸
0

→ 0”,

where the numbers in the under-braces are the homological gradings.

The differential maps in the chain complexes of c±m,1 can also be similarly expressed

as the corresponding χ0 and χ1. The details are left to the reader.

Remark 12.29. Corollary 12.28 shows that, for c±1,n and c±m,1, the chain complexes de-

fined in Definition 12.16 specialize to the corresponding chain complexes defined in [54].

In particular, for c±1,1, the chain complexes defined in Definition 12.16 specialize to the
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corresponding complexes in [19]. So our construction is a generalization of the sl(N)

Khovanov–Rozansky homology.

12.6. The graded Euler characteristic and the Z2-grading. We now prove The-

orem 1.3. First, we introduce the colored rotation number of a closed trivalent MOY

graph.

Let Γ be a closed trivalent MOY graph. Replace each edge of Γ of color m by m

parallel edges colored by 1 and replace each vertex of Γ, as depicted in Figure 2, to the

corresponding configuration in Figure 73, in which each strand is an edge colored by 1.

This changes Γ into a collection of disjoint embedded circles in the plane.

666 6

II � �
. . . . . . or

66 66

�� I I
. . . . . .

Fig. 73

Definition 12.30. The colored rotation number cr(Γ) of Γ is defined to be the sum of

the usual rotation numbers of these circles. (See equation (2.3.1).)

Recall that the homology H(Γ) of a MOY graph Γ is defined in Definition 6.5, and

the graded dimension gdim(C(Γ)) is defined to be

gdim(C(Γ)) =
∑

ε,i

τεqiHε,i(Γ) ∈ C[τ, q]/(τ2),

where Hε,i(Γ) is the subspace of H(Γ) of homogeneous elements of Z2-degree ε and

quantum degree i.

Theorem 1.3 follows from the next lemma.

Lemma 12.31. Let Γ be a closed trivalent MOY graph. Then

(1) gdim(C(Γ))|τ=1 = 〈Γ〉N ,

(2) Hε,i(Γ) = 0 if ε− cr(Γ) = 1.

Proof. Recall that, by Theorem 2.4, the sl(N) MOY polynomial 〈Γ〉N is uniquely de-

termined by the equations in Theorem 2.3. But these equations have been categorified

in Corollaries 6.11, 7.1 and Theorems 6.12, 6.14, 9.1, 10.1, 11.1. Thus, gdim(C(Γ))|τ=1

satisfies all the equations in Theorem 2.3. So gdim(C(Γ))|τ=1 = 〈Γ〉N by Theorem 2.4.

Part (2) of the lemma can be proved by double induction on the highest color of edges

of Γ and on the number of edges of Γ with the highest color. The argument is extremely

similar to that in the proof of Theorem 2.4. We leave the details to the reader.

Proof of Theorem 1.3. First, by comparing Definitions 2.5 and 12.16, we can see that the

equation PL(1, q,−1) = RTL(q) follows easily from part (1) of Lemma 12.31.

Next, we consider the Z2-grading. Let D be a diagram of L and Γ be any complete

resolution of D. Note that the number cr(Γ) does not depend on the choice of Γ. We
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define cr(D) = cr(Γ). At each crossing c of D, define an adjustment term a(c) by

a

(
�Im n
)

= a

(
I �m n

)
=

{
m if m = n,

0 if m 6= n,

Define t̂c(D) = cr(D) +
∑

c a(c), where c runs through all crossings of D. Then, by

Definition 12.16 and part (2) of Lemma 12.31,

Hε,i,j(L) = 0 if ε− t̂c(D) = 1 ∈ Z2.

Note that the parity of t̂c(D) is invariant under Reidemeister moves and unknotting (7).

Using these moves, we can change D into a link diagram U without crossings, that is, a

collection of disjoint colored circles. It is clear that t̂c(U) = tc(L). So, as elements of Z2,

t̂c(D) = t̂c(U) = tc(L). This completes the proof of Theorem 1.3.

(7) “Unknotting” means switching the top- and bottom-strands at a crossing.



13. Invariance under fork sliding

In this section, we prove the invariance of the homotopy type of the unnormalized chain

complex associated to a knotted MOY graph under fork sliding. This is the most complex

part of the proof of the invariance of the colored sl(N) link homology. Once we have the

invariance under fork sliding, the invariance of the colored sl(N) link homology reduces to

an easy induction based on the highest color of the link. This approach is introduced in the

polynomial case in [32] and also used for the colored HOMFLYPT homology in [29, 45].

Theorem 13.1 below is the main result of this section.

Theorem 13.1. Let D±
i,j be the knotted MOY graphs in Figure 74. Then Ĉ(D+

i,0) ≃

Ĉ(D+
i,1) and Ĉ(D−

i,0) ≃ Ĉ(D−
i,1). That is, Ĉ(D+

i,0) (resp. Ĉ(D−
i,0)) is isomorphic in

hCh
b(hmf) to Ĉ(D+

i,1) (resp. Ĉ(D
−
i,1)).
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We prove Theorem 13.1 by induction. The hardest part of the proof is to show that

Theorem 13.1 is true for certain special cases in which either m = 1 or l = 1. Once

[172]
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these special cases are proved, the rest of the induction is quite easy. Next, we state these

special cases of Theorem 13.1 separately as Proposition 13.2 and then use this propo-

sition to prove Theorem 13.1. After that, we devote the rest of this section to proving

Proposition 13.2.

Proposition 13.2. Let D±
i,j be the knotted MOY graphs in Figure 74.

(i) If l = 1, then Ĉ(D+
i,0) ≃ Ĉ(D

+
i,1) and Ĉ(D

−
i,0) ≃ Ĉ(D−

i,1) for i = 1, 4.

(ii) If m = 1, then Ĉ(D+
i,0) ≃ Ĉ(D

+
i,1) and Ĉ(D

−
i,0) ≃ Ĉ(D

−
i,1) for i = 2, 3.

Proof of Theorem 13.1 (assuming Proposition 13.2 is true). Each homotopy equivalence

in Theorem 13.1 can be proved by induction on m or l. We only give details for the proof

of

Ĉ(D+
1,0) ≃ Ĉ(D+

1,1). (13.0.1)

The proof of the rest of Theorem 13.1 is very similar and left to the reader.

We prove (13.0.1) by induction on l. The l = 1 case is covered by part (i) of Proposi-

tion 13.2. Assume that (13.0.1) is true for some l = k ≥ 1. Consider l = k + 1.
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Let D̃+
10 and D̃+

11 be the first and last knotted MOY graphs in Figure 75. By de-

composition (II) (Theorem 6.12), we have Ĉ(D̃+
10)
∼= Ĉ(D+

10){[k + 1]} and Ĉ(D̃+
11)
∼=

Ĉ(D+
11){[k + 1]} in Ch

b(hmf). Consider the diagram in Figure 75, where

• h and h are the isomorphisms in Ch
b(hmf) induced by the apparent bouquet moves,

• α is the isomorphism in hCh
b(hmf) given by induction hypothesis,

• β is the isomorphism in hCh
b(hmf) given by part (i) of Proposition 13.2,

• ξ is again the isomorphism in hCh
b(hmf) given by part (i) of Proposition 13.2.

Altogether, we have

Ĉ(D+
10){[k + 1]} ∼= Ĉ(D̃+

10) ≃ Ĉ(D̃+
11)
∼= Ĉ(D+

11){[k + 1]}.

So, by Proposition 4.21, Ĉ(D+
10) ≃ Ĉ(D

+
11) when l = k + 1.
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In the remainder of this section, we concentrate on proving Proposition 13.2. We only

give the detailed proofs of Ĉ(D±
1,0) ≃ Ĉ(D±

1,1) when l = 1. The proof of the rest of the

proposition is very similar and left to the reader.

13.1. Notations used in the proof. In the rest of this section, we fix l = 1. Then D±
10

and D±
11 are the knotted MOY graphs in Figure 76. Keep in mind that we are trying to

prove

Ĉ(D±
10) ≃ Ĉ(D

±
11) if l = 1. (13.1.1)

Several chain complexes appear in the proof of (13.1.1). We list them in this subsection.

In particular, we give names to the MOY graphs and morphisms of matrix factorizations

appearing in these chain complexes. The names will be used throughout the rest of this

section.

6

�I

-

m 1

m+1

n

D+
10

6

�I -m 1

m+1

nD+
11

6

�I

-

m 1

m+1

n

D−
10

6

�I -m 1

m+1

nD−
11

Fig. 76

Note that there is only one crossing in D±
10, which is of the type c±m+1,n. We denote

by d̃±k the differential map of Ĉ(c±m+1,n).
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Fig. 77

Denote by Γ̃k the MOY graph in Figure 77. Then Ĉ(D+
10) is

0→ C(Γ̃m+1)
d̃+
m+1
−−−→ C(Γ̃m){q−1}

d̃+
m−−→ · · ·

d̃+

k̃0+1

−−−−→ C(Γ̃k̃0
){qk̃0−m−1} → 0, (13.1.2)

where k̃0 := max{0,m+ 1− n}. Similarly, Ĉ(D−
10) is

0→ C(Γ̃k̃0
){qm+1−k̃0}

d̃−

k̃0−−→ · · ·
d̃−
m−1
−−−→ C(Γ̃m){q}

d̃−
m−−→ C(Γ̃m+1)→ 0. (13.1.3)

Let Γ′
k and Γ′′

k be the MOY graphs in Figure 78. Let δ±k : C(Γ′
k) → C(Γ′

k∓1) be the

morphisms defined in Definition 12.23 with explicit form given in Theorem 12.26. Let C+

be the chain complex

0→ C(Γ′′
m−1)

Jm−1,m−1
−−−−−−−→ C(Γ′

m−1)
δ+m−1
−−−→ · · ·

δ+
k0+1

−−−−→ C(Γ′
k0
)→ 0, (13.1.4)
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and C− the chain complex

0→ C(Γ′
k0
)

δ−
k0−−→ · · ·

δ−m−2
−−−→ C(Γ′

m−1)
Pm−1,m−1
−−−−−−−→ C(Γ′′

m−1)→ 0, (13.1.5)

where k0 = max{m−n, 0} and Jm−1,m−1, Pm−1,m−1 are defined in Definition 12.23. Then,

by Lemma 12.19 and Proposition 12.25, both C+ and C− are isomorphic in Ch
b(hmf) to

m−1⊕

j=k0

(0→ C(Γ′′
j )

≃
−→ C(Γ′′

j )→ 0),

which means they are homotopic to 0.
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Now consider Ĉ(D±
1,1). Note thatD

±
1,1 has two crossings: one c

±
m,n and one c±1,n. Denote

by d±k the differential map of the c±m,n crossing. From Corollary 12.28, the differential map

c+1,n (resp. c−1,n) is χ
1 (resp. χ0). Let Γk,0 and Γk,1 be the MOY graphs in Figure 79. Then

d±k acts on the left square in Γk,0 and Γk,1, and χ
0, χ1 act on the upper right corners of

Γk,0 and Γk,1. The chain complex Ĉ(D+
1,1) is

0→ C(Γm,1)
d
+
m−−→ C(Γm,0){q

−1} ⊕ C(Γm−1,1){q
−1}

d
+
m−1
−−−→ · · ·

d
+
k+1
−−−→

C(Γk+1,0){q
k−m} ⊕ C(Γk,1){q

k−m}
d
+
k−−→ · · ·

d
+
k0−−→ C(Γk0,0){q

k0−1−m} → 0, (13.1.6)

where k0 = max{m− n, 0} as above and

d+m =

(
χ1

−d+m

)
, d+k =

(
d+k+1 χ1

0 −d+k

)
for k0 < k < m, d+k0

= ( d+k0+1 χ1 ).

Similarly, the chain complex Ĉ(D−
1,1) is
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0→ C(Γk0,0){q
m+1−k0}

d
−
k0−−→ · · ·

d
−
k−1
−−−→ C(Γk,0){q

m+1−k} ⊕ C(Γk−1,1){q
m+1−k}

d
−
k−−→ · · ·

d
−
m−1
−−−→ C(Γm,0){q} ⊕ C(Γm−1,1){q}

d
−
m−−→ C(Γm,1)→ 0, (13.1.7)

where k0 = max{m− n, 0} as above and

d−k0
=

(
d−k0

χ0

)
, d−k =

(
d−k 0

χ0 −d−k−1

)
for k0 < k < m, d−m = (χ0 −d−m−1 ).

Next, we study relations between the chain complexes Ĉ(D±
1,1), Ĉ(D±

1,0) and C
±.

13.2. Commutativity lemmas. To prove (13.1.1), we will frequently use the fact that

certain morphisms of matrix factorizations of MOY graphs commute with each other. We

establish two basic commutativity lemmas in this subsection.
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Lemma 13.3. Consider the diagram in Figure 80, where the morphisms are induced by

the apparent local changes of MOY graphs. Then χ1
△ ≈ h2 ◦ χ1

† ◦ χ
1
2
◦ h1 and χ0

△ ≈

h1 ◦χ0
2
◦χ0

† ◦h2. That is, up to homotopy and scaling, the diagram in Figure 80 commutes

in both directions.

Proof. Denote by©m+n+1 an oriented circle colored by m+n+1, and by Γ,Γ′ the MOY

graphs in Figure 81. Let Γ be Γ with its orientation reversed. Then, by Corollary 6.11,

Theorem 6.12 and Corollary 7.1,

HomHMF(C(Γ1), C(Γ0)) ∼= H(Γ)〈m+ n+ 1〉{q(m+n+1)(N−m−n−1)+2m+2n+mn}

∼= H(Γ′)〈m+ n+ 1〉{q(m+n+1)(N−m−n−1)+2m+2n+mn}

∼= H(©m+n+1)〈m+ n+ 1〉

×

{
[m+ 1]

[
m+ n

m+ 1

]
[m+ n+ 1]q(m+n+1)(N−m−n−1)+2m+2n+mn

}

∼= C(∅)

{
[m+ 1]

[
m+ n

m+ 1

]
[m+ n+ 1]

[
N

m+ n+ 1

]
q(m+n+1)(N−m−n−1)+2m+2n+mn

}
.
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Similarly,

HomHMF(C(Γ0), C(Γ1)) ∼= H(Γ)〈m+ n+ 1〉{q(m+n+1)(N−m−n−1)+2m+2n+mn}

∼= C(∅)

{
[m+ 1]

[
m+ n

m+ 1

]
[m+ n+ 1]

[
N

m+ n+ 1

]
q(m+n+1)(N−m−n−1)+2m+2n+mn

}
.

So HomHMF(C(Γ1), C(Γ0)) and HomHMF(C(Γ0), C(Γ1)) are supported in Z2-degree 0,

have lowest non-vanishing quantum grading m + 1. And the subspaces of homogeneous

elements of quantum degree m+ 1 of these spaces are 1-dimensional.
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Let g = h2 ◦χ1
† ◦χ

1
2
◦ h1 and g = h1 ◦χ0

2
◦χ0

† ◦ h2. Note that χ
1
△, χ

0
△, g and g are all

homogeneous of quantum degree m+1. To show that χ1
△ ≈ g and χ0

△ ≈ g, we only need

to show that none of these morphisms are null homotopic. For this purpose, consider the

diagram in Figure 82, where φi, φi, h3 and h3 are induced by the apparent local changes

of MOY graphs. Let u = (−r)m+n, v = Sλm+1,n−2(−Y) and w = Xm. Here Xj is the jth
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6

6
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oo
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elementary symmetric polynomial in X. Then, by Corollary 10.3 and Lemma 8.11,

φ1 ◦m(u) ◦ φ2 ◦m(v) ◦ h3 ◦ φ3 ◦m(w) ◦ χ1
△ ◦ χ

0
△ ◦ φ3 ◦ h3 ◦ φ2 ◦ φ1

≈ φ1 ◦m(u) ◦ φ2 ◦m(v) ◦ h3 ◦ φ3 ◦m
(
w

m+1∑

k=0

(−r)kAm+1−k

)
◦ φ3 ◦ h3 ◦ φ2 ◦ φ1

≈ φ1 ◦m(u) ◦ φ2 ◦m(v) ◦m
(m+1∑

k=0

(−r)kAm+1−k

)
◦ h3 ◦ φ3 ◦m(w) ◦ φ3 ◦ h3 ◦ φ2 ◦ φ1

≈ φ1 ◦m(u) ◦ φ2 ◦m
(
v

m+1∑

k=0

(−r)kAm+1−k

)
◦ φ2 ◦ φ1

≈ φ1 ◦m(u) ◦
(
m
(m+1∑

k=0

(−r)k
)
◦ φ2 ◦m(vAm+1−k) ◦ φ2

)
◦ φ1

≈ φ1 ◦m(u) ◦ φ1 ≈ idC(↑m+n+1),

where Aj is the jth elementary symmetric polynomial in A. This shows that χ1
△ and χ0

△

are both homotopically non-trivial.

Note that, by Corollary 10.3,

g ◦ g = h2 ◦ χ
1
† ◦ χ

1
2
◦ h1 ◦ h1 ◦ χ

0
2
◦ χ0

† ◦ h2 ≈ h2 ◦ χ
1
† ◦ χ

1
2
◦ χ0

2
◦ χ0

† ◦ h2

≈ h2 ◦m
(
(s− r)

m∑

k=0

(−r)kXm−k

)
◦ h2

≈ h2 ◦m
(m+1∑

k=0

(−r)k(Xm+1−k + sXm−k)
)
◦ h2

≈ m
(m+1∑

k=0

(−r)kAm+1−k

)
≈ χ1

△ ◦ χ
0
△.

So, the above argument also implies that

φ1 ◦m(u) ◦ φ2 ◦m(v) ◦ h3 ◦ φ3 ◦m(w) ◦ g ◦ g ◦ φ3 ◦ h3 ◦ φ2 ◦ φ1 ≈ idC(↑m+n+1) .

This shows that g and g are both homotopically non-trivial.

Before stating the second commutativity lemma, we introduce a shorthand notation,

which will be used throughout the rest of this section.

Definition 13.4. Consider the morphisms in Figure 83, where φ and φ are the mor-

phisms induced by the apparent edge splitting and merging, h and h are induced by the

apparent bouquet moves. Define ϕ := h ◦ φ and ϕ := φ ◦ h.

By Corollary 6.11, Lemmas 8.9 and 8.11, it is easy to check that, up to homotopy

and scaling, ϕ and ϕ are the unique homotopically non-trivial homogeneous morphisms

between C(Γ) and C(Γ̃) of Z2-degree 0 and quantum degree −mn. Moreover, for λ, µ ∈

Λm,n = {(λ1 ≥ · · · ≥ λm) | λ1 ≤ n} they satisfy

ϕ ◦m(Sλ(X) · Sµ(−Y)) ◦ ϕ ≈

{
idC(Γ) if λi + µm+1−i = n for i = 1, . . . ,m,

0 otherwise.
(13.2.1)
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Lemma 13.5. Consider the diagram in Figure 84, where ϕi and ϕi are the morphisms

defined in Definition 13.4 associated to the apparent local changes of the MOY graphs.

Then ϕ2◦ϕ1 ≈ ϕ4 ◦ϕ3 and ϕ1◦ϕ2 ≈ ϕ3 ◦ϕ4. That is, the diagram in Figure 84 commutes

up to homotopy and scaling in both directions.
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Proof. By Corollary 6.11 and decomposition (II) (Theorem 6.12), we have

C(Γ1) ≃ C(Γ0)

{[
m+ n+ l

l

][
m+ n

n

]}
.

So

HomHMF(C(Γ1), C(Γ0)) ∼= HomHMF(C(Γ0), C(Γ1))

∼= HomHMF(C(Γ0), C(Γ0))

{[
m+ n+ l

l

][
m+ n

n

]}
.
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Let Γ be the MOY graphs in Figure 85. Then

HomHMF(C(Γ0), C(Γ0))

∼= H(Γ)〈m+ n+ l + j + k〉{q(m+n+l+j+k)(N−m−n−l)−j2−k2

}

∼= C(∅)

{[
N −m− n− l

j

][
N −m− n− l

k

][
N

m+ n+ l

]
q(m+n+l+j+k)(N−m−n−l)−j2−k2

}
.

So,

HomHMF(C(Γ1), C(Γ0)) ∼= HomHMF(C(Γ0), C(Γ1))

∼= C(∅)
{[

N−m−n−l

j

][
N−m−n−l

k

][
N

m+n+l

][
m+n+l

l

][
m+n

n

]
q(m+n+l+j+k)(N−m−n−l)−j2−k2

}
.

Thus, HomHMF(C(Γ1), C(Γ0)) and HomHMF(C(Γ0), C(Γ1)) are supported in Z2-degree 0

and have lowest non-vanishing quantum grading −mn −ml − nl. And the subspaces of

HomHMF(C(Γ1), C(Γ0)) and HomHMF(C(Γ0), C(Γ1)) of homogeneous elements of quan-

tum grading −mn−ml− nl are 1-dimensional.
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m+n+l

m+n+l

Γ
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Note that ϕ2 ◦ϕ1, ϕ4 ◦ϕ3, ϕ1 ◦ϕ2 and ϕ3 ◦ϕ4 are all homogeneous of quantum degree

−mn−ml− nl. So, to prove that ϕ2 ◦ ϕ1 ≈ ϕ4 ◦ϕ3 and ϕ1 ◦ ϕ2 ≈ ϕ3 ◦ϕ4, we only need

to show that ϕ2 ◦ϕ1, ϕ4 ◦ϕ3, ϕ1 ◦ϕ2 and ϕ3 ◦ϕ4 are homotopically non-trivial. For this

purpose, consider equation (13.2.1) above. We get

ϕ1 ◦ ϕ2 ◦m(Sλn,m
(X) · Sλl,m+n

(Y)) ◦ ϕ2 ◦ ϕ1

≃ ϕ1 ◦ ϕ2 ◦m(Sλn,m
(X)) ◦ ϕ2 ◦m(Sλl,m+n

(Y)) ◦ ϕ1 ≈ idC(Γ0) .

This shows that ϕ2 ◦ ϕ1 and ϕ1 ◦ ϕ2 are homotopically non-trivial. Similarly,

ϕ3 ◦ ϕ4 ◦m(Sλn,l
(X) · Sλm,n+l

(W)) ◦ ϕ4 ◦ ϕ3

≃ ϕ3 ◦ ϕ4 ◦m(Sλn,l
(X)) ◦ ϕ4 ◦m(Sλm,n+l

(W)) ◦ ϕ3 ≈ idC(Γ0) .

This shows that ϕ4 ◦ ϕ3 and ϕ3 ◦ ϕ4 are homotopically non-trivial.

13.3. Another look at decomposition (IV). Decomposition (IV) (Theorem 10.1)

plays an important role in relating Ĉ(D±
1,1) to Ĉ(D

±
1,0) and C

±. In this subsection, we re-

view a special case of decomposition (IV), including the construction of all the morphisms

involved.

Consider the MOY graphs in Figure 86. By decomposition (IV), we have

C(Γ) ≃ C(Γ′)⊕ C(Γ′′){[m− k]}. (13.3.1)
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By the construction in Subsection 10.1, especially Lemma 10.7, we know that the inclusion

and projection morphisms of the component C(Γ′) in decomposition (13.3.1) are given

by the compositions in Figure 87. That is, if f = χ0 ◦ h1 ◦ φ1 and g = φ1 ◦ h1 ◦χ
1, where

the morphisms on the right hand side are induced by the apparent local changes of MOY

graphs, then f and g are homogeneous morphisms preserving the Z2 ⊕ Z-grading and,

after possibly a scaling, g ◦ f ≃ idC(Γ′).
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Similarly, consider the diagram in Figure 88, where

α = χ1 ◦ h2 ◦ φ2, β = φ2 ◦ h2 ◦ χ
0,

and the morphisms on the right hand side are induced by the apparent local changes of

MOY graphs. Recall from Subsection 10.2, especially the proof of Lemma 10.12, that if

we define

~α =

m−k−1∑

j=0

m(rj) ◦ α = (α m(r) ◦ α . . . m(rm−k−1) ◦ α),

~β =

m−k−1⊕

j=0

β ◦m((−1)m−k−1−jAm−k−1−j) =




β ◦m((−1)m−k−1Am−k−1)

· · ·

β ◦m(−A1)

β


 ,

where Aj is the jth elementary symmetric polynomial in A, then there is a homogeneous



182 13. Invariance under fork sliding

�

I

I

�

6

n+k−m

1

m+1−k

n

n+1

Γ′′

φ2

��

α //

6

6

6

6

6

6

�

-

n+k−m

1

n

m−k

n−1

m+1−k

n

1

Γ

β
oo

χ0

��

�

I �

6

6

Y

66
n+k−m

1

m+1−k

m+1−k

n

m−k 1

n+1

A {r}

φ2

OO

h2 //

6

�

I �

6

6

I

�
n+k−m

1

m+1−k

n

m−k

1n

n+1

A

{r}

h2

oo

χ1

OO

Fig. 88

morphism τ : C(Γ′′){[m−k]} → C(Γ′′){[m−k]} preserving the Z2⊕Z-grading such that

τ ◦ ~β ◦ ~α ≃ ~β ◦ ~α ◦ τ ≃ idC(Γ′′){[m−k]}.

Now consider the morphisms

C(Γ)

(
g

τ◦~β
)

//
C(Γ′)

⊕

C(Γ′′){[m− k]}(f ~α)
oo (13.3.2)

C(Γ)

(
g
~β
)

//
C(Γ′)

⊕

C(Γ′′){[m− k]}(f ~α◦τ)
oo (13.3.3)

Lemma 13.6. Each of diagrams (13.3.2) and (13.3.3) gives a pair of homogeneous ho-

motopy equivalences preserving the Z2 ⊕ Z-grading that are inverses of each other.

Proof. We know that C(Γ) ≃ C(Γ′)⊕ C(Γ′′){[m− k]}. So, to prove the lemma, we only

need to show that(
g

τ ◦ ~β

)
(
f ~α

)
≃

(
g
~β

)
(
f ~α ◦ τ

)
≃ idC(Γ′)⊕C(Γ′′){[m−k]} .

Consider g ◦ ~α and ~β ◦ f . By Lemma 10.14, we know that
{
g ◦m(rj) ◦ α ≃ 0 if j ≤ m− k − 1,

β ◦m((−1)m−k−1−jAm−k−1−j) ◦ f ≃ 0 if j ≥ 0.

This shows that
g ◦ ~α ≃ 0 and ~β ◦ f ≃ 0. (13.3.4)

So, (
g

τ ◦ ~β

)
(
f ~α

)
≃

(
idC(Γ′) g ◦ ~α

τ ◦ ~β ◦ f idC(Γ′′){[m−k]}

)
≃

(
idC(Γ′) 0

0 idC(Γ′′){[m−k]}

)

= idC(Γ′)⊕C(Γ′′){[m−k]} .
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Similarly, (
g
~β

)
(
f ~α ◦ τ

)
≃ idC(Γ′)⊕C(Γ′′){[m−k]} .

Next, we apply the above discussion to the MOY graphs that appear in the chain

complexes in Subsection 13.1.
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Consider the MOY graphs in Figure 89. By Corollary 6.11, we have C(Γk,0) ≃ C(Γk,2)

and C(Γ̃k) ≃ C(Γk,3). By (13.3.1), C(Γk,2) ≃ C(Γk,3)⊕ C(Γ′
k){[m− k]}. Altogether, we

have

C(Γk,0) ≃ C(Γ̃k)⊕ C(Γ
′
k){[m− k]}. (13.3.5)

In Figure 90, the morphism fk, gk, f̂k and ĝk are defined by

fk = χ0 ◦ ϕ1 ◦ h,

gk = h ◦ ϕ1 ◦ χ
1,

f̂k = χ0 ◦ ϕ1,

ĝk = ϕ1 ◦ χ
1,

where the morphisms on the right hand side are induced by the apparent local changes

of MOY graphs. Then, after possibly a scaling,

gk ◦ fk ≃ idC(Γ̃k)
. (13.3.6)

In Figure 91, the morphisms αk and βk are defined by

αk = χ1 ◦ ϕ2,

βk = ϕ2 ◦ χ
0,

where the morphisms on the right hand side are induced by the apparent local changes
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of MOY graphs. Define

~αk =

m−k−1∑

j=0

m(rj) ◦ αk = (αk m(r) ◦ αk . . . m(rm−k−1) ◦ αk),

~βk =
m−k−1⊕

j=0

βk ◦m((−1)m−k−1−jAm−k−1−j) =




βk ◦m((−1)m−k−1Am−k−1)

· · ·

βk ◦m(−A1)

βk


 .
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Then there is a homogeneous morphism τk : C(Γ′
k){[m−k]} → C(Γ′

k){[m−k]} preserving

the Z2 ⊕ Z-grading such that

τk ◦ ~βk ◦ ~αk ≃ ~βk ◦ ~αk ◦ τk ≃ idC(Γ′
k
){[m−k]} . (13.3.7)

We also have

gk ◦ ~αk ≃ 0 and ~βk ◦ fk ≃ 0. (13.3.8)

From Lemma 13.6, we get the following corollary.

Corollary 13.7.

C(Γk,0)

(
gk

τk◦~βk

)
//

C(Γ̃k)

⊕

C(Γ′
k){[m− k]}

(fk ~αk)
oo (13.3.9)

C(Γk)

(
gk
~βk

)
//

C(Γ̃k)

⊕

C(Γ′
k){[m− k]}

(fk ~αk◦τk)
oo (13.3.10)

are two ways to explicitly write down the inclusion and projection morphisms in decom-

position (13.3.5).

13.4. Relating the differential maps of C± and Ĉ(D±
1,1). In this subsection, we

prove the following lemma, which relates the differential map of C± to that of Ĉ(D±
1,1).

Lemma 13.8. Consider the diagram in Figure 92, where δ+k , δ
−
k−1 are defined in Def-

inition 12.23, d+k , d
−
k−1 act on the left square, and ϕi, ϕi are induced by the appar-

ent local changes of MOY graphs. Then δ+k ≈ ϕ2 ◦ d
+
k ◦ m(rm−k) ◦ ϕ1 and δ−k−1 ≈

ϕ1 ◦ m(rm−k) ◦ d−k−1 ◦ ϕ2. That is, the diagram in Figure 92 commutes up to homotopy

and scaling in both directions.
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Proof. Consider the diagram in Figure 93, where the morphisms are induces by the appar-

ent local changes of MOY graphs. By Theorem 12.26, the composition of the morphisms
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Fig. 93

in the left column is δ+k and the composition of the morphisms in the right column is d+k .

That is,

δ+k ≈ ϕ4 ◦ (χ
1 ⊗ χ1) ◦ φ3, d+k ≈ ϕ5 ◦ (χ

1 ⊗ χ1) ◦ φ3.

Since (χ1 ⊗ χ1) ◦ φ3 and m(rm−k) ◦ ϕ1 act on different parts of the MOY graphs, they

commute with each other. So

m(rm−k) ◦ ϕ1 ◦ (χ
1 ⊗ χ1) ◦ φ3 ≈ (χ1 ⊗ χ1) ◦ φ3 ◦m(rm−k) ◦ ϕ1.

That is, the upper rectangle in Figure 93 commutes up to homotopy and scaling. By

Lemma 13.5, the lower square in Figure 93 commutes up to homotopy and scaling. That

is, ϕ4 ◦ ϕ1 ≈ ϕ2 ◦ ϕ5. Recall that, by Lemma 8.11, we have ϕ1 ◦ m(rm−k) ◦ ϕ1 ≈ id.

Altogether,

δ+k ≈ ϕ4 ◦ (χ
1 ⊗ χ1) ◦ φ3 ≈ ϕ4 ◦ ϕ1 ◦m(rm−k) ◦ ϕ1 ◦ (χ

1 ⊗ χ1) ◦ φ3

≈ ϕ2 ◦ ϕ5 ◦ (χ
1 ⊗ χ1) ◦ φ3 ◦m(rm−k) ◦ ϕ1 ≈ ϕ2 ◦ d

+
k ◦m(rm−k) ◦ ϕ1.

Similarly, consider the diagram in Figure 94, where the morphisms are induces by

the apparent local changes of MOY graphs. By Theorem 12.26, the composition of the



13.5. Relating the differential maps of Ĉ(D±
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morphisms in the left column is δ−k−1 and the composition of the morphisms in the right

column is d−k−1. That is,

δ−k−1 ≈ φ3 ◦ (χ
0 ⊗ χ0) ◦ ϕ4, d−k−1 ≈ φ3 ◦ (χ

0 ⊗ χ0) ◦ ϕ5.

Since φ3 ◦ (χ
0 ⊗ χ0) and ϕ1 ◦ m(rm−k) act on different parts of the MOY graphs, they

commute with each other. So

ϕ1 ◦m(rm−k) ◦ φ3 ◦ (χ
0 ⊗ χ0) ≈ φ3 ◦ (χ

0 ⊗ χ0) ◦ ϕ1 ◦m(rm−k).

That is, the lower square in Figure 94 commutes up to homotopy and scaling. By

Lemma 13.5, the upper square in Figure 94 commutes up to homotopy and scaling.

That is, ϕ1 ◦ ϕ4 ≈ ϕ5 ◦ ϕ2. Again, we have ϕ1 ◦m(rm−k) ◦ ϕ1 ≈ id. Altogether,

δ−k−1 ≈ φ3 ◦ (χ
0 ⊗ χ0) ◦ ϕ4 ≈ φ3 ◦ (χ

0 ⊗ χ0) ◦ ϕ1 ◦m(rm−k) ◦ ϕ1 ◦ ϕ4

≈ ϕ1 ◦m(rm−k) ◦ φ3 ◦ (χ
0 ⊗ χ0) ◦ ϕ5 ◦ ϕ2 ≈ ϕ1 ◦m(rm−k) ◦ d−k−1 ◦ ϕ2.

13.5. Relating the differential maps of Ĉ(D±
1,0) and Ĉ(D±

1,1). First, consider the

diagram in Figure 95, where f̂k and ĝk are the diagonal morphisms in Figure 90 and the
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vertical morphisms are induced by the apparent local changes of MOY graphs. Note that

f̂k and ĝk act on the right side of the MOY graphs only, and the vertical morphisms

act on the left side only. So each square in Figure 95 commutes in both directions up to

homotopy and scaling. Thus, we have the following lemma.

Lemma 13.9. In Figure 95, f̂k◦(χ1⊗χ1)◦φ1 ≈ (χ1⊗χ1)◦φ1◦ f̂k and ĝk ◦φ1◦(χ
0⊗χ0) ≈

φ1 ◦ (χ
0 ⊗ χ0) ◦ ĝk.

Next, consider the diagram in Figure 96, where all morphisms are induced by the

apparent local changes of the MOY graphs. We have the following lemma.

Lemma 13.10. The four squares (A), (B), (C) and (D) in Figure 96 all commute up to

homotopy and scaling in both directions. More precisely, we have

(A) χ1
△ ◦ h3 ≈ h4 ◦ χ

1
† ◦ χ

1
2
, h3 ◦ χ0

△ ≈ χ
0
2
◦ χ0

† ◦ h4,

(B) χ1
△ ◦ φ3 ≈ φ3 ◦ χ

1
△, φ3 ◦ χ0

△ ≈ χ
0
△ ◦ φ3,

(C) ϕ5 ◦ χ
1
† ≈ ϕ5 ◦ χ

1
†, χ

0
† ◦ ϕ5 ≈ ϕ5 ◦ χ0

†,

(D) ϕ7 ◦ ϕ5 ≈ ϕ6 ◦ φ3 ◦ h4, ϕ5 ◦ ϕ7 ≈ h4 ◦ φ3 ◦ ϕ6.

Altogether,

ϕ6 ◦ χ
1
△ ◦ φ3 ◦ h3 ≈ ϕ7 ◦ χ

1
† ◦ ϕ5 ◦ χ

1
2
, h3 ◦ φ3 ◦ χ

0
△ ◦ ϕ6 ≈ χ

0
2
◦ ϕ5 ◦ χ

0
† ◦ ϕ7.

Proof. Clause (A) follows from Lemma 13.3. Clauses (B) and (C) are true because the

horizontal and vertical morphisms act on different parts of the MOY graphs. Clause (D)

follows from Lemma 13.5.



13.5. Relating the differential maps of Ĉ(D±
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Fig. 96

We are now ready to relate the differential map of Ĉ(D±
1,0) to that of Ĉ(D

±
1,1). Consider

the diagram in Figure 97, where d±∗ and d̃±∗ are defined in Subsection 13.1, and fk, gk
are defined in Figure 90. We have the following lemma.

Lemma 13.11. In Figure 97, d̃+k ≈ gk−1 ◦ d
+
k ◦ fk and d̃−k−1 ≈ gk ◦ d

−
k−1 ◦ fk−1. That is,

the diagram in Figure 97 commutes in both directions up to homotopy and scaling.

Proof. Denote by h(k), h
(k)

, (χ1⊗χ1)(k) and (χ0⊗χ0)(k) the morphisms induced by the

local changes of MOY graphs in Figures 98 and 99. By the definitions of fk, gk, f̂k and

ĝk in Figure 90, we know that fk ≈ f̂k ◦ h(k) and gk ≈ h
(k)
◦ ĝk.
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By the definitions of f̂k, ĝk and d+k , using the morphisms in Figures 95 and 96, we

have

gk−1 ◦ d
+
k ◦ fk ≈ h

(k−1)
◦ ĝk−1 ◦ d

+
k ◦ f̂k ◦ h

(k)

≈ h
(k−1)

◦ (ϕ6 ◦ χ
1
△) ◦ (φ3 ◦ h3 ◦ (χ

1 ⊗ χ1) ◦ φ1) ◦ f̂k ◦ h
(k)

≈ h
(k−1)

◦ (ϕ6 ◦ χ
1
△ ◦ φ3 ◦ h3) ◦ ((χ

1 ⊗ χ1) ◦ φ1) ◦ f̂k ◦ h
(k)

≈ h
(k−1)

◦ (ϕ7 ◦ χ
1
† ◦ ϕ5 ◦ χ

1
2
) ◦ ((χ1 ⊗ χ1) ◦ φ1) ◦ f̂k ◦ h

(k) (by Lemma 13.10)

≈ h
(k−1)

◦ (ϕ7 ◦ χ
1
† ◦ ϕ5 ◦ χ

1
2
) ◦ f̂k ◦ ((χ

1 ⊗ χ1) ◦ φ1) ◦ h
(k) (by Lemma 13.9).
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Note that ϕ5 ◦χ
1
2
≈ ĝk, ĝk ◦ f̂k ≈ id and φ1 ◦ h

(k) ≈ h(k) ◦φ1. Putting these together, we

get

gk−1 ◦ d
+
k ◦ fk ≈ h

(k−1)
◦ (ϕ7 ◦ χ

1
†) ◦ (ϕ5 ◦ χ

1
2
) ◦ f̂k ◦ (χ

1 ⊗ χ1) ◦ φ1 ◦ h
(k)

≈ h
(k−1)

◦ ϕ7 ◦ χ
1
† ◦ (χ

1 ⊗ χ1) ◦ h(k) ◦ φ1.

By Lemma 13.3, we know that

χ1
† ◦ (χ

1 ⊗ χ1) ◦ h(k) ≈ h(k−1) ◦ (χ1 ⊗ χ1)(k).

Also, it is easy to see that h
(k−1)

◦ ϕ7 ≈ ϕ7 ◦ h
(k−1)

. So

gk−1 ◦ d
+
k ◦ fk ≈ h

(k−1)
◦ ϕ7 ◦ χ

1
† ◦ (χ

1 ⊗ χ1) ◦ h(k) ◦ φ1

≈ ϕ7 ◦ h
(k−1)

◦ h(k−1) ◦ (χ1 ⊗ χ1)(k) ◦ φ1 ≈ ϕ7 ◦ (χ
1 ⊗ χ1)(k) ◦ φ1 ≈ d̃

+
k .

Similarly, using φ1 ◦ h
(k)
≈ h

(k)
◦ φ1 and ϕ7 ◦ h(k−1) ≈ h(k−1) ◦ ϕ7, we get

gk ◦ d
−
k−1 ◦ fk−1 ≈ h

(k)
◦ ĝk ◦ d

−
k−1 ◦ f̂k−1 ◦ h

(k−1)

≈ h
(k)
◦ ĝk ◦ (φ1 ◦ (χ

0 ⊗ χ0) ◦ h3 ◦ φ3) ◦ (χ
0
△ ◦ ϕ6) ◦ h

(k−1)

≈ h
(k)
◦ (φ1 ◦ (χ

0 ⊗ χ0)) ◦ ĝk ◦ (h3 ◦ φ3 ◦ χ
0
△ ◦ ϕ6) ◦ h

(k−1) (by Lemma 13.9)

≈ h
(k)
◦ (φ1 ◦ (χ

0 ⊗ χ0)) ◦ ĝk ◦ (χ
0
2
◦ ϕ5 ◦ χ

0
† ◦ ϕ7) ◦ h

(k−1) (by Lemma 13.10)

≈ φ1 ◦ h
(k)
◦ (χ0 ⊗ χ0) ◦ χ0

† ◦ ϕ7 ◦ h
(k−1) (since ĝk ◦ (χ

0
2
◦ ϕ5) ≈ ĝk ◦ f̂k ≈ id)

≈ φ1 ◦ h
(k)
◦ (χ0 ⊗ χ0) ◦ χ0

† ◦ h
(k−1) ◦ ϕ7

≈ φ1 ◦ h
(k)
◦ h(k) ◦ (χ0 ⊗ χ0)(k) ◦ ϕ7 (by Lemma 13.3)

≈ φ1 ◦ (χ
0 ⊗ χ0)(k) ◦ ϕ7 ≈ d̃

−
k−1.

13.6. Decomposing C(Γm,1) = C(Γ′
m). Note that the MOY graphs Γm,1 and Γ′

m are

identical. Consider the MOY graphs in Figure 100.
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By Corollary 6.11, C(Γ′′
m) ≃ C(Γ̃m+1). By decomposition (V) (Theorem 11.1), C(Γ′

m) ≃

C(Γ′′
m−1)⊕ C(Γ

′′
m). So

C(Γm,1) ≃ C(Γ
′′
m−1)⊕ C(Γ̃m+1). (13.6.1)
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Recall that Γ′
m−1 is the MOY graph in Figure 101. We have the following lemma.

Lemma 13.12.

Homhmf(C(Γ̃m+1), C(Γ
′
m−1))

∼= Homhmf(C(Γ
′
m−1), C(Γ̃m+1)) ∼= 0.

Proof. Let Γ be the MOY graph in Figure 102. Recall that C(Γ̃m+1) ≃ C(Γ
′′
m). So

HomHMF(C(Γ̃m+1), C(Γ
′
m−1))

∼= HomHMF(C(Γ
′′
m), C(Γ′

m−1)),

∼= H(Γ)〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n}

∼= C(∅)

{
[n+ 1]

[
n+m− 1

m

][
m+ 1

2

][
m+ n+ 1

n

][
N

m+ n+ 1

]
q(m+n+1)(N−1)−m2−n2+n

}
.

One can check that the lowest non-vanishing quantum grading of the above space is 2.

So Homhmf(C(Γ̃m+1), C(Γ
′′
m−1))

∼= 0.
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Denote by Γ the MOY graph obtained by reversing the orientation of Γ. By decom-

position (V) (Theorem 11.1), we have C(Γ′
m−1) ≃ C(Γ

′′
m−1)⊕C(Γ

′′
m−2). By Lemma 12.9,

we see that

HomHMF(C(Γ
′′
k), C(Γ

′′
m)) ∼= H(C(Γ′′

m)⊗ C(Γ
′′
k))〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n},

where Γ
′′
k is Γ′′

k with reverse orientation, and the tensor is over the ring of partial sym-

metric polynomials in the alphabets marking the end points. Therefore,

HomHMF(C(Γ
′
m−1), C(Γ̃m+1)) ∼= HomHMF(C(Γ

′
m−1), C(Γ

′′
m))

∼= HomHMF(C(Γ
′′
m−1), C(Γ

′′
m))⊕HomHMF(C(Γ

′′
m−2), C(Γ

′′
m))
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∼= (H(C(Γ′′
m)⊗ C(Γ

′′
m−1))⊕H(C(Γ′′

m)⊗ C(Γ
′′
m−2)))

· 〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n}

∼= H(C(Γ′′
m)⊗ C(Γ

′
m−1))〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n}

∼= H(Γ)〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n}

∼= C(∅)

{
[n+ 1]

[
n+m− 1

m

][
m+ 1

2

][
m+ n+ 1

n

][
N

m+ n+ 1

]
q(m+n+1)(N−1)−m2−n2+n

}
,

where Γ
′
m−1 is Γ′

m−1 with the orientation reversed, and the tensor is over the ring of

partial symmetric polynomials in the alphabets marking the end points. So the low-

est non-vanishing quantum grading of HomHMF(C(Γ
′
m−1), C(Γ̃m+1)) is also 2. Thus,

Homhmf(C(Γ
′
m−1), C(Γ̃m+1)) ∼= 0.

Corollary 13.13.

Homhmf(C(Γ̃m+1), C(Γ
′′
m−1))

∼= Homhmf(C(Γ
′′
m−1), C(Γ̃m+1)) ∼= 0.

Proof. By decomposition (V) (Theorem 11.1), C(Γ′
m−1) ≃ C(Γ′′

m−1) ⊕ C(Γ′′
m−2). So

Homhmf(C(Γ̃m+1), C(Γ
′′
m−1)) (resp. Homhmf(C(Γ

′′
m−1), C(Γ̃m+1))) is a subspace of

Homhmf(C(Γ̃m+1), C(Γ
′
m−1)) (resp. Homhmf(C(Γ

′
m−1), C(Γ̃m+1)).) The corollary follows

from Lemma 13.12.

Lemma 13.14. Homhmf(C(Γ̃m+1), C(Γ̃m+1)) ∼= C.
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Proof. Let Γ be the MOY graph in Figure 103. Then

HomHMF(C(Γ̃m+1), C(Γ̃m+1))

∼= H(Γ)〈m+ n+ 1〉{q(m+n+1)(N−1)−m2−n2+n}

∼= C(∅)

{
[m+ 1]

[
m+ n+ 1

n

][
m+ n+ 1

n

][
N

m+ n+ 1

]
q(m+n+1)(N−1)−m2−n2+n

}
.

It is easy to check that the above space is supported in Z2-degree 0. Its lowest non-

vanishing quantum grading is 0. And its subspace of homogeneous elements of quantum

degree 0 is 1-dimensional. Thus, Homhmf(C(Γ̃m+1), C(Γ̃m+1)) ∼= C.

Corollary 13.15.

Homhmf(C(Γ̃m+1), C(Γm,1)) ∼= Homhmf(C(Γm,1), C(Γ̃m+1)) ∼= C.

Proof. This follows easily from decomposition (13.6.1), Corollary 13.13 and Lem-

ma 13.14.
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Consider the diagram in Figure 104, where

p̃ := h ◦ φ ◦ (χ0 ⊗ χ0), ̃ := (χ1 ⊗ χ1) ◦ φ ◦ h,

and the morphisms on the right hand side are induced by the apparent local changes of

the MOY graphs.
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Lemma 13.16. Up to homotopy and scaling, ̃ is the inclusion of C(Γ̃m+1) into C(Γm,1)

in decomposition (13.6.1), and p̃ is the projection of C(Γm,1) onto C(Γ̃m+1) in (13.6.1).

Proof. From Corollary 13.15, one can deduce that Homhmf(C(Γ̃m+1), C(Γm,1)) (resp.

Homhmf(C(Γm,1), C(Γ̃m+1))) is 1-dimensional and spanned by the inclusion C(Γ̃m+1)→

C(Γm,1) (resp. the projection C(Γm,1)→ C(Γ̃m+1)) in decomposition (13.6.1). Note that

̃ and p̃ are both homogeneous morphisms of Z2-degree 0 and quantum degree 0. To

prove the lemma, we only need to show that ̃ and p̃ are not homotopic to 0. But, by

Corollary 10.3 and Lemma 8.11,

p̃ ◦ ̃ ≈ h ◦ φ ◦ (χ0 ⊗ χ0) ◦ (χ1 ⊗ χ1) ◦ φ ◦ h

≈ h ◦ φ ◦m
(( n∑

i=0

(−r)iYn−i

)
·
( m∑

i=0

(−r)iXm−i

))
◦ φ ◦ h

≈ h ◦ φ ◦m((−r)m+n) ◦ φ ◦ h ≈ idC(Γ̃m+1)
.

This shows that ̃ and p̃ are not homotopic to 0 and completes the proof.

Consider the diagram in Figure 105, where d̃+m+1 (resp. d̃−m) is the differential map

of the chain complex Ĉ(D+
10) (resp. Ĉ(D

−
10)) at homological degree 0 (resp. −1) (8), and

χ0, χ1, h(m), h
(m)

are induced by the apparent local changes of MOY graphs. We have

the following lemma.

(8) See Subsection 13.1, especially the chain complexes Ĉ(D±
10) in (13.1.2) and (13.1.3).
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Lemma 13.17. d̃+m+1 ≈ h
(m)
◦ χ1 ◦ ̃ and d̃−m ≈ p̃ ◦ χ0 ◦ h(m). That is, the diagram in

Figure 105 commutes in both directions up to homotopy and scaling.

Proof. This follows easily from the definitions of d̃+m+1, d̃
−
m, ̃, p̃ and Lemma 13.3.
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Denote by ′′ : C(Γ′′
m−1) → C(Γm,1) and p

′′ : C(Γm,1)→ C(Γ′′
m−1) the inclusion and

projection morphisms of the component C(Γ′′
m−1) in decomposition (13.6.1). Consider

the diagram in Figure 106, where δ+m, δ−m−1, Jm−1,m−1 and Pm−1,m−1 are defined in

Definition 12.23. We have the following lemma.
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Lemma 13.18. δ+m ◦ 
′′ ≈ Jm−1,m−1 and p′′ ◦ δ−m−1 ≈ Pm−1,m−1. That is, the diagram in

Figure 106 commutes in both directions up to homotopy and scaling.

Proof. Using Lemmas 12.9 and 12.19, one can check that

Homhmf(C(Γ
′′
m−1), C(Γ

′
m−1))

∼= Homhmf(C(Γ
′
m−1), C(Γ

′′
m−1))

∼= C.

Recall that Jm−1,m−1 and Pm−1,m−1 are both homogeneous morphisms of Z2-degree 0

and quantum degree 0, and Pm−1,m−1 ◦ Jm−1,m−1 ≈ idC(Γ′′
m−1)

. So Jm−1,m−1 and

Pm−1,m−1 span these 1-dimensional spaces. Note that δ+m ◦ 
′′ and p′′ ◦ δ−m−1 are also

homogeneous morphisms of Z2-degree 0 and quantum degree 0. To prove the lemma, we

only need to show that δ+m ◦ 
′′ and p′′ ◦ δ−m−1 are not homotopic to 0. But, by their

definitions, we know that

p′′ ◦ δ−m−1 ◦ δ
+
m ◦ 

′′ ≈ idC(Γ′′
m−1)

.

So δ+m ◦ 
′′ and p′′ ◦ δ−m−1 are homotopically non-trivial.

13.7. Proof of Proposition 13.2. In this subsection, we prove (13.1.1), that is,

Ĉ(D±
10) ≃ Ĉ(D

±
11) if l = 1.

The proof of the rest of Proposition 13.2 is very similar and left to the reader. We prove

(13.1.1) by simplifying Ĉ(D±
11) and reducing it to Ĉ(D±

10). To do this, we need to use the

Gaussian Elimination Lemma [1, Lemma 4.2].

Lemma 13.19 ([1, Lemma 4.2]). Let C be an additive category, and

I = “ · · · → C

(
α
β

)
−−−→

A

⊕

D

(
φ δ
γ ε

)
−−−−→

B

⊕

E

(µ ν)
−−−→ F → · · · ”

an object of Chb(C), that is, a bounded chain complex over C. Assume that A
φ
−→ B is

an isomorphism in C with inverse φ−1. Then I is homotopic to (that is, isomorphic in

hCh
b(C) to)

II = “ · · · → C
β
−→ D

ε−γφ−1δ
−−−−−−→ E

ν
−→ F → · · · ”.

In particular, if δ or γ is 0, then I is homotopic to

II = “ · · · → C
β
−→ D

ε
−→ E

ν
−→ F → · · · ”.

Proof. Consider the chain complex

I
′ = “ · · · → C

(
α
β

)
−−−→

A

⊕

D

(φ 0

0 ε−γφ−1δ

)
−−−−−−−−−→

B

⊕

E

(0 ν)
−−−→ F → · · · ”.
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Define f : I→ I
′ and g : I′ → I by

· · · −−−−→ C

(
α
β

)
−−−−→

A

⊕

D

(
φ δ
γ ε

)
−−−−→

B

⊕

E

(µ ν)
−−−−→ F −−−−→ · · ·

yid

yid

y
(

id φ−1δ
0 id

) y
(

id 0
−γφ−1 id

)yid

yid

· · · −−−−→ C

(
0
β

)
−−−−→

A

⊕

D

(
φ 0

0 ε−γφ−1δ

)

−−−−−−−−−−→

B

⊕

E

(0 ν)
−−−−→ F −−−−→ · · ·

yid

yid

y
(

id −φ−1δ
0 id

) y
(

id 0
γφ−1 id

) yid

yid

· · · −−−−→ C

(
α
β

)
−−−−→

A

⊕

D

(
φ δ
γ ε

)

−−−−→

B

⊕

E

(µ ν)
−−−−→ F −−−−→ · · ·

It is easy to check that f and g are isomorphisms in Ch
b(C). Thus,

I ∼= I
′ ∼= II⊕ “0→ A

φ
−→ B → 0”.

But 0→ A
φ
−→ B → 0 is homotopic to 0 since φ is an isomorphism in C. So I ≃ II.

6

6

6 66

6

6
6

�

-

n

n+k

m

k

n+k−m

m+1

n1

m+1−k

n+1

Γ′
k

6

6

6 66

6

6
6

�

-

n

n+k−1

m

k−1

n+k−1−m

m+1

n1

m+2−k

n+1

Γ′
k−1

Fig. 107

Lemma 13.20.

Homhmf(C(Γ
′
k){[m− k]q

k−1−m}, C(Γ′
k−1))

∼= 0,

Homhmf(C(Γ
′
k−1), C(Γ

′
k){[m− k]q

m+1−k}) ∼= 0.

Proof. By decomposition (V) (more precisely, Lemma 12.19), we have

C(Γ′
k) ≃ C(Γ

′′
k)⊕ C(Γ

′′
k−1).

Similarly to Lemma 12.20, one can check that the lowest non-vanishing quantum grading

of HomHMF(C(Γ
′′
j ), C(Γ

′
k)) is (j − k)(j − k + 1). So the lowest non-vanishing quantum

grading of HomHMF(C(Γ
′
k), C(Γ

′
k−1)) and HomHMF(C(Γ

′
k−1), C(Γ

′
k)) is 0. Note that

HomHMF(C(Γ
′
k){[m− k]q

k−1−m}, C(Γ′
k−1))

∼= HomHMF(C(Γ
′
k), C(Γ

′
k−1)){[m− k]q

m+1−k}

∼=

m−1−k⊕

j=0

HomHMF(C(Γ
′
k), C(Γ

′
k−1)), {q

2+2j}
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and

HomHMF(C(Γ
′
k−1), C(Γ

′
k){[m− k]q

m+1−k})

∼= HomHMF(C(Γ
′
k−1), C(Γ

′
k)){[m− k]q

m+1−k}

∼=

m−1−k⊕

j=0

HomHMF(C(Γ
′
k−1), C(Γ

′
k)){q

2+2j},

and the lowest non-vanishing quantum grading of the right hand side is 2 in both cases.

So

Homhmf(C(Γ
′
k){[m− k]q

k−1−m}, C(Γ′
k−1))

∼= 0,

Homhmf(C(Γ
′
k−1), C(Γ

′
k){[m− k]q

m+1−k}) ∼= 0.

We are now ready to prove (13.1.1). We show Ĉ(D+
10) ≃ Ĉ(D+

11) first and then

Ĉ(D−
10) ≃ Ĉ(D

−
11).

Proof of Ĉ(D+
10) ≃ Ĉ(D

+
11) when l = 1. Recall that the chain complex Ĉ(D+

1,1) is

0→ C(Γm,1)
d
+
m−−→

C(Γm,0){q−1}

⊕

C(Γm−1,1){q−1}

d
+
m−1
−−−→ · · ·

d
+
k+1
−−−→

C(Γk+1,0){qk−m}

⊕

C(Γk,1){qk−m}

d
+
k−−→ · · ·

d
+
k0−−→ C(Γk0,0){q

k0−1−m} → 0,

where k0 = max{m− n, 0} as above and

d+m =

(
χ1

−d+m

)
,

d+k =

(
d+k+1 χ1

0 −d+k

)
for k0 < k < m,

d+k0
= ( d+k0+1 χ1 ).

From decomposition (IV) (more precisely, (13.3.5)), we have

C(Γk,0) ≃ C(Γ̃k)⊕ C(Γ
′
k){[m− k]}.

By Corollary 6.11 and decomposition (II) (Theorem 6.12), we find that

C(Γk,1) ≃ C(Γ
′
k){[m+ 1− k]} ∼= C(Γ′

k){q
m−k} ⊕ C(Γ′

k){[m− k]q
−1}.

Therefore,

C(Γk+1,0){qk−m}

⊕

C(Γk,1){q
k−m}

≃

C(Γ̃k+1){q
k−m}

⊕

C(Γ′
k+1){[m− k − 1]qk−m}

⊕

C(Γ′
k)

⊕

C(Γ′
k){[m− k]q

k−m−1}

for k0 < k < m,
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and

C(Γk0,0){q
k0−1−m} ≃

C(Γ̃k0){q
k0−1−m}

⊕

C(Γ′
k0
){[m− k0]qk0−1−m}

.

So, Ĉ(D+
1,1) is isomorphic to

0→ C(Γm,1)
d
+
m−−→

C(Γ̃m){q−1}

⊕

C(Γ′
m−1)

⊕

C(Γ′
m−1){q

−2}

d
+
m−1
−−−→ · · ·

d
+
k+1
−−−→

C(Γ̃k+1){qk−m}

⊕

C(Γ′
k+1){[m− k − 1]qk−m}

⊕

C(Γ′
k)

⊕

C(Γ′
k){[m− k]q

k−m−1}

d
+
k−−→ · · ·

d
+
k0−−→

C(Γ̃k0){q
k0−1−m}

⊕

C(Γ′
k0
){[m− k0]qk0−1−m}

→ 0.

In this form, d+k is given by a 4× 4 matrix (d+k;i,j)4×4 for k0 < k < m− 1. Clearly,

d+k;i,j = 0 for (i, j) = (3, 1), (3, 2), (4, 1), (4, 2).

By Lemma 13.11,
d+k;1,1 ≈ d̃

+
k+1.

By Lemma 13.8,
d+k;3,3 ≈ δ

+
k .

By (13.3.9) in Corollary 13.7, we know that

d+k;1,4 ≃ 0, d+k;2,4 ≈ idC(Γ′
k
){[m−k]qk−m−1} .

By Lemma 13.20,
d+k;3,4 ≃ 0.

Altogether, for k0 < k < m− 1, we have

d+k ≃




ckd̃
+
k+1 ∗ ∗ 0

∗ ∗ ∗ c′′k idC(Γ′
k
){[m−k]qk−m−1}

0 0 c′kδ
+
k 0

0 0 ∗ ∗


 ,

where ck, c
′
k and c′′k are non-zero scalars and ∗’s stand for morphisms we have not iden-

tified. Similarly,

d+k0
≃

(
ck0 d̃

+
k0+1 ∗ ∗ 0

∗ ∗ ∗ c′′k0
idC(Γ′

k0
){[m−k+0]qk0−1−m}

)
,

d+m−1 ≃




cm−1d̃
+
m ∗ 0

∗ ∗ c′′m−1 idC(Γ′
m−1){q

−2}

0 c′m−1δ
+
m−1 0

0 ∗ ∗


 ,

where ck0 , c
′′
k0
, cm−1, c

′
m−1 and c′′m−1 are non-zero scalars.
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Now apply Gaussian Elimination (Lemma 13.19) to c′′k idC(Γ′
k
){[m−k]qk−m−1} in d+k for

k = k0, k0 + 1, . . . ,m− 1 in that order. We deduce that Ĉ(D+
11) is homotopic to

0→ C(Γm,1)
d̂
+
m−−→

C(Γ̃m){q−1}

⊕

C(Γ′
m−1)

d̂
+
m−1
−−−→ · · ·

d̂
+
k+1
−−−→

C(Γ̃k+1){qk−m}

⊕

C(Γ′
k)

d̂
+
k−−→ · · ·

d̂
+
k0−−→ C(Γ̃k0){q

k0−1−m} → 0,

where

d̂+k ≃

(
ckd̃

+
k+1 ∗

0 c′kδ
+
k

)
for k0 < k < m, (13.7.1)

d̂+k0
≃
(
ck0 d̃

+
k0+1 ∗

)
. (13.7.2)

Next we determine d̂+m. By decomposition (V) (more precisely, (13.6.1)), we have

C(Γm,1) ≃
C(Γ̃m+1)

⊕

C(Γ′′
m−1)

.

Under this decomposition, d̂+m is represented by a 2× 2 matrix. By Lemmas 13.12, 13.17

and 13.18, we know that

d̂+m ≃

(
cmd̃

+
m+1 ∗

0 c′mJm−1,m−1

)
, (13.7.3)

where cm and c′m are non-zero scalars. So Ĉ(D+
11) is homotopic to

0→
C(Γ̃m+1)

⊕

C(Γ′′
m−1)

d̂
+
m−−→

C(Γ̃m){q−1}

⊕

C(Γ′
m−1)

d̂
+
m−1
−−−→ · · ·

d̂
+
k+1
−−−→

C(Γ̃k+1){qk−m}

⊕

C(Γ′
k)

d̂
+
k−−→ · · ·

d̂
+
k0−−→ C(Γ̃k0){q

k0−1−m} → 0,

where d̂+m, . . . , d̂
+
k0

are given in (13.7.1)–(13.7.3).

Recall that, by decomposition (V) (more precisely, Lemma 12.19),

C(Γ′
k) ≃

{
C(Γ′′

k)⊕ C(Γ
′′
k−1) if k0 + 1 ≤ l ≤ m− 1,

C(Γ′′
k) if k = k0.

By Proposition 12.25, under the decomposition

C(Γ̃k+1){qk−m}

⊕

C(Γ′
k)

≃

C(Γ̃k+1){qk−m}

⊕

C(Γ′′
k)

⊕

C(Γ′′
k−1)

,
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we see that

d̂+m ≃



cmd̃

+
m+1 ∗

0 c′′′m idC(Γ′′
m−1)

0 0


 , (13.7.4)

d̂+k ≃



ckd̃

+
k+1 ∗ ∗

0 0 c′′′k idC(Γ′′
k−1)

0 0 0


 for k0 + 1 < k < m, (13.7.5)

where c′′′k is a non-zero scalar for k0 + 1 < k ≤ m. Since C(Γ′
k0
) ≃ C(Γ′′

k0
), we have

C(Γ̃k0+1){qk0−m}

⊕

C(Γ′
k0
)

≃
C(Γ̃k0+1){qk0−m}

⊕

C(Γ′′
k0
)

and

d̂+k0+1 ≃

(
ck0+1d̃

+
k0+2 ∗ ∗

0 0 c′′′k0+1 idC(Γ′′
k0

)

)
, (13.7.6)

d̂+k0
≃ (ck0 d̃

+
k0+1 ∗), (13.7.7)

where c′′′k0+1 is a non-zero scalar. Putting these together, we deduce that Ĉ(D+
11) is ho-

motopic to

0→
C(Γ̃m+1)

⊕

C(Γ′′
m−1)

d̂
+
m−−→

C(Γ̃m){q−1}

⊕

C(Γ′′
m−1)

⊕

C(Γ′′
m−2)

d̂
+
m−1
−−−→ · · ·

d̂
+
k+1
−−−→

C(Γ̃k+1){qk−m}

⊕

C(Γ′′
k)

⊕

C(Γ′′
k−1)

d̂
+
k−−→ · · ·

d̂
+
k0+1

−−−−→
C(Γ̃k0+1){qk0−m}

⊕

C(Γ′′
k0
)

d̂
+
k0−−→ C(Γ̃k0 ){q

k0−1−m} → 0,

where d̂+m, . . . , d̂
+
k0

are given in (13.7.4)–(13.7.7).

Applying Gaussian Elimination (Lemma 13.19) to c′′′k idC(Γ′′
k−1)

in d̂+k for k =

m,m− 1, . . . , k0 + 1, we find that Ĉ(D+
11) is homotopic to

0→ C(Γ̃m+1)
ď
+
m−−→ C(Γ̃m){q−1}

ď
+
m−1
−−−→ · · ·

ď
+
k+1
−−−→ C(Γ̃k+1){q

k−m}

ď
+
k−−→ · · ·

ď
+
k0−−→ C(Γ̃k0 ){q

k0−1−m} → 0,

where ď+k ≃ ckd̃
+
k+1 for k = m,m−1, . . . , k0. Recall that ck 6= 0 for k = m, . . . , k0. So this

last chain complex is isomorphic to Ĉ(D+
10) in Ch

b(hmf). Therefore, Ĉ(D+
11) ≃ Ĉ(D

+
10).
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Proof of Ĉ(D−
10) ≃ Ĉ(D

−
11) when l = 1. Recall that the chain complex Ĉ(D−

1,1) is

0→ C(Γk0,0){q
m+1−k0}

d
−
k0−−→ · · ·

d
−
k−1
−−−→

C(Γk,0){qm+1−k}

⊕

C(Γk−1,1){qm+1−k}

d
−
k−−→ · · ·

d
−
m−1
−−−→

C(Γm,0){q}

⊕

C(Γm−1,1){q}

d
−
m−−→ C(Γm,1)→ 0,

where k0 = max{m− n, 0} as above and

d−k0
=

(
d−k0

χ0

)
, d−k =

(
d−k 0

χ0 −d−k−1

)
for k0 < k < m, d−m = (χ0 −d−m−1 ).

From decomposition (IV) (more precisely, (13.3.5)), we have

C(Γk,0) ≃ C(Γ̃k)⊕ C(Γ
′
k){[m− k]}.

By Corollary 6.11 and decomposition (II) (Theorem 6.12), we have

C(Γk,1) ≃ C(Γ
′
k){[m+ 1− k]} ∼= C(Γ′

k){q
k−m} ⊕ C(Γ′

k){[m− k] · q}.

Therefore,

C(Γk,0){qm+1−k}

⊕

C(Γk−1,1){qm+1−k}

≃

C(Γ̃k){qm+1−k}

⊕

C(Γ′
k){[m− k]q

m+1−k}

⊕

C(Γ′
k−1)

⊕

C(Γ′
k−1){[m+ 1− k]qm+2−k}

for k0 < k < m,

and

C(Γk0,0){q
m+1−k0} ≃

C(Γ̃k0){q
m+1−k0}

⊕

C(Γ′
k0
){[m− k0]qm+1−k0}

.

So, Ĉ(D−
1,1) is isomorphic to

0→
C(Γ̃k0){q

m+1−k0}

⊕

C(Γ′
k0
){[m− k0]q

m+1−k0}

d
−
k0−−→ · · ·

d
−
k−1
−−−→

C(Γ̃k){qm+1−k}

⊕

C(Γ′
k){[m− k]q

m+1−k}

⊕

C(Γ′
k−1)

⊕

C(Γ′
k−1){[m+ 1− k]qm+2−k}

d
−
k−−→ · · ·

d
−
m−1
−−−→

C(Γ̃m){q}

⊕

C(Γ′
m−1)

⊕

C(Γ′
m−1){q

2}

d
−
m−−→ C(Γm,1)→ 0.
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In this form, d−k is given by a 4× 4 matrix (d−k;i,j)4×4 for k0 < k < m− 1. Clearly,

d−k;i,j = 0 for (i, j) = (1, 3), (1, 4), (2, 3), (2, 4).

By Lemma 13.11,

d−k;1,1 ≈ d̃
−
k .

By Lemma 13.8,

d−k;3,3 ≈ δ
−
k−1.

By (13.3.10) in Corollary 13.7, we know that

d−k;4,1 ≃ 0, d−k;4,2 ≈ idC(Γ′
k
){[m−k]qm+1−k} .

By Lemma 13.20,

d−k;4,3 ≃ 0.

Altogether, for k0 < k < m− 1, we have

d−k ≃




ckd̃
−
k ∗ 0 0

∗ ∗ 0 0

∗ ∗ c′kδ
−
k−1 ∗

0 c′′k idC(Γ′
k
){[m−k]qm+1−k} 0 ∗


 ,

where ck, c
′
k and c′′k are non-zero scalars and ∗’s stand for morphisms we have not iden-

tified. Similarly,

d−k0
≃




ck0 d̃
−
k0

∗

∗ ∗

∗ ∗

0 c′′k0
idC(Γ′

k0
){[m−k0]qm+1−k0}


 ,

d+m−1 ≃



cm−1d̃

−
m−1 ∗ 0 0

∗ ∗ c′m−1δ
−
m−2 ∗

0 c′′m−1 idC(Γ′
m−1){q

2} 0 ∗


 ,

where ck0 , c
′′
k0
, cm−1, c

′
m−1 and c′′m−1 are non-zero scalars.

Now apply Gaussian Elimination (Lemma 13.19) to c′′k idC(Γ′
k
){[m−k]qm+1−k} in d−k for

k = k0, k0 + 1, . . . ,m− 1 in that order. We find that Ĉ(D−
11) is homotopic to

0→ C(Γ̃k0){q
m+1−k0}

d̂
−
k0−−→ · · ·

d̂
−
k−1
−−−→

C(Γ̃k){qm+1−k}

⊕

C(Γ′
k−1)

d̂
−
k−−→ · · ·

d̂
−
m−1
−−−→

C(Γ̃m){q}

⊕

C(Γ′
m−1)

d̂
−
m−−→ C(Γm,1)→ 0,
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where

d̂−k ≃

(
ckd̃

−
k 0

∗ c′kδ
−
k−1

)
for k0 < k < m, (13.7.8)

d̂−k0
≃



ck0 d̃

−
k0

∗

∗


 . (13.7.9)

Next we determine d̂−m. By decomposition (V) (more precisely, (13.6.1)), we have

C(Γm,1) ≃
C(Γ̃m+1)

⊕

C(Γ′′
m−1)

.

Under this decomposition, d̂−m is represented by a 2× 2 matrix. By Lemmas 13.12, 13.17

and 13.18, we know that

d̂−m ≃

(
cmd̃

−
m 0

∗ c′mPm−1,m−1

)
, (13.7.10)

where cm and c′m are non-zero scalars. So Ĉ(D−
11) is homotopic to

0→ C(Γ̃k0){q
m+1−k0}

d̂
−
k0−−→ · · ·

d̂
−
k−1
−−−→

C(Γ̃k){q
m+1−k}

⊕

C(Γ′
k−1)

d̂
−
k−−→ · · ·

d̂
−
m−1
−−−→

C(Γ̃m){q}

⊕

C(Γ′
m−1)

d̂
−
m−−→

C(Γ̃m+1)

⊕

C(Γ′′
m−1)

→ 0,

where d̂−m, . . . , d̂
−
k0

are given in (13.7.8)–(13.7.10).

Recall that, by decomposition (V) (more precisely, Lemma 12.19),

C(Γ′
k) ≃

{
C(Γ′′

k)⊕ C(Γ
′′
k−1) if k0 + 1 ≤ l ≤ m− 1,

C(Γ′′
k) if k = k0.

By Proposition 12.25, under the decomposition

C(Γ̃k){qm+1−k}

⊕

C(Γ′
k−1)

≃

C(Γ̃k){qm+1−k}

⊕

C(Γ′′
k−1)

⊕

C(Γ′′
k−2)

,

we observe that

d̂−m ≃

(
cmd̃

−
m 0 0

∗ c′′′m idC(Γ′′
m−1)

0

)
, (13.7.11)

d̂−k ≃



ckd̃

−
k 0 0

∗ 0 0

∗ c′′′k idC(Γ′′
k−1)

0


 for k0 + 1 < k < m, (13.7.12)
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where c′′′k is a non-zero scalar for k0 + 1 < k ≤ m. Since C(Γ′
k0
) ≃ C(Γ′′

k0
), we have

C(Γ̃k0+1){qm−k0}

⊕

C(Γ′
k0
)

≃
C(Γ̃k0+1){qm−k0}

⊕

C(Γ′′
k0
)

and

d̂−k0+1 ≃



ck0+1d̃

−
k0+1 0

∗ 0

∗ c′′′k0+1 idC(Γ′′
k0

)


 , (13.7.13)

d̂−k0
≃

(
ck0 d̃

+
k0+1

∗

)
, (13.7.14)

where c′′′k0+1 is a non-zero scalar. Putting these together, we know that Ĉ(D−
11) is homo-

topic to

0→ C(Γ̃k0){q
m+1−k0}

d̂
−
k0−−→

C(Γ̃k0+1){qm−k0}

⊕

C(Γ′′
k0
)

d̂
−
k0+1

−−−−→ · · ·
d̂
−
k−1
−−−→

C(Γ̃k){qm+1−k}

⊕

C(Γ′′
k−1)

⊕

C(Γ′′
k−2)

d̂
−
k−−→ · · ·

d̂
−
m−1
−−−→

C(Γ̃m){q}

⊕

C(Γ′′
m−1)

⊕

C(Γ′′
m−2)

d̂
−
m−−→

C(Γ̃m+1)

⊕

C(Γ′′
m−1)

→ 0,

where d̂−m, . . . , d̂
−
k0

are given in (13.7.11)–(13.7.14).

Applying Gaussian Elimination (Lemma 13.19) to c′′′k idC(Γ′′
k−1)

in d̂−k for k = m,

m− 1, . . . , k0 + 1, we conclude that Ĉ(D−
11) is homotopic to

0→ C(Γ̃k0){q
m+1−k0}

ď
−
k0−−→ · · ·

ď
−
k−1
−−−→ C(Γ̃k){q

m+1−k}
ď
−
k−−→ · · ·

ď
−
m−−→ C(Γ̃m+1)→ 0,

where ď−k ≃ ckd̃
−
k for k = m, . . . , k0. Recall that ck 6= 0 for k = m, . . . , k0. So this last

chain complex is isomorphic to Ĉ(D−
10) in Ch

b(hmf). Therefore, Ĉ(D−
11) ≃ Ĉ(D

−
10).

So we have completed the proof of (13.1.1), that is, Ĉ(D±
10) ≃ Ĉ(D±

11) if l = 1. The

proof of the rest of Proposition 13.2 is very similar and left to the reader. This completes

the proof of Theorem 13.1.



14. Invariance under Reidemeister moves

In this section, we prove that the homotopy type of the normalized chain complex asso-

ciated to a knotted MOY graph is invariant under Reidemeister moves. The main result

of this section is Theorem 14.1 below. Note that Theorem 1.1 is a special case of Theo-

rem 14.1.

Theorem 14.1. Let D0 and D1 be two knotted MOY graphs. Assume that there is a

finite sequence of Reidemeister moves that changes D0 into D1. Then C(D0) ≃ C(D1),

that is, they are isomorphic as objects of hChb(hmf).

Theorem 14.1 follows from Lemmas 14.4 and 14.8 below, in which we establish the

invariance of the homotopy type under Reidemeister moves I, IIa, IIb and III given in

Figures 108–111. The proofs of these lemmas are based on induction on the highest color

of the edges involved in the Reidemeister move. The starting point of our induction is

the following theorem by Khovanov and Rozansky [19].

D+ =
m
OO

←→ D =
m
OO

←→ D− =
m
OO

Fig. 108. Reidemeister move I

n

OO

m

OO

←→
m

OO

n

OO

←→
n

OO

m

OO

Fig. 109. Reidemeister move IIa

��

n
OO

m

←→ ��

m

n

OO ←→ ��

n
OO

m

Fig. 110. Reidemeister move IIb

[206]
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??__

m

n

l

??

←→
m

??__
n
__

l

Fig. 111. Reidemeister move III

Theorem 14.2 ([19, Theorem 2]). Let D0 and D1 be two knotted MOY graphs. Assume

that there is a Reidemeister move changing D0 into D1 that involves only edges colored

by 1. Then C(D0) ≃ C(D1), that is, they are isomorphic as objects of hChb(hmf).

Remark 14.3. The original statement of [19, Theorem 2] covers only link diagrams

colored entirely by 1. But its proof in [19, Section 8] is local in the sense that it is

based on homotopy equivalences of the chain complex associated to the part of the link

diagram involved in the Reidemeister move. So the slightly more general statement of

Theorem 14.2 above also follows from the proof in [19].

14.1. Invariance under Reidemeister moves IIa, IIb and III. With the invariance

under fork sliding (Theorem 13.1) in hand, we can easily prove the invariance of the

homotopy type under Reidemeister moves IIa, IIb, III by induction using the “sliding bi-

gon” method introduced in [32] (and used in [29, 45].) The proof of the invariance under

Reidemeister move I is somewhat different and is postponed to the next subsection.

Lemma 14.4. Let D0 and D1 be two knotted MOY graphs. Assume that there is a Rei-

demeister move of type IIa, IIb or III that changes D0 into D1. Then C(D0) ≃ C(D1),

that is, they are isomorphic as objects of hChb(hmf).

Proof. The proofs for Reidemeister moves IIa, IIb and III are quite similar. We only give

details for Reidemeister move IIa here and leave the other two moves to the reader.

Let D0 and D1 be the knotted MOY graphs in Figure 112. We prove by induction

on k that C(D0) ≃ C(D1) if 1 ≤ m,n ≤ k. When k = 1, this statement is a special case

of Theorem 14.2. Assume that this statement is true for some k ≥ 1.

D0 =
m

OO

n

OO

D1 =
n

OO

m

OO

Fig. 112

Now consider k+1. Assume that 1 ≤ m,n ≤ k+1 in D0 and D1. Let Γ0, Γ1 and Γ2 be

in the knotted MOY graphs in Figure 113. Here, in casem or n = 1, we use the convention

that an edge colored by 0 is an edge that does not exist. By decomposition (II) (Theorem

6.12), we know that Ĉ(Γ0) ≃ Ĉ(D0){[m][n]} and Ĉ(Γ1) ≃ Ĉ(D1){[m][n]}. Note that

m − 1, n − 1 ≤ k. By induction hypothesis and the normalization in Definition 12.16,

we know that Ĉ(Γ0) ≃ Ĉ(Γ2). By the invariance under fork sliding (Theorem 13.1),

we find that Ĉ(Γ1) ≃ Ĉ(Γ2). Thus, Ĉ(Γ0) ≃ Ĉ(Γ1). By Proposition 4.21, it follows
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Γ0 =

m
OO

1

__

m−1

??

m

OO

n
OO

n−1

__

1

??

n

OO

Γ2 =

m
OO

n
OO

m−1 n−1

OOOOOO

1

OO

1

n

OO
m

OO

Γ1 =

m
OO

1
__

m−1

??
n
OO

n−1

__

1

??

m

OO
n

OO

Fig. 113

that Ĉ(D0) ≃ Ĉ(D1), which, by the normalization in Definition 12.16, is equivalent to

C(D0) ≃ C(D1). This completes the induction.

14.2. Invariance under Reidemeister move I. The proof of invariance under Rei-

demeister move I is somewhat different from that under Reidemeister moves II and III.

The basic idea is still the “sliding bi-gon”. But we also need to do some “untwisting” to

get the invariance.

�I

6m+n

m n

Γm,n

Fig. 114

Lemma 14.5. Let Γm,n be the MOY graph in Figure 114. Then

HomHMF(C(Γm,n), C(Γm,n)) ∼= HomHMF(C(Γm,n), C(Γm,n))

∼= C(∅)

{[
N

m+ n

][
m+ n

n

]
q(m+n)(N−m−n)+mn

}
,

where Γm,n is Γm,n with the orientation reversed. In particular, the lowest non-vanishing

quantum degree of these spaces is 0. Therefore, for k < l,

Homhmf(C(Γm,n){q
k}, C(Γm,n){q

l}) ∼= Homhmf(C(Γm,n){q
k}, C(Γm,n){q

l}) ∼= 0.

Proof. Consider the MOY graph Γ in Figure 31. It is easy to check that

HomHMF(C(Γm,n), C(Γm,n)) ∼= HomHMF(C(Γm,n), C(Γm,n))

∼= H(Γ)〈m+ n〉{q(m+n)(N−m−n)+mn}.

By Lemma 9.3,

H(Γ) ∼= C(∅)〈m+ n〉

{[
N

m+ n

][
m+ n

n

]}
,

whose lowest non-vanishing quantum grading is −(m+n)(N −m−n)−mn. This implies

the assertion.
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The next lemma is [54, Proposition 6.1]. The special case when m = n = 1 has

appeared in [36]. For the convenience of the reader, we prove this lemma here instead of

just citing [54].

Lemma 14.6 ([54, Proposition 6.1]). Let Γ±
1,n and Γ±

m,1 be the knotted MOY graphs in

Figure 115. Then

Ĉ(Γ+
1,n) ≃ Ĉ(Γ1,n){q

n}, Ĉ(Γ−
1,n) ≃ Ĉ(Γ1,n){q

−n},

Ĉ(Γ+
m,1) ≃ Ĉ(Γm,1){q

m}, Ĉ(Γ−
m,1) ≃ Ĉ(Γm,1){q

−m},

where “≃” is the isomorphism in hCh
b(hmf).

�I

61+n

1 n

Γ+
1,n

I�

61+n

1 n

Γ−
1,n

�I

61+n

1 n

Γ1,n

�I

6m+1

m 1

Γ+
m,1

I�

6m+1

m 1

Γ−
m,1

�I

6m+1

m 1

Γm,1

Fig. 115

Proof. We only give the details for Ĉ(Γ±
1,n) ≃ Ĉ(Γ1,n){q

±n} here. The proof for Ĉ(Γ±
m,1)

≃ Ĉ(Γ1,m){q±m} is very similar and left to the reader. Recall that

Ĉ(Γ1,n) = “0→ C(Γ1,n)→ 0”.

Let Γ′
1,n and Γ′′

1,n be the MOY graphs in Figure 116. Then, by Corollary 12.28,

Ĉ(Γ+
1,n) = “0→ C(Γ′

1,n)
χ1

−→ C(Γ′′
1,n){q

−1} → 0”,

Ĉ(Γ−
1,n) = “0→ C(Γ′′

1,n){q}
χ0

−→ C(Γ′
1,n)→ 0”,

where χ0 and χ1 are induced by the apparent local changes in MOY graphs.

�I
6

6

6 6

n+1

n+1

1

n

n

1

Γ′
1,n

X {r}

{s}

6

6

6

6
�

6n+1

1 n

n 1

n−1
X {r}

{s}

Γ′′
1,n

Fig. 116
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Note that Γ′
1,n is obtained from Γ1,n by an edge splitting. Denote by C(Γ1,n)

φ
−→

C(Γ′
1,n) and C(Γ′

1,n)
φ
−→ C(Γ1,n) the morphisms induced by this edge splitting and its

reverse edge merging. By decomposition (II) (Theorem 6.12), we know that

C(Γ′
1,n) ≃ C(Γ1,n){[n+ 1]} =

n⊕

j=0

C(Γ1,n){q
−n+2j}. (14.2.1)

It is not hard to explicitly write down the inclusion and projection morphisms in this

decomposition. For j = 0, . . . , n, define αj = m(rj)◦φ and βj = φ◦m(Xn−j), where Xk is

the kth elementary symmetric polynomial in X. Then C(Γ1,n){q
−n+2j}

αj
−→ C(Γ′

1,n) and

C(Γ′
1,n)

βj

−→ C(Γ1,n){q
−n+2j} are homogeneous morphisms preserving the Z2⊕Z-grading.

And, by Lemma 8.11,

βj ◦ αi ≈

{
idC(Γ1,n){q−n+2j} if i = j,

0 otherwise.

Clearly, αi and βj are the inclusion and projection morphisms in decomposition (14.2.1).

By Corollary 6.11 and decomposition (II) (Theorem 6.12), we have

C(Γ′′
1,n) ≃ C(Γ1,n){[n]} =

n−1⊕

j=0

C(Γ1,n){q
−n+1+2j}. (14.2.2)

By decompositions (14.2.1) and (14.2.2), Ĉ(Γ+
1,n) is isomorphic to

0→

C(Γ1,n){q−n}

⊕

C(Γ1,n){q−n+2}

⊕
...

⊕

C(Γ1,n){qn}

χ1

−→

C(Γ1,n){q−n}

⊕

C(Γ1,n){q−n+2}

⊕
...

⊕

C(Γ1,n){qn−2}

→ 0,

where χ1 is represented by an n× (n+ 1) matrix (χ1
i,j)n×(n+1). By Lemma 14.5,

χ1
i,j ≃ 0 if i > j. (14.2.3)

Similarly, Ĉ(Γ−
1,n) is isomorphic to

0→

C(Γ1,n){q−n+2}

⊕

C(Γ1,n){q−n+4}

⊕
...

⊕

C(Γ1,n){qn}

χ0

−→

C(Γ1,n){q−n}

⊕

C(Γ1,n){q−n+2}

⊕
...

⊕

C(Γ1,n){qn}

→ 0,

where χ0 is represented by an (n+ 1)× n matrix (χ0
i,j)(n+1)×n. By Lemma 14.5,

χ0
i,j ≃ 0 if i > j + 1. (14.2.4)
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Consider the composition βj+1 ◦ χ
0 ◦ χ1 ◦ αj . On the one hand, by Lemma 8.11 and

Corollary 9.9,

βj+1 ◦ χ
0 ◦ χ1 ◦ αj ≈ βj+1 ◦m(r − s) ◦ αj ≈ φ ◦m(Xn−j−1r

j(r − s)) ◦ φ ≈ idC(Γ1,n) .

On the other hand, by (14.2.3) and (14.2.4),

βj+1 ◦ χ
0 ◦ χ1 ◦ αj ≈

n−1∑

k=1

χ0
j+1,k ◦ χ

1
k,j ≃ χ

0
j+1,j ◦ χ

1
j,j .

So, χ0
j+1,j ◦ χ

1
j,j ≈ idC(Γ1,n). This shows that χ0

j+1,j and χ1
j,j are both isomorphisms in

hmf.

Using (14.2.3), we apply Gaussian Elimination (Lemma 13.19) to χ1
j,j in Ĉ(Γ+

1,n) for

j = 1, 2, . . . , n in that order. This reduces Ĉ(Γ+
1,n) to

0→ C(Γ1,n){q
n} → 0.

So Ĉ(Γ+
1,n) ≃ Ĉ(Γ1,n){qn}. Similarly, using (14.2.4), we apply Gaussian Elimination

(Lemma 13.19) to χ0
j+1,j Ĉ(Γ

−
1,n) for j = n, n − 1, . . . , 1 in that order. This reduces

Ĉ(Γ−
1,n) to

0→ C(Γ1,n){q
−n} → 0.

So Ĉ(Γ−
1,n) ≃ Ĉ(Γ1,n){q−n}.

Lemma 14.7. Let D+, D− and D be the knotted MOY graphs in Figure 108. Then

Ĉ(D+) ≃ Ĉ(D)〈m〉‖m‖{q−m(N+1−m)}, (14.2.5)

Ĉ(D−) ≃ Ĉ(D)〈m〉‖−m‖{qm(N+1−m)}, (14.2.6)

where ‖ ∗ ‖ means shifting the homological grading by ∗. (See Definition 3.36.)

Proof. We prove (14.2.5) by induction on m. The proof of (14.2.6) is similar and left to

the reader.

If m = 1, then (14.2.5) follows from [19, Theorem 2]. (See Theorem 14.2 above.)

Assume that (14.2.5) is true for some m ≥ 1. Let us prove (14.2.5) for m+ 1.

Consider the knotted MOY graphs Γ1, . . . ,Γ7 in Figure 117. By decomposition (II)

(Theorem 6.12), we have

Ĉ(Γ1) ≃ Ĉ(D
+){[m+ 1]} and Ĉ(Γ7) ≃ Ĉ(D){[m+ 1]}.

By Theorem 13.1, we have Ĉ(Γ1) ≃ Ĉ(Γ2). Since (14.2.5) is true for 1, we know that

Ĉ(Γ2) ≃ Ĉ(Γ3)〈1〉‖1‖{q−N}. From Lemma 14.4, one can see that Ĉ(Γ3) ≃ Ĉ(Γ4).

Since (14.2.5) is true for m, we know that Ĉ(Γ4) ≃ Ĉ(Γ5)〈m〉‖m‖{q−m(N+1−m)}. By

Lemma 14.6, we deduce that Ĉ(Γ5) ≃ Ĉ(Γ6){q
m} and Ĉ(Γ6) ≃ Ĉ(Γ7){q

m}. Putting

these together, we get

Ĉ(Γ1) ≃ Ĉ(Γ7)〈m+ 1〉‖m+ 1‖{q−(m+1)(N−m)}.

From Proposition 4.21, it follows that (14.2.5) is true for m + 1. This completes the

induction.
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Γ1 =
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1
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m
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m+1

OO

Γ2 =

m+1
OO

oo

m
1

m+1

OO
oo

Γ3 =

m+1
OO

oo

m

1

m+1

OO
oo

Γ4 =

m+1
OO

1
OO

m
OO

m+1
OO

Γ5 =

m+1
OO

m
OO

1

OO

m+1
OO

Γ6 =

m+1
OO

m
OO

1

OO

m+1
OO

Γ7 =

m+1
OO

m
OO

1

OO

m+1
OO

Fig. 117

Lemma 14.8. Let D0 and D1 be two knotted MOY graphs. Assume that there is a Rei-

demeister move of type I that changes D0 into D1. Then C(D0) ≃ C(D1), that is, they

are isomorphic as objects of hChb(hmf).

Proof. The lemma follows easily from Lemma 14.7 and the normalization in Defini-

tion 12.16.
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Morphisms induced by local changes of MOY graphs

Morphism Change of MOY graph Defined in

h bouquet move (Figure 15) Corollary 6.11 and Lemma 8.4

ι circle creation Definition 8.7

ǫ circle annihilation Definition 8.7

φ edge splitting (Figure 17) Definition 8.10

φ edge merging (Figure 17) Definition 8.10

χ0 and χ1 Figure 19 Proposition 8.21

(special cases in Corollaries 9.9, 10.3)

ψ loop addition (Figure 22) Definition 8.32

ψ loop removal (Figure 22) Definition 8.32

η saddle move (Figure 24) Definition 8.35

ϕ and ϕ Figure 83 Definition 13.4

(for use in Section 13 only)
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Some basic concepts

Concept Defined in

abstract MOY graph Definition 2.1

chain complex of a knotted MOY graph/link diagram Definition 12.4

colored rotation number Definition 12.30

end point Definition 2.1

fully additive C-category Definition 4.11

generating class of a colored circle Definition 7.4

graded-free module Definition 3.3

graded matrix factorization Definition 3.4

homology of a matrix factorization over a base ring Definition 4.5

homology of a MOY graph Definition 6.5

homotopic graded matrix factorizations Definition 3.9

homotopically finite graded matrix factorizations Definition 3.30

internal vertex Definition 2.1

isomorphic graded matrix factorizations Definition 3.9

knotted MOY graph Definition 12.1

Koszul matrix factorization Definition 3.5

Krull–Schmidt C-category Definition 4.11

locally finite-dimensional C-category Definition 4.11

marking of a knotted MOY graph Definition 12.2

marking of a MOY graph Definition 6.1

matrix factorization of a MOY graph Definition 6.3

morphism of matrix factorizations Definition 3.9

MOY graph Definition 2.1

MOY polynomial Equation (2.3.2)

non-degenerate potential Definition 4.1

normalized chain complex of a crossing Definition 12.16

pregrading Subsection 3.1

quantum integer Definition 2.2

regular sequence Definition 3.20

renormalized Reshetikhin–Turaev sl(N) polynomial Definition 2.5

unnormalized chain complex of a crossing Definition 12.16
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