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Abstract

Fix an integer N > 2. To each diagram of a link colored by 1,..., N we associate a chain
complex of graded matrix factorizations. We prove that the homotopy type of this chain complex
is invariant under Reidemeister moves. When every component of the link is colored by 1, this
chain complex is isomorphic to the chain complex defined by Khovanov and Rozansky. The
homology of this chain complex decategorifies to the Reshetikhin—Turaev s[(/N) polynomial of
links colored by exterior powers of the defining representation.
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1. Introduction

1.1. Background. In the early 1980s, Jones [I5] defined the Jones polynomial, which
was generalized to the HOMFLYPT polynomial in [I1] [35]. Later, Reshetikhin and Tu-
raev [38] constructed a large family of polynomial invariants for framed links whose com-
ponents are colored by finite-dimensional representations of a complex semisimple Lie
algebra. The HOMFLYPT polynomial is a special example of the Reshetikhin—Turaev
invariants corresponding to the defining representation of sl(N; C).

In general, the Reshetikhin—Turaev invariants for links are rather abstract. But, when
the Lie algebra is s[(IV; C) and every component of the link is colored by an exterior power
of the defining representation, Murakami, Ohtsuki and Yamada [32] gave a state sum
formula for the corresponding sl(N) Reshetikhin—Turaev invariant. Their construction
comes with a set of graphical relations, which is known as the MOY calculus.

If every component of the link is colored by the defining representation, then the con-
struction in [32] recovers the uncolored s[(N) HOMFLYPT polynomial. Modeling on this,
Khovanov and Rozansky [19] categorified the uncolored sl(N) HOMFLYPT polynomial
using matrix factorizations. Their construction generalizes the Khovanov homology [18].

1.2. Some conventions. Throughout this paper, N is a fixed integer not less than 2.
All links and tangles in this paper are oriented and colored. That is, every component
of the link or tangle is assigned an orientation and an element of {0,1,..., N}, which
we call the color of this component. A link that is completely colored by 1 is called
uncolored.
Following the convention in [19], the degree of a polynomial in this paper is twice its

usual degree.

1.3. The colored sl(N) link homology. Our goal is to generalize Khovanov and
Rozansky’s construction in [I9] to categorify the Reshetikhin—Turaev sl(N) polynomial
of links colored by exterior powers of the defining representation. The following are our
main results.

THEOREM 1.1. Let D be a diagram of a tangle whose components are colored by elements
of {0,1,...,N}, and C(D) be the chain complex defined in Definition TZ4. Then:

(i) C(D) is a bounded chain complex over a homotopy category of graded matriz fac-
torizations.

(1) In this paper, instead of saying that an object is colored by the k-fold exterior power of
the defining representation of sI(/N;C), we simply say that it is colored by k.

(6]
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(ii) C(D) is Zo ®Z @ Z-graded, where the Za-grading is the Zo-grading of the underlying
matriz factorization, the first Z-grading is the quantum grading of the underlying
matriz factorization, and the second Z-grading is the homological grading.

(iil) The homotopy type of C'(D), with its Ze ® 7 ® Z-grading, is invariant under Reide-
meister moves.

(iv) If every component of D is colored by 1, then C(D) is isomorphic to the chain
complex defined by Khovanov and Rozansky in [19].

Since the homotopy category hmfr ,, of graded matrix factorizations is not abelian,
we cannot directly define the homology of C(D). But, as in [19], we can still construct a
homology H (D) from C(D). Recall that each matrix factorization comes with a differen-
tial map dy,¢. If D is a link diagram, then the base ring R is C, and the potential w = 0.
So all the matrix factorizations in C'(D) are actually cyclic chain complexes. Taking the
homology with respect to d,, s, we change C'(D) into a chain complex (H(C(D), drmy),d")
of finite-dimensional graded vector spaces, where d* is the differential map induced by
the differential map d of C(D). We define

H(D) = H(H(C(D), dpy), d"). (1.3.1)

If D is a diagram of a tangle with end points, then R is a graded polynomial ring
with homogeneous indeterminates of positive gradings, and w is in the maximal homo-
geneous ideal J of R generated by all the indeterminates. So (C(D)/J - C(D),dmy) is a
cyclic chain complex. Its homology (H(C(D)/J - C(D),dpy),d*) is a chain complex of
finite-dimensional graded vector spaces, where d* is the differential map induced by the
differential map d of C'(D). We define

H(D) = H(H(C(D)/3 - C(D), dpny), d"). (1.3.2)

In either case, H(D) inherits the Zs @ Z @ Z-grading of C(D). We call H(D) the colored
s[(N) homology of D. The corollary below follows easily from Theorem [T

COROLLARY 1.2. Let D be a diagram of a tangle whose components are colored by ele-
ments of {0,1,...,N}. Then H(D) is a finite-dimensional Zo ® Z® Z-graded vector space
over C. Furthermore, Reidemeister moves of D induce isomorphisms of H(D) preserving
its Zo ® Z @ Z-grading.

For a tangle T', denote by H®%J(T) the subspace of H(T) of homogeneous elements
of Zo-degree e, quantum degree i and homological degree j. The Poincaré polynomial
Pr(7,q,t) of H(T) is defined to be

Pr(r,q,t) = »_ 7°¢'t) dim H*"(T) € C[r,q,1]/(v* - 1). (1.3.3)
€4,

Based on the construction by Murakami, Ohtsuki and Yamada [32], we give in Def-
inition a renormalization RT(¢) of the Reshetikhin—Turaev sl(N) polynomial for
links colored by non-negative integers. For a link L colored by non-negative integers,
the graded Euler characteristic of H(L) is equal to RT[,(q). More precisely, we have the
following theorem.
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THEOREM 1.3. Let L be a link colored by non-negative integers. Then
PL(la q, _1) = RTL(Q)

Moreover, define the total color tc(L) of L to be the sum of the colors of the components
of L. Then H®%I(L) =0 if e — tc(L) = 1 € Za and therefore

Pr(r.q.t) =70 q't! dim B0 (L),

,J

1.4. Deformations and applications. The construction of the colored s[(N) link ho-
mology H is based on matrix factorizations associated to MOY graphs with potentials
induced by XV *1. One can modify this construction by considering matrix factorizations
with potentials induced by

N
F(X) = XNHLL 3 B XNk,
k=1
where Bj is a homogeneous indeterminate of degree 2k. This gives an equivariant
s[(N) link homology Hy. We observe that Hy is a finitely generated Zy & Z & Z-graded

C[By, ..., By]-module. The construction of H¢ and the proof of its invariance are given
in [50], which generalizes the work of Krasner [22] in the uncolored case.
For any by,...,bn € C, one can perform the above construction using matrix factor-
izations associated to MOY graphs with potentials induced by
N
P(X) _ XN+1 + Z kaN—‘,-l—k’
k=1

which gives a deformed s[(N) link homology Hp. For any link L, Hp(L) is a finite-
dimensional Zs @ Z-graded and Z-filtered vector space over C. The quotient map

W:C[Bl,...,BN] — C (%J(C[Bl,...,BN]/(Bl—bl,...,BN—bN))

given by 7(Bjy) = by induces a functor w between categories of matrix factorizations.
Using this functor, one can easily show that the invariance of H; implies the invariance
of Hp. As in the uncolored case, the filtration of Hp induces a spectral sequence converg-
ing to Hp with Ej-page isomorphic to the undeformed s[(N) link homology H. Proofs
of these results can be found in [50].

When P(X) is generic, that is, when P’(X) has N distinct root in C, then Hp(L)
admits a basis that generalizes the basis given by Lee [26] and Gornik [I4]. See [49] for the
construction. [49] also contains the definition of the colored sI(N) Rasmussen invariants
and the bounds for slice genus and self-linking number given by these invariants.

The sl(N) link homology H itself also gives new bounds for the self-linking number
and the braid index. (See [51].) These bounds generalize the well known Morton-Franks—
Williams inequality [10, B1].

1.5. Other approaches to the colored s[(N) link homology. The Reshetikhin—
Turaev s[(N) polynomial of links colored by exterior powers of the defining representation
has been categorified via several different approaches. Next we quickly review some recent
results in this direction.
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Using matrix factorizations, Yonezawa [54] defined essentially the Poincaré polynomial
Pr of the colored sl(/N) link homology H.

Stroppel [40] gave a Lie-theoretic construction of the Khovanov homology, which is
proved in [5] to be isomorphic to Khovanov’s original construction. (See also [4I Sec-
tion 5].) Mazorchuk and Stroppel [30] described a Koszul dual construction for the sl(NV)
link homology, which is conjecturally isomorphic to the colored s[(N) link homology H.

Mackaay, Stosic and Vaz [29] constructed a Z®3-graded HOMFLYPT homology for
1, 2-colored links which generalizes Khovanov and Rozansky’s construction in [20]. Web-
ster and Williamson [45] further generalized this homology to links colored by any non-
negative integers using the equivariant cohomology of general linear groups and related
spaces.

Cautis and Kamnitzer [7] [§] constructed a link homology using the derived category
of coherent sheaves on certain flag-like varieties. Their homology is conjectured to be
isomorphic to the sl[(N) Khovanov-Rozansky homology of [19]. Using sl[(2) actions on
certain categories of D-modules and coherent sheaves, they [0] also categorified the s[(N)
polynomial for links in S® colored by exterior powers of the defining representation.

Using categorifications of the tensor products of integrable representations of Kac—
Moody algebras and quantum groups, Webster [43], [@4] categorified, for any simple com-
plex Lie algebra g, the quantum g invariant for links colored by any finite-dimensional
representations of g. All the aforementioned categorifications of the colored Reshetikhin—

Turaev sl(NN) polynomial are expected to agree with Webster’s categorification for g =
sl(N; C).

1.6. Outline of the proof. The present paper contains all the background knowledge
needed to understand the construction of the colored s{(N) link homology. Next we
explain the structure of this paper and outline our proof.

We review in Section 2l the Murakami—Ohtsuki—Yamada construction of the Reshe-
tikhin—Turaev s[(IN) polynomial for links colored by non-negative integers. In particular,
we demonstrate that the sl(N) MOY graph polynomial is uniquely determined by the
MOY relations.

Sections Bl to B are reviews of algebraic structures used in our categorification. In
Section Bl we recall the definition and properties of graded matrix factorizations. Then,
in Section [ we take a closer look at graded matrix factorizations over polynomial rings.
Section [B] is devoted to rings of symmetric polynomials, which serve as base rings in our
construction.

In Sections [ to I} we define and study matrix factorizations associated to MOY
graphs. In particular, we prove direct sum decompositions (I)—(V), among which decom-
positions (I), (II), (IV), (V) are essential in our construction of the colored s[(/N) homo-
logyl(2). Decompositions (I)—(IV) are generalizations of the corresponding decompositions

(?) Decomposition (III) is not explicitly used in the construction of the colored sl(N) ho-
mology. The reader can skip this decomposition and its proof, that is, Subsections B8H8.I0l and
Section
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in [I9]. We prove these four decompositions by explicit constructions . Decomposition
(V) is a further generalization of (IV) and is far more complex. We prove this decompo-
sition by an induction based on decomposition (IV) using the Krull-Schmidt property of
graded matrix factorizations. Note that these MOY decompositions decategorify to the
corresponding MOY relations of the sl(N) MOY graph polynomial. Thus, the graded
dimension of our graph homology satisfies all the MOY relations and must be equal to
the s[(N) MOY graph polynomial.

The chain complex associated to a knotted MOY graph is defined in Section 2} We
resolve each knotted MOY graph into a collection of MOY graphs as in [32] and then
build a chain complex using the matrix factorizations associated to these MOY graphs.
The homology of this chain complex is the s[(N) homology of the knotted MOY graph.
We observe that the graded Euler characteristic of the sI(IN) homology of a colored link
is equal to its renormalized Reshetikhin—Turaev s[(IN) polynomial.

We prove in Sections [[3] and [I4] that the homotopy type of the above chain complex is
invariant under Reidemeister moves, which implies the invariance of the s[(N) homology.
In Section [I3], we prove the invariance of the homotopy type of our chain complex under
fork sliding. With this in hand, we prove the colored invariance theorem in Section [[4 by
reducing it to Khovanov and Rozansky’s uncolored case [I9] using “sliding bi-gons”.

Acknowledgments. I would like to thank Mikhail Khovanov, Ben Webster and Ya-
suyoshi Yonezawa for interesting and helpful discussions. I am grateful to Yasuyoshi
Yonezawa for sharing his lemma about graded Krull-Schmidt categories (see Lemma [L20)
and to Mikhail Khovanov for suggesting an approach to understanding the Euler char-
acteristic and the Zs-grading of the sI(/N) homology for colored links. (The proof of
Theorem [Z4] uses this approach.)

Most of the above-mentioned discussions happened during Knots in Washington Con-
ferences. I would like to thank the National Science Foundation and The George Wash-
ington University for supporting the Knots in Washington Conference Series.

I would also like to thank the referee for carefully reading the paper and providing
many helpful comments and suggestions.

(*) Using similar techniques, Yonezawa [53] independently proved decompositions (I)—(TIT)
and a special case of (IV).



2. The MOY calculus

2.1. The HOMFLYPT polynomial. The HOMFLYPT polynomial defined in [IT], B5]
is an invariant for oriented links in S® in the form of a two-variable polynomial P. We
normalize the HOMFLYPT polynomial using the following skein relations:

xP(/‘\/ >—x*1P<X )zypq p,

-1
P(unknot) = e
Y

The specialization Py = P|,—,~ ,—,_4-1 is the s[(N) HOMFLYPT polynomial and

y=4—q
is determined by the skein relations

gV P ( /‘\/ ) — ¢ VP ( \/\‘ >=<q—q*1>PNq T ),

N —q

a—q!
Py is a renormalization of the Reshetikhin—Turaev polynomial of links colored by 1, that
is, the defining representation of sl(N;C).

The general definition of the Reshetikhin—Turaev polynomials is rather abstract.
In [32], Murakami, Ohtsuki and Yamada gave a combinatorial construction of the Reshe-
tikhin—Turaev sl(NN) polynomial for links colored by non-negative integers, that is, ex-

P (unknot) =

terior powers of the defining representation of sl(/N;C). Their construction generalizes
Kuperberg’s spider construction for the s[(3) link polynomial [23]. The construction of
our colored sI(N) link homology H is modeled on their construction.

In the remainder of this section, we review Murakami, Ohtsuki and Yamada’s con-
struction. Our notations and normalizations are slightly different from those used in [32].

2.2. MOY graphs

DEFINITION 2.1. An abstract MOY graph is an oriented graph with each edge colored by
a non-negative integer such that, for every vertex v with valence at least 2, the sum of
the colors of the edges entering v is equal to the sum of the colors of the edges leaving v.
We call this common sum the width of v.

A vertex of valence 1 in an abstract MOY graph is called an end point. A vertex of
valence greater than 1 is called an internal vertez (cf. Figure 1). An abstract MOY graph
I" is said to be closed if it has no end points. We say that an abstract MOY graph is
trivalent if all of its internal vertices have valence 3.

(11]
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Fig. 1. An internal vertex of a MOY graph

A MOY graph is an embedding of an abstract MOY graph into R? such that, through
each internal vertex v, there is a straight line L, so that all the edges entering v enter
through one side of L, and all edges leaving v leave through the other side of L.

2.3. The MOY graph polynomial. To each closed trivalent MOY graph, Murakami,
Ohtsuki and Yamada [32] associated a polynomial, which we call the MOY graph polyno-
mial. They express the colored Reshetikhin—-Turaev s[(N) polynomial as a combination
of MOY graph polynomials. We review the MOY graph polynomial in this subsection.

Define N ={-N+1,-N+3,...,N—3,N — 1} and P(N) to be the set of subsets
of N. For a finite set A, denote by #A the cardinality of A. Define a function = :
PN) x P(N) = Z>o by

7T(A1,A2) = #{(al,ag) S A1 X As | ap > CLQ} for Al,AQ S P(N)

Let T be a closed trivalent MOY graph, and E(I") the set of edges of I". Denote by
¢: E(T") — N the color function of T". That is, for every edge e of T, c¢(e) € N is the color
of e. A state of T is a function o : E(I') — P(N) such that

(i) For every edge e of I, #o(e) = c(e).
(ii) For every vertex v of I', as depicted in Figure [2 we have o(e) = o(e1) U o(ez). (In
particular, this implies that o(e1) No(e2) = 0.)

or

Fig. 2

For a state o of I" and a vertex v of I' (as depicted in Figure [2)), the weight of v with
respect to o is defined to be

wt(v; o) = qc(el)c(€2)/2—ﬂ(0(€1)70(62)).

Given a state o of T', replace each edge e of T by c¢(e) parallel edges, assign to each of
these new edges a different element of o(e) and, at every vertex, connect each pair of new
edges assigned the same element of A. This changes I' into a collection C of embedded
oriented circles, each of which is assigned an element of A/. By abusing notation, we
denote by ¢(C) the element of N assigned to C' € C. Note that:



2.4. The MOY calculus 13

e There may be intersections between different circles in C. But, each circle in C is
embedded, that is, without self-intersections or self-tangency.

e There may be more than one way to do this. But if we view C as a virtual link and the
intersection points between different elements of C as virtual crossings, then the above
construction is unique up to purely virtual regular Reidemeister moves.

For each C € C, define the rotation number rot(C') the usual way. That is,

(2.3.1)

HC) 1 if C' is counterclockwise,
ro =
—1 if C is clockwise.

The rotation number rot(o) of o is then defined to be
rot(o) = Y a(C)rot(C).
cec

The sl(N) MOY polynomial of T' is defined to be
(O)n = 3 (T wtws o)) € Zofg. a7, (2.3.2)
(o8 v
where o runs through all states of I" and v runs through all vertices of T.

2.4. The MOY calculus. Murakami, Ohtsuki and Yamada [32] established a set of
graphical relations for the sl{(/N) MOY polynomial, which is known as the MOY calculus.
The MOY calculus plays an important role in guiding us through the construction of the
colored sl(N) homology.

Before stating the MOY calculus, we need to introduce our normalization of quantum
integers.

DEFINITION 2.2. Quantum integers are elements of Z[q,¢~1]. In this paper, we use the
normalization

L =g
] = ma

Ut =[1]- 2] 4],
H _
kTR R

The following theorem is the MOY calculus.

THEOREM 2.3 ([32]). The sl(N) MOY graph polynomial (x)n for close trivalent MOY
graphs satisfies:

(1) (Om)n = [m, where O, is a circle colored by m.

i j k i J k

I ancel

it+i+k ititk
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o ).

m+4n

(6) <+ e > =[m;1]< >+[7§‘H'<
I+n—1 N N

1 m+l—1
1 m4l—1
m n+l m
ntk—m J
(7) . ZTYL [ l } .
n+k m4l—k - jzmax{m—n,o} k—j m—j
N -
k n+j—m
n m41 n m41

The above equations remain true if we reverse the orientation of the MOY graph or the
orientation of R2.

In fact, the equations in Theorem 23] uniquely determine the MOY graph polynomial.
Some experts apparently knew this. But I did not find a written proof. So we include a
proof here for the convenience of the reader.

THEOREM 2.4. The equations in Theorem 23] uniquely determine the s{(N) MOY graph
polynomial (x)n .

Proof. We use a double induction on the highest color of edges of I' and on the number
of edges of I with the highest color.

Assume that ((x))y also satisfies all the equations in Theorem Kauffman and
Vogel [17] proved that, for closed trivalent MOY graphs colored by 1,2, the polynomial
satisfying all the relations in Theorem 23] is unique. That is, ((I'))n = (') if all edges
of the MOY graph I' are colored by 1 or 2.

Now assume that, for some m > 2, ((I'))y = (') if all edges of the MOY graph I are
colored by positive integers no greater than m. We use this to prove that ((I')) y = (I')»
if all edges of I" are colored by positive integers no greater than m + 1. To do this we
induct on the number of edges colored by m + 1 in I'.
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Rephrasing our induction hypothesis, we can say that ((I'))y = (I')y if all edges of
I' are colored by positive integers no greater than m + 1 and exactly 0 edges of I" are
colored by m + 1. Assume that, for some k£ > 0, ((I'))y = (I')y whenever all edges of
I' are colored by positive integers no greater than m + 1 and exactly k edges of ' are
colored by m + 1.

Let T" be a MOY graph such that

e all edges of I' are colored by positive integers no greater than m + 1,
e exactly k + 1 edges of I' are colored by m + 1.

We claim that ((I'))y = (I') .

CASE 1. Assume that there is a circle Opn41 colored by m + 1 in T. Let T’ be I' with
Om41 removed. Then all edges of [ are colored by positive integers no greater than
m + 1, and exactly k edges of T are colored by m + 1. So ((T))y = (I')x and therefore
(D) = [N = [M) (v = (D).

CASE 2. Assume there are no circles colored by m+1 in I'. Then every edge in I" colored
by m + 1 is of the form depicted in Figure Bl where 1 < j,I < m. Let e be an edge of
I' as in Figure Bl We modify T' locally near e as in Figure @l This gives us new MOY
graphs I'g, I'1 and T's, which are identical to I' except in the neighborhoods shown in
Figure[d Note that each of Iy and I'y has exactly k edges colored by m + 1 and therefore
((To)yn = (To)wv and ((I'2)) v = (I'2) n. Using equations (2), (3) and (6) in Theorem 23]
we get

(T))w =[] [- (T)w, (2.4.1)
(To))nv = ((T1))n + [m—1] - {(T2))n, (2.4.2)
L m+1—1
m+1
J m+1—j
Fig. 3
l m+1—1 1 m41—1
-1 -1
1 m
1
2 m—1 1 m
1
1 m
j—1 ji—1
j m41—j J m+1—j

Iy
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Cy)v =011 - C)w, (24.3)
To)v = T)n +[m—1]- (T2)n 244
It clearly follows that ((I'))n = (I') v
This completes the double induction and proves Theorem 2.4l m

2.5. The colored Reshetikhin—Turaev s[(N) polynomial

DEFINITION 2.5 ([32]). For a link diagram D colored by non-negative integers, define
(D) N by applying the following at every crossing of D:

m ntk—m

= Z (_1)"L—qu—m< n+k 'm7k>N)

k=max{0,m—n}

< /> =Y e o
/ N  k=max{0,m—n} -

Also, for each crossing ¢ of D, define the shifting factor s(c) of ¢ by

if m =n,
if m # n,

if m =n,
if m #n.

The renormalized Reshetikhin—Turaev 5[( ) polynomial RTp(q) of D is defined to be
RTp(g H s(c

where ¢ runs through all crossings of D.

THEOREM 2.6 ([32]). (D) is invariant under reqular Reidemeister moves. RTp(q) is
invariant under all Reidemeister moves and is a renormalization of the Reshetikhin—
Turaev s\(N) polynomial for links colored by non-negative integers.



3. Graded matrix factorizations

In this section, we review the definition and properties of graded matrix factorizations
over graded C-algebras, most of which can be found in [I9] 20} 2T], 37, 48]. Some of these
properties are stated slightly more precisely here for the convenience of later applications.

3.1. Z-pregraded and Z-graded linear spaces. Let V be a C-linear space. A Z-
pregrading of V is a collection {V @) | i € Z} of C-linear spaces such that there exist
ez VO = Vand V — [,V that make diagram FII)
commutative, where the horizontal map is the standard inclusion map from the direct

injective C-linear maps €

sum to the direct product:

@iez v o HieZ vV®

/ (3.1.1)

v

From now on, we will identify V(9 with its image in V. An element v of V(¥ is called a
homogeneous element of V' of degree i. In this case, we write degv = i.

A Z-pregrading {V®) | i € Z} of V is called a Z-grading if the C-linear map €@, _, V'
— V is an isomorphism.

REMARK 3.1. The Z-gradings defined here are the Z-gradings in the usual sense. The
dual of a Z-graded module is not necessarily Z-graded. But it admits a natural Z-
pregrading. See Lemma below. This is why we introduced the more general concept
of Z-pregradings.

We say that a Z-pregrading {V ) | i € Z} of V is bounded from below (resp. above)
if there is an m € Z such that V() = 0 whenever i < m (resp. i > m). We call a
Z-pregrading bounded if it is bounded from both below and above.

Let V and W be Z-pregraded linear spaces with pregradings {V(®} and {W®}.
A C-linear map f:V — W is called homogeneous of degree k if f(V®) c W(+E) for all
i € Z.

Let V be a Z-pregraded linear space with pregrading {V()}. For any j € Z, define
V{¢’} to be V with the pregrading shifted by j. That is, the pregrading {V{¢’}¥} of
V{¢’} is defined by V{¢’}® = V(i=3) More generally, for

1
F(q) =Y _a;¢’ € Zxolg, ¢,
j=k

(17]
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we define the Z-pregraded linear space V{F'(q)} to be

1
V{F(@)} =P V{dte -aVid})
=k a;-fold
with the obvious pregrading {V{F(¢q)}("} given by
1
V{F(q)}(i) — @ (V(i—j) DD V(i—j)).

J=k a;-fold

3.2. Graded modules over a graded C-algebra. In the rest of this section, R will be
a graded commutative unital C-algebra, where “graded” means that we fix a Z-grading
{R®} on the underlying C-space of R that satisfies R - RU) ¢ R+ Tt is easy to see
that 1 € R(©).

A Z-grading of an R-module M is a Z-grading {M®} of its underlying C-space
satisfying R - M) < MU+ A graded R-module is an R-module with a fixed Z-
grading. For a graded R-module M and F(q) € Zxolg,q" '], M{F(q)} is defined as
above.

LEMMA 3.2. Let My and My be graded R-modules. Then Hompg (M, Ms) has a natural
Z-pregrading. If My s finitely generated over R, then this pregrading is a grading.
Proof. Let {Ml(z)} and {Mzi)} be the gradings of M; and Ms. Define

Homp (M, My)®) = {f € Homp(My, My) | f(MD) ¢ M{TH)},
We claim that {Homp(My, M)®} is a Z-pregrading of Hompg(M;, Ms). To prove this,

we only need to show that:

(i) Any f € Homp (M, M) can be uniquely expressed as a sum »_,o__ fx, where f
is in Homp (M1, Ms)*) and is called the homogeneous part of degree k of f.

(ii) For f,g € Homp(M;, Ms), f = g only if all of their corresponding homogeneous parts
are equal.

(ii) and the uniqueness part of (i) are simple and left to the reader. We only check the
existence part of (i). ‘
Forl =1,2,let J( R ( ) M and P( My — Ml(l) be the inclusion and projection

M= @M.
i€z
For k € Z, define a C-linear map fy, : My — Ms by fk|M(i) = PQ(Hk)ofoJ(i). Let m € M;.

Then there exist 47 < i3 and j; < jo such that m € @l oM z) and f(m) € @J i MQ(j).
It is easy to see that fr(m)=0if k > jo — i1 or k < j1 — ia. So Y re o fe(m) is a finite
sum for any m € M;. Thus the infinite sum >~ fx is a well defined C-linear map

in

from M; to Ms. One can easily see that f = > 7- _ f as C-linear maps, and that fj,
is a homogeneous C-linear map of degree k. It remains to check that fx is an R-module
map for every k. Let m € M{” and r € R9. Then rm € M) and



3.3. Graded matrix factorizations 19

Jelrm) = P (prm)) = PO (pm)) = IO (v ST fum)) = rfi(m).

n=-—0oo

This implies that f, is an R-module map and, therefore, fr € Homp(M;, My)®*). Thus,
{Homp(M;, My)®)} is a Z-pregrading of Homp (M, M>).

Now assume that M; is generated by a finite subset {mq,...,mp}. Then for any

f € Homp(M;, Ms), there eXist i1 <2, 71 < jo such that my,...,m, € @Z “ z) and
f(ma),..., f(my) € @ . It follows easily that fr, =0 if k > jo—1i1 or k < ji —is.
So

J2—t1

Z fk S @ HOII]R My, Mg)(k)

k=j1—1i2 k=—o0

Thus,

Homp (M, My) = @ Hom g (M, My)*),

k=—o0
which implies that {Hompg (M, Mg)(k)} is a Z-grading of Homp (M, Ms). =

In the present paper, we are especially interested in free graded modules over R. Note
that a free graded module need not have a basis consisting of homogeneous elements.
Following [33 Chapter 13], we introduce the following definition.

DEFINITION 3.3. A graded module M over R is called graded-free if it is a free module
over R with a homogeneous basis.

All the modules involved in the construction of the s[(N) homology are modules over
polynomial rings. We will see in Section @l that, if the grading of a free graded module
over a polynomial ring is bounded below, then this module is graded-free.

3.3. Graded matrix factorizations. Recall that N (> 2) is a fixed integer throughout
the present paper. (It is the “N” in “s[(N)”.)

DEFINITION 3.4. Let R be a graded commutative unital C-algebra, and w a homogeneous
element of R of degree 2N + 2. A graded matriz factorization M over R with potential

w is a collection of two free graded R-modules My, M7 and two homogeneous R-module
maps dg : My — My, dy : My — My of degree N + 1, called differential maps, such that

dlod():’w-id]\/[o, doOdlz’LU'idMl.
We usually write M as
Mo 25 My 2 .

We observe that M has two gradings: a Zs-grading that takes value € on M., and a
quantum grading which is the Z-grading of the underlying graded R-module. We denote
by degy, the degree from the Zs-grading and by deg the degree from the quantum grading.

Following [19], we denote by M (1) the matrix factorization
My % My 2y,
and write M (j) = M (1) ---(1).
———

j times
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For graded matrix factorizations M with potential w and M’ with potential w’, the
tensor product M ® M’ is the graded matrix factorization with

(M@ M)y = (Mo ® Mg) & (My® My), (M @M')y = (M @ My) & (M @ M),
and the differential is given by the signed Leibniz rule. That is, for m € M. and m’ € M’,
dm@m') = (dm)@m’ + (=1)*m ® (dm’).

The potential of M ® M’ is w + w'.

DEFINITION 3.5. If ap,a; € R are homogeneous elements with degag + dega; = 2N + 2,
then denote by (ag,a1)r the matrix factorization R 2% R{qN*t!1-degao} L R which
has potential apa;. More generally, if a1,9,a1,1,...,a%,0,ar1 € R are homogeneous with
degaj o+ degaji = 2N + 2, then denote by

aro a1
a0 G211

ako  ak1/ g

the tensor product

(@1,0,01,1)r ®r (@2,0,02,1)r QR - - DR (Ck,0, k1) R,

which is a graded matrix factorization with potential Z?zl ajoaj 1, and is called the
Koszul matriz factorization associated to the above matrix. We drop “R” from the nota-
tion when it is clear from the context. Note that the above Koszul matrix factorization
is finitely generated over R.

Since the Koszul matrix factorizations we use in this paper are more complex than
those in [19] 201 37, [48], it is generally harder to compute them. So it is more important
to keep good track of the signs. For this reason, we introduce the following notations.

DEFINITION 3.6.

e Let I = {0,1}. Define 1 =0 and 0 = 1.

e Fore = (e1,...,ex) € I¥, define || = Z?Zl gj,and for 1 <14 < k, define |e|; = >
Also define € = (g1, ...,2;) and €’ = (e, €1, ..., €1).

e In (ap,a1)r, denote by 1p the unit element of the copy of R with Zs-grading 0, and
by 1; the unit element of the copy of R with Zs-grading 1. Note that {19,171} is an
R-basis for (ag,a1)r.

e In

i—1

j=1¢j-

airo a1

)

M pr—

ak,0  Aak1/ g

for any € = (e1,...,ex) € I¥, define 1. = 1., ® --- ® 1, in the tensor product
(a1,0,a1,1)r @R - R (K0, ak,1)R-

Note that {1. | e € I*¥} is an R-basis for M, and 1. is a homogeneous element with
Zo-degree |e| and quantum degree Z?Zl gj(N +1—dega,o). In the above notations,
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the differential of M is given by

k
A1) => (~D)a; 1, s e (3.3.1)

j=1

REMARK 3.7. In many cases, only the parity of ¢; matters and I can be viewed as Zo.
But in some situations, we need more information and I cannot be identified with Zs.

3.4. Morphisms of graded matrix factorizations. Given two graded matrix factor-
izations M with potential w and M’ with potential w’ over R, consider the R-module
Homp (M, M"). Tt admits a Zs-grading that takes value

0 on Hom% (M, M’) = Hompg(Moy, M}) ® Homp(M;, M),
1 on Homp (M, M'") = Homp(M;, M}) ® Hompg (M, M}).

By Lemma [3.2] it also admits a quantum pregrading induced by the quantum gradings
of homogeneous elements. Moreover, Hompg (M, M') has a differential map d given by

d(fy=dn o f — (=1)°fody for f € Hom%(M,M').
Note that d is homogeneous of degree N + 1 and satisfies
d* = (W' —w) - idgomp(ar,007) -
Following [19], we write M, = Homp(M, R).
In general, Homp (M, M’) is not a graded matrix factorization since Homp (M, M’) is

not necessarily a free R-module and its quantum pregrading is not necessarily a grading.
But we have the following easy lemma.

LEMMA 3.8. Let M and M’ be as above. Assume that M is finitely generated over R.
Then Hompg(M,M') is a graded matriz factorization over R of potential w' — w. In
particular, Me = Homp (M, R) is a graded matriz factorization over R of potential —w.

Proof. Since M is finitely generated, we know that Hompg(M, M) is a free R-module
and, by Lemma [3.2] the quantum pregrading is a grading. m

DEFINITION 3.9. Let M and M’ be two graded matrix factorizations over R with poten-
tial w. Then Hompg (M, M'), with the above differential map d, is a chain complex with
a Zy homological grading.

(1) We say that an R-module map f : M — M’ is a morphism of matriz factorizations if
df = 0. Equivalently, for f € Hom% (M, M’), f is a morphism of matrix factorizations
ifdyrof=(=1)F°fody.

(2) We call f an isomorphism of matrix factorizations if it is a morphism of matrix
factorizations and an isomorphism of the underlying R-modules.

(3) We say that M, M’ are isomorphic as graded matriz factorizations, or M = M', if
there is a homogeneous isomorphism f : M — M’ that preserves the Zs & Z-grading.

(4) Two morphisms f,g: M — M’ of Zy-degree € are homotopic if f — g is a boundary
element in Hompg (M, M), that is, if there exists h € Homig'l(M, M’) such that
f —g= d(h) = dM/ oh — (—1)€+1h o d]u.
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(5) We say that M, M’ are homotopic as graded matrixz factorizations, or M ~ M’ if
there are homogeneous morphisms f : M — M’ and g : M’ — M preserving the
Zo ® Z-grading such that go f ~idy; and fo g ~idyy.

LEMMA 3.10. Let M and M’ be two graded matriz factorizations over R with poten-
tials w and w'. Assume that M is finitely generated over R. Then the natural R-module
isomorphism

M’ © M, = M’ @ Homp(M, R) = Hompg (M, M)

s a homogeneous isomorphism preserving the Zo®Z-grading. In particular, Homp (M, M")
>~ M' ® M, as graded matriz factorizations.

Proof. By Lemmal3.8l M’ ® M, and Homg (M, M') are both graded matrix factorizations
over R with potential w’ — w. The natural isomorphism F between them is given by
F(m' ® f)(m) = f(m)-m’ for all m’ € M’, f € M, and m € M. It is easy to check that
I preserves the Zs & Z-grading and commutes with the differential maps. m

The following lemma specifies the sign convention we use when tensoring two mor-
phisms of matrix factorizations.

LEMMA 3.11. Let R be a graded commutative unital C-algebra, and M, M', M, M’
graded matriz factorizations over R such that M, M have the same potential and M', M’
have the same potential. Assume that f : M — M and f' : M’ — M’ are morphisms
of matriz factorizations of Zs-degrees j and j'. Define F : M @ M' — M @ M’ by
Fimem') = (1) f(m)® f'(m') for m € M; and m’ € M'. Then F is a morphism of
matriz factorizations of Za-degree j+ j'. In particular, if f or f’ is homotopic to 0, then
so is F.
From now on, we will write F = f @ f’.

Proof. We compute

Fodm®m') = F((dm) @ m' 4+ (=1)'m ® (dm/))

= (=1 f(dm) @ f'(m') + (=1)" f(m) @ f'(dm),
do F(m@m') = (1) d(f(m) ® f'(m"))

= (=17 (d(f(m)) @ f'(m') + (=1)" f(m) @ d(f'(m)))

= (=17 f(dm) @ f'(m') + (=17 f(m) @ f'(dm).

So Fod= (—1)j+j'd o F', that is, F' is a morphism of matrix factorizations of Zs-degree
i+i

If f is homotopic to 0, then there exists h € Homgl(M, M) such that

f=dh)=doh— (-1 hod.
Define H € Homgj’Jrl(M @ M' M e M) by
Hmem') = (—1)7h(m)® f'(m') for m € M; and m’ € M'.

Then d(H) = do H — (=1)it/'*1H o d = F. So F is homotopic to 0.

If f” is homotopic to 0, then there exists b’ € Homé“(M’, M) such that

fr=d)=doh' — (=17 od.
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Define H' € Homd; 7 T (M @ M’, M & M’) by
H'(m@m') = (=1)"U+D f(m) @ h'(m’)  for m € M; and m’ € M'.
Then d(H') = do H' — (—1)"/'*1H' o d = (~1)/F. So F is homotopic to 0. m

LEMMA 3.12 ([I9, Proposition 2]). Let R be a graded commutative unital C-algebra, and

a1,0,01,1,- - -,0k,0,0k,1 homogeneous elements of R with dega; o+ degaji = 2N + 2 for
all j. Let
aio Qi
M= a0 G211

ak,0  Ak1/ p

If © is an element of the ideal (a1,0,a1,1,-..,0k0,0k1) of R, then multiplication by x is
a null homotopic endomorphism of M.

Proof (following [19]). Multiplications by a; ¢ and a; 1 are null homotopic endomorphisms
of (a1,0,a11), and therefore, by Lemma [317] are null homotopic endomorphisms of M. m

Next we give precise definitions of several isomorphisms used in [19], which allow us
to keep track of signs in later applications.

LEMMA 3.13. Let R be a graded commutative unital C-algebra, and a1,9,a1,1,. .., 0k,0, Gk,1
homogeneous elements of R with dega; o+ degaji = 2N + 2 for all j. Let

aio ain —Qk,1 ak:.0
azo0 a1 —Qk—-1,1 QAk—1,0
M = and M' =
Ak,0 Gk1/ —a1,1 a1,0 R

Denote by {17 | € € I*} the basis of Ms dual to {1. | ¢ € I*}, that is, 13(1.) = 1
and 15(1,) = 0 if ¢ # €. Recall that, by Definition B.6, ¢’ = (ex,ex-1,...,€1) for e =
(¢1,€2,...,6k) € I*. Then the R-homomorphism F : My — M’ given by F(1¥) = 1. is
an isomorphism of matriz factorizations that preserves the Zs & Z-grading. In particular,
M, = M’ as graded matriz factorizations.

Proof. F is clearly an isomorphism of R-modules. We only need to prove that F'is a mor-
phism of matrix factorizations that preserves the Z, & Z-grading. To simplify expressions,
we use the notations |e, |¢|; and &5 introduced in Definition 3.6l

The element 1% of M, has Zy-grading |e| and quantum grading — Z?Zl gj(N+1-
degajo) = Z?zl £j(N+1—dega;1). And the element 1./ of M’ has Zs-grading |¢'| = |¢|
and quantum grading Z?Zl €j(N+1—degaj1). So F preserves the Zy @ Z-grading. It
remains to show that F is a morphism of matrix factorizations. For € = (e1,...,e;) € I¥,
a straightforward calculation shows that
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e

) _)lel=leli+, g
d(le) - Z( 1) ’ aj75j 1(61,...,€j71,E_j,€j+1,...,€k)7
=1
k

d(1) = Z(_1)|€‘7‘6|j+1ajv?j ’ 1(5k7---75j+175__7‘75_7‘—17~~~751)'
j=1
SodpyroF =Fody,. m
LEMMA 3.14. Let R be a graded commutative unital C-algebra, and a1,9,a1,1,. .., 0k,0, Gk,1

homogeneous elements of R with degaj o+ degaji = 2N + 2 Vj. Let

aio Az k.0 a1
a0 G211 ak—-1,0 Ak—1,1
M = : : and M' = : ’
ak,0  Ak1/ g a1,0 a1,1 R

Define an R-homomorphism F : M — M’ by F(1.) = (—1)l€l0e=1/21_, Ve € 1F. (See
Definition for the definitions of |e| and €'.) Then F is an isomorphism of matriz
factorizations that preserves the Zo ® Z-grading. In particular, M = M’ as graded matrix
factorizations.

Proof. F is clearly an isomorphism of R-modules and preserves the Zy @ Z-grading. It
remains to show that F' is a morphism of matrix factorizations. When k = 1, there is
nothing to prove. When k = 2, F' is given by the following diagram:

<R~ 1(0,0)> (x5 a3") <R~ 1(170)> () <R~ 1(070)>
R' 1(171) R 1(071) R 1(171)
[ [ed) [
a —a az,1 ai,1
R 1(0,0)> (a6 ) (R' 1(1,0)> (Zai aslo) (R' 1(0,0)>
(R' L LERORY R-1la

where the first row is M, the second row is M’, and F' is given by the vertical arrows.
A direct computation shows that F' is a morphism. The general k > 2 case follows from
the k = 2 case by a straightforward induction using Lemma 311l =

LEMMA 3.15. Let R be a graded commutative unital C-algebra, and a1,9,a1,1,. .., 0k0, Gk,1
homogeneous elements of R with degaj o+ degaji = 2N + 2 Vj. Let

aro G1,1 a1 a1,0
a0 @21 a1 G20

M = ’ ’ and M' = ’ ’
k.0 Ak1/ g k1 Ako/ g

For ¢ = (e1,...,ex) € I¥, write s(e) = Ef;ll(k — j)ej. Define an R-homomorphism
F: M — M by F(l.) = (=1)IE45@)12 for ¢ € IF. (See B8 for the definitions of |e|
and €.) Then F is an isomorphism of matriz factorizations of Za-degree k and quantum

degree E?Zl(N +1—degajq).
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Proof. F is clearly an isomorphism of R-modules. And the claims about its two gradings
are easy to verify. One only needs to check that F'is a morphism of matrix factorizations.
This is easy when k = 1. The general £k > 1 case follows from the £k = 1 case by a
straightforward induction using Lemma B.11] m

COROLLARY 3.16 ([19]). Let R be a graded commutative unital C-algebra, and ai,0,a11,
...,Qk,0,0k1 homogeneous elements of R with degajo + dega;1 = 2N + 2 for all j.
Assume M is a graded matrixz factorization over R with potential Z?zl ajoaj 1. Then,
as graded matriz factorizations of 0,

a1,0 Qai;n aio —ai
Hom a2,0 21 M| =Meg a0 —a21 <k>{ (N+1—degaj71)}.

k
j=1
ako ak1/ g ako —ak1/ g

Proof. Since
airo ai
a0 G211

ako ak1/ g
is a finitely generated matrix factorization with potential Z?Zl ajoaj1 over R, we know
by Lemma [3.8 that
a1,0 G1,1

a2,0 a2,
Homp ’ ’ , M

ko Ok1/ g

is a graded matrix factorization of 0. The isomorphism in the corollary follows easily from

Lemmas B.10 B.13] B.14] and m

3.5. Elementary operations on Koszul matrix factorizations. Khovanov and
Rozansky [19,[20] and Rasmussen [37] introduced several elementary operations on Koszul
matrix factorizations that give isomorphic or homotopic graded matrix factorizations. In
this subsection, we recall these operations.

LEMMA 3.17 ([37, [48]). Let M be the graded matriz factorization
Mo 225 My 25 M,

over R with potential w. Suppose that H; : M; — M; are graded homomorphisms with
I{,L2 =0. Deﬁne d; - M; — M’H—l by

CL‘ = (idM«H—l _H'L'+1) od;o (ld]\/[7 —|—I{,L')7
and M by i i
Mo 25 My 25 .

Then M s also a graded matriz factorization over R with potential w. And M = M.
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COROLLARY 3.18 ([37]). Suppose a1,0,a1,1,0a2,0,a21,k are homogeneous elements in R
satisfying degajo + degaj1 = 2N + 2 and degk = degay,0 + degaso — 2N — 2. Then

(ch,o a1,1) ~ <a1,o+ka2,1 a1,1>

azo a1 /), azo — ka1 a1 /),

COROLLARY 3.19 ([19 B7]). Suppose a1,0,a1,1,a2,0,a02,1,¢ are homogeneous elements in
R satisfying deg ajo + degaji = 2N + 2 and degc = deg a0 — degaz,o. Then

(al,o ai,i > ~ (al,o + cag o a1 >
azo a21/)p a2.0 az1 —cail ) g
The proofs of the above can be found in [I9] 20 37, 48] and are omitted.

DEFINITION 3.20. Let R be a commutative ring, and ai,...,ar € R. The sequence
{a1,...,ax} is called R-regular if a1 is not a zero divisor in R and a; is not a zero divisor
in R/(a1,...,a;-1) for j=2,... k.

The next lemma is [2I, Theorem 2.1] and a generalization of [37, Lemma 3.10].
LemMa 3.21 ([2T] 37)). Let R be a graded commutative unital C-algebra. Suppose that
{a1,...,ar} is an R-regular sequence of homogeneous elements of R with dega; < 2N +2

for 3 =1,... k. Assume that f1,..., fx,91,--.,9r are homogeneous elements of R such
that deg f; = deg g; = 2N + 2 — dega; and E?:l fia; = E?zl gja;. Then

fl ai g1 al

=~
I ak / p 9k Ak / p

Proof. Induct on k. If k = 1, then a; is not a zero divisor in R and (f; — g1)a; = 0. So
f1=¢g1 and (f1,a1)r = (g1,a1)r- Assume that the lemma is true for k& = m. Consider

the case k = m + 1. Then ay,41 is not a zero divisor in R/(ay ..., ay). But
m
(fmt1 = gmt1)@m41 = Z(gj — fi)aj € (a1...,am).
j=1
SO fm+1 — gm+1 € (a1 ..., am), that is, there exist ¢1,..., ¢, € R such that

m
fmt1 = Gmy1 = E cja;.

Jj=1
Thus, by Corollary BI8]
f1 ay fitecamr @
Im am fm + Cmmi1  am
Jm+1 amyr/ , Im+1 am+1/ g

It is easy to see that
m m
> (fi+ cjamir)a; = gia;.
; =

Jj=1
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By induction hypothesis,

fitaamer  a g1 a1
=
fm + CmQm+1 Qm, R 9m (0799 R
Therefore,
S ai fitcaamr @ g1 ai
fm am fm + Cmmi1  am Im Am
an—l anH—l R gm+1 anH—l R gm+1 anH—l
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Next we give six versions of [I9] Proposition 9], which give a method of simplifying

matrix factorizations. Their proofs also give a method of finding cycles representing a

given homology class in some chain complexes and finding morphisms of matrix factor-

izations representing a given homotopy class, which is important for our purpose. So we

include their full proofs here.

PROPOSITION 3.22 (strong version). Let R be a graded commutative unital C-algebra,
and x a homogeneous indeterminate with degx < 2N + 2. Let P : R[z] — R be the
evaluation map at © = 0, that is, P(f(x)) = f(0) for all f(z) € R[x]. Suppose that

ai,...,ak,b1,..., b, are homogeneous elements of R[x] such that
o degaj +degb; =2N +2 for j=1,...,k,

L] Z?:l Cljbj e R,

e there exists i € {1,...,k} such that b; = x.

Then
P(a1) P(bl)
o P(as)  P(by)
M=|®* b2 and M' = .-";(.aifl) .P.ébifl)
ar by Rlx] Plait1)  P(bit1)

.P.(.ak) .P.ébk)

are homotopic as graded matriz factorizations over R.

R

Proof. For j # i, write a; = P(a;) € R and b; = P(b;) € R. Then there are unique

cj, kj € R[] such that a; = a} + k;jz and b; = b} + c;z. By Corollaries B.T8 and 519,

ay by
ay b
! /
MM = | %t bi_1
a T ’
I /
@iy bigq
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where a = a; + >3, kjbj + >, ¢ja}. Since M, M" have the same potential, we know
that ax = Z?:l ajbj — >4, ;b € R. So a = 0. Thus,

/ /
ay by
/
R |
M = 0 x
/
aipq Uiy
I /
aj, bj. Rle]

Define R-module homomorphisms F : M — M’ and G : M’ — M" by

0)1 5 Ei—1,Ei CE if &€ = Oa
I

for f(x) € R[z] and € = (e1,...,ex) € I* (see B0 for the definition of 1.), and
G(T' : 1(61,...767;_1,EH_l,...,Ek)) =T 1(61,...,67;_1,0767;+1,...,Ek)

for r € Rand (e1,...,6i-1,8i41,---,6x) € IF7L.

One can easily check that F' and G are morphisms of matrix factorizations preserving
the Zy @ Z-grading and F o G = idy;s. Note that M” = ker F & Im G and

GoFlkerr =0, GoF|img=1dma-
Define an R-module homomorphism h : M — M" by
h(l(el,...,51',1,1,6i+1,...,6k)) =0,
A+ 2f(0)  Lerrrneren) = (DX @) Lo

forr € R, f(z) € R[z] and e1,...,&i—1,8i41, ...,k € 1. A straightforward computation
shows that

(doh+hod)|kerF:idkerF7 (dOh—f—hOd)hmgzO,

So idpyn —G o F = doh+ hod. Thus, we have M” ~ M’ and, therefore, M ~ M’ as
graded matrix factorizations over R. m

PROPOSITION 3.23 (weak version). Let R be a graded commutative unital C-algebra, and
ai,...,ak,b1,..., by homogeneous elements of R such that dega; + degb; = 2N + 2 and
Z?Zl a;b; = 0. Then the matriz factorization

a; b
el ® bo
(075 bk R
is a chain complex with a Zo homological grading. Assume that, for a giveni € {1,...,k},

b; is not a zero divisor in R. Define R' = R/(b;), which inherits the grading of R. Let
P: R — R’ be the standard projection. Then
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M/

I

e,
.

ST
T
AN
-

P
Plaiy1)  P(bitr)
Plag)  Pr) )
is also a chain complex with a Zy homological grading. And H(M) = H(M') as Za & Z-
graded R-modules.

Proof. Define an R-module homomorphism F' : M — M’ by
P(T)-l(g €5 1.64 er) ifEi:O
F 1 _ 1y-++3€i—1,€i+41--,€k )
(rle) {0 if e =1,
for r € R and € = (e1,...,ex) € I*. (See for the definition of 1..) It is easy to check
that F' is a surjective morphism of matrix factorizations preserving the Zs ¢ Z-grading.
The kernel of F' is the subcomplex
ker I = @ (R- 1(517~~~75i—17175i+17~~~75k) ®biR- 1(517~~~75i—17075i+17---75k))'
(E15s€i—1,Ei4 15008k )ETFTL
Since b; is not a zero divisor, the division map ¢ : b;R — R given by ¢(b;r) = r is well
defined. Define an R-module homomorphism h : ker ' — ker F' by
h(l(El7~~~76i—17176i+17---7€k)) =0,

h(bil(sl7~~~75i—17075i+17---75k)) = (_1)2;:} o Ler,ein,heiga,mer)
Then
dlger 7 © h + h o d|ker p = idxer
where d is the differential map of M. In particular, this means that H(ker F') = 0. Then,
using the long exact sequence induced by

0> ker F — M 5 M —o0,

it is easy to see that F' is a quasi-isomorphism. m

REMARK 3.24. The above proof of Proposition [3:23] also gives a method of finding cycles
in M whose image under F is a given cycle in M’. Indeed, for every cycle o in M’, one can
find an element 8 € M such that F(8) = a. Then F(df) = d'F(5) = d'a = 0, where d’
is the differential map of M’. So df € ker F and df = dh(df) + hd(dB) = dh(dS). Thus,
B—h(dp) is a cycle in M. By definition, it clear that Foh = 0. So F(8—h(dS)) = «. This
observation is useful in finding cycles representing a given homology class and morphisms
representing a given homotopy class. (In the situation of Proposition B:222] one can also
do the same by explicitly computing the morphism M’ =» M” =M , which is usually
not any easier in practice.) This method also applies to the situation of Corollaries
and 328 that is, contracting the matrix factorization using an entry in the left column.

Next we give the dual version of Proposition [3.23

COROLLARY 3.25 (dual version). Let R be a graded commutative unital C-algebra, and R
a graded commutative unital subalgebra of R such that R is a free R-module. Suppose that
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ai,...,ak,b1,..., by are homogeneous elements of R such that dega; 4+ degb; = 2N + 2
and 25:1 a;b; = w € R. Assume that, for a given i € {1,...,k}, b; is not a zero divisor
in R and R' = R/(b;) is also a free R-module. Define

@ b P(az)  P(b2)
| a2z b ;L
M = and M' = P(ai,l) P(blfl) y
P a; P bz
a bi/ g, ) PO

Plag) — Plr) /

where P : R — R’ is the standard projection. Then, for any matriz factorization M"
over R with potential w, there is a homogeneous quasi-isomorphism

Hom (M, M") — Hom (M, M")
preserving both the Zs-grading and the quantum pregrading.
Proof. Define an R-module homomorphism F : M — M’ by
P(T)-l(g £, £, ek) ifEiZO,
F(r-1.) = 1yee3€im1,Eid1se-,Ek
(r-1c) {o ife; =1,

forr € R and ¢ = (e1,...,6x) € I*¥. (See for the definition of 1..) Then F is a
surjective morphism of matrix factorizations preserving the Zy @ Z-grading. So we have

a short exact sequence
0—ker F — M 5 M’ — 0.

Note that ker F' and M are free R-modules and M’ is a free R’-module. Thus, the above
is a short exact sequence of free R-modules. This implies that
1
0 — Hom(M', M") £ Hom (M, M"") — Hom j(ker F, M"") — 0
is also exact. Similarly to the proof of Proposition [3.23] there exists an R-module map
h:ker F — ker F' of Zy-degree 1 such that idyey 7 = dpas|ker 7 © B + h 0 dps|ker 7. Define
H : Homp(ker F, M") — Hom p(ker F, M")
by H(f) = (=1)7f o h if f has Zs-degree j. Then H has Zs-degree 1 and, for f €
Hom j, (ker F, M"") of Zj-degree j,
(do H+ Hod)(f)=d(H(f)) + H(d(f)) = (=1)7d(f o h) + (=1)""'(df) o h
= (_1)j(d1\/1” © f oh— (_1)j+1f oho dM|kerF)
+ (1) (dagr o f o h — (=1)7 f o das|xer 0 B)
= fo(dulkerroh+hodu|kerr) = f-

This shows that do H + H o d = idnom 4 (ker 7,07y Thus, Hompyr(ker F, M"”) = 0 and,
therefore,
F* : Homp(M', M") — Homp(M, M")

is a quasi-isomorphism preserving the Zo @ Z-grading. m
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REMARK 3.26. Note that F* : Homp(M', M") — Homp(M, M") maps a morphism
of matrix factorizations to a morphism of matrix factorizations. By successively using
this map, we can sometimes find morphisms representing a given homotopy class. This
method also applies to Corollary

The following three corollaries describe how to contract a Koszul matrix factorization
using an entry in the left column. Their proofs are very close to those of Propositions

322 and [3.25] and are omitted.

COROLLARY 3.27 (strong version). Let R be a graded commutative unital C-algebra, and
x a homogeneous indeterminate with degx < 2N +2. Let P : R[z] — R be the evaluation
map at x =0, that is, P(f(z)) = f(0) for all f(z) € R[z].

Suppose that ay,...,ak,b1,..., by are homogeneous elements of R[x] such that
o degaj +degb; =2N +2 forallj=1,...,k,
° Z?zl a;b; € R,
o there exists i € {1,...,k} such that a; = x.

Then
P(a1)  P(b1)
a; by P(az)  P(b2)
M= .b.2. and M'=| Plai-1) P(bio1) | {¢VF'79%73(1)
b P(ait1) P(biy1)
@ Ok / Rl
Plag)  P(by)

are homotopic as graded matriz factorizations over R.

COROLLARY 3.28 (weak version). Let R be a graded commutative unital C-algebra, and
ai,..., 0k, b1,...,by homogeneous elements of R such that degaj; +degb; = 2N +2 and
E?Zl a;bj = 0. Then the matriz factorization

ap b
M = a9 bg
ar bk /) L
is a chain complex with a Zs homological grading. Assume that, for a giveni € {1,... k},

a; is not a zero dwisor in R. Define R’ = R/(a;), which inherits the grading of R. Let
P : R — R’ be the standard projection. Then

P(a)  P(b)
P(az)  P(b2)
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s also a chain complex with a Zo homological grading. And

H(M) = H(M"){g" 179 (1)
as Zo ® Z-graded R-modules.
COROLLARY 3.29 (dual version). Let R be a graded commutative unital C-algebra, and R
a graded commutative unital subalgebra of R such that R is a free R-module. Suppose that
ai,...,ak,b1,...,by are homogeneous elements of R such that dega; + degb; = 2N + 2
and E?zl ajb; =w € R. Assume that, for a giveni € {1,...,k}, a; is not a zero divisor
in R and R' = R/(a;) is also a free R-module. Define

a1 b1 P(ag) P(bg)
| a2z b2 ;L
M = and M' = P(ai,l) P(blfl) 5
P a; P bz
ar b/ g ) PO

Plar) — P(br) ) 5

where P : R — R’ is the standard projection. Then, for any matriz factorization M"
over R with potential w, there is a homogeneous quasi-isomorphism

Hom (M, M") — Hom (M, M")
of Zo-degree 1 and quantum degree dega; — N — 1.

3.6. Categories of homotopically finite graded matrix factorizations. R is again
a graded commutative unital C-algebra in this subsection.

DEerINITION 3.30. Let M be a graded matrix factorization over R with potential w.
We say that M is homotopically finite if there exists a finitely generated graded matrix
factorization M over R with potential w such that M ~ M.

DEFINITION 3.31. Let M and M’ be any two graded matrix factorizations over R with
potential w. Denote by d the differential map of Homp (M, M').
Homyr (M, M) is defined to be the submodule of Homp (M, M') consisting of mor-
phisms of matrix factorizations from M to M’. Equivalently, Homyp (M, M’) := kerd.
Hompnr (M, M') is defined to be the R-module of homotopy classes of morphisms of
matrix factorizations from M to M’. Equivalently, Hompnr (M, M') is the homology of
the chain complex (Hompg(M, M'),d).

It is clear that Homyp(M, M') and Hompgyr(M, M') inherit the Zg-grading of
Homp (M, M’). Recall that Hompg(M, M’) has a natural quantum pregrading, and d
is homogeneous (with degd = N + 1). So Homyp(M, M’) and Hompymr(M, M') also
inherit the quantum pregrading from Homp(M, M").

DEFINITION 3.32. Let M and M’ be as in Definition 311
Hom,,¢ (M, M’) is defined to be the C-linear subspace of Homygr(M, M’) consisting
of homogeneous morphisms with Zs-degree 0 and quantum degree 0.
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Homyp,me(M, M’) is defined to be the C-linear subspace of Hompyr (M, M) consisting
of homogeneous elements with Zs-degree 0 and quantum degree 0.

Now we introduce four categories of homotopically finite graded matrix factorizations
relevant to our construction. We require the grading of the base ring to be bounded below.
We will be mainly concerned with the homotopy categories HMF g ,, and hmfg ,,.

DEFINITION 3.33. Let R be a graded commutative unital C-algebra whose grading is
bounded below. Let w € R be a homogeneous element of degree 2N + 2. We define
MFR ., HMF R ., mfg ,, and hmfg,, by the following table:

Category Objects Morphisms

MF R, w all homotopically finite graded matrix factorizations over R Homwmr
of potential w with quantum gradings bounded below

HMFRgr,, all homotopically finite graded matrix factorizations over R~ Homuwmr
of potential w with quantum gradings bounded below

mfp w all homotopically finite graded matrix factorizations over R Homn¢
of potential w with quantum gradings bounded below

hmfg . all homotopically finite graded matrix factorizations over R Homypme
of potential w with quantum gradings bounded below

REMARK 3.34.

(i) The above categories are additive.

(ii) The definitions of these categories here are slightly different from those in [19].

(iii) The grading of a finitely generated graded matrix factorization over R is bounded
below. So finitely generated graded matrix factorizations are objects of the above
categories.

(iv) Comparing Definition to Definition 3.9, one can see that, for any objects M
and M’ of the above categories, M = M’ means they are isomorphic as objects of
mfp ,, and M ~ M’ means they are isomorphic as objects of hmfp .

LEMMA 3.35. Let M and M’ be any two graded matriz factorizations over R with po-
tential w. Assume that M is homotopically finite. Then the quantum pregrading on
Hompnw (M, M') is a grading. In particular, if the grading of R is bounded below and M
and M' are objects of MF g ., then Hompmp (M, M') has a quantum grading.

Proof. Since M is homotopically finite, there is a finitely generated graded matrix factor-
ization M over R with potential w such that M ~ M. That is, there exist homogeneous
morphisms f : M — M and g : M — M preserving both the Zs-grading and the
quantum grading such that go f ~idy; and f o g ~ id .

Denote by dys, dy, d the differential maps of M, M’ and Homp (M, M'). Let f* :
Homp (M, M') — Hompg(M, M') and ¢* : Homg(M, M’) — Homg(M, M') be the R-
module maps induced by f and g. One can easily check that f* and ¢* are chain maps.
Since go f ~ idys, we know that there exists a homogeneous R-module map h : M — M
of Zs-degree 1 and quantum degree —N — 1 such that

gof—idy =dpyoh+hody.
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Define an R-module map H : Hompg(M,M') — Hompg(M,M') so that, for any o €
Homp (M, M') with Zs-degree ¢, H(a) = (—1)%« o h. Then, for such an «, we have

(dH + Hd)(a)) = (=1)%d(aco h) + (=1)*T (da) o
= (=1)(dpr oo h— (=1 Maohody) + (—1) (dyr oo — (=1)°aody) oh
:ao(hodM+dMoh):ao(gof—idM):fnogn(a)—a.

This shows that f# o gf ~ idHom g (M, M7)- Similarly, gto ft ~ idHomp (M, M7)- Thus,
Hompg(M, M') ~ Homp(M, M') and this homotopy equivalence preserves both the Zs-
grading and the quantum pregrading. So Hompypr(M, M') = Hompyr(M, M') and
the isomorphism preserves both the Zs-grading and the quantum pregrading. But, by
Lemma B8 the quantum pregrading of Hompg(M, M') is a grading. So the quantum
pregrading of Homymp (M, M) =2 Hompymp (M, M) is also a grading. =

3.7. Categories of chain complexes. Now we introduce our notations for categories
of chain complexes.

DEFINITION 3.36. Let C be an additive category. We denote by Chb(C) the category of
bounded chain complexes over C. More precisely:

e An object of Ch®(C) is a chain complex

di_1 d; dit1 diy2

A;

A

Aigs (3.7.1)

where A;’s are objects of C, d;’s are morphisms of C such that d;;1 od; = 0 for i € Z,
and there exist integers k£ < K such that A; =01ifi > K or i < k.
e A morphism f of Ch®(C) is a commutative diagram

di—l di di,+1 di+2
e A; Aitr Aito
le fi+1l fH»Zl/
d,_, d, d; d’
i— / i ’ i+1 ’ i+2
' A Aia Ao

where each row is an object of Chb(C) and vertical arrows are morphisms of C.

Chain homotopy in Ch®(C) is defined the usual way.
We denote by hChb(C) the homotopy category of chain complexes over C, or simply
the homotopy category of C. The category hChb(C) is defined as follows:

e An object of hCh®(C) is an object of Ch®(C).
e For any two objects A and B of hCh®(C), Homy,cpo ey (4, B) is Homep ¢y (4, B) modulo
the subgroup of null homotopic morphisms.

An isomorphism in Ch?(C) is denoted by 2. Isomorphism in hCh®(C) is commonly
known as homotopy equivalence and denoted by ~.

Let A be the object of Ch°(C) (and hChP(C)) given in (BTI). Then A admits an
obvious bounded homological grading deg;, with deg;, A; = ¢. Morphisms of Chb(C) and
hChP(C) preserve this grading. Denote by A||k|| the object of Ch®(C) obtained by shifting
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the homological grading by k. That is, A| k|| is the same chain complex as A except that
deg;, Ai =i+ k in Ak

Let us try to understand how to compute Homcps ¢y (A, B) and Homycys(c)(A, B) for
objects A, B of Ch°(C).

DEFINITION 3.37. Let C be an additive category, and (A, d), (B,d') objects of Chb(C).
Let Kom®(A, B) be the set of diagrams of the form

di—1 d; dit1 dit2
o A; A1 Aito
fil fi+1l fi+2l
di_y d; digq diys
: B; Bit1 Biyo

where vertical arrows are morphisms of C, and we do not require any commutativity.
Note that Kom®(A, B) is an abelian group.

For any k € Z, define Kom* (A, B) := Kom"(A||k|, B). Note that, if f € Kom”(4, B),
then Dyf := fod — (—1)*d o f is an element of Kom*"! (4, B). Clearly,

(Kom(A,B) = @Komk(A,B), D := @Dk)
keZ keZ

is a bounded chain complex of abelian groups with an obvious homological grading, in
which Kom” (A, B) has grading k.

The following lemma is obvious from the definitions of HOmChb(c)(A,B) and
Homy,cps(c) (4, B).

LEMMA 3.38. Using notations from Definition B.31, we have
Homepe(¢) (A, B) = ker Dy,
Homy,cio ey (A, B) = H°(Kom(A, B), D) = ker Do/ Im D_.
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Here, we review the algebraic properties of graded matrix factorizations over polynomial
rings. Most of these properties can be found in [19].

We assume in this section that R = C[Xy,...,X,,] is a polynomial ring over C,
where X1,...,X,, are homogeneous indeterminates of positive integer degrees. There is
a natural grading {R®} of R. It is clear that, for each i, R(*) is finite-dimensional. In
particular, R®) = 0if i < 0 and R(®© = C. Also, R has a unique maximal homogeneous
ideal 3 = (X1,..., Xm).

DEFINITION 4.1. For a homogeneous element w € J of degree 2N + 2, the Jacobian ideal

of w is defined to be I, = (88;(“ ,...,aaTw). We call w non-degenerate if the Jacobian
1 m

algebra R,, := R/I, is finite-dimensional over C. Otherwise, we call w degenerate .

Note that, for any homogeneous element w € J of degree 2N + 2, Euler’s formula
gives

1 m 8w
_ deg X;) - X;- 22
v 2N+2;( g Xi) Xige

Thus, w is in its Jacobian ideal.

LEMMA 4.2 ([I9] Propositions 5]). Let M and M’ be objects of HMF g ,. Then the action
of R on Hompmp (M, M) factors through the Jacobian ring R, .

Proof (following [19]). Choose a basis for M and express the differential d of M as a
matrix D. Differentiating D? = w - id by X;, we get g—)?i oD+ Do g_)?,; = g—)?i -id. So
multiplication by % on M is a morphism homotopic to 0. Thus multiplication by %

on Hompgyr (M, M') is the zero map. m

4.1. Homogeneous basis. In general, a free graded module over a graded ring is not
necessarily graded-free, that is, need not have a basis consisting of homogeneous elements.
(See Definition B:3]) However, if the base ring is R, and the grading on the free mod-
ule is bounded below, then the module has a homogeneous basis. We prove this using
an argument in [33] Chapter 13]. First, we introduce the following definition from [33]
Chapter 13].

DEFINITION 4.3. Let P be a graded R-module. We say that P is graded-projective if,
whenever we have a diagram

(*) In [19], the word “potential” refers to a non-degenerate element of 32. We adopt a more
relaxed convention here. A potential can be any element of J, degenerate or non-degenerate.

(36]
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P

lﬁ
V—2sW—=0

of graded R-modules with exact row, where o and 8 are homogeneous R-module maps
preserving the grading, there exists a homogeneous R-module map v : P — V that
preserves the grading and makes the following diagram commutative:

V—s>W—=0

LEMMA 4.4 ([33]). Let M be a free graded R-module whose grading is bounded below. Then
M is graded-free over R, that is, M admits a homogeneous basis over R. In particular,
for any homogeneous element w € J of degree 2N + 2, every object of MF g ., admits a
homogeneous basis.

Proof. Since M is graded and free, it is graded and projective. By [33] Lemma 13.3], M is
graded-projective. Recall that R(®) = C and any C-linear space has a basis. So, according
to [33, p. 130, Exercise 3|, M is graded-free.

By definition, the quantum grading of every object of MFg ,, is bounded below. So
the above argument applies to objects of MFp ,,. m

4.2. Homology of graded matrix factorizations over R. Let w € J be a homo-
geneous element of degree 2N + 2, and M a graded matrix factorization over R with
potential w. Note that M/JIM is a chain complex over C, and it inherits the gradings
of M.

DEFINITION 4.5. The homology Hr(M) of M over R is defined to be the homology of
the chain complex M/JM. It inherits the gradings of M. If R is clear from the context,
we drop it from the notation.

Denote by H?(M ) the subspace of Hr(M) consisting of homogeneous elements of
Zo-degree € and quantum degree 4. If dim H;z(M) < o0 Ve,i, we define the graded
dimension of M to be

gdimp(M) = Y 7°¢" dime Hy' (M) € Z[[g]][7]/(v* — 1).

Again, if R is clear from the context, we drop it from the notation.

REMARK 4.6. One needs to be careful when dropping R from notations. For example,
when w = 0, M is itself a chain complex. Denote by H¢ (M) the usual homology of M.
In general, Hr(M) 2 Hc(M). Carelessly dropping R from notations in such situations
may lead to confusion.

Any homogeneous morphism of graded matrix factorizations induces a homogeneous
homomorphism of the homology, and homotopic morphisms induce the same homomor-
phism of the homology. In particular, f : M — M’ being a homotopy equivalence implies
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that the induced map f. : Hr(M) = H r(M') is an isomorphism. Surprisingly, accord-
ing to [19, Proposition 8], the converse is also true. Next we review properties of the
homology of matrix factorizations given in [19].

LEMMA 4.7. Let M be a free graded R-module whose grading is bounded below. Let V =
M/3M. Then there is a homogeneous R-module map F : V @c R — M preserving the
grading. In particular, if {vg | B € B} is a homogeneous C-basis for V', then {F(vg®1) |
B € B} is a homogeneous R-basis for M.

Proof. By LemmalI 4] M has a homogeneous basis {e, | & € A}. Then, as graded vector
spaces, V = @, 4 C-ea. So, as graded R-modules,

M=@R en=VacR.
acA
This proves the existence of F'. The second part of the lemma follows easily. m

The next proposition is a reformulation of [I9, Proposition 7]. For the convenience of
the reader, we give a detailed proof here.

PROPOSITION 4.8 ([I9, Proposition 7]). Let M be a graded matriz factorization over R
with homogeneous potential w € J of degree 2N + 2. Assume the quantum grading of M
is bounded below. Then there exist graded matriz factorizations M, and Mes over R with
potential w such that

(i) M 2 M.® M,
(ii) M.~ 0 and, therefore, M ~ M,
(i) Mes & Hp(M) ®c R as graded R-modules, and Hr(M) = My/IMes as graded
C-spaces.

Proof (following [19]). Write M as My o, My &5 Mp. Then the chain complex V :=

M/3M is given by Vj o, %] , Vo, where V. = M./IM, for e = 0,1. By Lemma
[ M. has a homogeneous basis {e, | 0 € S.}, which induces a homogeneous C-basis
{é, | o0 € 8.} for V.. Under this homogeneous basis, the entries of the matrices of dy and
dy are homogeneous polynomials. And the matrices of do and d; are obtained by letting
X1 =---=X,, =0 in the matrices of dy and dy, which preserves scalar entries and kills
entries with positive degrees.

We call {(u,,0,) | p € P} a “good” set if

o {u,|p € P} is aset of linearly independent homogeneous elements in Vj,
o {0, | p€ P} is aset of linearly independent homogeneous elements in Vi,
o dy(t,) =0, and dq(v,) = 0.

By Zorn’s Lemma, we find a maximal “good” set G = {(iq, ) | @ € A}. Using Zorn’s
Lemma again, we extend {4 | @ € A} to a homogeneous basis {i, | &« € AUBy} for 1,
and {0y | @ € A} to a homogeneous basis {0q|ac € AU By} for Vy. For each § € By, we
can write cfoﬁg = ZaeAuBl Cap - Vo, where cog € C, and the right hand side is a finite
sum.

By Lemma 7 there is a homogeneous isomorphism F. : V. @c R = M. preserving
the Zy @ Z-grading. Let uy = Fy(liq ® 1) and v, = Fi (04 ® 1). Then {u, | @ € AU By}
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and {v, | @ € AU B} are homogeneous R-bases for My and M;. Under these bases we
have, for any o € A,

dua = Vo t+ Z fﬁavﬂa
BEAUB., B#a

where fg, € J and the sum on the right hand side is finite. That is, for each a,
fsa =0 for all but finitely many f. (4.2.1)
Also, using cio(ﬁa) = 7, for a € A, one can see that
fsa =0 if B # a and degvg > degv,. (4.2.2)
For o € A and k > 0, let
Cfa = {('YOa s ;'Yk) € Ak-H | Ve = &, degv’m << degv’}’k’ f’)’o’n ”’f’)’k—l’)’k 7& O}'
By @Z1), Ck, is a finite set. For each a, C¥, = () for large k’s since the quantum grading
of M is bounded below. For «, 8 € A and k > 0, let
Cga = {(’707 s 7716) € Cfa | Y0 = B}
Then UﬁeA C”ga = C* . So each C”ga is finite. And, for each k, C”ga # () for only finitely
many 3. Also, by definition, it is easy to see that C’ka = () if degvg > degv,. Moreover,
for each «, there is a kg > 0 such that C’ka = () for any 8 whenever k > kg.
Now define tgo € R by
1 if 8= «a,
tga =140 if 8 # o, degvg > degu,,
Ek21(_1)k Z(yo,...,m@)ecga Jrov  freoaye i degug < degug.

From the above discussion, we know that the sum on the right hand side is always finite.
So tgq is well defined. Furthermore, given an o € A, we have tg, = 0 for all but finitely
many . So, for v € A, up, == 3 5. 4 tpaup is well defined. And {u, [ o € A} U {ug |
B € By} is also a homogeneous R-basis for My. One can check that, for a € A,

dul, = ve + Z f5a08,
BeEBy
where the right hand side is a finite sum, and f3, € 3. Now let
;o {va + 2 sen, fhavs i a €A

v
¢ Ve if o € By.

Then {v), | @« € AU B} is a homogeneous R-basis for M;. Under this basis, we have
dul, = v, ifae A,
d’U,ﬂ = ZaE.A go‘B’U; + E'yEBl g’YBU’/y if B € BO’

where the sums on the right hand side are finite. For g € By, we let

up = ug — Z G-
acA
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Then {ul, | « € AU By} is again a homogeneous R-basis for My, and
{du’a = if v € A,
duly = E%BI giﬂ;v’V if B € By,
where the sum on the right hand side is finite. Using that d*> = wid,;, one can check that
dv!, = w - v, if v € A,
dvy = 27660 gfy’ﬂu’7 if B € By,
where the sum on the right hand side is finite.
Define My ., to be the submodule of M spanned by {ul, | « € A} U{v), | « € A},

and M’ the submodule of M spanned by {uj; | 8 € Bo}U{vj | 8 € Bi}. Then M ,,) and
M’ are both graded matrix factorizations and M = M ) ® M'. Note that

(a) My, is a direct sum of components of the form (1, w)r{q*},
(b) under the standard projection M — M/JIM, we have u!, — i, and v/, — 0, for
a € A

In particular, (b) above means that M’ does not have direct sum components of the form
(1,w)r{q"}. Otherwise, we can enlarge the “good” set G, which contradicts the fact
that G is maximal. We then apply a similar argument to M’ and find a decomposition
M'" = M1y @ Mes of graded matrix factorizations satisfying

® My, is a direct sum of components of the form (w, Drid"},
e M, has no direct sum component of the form (1,w)g{q¢"*} or (w,1)r{q"}.

Let My = M1 1) ® M(y,1). Then M = M, & M. Since (1, w)g{¢"} and (w,1)g{q"} are
both homotopic to 0, M, ~ 0. So M ~ M. It is clear that, under any homogeneous
basis for Mg, all entries of the matrices representing the differential map of M.s must
be in J. Otherwise, a simple change of basis would show that M has a component of
the form (1,w)r{q*} or (w,1)r{q"}. Therefore, Hr(M) = Hp(Mes) = Meos/IMes. So,
by Lemma 7 M = Hr(M) ®¢ R as graded modules. m

The following corollaries are from [19].

COROLLARY 4.9 ([19, Proposition 8]). Let M and M’ be graded matriz factorizations over
R with homogeneous potential w € J of degree 2N + 2. Assume the quantum gradings of
M and M’ are bounded below. Suppose that f : M — M’ is a homogeneous morphism
preserving the Zo @® Z-grading. Then f is a homotopy equivalence if and only if it induces
an isomorphism of the homology f. : Hr(M) — Hr(M').

Proof (following [19]). If f is a homotopy equivalence, then f, is clearly an isomorphism.
Let us now prove the converse. Assume f, is an isomorphism. Let M = M, ® M,y and
M’ = M! @ M/, be decompositions of M and M’ given by Proposition @8 So f induces
a morphism fes : Mes — M.,. Note that Hr(M) = Mes/IMes, HrR(M') = M. /IM],
Mes = HR(M) ®c R and M/, = Hr(M’') ®c R. So fes is an isomorphism since f. is an
isomorphism. It follows that f is a homotopy equivalence. m
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COROLLARY 4.10 ([19] Proposition 7]). Let M be a graded matriz factorization over R
with homogeneous potential w € J of degree 2N + 2. Assume the quantum grading of M
is bounded below. Then

(i) M ~0 if and only if Hr(M) = 0 or, equivalently, gdimy(M) = 0;
(ii) M is homotopically finite if and only if Hr(M) is finite-dimensional over C or,
equivalently, gdimp (M) is a well defined element of Z[q, 7]/ (7% — 1).

Proof. For (i), we have
M=~0 = Hr(M)=0 = My Hp(M)@cR=0 = M ~0.

Now consider (ii). If M is homotopically finite, then there is a finitely generated
graded matrix factorization M such that M ~ M. Note that M /I M is finite-dimensional
over C. This implies that Hr(M) = Hr(M) is finite-dimensional over C. If Hr(M) is
finite-dimensional over C, then Moy = Hpr(M) ®c R is finitely generated over R. But
M ~ Ms. So M is homotopically finite. m

4.3. The Krull-Schmidt property. In this subsection, we review the Krull-Schmidt
property of matrix factorizations and chain complexes of matrix factorizations. We follow
the approach in [9] Section 1] and [I9, Section 5].

DEFINITION 4.11 ([9]). An additive category C is called a C-category if all morphism sets
Hom¢ (A, B) are C-linear spaces and the composition of morphisms is C-bilinear.

A C-category C is called fully additive if every idempotent morphism of C splits, that
is, induces a direct sum decomposition.

A C-category C is called locally finite-dimensional if, for every pair A, B of objects
of C, Home¢ (A, B) is finite-dimensional over C.

A C-category C is called Krull-Schmidt if

e every object of C is isomorphic to a finite direct sum A; & --- @ A,, of indecomposable
objects of C, and
o if A1 -®A, = AP -BA], where A;,... A,, A}, ..., A} are indecomposable objects
!

of C, then n = [ and there is a permutation o of {1,...,n} such that 4; = Aﬂ(i) for
t=1,...,n.

Note that, for any homogeneous potential w € J of degree 2N + 2, the categories
MF g, HMF g o, mf g o, and hmfp ,, are all C-categories. Moreover, if C is a C-category,
then Ch°(C) and hCh®(C) are also C-categories. Then following lemma is from [J, Sec-
tion 1].

LEMMA 4.12 ([0, Section 1]). If C is a fully additive and locally finite-dimensional C-
category, then C is Krull-Schmidt. Moreover, if C is a fully additive and locally finite-

dimensional C-category, then Ch®(C) and hCh®(C) are both fully additive, locally finite-
dimensional and, therefore, Krull-Schmidt.

Sketch of proof (following [9]). A C-category C is called local if every object of C decom-
poses into a finite direct sum of objects with local endomorphism rings. One can check that
C is local if it is fully additive and locally finite-dimensional. By [2| Theorem 3.6], local



42 4. Graded matrix factorizations over a polynomial ring

C-categories are Krull-Schmidt. So fully additive locally finite-dimensional C-categories
are Krull-Schmidst.

If C is a fully additive and locally finite-dimensional C-category, then Chb(C) is also
fully additive and locally finite-dimensional. So Chb(C) is local and, therefore, Krull-
Schmidt. For every pair (A, B) of objects of hCh®(C), Homycpo ey (A4, B) is a quotient
space of Homeps ¢y (4, B). Thus, hCh®(C) is also locally finite-dimensional. Since Ch°(C)
is local, any object A of hChb(C) decomposes into

AgAl@@Ama

where HOmChb(c)(A/L', A;) is a local ring for each ¢ = 1,...,m. But HOthhb(C)(Ai7A/L') is
a quotient ring of Homcps(cy(Ai, A;). So, for each 4, Homypcpp(c)(Ai, A;) is either a local
ring or 0. In the latter case, A; is homotopic to 0. This shows that hChb(C) is local
and, therefore, Krull-Schmidt. Since local C-categories are fully additive, hChb(C) is fully
additive. m

REMARK 4.13. In [0, Section 1], the above lemma is actually proved for categories over
any complete local Noetherian ring. (It is trivial to verify that C is such a ring.)

In the rest of this subsection, we assume that w is a homogeneous element of J with
degw = 2N + 2. The next lemma is the lifting idempotent property from [19] Section 5].

LEMMA 4.14 ([I9] Section 5]). Any idempotent in hmfg ., can be lifted to an idempotent
m mfR7w.

Proof (following [19]). Let M be an object of hmfg ,,, and f : M — M a homogeneous
morphism of matrix factorizations preserving the Zs®Z-grading and satisfying fof~f.
We need to show that there is a homogeneous morphism g : M — M of matrix factor-
izations preserving the Zy & Z-grading such that g ~ f and gog = g.

Denote by P : M — Mes and J : Mes — M the projection and inclusion from the
decomposition in Proposition£8 Then f induces a morphism feos = PofoJ : My — Mg
which satisfies feso fos = fes. Note that, as an object of hmfy ,,, M is homotopically finite
and its quantum grading is bounded below. So, by Proposition and Corollary 10
Mg is finitely generated over R.

Let

o : Hompe(Mes, Mes) — Homypme(Mes, Mes)

be the natural projection taking each morphism to its homotopy class, and
B : Homyy¢(Mes, Mes) — Home (Hr(M), Hr(M))

the map taking each morphism to the induced map on the homology. Then ker o and
ker 8 are ideals of the ring Homy,f(Mes, Mes), and ker o C ker 3.

Choose a homogeneous basis {e1, ..., e, } for M over R. For any h € ker 3, let H be
its matrix under this basis. By Proposition 8 Hr(M) = Mes/IMes. Since S(h) = 0, we
know that entries of H are elements of J. This implies that, if h € (ker ), then entries
of H are elements of J*. But the matrix of a homogeneous morphism preserving the
quantum grading cannot have entries of arbitrarily large degrees. Thus, (ker 8)¥ = 0 for
k> 0 and, therefore, (ker a)¥ = 0 for k >> 0. This shows that ker a is a nilpotent ideal
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of Homp¢(Mes, Mos). By [4, Theorem 1.7.3], nilpotent ideals have the lifting idempotent
property. Thus, there is a homogeneous morphism ges : Mes — Mg of matrix factoriza-
tions preserving the Zy @ Z-grading of Mg that satisfies ges > fes and ges © gos = Ges-

Now define a morphism g : M — M by g = J o ges 0 P. It is easy to check that g
preserves the Zo @ Z-grading of M and satisfies g~ f and gog=g¢. m

LEMMA 4.15 ([19, Proposition 24]). hmfr ,, is fully additive.

Proof (following [19]). Let M be an object of hmfg,, and f : M — M a homoge-
neous morphism of matrix factorizations preserving the Zs & Z-grading of M and satis-
fying f o f ~ f. By the lifting idempotent property (Lemma T4, there is a morphism
g : M — M preserving the Zo @ Z-grading of M such that g ~ f and go g = g. Now g
induces a decomposition of graded R-modules M = gM & (id —g)M. In particular, gM
and (id —g)M are both projective modules over R. Recall that R = C[X7,..., X,,] is
a polynomial ring. The well known Quillen—Suslin Theorem tells us that any projective
R-module is a free R-module. So gM and (id —g)M are graded free R-modules. Since
g is a morphism of matrix factorizations, the differential map on M preserves gM and
(id —g) M, which makes them objects of hmfp ,, and the above decomposition a decom-
position of objects of hmfpr ,,. m

In [19], Khovanov and Rozansky proved that HMF g ,, is locally finite-dimensional
under the assumption that w is non-degenerate. Since we only need hmfg ,, to be locally
finite-dimensional, the assumption of non-degeneracy is not necessary. The following is a
modified version of [I9, Proposition 6.

LEMMA 4.16 ([19, Propositions 6]). hmfr ., is locally finite-dimensional.

Proof. Let M and M’ be objects of hmfg ,,. Then there exist finitely generated graded
matrix factorizations M and M’ over R of potential w such that M ~ M and M’ ~ M’.
So Hompymr(M, M') =2 Hompmp(M, M’). Recall that R is a polynomial ring and,
therefore, Noetherian. Thus, Hompyp(M, M’) is finitely generated over R since
Homp (M, M’) is finitely generated over R. Let vy, ..., v be a finite set of homogeneous

is a quotient space of a subspace of the finite-dimensional space
k —a
(e w) o (@ r0),
i=1 j=0

where RU) is the C-subspace of R of homogeneous elements of degree j. Therefore,
Homypme (M, M') is finite-dimensional over C. m

The Krull-Schmidt property follows easily from Lemmas 12 and

PROPOSITION 4.17 ([19, Proposition 25]). Assume that w is a homogeneous element of
J with degw = 2N + 2. Then hmfg,, Ch®(hmfg,) and hCh®(hmfg.,) are all Krull-
Schmidt.

4.4. Yonezawa’s lemma. Yonezawa [56] introduced a lemma about isomorphisms in a
graded Krull-Schmidt category that is very useful in the proof of the invariance of the
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colored sl(NN) homology. Next we review this lemma and show that it applies to hmfp ,,
and hCh®(hmf rRw)- Our statement of Yonezawa’s lemma is slightly different from the
original version in [56].

First, we recall a simple property of Krull-Schmidt categories.

LEMMA 4.18. Let C be a Krull-Schmidt category, and A, B,C objects of C. If A C =
B® C, then A= B.

Proof. Decompose both sides of A @ C = B @ C into direct sums of indecomposable
objects and compare the components of these direct sums. m

DEFINITION 4.19. Let C be an additive category, and F' : C — C an autofunctor with
inverse functor F~'. We say that F is strongly non-periodic if, for any object A of C and
k € Z, F¥(A) = A implies that either A =0 or k = 0.

Denote by Zso[F, F~!] the ring of formal Laurent polynomials of F' whose coeffi-
cients are non-negative integers. Each G' = Ei:k biF' € Z>o[F, F~'] admits a natural
interpretation as an endofunctor on C, that is, for any object A of C,

l
GA) =P F A e o F(A)).
i=k

g b;-fold

The following is Yonezawa’s lemma.

LEMMA 4.20 ([56]). Let C be a Krull-Schmidt category, and F : C — C a strongly
non-periodic autofunctor. Suppose that A, B are objects of C, and there exists a G €
Z>o[F, F~'] such that G # 0 and G(A) = G(B). Then A= B.

Proof. For any objects C' and C’, we say that they are in the same orbit if C' = F*(C")
for some k € Z. If C and C’ are in the same orbit, and C' 2 0, then we can define a
relative degree so that deg(C,C") = k if C = F*(C"). This relative degree is well defined
since F' is strongly non-periodic.

Clearly, I preserves direct sum decompositions, maps isomorphic objects to isomor-
phic objects and maps indecomposable objects to indecomposable objects.

For any object C of C, if C = C1 & --- & (), where C1,...,C; are indecomposable
objects of C, then we call [ the length of C and denote it by L(C). Since C is Krull-
Schmidt, L(C) is well defined. Clearly, L(C) = L(F(C)) = L(F*(C)). More generally,
for any X € Zxo[F, F~!], let X (1) = X|p=1 € Z>¢. Then, L(X(C)) = X (1)L(C) for any
object C.

If X # 0, define the degree deg X of X to be the maximal k so that the coefficient
of F¥ in X is non-zero.

We prove the lemma by inducting on the length of A. If L(A) = 0, then A = 0 and
L(B)G(1) = L(A)G(1) = 0. Since G(1) > 0, this implies that L(B) = 0 and, therefore,
B = 0. So A = B. Assume that the lemma is true if L(A) = [ — 1. Now suppose
L(A) = 1. Decompose G(A) = G(B) into indecomposable objects and find all the orbits
of indecomposable objects that appear in this decomposition. This gives us

G(A) =G(B) = Gi(C1) @ -~ @ Gr(Cy),
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where G1, ..., Gy are non-zero elements of Z>o[F, F~!], and Cj, ..., C} are indecompos-
able objects in disjoint orbits. Thus,

A= f[(C) @& fr(Cr), B=g(C)&---&grCh),

where fi,..., fk, 1, .., gk are non-zero elements of Z>o[F, F~!]. Compare deg f; and
deg g1. Using the strong non-periodicity of F' and the uniqueness of the decomposition
into indecomposable objects, it is easy to conclude that deg f1 + degG = degG; =
deg g1 +deg G. So deg f1 = deg g1 2 d. Define fy := fi — F4, g1 := g1 — F* € Zso[F, F'].
Let

A=fi(C1) @ fo(Co) ® -+ ® fr(Cr), B=a(Ch)®g2(Ca) @ ® gi(Ch).
Then
G(A) @ (F1-G)(C1) 2 G(A) 2 G(B) = G(B) & (F*-G)(C)).

By Lemma I8 we have G(A) = G(B). But L(A) =1 — 1. So, by induction hypothesis,
A2 B. Thus, A2 A FY(C,) 2 B® FYC,)~ B. u

Note that the quantum grading shift functor {¢} on hmfp ,, induces a quantum grad-
ing shift functor on hChb(hmf R.w), which we again denote by {¢}. The following is an
easy consequence of Lemma and is very useful later in our construction.

PROPOSITION 4.21. Assume that w is a homogeneous element of 3 with degw = 2N + 2.
The functor {q} is strongly non-periodic on both hmfr ,, and hChb(hmfR,w), Therefore,
for any non-zero element f(q) € Z>olq,q™ "],

o if M and M’ are objects of hmfg ,,, and M{f(q)} ~ M'{f(q)}, then M ~ M’;
e if C and C' are objects of hCh®(hmf ., ), and C{f(q)} ~ C"{f(q)}, then C ~ C".

Proof. We only need to show that {q} is strongly non-periodic on both hmfg, and
hChb(hmf Rr.w)- The second half of the proposition follows from this and Proposition [£.17]
and Lemma 20

Let M be any object of hmfp ,,. Assume that M ~ M{g*} for some k # 0. Without
loss of generality, assume k > 0. Since M is homotopically finite, there exists a finitely
generated object M of hmfg,, such that M ~ M. So M ~ M{q*}, and therefore
M ~ M{q®} for any a € Zwg. Let {ey,...,e,} be a homogeneous basis for M. Set
u = maxj<;<n dege; and | = min;<;<, dege;. Note that [ is the lowest grading for any
non-vanishing homogeneous elements of M. Choose an a € Z~¢ such that ak > u — [.
Then M ~ M{q?} implies that there are homogeneous morphisms f : M — M of
degree —ak and g : M — M of degree ak such that fog ~ go f ~ idy. Note that
deg f(e;) < —ak+u < lfor i =1,...,n, which implies that f(e;) =0 fori=1,...,n.
So f = 0 and, therefore, idpq ~ 0. Thus, M ~ M ~ 0. This shows that {q} is strongly
non-periodic on hmfp ,,.

Note that any object of hChb(hmf R.w) s isomorphic to an object whose underlying
R-module is finitely generated, and any morphism of hChb(hmf Rw) can be realized as
a finite collection of homogeneous morphisms of graded matrix factorizations. So the
above argument works for hCh®(hmf R,w) too. Thus, {¢} is also strongly non-periodic on
hCh®(hmf g ,). =
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In this section, we review properties of symmetric polynomials used in this paper. Most
of these materials can be found in, for example, [12] [13] 24} 25 27 57].

5.1. Notations and basic examples. In this paper, an alphabet means a finite collec-
tion of homogeneous indeterminates of degree 2. For an alphabet X = {z1,..., 2}, we
denote by C[X] the polynomial ring C[z1,...,z,] and by Sym(X) the ring of symmet-
ric polynomials over C in X. Note that the grading on C[X] (and Sym(X)) is given by
degz; =2. For k =1,...,m, we denote by X}, the kth elementary symmetric polynomial

in X. That is,
Xk = Z Lijy Lo * Ly, -
1<iy <ig < <ip<m
X}, is a homogeneous symmetric polynomial of degree 2k. It is well known that X5,..., X,
are independent and Sym(X) = C[X1, ..., X,,]. For convenience, we define

Xo=1 and Xpy=0 ifk<Oork>m.

There are two more relevant families of basic symmetric polynomials: the power sum
symmetric polynomials {py(X) | k € Z} given by

_ Z:ile if k>0,
P(X) = {0 if k<0,

and the complete symmetric polynomials {hy(X) | k € Z} given by

2o1<ir i< Sinm T Ti * Ty, I B >0,
he(X) =141 if k=0,
0 if k£ <0.

Consider the generating functions of { X}, {pr(X)} and {hx(X)}, that is, the power
series

m m

E(t) =Y (~1)FXuth = TJ(1 - ait)
k=0 i=1
ZPkH — 1
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It is easy to see that E(t) - H(t) = 1, E'(t) - H(t) = —P(¢t) and E(¢t) - P(t) = —E'(t).
Hence,

l .
kz:(:)(—mkxkhz_k(X) = {(1) i;ig (5.1.1)
l

STV Xk (X) = pu(X), (5.1.2)
k=1

-1

> (D Xpw(X) = (—1)X, (5.1.3)

k=0

where (B.1.3)) is known as Newton’s Identity.
Since Sym(X) = C[X7q,..., X, pr(X) and hy(X) can be uniquely expressed as poly-

nomials in X1,..., X,,. In fact, we know that
X Xo X3 - Xk kX5
1 X3 Xo - Xp—o (K—1)Xk_y
0 1 X7 - Xi- k—2) Xk
pe(X) =pmp(X1, . X)) =| b R ( _.)_ 2 (5.1.4)
0 0 0o - Xj 2X,
0 0 o - 1 X3
and
X1 X2 X3 kal Xk
I X1 Xo -0 Xpo Xp
0 1 X7 - Xgog Xk
h(X) = b (X, X)) = | 0 T T T (5.1.5)
0 0 o --- Xj X5
0 0 o - 1 X3

Equations (B.I4) and (BI5) can be proved inductively using (11 and (EI3).

LEMMA 5.1.
0

8—ijmJ(X1, oy X)) = (1) R i (X, X)),

Proof. Induct on [. If [ < j, then both sides of the above equation are 0, and therefore
the lemma is true. If I = j, by Newton’s Identity (B13), we have

J—1
P+ Y (1) Xipp ik = (=171 X;.
k=1

Differentiating along X;, we get

0

_m.:_1j+1'.
8ij g =1

So the lemma is true when [ < j.
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Assume that there exists n > j such that the lemma is true for all [ < n. Consider
I =n+ 1. Using Newton’s Identity (B.13) again, we get

Pm,n+1 + Z kam n+l—k = (_1)n(n + 1)Xn+1-

Differentiating along X leads to

0
pmn+1+( ]-) Pmn+1— J+Z ka

X, o Pmant+1—k = 0.

8X

So, by induction hypothesis,

8 n+1—j
a—)(jpnt,n—i-l - ( 1) an n+1—g + Z k+] n + 1-— k)thm,n-i-l—k—j

= (—1)k+j(n+ 1)th7n,n+1—k—j (by (m))

= (- 1)J+1(n+1)hm,n+1_j (by GLI). =

»

5.2. Partitions and linear bases for the space of symmetric polynomials. A par-
tition A is a finite non-increasing sequence of non-negative integers (A\; > --- > \,;,). Two
partitions are considered the same if one can be changed into the other by adding or
removing 0’s at the end. For a partition A = (A > -+ > A,,), write |A| = Z;’L:l Aj
and {(A) = #{j | A; > 0}. There is a natural ordering of partitions. For two partitions
A=A > >Mp)and p = (g > -+ > pp), wesay that A > g if the first non-vanishing
Aj — pj is positive.
It is well known that

[m: n:| _ q—nLn Z q2|)\‘7 (521)
s I(

A)<m, A1 <n
where A runs through partitions satisfying the given conditions.

The Ferrers diagram of a partition A = (A\y > --- > \,,) has A; boxes in the ith
row from the top with rows of boxes lined up on the left. Reflecting this Ferrers diagram
across the northwest-southeast diagonal, we get the Ferrers diagram of another partition
N = (A} > --- > \,), which is called the conjugate of A (see Figure 5). Clearly, \; =
#{j |\ =i} and (N) = A\

N=(4>3>1):

Fig. 5. Ferrers diagrams of a partition and its conjugate
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We are interested in partitions because they are used to index linear bases for the
space of symmetric polynomials. We are particularly interested in two of such bases:
complete symmetric polynomials and Schur polynomials.

Given an alphabet X = {x1,...,2,,} of m indeterminates and a partition A = (A1 >
<+« > App) of length I[(X) < m, define

hA(X) = hx, (X) Do, (X) - hy,, (X)a

where hy, (X) is defined as in the previous subsection. hy(X) is called the complete sym-
metric polynomial in X associated to \. This generalizes the definition of complete sym-
metric polynomials given in the previous subsection. It is known that the set {hx(X) | [())
< m} is a C-linear basis for Sym(X). In particular, {h\(X) | I(A) < m, [A\| = d} is a
C-linear basis for the subspace of Sym(X) of homogeneous symmetric polynomials of
degree 2d. (Recall that our degree is twice the usual degree.)

For the alphabet X = {z1,...,2,,} and a partition A = (A; > --- > A,,) of length
I(N\) < m, the Schur polynomial in X associated to \ is

xi\1+’n’L71 xi\2+777,72 . xi\m—l‘i‘l i\.m
- — Am—1+1 m
xg\l—i-m 1 $§2+Tn 2. ) n—1+ xg\
A1+m—1 Ao+m—2 Am—1+1 A
Lin—1 Tm—1 e m—1 J"Tnn—l
x)\ler*l x)\2+m72 . xi‘rznflJFl x)\m
m m m
SA(X) = m—1 m—2
Tq Ty SRR 1
el T 1
m—1 m—2
Tyl Tyl 0 Tme1 1
m—1 m—2
L L o Tm 1

Note that the denominator here is the Vandermonde polynomial, which equals
[Tic;(@i — ;). We notice that Sx(X) can also be also computed using the following
formulas:

h>\1 (X) hx\l +1(X) s h>\1+m—1(X)
h (X h X h m— X
SA(X) = det(hy, _i1;(X)) = | 1X) % (X) Aatm-2(X) (5.2.2)
hAm—m+1(X) P —m+2(X) ... ha,, (X)
and
X, Xxp41 v Xngk—1
X 1 X / X / —
Sa(X) = det(Xny_spy) = | 27 X etk (5.2.3)
Xn k1 Xn g2 o0 X

where X' = (A} > --- > \},) is the conjugate of X. In particular, for j > 0,
h;(X) =S (X), Xj=51>1>...>1)X).
———

Jj parts

The set {S\(X) | I(A) < m, |\| = d} is also a basis for the C-space of homogeneous
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symmetric polynomials in X of degree 2d. (Again, recall that our degree is twice the
usual degree.)
The above two bases for the space of symmetric polynomials are related by

ha(X) = KnSu(X), (5.2.4)

where K, is the Kostka number defined by

o Ky =0if |u] # [Af;

o for partitions p = (11 > -+ > pm) and A = (Ay > --- > A, with || = |A|, K, is the
number of ways to fill boxes of the Ferrers diagram of p with Ay 1’s, Ay 2’s, ..., A\,
m’s, such that the numbers in each row are non-decreasing from left to right, and the
numbers in each column are strictly increasing from top to bottom.

LEMMA 5.2. Ky =1 and K,x = 0 if X > p, that is, if the first non-vanishing \;j — p1;

18 positive.

For an alphabet X = {z1,...,z,,}, there is also a notion of Schur polynomial in —X,
which will be useful in the next subsection. First, for any j € Z, define
hy(—X) = (1) X,.
More generally, for any partition A = (A > --- > \,) with \; < m,

hx\l (_X) h/\1+1(_X) s h>\1+n—1(_X)
S\ () = det(hy, iy (-3)) = | Mot CH)maE e ()
Pa,—nt1(=X)  hx,—nt2(=X) ... hy, (=X)
(5.2.5)

If we write the Schur polynomial in X as S\(X) = Sy(x1,...,Z), then, by comparing
EZ3) to (23), one can see that the Schur polynomial in —X is given by

S)\(_X) = S)\/(—Z'17 ey _xTn)7 (526)

where )\ is the conjugate of \.
See, for example, [I3, Appendix A] and [25] for more on partitions and symmetric
polynomials.

5.3. Partially symmetric polynomials. Let X = {z1,..., 2} and Y = {y1,...,yn}
be two disjoint alphabets. Then X UY is also an alphabet. Denote by Sym(X]|Y) the
ring of polynomials in X UY over C that are symmetric in X and symmetric in Y. Then
Sym(XUY), the ring of symmetric polynomials over C in XUY, is a subring of Sym(X]Y).
In other words, Sym(X|Y) is a Sym(X U Y)-module. The following theorem explains the
structure of this module. (See [25], pp. 16-19] for a detailed discussion.)

THEOREM 5.3 ([25, Proposition Grb]). Let X = {z1,...,2m} and Y = {y1,...,yn} be
two disjoint alphabets. Then Sym(X|Y) is a graded-free Sym(X U Y)-module.
Denote by Ay, the set of partitions Ay, = {X | I(X) <m, Ay <n}. Then

{SX) A€ At and {Sx(=Y) | A€ A}
are two homogeneous bases for the Sym(X UY)-module Sym(X|Y).
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Moreover, there is a unique Sym(X U Y)-module homomorphism
¢ : Sym(X]Y) = Sym(X UY),
called the Sylvester operator, such that, for A\, p € Ay, ,
1 Z.fA'+M7n+1—':nf0Tj:1...m
X) - —Y)) = J J ’ y 1Ty
) - Su(=1) { 0 otherwise.
Comparing Theorem (53] to equation (BZT), we get the following corollary.

COROLLARY 5.4. Let X = {x1,...,2m} and Y = {y1,...,yn} be two disjoint alphabets.
Then, as graded Sym(X U Y)-modules,

Sym(X|Y) 2 Sym(X U Y){ [m: ”] - qm"}.

More generally, given a collection {Xy,...,X;} of pairwise disjoint alphabets, we de-
note by Sym(X;|- - -|X;) the ring of polynomials in X; U- - -UX; over C that are symmetric
in each X;, which is naturally a graded-free Sym(X; U - - - U X;)-module. Moreover,

Sym(Xq] -+ |X;) =2 Sym(X) @c - - - ®c Sym(X;).

5.4. The cohomology ring of a complex Grassmannian. Denote by G,, n the
complex (m, N)-Grassmannian, that is, the manifold of all complex m-dimensional sub-
spaces of CIV. The cohomology ring of G, y is isomorphic to a quotient ring of a ring of
symmetric polynomials. See for example [I2] Lecture 6] for more.
THEOREM 5.5. Let X be an alphabet of m independent indeterminates. Then H* (G, n; C)
>~ Sym(X)/(An4+1-m(X), Anto—m(X),...,hn(X)) as graded C-algebras. As a graded
C-linear space, H* (G, n;C) has a homogeneous basis

{SAX) [ A=A == An), I(A) <m, Ay <N —m}.
Under the above basis, the Poincaré duality of H* (G n; C) is given by a C-linear trace
map

Tr: Sym(X)/(An41-m(X), Ant2-m(X), ..., hn(X)) = C

satisfying

Te(Sh(X) - 5,(X)) = {1 if Aj + pmr—j = N —m for j=1,...,m,

0 otherwise.
Comparing Theorem to equation (ZI]), we get the following corollary.

COROLLARY 5.6. As graded C-linear spaces,

G ©) =[] grom ],

m
where C on the right hand side has grading 0.



6. Matrix factorizations associated to MOY graphs

6.1. Markings of MOY graphs
DEFINITION 6.1. A marking of a MOY graph I' (see Figure 6) consists of the following:

(1) a finite collection of marked points on I" such that

e every edge of I' has at least one marked point;
e all the end points (vertices of valence 1) are marked;
e none of the internal vertices (vertices of valence at least 2) are marked,;

(2) an assignment of pairwise disjoint alphabets to the marked points such that the
alphabet associated to a marked point on an edge of color m has m independent
indeterminates (recall that an alphabet is a finite collection of homogeneous indeter-
minates of degree 2).

e tip =g1 +d2 + 0+

Fig. 6

6.2. The matrix factorization associated to a MOY graph. Recall that N is a
fixed positive integer. (It is the N in s[(N).) For a MOY graph I" with a marking, cut
it at its marked points. This gives a collection of marked MOY graphs, each of which is
a star-shaped neighborhood of a vertex in G and is marked only at its endpoints. (If an
edge of I" has two or more marked points, then some of these pieces may be oriented arcs
from one marked point to another. In this case, we consider such an arc as a neighborhood
of an additional vertex of valence 2 in the middle of that arc.)

Let v be a vertex of I' with coloring and marking around it given as in Figure [6l Set
m=iy+---+ir =ji1+ -+ 5 (the width of v.) Define

R =Sym(Xy| - [Xg[Ya]- - - [Y0).
Write X = X; U---UXj and Y = Y; U---UY;. Denote by X; the jth elementary

symmetric polynomial in X and by Y the jth elementary symmetric polynomial in Y.
For j =1,...,m, define
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PoN+1(Y1, o Yo, X X)) = Ponv+1 (Y, Y, X, X))
U; = . (6.2.1)
Xj =Y
where pp, n4+1 is the polynomial given by equation (.I4). The matrix factorization as-
sociated to the vertex v is

U, Xi—-1" N
Cw)y=|-- {q_21§s<t§k““}, (6.2.2)
Un Xm—Ym/

whose potential is E;nzl (X;=Y))U; = pn41(X) —pn+1(Y), where py1(X) and py41(Y)
are the (N + 1)th power sum symmetric polynomials in X and Y. (See Subsection 5] for
the definition.)

REMARK 6.2.

(1) The definition of C'(v) in equation (G.22)) is a direct generalization of the correspond-
ing definitions in [19]. In fact, the definitions of C(v) in the m = 1,2, 3 cases are given
in [I9]. So it is not hard to infer from [I9] what the “correct” general definition of
C(v) should be. In Section [l we will see that the homology of an m-colored circle
is isomorphic to the cohomology of the the complex (m, N)-Grassmannian, which
generalizes the fact that the sl(N) Khovanov-Rozansky homology of an uncolored
circle is isomorphic to the cohomology of CPY.

(2) Since

Sym(X[Y) = C[Xy,..., X, Y1,.... Y] = C[X1 = Y1, X — Vi, Vi, .0, Vi,

it is clear that {X; — Y1,..., X, — Vi } is Sym(X|Y)-regular. (See Definition B201)
By Theorem 53] R is a free Sym(X]|Y)-module. So {X; — Y1,..., X, — Vi, } is also
R-regular. Thus, by Lemma B2]] the isomorphism type of C'(v) does not depend on

the particular choice of Uy, ...,U,, as long as they are homogeneous with the right
degrees and the potential of C'(v) remains Z;’L:l(Xj —Y)U; = pnv+1(X) — pyya (V).
From now on, we will only specify our choice for Uy, ..., U,, when it is actually used

in the computation. Otherwise, we will simply denote them by *’s.

DEFINITION 6.3. We define the matrixz factorization associated to I' to be

C(I) == ) C(v),

where v runs through all the interior vertices of I' (including those additional 2-valent
vertices). Here, the tensor product is done over the common end points. More precisely, for
two sub-MOY graphs I'1 and I'y of T' intersecting only at (some of) their open end points,
let Wq,..., W, be the alphabets associated to these common end points. Then, in the
above tensor product, C'(I'y) ® C(I'z) is the tensor product C(I'1) ®gym(wy, |-.|w,,) C(I2).

C(T) has a Zs-grading and a quantum grading.

If T is closed, that is, has no end points, then C(T") is considered a matrix factorization
over C.

Assume T" has end points. Let Eq, ..., E, be the alphabets assigned to all end points
of I', among which E,,...,E; are assigned to exits and Ex41,...,E, are assigned to
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entrances. Then the potential of C(I') is

k n
w=> pni(E) = Y pni(E)).
i=1 j=k+1
Let Ry = Sym(E4|---|E,). Although the alphabets assigned to all marked points on T’
are used in its construction, C'(T") is viewed as a matrix factorization over Ry. Note that,
in this case, w is a non-degenerate element of Ry.
We allow the MOY graph to be empty. In this case, we define

C)y=C—-0-—C,
where the Zs-grading and the quantum grading of C are both 0.

LEMMA 6.4. If T is a MOY graph, then the homotopy type of C(T') does not depend on
the choice of the marking.

Proof. We only need to show that adding or removing an extra marked point corresponds
to a homotopy of matrix factorizations preserving the Zs @ Z-grading. This follows easily
from Proposition [3.22] =

DEFINITION 6.5. Let I" be a MOY graph with a marking. We define the homology of T’
as follows:

(i) If T is closed, that is, has no open end points, then C(I') is a chain complex. Denote
by H(T") the homology of C(I'). Note that H(T") inherits the Zy @ Z-grading of C(T").

(ii) If T has end points, let Eq,...,E, be the alphabets assigned to all end points of T,
and Ry = Sym(E;|- - - |E,). Denote by E; ; the jth elementary symmetric polynomial
in E; and by J the maximal homogeneous ideal of Ry generated by {E; ;}. Then H(I")
is defined to be Hp, (C(T")), that is, the homology of the chain complex C(T")/J-C(T").
Clearly, H(T') inherits the Zy @ Z-grading of C(T").

Note that (i) is a special case of (ii).
LEMMA 6.6. IfT' is a MOY graph with a vertex of width greater than N, then C(I") ~ 0.

Proof. Suppose the vertex v of I has width m > N. Then, by Newton’s Identity (13,
it is easy to check that, in (GZI), Uns+1 = (=1)NY(N + 1). By Lemma ??, we have
idc(y) =~ 0. This implies that C(v) ~ 0 and, therefore, C(I') ~ 0. m

Since rectangular partitions come up frequently in this paper, we introduce the fol-
lowing notations.

DEFINITION 6.7. Denote by A, , the partition

)\m,n = (nz Zn%
———
m parts

and by A, , the set of partitions
Ao = =1 > > pm) | 1 <nj.

The following is a generalization of [14], Proposition 2.4].
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LEMMA 6.8. Let ' be a MOY graph, and X = {x1,...,2,n} an alphabet associated to a
marked point on an edge of I' of color m. Suppose that p is a partition with g > Ay N—m,
that is, p1—(N—m) > 0. Then multiplication by S,,(X) is a null homotopic endomorphism

of C(T).
Proof. Cut T' at all the marked points into local pieces, and let TV be a local piece

containing the point marked by X (as an end point). Let Wy, ..., W; be the alphabets
marking the other end points of I'V. Then C(I”) is of the form

ayro @11
a0 @21
C(F/) - I
a a
kO Ok Sym(XWy - |Wy)

and has potential
1

k

Apn 1 (X) + D Epn (W) = aj0051.
i=1 j=1

Let X; be the jth elementary symmetric polynomial in X. Derive the above equation

by X;. By Lemma[5.1] we get

Therefore hy(X), An—1(X),..., An—m41(X) are in the ideal (a1,0,01.1,-..,ak0,ak1) of
Sym(X|W|---|W;). By Lemmal[3I2 multiplications by these polynomials are null-homo-
topic endomorphisms of C(I") and, by Lemma BTl of C(I"). By equation (522]) and
recursive relation (BL)), if & > A, N —m, then S, (X) is in the ideal (hn(X), An-1(X), ...,
hn—m+1(X)). So multiplication by S, (X) is null homotopic. m

LEMMA 6.9. Let ' be a MOY graph, and Eq,...,E,, the alphabets assigned to all end
points of T', among which Ey, ... Ey are assigned to exits and Ex41, ..., E, are assigned
to entrances. (Here we allow n = 0, that is, T' to be closed.) Write Ry = Sym(E4|-- - |E,)
and w = ElepNH(Ei) - Z?:kﬂ pn+1(E;). Then C(T') is an object of hmfp, ..

Proof. Let Wq,...,W,, be the alphabets assigned to interior marked points of I". Then
C(T) is a finitely generated Koszul matrix factorization over

R =Sym(Wy| - [W,|Eq]- - [En).

This implies that the quantum grading of C'(T") is bounded below. So, to show that C(I") is
an object of hmfp, ,,, it remains to prove that C'(I") is homotopically finite. By Corollary
[T0, we only need to demonstrate that H(I") is finite-dimensional.

Let J be the maximal homogeneous ideal of Rg = Sym(Eq| - - - |E,,). Then C(T")/3C(T)
is a chain complex of finitely generated modules over R’ = Sym (W] ---|W,,). Note that
R’ is a polynomial ring and, therefore, a Noetherian ring. So the homology of C(T")/3C(T),
that is, H(T'), is also finitely generated over R’. But Lemma [6.8 implies that the action
of R on H(T") factors through a finite-dimensional quotient ring of R’. So H(T') is finite-
dimensional over C. m
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LEMMA 6.10. Let T', Ty and T'y be the MOY graphs shown in Figure [l Then C(T'y) ~
C(Ty) =~ C(I).

Xl .Xs Xs+1 Xk Xl YXS Xs+1 Xk

ik i1 ik

Proof. We only prove that C'(I'y) ~ C(I'). The proof of C(I'y) ~ C(I') is similar. Set
m =i+ 4ix = ji + -+ ji. Let B = Sym(Xy|---[Xp|Yy|---|Y;), and R =
Sym(Xy |- [Xg|Yq] - [Y]A). Set X =Xy U---UXg and Y = Y; U--- U Y. Denote
by X the jth elementary symmetric polynomial in X, by Y; the jth elementary symmet-
ric polynomial in Y, and by A; the jth elementary symmetric polynomial in A. Moreover,
denote by XJ’- the jth elementary symmetric polynomial in X;U- - -UX4_1UX4oU- - -UX,
and, for ¢ = 5,5+ 1, by X; ; the jth elementary symmetric polynomial in X;. Then
Xj= > X)XiXoirr,

p+q+r=j

the jth elementary symmetric polynomial in X, U Xg4 is
Z Xs,st—i-l,qv

pt+a=j

and the jth elementary symmetric polynomial in X; U---UX,_1 UXg4oU---UXUA is

> XA,

pta=j

Note that

R= R[x‘h ~Xer = Xer1ts 0 Aj = D XepXavrgr-o o A pings — Xein Xt v |-
pta=j

So, by Proposition 3.22]

* X{ + Al — Y1

* Z:10+q=j le)Aq Y
* Xrln—is—i,;+1Ai.s+is+1

* Al - Xs,l - Xerl,l

_Ym

C(T) = (g~ Zrsn<rsrinin)

* AJ - Ep-‘,—q:j XS,;DX8+1,q

* Ais+is+1 - X$7isXS+17is+1 R
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* X1 - Yl
~ | ... {q_zlﬁtlﬂzﬁki‘l“?} ~CT). m

* Xm_Ym R

Lemma implies that the matrix factorization associated to any MOY graph is
homotopic to that associated to a trivalent MOY graph. So, theoretically, we do not lose
any information by considering only the trivalent MOY graphs. But, in some cases, it is
more convenient to use vertices of higher valence.

COROLLARY 6.11. Suppose that Ty, Ty, T's and T are the MOY graphs shown in Figure[l
Then C(T'y) ~ C(T}) and C(T2) =~ C(T%).

i j k i j k

Fl F/l
gtk i+

ititk itk

i j k i J k
T'y: T%:
2 G+ k 2" iy

itk itk

Fig. 8

Proof. This is a special case of Lemma [6.10l m

6.3. Direct sum decomposition (IT). We now generalize direct sum decomposition
(IT) in [19].

THEOREM 6.12 (Direction sum decomposition (II)). Suppose that T and T'y are the MOY
graphs shown in Figure[@, where n > m > 0.

Y

Fig. 9

C(T) ~ C(Fl){ m }

Proof. Denote by X; be jth elementary symmetric polynomial in X, and use similar
notations for the other alphabets. Let W = A U B. Then the jth elementary symmetric
polynomial in W is

Then

W= > AB,.

p+q=j
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By Theorem and Corollary [£.4]

Sym([|4lB) = Sym ey e |7 1

m
So
* Y1 — W1
~ * Yo —Wn —m(n—m)
* Wa=Xo /o npviam)
* Y1 — W1
~ | x Ya-W, n
B * W1 - X1 m
 Wo =X ) gy
* Yl - X1
n n
() (el
* Y, - X, Sym(X|Y)

where the homotopy is given by Proposition [3.22] m
6.4. Direct sum decomposition (I). We now generalize direct sum decomposition (I)
in [19]. We start with a special case.

LEMMA 6.13. Suppose that T and T'y are the MOY graphs shown in Figure [I0. Then
C(T) = C(T1)(N —m).

m Y m AY
N —m
N N —m m W
m X m | X
r Iy I’
Fig. 10

Proof. By Lemma [6.10, we have C(T") ~ C(I'). So we only need to show that C(I") ~
C(T'1){N — m). We put markings on I and T'; as in Figure Denote by X; the jth
elementary symmetric polynomial in X, and use similar notations for the other alphabets.
Write A =YUW and B = XUW. Then the jth elementary symmetric polynomials in A
and B are
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Define
U - pN,N-i—l(Bl; . ,Bj_l,Aj, . ,Am) _pN,N—i-l(Bl; . ,Bj,Aj+1, . ,Am)
= .
A, — B,
Then
Ui A — B
C(F/) _ Us Az — By {q—nL(N—m)}.
Un An— By Sym (X|Y|W)

Using the relation A; — B; = Z,H_l:j (Y — X)W, and, especially, 41 — By = Y7 — X;,
we can inductively change the entries in the right column into Y7 — X1,Ys — Xo, ...,
Y — X, 0,...,0 by the row operation given in Corollary Note that these row

operations do not change U, 41, .., Uy in the left column. Thus,
* Y1 - X1
* Yo — X
o) = m m —m(N—m) )
(') Unin 0 {a }
Un 0 Sym (X|Y|W)

Using Newton’s Identity (B1.3]), one can verify that
PN N+1(A1, - AN) = fi + Anpa—i(ci A+ g5),

where f; is a polynomial in Ay,..., Anv_j, ANy2—j,..., AN, and g; is a polynomial in
Al, . 7Aj—1; and

(DN (N 41)/2 iEN4+1—j =,
Cj_{(—l)N“(N—H) i N+ 1—j# .

Therefore,
(—1)N+1(N+1)Bj—|—Oéj(Bl,...,Bj_1) 1fN+1—j>],
(—D)NFIEEL (A + B)) + Bj(By,..., Bj—1) ifN+1—j=1j,

(—DNFH(N +1)4;
+7(B1y- oy BNt1—js ANg1—jy s Ajo1) N +1—5 <,

Unyi-j =

where a;, 85,7; are polynomials in the given indeterminates.

So, for j =1,...,N —m, Uns1—; can be expressed as a polynomial
UNJrlfj = (_1)N+1(N + 1)Wj + uj(le sy va Ylv SRR Ymv Wla ceey ijl)'

This implies that Uy,...,Upn41 are independent indeterminates over Sym(X|Y), and
Sym(X|Y|W) = Sym(X|Y)[Un, ..., Un+1]. Hence, by Corollary B.27]
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* Yl — X1
* Ym - Xm —m(N—m)
Unis 0 {q }
Un O /symexivw)
* Yl — X1 ~
~... . (g =S (N+L=deg U (N ) & (T, ) (N —m).
* Y;n - XnL

Sym(X|Y)
Thus, C(T') ~C(I") =~ C(T1)(N —m). m
The general case follows easily from Lemma [6.13]

THEOREM 6.14 (Direct sum decomposition (I)). Suppose that T' and T'y are the MOY
graphs shown in Figure [Tl

m

m+n n m

r Iy
m m N —m
N N —m N n
m m N-m
F4 F3
Fig. 11
Then N
—-m
() zC(Fl){{ . }}(m

Proof. Consider the MOY graphs in Figure [[Il By Lemma [EI3 we have C(I') ~
C(T2)(N — m — n). By Corollary 61T} C(T'2) ~ C(T's). By Theorem 612 C(I's) ~
C(F4)[N;m] And by Lemma again, C'(T'4) ~ C(T'1){N — m). Putting everything
together, we get C(I') ~ C(I'1){ [N;m} Hn). =



7. Circles

In this section, we study matrix factorizations associated to circles. The results will be
useful in Section

7.1. Homotopy type. The following describes the homotopy type of the matrix factor-
ization associated to a colored circle and follows easily from direct sum decompositions

(I) and (II) (Theorems and [6.12).

COROLLARY 7.1. If T is a circle colored by m, then C(T") ~ C(() {[ 1 }(m) where C’(@)
is the matrixz factorization C — 0 — C. As a consequence H nH=c (Z)){[ ]}

Proof. Consider I's in Figure [[2] first, which is the special case when m = N. Note that,
by Lemma [5.1]

o) X
oo o (N + 1)hn(X) 0
O(fa) = | 2522 0 = [ GO+ Dhxak(X) 0
) (X) _1\N+1
pgr;(jv 0 Sym () (-1) (N + 1)h1(X) 0 Sym(X)

where X}, is the kth elementary symmetric polynomial in X. But
Sym(X) = C[h1(X),..., hn(X)].
So, by applying Corollary 327 repeatedly, we get C'(T's) ~ C(0)(N).

Fig. 12

For the general case, using Theorem and Lemma [6.13] we have
N
CT)~C(T1)(N—m)=C([3)(N —m) ~ C(I‘g){ [m] }(N —m).

So C(T) =~ C(O){[N]}(m). m

[61]
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7.2. Module structure of the homology. Now let O),, be a circle colored by m and
marked by a single point as shown in Figure[[3] Then H(O),,) is a graded Sym(X)-module.
In this subsection, we show that, after a grading shift, this module is isomorphic to the
cohomology of the complex (m,N)-Grassmannian G, y. In particular, as a Sym(X)-
module, H(O,,) is generated by a single generator.

Fig. 13

We need the following fact about symmetric polynomials to carry out our proof.

PROPOSITION 7.2. Let X = {x1,...,Zm} be an alphabet with m independent indetermi-
nates. If n > m, then the sequence {hn(X), hp—1(X), ..., hnt1-m(X)} is Sym(X)-regular.
(See Definition [3201)

Proof. For n,j > 1, define a ideal Z, ; of Sym(X) by 7,1 = {0} and Z,,; = (ha(X),
hn—1(X), ..., hpyo—j(X)) for j > 2. For 1 < j < m < n, let Py ; and Qpmn ; be the
following statements:

o Punjt “huy1—3(X) is not a zero divisor in Sym(X)/Z, ;”.
® Qo “Xy =212y is not a zero divisor in Sym(X)/Z, ;”.

We prove these two statements by induction for all m,n,j satisfying 1 < j < m < n.
Note that, by Definition B20, {h,,(X), hp—1(X), ..., hpnt1-m(X)} is Sym(X)-regular if and
only if Py, ; is true for 1 < j < m.

If m =1, then 1 < j < m forces j = 1. Since 7,1 = {0}, P11 and Q1,1 are
trivially true for all n > 1. Assume that, for some m > 2, Pp,_1,; and Qu—1,,; are
true for all n,j with 1 < j < m —1 < n. Consider Py, ; and Qn, »,; for n,j satisfying
1<j<m<n.

(i) First, we prove Qum,n,; for all n,j with 1 < j < m < n by induction on j. When
j=1,T7,; =Z,1 = {0}. SO Qm,n1 is trivially true. Assume that @, n j—1 is true for
some j > 2. Assume ¢, gn, . .., gni2—; € Sym(X) satisfy

n

9Xm = > ghi(X), (7.2.1)

k=n+2—j
Note that g, gn, ..., gn+2—; are polynomials in Xy, ..., X,,. We shall write

g:g(Xla"'aXm)a gn:g(le"'va)v ceey gn+27j:g(X17"'7Xm)'
Denote by X/ the jth elementary symmetric polynomial in X' = {z1,...,Zm-1}.
Then Xj|;,, =0 = X} and h;(X)|s,,=0 = h;(X'). Plug x,,, = 0 into (Z2.I). We get
n

> ge(Xi, . X, 0)h(X)) = 0.
k=n+2—j
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In particular,
Guvai (Xsee o Xy O hosa g (X) € (h(X), et (X)), . hoss—y (X)) € Sym(X)).
But statement P,—1.,, j—1 is true. So
gn+2—j (X1, X0y 1,0) € (ha (X)), 1 (X0), o  hags— (X)),
That is,

n
gn-l—Q—j(Xia---aXr/n—hO) = Z ak(Xia"'aXfln—l)hk(X/)
k=n+3—j

n

= > a(X{, X k(XD X, 0).

k=n+3—j
Note that X{,..., X/, ; are independent indeterminates over C. So the above equation
remains true when we replace X1,..., X/, _; by any other variables. In particular,

n

gn+2—j(X1;---;X7n—17O) = Z ak(Xla---;Xnt—l)th,k(Xla---7Xm—170);
k=n+3—j

which implies that there exists a € Sym(X) such that

gn+27j(X17~"7Xm717Xm) :aXm+ Z ak(X1;~"7Xm71)hm,k(X17~"amelaXm)
k=n+3—j

= aXnL + Z Oék(Xl, v 7Xm—1)hk(X)
k=n+3—j

Plug this into (CZT]). We get

(g - Oéhn-i-Q—j (X))Xm = Z (gk + ak(X17 SRR Xm—l)hn-i-Z—j (X))hk(x)
k=n+3—j

But Q. n,j—1 is true. So g — ahpyo—;(X) € Z,, j_1 and, therefore, g € Z,, ;. This proves

Qm.n.j- Thus, Q. j is true for all n, j satisfying 1 < j < m <n.

(ii) Now we prove Py, ,, ; for all n,j with 1 < j <m <n.

Casg A: 1 < j <m—1. Assume that h,11—;(X) is a zero divisor in Sym(X)/Z, ;. Define
A ={g € Sym(X) | ¢ is homogeneous, g ¢ Z,, ;, ghnt+1—;(X) € Z,, ;}.

Then A # (). Write 2v = mingea degg. (Recall that we use the degree convention degx;
= 2.) Let g be such that g € A and degg = 2v. Then there exist gn, gn—1,...,nt2—j €
Sym(X) such that deggr =2(v+n+1—j —k) and

n

Ghni1—i(X) = > grhi(X). (7.2.2)
k=n+2—j

Note that g, gn, ..., gn+2—; are polynomials in Xy, ..., X,,. We shall write
9=9(X1,-. s Xm), gn=9(X1,. ., Xm), ooy Gny2—j = 9( X1, Xin).
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In particular,
lv/m]
g:g(leva): Z fl(Xla"'vafl)Xrlnv (723)
1=0

where fi(X1,..., X;nm-1) € Sym(X) is homogeneous of degree 2(v — Im).
Plugging z,, = 0 into (2.2, we get

n
fO(Xiv""Xr/n—l)hn-l-l—j(xl) = Z gk(Xiv"'aXr/n—laO)hk(X,)v
k=n+2—j
where X' = {z1,..., 2,1} and X7 is the jth elementary symmetric polynomial in X'.
But P15, is true since 1 <j <m —1 <n. So
fo(X1,. . X 1) € (hn(X'), hpp1 (XT), .o oy Bgo— (X)) C Sym(X).
Thus,
fO(Xiv"'aXr/n—l): Z ak(X{a'“aXr/n—l)hk(X/)
k=n+2—j
= Z ak(X{a"'a ;nfl)hm,k(X{a'qu?,nflvO)a
k=n+2—j
where ay (X7, ..., X},_1) € Sym(X’) is homogeneous of degree 2(v—k). But X7,..., X/ |
are independent indeterminates over C. So the above equation remains true when we re-
place X1,..., X/ _; by any other variables. In particular,

n

foXt, . X)) = Y an(X1 o, X )hm (X1, X1, 0)
k=n+2—j

=aX;, + Z A (le cee 7Xm71)hk (X)v (724)
k=n+2—j

where a € Sym(X) is homogeneous of degree 2(v — m). Plug this into (ZZ2). We get

v/m]
Xon (o + ; X,y X)X b (X)

n

= > (g —an(X1,. o, X)) hng1— (X)) (X) € I, 5.
k=n+2—j
By Qm.n,j, we have (o + Z}i{mj f(X1, o, X 1) X Dhng1—(X) € Z,5. But o +
Z}i{mj fi(X1, ..., X;n_1) X1 is homogeneous of degree 2(v—m) < 2v. By the definition
of v, this implies that a + Zlilmj filX1,..., X;m—1) X5t € Z,, 5. Then, by (TZ3) and
[C24), we have

Lv/m] 0
g= Xm(a + 3 Al ,Xm_l)X,ln‘l> + Y aXne X )h(X) € Ty
1=1 k=n+2—j

This is a contradiction. So P, , ; is true for all n,j such that 1 <j <m —1, m <n.
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CASE B: j = m. We induct on n. Note that by, (X), hp—1(X), ..., hi(X) are independent
over C, and Sym(X) = Clhn, (X), hym—1(X), ..., 1 (X)]. When n = m, hpy1-m(X) = hy(X)
and Sym(X)/Z,, m = C[h1(X)]. So Py m,m is true. Assume that Py, ,,—1,m, is true for some
n > m. Suppose that g, ..., gnt1-m € Sym(X) satisfy

n

> gehi(X) =0. (7.2.5)

k=n+1—-m
By equation (BI.T]), we have

n—1
ha(X) = > ()" F X, i (X).
k=n—

Plugging this into (CZ0]), we get
n—1

(D)™ ' X gnhn-m(X) + D (gr + (D" X kgn)he(X) = 0. (7.2.6)
k=n+1—m

S0 Xmgnhn—m(X) € Z,,_1 m. Since Py p—1,m and Q. n—1,m are both true, this implies
that g, € Z,,—1,m. Hence, there exist a—1,..., Qnt1-m € Sym(X) such that

n—1
gn= >,  ohi(X), (7.2.7)
k=n+1—m
Plugging this into (CZ0]), we get
n—1
S (gt (S EX g (- g Xl () (5) = 0.
k=n+1—-m

By Pp,n—1,m—1, this implies
Ini1-m + (=)™ Xpm_1gn + (—1)m+1an+1_mehn_m(X) €Ln—1,m-1-
Comparing this with (Z2Z71), we get
Int1-m + Ong1—m((=1)" Xm—1hns1-m(X) + (= 1) Xpnhn—m (X)) € Tn_1,m—1.

Therefore,
n—1

Int+1-m + an+1—mhn(X) = Ggn+1-m + Qny1-m Z (_1)n_k+1Xn—khk(X) €Lp—1,m-1-

k=n—m
Thus, gnt+1—m € Zn,m- This proves Py, pnm. S0 Py n.m is true for all n > m.
Combining Cases A and B, we know that P, ,, ; is true for all n, j such that 1 < j <

m < n.

(i) and (ii) show that P, ,, j and Qm, n,; are true for all n, j satisfying 1 < j <m < n.
This completes the induction. m

PROPOSITION 7.3. Let O be a circle colored by m (< N) and marked by a single
alphabet X of m indeterminates. Then, as Zo @ Z-graded Sym(X)-modules,

H(Om) = Sym(X)/(hn (X), hn-1(X), ..., Anvs1-m (X)) {g7" N7} m),
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where Sym(X)/(hy(X), hAnv—1(X), ..., Ant1—m(X)) has Zg-grading 0. In particular, as
graded modules over Sym(X), H(Om) = H*(Gpn.n){g N}, where G,y is the
complex (m, N)-Grassmannian.

Proof. By definition,
U, 0

COm) =1|- - :

Un 0/ gym)

where U; = aixjpm,NH(Xl, ...y Xm). By Lemma [51] we know
Uj = (=1)7TN + Dhmoni1—j (X1, ..oy Xon).

Then, by Proposition [[.2] U; is not a zero divisor in Sym(X)/(Ui,...,U;_1). Thus, we
can apply Corollary B28] successively to the rows of C((,,) from top to bottom and
conclude that

H(Om) 2 Sym(X)/(hy (X), hn-1(X), .., hng1-m (X)) {g7 N7 1 (m).
The last statement in the proposition follows from Theorem m

DEFINITION 7.4. From the above proposition, we know that H((,,) is generated, as a
Sym(X)-module, by the homology class corresponding to

1 € Sym(X)/(hn (X), An-1(X), ..., hny1-m (X))
We call this homology class the generating class and denote it by &.

7.3. Cycles representing the generating class. To understand the action of a mor-
phism of matrix factorizations on the homology of a colored circle, we need to understand
its action on the generating class . In order to do that, we sometimes need to represent
& by cycles in a matrix factorization associated to that circle. In particular, we will find
such cycles in matrix factorizations associated to a colored circle with one or two marked
points. To describe these cycles, we invoke the “1.” notation introduced in Definition 3.6

LEMMA 7.5. Let Om be a circle colored by m (< N) and marked by a single alphabet X
of m indeterminates. (See Figure[I3l) Write U; = aixjpm,NH(Xla ooy Xm). Then, in
Uy 0
COm)= |- - 7
Un 0 Sym(X)
the element 1(;,. 1) is a cycle representing (a non-zero scalar multiple of ) the generating
class & € H(Om)-

Proof. Write

Sym(X)/(Ux,....,Uj—1)
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Then the homology of I' is computed by
H(Ow) = H(My) = H(M){g" 150y 1) = .
) H(Mm){q(mfl)(NJrl)*Z;";ll degU; Hm —1)
2 Sym(X)/(hw (X), hv—1(X), .-, A1 (X)) {g ™™™ 1 (m).

It is easy to see that 1y € M, represents &. Next, we use the method described in Re-
mark B24to inductively construct a cycle in C'(Oyy, ) representing the generating class. As-
sume, for some j, that 1(; 1) € Mj is a cycle representing &. Note that 1(;, 1) € M;_; is
mapped to 1(11,.. 1) € M; by the quasi-isomorphism M; ; — M;{gN+1-deelUiza1}(1) .
But every entry in the right column of M; 1 is 0. So d(1(1,... 1)) = 0, and therefore 1(; 1)
is a cycle representing &. This shows that 1(; 1) € My = C(Om) is a cycle representing
the generating class & € H(O,). »

LEMMA 7.6. Let Oy, be a circle colored by m (< N) and marked by two alphabets X, Y.
(See Figure[[dl) Use the definition

U, Xi— "

_ Um Xm - Ym
C(Om) - Ul le _ Xl )

Un Ym—Xnm

Sym(X|Y)
where X; and Y, are the jth elementary symmetric polynomials in X and in Y, and
U; € Sym(X|Y) is homogeneous of degree 2(N + 1 — j) and satisfies

m

D (X5 = Y)U; = pn1(X) = pyga (V).

Jj=1

Then the element

> (=1)lElel=D/20 DI ET (e g 12 € O(Opm)

Fig. 14

() See the proof of Proposition B.23] for the definition of this quasi-isomorphism. Note that
the setup there is slightly different. In the proof of Proposition [3.23] b; is in the right column,
while here U;_; is in the left column.
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Proof. Although this lemma can be proved by the method used in 7.5, the computation
is much more complex. So here we use a different approach by considering morphisms of
matrix factorizations. From Proposition I} we have H(Oy,) = C(0){[Y]}(m). So the

m.
subspace of H((,) of elements of quantum degree —m(N — m) is 1-dimensional over

C and is spanned by the generating class &. Hence, to prove the lemma, we only need
to show that the above element of C(Os,) is a homogeneous cycle of quantum degree
—m(N — m) representing a non-zero homology class.

Let I'y be the oriented arc shown in Figure Then, by Corollary B.16]

Homgym(x(v) (C(T1), C(T'1)) = C(T'1) @gymxiy) C(T1)e = C(Om){g™ ™ ™ }Hm).

Consider the identity map id : C'(T'y) — C(T'1). It is a morphism of matrix factorizations
and, therefore, a cycle in Homgyn,x)v)(C(I'1), C(I'1)). Assume id is homotopic to 0, that
is, there exists i € Homgymx|v)(C(I'1), C(I'1)) of Zy-degree 1 such that id = doh+hod.
Then, for any cycle f € Homgymxjv)(C(I'1), C(I'1)) of Za-degree i, we have
f=foid=fo(doh+hod) = (-1)(do(foh)—(=1)"(foh)od),

which is a boundary element in Homgy,x|v)(C(I'1), C(I'1)). This implies that the homol-
ogy of Homgy,(x)v)(C(I'1), C(I'1)) is 0, which is a contradiction since H(O,) # 0. Thus,
id is a cycle representing a non-zero homology class. Under the above isomorphism, id is
mapped to a homogeneous cycle in C(O,,) of quantum degree —m (N — m) representing
a non-zero homology class. Thus, the image of id is a cycle representing a non-zero scalar
multiple of the generating class &.

I
Fig. 15

Next, we check that the image of id is in fact the cycle given in the lemma. Under the
homogeneous isomorphism

Homgy(xv) (C(T1), C(T'1)) = C(T1) @symexvy C(C1)e
preserving the Zy @ Z-grading, we have
id — Z le®1 e C(Th) OSym(X|Y) C(Tq)e.

eel™
By Lemma [3.13] under the homogeneous isomorphism
Uy X1—-Y

C(Fl) DSym(X|Y) C(Fl). i My =

Sym(X]|Y)
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preserving the Zy @ Z-grading, we have
d L@l eC(l) > 1. ® 1, o) € M.
eeI™ e=(€1,..,6m)ET™
By Lemma [3.J4] under the homogeneous isomorphism
Uy X1 —-Y
Um Xm - Ym
Y1 — X Uy
Y;n - Xm Um Sym(X|Y)
preserving the Zy @ Z-grading, we have

Z ]_6 ® 1(€m7...7€1) — Z (_1)‘6|(|€‘*1)/216 ® 16 c MQ.

e=(€1,...,em)EI™ eclm™

And, by Lemmas BI1] and B.T5] under the homogeneous isomorphism

U, Xi—1
M2 — C(OTYL) = U1 Yl N Xl
Upn Yn—Xn

Sym (X]Y)
of Za-degree m and quantum degree —m(N — m), we have

Z (_1)\5|(|€\—1)/21E ® 1.

celm
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Y (DD s @12 € O(On).

e=(e1,....,em)EI™
Thus,

SO (o)l S (e, @ 12 € C(Opm)

e=(c1,emem)EIM

is the image of id € Homgyx|v)(C(I'1), C(I'1)) under the isomorphism
Homgym(xv) (C(T1), C(T1)) =5 C(Om)- =



8. Morphisms induced by local changes of MOY graphs

In this section, we define several morphisms of matrix factorizations induced by basic
local changes of MOY graphs, some of which have implicitly appeared in Sections
and [[1 These morphisms are building blocks of more complex morphisms in direct sum
decompositions (III)—(V) and in chain complexes of colored link diagrams.

8.1. A strategy in defining and comparing morphisms. All morphisms in this
section are defined following essentially the same strategy. Before going into technical
details of each morphism, we outline this strategy here:

1. Isolating the smallest part of the MOY graph involved in each local change and con-
sidering the desired morphism as a homogeneous morphism between the matrix fac-
torizations associated to these local MOY graphs.

2. Determining the quantum degree of the desired morphism by considering the sl(N)
link polynomial. Interestingly, it turns out that, in all the cases considered in this
section, the quantum degree of the morphism is the lowest possible quantum degree of
a homotopically non-trivial morphism between the matrix factorizations of the relevant
MOY graphs.

3. Computing the space of homotopy classes of homogeneous morphisms of the desired
quantum degree between the matrix factorizations of the relevant MOY graphs. For-
tunately, in all the cases considered in this section, this space is 1-dimensional.

4. Defining the desired morphism to be a morphism whose homotopy class spans the
above 1-dimensional space. It is clear that the desired morphism is uniquely defined
up to homotopy and scaling.

Note that the above definition is implicit. If further information about the morphism is
needed, then we will give an explicit or partially explicit construction of the morphism.

In the remainder of this paper, we will need to repeatedly prove that pairs of homo-
geneous morphisms are equal to each other up to homotopy and scaling by a non-zero
scalar. The above strategy generalizes to a standard argument to establish such equality,
which we sketch below.

Let T and TV be two MOY graphs and f,¢g : C(T') — C(I') two homogeneous mor-
phisms of quantum degree i. To prove that f and g are equal to each other up to homotopy
and scaling by a non-zero scalar, we often use the following standard argument:

1. Compute the space of homotopy classes of homogeneous morphisms of quantum de-
gree ¢ from C(T") to C(I").

[70]
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2. The standard argument works when this space is 1-dimensional. In this case, one only
needs to show that both f and g are homotopically non-trivial.

3. To do this, we close or partially close I' and IV and show that the homomorphisms
induced by f and g on the homology of the closed MOY graphs are non-zero.

The fact that our construction of the colored s[(N) homology relies so heavily on this
standard argument is somewhat surprising. It seems to imply that the matrix factoriza-
tion construction of link homologies is very rigid. That is, once we made our choices in
Subsection[6.2] the morphisms involved in later proofs are all determined up to homotopy
and scaling. In particular, this means the chain complex of a colored link diagram is also
determined up to isomorphism by the choices we made in Subsection

As indicated above, most morphisms in the rest of this paper are defined only up to
homotopy and scaling by a non-zero scalar. To simplify our exposition, we introduce the
following notations.

DEFINITION 8.1. Suppose that V is a linear space over C and u,v € V. We write u & v
if there exists ¢ € C\ {0} such that v = ¢ - v.

Suppose that W is a chain complex over a C-algebra and u,v are cycles in W. We
write u = v if there exists ¢ € C\ {0} such that u is homologous to ¢ - v. In particular, if
M, M’ are matrix factorizations of the same potential over a graded commutative unital
C-algebra and f,g : M — M’ are morphisms of matrix factorizations, we write f = g if
there exists ¢ € C\ {0} such that f ~c-g.

Let T'1, T’y be two MOY graphs with a one-to-one correspondence F' between their
end points such that

e every exit corresponds to an exit, and every entrance corresponds to an entrance,
e edges adjacent to corresponding end points have the same color.

Mark I'1, I's so that every pair of corresponding end points are assigned the same alpha-
bet. Assume Xi,...,X,, are the alphabets assigned to the end points of I'y and I's.

DEFINITION 8.2. We let

Homp(C(T'1),C(T2)) := Homgymx,|...;x,)(C(T'1), C(T2)),

which is a Zs-graded chain complex, where the Zs-grading is induced by the Zs-gradings
of C(I'y), C(I'2). The quantum gradings of C'(I'1), C(I'2) induce a quantum pregrading
on Homp(C(T'y),C(T2)).

Denote by Hommyr, 7(C(I'1), C(I'2)) the homology of the chain complex Homp(C(I'y),
C(T2)), that is, the Sym(X;|---|X,)-module of homotopy classes of morphisms from
C(T'1) to C(I'y). It inherits the Zs-grading from Homp(C(T'1), C(I'2)). The quantum pre-
grading of Homg(C(I'1), C(I'2)) induces a quantum grading on Homyr, 7 (C(T'1), C(T'2)).
(See Lemmas and [69)

We drop F from the above notations if it is clear from the context.

LEMMA 8.3. Homuwmr,r(C(T'1),C(T'2)) does not depend on the choice of markings.
Proof. This follows easily from Proposition and Corollary B.25 =
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8.2. Bouquet move. First we recall the homotopy equivalence induced by the bouquet
moves in Figure From Corollary 6111 we know bouquet moves induce homotopy
equivalence. In this subsection, we show that, up to homotopy and scaling, a bouquet
move induces a unique homotopy equivalence.

INE , — I \y
Jj+k i+ g

=
>

<.
B

vtk ititk
i j k i j k
Ty v —  Th X
itk i+3J
ititk itk
Fig. 15

LEMMA 8.4. Suppose that T'y, T, T's and T are the MOY graphs shown in Figure [[5l
Then, as Zo ® Z-graded vector spaces over C,

Homwr (C(T'1), C(T)) = Hompwr (C(T2), C (')
N i+i+k i—i—]} V(N i i )i i Kot K
cmel _ (ij+k)(N—i—j—k)+ijt+ik+ki L
( ){L+J+kH k H il
In particular, the subspaces of the above spaces of homogeneous elements of quantum
degree O are 1-dimensional.

12

Proof. We compute Homypyr (C(T'1), C(T)). The computation of Hompyr (C(T'2), C(T%))
is similar. By Corollaries and 316 one can see that

Hompyr (C(T'1), O(T)) = Hompmr (C(T), C(T))
=~ H(D) i+ 7+ k>{q(i+j+k)(N—i—j—k)+ij+jk+m},

itk

r
Fig. 16

where I' is the MOY graph in Figure Using decomposition (II) (Theorem [E.12) and
Corollary [Tl we find that

H(T) = C0){i+ +k>{ [i+]]Y+ k] [Hﬁk] [Zﬂ }

The lemma follows from these isomorphisms. m
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REMARK 8.5. From Corollary [6.11] and Lemma [R4] one can see that, up to homotopy
and scaling, a bouquet move induces a unique homotopy equivalence. In the rest of this
paper, we usually denote such a homotopy equivalence by h.

8.3. Circle creation and annihilation

LEMMA 8.6. Let Oy be a circle colored by m. Then, as Zo @ Z-graded vector spaces
over C,

Homnye(C(On): C0) = Homae(©(0). C(On) = CO{ [V b,

m

where C(00) is the matriz factorization C — 0 — C. In particular, the subspaces of
Hompmr(C(0), C(Om)) and Hompmp(C(Om),C (D)) of elements of quantum degree
—m(N —m) are 1-dimensional.

Proof. The natural isomorphism Homg(C(0), C(Om)) = C(Om) is an isomorphism of
matrix factorizations preserving the Zs @ Z-grading. So, by Corollary [Z.1]

Homis(C(0).C(On)) = H(Om) = cO){ || L)

Using Corollary [[T] again, we get
N
(m), C(0)) = W)y | | ((m). =
Lemma B8] leads to the following definitions, which generalize the corresponding ones
in [19].

DEeFINITION 8.7. Let O, be a circle colored by m. Associate to the circle creation a
homogeneous morphism

N
m

Il

Hommnr (C(Onm), C(0)) = Homtc(C(@){ [

:00)(=C) = C(Om)

of quantum degree —m(N — m) not homotopic to 0.
Associate to the circle annihilation a homogeneous morphism

€:C(Om) = C0)(=2C)
of quantum degree —m(N — m) not homotopic to 0.
By Lemma[R.0] ¢ and € are unique up to homotopy and scaling. Both have Zy-degree m.
Using the natural isomorphism Home(C(0), C(Om)) = C(Om ), one can see that
(1) = &, (8.3.1)

where & is the generating class of H(Om).

Mark Oy, by a single alphabet X. By Lemma[Z.5] the element 1¢; 1) of C(Om) is a
cycle representing (a non-zero scalar multiple of) the generating class & € H(O,). From
the proof of Proposition [[23], we know that there is a Sym(X)-linear quasi-isomorphism

P : C(Om) = Sym(X)/(hx (X), hx-1(X), ..., Anvs1-m (X)) {7V }m)
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satisfying P(1(1,...,1)) = 1. By Corollary and Remark B.26] P induces a quasi-
isomorphism

Home (Sym(X)/(hn (X), An-1(X), ., hn1-m (X)) {g V=™ }(m), C)

2 Home(C(Om), C(0)).
Recall that, by Theorem B there is a C-linear trace map
Tr: Sym(X)/(An+1-m(X), Anto—m(X), ..., An(X)) = C
satisfying
1 N+ pmpr—j=N-—mVj=1,...,m,
0 otherwise,

Tr(S5(X) - S.(X)) = {

where A\, € Apyvem = {(M1 > - > ) | M1 < N —m} and S\(X) is the Schur
polynomial in X associated to the partition A. Note that P*(Tr) = TroP : C(Oy) — C(0)
is homogeneous of Zs-grading m and quantum grading —m(N — m), and

PHTr)(SA(X) - Su(X) - Lar,.1))
= Tr(Sx(X) - Su(X) - P(1,....1))) = Tr(SA(X) - Su(X) - 1)
_{1 i N+ pmi1—j=N-—mVj=1,...,m, (8.3.2)

0 otherwise.

This implies that P¥(Tr) induces a non-zero homomorphism on the homology. So P*(Tr)
is homotopically non-trivial. Therefore,

e~ P¥Tr) =TroP. (8.3.3)
COROLLARY 8.8. Denote by m(Sx(X)) the morphism C(Om) = C(Om) induced by mul-
tiplication by Sx(X). Then, for any A, it € Ay N—m,

id if N\ m =N — V‘:l’”.’ 7
€Om(SA(X))0m(SH(X))oL%{1 c@ A g1 m Vj m

0 otherwise.

Proof. This follows easily from [831)-E33). »

8.4. Edge splitting and merging. Let I'g and I'; be the MOY graphs in Figure [I7
We call the change I'g ~ I'y an edge splitting and the change I'y ~ 'y an edge merging.
In this subsection, we define the morphisms ¢ and ¢ associated to edge splitting and
merging.

X X4mtn
m + n
AUB — IS 5
Y ¢ yrmrn
T r,

Fig. 17
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LEMMA 8.9. Let T'g and T'y be the MOY graphs in Figure [T Then, as Zs ® Z-graded
vector spaces over C,

Hompnr (C(Tg), C(T'1)) = Hompyr (C(F1), C(Lo))
<aofrmmn], 2 ][}

m-+n m

In particular, the lowest quantum gradings of the above spaces are —mn, and the subspaces
of these spaces of homogeneous elements of quantum grading —mn are 1-dimensional.

Proof. By Theorem E12, C(I'1) ~ C(Io){[™!"]}. So
Hom(C(Ty), C(T1)) ~ Hom(C(Ty), C(FO)){ {m;: "} } ~ Hom(C/(T';), C(Ty)).

Denote by Opman the circle colored by m + n. Then, from the proof of Lemma [[.6 we
have

Hom(C(T'), C(T)) = C(Oman) {g ™7™} (4 )
~ C(@){Q(N—Tn—n)(nri-n) |: N :| } -

m-+n

DEFINITION 8.10. Let I'g and I'; be the MOY graphs in Figure[I7l Associate to the edge
splitting a homogeneous morphism

(25 : C(Fo) — C(Fl)

of quantum degree —mn not homotopic to 0.
Associate to the edge merging a homogeneous morphism

5 : C(Fl) — C(Fo)

of quantum degree —mn not homotopic to 0.
By Lemma B3 the morphisms ¢ and ¢ are well defined up to scaling and homotopy,
and both of them have Zy-grading 0.

It is not hard to find explicit forms of these morphisms. In fact, ¢ is the composition
o) & cwata ™y = e |7 70| 5 e
and ¢ is the composition
cwn = owa{[" ]} - oy o),

where < and — are the natural inclusion and projection maps.
More precisely, from the proof of Theorem [6.12] we know that

C(I'1) = C(To) ®sym(aus) (Sym(A[B)){g~™"}.
The natural inclusion map Sym(A UB) < Sym(A|B), which is Sym(A U B)-linear and
has grading 0, induces a homogeneous morphism

C(To) % C(T) (= C(To) @symavs) (Sym(A[B)){g~™"})
of Zy-degree 0 and quantum degree —mn given by ¢'(r) =r ® 1.
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From Theorem [5.3] there is a unique Sym(A U B)-linear homogeneous projection ( :
Sym(A|B) — Sym(A UB) of degree —2mmn, called the Sylvester operator, satisfying, for
)\,/.L € Am,n = {(/\1 >z )\m) | AL < n},

C(53(4) - 5,(-B) = {
The Sylvester operator ¢ induces a homogeneous morphism

(C(To) @sym(ave) (Sym(AB) {g~™"} ~) C(T1) > C(Tp)

of Zo-degree 0 and quantum degree —mn given by

1 if Aj+ pmg1—j =nforj=1,...,m,
0 otherwise,

— ' _ o XN gy =nfor j=1,...,m,
¢ (r @ (SA(A) - Su(-B))) = {O otherwise,
where A\, p € Ay, .
Clearly, ¢/(Sh,...(A) - ¢'(r)) = r for all 7 € C(I'y). So ¢' and ¢’ are not homotopic
to 0. Thus, ¢ ~ ¢’ and ¢ ~ ¢'. In particular, we have the following lemma.

LEMMA 8.11. Let Ty and 'y be the MOY graphs in Figure[Tl Then

— . . - ldc(ro) Zf A] + Hm+1—5 =N fOT j = 17 e,y

¢ om(S\(A) - Su(=B)) o d ~ {O otherwise,
where A\, € Ay and m(Sx(A) - S, (—B)) is the morphism induced by the multiplication
of Sx(A) - S, (—B).

8.5. Adjoint Koszul matrix factorizations. Let Iy and I';y be the MOY graphs
0
in Figure Khovanov and Rozansky [I9] defined morphisms C(Tg) 2= C(I';) and

c() X—1> C(T), which play an important role in the construction of their link homology.
We generalize these x-morphisms in two subsections. In this subsection, we introduce the
concept of adjoint Koszul matrix factorizations and, for each pair of adjoint Koszul matrix
factorizations, construct a pair of morphisms between them satisfying certain algebraic
properties. The main result here is Proposition 813l In the next subsection, we will show
that the matrix factorizations of the MOY graphs in Figure [[9] are homotopic to a pair
of adjoint Koszul matrix factorizations. The general y-morphisms will then be defined by
applying Proposition [BI3] to this pair of adjoint Koszul matrix factorizations.

1 1

Iy Ty
Fig. 18
DEFINITION 8.12. Let R be a graded commutative unital C-algebra. Suppose, for i,j =

1,...,n, that a;, b; and t;; are homogeneous elements of R satisfying dega; + degb; +
degTM =2N + 2. Let
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a b1 Ty Tz ... T
A— a9 , B— bo 7 T — Tor Toy ... Toy
Qg bn Tnl Tn2 B Tnn

Then M := (A, T'B)g and M’ := (T A, B)r are both graded Koszul matrix factorizations
over R with potential w = szzl a;b;T;;. Here, T is the transposition of T'. We call M
and M’ adjoint Koszul matriz factorizations and T the relation matriz.

PROPOSITION 8.13. Let M and M’ be as in Definition 812 Then there exist morphisms

F:M— M and G: M' — M satisfying:
(i) degy, F' = degy, G =0, deg FF =0 and

deg G = degdet(T) =2n(N +1) — » (degay + degby),

NE

>
Il

1
(ii) Go F =det(T) -idpr and F o G = det(T) - idpys.

As a special case of Proposition BI3] we have the following corollary, which was
established in [20] Subsection 2.1].

COROLLARY 8.14 ([20]). Let a,b,t be homogeneous elements of R with dega + degb +
degt = 2N + 2. Then there exist homogeneous morphisms

f : (avtb)R — (tav b)Rv g: (taa b)R — (aatb)Ra
such that

(i) degy, f =degy, g =0, degf =0 and degg = degt.
(ii) go f=1t-idgwp), and fog=1-iduap)y,-

From [I9] Section 2], we know that a Koszul matrix factorization can be interpreted
as the exterior algebra of a free module equipped with a differential map. A pair of
adjoint Koszul matrix factorizations are basically the same exterior algebra equipped
with two different differential maps. In this setup, the morphism F' in Proposition
is induced by the relation matrix 7" in an obvious fashion. We can also define a Hodge
*-operator on this exterior algebra. Then, except some sign changes, the morphism G in
Proposition B3] is just *T.

Next, we recall the construction in [I9, Section 2] and use it to prove Proposition B3l

Let

R'=R&---®R, and e = (0,...,0,\1/_/,0,...,0)?
n-fold ith
Then {e1,...,e,} is an R-basis for R". Define T': R™ — R™ by T'(e;) = > i, Tije;. Let
(R™)* be the dual of R™ over R, {e7,..., e} the basis of (R™)* dual to {ey,...,e,}, and
T*: (R")* — (R™)* the dual map of T'. Then T*(e}) = 2?21 Tije;.
Set

n n
o= Zaiei =(e1,...,en)AER”, = Zbie;‘ = (e},...,e;)B € (R™)".
i=1 i=1

Then Ta = (e1,...,e,)TA and T*B = (ef,...,e:)T'B.
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From [I9, Section 2], we know that M = (A,T"B)g is the matrix factorization

/\ R" Aa+-T*f3 /\ R" Na+-T*3 /\ Rn,
even odd even
in which, for any i1 < -+ < ik}c €, N\ -+ Ae;, is homogeneous with Zs-grading k and
quantum grading k(N +1) — >, dega;,.
Similarly, M’ = (T'A, B)r is the matrix factorization
/\ R" ATa+—-08 /\ R® AT a+—-8 /\ Rn,
even odd even
in which, for any iy < --- < i, €;, A--- Ae;, is homogeneous with Zs-grading £ and
quantum grading —k(N + 1) + Zle deg b;, .
Note that T induces an R-algebra endomorphism 7' : A R™ — A R"™ by

T(eil /\/\e,“c) = Teil /\"'/\Teik~

Define an R-module map D : R"@®(R™)* — R"@®(R™)* by D(e;) = ef and D(ef) = e;.
Then D? = id. We define T? : R* — R" by T* = DoT*oD. Then the matrix of T under
the basis {ei,...,e,} is the transposition of T Furthermore, T induces an R-algebra
endomorphism 7% : A R™ — A\ R" by

T ey N Neg) i=Teyy N--- NTe;, .
Next we introduce the Hodge *-operator. Namely, x : A R” — A R"™ is an R-module
map defined so that, for any 41 < -+ < i, x(e;;, A---ANe;,) =€ A---Aej, ., where
(€iry---r€ips €1y -s€5, ») 1S an even permutation of (e, ..., en).

To simplify the exposition, we use the following notations in the rest of this subsection:

n ::{I:(il,...,ik)|1§i1<-~<ik§n}.

For any I = (i1,...,i) € Iy, I is the unique element I = (j1,...,5n_%) € Z,_j such
thafg{il,...,ik,jl,...,jn,k}:{1,...,”}.

(I, 1) is the parity of the permutation (i1, ...k, j1,.--,jn—&) of (1,...,n).

e ¢/ :=¢;, A+~ Aej,. Note that xey = (—1)Des.
e For I = (i1,...,ix), L= (l1,...,lx) € Iy, we denote by T the matrix
Tiiy Thyiy - Tl
T, = Tgiv  Tiziz -+ Ty,
Tiiv  Tiis oo Ty

LEmMMA 8.15. For any I = (i1,...,ix) € Zg,
* T T (er) = T+T* * (1) = (=1)*"=F) det(T) - e;.

Proof. We first prove
*TT(er) = (=18 det(T) - e;. (8.5.1)
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Note that

T(er) =Teiyy N---NTe;, = (Z ijeh) (Z Tj“kejk) = Z det(Tyr) - ey,

=1 Jr=1 JELy,
xey = (1) e,
fley) = Zdet(T er = Zdet
LeT,, LeZy
wep = (—1)EDep .

Also, if we write J = (j1,...,jk) and L = (l1,...,l)), then

k k
(5 D)= Y G m) = 3 g — 2D,

m=1 m=1

“ k
(L,L) = Z(n—ker—lm):k(n—k)er— le

Using the above equations and the Laplace Formula7 we get

*T'T (e1) = (k) NN (1) B I =X e det(Ty ) - det(Ty) - e
LeTy JETIy,

= (=1)F=R) det(T) - e;
Thus, (85]) is true. In particular, if 7' = id, then T* = id and (®85.1]) implies that
so(eg) = (=1)FTR e (8.5.2)
Replacing T by T* in (B50), we get
*THT (e1) = (=1)*=F) det(T?) - e = (—1)*=F) det(T) - e;. (8.5.3)
Note that 5I)-®53) are true for all k and all I € 7. So we have
TxT(e1) = (—1)* "Rk TuTtx(er) = (=1)F R (xT*Tt (xe1))
= (—=1)F=R) L (—1)R TR det(T) - dokep = (—1)MF) det(T) - e;. m
LEMMA 8.16.
To(Aa)= (ATa)oT, (8.5.4)
To(-T*B)=(—8)oT.
Proof. For any I = (i1,...,i) € Ty,

To(Aa)(ejy Ao Ney)=T(ei, No--Neg, Na) =T (e, A+ Nejy ) NTa
= (ATa)oT (e N+ Neg,).

So (BLF) is true.
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Similarly,
k
To(=T*B)(ei A--Nei) =T(D (=) 'B(Tei,,) - e, A Aey)

—

k
= > (=)™ 'B(Te;,) - T(ei) A+ Tlei,) - AT(ei,)

= (0T (ei) N--- AT (ei)) = (2B) o Tleiy A--- Aeiy).
So (BL0) is true. m

LEMMA 8.17.

%0 (=B) = (~1)""H(ADB) o %.

Proof. For any I = (iy,...,i) € Iy, let T = (j1,...,jn_k). Then
n—k

o(Aa)(eiy, N+ Negy ) =*(e;, Ao+ Nej, Aa) :*(Z aj, €, N Nei, /\ejm)
m=1
= Zaam' (€iy Ao-Nei, Nej,)
—Z%m DEDEmL g AT N,

= (—|Da) ox(e;, N-+-Neip).

So (BL.Q) is true.

Similarly,

—

(—1)m71b ‘€4 /\---eim---/\eik)

I

*
/N
]~

o (=B)(eiy A=+ Aeiy)

Tm

1

—

(_1)m_1blm . *(eil N ei»m, e A eik)

I
- .

m=1

(1) 1y, - (1) IDFTm e ney

I
HM?T

m—
(~1)"x(er) A DS = (—1)" L(ADB) o #(es, A+ A es,).
So BL) is true. m
LEMMA 8.18.
DoT!oD =T (8.5.8)
DoT(a) = (TH)* o D(a). (8.5.9)
Proof. Recall that T? is defined by T® = D o T* o D and that D? = id. Formula (85.3)

follows immediately. Replace T by T in (B5.8) to get Do T oD = (T*)*. Plugging D(«)
into this equation leads to (85.9). m
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LEMMA 8.19.
(*T'%) o (ATa) = (—1)" "1 (Aa) o (xT"), (8.5.10)
(*T') o (=) = (=1)""1(=T*B) o (xT"*). (8.5.11)

Proof. Note that Lemmas through are true for any o € R", 5 € (R™)* and
T € Homp(R™, R"). So

(+T'%) o (ATa) = (+T*) o (~DTa) o % by (53
= (xI") o (=(T*)"Da)ox by B5I)
=*o(-Da) o (T'*) by B.5.3)
= (=1)""Y(AD*a) o (+T"x) by BLT)
= (=1)""Y(Aa) o (xT**) since D? = id.
This proves (85.10).
Similarly, we have
(xT'x) 0 (=B) = (=1)""1(+T") o (ANDPB) o % by B.5.17)
= ()" % o(AT*DB) o (T*) by BLI)
= ()" (-DI'DB)o (xT'x) by EBLE)
= (=1)"H(=TB) o (¥T"x) by B.2.8).

This proves (B5.11). =

Proof of Proposition 813 Define F : M — M’ by F =T : AR — AR". Also,
define G : M' — M by G(er) = (=1)*"=F)sTtx(er) for I = (iy,...,i,) € Tp. Then
Lemmas and imply that F' and G are morphisms of matrix factorizations.
Lemma [BT5] implies that G o F = det(T') - idys and F o G = det(T) - idpyr. It is easy to
see that degy, I’ = degy, G = 0. It remains to show that F' and G' are homogeneous with
the correct quantum gradings.

For I = (i1,...,1i) € Iy, let

k k k
I) = Z:lzm Sa(I) = Z:ldegaim, Sy(I) = Z_:ldegbz‘m-

Recall that e; is a homogeneous element of both M and M’. The quantum grading of
er as an element of M is deg,; ey = k(N + 1) — S,(I). And its quantum grading as an
element of M’ is deg,, e = Sp(I) — k(N + 1). It is easy to check that, for I,J € Ty,
deg Tys is homogeneous with deg Tj; = 2k(N + 1) — S, (I) — Sp(J). So
deg det(TJ])eJ =2k(N +1)—S,(I) — Sp(J) + Sp(J) — k(N + 1)
=k(N +1) = S,(I) = degy,er.

But
F(er) Z det(Tyr)e

JETI;,

This shows that F' is homogeneous with quantum degree 0.
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Similarly,
Gler) = (1) xTtx(er) = Y (~1)" DD det(Tp)es
JETLy
= > (-1)5DFS) det (T 5)e .

JETLy
Note that each term det(777)es is homogeneous in M with quantum degree
deg,, det(Trj)es = 2(n — k)(N 4+ 1) — So(J) — Sp(I) + k(N + 1) — Su(J)

=02n—k)(N+1)—S.(1,...,n) — (Sp(1,...,n) — Sp(1))
=(2n(N+1) = Su(1,...,n) = Sp(1,...,n)) + (Sp(I) — k(N 4+ 1))
= degdet(T) + deg,, e;.

This shows that G is homogeneous with quantum degree degdet(T"). m

REMARK 8.20. First, note that Lemma [314] and Corollary are both special cases

of Proposition BT3l Second, recall that Rasmussen [37] explained that the Zs-grading of

a Koszul matrix factorization can be lifted to a Z-grading. F' and G in Proposition [8.13
preserve this Z-grading.

8.6. General y-morphisms. The following proposition is the main result of this sub-
section.

PROPOSITION 8.21. Let I'g and T'y be the MOY graphs in Figure I, where 1 < 1 <
n < m+mn < N. Then there exist homogeneous morphisms x° : C(I'g) — C(I'1) and
x!t:C(Ty) — C(Ty) such that

(i) both x° and x' have Zy-degree 0 and quantum degree mi;
(ii) we have

W ox’ = (3 (DS (X)S(B)) idery),
)\EAl,NL

XO ox! >~ ( Z (—1)|)“S)\/(X)S/\C(B)) “ide(ry),
AEAm
where App = {pp = (1 > -+ > ) | o < m}, N € Ay, is the conjugate of A,
and A° is the complement of X in Ay, that is, if A= (A1 > -+ > N) € Ay, then
AX=(m—X\>->m—\).

Iy

Fig. 19
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Before proving Proposition 821, we first simplify C(T'g) and C(T'1) to show that they
are homotopic to a pair of adjoint Koszul matrix factorizations.

Let R = Sym(X|Y|A|B). Denote by X; the ith elementary symmetric polynomial in
X and so on. Recall that
* Xi1+Dy— A4

* Z?;Ol kaiDi - Ak
o * Xmanl - Aernfl —m(n—1)
C(FO) - * Yl o D1 o B1 {q }
x  Y,— Z;:Ol By_;D;
« Y, — BiD,_,

Sym(X|Y|A|B|D)
We exclude D from the base ring by applying Proposition to the rows
* Yl - D1 - Bl

n—I
* Ynfl - Z'L:O anlfiDi

This gives us

* X1 + D1 — A1
* SiTg XDy — Ay
* Xmanl - Aernfl _ _
C(Ty) ~ - m(n=01 8.6.1
(To) b Yaoin = S Buoii D, {a } (8.6.1)
* Yook — Z?:_ol By iyk—iD;
* Yn - Ban—l R
where i
Y (=1)hiB)Ye; ifk=0,1,...,n—1,
Dk _ 21:0( ) ( ) k 1 n (862)
0 otherwise.
Since the above sum will appear repeatedly in this subsection, we set
k ; .
- (=1D)"h;(B)Yy_; if k>0,
7y = § im0 BV (8.6.3)
0 if £ <O0.

Now consider Y;, ;4 — Z?:ol Bpn_iir_iD;. For k = 1, using equation (5L, we get

n—l1 n—l1 i

Yoorp1 =Y Bonoiy1-iDi =Yu i1 =Y Buyii »_(=1)"7hi i (B)Y;
=0 =0 =0
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n—1

= In—i+1 — ZY Z ’L jhz j( )Bn—l—i-l—z'
i=j
— n—l—j

=Y 141 — E Y; 5 By _ip1-j—i
=0 =0

n—l1

=Yooip1 + Y (1" I - (B) = T
j=0
If £ > 1, then
n—l1 n—l1 )
Yotk = Y BntykiDi = Yoty = > Buipki »_(—1)" 7 hi;(B)Y;
i=0 i=0 j=0
n—I
= In—Ii+k — ZY Z 7’ th ]( )Bn—l-i-k—i
i=j
— n—Il—j
- nl+k_ZY Z ’L nl+k]z
— n—Il—j+k
= n—l+k+ZYj > (—1'hi(B) By ik
j=0 i—n—l—j—i—l

n—I
=Y, l+k+ZY Z ) i (B)B;

=Yn—14x + Z B; Z V(=) R i (B)

n—Il+k—i

=Y, l+k+ZB( n—l+k—i — Z Yj(—1)n7l+k7j7ihn—l+k—j—i(B))
j=n—Il+1
k=1 n—ltk—i

=Y 4n+ Z Bilp ipk—i— Y _ Bi Y V(=" i i(B).

i=0  j=n—I+1
But, by (ELT),

k—1 nl+k1

Z V(=) g i(B)

1 k—1—1

B; Z Yignot41(=1)F 97 0y i(B)
7=0

Il
Wﬁ» =
LI

k—1—3

Yitn—i41 Z Y 1 i(B)Bi = Yign—i.
0

J
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So
n—1 k—1 k—1
Yo 1k — E Br_iyk—i Dy =Yy + E BiTh—i4k—i — Yign—1 = E BTy 14k
i=0 1=0 =0

and, therefore,

n—I k—1
Yo 14k — § By iyk—iDi — E BiTh 14k = Tn—i4k-
=0 =1

Thus, we can apply Corollary BI9 successively to the right hand side of (B6.1]) to get
* X1 + D1 - Al

* Z?:_ol Xi—iDj — Ay,
C(Ty)~| o —m(n=0) 8.6.4
T el (8.6.0)
* Tho1+1
* T, R

LEMMA 8.22. If k > n, then Ty = — 3, BT

Proof. For k > n,
k n

Ty = Z(—l)ihi(B)Yk—i = Z(—l)k_ihk—i(B)Yi
i=0 i=0

n l

==Y (-D)*Y; Y (1Y Bjhx—i;(B)  (by GII); note that k > n)
Jj=1

i=0 j=

l n l
==Y By (- iy j(B) = =) BiTi;.
j=1 i=0 Jj=1

LEMMA 8.23. For any k > 0, define Wy, = Zf:o T;X._i. Then

* W1 - A1
* Wk - Ak
CTy)~ | " —mn=hy, 8.6.5

Co= |y ) (5.65)
* TnflJrl
* T, R

Proof. Consider Z::Ol Xi—iD;y — A. If k <n —1, then, by (86.2) and (BE3),

n—l k

ZXk—iDi —Ap = ZXk—iTi — A =Wy — Ay

i=0 i=0

So the row (+, Y7~} X} _;D; — Ag) in BB is already (x, Wy, — Ay).



86 8. Morphisms induced by local changes of MOY graphs

If & > n — 1, then, by (86.2) and RE3),

n—I n—I k
ZXk—iDi - A = ZXk—iTi —Ap =W, — Ay, — Z Xi—iT;.
1=0 =0 i=n—I+1

By Lemma 822 if ¢ > n — [ + 1, then T; can be expressed as a combination of T},_;11,
., T,. So we can apply Corollary BI9to the row (x, Z:”:_Ol Xy—iD;— Ay) and the bottom
[ rows in (B6.4) to change the former into (x, W) — Ax). m

Now consider I'y in Figure [I9 Recall that

* X1 +Y - A -
CTy)~| = YF XV 1_21 oAiBi_; | {a7™}. (8.6.6)
* X an Am+n lBl R
LEMMA 8.24.
* W1 — A1
* Wk - Ak
Cly) ~ | Tmny 8.6.7
o= e e (5.7
* Wm+n—l+1
* Wm+n R
where, as in Lemma 823, W), = Zf:o T X
Proof. We have
k k k _
S (=1 iy ZXY =3 X S ) (B)Y
=0 i=0  j=i
k k—i ' k
= XD (Db B)Y; =Y XiTei = Wh
=0 7=0 =0
and, by (E)]:I])
Z( V=T g ( ZABJ z_ZA Z VI hy_;(B)B;_;
j=0

= Z A Z(—l)k_i_jhk—i—j (B)B; = Ay.
i=0  j=0

Thus,
k

S 1)k (ZXY zj:AiBj_i)
=0

j=1
k J J
= Z(—l)k_jhk—j (B)(Z XiYj i — ZAiBj—i) = Wi — Ay.
i=0 i=0

Jj=0
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This implies that we can get ([86.7) by successively applying Corollary BI9 to the right

hand side of (86.0G]). m

By the definition of Wy in Lemma R23] we know that

Wm-‘,—n Tm+n
Wm-{-n—l -0 Tm+n—1
WernflJrl Tn*lJrl
where
Q= (Xj-i)ix(m+1) (8.6.8)

that is, € is the [ x (m+ 1) matrix whose (4, j)th entry is X;_;. By Lemma [822] we have,
for k > 1,

Tn+k Tn+k—1
Tn+k—1 _ Gk Tn-{—k—Z ’
Tn—l+1 Tn—l—i—l
where Oy is the (k+1) x (k41— 1) matrix whose first row is (—=By,—Ba,...,—By,0,...,0)

and whose next k + [ — 1 rows form the (k+1—1) x (k+1— 1) identity matrix Idg4;—1.
Define

O = 0,,0m 10,0, (8.6.9)
Then
Winan T,
Wotnt | _gg | Tt |
Wingn—i+1 To—i41

where Q0 is clearly an [ x [ matrix. So

W1 — A1 Wl - Al
Wm+n—l - Am+n—l Idm-{-n—l 0 Wm+n—l - Am+n—l

= 6.1
Wm+n 0 06 Tn (8 6 0)
Wintn—i+1 Th—1+1

LEMMA 8.25. C(To){¢g™" =V} and C(T'1){q™"} are homotopic to a pair of adjoint Koszul
matriz factorizations with the relation matriz
t

Idm-{-n—l 0 _ Idm-{-n—l 0
0 Q6 0 etat ) -
Proof. This follows from (8G.10), Lemmas R23] and Remark m

The morphisms x° and ! in Proposition B21] are constructed by applying Proposi-
tion 813 to the pair of adjoint matrix factorizations in Lemma B25 To prove that x°
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and y' satisfy all the requirements in Proposition B21] all we need to do is to compute
t

Idm+n—l 0 o
det ( 0 Q@) = det(Q0).

For this purpose, we introduce some properties of Schur polynomials associated to hook
partitions.
For i,j > 0,1et L;; = (i+1 > 1>--->1), the (¢,j)-hook partition. Note that
—_———

J 1s

Lij = Lj;. So, by (6.2.2) and G.2.3),

hiy1(B)  hiv2(B)  hivs(B) hiv;(B)  hivj1(B)
1 hi(B)  ha(B) .-+ hj_1(B) hy(B)
0 1 hy(B) hj—o(B) hj_1(B)
S; (B) = J J 8.6.11
L., (B) 0 0 1 hj—3(B) hj_o(B) ( )
0 0 0 S ha(B)
and
Bjt1 Bjt2 Bjys -+ Bjyi Bjyita
1 Bl BQ R B'L—l Bi
10 1 By -+ Bi 3 Bi
Scu® =g o 1 e e | (8.6.12)
0 0 0 N | B,

Using (B6.11) and (B6.12), we can extend the definition of S, ;(B) to allow one of i, j
to be negative. This gives:

(i) if 7 > 0, then

Sp,,;(B) as in 8G.IT) ifi >0,

Sr.;(B) = (1) if i =—j—1,

0 ifi<Oandi#—j—1;
(ii) if ¢ > 0, then
Sr.,;(B) as in 86I2) ifj >0,

Sp,,;(B) =14 (1) ifj=—-i—-1,

0 if j<Oandj#—i—1.

LEMMA 8.26. Define 7;; = (—1)""'SL, ,(B). Then, fori,j >0,

i
Biyjy1=— Z BrTi—k,js (8.6.13)
k=0

(1) by (B) =Y (—1)Fh(B)7i - (8.6.14)
k=0
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Proof. We prove ([86.13) first. Note that, for any i > 0,

oo

hip1(B) =Y (=)' Byhiyr 1 (B),
k=1

where the right hand side is in fact a finite sum. Applying this equation to every entry
in the first row of [B6.11]), we get

o0

S, (B) =Y (-1)"'BySL, ., ,(B)
k=1

= Z(—l)kHBkSLi,k,j (B) + (—=1)'Biyj11 by (i) above.

Equation (86.13) follows from this and the definition of 7; ;.
Now we prove ([86.14). For any j > 0,

oo

Bjy1 =Y (=)' hi(B)Bj 11+,
k=1

where the right hand side is again a finite sum. Applying this equation to every entry in
the first row of (BG.I2), we get

SLi,j (B) = i(_l)]ﬁ_lhk(B)SLi,jfk (B)
k=1

= Z D hy (B B)Sr,, . (B) + (=1)hiyj41(B) by (ii) above.

Equation (8614 follows from this and the definition of 7; ;. m
LEMMA 8.27. Let © be the matriz defined in [86.9). Then

Tm—-1,0 Tm—-1,1 -~ °° Tm—1,1—1
Tm—-2,0 Tm-2,1 *°° Tm—2,1—1
70,0 70,1 S T0l-1
O = (Tm—ij—1)(1+m)xl = 1 0 0
1 e 0
0 0 o1
Proof. Note that 79 ;1 = —B;. Recall that
-By —-By --- —-D 70,0 To ot To4—1
1 0 <o 0 1 0 - 0
O;=1] 0 1 e 0 =10 1 e 0
0 0 1 0 0 1

and

T
@’“_<0 Idkl)'
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Using equation ([86.13) from Lemma [R28) it is easy to prove by induction that

Tk—1,0 Tk—1,1 - Tk—1,1-1
Th=2,0 Th—2,1 “°° Th=2,—1
70,0 70,1 S To—1
OrOk 101 = (Th—ij—1)+k)xl =
1 0 0
1 0
0 0 1

But ®© = 0,,0,,_1---01. So the lemma is the k = m case of the above equation. m

Define

Us 5 = (—1)j7ihj,i(B) for 1 < 1,7 <1,
v = (—1)j+m_ihj+m_i(133) forl<i:<l+mand1<j<I.
Let
1 —(B) - (~1)2hia(B) (—1) 'k (B)
0 1 (—1)l_3hl_3(B) (—1)l_2hl_2(]B%)
U = (uij)ixi = o
0 0 e 1 —h1(B)
0 0 1
and
V= (i) 4m)xi
(=)™ hm(B) (=)™ R (B) - (D)™ PR o (B) (=)™  hnga o (B)
—hi(B) ha(B) o (~1) Ry (B) (—1) o (B)
|1 —hi (B) co (~1)2hia(B) (1) hi1 (B)
1o 1 s (=D hs(B) (—1)""2h;_o(B)
0o 0o 1 b (B)
0 0 - 0 1

LEMMA 8.28. Let © be the matriz defined in [86.9). Then OU =V .
Proof. This follows from Lemma and equation (8G.14) of Lemma [R26 =
LEMMA 8.29. Let Q and © be the matrices defined in (BG8) and (8E9). Then

t

det (Idma—n—l 906> = det(20) = (_1)ml )\EZA: (_1)”\‘5)\’ (X)She (B).

Proof. Note that det U = 1. So, by Lemma B2 det(Q20) = det(Q0U) = det(2V). Let
T:={I=(ir,...,0)|1<ig<---<iy<l+m}.
For any I = (i1,...,4;) € Z, define

e ()5 to be the [ x [ minor matrix of €2 consisting of the iy, ..., 4;-th columns of €2,
e V7 to be the [ X [ minor matrix of V' consisting of the iy, ...,4;-th rows of V.
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Then, by the Binet—Cauchy Theorem,

det(20) = det(QV) = > det Q; - det V7. (8.6.15)
IeT

Recall that Aj ., = {p = (1 > -+ > ) | 1 < m}. Note that there is a one-to-one
correspondence j: Z — A, given by

D) =(iy—1>iy —1+1>->i—1)
for any I = (i1,...,4;) € Z. The inverse of 7 is given by
jil()\) = ()\l+17)\l—1 +2)7)\1+l)

forany A= (A > - > XN) € A .
For any I = (i1,...,4;) € Z,

Xii—1 Xiy—1 . R Xi -1
Xi 2 Xi,—2 o X2 Xi 2
detQ; =1 -
Xii—i41 Xig—i41 o Xy 41 Xy
Xilfl Xizfl A Xil_lfl Xi,*l
Xi1 Xim Xii 2 Xi1
Xiz—l*l Xiz—l*lJrl s Xiz—1*2 Xiz—lfl
... = S,y (X).
Xip1 Xippr 0 Xip oo X
X X o X X5

To shorten the equation, we let h; = h;(B) and h; = (—1)'h;(B). Then, for any I =
(ila"'vil) GI,

hmt1—iy  Bmyo—in oo hmgicioi Bmgi—s
Rmt1i—in  Bmyo—is oo Bmaici-i RBmai—i,
det V[ — .. . . e
hm+17il_1 hm+27i1_1 ... h’erl*lf’il_l hm+l7il_1
D14, N2, B (S S N4,
hvi—is hmgo—in oo hmgiciog hmgi—g
| Lyttt gy | e B s s
hmti—iy_y Pmto—iy o Pmti—1—i 1 Pmgi—i_,
P14, hmy2—i, B P N S hmti—i,
= (—1)mFIg, e (B).
) m gives
det(20) = (—1)™ Y “(=1)PDIS, 1), (X) S,y (B) = (=1)™ > (=) SN (X) S (B).
= AEAL

Proof of Proposition[8.Z1l. The result now follows easily from Proposition 813 and Lem-
mas 825 and 829 =
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PROPOSITION 8.30. Let I'g, I'y, X" and x! be as in Proposition B2I. Then x° and x!
are homotopically non-trivial. Moreover, up to homotopy and scaling, X° (resp. x') is

the unique homotopically non-trivial homogeneous morphism of quantum degree ml from

C(To) to C(T'1) (resp. from C(T'1) to C(Ty)).

Proof. Using Lemmas and [B:24], one can check that, as graded vector spaces,
Hompnmpr(C(T'1),C(Ty)) =2 H(T)(m + n>{q(m+n)(N_m_n)+mn+mz+nl_l2}7

Homymr (C(To), C(T1)) 2 H(T)(m + n) {g(mm (N =momtmntmbnl =1y,
where T' is the MOY graph in Figure 20, and T is I" with orientation reversed.

Fig. 20

By Corollary [611] we have H(T') = H(I"). Then, by decomposition (IT) (Theorem
[612) and Corollary [T we have
e a8 A
Similarly,
o2 L)

Thus, as graded vector spaces,
HomHMF (C(Fl), C(Fo)) = HOHIHMF(C(F()), C(Fl))
o~ C(@){ |:m +n— l:| |:m + n:| |: N :|q(m-i—n)(N—m—n)+mn+ml+nl—l2 }
m l m+4n

In particular, the lowest non-vanishing quantum grading of the above spaces is ml, and
the subspaces of these spaces of homogeneous elements of quantum degree ml are 1-
dimensional. So, to prove the proposition, we only need to show that yx° and x! are
homotopically non-trivial. To prove this, we use the diagram in Figure 211

m+n m+n m+n
m n m n
P1OP2 X Y x! X Y
_ > >
m+n
5 1 ®$2 X 0
m+4n—I1 l m+4n—I1 l
B B
m+n

Fig. 21
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Consider the morphisms in Figure 21l where ¢; and ¢; (resp. ¢z and ¢,) are induced
by the edge splitting and merging of the upper (resp. lower) bubble, and X" and x' are
the morphisms from Proposition R2Il Let us compute the composition

(¢1 ® dp) om(Sh,, . (=) - S, (—A)) o X" 0 X! 0 (¢1 ® ¢2),
where m(Sy,, ,(=Y) - Sy, ,(—A)) is the morphism induced by multiplication by
Sxmn (=Y) - Sy, ., (=A). By Proposition B2I we have

(619 85) om(Sh,, . (=Y) - S, (~4) 0 X0 X" 0 (61 ® )
(@1 ©82) om (S, (<Y) - Sa i (—4) - (D0 (“DPSN(X)Sxe(B) ) ) 0 (61 ® g2)

AEA; m
= > (DG om(Sy,,, () - Sx (X)) 0 61) © (dy 0 m(Sh,,_,(—A) - Sxc(B)) © b2).
AEA; m

But, by Lemma B11] for A € A;,,, we have

12

_ ey o Jid A= (02> 0),
¢1 om(Sy,,,, (=Y) - S (X)) ¢1~{0 AL (0> >0),
_ e e Jid A= (02 20),
¢2 m(S)\l,,n—l( A) S)\L(B)) ¢2N{0 lf)\#(OZZO)

So,
(61® @) om(Sh,, . (=Y) - Sy, (—A)) o x” o x" 0 (¢1 @ ) ~id,

which implies that x° and ! are not homotopic to 0. =

8.7. Adding and removing a loop. Using the xy-morphisms and the morphisms as-
sociated to circle creation and annihilation, one can construct morphisms associated to
adding and removing loops.

LEMMA 8.31. Let Iy and 'y be the MOY graphs in Figure 22. Then, as Zo & Z-graded
vector spaces over C,

Homunr (C(To), C(T'1)) = Homuyr (C(I'1), C(To))
<ol [

In particular, the subspaces of these spaces of homogeneous elements of quantum degree
—n(N —n) +mn are 1-dimensional.

X Xim
m 1/J m4+n
— ¥ B
-
P m
Ty Iy

Fig. 22
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Proof. By Theorem [G14] we have C(T'y) ~ C(T'g){ [N_m] Hn). So

n

Homanse (C(T1). €)= Homun (C). ) { [V ™| Lo

= HOII]HMF (C(Fl), C(Fo))
Denote by O, a circle colored by m. Then, from the proof of Lemma [[.G] we have

Hompne (C’(FO)7 C(Fo)) o~ H(Om){qnt(N—Tn)}<m> ) C(@){ |:N:| qm(N—WL)} -

m

DEFINITION 8.32. Let I'g and I'y be the MOY graphs in Figure 22l Associate to the loop
addition a homogeneous morphism

1/) : C(Fo) — C(Fl)

of quantum degree —n(N — n) + mn not homotopic to 0.
Associate to the loop removal a homogeneous morphism

1/) : C(Fl) — C(Fo)

of quantum degree —n(N — n) + mn not homotopic to 0.
By Lemma B3] ) and v are well defined up to homotopy and scaling. Both of them
have Zo-grading n.

m X4 . X4,
e #0) -
~— ~— Y[

B B
Ty Iy Iy
Fig. 23

The above definitions of 1) and 1 here are implicit. Next we give explicit constructions
of 1 and 1. Consider the diagram in Figure 23] where x°, x' are the morphisms given
by Proposition 821l ¢, ¢ are the morphisms induced by the apparent circle creation
and annihilation. Then x° o+ : C(I'g) — C(I'y) and eo x! : C(I'1) — C(Iy) are both
homogeneous morphisms of Zs-degree n and quantum degree —n(N — n) + mn.

PROPOSITION 8.33. We have ¢ =~ x° o1, 1 ~ € o x'. Moreover,

o 0 A idc(ro) Zf o= )\n,mefnv
Pom(S,(B)) o~ {0 if ul < (N —m —n), (8.7.1)
il o1 idc(po) Zf H = /\n,N—m—nv
Pom(S,(Y)) oy ~ {O if lul <n(N —m —n), (8.7.2)

where m(x) is the morphism given by multiplication by x, and |u| = E?:1 w; for p =
(1> > pn)-
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Proof. To prove ¥ ~ x° ot and ¥ ~ € o x', we only need to show that x° o ¢ and € o y!
are not homotopic to 0. We prove this by showing that

cox om(S,(B))ox’ o~ {Bdcwo) i TL | 2%\;5:_ " (8.7.3)
which also implies (877.1)).

Note that the lowest non-vanishing quantum grading of Homnr (C(Ig), C(Ip)) is 0
and, if |u| < n(N —m —n), then the quantum degree of € o x! o m(S,(B)) o x" o ¢ is
negative. This implies that e o x* o m(S,(B)) o x® ot ~ 0 if |u| < n(N —m — n). Now
consider the case pt = A\, N—m—n. By Proposition B21] ee have

B))ox’or=com(Sx, x__.(B))ox ox’ou
=eom(Sy, (B Y (—1)ASN(X)Sxe (B)) o

AEAL,m

= > (DMSN(X) - eom(Sx, oy (B) - Sxe(B)) o
AEAL,m

eox' om(Sy

n,N—m-n

where Ay = {0 = (1 > -+ > ) | w1 < m}, N € A, is the conjugate of A,
and A° is the complement of A in A, ,,,. That is, if A = (A > --- > \,,) € A, ,,, then
A= (m—MA, >--->m— \1). By Corollary B8] for A\ € A,, ,,, we have
iderg) HA=(0>-->0),
0 iftA£(0>-- ).
This completes the proof for (8Z3). Thus, we have proved ¢ =~ x° o1, ¥ ~ e o x! and
BLI).

It remains to prove (87.2). Note that, as endomorphisms of C'(I'1),

m(5,(Y)) ~ m(S5,(BUX)) = m(5,(B) + Fl.(B, X)),

where F),(B,X) € Sym(B|X) and its total degree in B is strictly less than 2|u|. Then, by
BZCT)), we see that, for any partition p with |u| < n(N —m —n),
Pom(S,(Y))ot) =~ Yom(S,(BUX))ot) = ¢pom(S,(B)+ F,(B, X))ot =~ pom(S,(B))oy.

So BT2) follows from (BTI). m

>0
€0 m(SAn,anLfn (]B) ! S)\C (B)) oL~ . Z 0

8.8. Saddle move. Next we define the morphism 7 induced by a saddle move. Unlike
the morphisms in the previous subsections, we will not give an explicit formula for 7.
Instead, we prove two composition lemmas for 1, which are all we need to know about n
in this paper.

LEMMA 8.34. Let Ty and 'y be the MOY graphs in Figure 24. Then, as Zo & Z-graded
vector spaces over C,

Homingr(C(Ta), ) = O] [ ]2 L),

m

In particular, the subspace of Hompyr(C(To), C(T'1)) of homogeneous elements of quan-
tum degree m(N — m) is 1-dimensional.
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X Y X Y
> < 0 \y
A B IR

Fo Pl
Fig. 24

Proof. Let O, be a circle colored by m with four marked points. By Corollary 316l one
can see that Hom(C(I'),C(T1)) = C(Om){g®™N~="™}. The lemma follows from this
and Corollary [T} =

DEFINITION 8.35. Let I'g and Ty be the MOY graphs in Figure Associate to the
saddle move I'g ~ I'1 a homogeneous morphism

n:C(Ty) — C(Ty)
of quantum degree m(N — m) that is not homotopic to 0. By Lemma B34l 7 is well
defined up to homotopy and scaling, and deg,, n = m.

8.9. The first composition formula. In this subsection, we prove that the compo-
sition in Figure gives, up to homotopy and scaling, the identity map of the matrix
factorization. Topologically, this means that a pair of canceling 0- and 1-handles induce
the identity morphism.

m
L O :
m [ mo -~ [ m
r

T Iy
Fig. 25

LEMMA 8.36. Let Ty and T'y be the MOY graphs in Figure 24l Denote by X; the jth
elementary symmetric polynomial in X and so on. Then under the identification

* Xl—Yl

* Xm =Y,
* Bl—Al

Hom(C(I'y), C(I'1)) = C(T'1) @sym(x|viam) C(To)e =

Sym(X|Y|A|B)
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we have
ot (Y ()EE T ey 1) 01y,
e=(e1,...em)El™ \2:
where I = {0,1} and p is of the form
p = Z f(61,52,53) ' 151 ® 162 Y 153-

e1,e2€I™, e3€I?™ e3#(1,1,...,1)
Proof. Write Ry = Sym(X|Y|A|B), and

R _ R/(Al_Xla"')Ak_Xk) 1f1§k§m7
TAUR/MAL - X1, .. Ap = X, Y1 = Bi, .o Yiem — Be_m) ifm+1<k<2m.

Define
* X1 -1
* Xm =Y.
* Bl — A1
Bm - Am
: iF0<k<m-—1,
A1 — X1 *
A, — X *
Y1 — Bl *
Y,, — B *
Ry
* X1 - Yl
My, = .. R
* XnL - Y;n
* Bl - A1
. - ifm<k<2om-—1,
* B,, — A,
kaerl - kaerl *
Y., — B, *
Ry,
* X1 — Y1
x X —Yn .
~ O(I) if k = 2m,
* Bl — A1
x By, — Amn
Ram
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where T' is a circle colored by m with two marked points shown in Figure Then
Hompmr (C(Ty), C(T'1)) can be computed by the following homotopy:

Hom(C(Ty),C(T1)) & My =~ -+ ~ M{q"* }{k) =~ - =~ Moy {q"*™}(2m)
~ C(F){qu(N—m)} ~ C(@){ |:N:| q2m(N—m)}<m>,

m

where njg can be inductively determined using Corollary In particular, ns, =
2m(N — m). Let n; € M}, be the image of n under the above homotopy. Then 7y is
a cycle and represents, up to scaling, the unique homology class in H(Mj) of quantum
degree m(N —m) — ny.

By Lemma [7.6]
Tom o 3 (—1) D/ A DS ] g 1 € M,
celm
where s(e) = Z;nz_ll(m —j)gj for e = (e1,...,em) € I"™. Assume that
e~ pr + ( 3 (1)l miDlel+se) ), @ 15) ® 1a...1) € My,
celm bt

2m—k
where py, is of the form
Pk = Z fk7(61762763)1€1 ®Qle, ® Les.
e1,82€l™ ez€l2m—k g5£(1,...,1)
Note that
e & pre + ( Z (_1)|6\(\6|*1)/2+(m+1)\6|+s(6)16 ® 15) ® 11,1
~—~—

ecI™

2m—k+1
is a chain in Mj_; mapped to n; under the homotopy
My—1{q™ 1}k = 1) = My{q™ }{k),
where
Pr = Z fk7(61762763)161 ® 1, ® 1(1,e5)-

61762617",63612"”_7“,63;&(1,...,1)

Then, by Corollary B:228 and Remark [3.24] we have
Nk—1 ~ 1 — hod(nk)
i~ hod(R) + (X (1) DA, 1) @ 1,

m
eel 2m—k+1

See the proof of Proposition for the definition of h and note the slightly different

setup here [(°). By the definition of h (again, note the difference in the setup), one can
check that h o d(ny) is of the form
ho d(fﬁc) = Z gk,(sl,sg,s;;)]-el & 162 ® 1(0,53)~

e1,e0€l™ ezc[2m—k

(6) We are eliminating a row here using its left entry rather than the right entry as in
Proposition 3231
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Therefore, p—1 := pr — h o d(ny) is of the form
Pk—1 = Z fk—l,(61,62,53)]—61 & 162 ® 163'

517526177L76361277L7k+1763?5(17“.71)
Thus, we have inductively constructed a p = pg € My of the form
p = Z f(€1,62,63)161 ® 162 ® 163
e1,62€l™, e3€I?™ e37#(1,...,1)
such that
N~ pt (Z 1)lel(el=D/2+(m+Dlel+s()1 g 1 )®1(1 _____ b .
e

ecI™

2m

PROPOSITION 8.37. Let I' and I'y be the MOY graphs in Figure 25, ¢ : C(T') — C(T'1)
the morphism associated to the circle creation and n : C(I'y) — C(T') the morphism
associated to the saddle move. Then no =~ idg(r.

Proof. From the proof of Lemma [(.6] we know that

Homner (C(). C(1) = CO){ [ |- .

m

In particular, the subspace of Hompnpe(C(T), C(I")) of elements of quantum degree 0 is
1-dimensional and spanned by id¢ (). Note that the quantum degree of o« is 0. So, to
prove that n ot ~ idg(ry, we only need to show that 7 o is not homotopic to 0. We do
so by identifying the two ends of I' and showing that 7. o ¢, # 0.

Identify the two end points in each of the MOY graphs in Figure[28 and put markings
on them as in Figure Denote by I and fl the resulting MOY graphs. Denote by &
the generating class of H (f) and by Bk, By the generating classes of the homology of

the two circles in H(I'1). Then 1,(6) o Bx @ Gy.

Tr Iy Tr
Fig. 26

By Lemmas and B30 under the identification Homsym(xw)(C(fl),C(I‘)) =
C(F) ®Sym(X|Y) Homsym(x‘y)(C(Fl), Sym(X|Y)), we have

nEp+ ( S ()N 2 DS ey 15) 10,
(N

e=(e1,...em)EI™ -

where p is of the form
P = Z f(61,52,63)151 02y 162 & 1:3-
e1,62€I™  e3€I%™ e3#£(1,...,1)
Note that:
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2m
m—1

o By LemmallB, > _., . epn (-1 IEIDHOADIRSEA 7091 @ 1z is a cycle
in C(T") representing &.

. P(l(l,...,l)) = 0.

~——

2m

Putting these together, we get 7, (Bx ® &y) o &. Thus, 7. 0 1, () o &. This shows that
n o is not homotopic to 0 and, therefore, n ot~ id¢(ry. m

REMARK 8.38. From the proof of Proposition 837 we can see that n gives H(I') a ring
structure and H(T){g™WN ™)} = H*(G,, n;C) as Z-graded C-algebras, where G, x is
the complex (m, N)-Grassmannian.

8.10. The second composition formula. In this subsection, we show that the compo-
sition in FigurePTalso gives, up to homotopy and scaling, the identity map. Topologically,
this means that a pair of canceling 1- and 2-handles induce the identity morphism. The
key to the proof is a good choice of entries in the left columns of the matrix factorizations
involved. Our choice is given in the following lemma.

m
n €
mo _ y  0m [ m

r Iy r
Fig. 27

LEMMA 8.39. Let X, Y be disjoint alphabets, each having m (< N) indeterminates. For
j=1,...,m, define

Uj(X,Y) = (=1 pnga— (V) + D (D)X by 11k (Y)
k=1

Y CDMUXE XN 1ok (X Y),

k=11=1
where X; and Y; are the jth elementary symmetric polynomials in X and Y, and
R (Y1, Y20, X, X)) — b (Y1, Y, X, X))

) = X, =Y,
Then U;(X,Y) is homogeneous of degree 2(N + 1 — j) and
Z(Xj = Y))U;(X)Y) = pn1(X) —prpa(Y).
j=1

Proof. The claims about the homogeneity and degree of U;(X,Y) are easy to verify and
left to the reader. We only prove the last equation. Since N > m, by Newton’s Identity
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(ET3), we have

pr1(X) = pra (V) =D (D) (Xipn11-45(X) = Yapn1-4(Y))
k=1

Ms

m
(—1)F (X — Yi)pn1-1(Y) + Z ) Xk (pv1-£(X) — pyy1-k(Y)).
k =1

By G.1.2),

1

m

PN+1-k(X) = pry1-#(Y) = Z(_l)l_ll(XZhN+1—k—l(X) = Yihnt1-k-1(Y))
=1

I
NE
NE

(=DM = YD) hypa—p—1(Y) + ) (=D X (v —k1(X) = hv1—p-i(Y))

Il
_
Il
_

(=D N(X = V) -kt (Y) + ) (—D)'HX, ZENJrlfkfl,j(Xa Y)(X; —Yj).

I
NE
NE

1=1 1=1 j=1
Substituting this back into the first equation, we get
N+1(X) = pra(Y)
Z HXp = Yo)pnsr-r(Y) + ) (-1)F 71X, Z )X — Y1 —ki(Y)
k=1 k=1 —

m

Z Xy Z )= 1leZfN+lfk7l,j(XaY)(Xj_Y}')

k=1 = j=1

_|_

I
NE

(X = Y))U;(X,Y). =

<.
I

In the rest of this subsection, we use heavily the notations introduced in Definition [3.6
The next lemma is a special case of Remark [3.24

LEMMA 8.40. Let R be a graded commutative unital C-algebra, and X a homogeneous in-
determinate over R. Assume that f1,0(X), f1,1(X), ..., feo(X), fr1(X) are homogeneous
elements in R[X]| such that

deg fj0(X) + deg fj1(X) = 2N +2, ijo ) fia(X) =

Suppose that f1.1(X) =X —A, where A€ R isa homogeneous element of degree deg A =
deg X. Define

fro(X)  fia(X) f20(4)  f2,1(A)
= | F2oX) f20(X) and M’ — | o) faalA) |
feo(X) fea(X) /) gy feo(4)  fea(A) /) ,

Then M and M' are homotopic graded chain complexes over R.
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Let F : M — M’ be the quasi-isomorphism from the proof of Proposition 323 If

Z agle

cerk—1
s a cycle in M', where a. € R, then
k
a= Z acl(o,e) — Z ae (Z(—l)l(o’a)ljgj,ej (X)1(1,52,...,ej,1,ej-,ejﬂ,...,m)
eclIk-1 e=(e2,...,cx)EIk—1 Jj=2
is a cycle in M and F(&) = o, where |(0,€)|; = Z{;Ql g1 and gj ., (X) = W

Proof. Let B =3 _.;x10acle € M. Then F(f) = a. By Remark B.24] we know that
d(B) € ker F, B—hod(f) is a cyclein M and F(S—hod(f)) = «, where h : ker F — ker F’
is defined in the proof of Proposition [3.23] But

hocﬂﬁ)::hod( E: aehma)

eelk—1
= h( Z Qg (fl 0 ].(1 )+Z ‘(0 E)‘J j(X)1(0,62,...,5_7_1,?j,€j+1,...,Ek)))'
e=(e2,...,65) €Tk

By the definition of h, we know that h(1(; .)) = 0. Moreover, since « is a cycle in M’, we
have

-

[ V)

(—1)‘(076)‘jfj,€j (A)l(Ez,...,Ej_l,E_j,Ej+1,...,Ek)) .

0=da= Z ag(

e=(ga,...,c)ETF—T J=

So, in M, we have

0= Z Qe

./M\k

(—1)‘(0’6)‘jfj,6_7‘ (A)l(o,ez,...,ej',l,E_j,€j+1,...,€k)) .

e=(e2,...,cx)EIF1 Jj=2
Thus
hod(B)
k
Zh( Z ag Z( )‘(OE)‘J(f ( ) fJE( ))1(0,52,~~~7€j—1;?jygj+17~~~;5k)))
=(e2,...,65)ETF1 j=2
k
= Z aE(Z(_l)l(O’E)ljgj,EJ(X)]-(LEQ,...,Ej_l,6_j,6_7+1,...,8k))ﬂ
e=(g2,...,6)ETF—1 Jj=2

where the last equality comes from the definition of h. This shows that § — hod(8) = &

and proves the lemma. m

Let T'g and T'y be the MOY graphs in Figure28 and n : C(T'y) — C(I'1) the morphism
induced by the saddle move. We have
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X s Y X Y
AT NGB A B
Fo Pl
Fig. 28

Hom(C (o), C(T'1)) = C(T') @sym(x|v|ajp) C(To)e
Vi(AX) Xi— A

Vm (A7 X) Xm - Am
V1(B,Y) By —Y;

‘/m (B; Y) Bm - Ym
Ay — By Ui (A, B) ’

12

Ay — B Un(AB)
Yi-X1 Ui(X)Y)

Yin =X Un(XY) [ xiviam

where X is the jth elementary symmetric polynomial in X, U; is given by Lemma 839
and

V](X,Y) — pm,N+1(Yia- .. an—17Xj .. 7Xm) _pm,N-i-l(Yh-- 'anan+17" 7Xm)

Xj =Y
By definition, it is easy to see that
ivj(X,Y) =0 ifj>k, (8.10.1)
00X
%V}(X,Y) =0 ifj<k. (8.10.2)

Set Ry = Sym(X|Y|AB) = C[X1,...,Xm, Y1,..., Y, A1, ..., A, By, ..., By, and,
for 1 <k <m,

Ri = Ro/(X1— Ay,..., X — Ap)
~2ClX1, Xy Y1y oo s Yoo, Ay oo oy Ay B1,y oo, By
Ryt =Ro/(X1—A41,..., X —Ap,B1 —Y1,..., By — Yy)
~ClX1, s Xm, Y1, ., You, Biy1, ..., B
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Define
Vi1 (A X)) X1 — Ak

Vm(A7 X) X — A,
V1(B,Y) B -1

Vin (B, Y) By, — Yy,

My = A - B Uy (A, B)

for k=0,1,...,m—1,

A — B, Un(A,B)
Yi—-Xu U1(X)Y)

Y, — X Un(XY)
Vir1(B,Y)  Bry1 — Yip

Ry,

Vi (B, Y) By — Y
A — B Ui (A,B)
Myt = for k=0,1,...,m—1,
A — B, Un(A,B)
Y1 - X3 U1(X)Y)

Yo — X, Un(X,Y)

Rtk
X1 - U(X)Y)
Xm - Y;n Um(Xa Y)
M2m =
Yi— X, U(X,Y)
Yo = Xm Un(XY) ) g0y

By Proposition B22] My ~ M; ~ --- =~ Ma,,. Let 1, be the image of n in My. Then,
using the method in the proof of Lemma [(.6] one can check that

Nom = Z (_1)\E|(|5|*1)/2+\5|+S(5)16 ® 1z,

eel™

where s(¢) = Z;:ll(m —j)gjfor e =(e1,...,em) € I™.
Next, we apply Lemma [8.40] to find a cycle representing 1 in M.

Write

0j,0(X17" ')XTYL7Y17" '7Y;YL) = Xj _Yja
Oi1( X1, .., X, Y1,...,Y50) =U;(X)Y).

And define, for k =1,...,m, € € Zs,
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0;c(X1, ..., Xp—1, Ak .., Am,B1, ..., Bm)—0;c(X1,..., Xp, Aks1 ..., Am, B1,...,Bm)

ko

0= Xi—Ay ’
omtt_ 05 (X0 X Vi Vi, By ooy Bi) =03 (Xa oo Xon Vi Yoy By, o, Bun)
e By —Yy '

It is easy to see that, for 1 < k,j < m,

1 ifj=k

ek —@mntk — ’ 8.10.3
30 70 0 ifj#k ( )

In the following computation, we shall call an element of My an “irrelevant term” if
it is of the form ¢ 1., ® 1., ® 1., where ¢ € Ry, 1 € I°™ and e3,e3 € I"™ are such that
either €1 # (1,...,1) or g9 # Z3.

Define F to be the set of functions from {1,...,2m} to {1,...,m} and

Feven = {f € F | #f7(j) is even for j =1,...,m},
Fo={feF|#f'(G)=2frj=1,...,m}.
For fe F,k=1,...,2m, define

2m

vik =#{K |k <k <2m, f(k') < f(k)}, vr=> vpr,
k=1

npn = #{K |k <K < 2m, f(K) = f(R)}.

For f € F, e = (e1,...,6m) € I™, define ¢¢(e) = (e1,...,em) € I, where e; € I
satisfies

ej=¢;+#{k|1<k<2m, f(k)=j} mod 2.

Applying Lemma B.40] repeatedly, we get

no ~ Z (_1)IE\(\EI—l)/2+\EI+S(?)+2m
cclm
2m
« Z (H(_l)le\_f(mu_f,k @];(k),af(k>+uf,k) L) @ 1y () ® 1z + irrelevant terms,
feF k=1

where ¢; is the jth entry in e. Note that, if f ¢ Feven, then ¢y(e) # € and the corre-
sponding term in the above sum is also irrelevant. So we can simplify the formula and

get
2m
~ g|(|e|—-1)/24+|g|+s(E v k
o 3 (—1FIE-DEE () f(H ef(k),sf(kw_m)1(17.,,71) ®1.® 1z
eecl™ fEFeven k=1

+irrelevant terms.

In Figure 28 identify the two end points of I'g marked by X and A, and identify the
two end points of I'g marked by Y and B. This changes I'g into I in Figure Similarly,
by identifying the two end points of I'; in Figure 28 marked by X and A and identifying
the two end points of I'; marked by Y and B, we change I'1 into Iy in Figure Let &
be the generating class of H (I~1)7 and Bx, Gy the generating classes of the homology of
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T Iy T
Fig. 29

the two circles in I'y. By Lemma[7:6] & is represented in
0(X)Y) YW-Xy

- Um(X7 Y) Y;n - Xm
U(X)Y) Xi1-—-Y

Um (X7 Y) Xm - Ym Sym(X\Y)

by the cycle
G- Z (_1)|5\(\6|71)/2+(m+1)\6|+5(5)]_6 R 1+

eel™
Define é?ﬁo, é;’ﬂ'k, é?ﬁl, é;”f'k by substituting A1 = X1, ..., 4, = X, By = Y7,
.., B,, =Y, into @jo, @;%Jrk, 6?,17 @Tfrk Then, for 1 < k,j <m,
~ o~ 1 ifj=k
k m+k J )
P O = .10.4
©j0 6110 {0 if j #k, (8.10.4)
~p X 0
©51 =05 1|a1=X1,. An=Xpn, Bi=Y1,..B=Ym = e U;(X,Y), (8.10.5)
~ 0
O = O |4 =Xy A =X Bi=Vi, B =Y, = 8—nt(3§7 Y). (8.10.6)
Using the formula for 79 and Lemmas B3] BI4], we find that n(G) is represented in
Vi(X,X) 0
- Vi (X,X) 0
1'\ — 3 b
Cry) Vi(Y,Y) 0
V(Y. ¥) 0 /gy

by the cycle
n(G) ~ Z (_1)\EI(IEI*I)/2+\EI+S(E)+|€\(\EI*1)/2+(m4r1)|6\+8(6)+M(m*1)/2

2m
v Ok
x Y (=1 f(H @f(k),efmwf,k)1(17~~~71)

fe]:even k=1

eclm

+ irrelevant terms,

where the “irrelevant terms” are terms not of the form c-1(; . 1). By definition, it is easy
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to see that
m—1
_ (m—1)
le[ + €] =
=1 2
Then one can check that
gl(le] —1 el(le] =1 m(m —1
ElE = 1) 2' )+|E|+S(E)+7| d ; )+(m+1)|6|+s(6)+7( 5 )
1 1
EMM.%EkH_M mod 2.
Therefore,
~ m m+1 2 el+v
U(G) ~ ( )/ z]: f ; | ‘ f(kH (_)f(k) Ef(k)+ltf k)l( 1. '71)
e€l™ fE€Feven 1

+ irrelevant terms.

This shows that

7e(®) o (~1)mmED/2 3§ (e |+uf(H Ok, Ef(k)wm) (B © By).

e€l™ fE€Feven

Hence,

€. 0Mi(B) x (—1 m(m+1)/2 ( Z Z ‘EHVf (H @k E).e f(myFiog, k) ' ®Y> &,

e€l™ fE€Feven k=1

where ¢ : C(I';) — C(I') is the morphism associated to the annihilation of the circle
marked by Y.

Since 7 is homogeneous of degree m(N — m), the polynomial

2m

== Z Z E|+Vf (H ef(k) SORID? k)

e€l™ fE€Feven

is homogeneous of degree 2m(N —m). Let Z* be the part of Z with positive total degree
in X. Then the total degree of =¥ in Y is less than 2m(N —m). By Corollary B8, we
know that e,(E% - &y) = 0. So

(B 6y) = e.(E-E") - 6y) = eu((Elx,=x0= - =x,.=0) - By).
Next, consider E := Z|x,—x,—...—x,,—0. Let (:)?6 = é§,5|X1=Xz=~~= —0- Then

== Z Z ‘EH_Vf (H ®f(k)v5f(k)+/1«f k)

e€I™ fE€Feven

Moreover, by (8I10.4)-(I0.0), the definition of U; in Lemma [839] and Lemma [5.1] for
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1 <k,j <m we have

N ~1 ifj=k,
@?,0:@'+k:{ J

3.0 0 if j #k,
. d
Ok = ——U,(X,Y = (=)t Y
=gl =D (1),
R o , .
@;’ff’“ = —U;(X, Y)‘ =(D)"I(N+1—j) hyr1-r—;(Y).
IV} X1==X;=0

Now 5pht Zinto Z = Z; + =5, where

1 = Z Z ‘ e (H Gf(k)vef(k)Jrﬂf k)

celm fEF, k=1

2m
- Z Z (1)l (H @I;(k)ﬁf(k)*‘ﬂf,k)'
k=1

e€l™ fe€Foven\F2

1>
V)

We compute Z; first. For every pair of f € F and € = (€1,...,6m) € I™, there is a
bijection
fe AL, .2my = {1,...,m} X Zy
given by f-(k) = (f(k),e¢@) + ps,r). Note that (f,e) = f. is a bijection from F5 x I"™ to

the set of bijections {1,...,2m} — {1,...,m} x Zg. Define an order on {1,...,m} x Zsy
by

(1,1) < (1,0) < (2,1) < (2,0) < -+ < (m, 1) < (m,0).
Then, for (f,e) € Fo x I'™,

el + vy = #{(k, ) | 1<k <K < 2m, fu(k) > f.(K))}.

Thus,
2m
& |€\+Vf Nk
=1 Z Z @f(k)vsf(k)+l‘f,k
ecI™ feFs k=1
1 A1 A1 A1 A A
1, O1 9 O3, O30 m,1 m,0
2 52 32 2 52 32
O1, SE 03, O30 071 7.0
A2m—1 2m—1 2m—1 2m—1 2m—1 2m—1
Sh 07 @2,1 S2 @m,l @m,o
2m 2m 2\2m 2m 2m 2m
e17 e1% 03" 0370 Sh) m,0
51 51 1 1
O1,0 0 ©Oi1 O
Am o Am m
_ ( 1) (m+1)/2 @1,0 ,0 61,1 m,1
- Am-41 Am+1 Am+1 m—+1
@ s 6m,O 1, @m,l
2m 2m 2m 2m
o170 05 o171 (Shug)
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Note that both m x m blocks on the left are —I, where I is the m X m unit matrix. So

Am-+1 A1 Am-+1 A1
orfl-ol, ... ertl-é

m,1

]
Il

(—1)mm+1)/2 (_qym .
oy —ey;, ... ey -en,
(=)™ D2 det((=1) (N + Dhy1-k—5(Y)) 1<k, j<m
(=) DN 4+ 1) det(hy 11—k (Y)) 1<k j<m

= (N + 1) det(hn—m—k+;(Y)) 1<k jem = (N +1)™Sx, v (Y),

where Ay N = (N —m >--- > N —m).

m parts
The sum =5 is harder to understand. But, to determine e, (ég - ®y), we only need to
find the coefficient of Sy, _, (Y) in the decomposition of =, into Schur polynomials,
which is not very hard to do. First, we consider the decomposition of =, into complete
symmetric polynomials. Since 2, is homogeneous of degree 2m (N — m), we have

2= > ex - ha(Y),

[IA|=m(N—=m),l(A\)<m

1>

where ¢y € C. Note that =, is defined by

2m
EQ = Z Z (_1)‘E|+Vf (H (:)]Ji(k)ﬁf(kﬂrﬂf,k)’
k=1

e€l™ fEFeven\F2
in which every term is a scalar multiple of a complete symmetric polynomial associated
to a partition of length < m. If the term corresponding to € € I"™ and f € Feyen \ F2

makes a non-zero contribution to cy then we know that, for every k =1,...,m,

m,N—m?

Flk) = {k i ep + ppse =0,
m+1—k ifEf(k)+Mf7k=1,

k if e k +me+k =0
m4+k) = i f(m+k) , )
ut ) {m +1—k if Ef(mtk) T Hfmik = 1.

In particular,
JeF:={g€ Feven \F2 | g(k),gim+k)e{k,m+1—k},Vk=1,...,m}.

Now, for an f € F°, we have f € Feyen \ F2. So there is a j € {1,...,m} such that
#f71(j) is an even number greater than 2. From the above definition of F°, we can
see that f~1(j) C {j,m +j,m+1—72m+1—j}. Thus, #f 1(j) =4 and f71(j) =
{j,m+j4,m+1—32m+1—j}, which implies that f~'(m+1—j) =0. Let e,0 € I™
be such that €y,41-j # om+1—; and g = 0y if I #m + 1 — j. Then

2m 2m
(_l)le‘-wf (H él}(’ﬂ)ﬁf(kﬂrw,k) = _(_1)|a|+yf (H él;(k)ﬁ.t'(kﬂr#.f,k)'

k=1 k=1
This implies that, for every f € F°,

2m

eltvy Ak =
Z (_1)| s (H ef(k),sf(k)-i-uf,k) =0.

ecl™ k=1
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Therefore, ¢y, y_,, = 0. By Lemma [5.2] one can see that the coefficient of Sy, _,. (Y)
is also 0 in the decomposition of =y into Schur polynomials. So €,(Zs - ®y) = 0.
Altogether, we have shown that

€ 01 (®) oc (=)D 2 (2. By) - 6

_ (_ )m(m-{-l)/Z ( 1 & ) B+ (_1)m(m+1)/26*(é2 . ®Y) B
= (=1)"HUR(N 4 1) e (Sap o (Y) - Bv) - &
)m(m+1)/2(N+ 1)m® 7& 0,

—_
—
—
—_
—
—

o (=
which proves the following lemma.

LEMMA 8.41. Let I' and T'y be the MOY graphs in Figure 29, n : C(I') — C(I'y) the
morphism associated to the saddle move and ¢ : C(I'y) — C(T ) the morphism associated
to the annihilation of the circle marked by Y. Then €. o n.(®) x &, where & is the
generating class of H(f) In particular, €, on, # 0.

Now, using an argument similar to the proof of Proposition 837 we can easily prove
the following main conclusion of this subsection.

PROPOSITION 8.42. LetT' and Ty be the MOY graphs in Figure21, n : C(T') — C(T'y) the
morphism associated to the saddle move and € : C(T'1) — C(T') the morphism associated
to circle annihilation. Then € on ~ ideo(r)-

Proof. We know that the subspace of Hommnr(C(I'),C(T')) of elements of quantum
degree 0 is 1-dimensional and spanned by id¢(r). Note that the quantum degree of € o7

is 0. So, to prove that € on ~ id¢(r), we only need the fact that € o 5 is not homotopic
to 0, which follows from Lemma 84T w



9. Direct sum decomposition (IIT)

In this section, we prove Theorem [0.1] which categorifies [32, Lemma 5.2] and generalizes
direct sum decomposition (IIT) of [I9].

1 m

m + 1

1 m

r Io
Fig. 30

THEOREM 9.1. Let T, Ty and T'y be the MOY graphs in Figure BQ, where m < N — 1.
Then

CT) ~CTo) & C(T){[N —m — 1]}(1).
REMARK 9.2. Theorem is not directly used in the proof of the invariance of the

colored sl(N) homology.

9.1. Relating " and T'g. In this subsection, we generalize the method of [48, Subsec-
tion 3.3] to construct morphisms between C(T") and C(Tg). In fact, the result we get is
slightly more general than what is needed to prove Theorem

LEMMA 9.3. LetT' be the MOY graph in FigureBIl Then, as graded matriz factorizations
over Sym(A UB),

C(I)~C(0)®c (Sym(A[B)/(hn (AUB), ..., An—m—nt1(AUB))) {g~ (N =m=m)y i ip),

A X m + n ]B
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and, as graded C-linear spaces,

Homppyr (C(0), C(I')) =2 Hompyr (C(T), C(0)) = H(T)
Rl

In particular, the subspaces of these spaces of homogeneous elements of quantum degree
—(m+n)(N —m —n) —mn are 1-dimensional.

Proof. The homotopy equivalence follows from Proposition and the proof of The-
orem [0.T21 The rest of the lemma follows from this homotopy equivalence and Theo-
rems [5.3] m

Denote by Omn a circle colored by m + n. Then there are morphisms C(Omtn) i>
C (") and C(I") 2, C(Om+n) induced by the edge splitting and merging. Denote by ¢ and
€ the morphisms associated to creating and annihilating Oy,4p,- Then C() LG ()

and C(T") =eod, C(0) are homogeneous morphisms of quantum degree —(m + n)(N —
m —n) —mn and Zs-degree m + n.

LEMMA 9.4. The maps © and € are not homotopic to 0. Therefore, they span the 1-
dimensional subspaces of Hompympr(C'(0),C(T)) and Hompyr(C(T), C(0)) of homoge-
neous elements of quantum degree —(m +n)(N —m —n) — mn.

Proof. By Corollary B8 and Lemma BTIT] we have
€o m(S)\m,n(A) : S>\m+n,N—m—n (X)) or=¢€o a © m(S)\m,n(A) : Sz\m,+n,,N—m—n(X)) © (b ot

~eom(Sx, nomn(X))ogom(Sy,  (A))opor
~eom(Sh, s nvomn(X))orxid.

This shows that v and € are not homotopic to 0. The rest of the lemma follows from this
and Lemma [0.3] m

LEMMA 9.5. Denote by I's the MOY graph in Figure and by Om+n a circle colored

by m +n. As C-linear spaces,
N 2
C(m){[ Hm”} }<m+n>.
m+n n

In particular, the subspaces of these spaces consisting of homogeneous elements of quan-
tum degree —(m + n)(N —m — n) — 2mn are 1-dimensional, and are spanned by the

I

HomHMF (C(@), C(Fg)) = HOHIHMF(C(FQ), C((Z)))

m+n

m+n

T
Fig. 32
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compositions

C0) 5 C(Omin) 2% C(1y)  and  C(Ta) 2% C(Omyn) S C(0),
where v and € are morphisms associated to creating and annihilating Om4n, and ¢1, po

(resp. &y, by) are morphisms associated to the two apparent edge splittings (resp.
mergings).

In the rest of this section, we denote by ¢ the composition C(() (D12)0r, C(Ty), and
by € the composition C(T') LICLION C(0).
Proof of Lemma 9.5. By Theorem [6.12] and Proposition [[Il we have
C(Ty) = 0(0){ { N } [m N ”]2}<m +n).
m—+n n

The structures of Hompyr(C'(0), C(T'2)) and Hompyr(C(T2), C(D)) are a consequence
of this. It then follows that the subspaces of these spaces consisting of homogeneous
elements of quantum degree —(m + n)(N —m —n) — 2mn are 1-dimensional.

It is easy to check that 7 and € are both homogeneous with quantum degree —(m +
n)(N —m —n) — 2mn and Za-degree m + n. Similarly to the proof of Lemma [0.4] one
can use Corollary and Lemma [BIT] to show that Z and € are not homotopic to 0. m

LEMMA 9.6. Denote by Oy U Oy the disjoint union of two circles colored by m and n.
Define the morphism f : C(0) = C(Om U On) to be the composition in Figure 33, that
is, f =€o(n @mny)ot. Then f & Ly @ Ly, where ty, L, are the morphisms associated to
creating the two circles in Opm U Op-

mf Nt Y m m+n "
N : : N m|| m
@ L, : : Ny @ 1y ] ] €
tn | — = mo |, | »
tym4n | v mtn

F2 FQI—IOmI—lOn OmI—IOn
Fig. 33

3
3
3
3

Proof. Tt is easy to check that

Homanre (C(0), C(Om U On) = H(On 10w = O [ V][V Hon 4.

m n

In particular, the subspace of Hompnr (C(0), C(Om U Oxr)) of homogeneous elements of
quantum degree —m(N —m) —n(N — n) is 1-dimensional and spanned by ¢, ® t,,. One
can see that f is homogeneous of quantum degree —m(N —m) — n(N —n). So, to prove
the lemma, we only need to check that f is not null homotopic. We do this by showing
that f.(1) # 0.

Note that f =€o (gt ®@n:) ot = (€on:) o (n 01).

We consider n; o ¢ first. By Proposition B33] one can see T = ¢ o 9 o iy, where
the morphisms on the right hand side are given in Figure B4l So 14 o7 is given by the
composition in Figure B4l If we choose marked points appropriately, then ¢ o ¢ and n;
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m m4+n m Nt n m m+mn
5 n
@ _lm _Q/)_» m |n —¢—> i n m U, mo |y m| ™
'y m+n m+n
Fig. 34
m m m+n m m+mn
_Z/)_» m |n —_— moy m| ™
Y X Y X Y
m+n
Fig. 35

act on different factors in the tensor product of matrix factorizations. So they commute.
Thus 73 0T = (¢ o) o (14 © Ly, ), where the composition on the right hand side is given in
Figure Denote by tx and ex (resp. ty and ey) the morphisms associated to creating
and annihilating the circle marked by X (resp. Y). Then (ix)«(1) and (ty)«(1) are the
generating classes of the homology of the circles marked by X and Y. By Proposition [8.42]
we have ey 0n; 0Ly, & tx. S0 (ey 01t 0tm )« (1) o (1x)«(1). By Theorem [5.5] Proposition [Z3]
and Corollary B8 this implies that
(1 © tm)«(1) o< (Sx o (Y) + H) - (e)4(1) ® (ev)+(1),
where H is an element in Sym(X|Y) whose total degree in Y is less than 2m(N —m). By
Proposition [R:33] and the definition of 7, we have
(@0 1)u((tw)«(1)) o< 2 (1).
Thus,
(Mt 02)x(1) o< (Sxp v (Y) + H) - (1x)+ (1) @ 24(1).

Next we consider € o n;. Since the circle marked by X is not affected by these mor-
phisms, we temporarily drop that circle from our figures. By Proposition B33l € ~
€a 0 o ¢, where the morphisms on the right hand side are given in Figure So €ony
is given by the composition in Figure BGl If we choose marked points appropriately, then
1o ¢ and n; act on different factors in the tensor product of matrix factorizations. So
they commute. Therefore, €0y is also given by the composition in Figure B7l By Propo-
sition B42] ey om; ~ id. So €ony & Yo, where b and ¢ are given in Figure 37} Denote by

m+n m+n m+n
: - — |n ]l n
; UE ¢ P €a
) ) Holn — |™ |n ) n| e m nf [n | — ——
Y : Y W | A B A B B
m+n | m+n

Fig. 36

3
3
3
3
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m+n m4n

Fig. 37

7 the morphism given in Lemma [0.4] associated to creating I's in Figure Bl Then, by [25]
Proposition Gr3] and the explicit description of ¢ in Subsection B4, we have

(v (V) + H) - (1) (1) @ 22 (1)) 0 (Sn g (W) £ 1) - (1) (1) @ 2 (1),

where h = ((H) is an element of Sym(X|W) with total degree in W less than 2m(N —
m —n), and ( is the Sylvester operator given in Theorem 53l Let v, : C(On) — C(T's)
be the morphism associated to the loop addition. (Note that this morphism is not the v
in Figures [34] B5) Then, by Proposition B33] one can see that 72 1), o y,.

Altogether, we have

fo(1) o< (€0mg)w o (nr 0 1) (1) o< (€0 0p) ((Sxpn . (Y) + H) - (1) (1) @ 2.(1))
o (10 @) ((Sxu n—n (Y) + H) - (1)1 (1) ® 24(1))
X ((Shn e (W) + 1) - (1) (1) @ T (1))
o< (1) (1) ® (¥, 0 M(Sx e (W) + h) 0 (Y1) © (t0)£(1))
o (1x)«(1) @ ()« (1),

where the last step follows from equation ([BZ2]) of Proposition It is clear that
the circle marked by X is the Oy, in O U On. So the above computation shows that
fa(1) o (tm) (1) ® (en)«(1) # 0. This proves Lemma 9.6. m

m+n

m n n m

m + n

n. m

r Lo
Fig. 38
DEFINITION 9.7. Let T and Iy be the MOY graphs in Figure[38 (They are slightly more
general than those in Theorem [0I]) Define the morphism
F:C(Ty) —CD)
to be the composition in Figure B9, and the morphism

G : O(I") — C(Ty)



116 9. Direct sum decomposition (IIT)

m + n m + n
L o o o ® No
| m Emm— mn|t Tt n m n 1227 m m n
m + n m 4 n
. "
Ty r

Fig. 39. Definition of F’

to be the composition in Figure @, where 7, € are defined in Lemma [@.5] and 1o, na, 74,
7; are the morphisms associated to the corresponding saddle moves.

n m
m+ny/ m+n
. ~
. 't Ny @ N €
' m | ' E——— n n m | m m E— n m
A i
m 4+ n H m 4+ n
n m
r To

Fig. 40. Definition of G

PROPOSITION 9.8. Let F' and G be the morphisms given in Definition@10. Then F and G
are both homogeneous morphisms of quantum degree O and Zs-degree 0. Moreover, G o F'

~ido(r,)-

Proof. Recall that , € are homogeneous morphisms of quantum degree —(m + n)(N —
m—n) —2mn and Zy-degree m+n, and 1o @ 16, N+ @ 1y are homogeneous morphisms of
quantum degree m(N —m)+n(N —n) and Za-degree m—+n. So F' and G are homogeneous
morphisms of quantum degree 0 and Zy-degree 0.

Next we consider the composition G o F'. With appropriate markings of MOY graphs,
No ® Ne and G act on different factors of a tensor product, so they commute. Hence,

GoF =(no®no)oGor=(no®@ne)o(€o(n ®@mn;) o),
where the right hand side is the composition in Figure 41l By Lemma [0.6]
€0 (1 @) 0T tn ® b,

Iy Iou Om u On Lo
Fig. 41
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where ¢, and ¢, are the morphisms associated to creating (),, and (). So, by Proposi-
tion B37]

GoF ~ (1m0 ®@no)o (tn ®tm) = (Mo 0tn) @ (No 0 tm) =ider,) - =
9.2. Relating I' and I';. Let I" and I'y be the MOY graphs in Figure In this

subsection, we generalize the method in [19, Section 6] to construct morphisms between
C(T) and C(T'y). To do this, we need the following special case of Proposition B.2T]

COROLLARY 9.9. Let Ty and T§ be the MOY graphs in Figure @2 Then there exist
homogeneous morphisms

X’ C(y) = C(Ty), x':C(T5) — C(IY)
such that

e both x° and x' have quantum degree 1 and Zs-degree 0,
o x'ox? e (s—1t)-idery and x° o x' = (s — 1) -ide(ry) -

XO Y m 1 {S}
B — m 41
! 1
X {t} m X
I's
Fig. 42

If we cut T' horizontally in half, then we get two copies of ' in Figure These
correspond to two copies of I} in Figure Now we glue these two copies of T" to-
gether along the original cutting points. This gives us I'7 in Figure There are two
X" morphisms and two x! morphisms corresponding to the two pairs of I, and I'y. The
morphism x° ® x? (resp. x! ® x!) is the tensor product of these two x” morphisms (resp.
x! morphisms). Denote by v : C(I'y) — C(I'7) (resp. ¥ : C(I'7) — C(T'1)) the morphism
associated to the apparent loop addition (resp. removal) as defined in Subsection Bl

{ri\ " L
m+1 ' ® x
m 1
{s}
y
{ } m 41 XO ® XO
t
1 m
r

DEFINITION 9.10. Define morphisms
a:C)(1) - o), p:0I) —CT)(1)

by a = (x’®@x%) ot and B =¥ o(x' @ x!). Moreover, for j = 0,1,..., N —m — 2, define
morphisms
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a; : CC){g" " 27%3(1) = (),  B;: C(T) = C(T){g" ™ > }(1)

by aj = m(sV"™m7277) o a and B; = B o m(h;), where m(e) is the morphism induced by
multiplication by e, and h; = h;({r, s,t}) is the jth complete symmetric polynomial in

{r,s.t}.
LEMMA 9.11. «; and B; are homogeneous morphisms that preserve the Zy ® Z-grading.
Moreover,
id if i =j,
5300‘”{0 if i> .
Proof. It is easy to verify the homogeneity and gradings of a; and ;. We leave it to the
reader. Note that x° @ x” and x! ® x! are both C[r, s, t]-linear. So, by Corollary (.9}

Bioa; =vo(x'®@x")om(h;) om(sN "2 ) o (x* @ x?) 09
=tom(h;)o(x' ®x") o (x*@x%) om(sVN "2 ) o)
= Fom(hy) om((r - 5)(s — 1)) om(sV ") 0 4,

Denote by ﬁj the jth complete symmetric polynomial in {r,t}. Then, for j > 0, h; =
g:O Slhj,l and hj+1 = (7" +t)hj — Tthjfl. So

sNTm=27(p —5) (s — t)h;

J
= Z sNm=2=H (g2 4 (r 4+ t)s — rt) Dy

=0
J Jj—1 Jj—2
- SN—m—i+li7}j_l + Z 8N—m—i+l(,r+t)]fbj_l_l _ Z SN_m_H_l’I“ti?,j_l_Q
=0 I=—1 1=—2

_ _SN—m—z—i-j + SN—m,—z—1hj+1 _ SN—m—z—QTthj

Jj—2
+ Z SN_m_H_l(—hj_l +(r+ t)hj_l_l — Tthj_l_g)
=0

_ _SN77VL7’L+‘] 4 stmfzflthrl o 8N7m71727,,thj.

Note that 1 is C[r, ¢}-linear. Thus, by Proposition B33,
Bjoa; ~pom(h;)om((r—s)(s —t)) om(sV ") 0y
= Fom(s" ") 0yt m(hy1) o Pom(sN ) oy
—m(rth;) o om(sN " TI2) 0 4)

_Jid it i=g

Tl0 0 if P>
PROPOSITION 9.12. Let I' and T'y be as in Theorem Q1. Then there exist homogeneous
morphisms

a:CT){[N—-—m—1]}1) - C(T), g CT) = C(T){[N —m — 1]}(1),
that preserve the Zo ® Z-grading and satisfy B'o a~id.
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Proof. The f3; in Definition [@.I0lis defined up to homotopy and scaling. From Lemma[Q.11]
we know

id ifi=j,
530“”{0 ifi> .

So, by choosing an appropriate scalar for each /3;, we can make

id ifi=j,
Bjoa; = {o i£i> (9.2.1)

We assume ([@27])) is true in the rest of this proof.
Define 7;; : C(I'1){g¥~m7272}(1) — C(I'1){¢¥~™"272}(1) by

ZlZl Zi<k1<~~~<k171<j(_1)l(6j o akl—l) © (5161—1 o akz—z) 00 (Bkl © ai)

o ifi < j,
=Y if i = j,
0 if i > .

Then define Bj :C(T) — C(T){gN—m"2"2}(1) by

N—-m—2

Bi= > TikoBk
k=0
Note that

CTO{N —m —1]H(1) = EB C(r){g" " 273(1).

N—m—2
Jj=0

We define & : C(T'1){[N —m — 1]}(1) = C(T') by

&'z(ao,...,aN_m_g),
and define §: C(I') — C(I')){[N —m — 1]}(1) by
N
5: A
5N7m72

It is easy to check that «; and Bj are homogeneous morphisms preserving the Zs @ Z-
grading. So are @ and (3.
Next we prove that 5 o a ~ id. Consider

N—-—-m—2

Bioai= Y Tiro(Brow).
k=0

By (@ZJ) and the definition of 7; ;, it is easy to see that

. i ifi= g,
ﬁjoo‘z_{o ifi>j.
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Now assume i < j. Again, by (2] and the definition of 7} ;, we have

N—-—m—2

j OOy = Z T]koﬁkoaz ZT]kOBkOO‘z)

=750 (Bioa) + 50 (Boa)+ Y Tiko(Broa)
i<k<j

~ T+ Bjoqi
+Z Z (_1)l(ﬁjoakz_1)o(5k1—1 Oakl—2)o"'o(5kl Oak)o(ﬁkoai)
I>1 i<k<ki<---<k;_1<j

:Tj’i—’rji:O.

s

Altogether, we have go ad~id. m

9.3. Proof of Theorem With the morphisms constructed in the previous two
subsections, we are now ready to prove Theorem Our method is a generalization of

that in [I9] and [4§].

LEMMA 9.13. Let T, Ty and T'y be the MOY graphs in Figure 30 Suppose that F' and G
are the morphisms defined in Definition [0 (for n = 1), and & and 6 are the morphisms
gwen in Proposition @12 Then 8o F ~0 and God ~ 0.

Proof. Let I's be the MOY graph in Figure @4 Denote by Ty (resp. I'y, I's) the MOY
graph obtained by reversing the orientation of all edges of I'y (resp. I'y, I's.) Let Oy, be
a circle colored by m. Then

Hompmr (C(Ty), C(T'))

1%

H(C(T1) ® C(To)){g" NN "1 (m + 1)
(Fg){an(N m)+N— 1}<m+1>
H(Om){m] - ¢~ N " (m 4 1)

cOf [N] -t v,

In particular, the lowest non-vanishing quantum grading of Homuyr(C(Ty), C(T'1)) is
N — m. But when viewed as a morphism C(T'g) — C(T'1), the quantum degree of Bj oF
is —N +m + 2 + 27, which is less than N —m for 5 =0,1,...,.N —m — 2. Sijono
for 7=0,1,...,N —m — 2. That is, B’ono.

IIZ

IIZ

1%

1 m

m — 1

I's
Fig. 44

Clearly, the matrix factorization of I'y is the same as that of I') in Figure[d2 Similarly
to Lemma [R.23] one can check that
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x« (X1 —Y1)+(s—1)
F (X = Yi) + (s =) D5 (-)FI, (g,
; | (Xm — Vo) + (s — ) S (=) X,
o (="K Sym(X[¥|{s}|{t})

where X, Y, {s}, {t} are markings of I in Figure[2] Mark the corresponding end points
of T'y by the same alphabets. Then

HomHMp(C(Fl), C(Fo)) = HOIIIHMF(M/, C(Po)) = H(C(Po) X M:)
= H(C(Lo) @ C(T)){g™ ™™ N (m + 1)

= 1 (Ts) g™ Ny (1)
= H(Ts) g™V =Ny (m 1)

Il

c@f [N imlamer-mrenhi,

m

In particular, the lowest non-vanishing quantum grading of Hompyp(C(I'1), C(I)) is
N —m. But when viewed as a morphism C(I'y) — C(T'y), the quantum degree of G o ;
is N —m — 2 — 2j, which is less than N —m for j =0,1,..., N —m —2. 50 Goa; ~0
for j=0,1,....N —m —2. That is, Goa ~0. =m
Recall that the morphisms F' and G are defined only up to scaling and homotopy,
and, by Proposition .8, we have G o F' = id¢(r,). So, by choosing appropriate scalars,
we can make
GoF ~ idC(Fo) . (931)

For minor technical convenience, we assume that (@3] is true for the rest of this section.

LEMMA 9.14. Let T', Ty and T’y be the MOY graphs in Figure B0. Then there exists a
graded matriz factorization M such that

CT)~CTy)® CT){[N—m—1]}1)® M.
Proof. Define morphisms

F:C(Ty) @ C(C){IN —m —1]}{1) — C(I),

G : O() — C(To) & C(T1){[N —m — 1]}(1)
by

F=(Fd and G= (g)

Then, by Proposition (especially (@3] above), Proposition and Lemma [0.13]
F and G are homogeneous morphisms preserving the Zo & Z-grading and satisfy

G o F ~ide(ry)ec(r{(N-m—1]H1) -
Therefore, F o G : C(I') — C(T') preserves the Zy & Z-grading and satisfies
(FoG)o(FoG)~FoG.
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By Lemma [£T5] there exists a graded matrix factorization M such that
CT)~CTo) @ CT{N-—m—-1]}1)®& M. =

LEMMA 9.15. Let M be as in Lemma QT4 Then M ~ 0.

Proof. Mark I', Ty and I'; as in Figure

{t} wu m/ L {t} Z
m 1
Yim u{s} 1 m
m+1
{r} ma X {r} X
r Lo
Fig. 45

Consider homology of matrix factorizations with non-vanishing potentials as in Defi-
nition 5 By Corollary 10 to prove M ~ 0, we only need to show that H(M) = 0, or
equivalently, gdim(M) = 0. But, by Lemma [0.14] we have

HT)=2HTy) ® HI){N—-—m-—1]}1)® H(M).
So,
gdim(C(T)) = gdim(C(Tg)) + 7[N — m — 1] gdim(C(T'y)) + gdim(M).
Therefore, to prove the lemma, we only need to show that
gdim(C(T")) = gdim(C(To)) + 7[N —m — 1] gdim(C(T'1)) (9.3.2)
In the rest of this argument, we prove ([@32) by directly computing gdim(C(T")),
gdim(C(Tg)) and gdim(C(I'y)).

We start with gdim(C'(T")). Let A=XU{s},B=YU{r},D=YU{t}, E=ZU {s}.
By Lemma [6.10] we contract the two edges in I" of color m + 1 and get

U, A1 — By
C(F) ~ Uerl Aerl - Berl {q—QWL}7

% Dy — E;
Vi1 Dmtr = Emi1 ) sy vz ¢y (3 1409)

where A; is the jth elementary symmetric function in A and so on, and

U — pmti,N+1(Bis- -, Bjm1, Ay o A1) = PN (B - By Ajas - Apr)
=

V. Py, N+1(EL - Ej1, Dy, Ding1) — P, N1 (B, -, By Dy, - D)
’ Dj— E; '

Recall that C(T') is viewed as a matrix factorization over Sym(X|Z|{r}|{t}). So the cor-
responding maximal ideal for C'(T") is the ideal 7 = (Xy,..., X, Z1,..., Zm, 1, t) of
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Sym(X|Z|{r}|{t}). Identify

Sym(X[Y|Z[{r}[{s}{t})/T - Sym(X|Y|Z[{r}[{s}|{t}) = Sym(Y|{s})

by the relations

Then
Uy, s—Y"
U2 _Y2
Un —Yo e N
Un+1 0 B " " )
O it 2my 2m ,
3 ) CL {72} {g=*m}
" Y, Vin 0
P P ‘/TYL"Fl O (C[G]
‘/m Y;”
Vg1 0 Sym(Y|{s})

where we applied Proposition[B.22lsuccessively to the first m rows. This gives the relations
YiI—-s=Ys=---=Y,, =0. (9.3.4)

Under (@33) and (@34)), we have

s ifj=1,
0 ifi=2,....m+1.

<

So, by Lemma [5.1]

apm+17N+1(A1, PN ;Am—i-l)
J J 0A
.j Al—s, Az—---JrA.,,H,l—O

= (=1)(N 4+ Dhms1ns1-5(5,0,...,0) = (=1)I (N +1)sV 177,

Using Lemma B4 and Corollary B28, we then have

Sme 0 O O
s 0 N
HO)=H|| s o (grmy=p || v 0 ¢V}

' On_ 0
N—m m s sN—m
s 0 Cls] Cls]/(sN=m)

On 0

~ | Ovor 0 (¢ V)
ON—TYL O

Cls]/(sN=m)
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124
where 0; is “a 0 that has degree 25”. So
N—-—m-—1 m-+1
gdim(C(D) =7 - (3 ¢*) - [[a+rg >
k=0 j=1
m+1 ‘
E = q*m . [N _ m] . H (1 + Tq2]7N71).
j=1

Next, we compute gdim(C(Ty)). Let
N+ N+1

g
t—r
U _pm,NJrl(Zlv'"ijflejv"'7Xm)_pm,NJrl(Zlv"'7Zj7Xj+1a"'7Xm)
= .
X, — 7Z;
Then
U t—r
U, X\-z
C(FO): 1 1 1

Un  Xm=Zm | g oxizioy100)

So
On 0
On
C(To)/3-C(To) = | On-1

o O

On—mt+1 0/,

m

gdim(C(Ty)) = (1 +7¢* ) - H(l + 7@ N1y,

and

Now we compute gdim(C(I'y)). Let F = WU {t} and G = W U {r}. Define
'7Zj7Fj+17"'aFm)

" _ PmnNt+1(Z1, - Zim1, By oo Fin) = pmont1 (2, -
j = )
F; —Z;
‘—/ o pm,N-i—l(Gh ceey Gj—hXj e 7Xm) _pm,N-i-l(Gl; . 7Gj;Xj+17 e 7Xm)
= .
X; - G,
Then -
Ui Fi— 7
U F,, —Z
C T _ L m m 1—-m .
( 1) Vl )(1 o Gl {q }
Vi X = G ) ucizmi iy 1101)
Identify

Sym(X[Z|WH{r}({t})/T - Sym(X|Z|W{r}[{t}) = Sym(W)
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by relations (@3.3]). Then, by Proposition 3.22]

[71 W1
Un1 W1 ONy1—m O
4 0 Oy 0
C(Pl)/j . C(Fl) =~ VT _Wl {qlfm} ~ On_1 0 {qlim},
Viner  —Wi s On-m+1 0/,
Vin 0 Sym(W)
So i
dim(C(1)) = ¢+ (14 7N (147 V)
j=1
Write
m
P = H(l +7gP N,
j=1
Then
gdim(CT) =7-¢"™ [N —m]-(1+ 71> NthH. p,
gdim(C(To)) = (1 +7¢' V) - P,
gdim(C(Iy)) = ¢~ (L+7¢*" N1 P.
Note that
[V —m] = [N —m— 1]g+q @m0,
So,

gdim(C(T)) — gdim(C(Tg)) — T[N — m — 1] gdim(C(T'1))
=((rg ™ +¢" "IN —m] = 1= r¢' N — (¢ + g™ V)N —m —1])P
= ((rqg™" +q" NN =m — g+ ¢ N TY) —1 - 7g! N
—(¢"" g™ )N —m —1])P
= ([N =m—1](g—g g™ N+ N —1)p 0.
This shows that ([@3.2) is true. m
Proof of Theorem [l Lemmas and imply Theorem "



10. Direct sum decomposition (IV)

The objective of this section is to prove Theorem [[0.1] which categorifies [32, Lemma A.7]
and generalizes direct sum decomposition (IV) in [19].

THEOREM 10.1. Let T', T'g and T’y be the MOY graphs in Figure @G, where I, m,n are
integers satisfying 0 <n<m <N and 0<I,m+1—1<N. Then

C(T) ~ C(Fo){ :m_ 1: } @C(Fl){ ] } (10.0.1)

n |n—1]

Similarly, if T,To,T1 are T, T, Ty with the orientation of every edge reversed, then

C(T) ~ C(TO){ —m; 1: } ® C(E){ 7:__ 11 } (10.0.2)

T X T X X
l A m . o
I+n m—n D
S Y -1
l4n—1
: B s 1 ml—1 mal—1
{r} W {r} W A%
T Iy
Fig. 46

The proofs of decompositions (I0.0.]) and ([I0.0.2)) are almost identical. So we only
prove ([LOJ) in this paper and leave ([I0.0.2) to the reader.

REMARK 10.2. Although direct sum decomposition (IV) is formulated in a different form
in [I9], its proof there comes down to establishing the decomposition

O(I") ~ C(Th) & O(T)), (10.0.3)

where IV, T, and I'} are given in Figure @7l This is also what is actually used in the
proof of the invariance of the sl(/N) Khovanov-Rozansky homology under Reidemeister
move III. Clearly, if we specify that [ = n = 1,m = 2 in Theorem [I0.I] then we get

decomposition (I0.0.3).

[126]
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: 2
1
2 L 1 2
:
: 2
I I,
Fig. 47

To prove Theorem [[0.T] we need the following special case of Proposition 8211

COROLLARY 10.3. LetT'y andT's be the MOY graphs in Figureld3], where m,n are integers
such that 0 <n <m < N. Then there exist homogeneous morphisms

X CTy) = CTs), x':C(T5) — C(Ty),

both of quantum degree m — n and Zo-degree O such that

m—n

Xl ° XO ~ (Z (_T)mfnfkyk) 'idC(R;)v
k=0
m—n
XO o Xl ~ (Z (_T)m—n—kyk) 'idC(F5)7
k=0
where Yy, is the kth elementary symmetric polynomial in Y.
S {r}
n+1 1 XO
A n
m—n m Xl
Y X
Iy I's
Fig. 48

10.1. Relating T' and T'y. Consider the diagram in Figure @9, in which

e ¢ and ¢ are the morphisms associated to the apparent edge splitting and merging,

e hy and h; are the homotopy equivalences induced by the apparent bouquet moves and
are inverses of each other,

e \" and ! are the morphisms coming from applying Corollary to the left half
of T.

All these morphisms are Sym(X|W|T|{r})-linear. Moreover, hg, h1, x* and x! are also
Sym(A|Y)-linear. By Corollary [[0.3] we know that

n

x'ox’ = (Z(_T)kAnfk) Sidery,) - (10.1.1)

k=0
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T X T X
1 A m . o
n f
I+n m—n -—
r S Y 1—1 Ty
I+n—1 g
m 1 —
1 B m4+l—1 ' * '
{r} W
A
T X
i m
n A hO
-1 B Y
I+n—1 hy
1 m4l—1
{r} w
I'o

Fig. 49

DEFINITION 10.4. Define f: C(I'g) — C(T) by f = x"ohgo¢ and g : C(T') — C(Ty) by
g=dohiox"

Note that f and g are both homogeneous morphisms of quantum degree —n(m—n—1)
and Zso-degree 0.

DEFINITION 10.5. Let A = Ay jpen—1 = {A | I(A) < n, Ay <m—n—1}. For A =
M >-->X) €A, define A= (A\f > - > X)) € A by Aj=m—n—1=N\ 1 for
j=1...,n.

For A € A, define fy : C(Ty) — C(T') by fx = m(Sx(A)) o f, where S\(A) is the Schur
polynomial in A associated to A\, and m(Sy(A)) is the morphism given by multiplication
by Sx(A). Then fy is a homogeneous morphism of quantum degree 2|A\| — n(m —n — 1)
and Zo-degree 0.

Also, define gy : C(T') — C(Ty) by gx = gom(Sxe(=Y)), where Sye(—Y) is the Schur
polynomial in —Y associated to A\°. Then g, is a homogeneous morphism of quantum
degree n(m —n — 1) — 2|\| and Zz-degree 0.

LEMMA 10.6. Let A be an alphabet with n indeterminates. Denote by Ay, the kth elemen-
tary symmetric polynomial in A. For any k=1, ..., n and any partition A= (A1 >-+->\,),
there is an expansion
Ap - Sa(A) = > - Su(A),
I(p)<n
where ¢, € Z>o. If ¢, # 0, then |p| — A =k and N\j < p; < XNj+1 forj=1,...,n



10.1. Relating I and T'g 129

In particular,
Ap - SA(A) = S +1200 41320, +1) (A).
Proof. Note that A = Sy, ,(A) = S>..>1)(A). This lemma is a special case of the
>

k parts

Littlewood-Richardson rule (see for example [I3, Appendix A]). m

LEMMA 10.7. For A\, u € A,
id if A=
Y P
Proof. For A\, € A, by (IO, we have
guo fr=gom(Su(=Y)) om(Sx(A))o f
=dohiox' om(Su(=Y)-Sx(A) ox’ohoo
=¢ohiox'ox’ohoom(Su:(~Y)- Sx(A)) o
Gom( (D=1 An k) - Sa(A) - Spue (-Y)) 0 6.
k=0

Write A = (A > - > \p) andXz(x\l—i—lz -+ >\, +1). By Lemma [I0.6, we know
that

12

(D" Aus) - Sa(8) = S(8) + D2 eulr) - S, (a),
k=0

A<v<A

where ¢, (r) € Z[r]. So

guo fr=dom(Sx(A) Su(-¥)od+ Y c(r)- dom(S,(A)- Su(=Y)) o ¢.

A§V<X
Now the result follows from Lemma [B.11] =

LeEMMA 10.8. There ezist homogeneous morphisms F : C(To){[™ ']} = C(T') and G :
C(I) — C(Ty) { [m;l]} preserving the Zo @ Z-grading such that G o F ~ idc(ro){[m—l]}.

n

Proof. Note that

e "]} = @ e eny,

AEA

We view f) as a homogeneous morphism
r: C(To){g?M=rtm=n=) 5 o)
preserving the Zy @ Z-grading, and g, as a homogeneous morphism
gr : C(T') = C(To){g?N~rm=m=y

preserving the Zy & Z-grading. Also, by choosing appropriate constants, we make

-~ idC(l"o) if A= W,
g“of)\_{o it A< g (10.1.2)
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Define H,,x : C/(To){g2N=0m=1=1} 5 ¢(Tg) {g2I=n(m=n=1} 1y

ide(r) if A= p,

0 i A< g,

Hy\ = i H
Zkzl Z,u<l/1<"'<l/k_1<)\(_1) (g.uofyl)o (g’/1 Osz)

O"'O(guk_2Ofl/k_l)o(guk_lOf)\) 1f)\>/1,

Then define g,, : C(I') — C(I'g){g?*=n(m=n=1} by
Ju = Z H,,og,.
v>p
Note that g, is a homogeneous morphism preserving the Zs @ Z-grading.
Next consider g, o fa.

(i) Suppose A < p. Then, by (012,
guof)\:ZHp,uogyof)\ﬁ’O.

v>p

(ii) Suppose A = p. Then, by (ITI2),
guofA:ZHuuoguofugHuuoguofu:/idC(Fo)~

V>

(iil) Suppose A > p. Then

guofA:ZHp,Voguof)\:Hu)\og)\of)\'f'Hp,p,oguof)\'f' Z Huuoguof)\
v pu<r<A
=~ /,L)\+gﬂof)\
+Z Z (—1)k(g“ofl,1)o(gl,1 0 fuy) 0 0 (Guy_, © fu) o (gu o fr)

E>1 p<vn < <vp_1<v<A

=H,\—H,\=0.
Now define
riowa{[" (= oo ey sew o m= Y5
AEA AEA
and
G:CT) — C(Fo){ [mn_ 1] }( = @ c(po){qzm—nm—n—l)}) by G = ng}.
AEA XEA

Then F and G are homogeneous morphisms preserving the Zs @ Z-grading, and

GOF ~ idc(ro){[m—l]}. |

n

10.2. Relating ' and T';. Consider the diagram in Figure B0, in which

e ¢ and ¢ are the morphisms associated to the apparent edge splitting and merging,
e ho and hy are the homotopy equivalences induced by the apparent bouquet moves and
are inverses of each other,
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T X T X
l A m . N
n o
l4+n m —n -—
F S Y m + 1 Fl
l4+n—1 B
m 1 —
1 B m+1—1 ! - !
A%
h1
ho
I '3
Fig. 50

e x? and x! are the morphisms coming from applying Corollary [0.3l to the lower half
of T.

All these morphisms are Sym(X|W|T|{r})-linear. Moreover, hg, hi, X and x! are also
Sym(A|Y)-linear. By Corollary [0.3] we know that
X’ ox' = (Z (_T)kmenfk) “ide(r,,) - (10.2.1)
k=0

DEFINITION 10.9. Define o : C(T'1) — C(I') by a = x'! ohyo¢ and 8 : C(T) — C(I'1)
by 8= ¢ o hgox’.

Note that o« and [ are both homogeneous morphisms with quantum degree
—(n —1)(m —n) and Zy-degree 0.

DEFINITION 10.10. Let A" = Apyppnm1 = {A | I(A) < m —n, Ay < n—1}. For A =
(M > > Apen) €N define N = (A >--- > X5 )€ A by Ni=n—1-=Apnt1-
forj=1,...,m—n.

For A € A/, define ary : C(T'y) — C(T') by ay = m(Sx(Y))oc, where Sx(Y) is the Schur
polynomial in Y associated to A. Then «) is a homogeneous morphism with quantum
degree 2|A\| — (n — 1)(m — n) and Zo-degree 0.

Also, define By : C(I') — C(T'1) by Bx = Bom(Sx«(—A)), where Sx«(—A) is the Schur
polynomial in —A associated to \*. Then ), is a homogeneous morphism with quantum
degree (n — 1)(m —n) — 2|A| and Zg-degree 0.
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LEMMA 10.11. For \,u € A/,
_Jidewy if A=up,
5"00‘“’{0 if A< pu.
Proof. For A\, u € A’, by (I02ZT]), we have
6u ocay=fo m(S/A*(_A)) o m(S,\(Y)) oo
— 50 hg o XO om(SM* (—A) . S)\(Y)) o Xl ohjo¢
=¢ohoox’ox! ohiom(Sy-(—A)-S\(Y)) oo

m—n

Fo m(( 3 (—r)’“ym,n,k) - SA(Y) - S,- (—A)) o 6.

k=0
Write A = (A1 > -+ > A\jp—yp) and = M+1>--> XN +1). By Lemma [[0.6 we
know that

12

m—n

(Z(—T)kYm,n,k)'S)\(Y):S;\(Y)—f— 3 ) - Su(Y),

k=0 A<v<A
where ¢, (r) € Z[r]. So
Buoay=gom(S5(Y)- S (=A)od+ D c(r)- om(S,(Y): Su-(—A)) o 6.
A<v<A
Now the assertion follows from Lemma RI]l m
LEMMA 10.12. There exist homogeneous morphisms & : C(I'1){ [7;:11]} — C(T) and
5: cl) — C(I‘l){ [:’:H} preserving the Zo @G Z-grading such that 5007 ~ idc(l—\l){[:’t:ll]}.
Proof. Note that
C(Fl){ {::11]} = @ C(Ty){A= (=D lm=n)y
AEN

We view a\ as a homogeneous morphism

ay : C(T1){g* M= Dim=y - ()
preserving the Zy ¢ Z-grading, and [3) as a homogeneous morphism

Bx: C(T) = C(Ty){g? M= nmnlm=my

preserving the Zy & Z-grading. Also, by choosing appropriate constants, we make

id if A= p,
BMOQA:’{OC(Fl) if/\<5. (10.2.2)

Define 7,5 : O(I'1){g?P=(r=D(m=)y 5 (T ) {2 =(n=Dm=n)} by
idC(Fl) A= p,
0 if A < p,

Zk21 Zp,<l/1<~~~<uk,1 </\(_1)k(5p« © am) o (51/1 © auz)
O"'O(Blm_z Oal/k_l)o(ﬁuk_l 004)\) if A > .

Turx =
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Then define EM 1 O(T) — C (D) {g?M~-(r=Dlm=n)} by

/6;/, = Z Tuv © Bu.
v>p
Note that BM is a homogeneous morphism preserving the Zy @ Z-grading.
Next consider 3, o .

(i) Suppose A < p. Then, by (I0.22),
EMOO‘A = ZTIWO/BVOOK/\ ~ 0.

v>p

(ii) Suppose A = p. Then, by (I02Z2]) again,
Buoay = ZT,WOBVOOW & Ty © B ooy ~ider,) -
v>p

(iii) Suppose A > p. Then

Buoa)\zg ’7'/“,051,004)\:’TM)\OB)\OOZ)\-l—TMMOﬁMOOQ\-i— E Tuuoﬂuoa)\
V>0 pn<r<
>~ T+ /6;/, O )

+Z Z (_1)k(ﬁltoavl)o(ﬁul an2)o---o(/81,k71 OOQ,)O(BVOO&)\)

k>1 p<v < - <vp_1<v<A
=Tux — Tur = 0.

Now define
a: C(Fl){ |:ZL__11:|} (: @ C(I‘l){qﬂ)\‘*(nfl)(mfn)}) N C(F) by a= ay,
AEA AEA
and
g:C(r) — C(Fl){ [m _ﬂ} (: @ C(Fl){q2|>\\—(n—1)(m—n)}) by §= Z Bh.
e AEA/ AEA/

Then & and 5 are homogeneous morphisms preserving the Z, @ Z-grading, and

/8 e} O_Z ~ ldC(Fl){[T:f]} .

10.3. Homotopic nilpotency of B'o FoGodaand Godo go F
LEMMA 10.13. Let 'y and 'y be as in Figure 8. Then
Hompnr (C(To), C(T'1)) = Hompwmr (C(I'1), C(Lo))

=~ C(@){ |:l +m = 1:| |:l + m:| |: N :|q(l+m)(N+1—l—m)+ml—1}’

m 1 l+m

where C(0) s C — 0 — C. In particular, the lowest non-vanishing quantum grading of
these spaces is m.
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Proof. Mark I'g and T'; as in Figure @Gl Then
* T, —r— Dy

* Tk — ’I“Dk_l — Dk

B * Ty —rD;_4 —(l—1)m
CTo)= |, D sx -, {q h

* Z?:O Dij_j — Wk

* D1 X — Wiy Sym (X|W[D|T|{r})

where X} is the kth elementary symmetric polynomial in X and so on. By Proposi-
tion B:22] we exclude D1, ..., D;_1 from this matrix factorization using the right entries
of the first [ — 1 rows. We get the relations

k 4 )
Dy = {Zj—o(_r)ka—j f0<k<Ii-1,

0 ifk<Oork>1-1,
and
. )
* D io(=r) T
* Th—r+X;-W
C F ~ .._ 4 4 qi(lil)m ]
Moy~ Ym0 Lot (=) Ty Xy — Wi { }
- i
x o) T i X — Wingi Sym(X|W|T|{r})
So

* = o)y
x«  —(Th—r+ X3 —Wh)

C(Ty). = B ' A (I4+m)(N+1—l—m)+(1—1)m I+m).
Tole =10 (S S iy X, —wi) | 1 Hm)

-1 i
w = (im0 () Te1-iXm = Woni-1)/ g pwimy o)

Let Ty be I'y with the orientation reversed. Similarly to the above, we have
l .
- Ej:o(_r)jTl—j
* —(Tl—T—l—Xl—Wl)

-1 i {¢"}.
* _(Ej:O 1o (=7)"Tj—iXk—j — Wi)

-1 i
o T ico ) T = Wnti1) /o)
Thus, C(T'g)e =~ C(To){qHmWN+1=l=m)+lm=13(] 4 ) and, therefore,
Hom(C(Ly), C(T1)) = C(I1) @ C(To)e =~ C(I'y) @ C(To) {qUHTmWNHL=lmm)Him=1y (1 ).
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m4l—1
m+1—1 1
1 Mol —1
'y I'is BT
Fig. 51

Let T'14,...,T'17 be the MOY graphs in Figure 51l Then

L L |

cconf[ 1 )
SO ~cof [T

Hompyr(C(To), C(T)) = C((Z)){ [l e 1} . [l * m} . L fm} .q<z+m><N+1zm>+mu}.

The computation of Hompnr(C(T'1), C(T)) is very similar. Using the fact that

* Th+X1—r—W;
C(Fl) ~ | % Z?:O Tij,j —rWi_1 — Wy {q_lm},

* Didm = Wit Sym(X|W|T|{r})

one gets C(T1)e = C(T){qHmWNH1=l=m)+im=11 (1 4 1m) where Ty is I'; with the orien-

tation reversed. So

Hom(C(I'y), C(I)) = C(Ig) @ C(I'1)s

(1-\ ) ® C(fl){q(l-i-m)(N+1—l—m)+lm—1}<l + m>

(T, ~

(

12

12

){q(l+m)(N+17l7m)+lmfl}<l + m>

@){ |:l +m— 1:| . |:l + m:| . |: N :| . q(l—i-m)(N-l—l—l—nL)-i-Tnl—l},

e~

C
C
C

1

1

where T4 is T';4 with the orientation reversed. m

m l+m

LEMMA 10.14. For p € A and A € N, let ay, EA; fu and g, be the morphisms defined in
the two preceding subsections. We have:

o If [Nl —|pul <n, then g, ooy ~0.

o If |u] — A\ <m —mn, then Bxo f, ~0.

Proof. Note that g, o ax : C(I'1) — C(T'o) is a homogenecous morphism of quantum
degree

20Al = (n = 1)(m = n) = 2|p| +n(m —n = 1) = 2(]A] = |p| = n) +m,
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and EA o fu: C(To) = C(I'1) is a homogeneous morphism of quantum degree
2\ + (n — 1)(m — m) + 2|l — nm — n — 1) = 2(|u| — ]\ — (m — ) + m.
The result follows from Lemma "

LEMMA 10.15. Let a, 5, F and G be the morphisms defined in the preceding two subsec-
tions. Then Bo FoGoda and Godo o F are both homotopically nilpotent.

Proof. For A\, € A, the (p, A)-component of (B'o FoGoad)is
Z (/Bﬂofyl 0.51/1 oa}\l)o(ﬁkl Oflfz O.alfz Oax\z)o' ©0 (/8>\k—1 Ofl/k Oﬁ’/k OO‘/\)'
Aty A1 €A v, v EA

By Lemma [I0.14] for the term corresponding to Aq,...,Ax_1 € A v1,...,v, € A to be
homotopically non-trivial, we must have

Al = vkl = 7,
| = [ul = m —mn,
[Aj] = vl >n forj=1,...,k—1,
lviza| = Aj|>m—n forj=1,...,k—1
Adding all these inequalities together, we get [A| = |u| > Em. Note that |\ — |p] <
(n — 1)(m — n). This implies that (30 F oG o @)* ~ 0 if km > (n — 1)(m — n). Thus,

—

B o F oG oa is homotopically nilpotent. Since
(GodofoF*'=Godo(foFoGod)*ofoF,

Goao 5 o F is also homotopically nilpotent. m

10.4. Graded dimensions of C(T"), C(I'y) and C(T'y)

LEMMA 10.16. Let T, Ty and 'y be the MOY graphs in Figure B0, where l,m,n are
integers satisfying 0 <n<m <N and 0<I,m+1—1<N. Then

m-+l—1
gdim C(To) = ¢+ (1 + ¢ V1) [T (1+rg% N1,
j=1
—lm M+l 2j—N—1 :
K 1 J l <N
adimo(ry) = 4 = (a2 if L m < N,
0 if l+m=N+1,
qflermfn[?:Z](l +Tq2n+2l7N71)H;ﬂ:ﬁl*1(1 +Tq2j*N*1)
if l+m < N,
dim C(T") = - )
g ( ) q_lm+m [m;l] (1 +TqN+1—2m) H;ﬁ:"il_l(l —I—TQQJ_N_l)

if l+m=N+1.
In particular,

m —

gdim O(T) = {m; 1] - gdim C(To) + [ 11] - gdim C(T'y). (10.4.1)
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Proof. We mark I', 'y and I'; as in Figure @6l Then C(T"), C'(I'y) and C(I'1) are matrix
factorizations over Sym(X|W|T|{r}). The corresponding maximal ideal is

J= (Xl,...,Xm,Wl,...,I/[/ler,l,Tl,...,ﬂ,?"),

where X is the jth elementary symmetric polynomial in X and so on.
We compute gdim C'(T'g) first.

From the proof of Lemma [[0.13] we know that
. ,
Zj:o(_T)JTl*j

* T1 —r+ X1 — W1
C(Po) ~ o - .k j i {qi(lil)m}'
* Zj:() 2izo(—r) Tj—iXp—j — Wi
-1 i
¥ im0 () Tim=iXom = Wi /iy
So
0 0;
. - 0 01 —(—-1)m
o3y~ |0 ™ {g0-my,

0 Om+l—1

C
where 0; means “a 0 of degree 2;5”. Then it follows easily that

m+l—1
gdim C(Ty) = q_lm+m(1 + Tq2l_N_1) H (1+ TqQ‘j_N_l).
j=1
Next we compute gdim C(T'y).
Ifl+m =N +1, then C(T'1) ~ 0. So gdim C(T'y) = 0.
If I+ m < N, then
* Th+Xy—r—W;
C(Fl) ~ | % Z?:O Tij,j —rWi_1 — W} {q_lm}

* T X — er-i—l—l

Sym(X|W|T|{r})
and, therefore,

0 0
0 Om-i-l C
So
m+l
gdim C(I'y) = ¢~ H (1+7¢¥ N1,
7j=1

Now we compute C(T').

Let D =AUT and E = {r} UB. Denote by D; and E; the jth elementary symmetric
polynomials in D and E. Define



138 10. Direct sum decomposition (IV)

pl-‘,—n,N-{—l(El;- "7Ej—17Dja' .. aDH-n) _pl+7L,N+1(E17-- '7EjaDj+17" 'aDH-n)

U =
! Dj — E; ’

V= (—1)j PN+1—;(AUY) +Z k+ijkhN+1—j—k(AUY)
k=1

+ Z Z(_l)k+iiXkX¢§N+1—k—i,j (X,AUY),

k=1 i=1
R ) m+i—1 .
Vi= (=1 "pniBUY) + Y (DR Wehn g k(BUY)
k=1

m4l—1m4+1—1
+ Z Z (—1)F W Wil n41-k—i (W, BUY),

where & ; is deﬁned as in Lemma [R39 Then, by that lemma, we have
Uy D, — E4

Un+l DnJrl - EnJrl

i X, — A —

C(]_") o . - {qflnf(lJrnfl)(mfn)}.
Vm Xm - Anmen
Vl Bl + Yi - W1

Vinti=1 Bnyi—1Ym—n — Witi—
m+1—1 n+l—14m—n m+1—1 Sym (X|Y|W|A|B|T|{r})

Note that
V4|X1— =X ( 1). pN_H_j(AUY)7
V|W17 =Wm41-1=0 — ( 1) pNJrl*j(BUY)a
D |T1_ =T;=0 = A37 Ej|r:0 = Bj.
So
c(r)/3- C()
Ul A —
Un A, — B,
Un+1 _Bn+1
C:7n+l—1 —Bpti-1
= | Unni 0 {q—l"—(l-iﬂ”b—l)(?”fl—n)}7
pn(AUY) — A —
(=)™ 'pNs1—m(AUY) — A Yo
pN(BUY) B +Y;

(—1)m+l72pN+1—(7n+l—1)(B @] Y) BnJrl*lYm*n Sym(Y|A|B)
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where
Uj =Ujlr=..=1,=r=o0-

Next, we exclude By, ..., Byy;—1 by applying Proposition B22 to the first n +1 — 1
rows of this matrix factorization. This gives the relations

U7 lo ifn+l1<i<n4l-1,

and
Un+l|Bj=Aj 0
pN(AUY) -Ai -V
(_1)m_1pN+1—7n(A U Y) —AnYm_n
AUY A1+ Y]
C(F)/jC(F) ~ pN( = ) ' 1 +1 {qflnf(lJrnfl)(mfn)}.
(_1)m_1pN+1—7n(A U Y) ATYLY;YL—H
(_1)mpN+17(m+1)(A U Y) OTYL-‘,—l

(—1)m+l_2pN+17(m+l71)(A U Y) Omi—1 Sym(Y|A)
By Corollary 319 we have

Un+l|BJ:AJ O
0 —-A -V

C(r)/3-c(T)~|0 —AnYpn | g D)y
pN(A U Y) 01

(_]—)erlisz—i-l—(m-i-l—l)(A U Y) Oerl*l Sym(Y|A)

Since m 41 —1 < N, pyy1—(mt1—1)(AUY),...,pn(AUY) belong to the ideal generated
by A1 +Y1,..., Z?:o AiYi—j, ..., AY—y. So, by Corollary BI8 we have

0 —A1 -

cmy/3-cm~|o A Yo (g~ (n=D)(m=n)}
0 0
0 07n+l—1 Sym(Y|A)

Note that, by Lemma [B.1]

~ 0
Unti|Bj=4; = Unti|Ty=--.=Ty=r=0,B;=4, = Wlern,NJrl(Dla ooy Digyn)| D=4,
“+n

= (=) YN + Dhipnni1—1-n(A1, .., Ay 0...,0)
= (=) HN + Dhys1-1-n(A).
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Using Corollary B4 it is easy to see that

hnyi-1-n(A) O

0 —-A1 -V

C(F)/j . C(F) ~10 — A Yo {q—ln—(l+n—1)(m—n)}.
0 04
0 Omti—1 Sym(Y|A)

Now we exclude Yi,...,Y,,—, by applying Proposition 3.22] to the second row through
the (m —n + 1)th row. This gives the relations

Y; = (=1)7h;(A) for j=0,1,...,m —n,
and

cI)/3-Cc(m)
hnt1—1—n(A) 0

0 =2 (1) (A) Ay
0 = 2 (=1 hy(A) Ag—j o
~ ... {q, n—(l+n— )(mfn)}.
0 —(=1)" "y _n(A)A,
0 01
0 Ormati-1 Sym(A)

By L), for k =m —n+1,...m we have

n k
(7R (M) Ag—j =~ > (=1)h;(A) A

Jj=m—n-+1

m

Il
=]

J
So, using Corollaries 319 and BT4] we get

hnt1-1-n(A) 0

0 Bon 1 ()
C(F)/j . C(F) ~ 10 hm(A) {qflnf(lJrnfl)(mfn)}.

0 0,

0 Omti1 Sym(4)

Ifm-+1<N,then N+1—1—n>m—n-+1 and, therefore, hyi1_;—n(A) is in the
ideal (hp—nt1(A), ..., hm(A)). So, by Corollary BI8|
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0 OnJrl
0 hmfnJrl (A)
C(F)/j . C(F) ~ 10 R, (A) {q—ln—(l-i-n—l)(m_")}.
0 0
0 Omi Sym(a)

Thus, by Proposition 3.23]

0 OnJrl

0 01 {q—ln—(l-i-n—l)(m—n)}.

0 Omti1/ gimn(a)(ham—ss (A (8))

Since the graded dimension of Sym(A)/(hm—nt1(A),.. ., hy(A)) is [] g™, it follows

that
m+l—1

gdim C(T) = g lmtm—n {m] (1 + g2 t2-—N-1y H (1+7g¥—N-1,
n
j=1
Ifm+1l=N+1,then N+1—1I—n=m—nand h,,(A) is in the ideal (hy,—n(A),...
hm—1(A)). By Lemma BIH and Corollary B9, we have

0 hmn(A)

3

0 hmfnJrl(A)
C(F)/j . C(F) ~ O hm(A) {qflnf(lJrnf1)(m7n)+N+172(m7n)}<1>

0 01

0 Omtit / gymaa)
0 hm—n(A)
0 hm—1(A)

~ 0 Oum {qflnf(l+n+1)(mfn)+N+1}<1>.

0 01

0 OTYL-‘,—l—l Sym(A)
Thus, by Proposition 3.23]

0 Om

0 0

H(C(T)/3-O(T)) =~ g m N ).

O Omtt=1 7 ym(a) (o (8). 1 (8))

Since the graded dimension of Sym(A)/(hm—n(A),... , hpm—1(A)) is [mrjl] g mn=h g
follows that
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gdim C(I)
1 m+l—1
— gt (D) mon) £ N1 4n(m—n—1) [mn— ](1+Tq2m_1v_1) H (147 N1
j=1
_ imgm|m—1 N+1-2m mid 2j—N—1
=g | g T o,

Finally, let us consider equation (TQ0.Z.T]).

Assume m + 1 = N + 1. Then gdim C(I';) = 0 and it is straightforward to see that
gdim C(T) = [™~'] gdim C(T). So (A is true.

Assume m + 1 < N. Note that

m _alm—=1 men|m—1 nlm—1 _m+nm—1
=q +4q =q +q :
n n n—1 n n—1
So
|:T:LL:|(1+7_q2n+2lN1)

— qn m—1 +q—m+n m—1 +Tq2n+2l—N—1 q—n m—1 +qm—n m—1
n n—1 n n—1

-1 —1
— " [mn }(1 4Ny e {7:_ J (1 4 7@ +2-N-1),

Multiplying by ¢~ tm+m—" Hﬁtl71(1 +7¢¥ N1, we get (ILAT). =

10.5. Proof of Theorem [I0.1l After all the above preparations, we are now ready to
prove Theorem [I0.11

LEMMA 10.17. Let T, Ty and I'y be the MOY graphs in Figure B8, where l,m,n are
integers satisfying 0 <n < m < N and 0 < I,m+I(—1 < N. Then there exist homogeneous

morphisms
o C(FO){ [m; 1} } @ C(Fl){ [Z‘__ﬂ } - (D),

U ) - c(ro){ [m; 1] } & c(rl){ [7:__11]}

preserving the Zo @ Z-grading such that
Vod~ idc(l—\o){['rn;l]}@C(l—\l){['mfl]} .

n—1

Proof. Let F,G,a, A be the morphisms defined in Subsections [0 and [0 Define

) e e

w0y e [ Pocen{ [}
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-,

by ®¢ = (F,&) and ¥ = (G, 3)". Then

id Goad
Pgodyg~ | = .
020 (5 oF id >
By Lemma[[0.I5, fo FoGod and Godo o F are homotopically nilpotent. Therefore,

id — 5 oFoGod and id —Godo 5 o I are homotopically invertible. In fact, their homotopic

inverses are
oo

(id—foFoGod) ™'~y (foFoGoa)l,
k=0

(id—GodofoF) ' ~Y (GodofoF)
k=0
Note that the sums on the right hand side are finite sums in the Hompyyr. Now define

¢ = (I)Oa
N — ~ —1 . o -
U= (d-GodofoF) oz 0 I S -I.d (,;OO‘ o WUy.
0 (id—BoFoGod) —BoF id
It is straightforward to check that ® and U satisfy all the requirements in the lemma. =

Proof of Theorem[I0.1. By Lemmas [[0.17 and .15 we know that there exists a graded
matrix factorization M such that

o) ~ C(Fo){ {m; 1} } @ C(Pl){ [7::11] } @ M.

But, by Lemma [[0.16]

gdim M = gdim C(T") — {m; 1} -gdim C(Ig) — {m B

ﬂ -gdim C(T";) = 0.

Thus, by Corollary LI0, M ~ 0. So

cm=eas{ [, Jpecmn{ -]}



11. Direct sum decomposition (V)

The objective of this section is to prove Theorem [T} which categorifies [32, Proposi-
tion A.10] and further generalizes direct sum decomposition (IV) (Theorem [0.1]). The
proof of decomposition (V) is different from that of decompositions (I)~(IV) in the sense
that we do not explicitly construct the homotopy equivalences in decomposition (V). In-
stead, we use the Krull-Schmidt property of the category hmf to prove this decomposition.

THEOREM 11.1. Let m,n,l be non-negative integers satisfying n + l,m +1 < N. For
max{m —n,0} <k <m+1 and max{m —n,0} < j < m, define T's, T, F? and F? to be
the MOY graphs in Figure B2l Then, for max{m —n,0} <k <m+1,

C(T}) =~ @ C(F?){ {kij } (11.0.1)

j=max{m—n,0}
= l
OI3) ~ b C(F?){[k_]}}, (11.0.2)
j=max{m—n,0}

where we use the convention [Z] =04ifb<0orb>a.

m n+l m n+l
ntk—my J
n+k m+l—k m—j n+tl4j
k n4j—m
n Mt n m+l
1
r; 12
J
ml n m41 n
k n4j—m.
mA41—K n+k 414 m—j
ntk—m j
n—+1l m n+l m
3 4
1 I
Fig. 52

11.1. The proof. The cases n > m and n < m of Theorem [[T.Jl may seem different.
But, by flipping Ty, T}, I'; and T'} horizontally and shifting the indicies &, j, one can
easily check that the n > m (resp. m > n) case of equation (ILOT]) is equivalent to the
m > n (resp. n > m) case of equation (IT0O2). So, without loss of generality, we prove
Theorem [IT.J] under the assumption n > m.

[144]
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We prove Theorem [[T.J] by inducting on k. If & = 0, then decompositions (IT.0J)) and
([@TI02) are trivially true. We prove the k = 1 case in the following lemma.

m n+l m n+l m n+l
n4l—m 1
n41 m4l—1 m—1 n4l+41
1 n+l—m n—m
n m+1 n m+l n m1
1 2 2
Fl Fl FO
Fig. 53

LEMMA 11.2. Let I‘,ﬁ, I‘i, I‘? and I‘? to be as in Theorem 11l Assume that n > m.
Then
C(r}) = () @ CTH{U}, (11.1.1)
c(r3) ~Cc(Th o oT){l} (11.1.2)
Proof. The proofs of (ILTI) and (ITI2) are very similar. So we only prove (III.T)
here and leave (IT.I2) to the reader.

m n+1
1 n—m+1
m — 1 n—1i+ 2 m 41— 1
n—m+1 1
n m + 1
T
Fig. 54

Consider the MOY graph I' in Figure[54l Applying decomposition (IV) (Theorem [I0.])
to the left square in T, we get C(I') ~ C(I'7) & C(I"){[m — 1]}, where I" is given in
Figure By Corollary [6.1T] and decomposition (II) (Theorem [612), we have C(I”) ~
C(T") ~ C(T3){[m + ]}. Thus,

C() ~ C(T]) @ C(T3){[m — 1][m +1]}. (11.1.3)

m n+1 n 41
nomtl m41
n—m
m+1—1
1 ml—1
n m+ 1
m + 1
F/

Fig. 55
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Now apply decomposition (IV) to the right square in I'. This gives C(T') ~ C(T'%) @
C(T"){[m +1— 1]}, where T is given in Figure By Corollary [.11] and decomposi-
tion (II) , we have C(I'""") ~ C(I'"""") ~ C(T3){[m]}. Thus,

CI) ~ o) @& CT){[m]lm+1—1]}. (11.1.4)

m m + 1 n + 1

. m — 1

m — 1 Lo

n—m+1

n m+ 1
m + 1
F/l/ I‘\l/l/

Fig. 56

Note that [m][m 4+ 1 — 1] — [m — 1][m + ] = [I]. So, by the Krull-Schmidt property
of the category hmf (Proposition LT7 and Lemma I8), we deduce that (ILL3) and
TI7) imply (TLI). =

With the above initial case in hand, we are ready to prove Theorem [[T.1] in general.

Proof of Theorem[I11]. From the above, we know that (ILOJ]) and (IT.0.2) are true for
k = 0,1. Now assume (ILOI) and (IL02) are true for a given k& > 1 and all m,n,!
satisfying the conditions in Theorem [[T.Il We claim that (ILOT]) and (IT02) are also
true for k + 1. The proofs for the k+1 cases of (ILO1]) and (IT.02) are very similar. We
only prove (ILOI) for k + 1 here and leave (IL0.2) to the reader.

Recall that I'} 41 and I‘? 41 are the MOY graphs in the first row of Figure[57l We define

f,lc 41 and f? 1 to be the MOY graphs in the second row in Figure 57l By Corollary G.1T]

m n+l m n+l
ntktl—m, | i+
ntk+1 m4l—k—1 m—j—1 ndl4+j+1
k+1 ntj+l-—m
n m+l n m+l
1 2
Lt I
m n+l m n+l
ntkt1l—m i
ntk+1 mAl—k—1 m—j i n4l4j
n+k 1 m—4l—k m—j—1 n4l+ji+1
k ndj+l—m
n m+l n m+l
1 2
L I

Fig. 57



11.1. The proof 147

and decomposition (IT) (Theorem [G.12]), we have
C(fllc-i-l) ~ C(Fllc+1){[k + 1]}, C(F?H) C(F?H){[j + 1]}
CasE 1: k < 1. Apply (ILTI) to the upper rectangle in F,lc_i_l. This gives
C(Tig1) = C(T}) @ CTR{I - K]},
where f}c is the MOY graph in Figure 58 and I'}, is given in Figure (21

m n+l
1
mel a1y | PR
n+k m+l—k
k
n m+1
fl
k
Fig. 58

Recall that we assume ([[I.0.0]) is true for the given k and all m,n,[ satisfying the con-
ditions in Theorem [TIl Thus, we can apply (ILO.I) to the lower rectangle in I'} and

get
C(FL) = m c@{[, "]}

~ ¢ C(r?+1){[3+1 {Hl]} EDCF2 { { iil”

Again, recall that we assume ([0 is true for Fl That is,

= @emp{[, L]}

Note that [j] [kfﬁl} + [l — k] [kij} = [k+i j] [k + 1]. So, combining the above, we get

L)k + 1} ~ C(FLy) @CPQ{[ o e

By Proposition L2211 this implies

A l
et =@l ]}
7=0
So (IO is true for &+ 1if k& <.
CASE 2: k > [. In this case, we apply (IT.I.2) to the upper rectangle of f}c This gives
C(T}) = C(Thyn) © CR{k — 11}

Note that, in this case, we also have

=@em{ul, 31|} m om=enn(], )
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Note that [j] [kfﬁl} — k=1 [kij} = [k+ifj] [k + 1]. So, by Lemma I8 we have

CL )k + 11} = C(Thy) ~ @cw;%){ [k . _j] n 11}.
j=0

By Proposition 2211 this implies

J
So (IO is true for k+ 1 if k > 1. m



12. Chain complexes associated to knotted MOY graphs

DEFINITION 12.1. A knotted MOY graph is an immersion of an abstract MOY graph into
R? such that

e the only singularities are finitely many transversal double points in the interior of edges
(that is, away from the vertices),
e we specify the upper edge and the lower edge at each of these transversal double points.

Each transversal double point in a knotted MOY graph is called a crossing. We follow
the usual sign convention for crossings given in Figure

N /
N /

+ —
Fig. 59

If there are crossings in an edge, these crossing divide this edge into several parts. We
call each part a segment of the edge.

Note that colored oriented link/tangle diagrams and (embedded) MOY graphs are
special cases of knotted MOY graphs.

DEFINITION 12.2. A marking of a knotted MOY graph D consists of the following:
1. A finite collection of marked points on D such that

e every segment of every edge of D has at least one marked point;
e all the end points (vertices of valence 1) are marked;
e none of the crossings and internal vertices (vertices of valence at least 2) are marked.

2. An assignment of pairwise disjoint alphabets to the marked points such that the al-
phabet associated to a marked point on an edge of color m has m independent indeter-
minates. (Recall that an alphabet is a finite collection of homogeneous indeterminates
of degree 2.)

Given a knotted MOY graph D with a marking, we cut D at the marked points. This
produces a collection {Dy, ..., D,,} of simple knotted MOY graphs marked only at their
end points. We call each D; a piece of D. It is easy to see that each D; is one of the
following:

[149]
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(i) an oriented arc from one marked point to another,
(ii) a star-shaped neighborhood of a vertex in an (embedded) MOY graph,
(iii) a crossing with colored branches.

For a given D;, let Xy,...,X,,, be the alphabets assigned to the end points of D;,
among which X;,..., X, are assigned to exits and Xy, 11,...,X,, are assigned to en-
trances. Let R; = Sym(Xy| - [X,,) and w; = S5 pna(X5) — S0, pva (X)),
Then the chain complex C(D;) associated to D; is an object of hChP(hmf g, ., ).

If D; is of type (i) or (ii), then it is an (embedded) MOY graph, and its matrix
factorization C'(D;) is an object of hmfpg, ,,. We define both the unnormalized chain
complex C(D;) and the normalized chain complex C(D;) to be

C(D;) = C(D;) =0 — C(D;) — 0, (12.0.1)

where C(D;) has homological grading 0. (The abuse of notations here should not be
confusing.)

If D; is of type (iii), that is, a colored crossing, then the definitions of C(D;) and
C(D;) are much more complex. The chain complexes associated to colored crossings will
be defined in Definition below.

REMARK 12.3. In the present paper, C (*) stands for the unnormalized chain complex of
* and C'(x) stands for the normalized chain complex of *. For pieces of types (i) and (ii),
there is no difference between their normalized and unnormalized chain complexes. For
a piece of type (iii), that is, a colored crossing, these two complexes differ by a shift of
the Zy @ Z%2-grading. See Definition below for details.

DEFINITION 12.4. The chain complex associated to D is defined to be

m

C(D) : @é(pi),

where the tensor product is done over the common end points. For example, for two
pieces D;, and D;, of D, let Wq,...,W; be the alphabets associated to their common
end points. Then, in the above tensor product,

C(Di1 ) ® C(Dlz) = C(Dll) ®Sym(Wl [+ | W) C(Dlz)

If D is closed, that is, has no endpoints, then C'(D) and C(D) are objects of
hCh®(hmfc ).

If D has endpoints, denote by Eq, ..., [E, the alphabets assigned to all end points of D.
Assume that Eq, ..., E are assigned to exits and E41, ..., E, are assigned to entrances.
Let R = Sym(Eq|---|E,) and w = ZlepNH(Ei) = > i1 PN+1(Ej). Then C(D) and
C(D) are objects of hCh®(hmf ).

As objects of hCh®(hmf ), C(D) and C(D) have a Zy-grading, a quantum grading
and a homological grading.
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In the rest of this section, we define and study the chain complexes associated to
colored crossings. For this purpose, we need to understand morphisms between matrix
factorizations associated to MOY graphs of the type shown in Figure

m—k n+ltk
ntk—m
n m-1
2
Fk
Fig. 60

12.1. Change of base ring. There is a change of base ring involved in the computation
of Hompnr(C(I'3), %), which is the subject of this subsection.

Let A ={a1,...,am},B={b1,...,bp} and X = {x1, ..., 2p+n} be alphabets. Denote
by Ay, Br and Xj the kth elementary symmetric polynomials in A, B and X. Define

k
Ey=Xg— Y AjBij, (12.1.1)
j=0
k .
Hy, =Y (=1Yh;(A)Xs—; — By, (12.1.2)
7=0
- )hi(A) Xy~ By ifk=0,1,...,n,
; Z?zo(_l)jhj(A)kaj ifk=n+1,...,n+m.

Define I; and I» to be the homogeneous ideals of Sym(A|B|X) given by
L =(E1,....,Entn), L= (Hi,...,Hpin).
LEMMA 12.5. I} = I5.

Proof. First, note that

k k
S (1) hi(A) By =Y (—1)'hi(A) Xpi —

=0

This shows that Iy C I;.
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Next, we have

k k k—i k
STAHe =Y A (D) j(A)X; =Y AiBi
=0 i=0 7=0 i=0

k k—j k
= X)) (D) b (A)A; = AiBrs
j=0 i=0 i=0

So I; C I. Altogether, we have I} = 5. m

Note that, for k =n+1,...,n+m, H; € Sym(A|X). Define I3 to be the homogeneous
ideal of Sym(A|X) given by I3 = (Hpi1, ..., Hytm)-

LEMMA 12.6. The quotient ring Sym(A|X)/I5 is a finitely generated graded-free Sym(X)-
module of graded rank ["1"]. As graded Sym(A[X)/I3-modules,

n
Homgymx) (Sym(A[X) /I3, Sym(X)) = Sym(A[X) /I3 {g=2mny, (12.1.3)
Proof. Note that
Sym(A[X)/I3 = Sym(A[B|X)/ I = Sym(A[B|X)/ 11,
where the isomorphisms preserve both the graded ring structure and the graded Sym(X)-
module structure.
By Theorem 3] Sym(A|B|X)/I; is a finitely generated graded-free Sym(X)-module
of graded rank ["'"]. From the above isomorphism, so is Sym(A[X)/I;.
Note that Sym(A|X)/I3 = Sym(A|B|X)/I; = Sym(A|B). By Theorem (3] there are
a Sylvester operator on Sym(A|B) and a pair of homogeneous Sym(A U B)-bases for
Sym(A|B) that are duals of each other under the Sylvester operator. These induce a pair
of homogeneous Sym(X)-bases {Sx | A € Ay, } and {S§ | A € Ay} for Sym(A|X) /I3
and a Sylvester operator
¢ : Sym(AX)/I3 — Sym(X)
such that, for A\, € Ay, p,
1 i =G
C5x - 5p) = {o if A
(Recall that A,y ={ A=A > > X)) [ M <npand X =(n—Ap, > - >n—X\).)
One can deduce from the above that {C(Sx - *) | A € Ay} is the Sym(X)-basis of
Homgymx) (Sym(A[X) /I3, Sym(X)) dual to {S} | A € Ay} So the Sym(X)-module map
Sym(A|X) /I3 — Homsym(x)(Sym(MX)/Ig, Sym(X))

given by u — ((u-x) is a homogeneous isomorphism of Sym(X)-modules of degree —2mn.
It is easy to see that this map is also Sym(A|X)/Is-linear. This proves (IZ13). m
LEMMA 12.7. Let A = {a1,...,am}, X ={21,...,Zmin}, Y1,..., Yy be alphabets. De-
fine

R = Sym(AX|Y1] - |Yk)/(Hnt1s - - -, Hpm), R= Sym(X[Yy |- - - [Yg),



12.2. Computing Hommur (C(T'3), *) 153

where Hyy1,...,Hyym are the polynomials given in (IZLJ). Then R is a subring
of R through the composition of the standard inclusion and quotient maps R —
Sym(A[X[Yq|---[Yi) = R.

Suppose that w is a homogeneous element of R of degree 2(N+1), and M is a finitely
generated graded matriz factorization over R with potential w. Then Homp (M, R) and
Homp(M,Homy (R, R)) are both graded matriz factorizations over R of potential —w.
Moreover, as graded matrixz factorizations over R,

Hom (M, R) 2 Homp(M, Hom (R, R)) = Homp (M, R){g~*™"}. (12.1.4)

Proof. Recall that the R-module structures on Hom (M, R) and Hom a(R, R) are given
by “multiplication on the inside”. From Lemma[I28, we know that, as graded R-modules,
R R{ [m:”}} and, as graded R-modules, Hom (R, R) = R{q?™"}. So

HOmR(M, HOHIR(R, R)) = HomR(M, R){q—%nn}

is a graded matrix factorization over R of potential —w.

Define o : Homp(M, R) — Homp (M, Hom (R, R)) by a(f)(m)(r) = f(r-m) for
[ € Homp (M, R), m € M, r € R. Define 3 : Hompg(M, HomR(R,R)) — Hom (M, R)
by B(g)(m) = g(m)(1) for g € Homp (M, HomR(R,JfE))7 m € M. Tt is straightforward to
check that

e o and 8 are R-module isomorphisms and are inverses of each other;
e « and [ preserve both the Zs-grading and the quantum grading.

This implies that Hompg(M, R) is a Zy @ Z-graded-free R-module isomorphic to
Homp (M, Hom (R, R)) = Hompg(M, R){g~?""}. The differential of M induces on
Hom (M, R) an R-linear differential making it a graded matrix factorization over R
of potential —w.

To prove the lemma, it remains to check that o and g commute with the differentials
of Hom (M, R) and Hom (M, Hom (R, R)). Since a and f3 are inverses of each other, we
only need to show that o commutes with the differentials. Recall that, if f € Hom (M, R)
and g € Homp (M, HomR(R,R)) have Zy-degree €, then df = (—1)°T1f o dy and dg =
(=1)**t'g o dps. So, for any f € Homp(M, R) with Zs-degree e and m € M, r € R, we
have

a(df)(m)(r) = (df)(r-m) = (=1 f(du (r - m)) = (=1)°F f(r - dae(m))
= (=17 a(f)(dar (m))(r) = d(a(f))(m)(r).
This shows that cod =doa. m
12.2. Computing Hompyr(C(I'2),*). Let I'? be the MOY graph in Figure We

mark it as in Figure [6Il where we omit the markings on the two horizontal edges since
these are not explicitly used.
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m X YA m X YA
k k
D E
m—kt D E1n+l+k m—k n+l+k m—k n+l+k
D E
n+k—m n+k—m
n A B m—41 n N B m41
2
Fk Fupper Flower
Fig. 61
LEMMA 12.8.
* Sl + Y1 - T1 - B1
J
* 1=0(SiYj—i = T;Bj—;)
n+l+k
* Do (SiYagirk—i — TiBnjiyk—i) :
2\ ~ —k(n+l)—(m—k)(n+k—m
C’(Fk) ~ | % S {q (n+1)—( ( )},
* Sk-{-l
* T,
¥ Tnokrma Sym(X|Y|A[BID)
where

&
[

(—1)'hi(D) X,

M- M-

Il
o

3
[

(—1)’hi(D)A; i,

(2

and X;, Y;, A;, Bj, Dj, E; are the jth elementary symmetric polynomials in the corre-
sponding alphabets.

Proof. Cutting I'? horizontally in the middle, we obtain the MOY graphs I'ypper and
Tiower in Figure 61l Applying Lemma B23] to T'ypper, We get

* Si1+Y—E

(Dl SiYm) - B

C(Dupper) = Oy
(Cupper) s (T S Ynsiin—i) — Bnyitk N }
x  Sm
* Skt

Sym(X|Y|D|E)
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Applying Lemma [R:23] to T'jower, we get
* E1 — Tl - B1

x B =Y _(TiBj

C(Tower) >~ n q—(m—k)(n-i-k—m) 7
( : * BEnyier— 20 TiBativk—i { }
* T,
¥ Thpimyt Sym(A[B[DIE)
Thus,

C(F%) ~ C(Fupper) ®Sym(]D)|]E) C(Flower)
* S1+Y—E4

s (o SY) — E;

n+l+k
(0T SiYnqik—i) — Enyivk
* S

12

*  Skt1 —k(n+)—(m—k) (n+k—m)
* E1 — T1 - B1 {q }’

x B -7 TiBj

n+l+k
*  Enpir — 22 TiBntisk—i

* T,
* Tnokrman Sym(X|Y|A[B|D|E)
From here on, the lemma is obtained by excluding F1, ..., E, 14+ from the base ring by

applying Proposition [3.22] to the rows
* E1 — T1 - B1

N . .
* E; =%  TiBj_;
nti+k

*  Bpyipr — 20 LiBnyipr—

in the above Koszul matrix factorization. m

LEMMA 12.9. Let I'? be the MOY graph in Figure Bl and I‘_,% the MOY graph obtained
by reversing the orientation of I‘i, Suppose that M is a matriz factorization over R :=
Sym(X|Y|A|B) with potential

w = pN4+1(X) + pn41(Y) = py41(A) — pry1(B).
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Then
Homypyp (C(I3), M) = H(M ©5, C(T7))(m +n + [){g+mm (N =D=mi=nty
where H(M &, C’(F_i)) is the usual homology of the chain complex M ® C(F_%)
Proof. Let S; and T} be as in Lemma [I2Z8 Define
R = Sym(X[Y|A[BD)/(Sk+1,- - - 5m)-

Let
* Sl + Yl Bl
* z’:O(SiY}*i —TiBj—)
M= .. .T |
Zijol-i_k (Siyn+l+k—z' - HBTL-‘,-ZJ,-k‘—IL')
x T,
*  Thokymt1 -
* (Sl + Yl Bl)
* = Z 0(SiYj_i = T;Bj_;)
M p—
Z?J’_Ol—‘rk(‘s’ Yn+l+k i HBTL-H-‘,—/C—'L)
* T,
O O ! .
Then

HomR(M, R) o~ M<m o+ l>{q(m+"+l)(N+1)*Z"+’+’“2 ZJ nektmal 23}.
By Lemma and Proposition [3.23],
HomHMF,R(C(Fi)’ M) = H(HomR(C(Fi), M))
_ H(HomR(M{qfk(nJrl)f(mfk)(nJrkfm)}’ M))
_ H(HomR(./\/l, M)){qk(n+l)+(m—k)(n+k—m)}.
Note that M is finitely generated over R and over R. By Lemma 277,
Hom (M, M) = M & Hom (M, R) =2 M @ Homp(M, R){q~2km=k}.

Altogether, we have

1

Homyy i 2(C(T7), M) = H(Homg(M, M)){gHrD+tm=k)nth=m)
H(M ®p HOIIIR(M, R)){qk(nJrl)Jr(mfk)(nJrkfm)72k(mfk)}
H

(M @5 M)(m+n+1){q},

14

1%
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where

s=k(n+0)+(m—-k)(n+k—m)—2k(m—k)

n+l+k n
+(m+n+D(N+1) - Z 2i— > 25
j=n—k+m+1

On the other hand,
H(M @5 C(I7)) = H(M @ M){g~ R =(meilnrkzmy,
So
Homyyp 7(C(I3), M) = H(M ® 5, C(T%))(m + n + 1){g= THm =R+ mahinthim)y
One can check that
sHEm—E) +m+Dn+k+m)=>10+m+n)(N—1)—m?—n?
This proves the lemma. m
12.3. The chain complex associated to a colored crossing. Let cm n and ¢,
be the colored crossings with marked end points in Figure [62l In this subsection, we

define the chain complexes associated to them, which completes the definition of chain
complexes associated to knotted MOY graphs.

Fig. 62

For max{m — n, 0} < k < m, we call TY and I'? in Figure B3] the kth left and
right resolutions of cm n- The following lemma is a special case of decomposition (V)

(Theorem [ITI)).

LEMMA 12.10. Let m,n be integers such that 0 < m,n < N. For max{m—n,0} <k <m,
define Tt and T to be the MOY graphs in Figure[63 Then C(TE) ~ C(TE).

m X YAn m X YAn
ntk—m k
n+k m—k m— n+k
k n+k—m
n m n m
A B A B
L R
Fk Fk
Fig. 63

LEMMA 12.11. Let m,n be integers such that 0 < m,n < N. For max{m — n,0}
S j?k S m)
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Hompr (C(T'F), C(TF)) = Hompwr (C(TF), C( )
= Hompnie (C(I'}), C(T'F) 2 Hompne (C(T]), C(T]))

gC,(@){|:n-i-j—i-k—m:| |:n+j+k—m:| |:N+m n—j— k:| |:N+m n—j— k:||: N :|q(m+n)Nn2m2}.
k 7 n+j+k—m

In particular,

e the lowest non-vanishing quantum gradings of these spaces are all (k — j)?,
e the subspaces of homogeneous elements of quantum degree (k — §)? of these spaces are
1-dimensional and have Zsa-grading 0.

Proof. By Lemma[I2.10, the above four Hompyr spaces are isomorphic. So, to prove the
lemma, we only need to compute one of these, say HomHMF(C’(Ff)7 C(TE)).
Let R = Sym(X|Y|A|B). By Lemma I29]
Hompnyr (C(UF), O(T])) = H(C(TF) @ C(TF))m + n{qtmtmN ==y,

where ﬁ is Ff with the orientation reversed.

J n+j+k—m n+jt+k—m
m
m—j pokomd m—j ntj
n+k n+k m—k|
k
n
Qtizmm Qtitk—m
r I
Fig. 64

Let T', TV and T” be the MOY graphs in Figure Then, by Corollary and
decompositions (I)—(IT) (Theorems [6.14] and [6.12]), we have

Crh) 95 O = o) = o { [5] [o5e |

k J

~ C P// ] + ]f { n+j+k— m:| |:n+j+k—m:| |:N+m—n—j—k:| |:N+m—n—j—k:|}

i m—k m—j

-~ C (Z) m+n {|:n+j+k m:| |:n+j+km:| |:N+mnjk:| |:N+mnjk:| |: N :|}
7 m—k m—j n+j+k—m
This shows that

Homr (C(TF), C(TF))

) C(@){[n+]+km:| |:n+j+km:| |:N+mnjk:| |:N+mnjk:| |: N :|q(m+n)Nn2m2}.
k 7 m—k m—j n+j+k—m

The rest of the lemma follows from the above isomorphism. m

COROLLARY 12.12. Let m,n be integers such that 0 < m,n < N. For max{m — n,0} <
k < m, the matriz factorizations C(T'L) and C(TE) are naturally homotopic in the sense
that the homotopy equivalences C(T'k) = C(T'E) and C(LE) = C(T'E) are unique up to
homotopy and scaling.
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Proof. The existence of the homotopy equivalences follows from Lemma [I2.J0. Their
uniqueness follows from the j = k case of Lemma [I2Z.11] =

COROLLARY 12.13. Let m,n be integers such that 0 < m,n < N. For max{m — n,0} <
j.k < m, up to homotopy and scaling, there exist unique homogeneous morphisms

diy:CTh) = CTy), dif:c@y) — o),
Ay (L) = C(Ty),  df: CIF) — oY)
which

e have quantum degree (j — k)? and Zy-degree 0,
e are homotopically non-trivial.

Moreover, up to homotopy and scaling, every square in the diagram below commutes,
where the vertical morphisms are either identity or the natural homotopy equivalences
from Corollary 12.12]

LL
dj,k

c(ry) c(ry)

1
R

cry)

~ =

ol —2 . orhy

Proof. This follows easily from Lemma [[2.11] =

From Corollary TZ.T3] we know that, up to homotopy and scaling, the morphisms djLﬁ ,
df,f, dﬁ kR and df,? are identified with each other under the natural homotopy equivalences
C(Tf) ~ C(Tf) and C(I'y) ~ C(T'}). So, without creating any confusion, we drop the
superscripts in the notations and simple denote these morphisms by d; 1.

DEFINITION 12.14. Let m,n be integers such that 0 < m,n < N. For max{m—n,0}+1 <
k < m, define d} = dj x—1. For max{m —n,0} < k < m — 1, define d, = dj, j4+1. Note
that these are homogeneous morphisms of quantum degree 1 and Zs-degree 0.

THEOREM 12.15. Let m,n be integers such that 0 < m,n < N.
e For max{m —n,0} +2<k<m,d; ,od} ~0.
e For max{m —n,0} <k <m—2,d,,0d; ~0.

Proof. For max{m —n,0} +2 <k < m, dzfl od; : C(Fﬁ) — C(Fﬁ_Q) is a homogeneous
morphism of quantum degree 2. But, by Lemma [[2.11] the lowest non-vanishing quantum
grading of Hompmr(C(TE),C(TE_,)) is 22 = 4. This implies that d;} |, o d; ~ 0. The
proof of d;_ | od,’ ~ 0 is very similar and left to the reader. m
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DEFINITION 12.16. Let ¢ ,, be the colored crossings in Figure G2 R = Sym(X|Y|A|B)
and
w = pn+41(X) + pr41(Y) — py41(A) — prvya(B).

We first define the unnormalized chain complexes C’(cin)

If m < n, then CA’(c:gn) is defined to be the object
Ly 9 L 1y Y df Inp —
0—=C(y) —=CT, He } —— - — CT){e ™ =0

of hChb(hmwa), where the homological grading on CA'(CTJ;W) is so defined that the term
C(TE){g~ ™M} has homological grading m — k.

If m > n, then C‘(c:;m) is defined to be the object

L dt, L 1 dj;L—l dj;tfnﬁ»l L —n
0—=Cy) == Cy )l '} Clp—)ig "} =0

of hChb(hmfR’w), where the homological grading on CA'(CTJ;W)
C(TE){g~ ™M} has homological grading m — k.

If m < n, then C‘(c:nm) is defined to be the object

is so defined that the term

dy e &y
0= CTH{g™} == - = Oy, _){a} —— C(I'y,) =0
of hChb(hmfR’w), where the homological grading on CA'(c;L’n) is so defined that the term
C(IE){g™ ¥} has homological grading k — m.
If m > n , then CA'(C,:%”) is defined to be the object
n d;nfn d’;},72 L d;nfl L
0= CCnn){¢"t — - —— O ){g} — C(T5,) = 0

of hChb(hmf R,w)v where the homological grading on C' (¢
C(TE){g™ ¥} has homological grading k — m.

) is so defined that the term

n

The normalized chain complex C(c, ) is defined to be
Clet ) = C:'(Cﬁm,m)<m>|| —m|{gmN Y i m =,
’ Clehn) if m #n,
- Clpm)(m)|m|{g~mNF1=myif m =,
Clemn) =93 A
’ Clemn) if m # n.

(Recall that ||m]|| means shifting the homological grading by m. See Definition B.301)

COROLLARY 12.17. Replacing the left resolutions Fé in Definition [2.16] by the right
resolutions I} does not change the isomorphism types of C(c, ) and C(ci, ,,) as objects
of Ch®(hmf ;).

Proof. This is an easy consequence of Lemma [[2.10] and Corollaries [2.12 and [2.13] =

COROLLARY 12.18. The isomorphism type of the chain complexes C’(D) and C(D) as-
sociated to a knotted MOY graph D (see DefinitionI2Z4)) is independent of the choice of
the marking of D.

Proof. We only need to show that adding or removing an extra marked point on a segment
of D does not change the isomorphism type. Note that adding or removing such an extra
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marked point is equivalent to adding or removing an internal marked point in a piece D;
of D. (See Definition T22])

If D, is of type (i) or (ii), that is, an (embedded) MOY graph, then, by Lemma [6.4]
adding or removing an internal marked point does not change the homotopy type of the
matrix factorization of this piece. Moreover, it is easy to see that the differential map of
this piece is 0 with or without the extra internal marked point. So, in this case, the addi-
tion or removal of the extra marked point does not change the isomorphism type of C'(D).

If D; is of type (iii), that is, a colored crossing, then, by Lemma [64] adding or
removing an internal marked point does not change the homotopy types of the matrix
factorizations associated to the resolutions of this colored crossing. Moreover, by the
uniqueness part of Corollary [2.13, up to homotopy and scaling, the differential map is
the same with or without the extra internal marked point. So, again, the addition or
removal of the extra marked point does not change the isomorphism type of C(D). m

12.4. A null homotopic chain complex. In this subsection, we construct a null
homotopic chain complex that will be useful in Section below. The construction of
this chain complex is similar to the chain complex of a colored crossing.

The following lemma is a special case of decomposition (V) (Theorem [[TT).

LEMMA 12.19. Let m,n be integers such that 0 < m,n < N — 1. For max{m — n,0} <
k< m+1 and max{m —n,0} < j < m, define I'y and T, to be the MOY graphs in
Figure[68l Then, for max{m —n,0} <k <m+1,
o) ifk=m+1,
Cly) = CT)®CT_y) if max{m—n,0}+1<k<m,
C(Max{m—noy) i k=max{m—n,0}

m 4 x R g PRE) m X Y n41
ntk—ny J
n+k m+l—k m—j n414j
k n+j—m
"la B | ™t "la B | ™t
Iy I
Fig. 65

LEMMA 12.20. Let 'y and I‘;- be as in Lemma 1219 Then

Hompyr (C(I), C(Ty)) = C(@){ {nﬂcﬂ‘m] [n+k+jm]

k J
|:N+mnkj:| |:N+mnkj:| |: N :| q(m+’ﬂ+1)(N1)m2n2}
m—j m+1—k n+k+j—m
In particular,

° HomHMF(C(F;-), C(Tk)) is supported in Zy-degree 0,
e the lowest non-vanishing quantum grading of Hommpmr(C(I), C(I'y)) is equal to
U=k —k+1),
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e the subspace of homogeneous elements of Hommyr(C(I'), C(T')) of quantum degree
(J—k)(j —k+1) is 1-dimensional.

Proof. By Lemma [[2.9] we have
Homumyr (C(I), C(Ik)) & H(O(Ts) ® 4 OT7))m + 4 1) {gmHrDN=Dmme ey,
where R = Sym(X|Y|A|B) and F_; is I} with its orientation reversed.

J n+jtk—m
j potk—m m—j n414j
n+k
mt+1—k
k
Qtiz—m Qtitk—m
T I’
Fig. 66

Let T', TV and T” be the MOY graphs in Figure Then, by Corollary and
decompositions (I)—(II) (Theorems [6.14] and [.12), we have

C(Ty) @5 C@T) = C(I) ~ C(F’){ {”JrkJrjM] [n+k+jm] }

k J

C(l—w ] +k+1 {|:n+k+j m:| |:n+k+jm:| |:N+mnkj:| |:N+mnkj:|}
7 m—j m+1—k
~ C(@ m+n+ 1 {|:n+k+] m:| |:n+k+jm:| |:N+mnkj:| |:N+mnkj:| |: N :|}

7 m—j m—+1—k n+k+j—m
Thus,

Homgpyr (C(I), C(Ty)) = C(Qj){ {”+k+jm:| [n+k+a‘m]

k J

|:N+mnkj:| |:N+mnkj:| [ N :|q(m+n+1)(N1)m2n2}
m—j m+1—k n+k+j—m

The rest of the lemma follows from this isomorphism. m
LEMMA 12.21. For max{m —n,0} <i,j <m,
C if i=1y,
0 if i
In the case i = j, Hompme(C(I}), C(I7)) is spanned by idc(r).
Proof. Ifi > j, then (i—j7)(i—j+1) > 0. So Hompme(C(T}), C(T;)) = 0 by Lemma[I220
But, by Lemma[IZT9, C(T';) =C(I';)®C(T";_; ). This implies that Hompm¢(C(I}), C(T';))
= 0.

If i < j, then (i—G+1))6E—G+1)+1) > 0. So Hompme(C(T}),C(Tj41)) = 0
by Lemma (220 But, by Lemma I2T9 C(T';11) = C(I';, ;) ® C(I'}). This implies that
Homyme(C(I7), C(T)) = 0.

HOmhmf(C(F;)7C(F;)) = {
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If i = j, then by Lemma 220, Hompm¢(C'(I}),C(I'i41)) = C. But, by Lemma 1219
C(Tiy1) = C(I'f,,) @ C(I'}) and, from the above, Homp,¢(C(I';), C(I'j,,)) = 0. Con-
sequently, Hompme(C(T}), C(T)) = C. It follows that C(I"}) is not null homotopic and,
therefore, idg(rs) is not null homotopic. So idg(rs) spans the 1l-dimensional space
Homy, (C(T%),C(T%)). m
LEMMA 12.22. For max{m —n,0} <j,k <m+1,

CeC if max{m—n,0}+1<j=Fk<m,

C if j=k=max{m —n,0} orm+1,
Homput (C(T;), C(T'y)) T { )

C Zf |j - kl =1,

0 if |g—Fk|>1.

Proof. This follows easily from Lemmas and[[2.27] =
DEFINITION 12.23. Denote by
Jeg : C(T)) = C(T), Ppi: C(Ty) = C(T%),
Jek—1:CT_1) = C(Tx), Prr—1:CTx) —CT%_)
the inclusion and projection morphisms in the decomposition
C(Ty) = C(T) & C(T)_,).
Define
6 = Jk—1k—19Pip1:C(Lx) = C(Tx-1), 6 = Jkt1,60 Pig: C(Lx) = C(Dpgr).

Then 5,? and ¢, are both homotopically non-trivial homogeneous morphisms preserving
both the Zs-grading and the quantum grading. By Lemma [[2.22] up to homotopy and
scaling, 5,:' and d,  are the unique morphisms with such properties.
LEMMA 12.24. 6}, 067 ~0, 6, , 06, ~0.
Proof. From Lemma [[2.22] we have
Homhmf(C(I‘k), C(kag)) = Homhmf(C(I‘k), C(Fk+2)) = 0.

The assertion follows from this. m

Let R = Sym(X|Y[|A|B) and w = pn41(X) + pn11(Y) — py41(A) — py41(B). The
above discussion implies the following.
PROPOSITION 12.25. Let k1 and ko be integers such that max{m —n,0} +1 < k; < ko <

m. Then
5+ +

J . oy Pry ky—
0= C(I%,) == C(Tk,) = -+ =+ O(Ty,) —=— C(T}, 1) =0,
Fer e 5 S P
0= O}, 1) 205 O(Dy,) —5 - 2275 O(Ty,) —2225 O(T,) — 0
are both chain complexes over hmfR’w and are isomorphic in Chb(hmféyw) to
ka
P 0-or) = oy —o),
j=k1—1

which is homotopic to O (that is, isomorphic in hChb(hmwa) to 0).
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12.5. Explicit forms of the differential maps. In the proof of the invariance of sl(N)
homology, we need to use explicit forms of the differential maps in the chain complexes
defined in the previous two subsections. In this subsection, we give one construction of
such explicit forms. (There is more than one explicit construction of the same differential
map. See for example [29, Figure 17].)

m n+l m n+l
ntk—m dzj ndk—1—m_
n+k m4l—k ntk—1 mAl—k+1
k dk—l k—1
n ml n ml
1 1
Fk kal
¢k,1T [‘i’k,l ¢k,2] L@cﬂ
M ntk—m| M Tntk—m—1 n+l m ntk—m—1 _| *+!
nik X1®X1 4k — hi m+l—k+1
_— _—
ntk—1 1 mtl—k <«  ntk-1 1 mtl—k <« ntk—1 1 m4l—k
0.0 =
X ®x R
n4k m4l—k+1
n k ml n k—1 k ml n k—1 m-l
Fig. 67

Consider the MOY graphs and morphisms in Figure Observe that

® O, %,u Ok,2, 5,612 are the morphisms associated to the apparent edge splittings and
mergings (see Definition RI0).

e " and ! are the morphisms from Proposition B21] (more precisely, Corollary [0.3).

e hy, hy are the morphisms induced by the bouquet moves (see Corollary[E.1T], Lemmal84]
and Remark BH).

We define d,j and d,_, to be

dif =pg0hro(x' ®@x") o dra,
di_y = g1 0 (xX° ® x°) o hi © 2.

THEOREM 12.26. d; and d,__, are homotopically non-trivial homogeneous morphisms of
Zo-degree 0 and quantum degree 1 —[.

When | = 0, d; and d,_, are explicit forms of the differential maps of the chain
complexes associated to colored crossings defined in Definition 12,10l

When I =1, d; and d,_, are explicit forms of the differential maps 5; and 6,_, of
the null homotopic chain complexes in Proposition [2.25]

Consider the diagram in Figure [G8 where the morphisms are induced by the apparent
local changes of MOY graphs. To prove Theorem [I2.26] we need the following lemma.
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n+k
I
$1 ®$QT j(lsl ®¢2
ntk
m n+k—m
. n+k—m—1
n+k — y n+k—1
b3 x°®x° w1 |
n k
n k
B Y
ntk n+k
LEMMA 12.27.

(01 @ ¢h) o g = ho(x' @x')odso (b ® ),
Py o (0 @ ¢h) = (41 © da) 0 g3 0 (X’ @ x°) 0 h.
That is, the diagram in FigurelGs commutes up to homotopy and scaling in both directions.
Proof. Let
f=(8) @) o b, [=¢ho (¢ @), B
g=ho(x'®@x")ogs0(d1@¢2), = (1 ®¢3)0d30(X°®@X")0h.
Then f, f,g,7g are homogeneous morphisms of Zs-degree 0 and quantum degree 7 :=
m—k+1—m(n+k—m)—nk.
Using decomposition (IT) (Theorem [6.12)), we have
kE—1 k—1
omr=cnfsa 57571
m n

Denote by (O« an oriented circle colored by n + k. It is easy to check that
HomHMF (C(F), C(FI)) = HomHMF (C(Fl), C(F))

= O+ {ln+ [T 7 R gosovn )

n

C(@){[ N ][n+k] {n—f—k— 1} {n—f—k— 1}q(n+k)wnk)}.

n+k m n

2

Observe that:

e These spaces are supported in Zy-degree 0.
e The lowest non-vanishing quantum grading of these spaces is 7.
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e The subspaces of these spaces of homogeneous elements of quantum grading 7 are
1-dimensional.

Thus, to prove that f ~ g and f ~ §, we only need to show that f,f,g,g are all
homotopically non-trivial.
By Lemma RI1] we have

7 0 m(SA7rL,7L+k—1—nL (A) ’ S>\n,k71 (B) : (_T)n—i_k_l) of~ idC'(F) .
This implies that f, f are not homotopic to 0.
By Corollary [[0.3] we have

GOM(Sx,0prrn (“X) Sa oy (<Y) - (1)) 0 g
~ (@ ® @) 5 0m(Sx, ey (X) - Sa i (ZY) - (1)) 0 (10 @ 1)
o(x! ) $30 (P11 ® ¢2)
~ (@ <z>2 m(sAm e (FX) Sy () - (R

;\
3

45 ( r)"TB:)) 0 630 (61 @ 6)

= Z 2(51 ® 52) o 53 o m(SAm,n#»k—l—m (—X) - Aj - SA?L,IC—I (=Y)

- By - (—r)PmTRTITIEG 6 e o (1 @ @),

where Aj, B; are the jth elementary symmetric polynomials in A and B. But, by Lem-
ma [BI1] the only homotopically non-trivial term on the right hand side is the one with
j=m,i=n.So

gom(s)\m,n+k—1—m(_x) ’ S)\n,k—l (_Y) ’ (_T)n+k_1) og~ 53 Om((_r)n+k_1) o3~ idc(l") :

Thus, g,g are not homotopic to 0. =

Proof of Theorem [IZ.20. Tt is easy to check that dz and d,_, are homogeneous mor-
phisms of Zs-degree 0 and quantum degree 1 — [. Recall that the differential maps of the
complexes in Definition and Proposition [[2.28] are homotopically non-trivial homo-
geneous morphisms uniquely determined up to homotopy and scaling by their quantum
degrees. So, to prove Theorem [[2.26, we only need to show that, as morphisms of matrix
factorizations, d and d,_, are not null homotopic.

Consider the MOY graphs in Figure [ where the morphisms are induced by the
apparent local changes of the MOY graphs. Note that, as morphisms between C' (fk) and
C(Fk—l)v

dZ=540h20(x1®X1)0¢3, d;—1:$3O(XO®XO)OE20¢4-
So, by Lemma [[2.27, we have
hodf ohio(¢1 @ a) = by 0 (ds @ Pg) 0 ha o 3,
(51 ®$2) o hy Od127153 %53 ohyo (65 ®$6) ¢y %53 ohy o¢g0 (55 ®$6))
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mAn4l

m+n-+l
n+l

m m n+l m n+l
D D 1 1 D
P — @3 ntk] ntk—m X' ®x ntk—m— Btk —nj

o ml—k ————— =

" k £ <~ ntk—t 1 -k < ntk—1 1 mti—k
[on X X ®x X
n ml i
E
f mndl n k m4l k-1 kP

EE
3
i
s
t

/Jﬂﬁl fm+l
m, ntl
o ntk—m—1 | 7tl _ .
mAl—k+1 b4 ntk—1—m has
— k1 mAl—k+1 T mAl—k+1
n+k—1 1 mtl—k <—— B k—1 A I —
o hs
mAl—k+t1 " mt
n k-1 mtl f P mtntl
mtntl mAn+tl
b7
ntk—1 mAl—k+1
B A b
mtntl
Fig. 69 r

where the morphisms on the right hand side are depicted in Figure Note that some
morphisms in Figures [69 and [{(] are given the same notations. This is because they are
induced by the same local changes of MOY graphs.
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m—4n—+l1

m4n+l
@3 I—k+1
—_— —_— n+k-—1 m+ +
n+k myl—k <~——m————— - m+l—k
- k—1
- é n+
3 B B X
m+l—k+1
A
m—4n—+l1
m+n+l m+n+l
m+l—k+1

Fig. 70

Note that 67 o (55 ®$6) 054 ~ 50 053 ohyo (55 ®$6). So, by Lemma BI1] we have

b70 (65 @ P6) oM(Sx, i1 (D) - Sxy iy (B) - Bri—1)
o hgod; ohyo(¢1 @ d2) om(Sx, i (—X)) © b0
R ¢y 0 (¢5 @ Pg) om(Sx,iis_n (D) - S, 1 (E) - Buyro1)
0 ¢y 0 (¢5 @ dg)ohaodzom(Sx, . r(—X)) o0 do
~ ¢7.0 (65 ® Pg) © Gy 0 M(Sx, 1 (D) - Sny iy (B) - Bro—1)
o (5 @ p6) 0 hg o pzom(Sx, i (—X)) 0 o
R ¢ 0 d3 0 hy o (5 ® ) o (SN ii1om D) - Sy (B) - Brgi—1)
0 (¢5 ® ¢6) 0 haopgom(Sx, .\ (X)) 0o
R Py 0 M(Sx, 4y i (—X)) 0 ¢ = ide(r),
where B y,—1 is the (n + k — 1)th elementary symmetric polynomial in B. This implies
that dz is not null homotopic.
Similarly, note that ¢, o ¢3 ~ ¢; 0 ¢, o hy. So, by Lemma BIT] again, we have

G0 0oM(Xmpi-1) © (61 ® y) o hyody_hzom(Sx, ipyn (D) S, (E))
0 (g5 @ d6) o M(SN, 41 1 marsrr(B)) 0 B7
~ ¢y 0 M(Xmpi—k) © 30 hy 0 ¢y 0 (¢5 @ )
om(Sx, piirm (D) - Sx, ,_, (E)) 0 (¢5 ® ¢6) 0 m(Sx, 1,y srss_i (B)) © 67
A §y 0 dg 0 hy om( X yi—i) 0 ¢ 0 (d5 ® dg)
om(Sx, piprm (D) Sx, ,_, (E)) 0 (¢5 ® ¢d6) 0 m(S,,,,_y srss_i (B)) © 67

~— —~, =
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~ 57 o 54 o m(Xerlfk) o ¢4 ] (55 X 56)
© m(SAnL,n+k7177n (D) : S)\n,k—l (E)) o (¢5 & (bﬁ) © m(SAn+k71,7n+l+lfk: (B)) o ¢7
~ ¢7 © m(S)\n,+k—1,m,+l+1—k(B)) ° ¢7 ~ idC(l“)a

where X is the jth elementary symmetric polynomial in X. This implies that d,_, is not
null homotopic. =

If, in a colored crossing, one of the two branches is colored by 1, then we have a
simpler explicit description of the chain complex associated to this crossing.

Consider the colored crossings cfn and c1,, in Figure [[Il Their MOY resolutions are
given in Figure

Fig. 71

n 1

Fig. 72

Recall that Proposition (or, more precisely, Corollary [0.9) gives homogeneous mor-
phisms X% : C(Ty) — C(T'1) and x!' : C(I'1) — C(T) that have Zs-degree 0 and quantum
degree 1. By Proposition B30, up to homotopy and scaling, x° and x' are the unique
homotopically non-trivial homogeneous morphisms with such degrees. Thus, we have the
following corollary.

COROLLARY 12.28. The unnormalized chain complezes of ¢, and ¢y, are
P 1,n 1,n

Cler )= %0 = C(T1) X5 CTo){g 1) — 07,
—— —_———

1,n
0 1
A 0
Cler,) = “0— C(To){q} = C(T1) — 07,
/ — N——
—1 0

where the numbers in the under-braces are the homological gradings.
The differential maps in the chain complexes of cffhl can also be similarly expressed
as the corresponding x° and x'. The details are left to the reader.

REMARK 12.29. Corollary [2.28 shows that, for cfn and Cfml, the chain complexes de-

fined in Definition [2.I6 specialize to the corresponding chain complexes defined in [54].
In particular, for cfl, the chain complexes defined in Definition [[2.16] specialize to the
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corresponding complexes in [I9]. So our construction is a generalization of the sl(NV)
Khovanov-Rozansky homology.

12.6. The graded Euler characteristic and the Z;-grading. We now prove The-
orem [[L.3] First, we introduce the colored rotation number of a closed trivalent MOY
graph.

Let I' be a closed trivalent MOY graph. Replace each edge of T of color m by m
parallel edges colored by 1 and replace each vertex of ', as depicted in Figure 2 to the
corresponding configuration in Figure [[3] in which each strand is an edge colored by 1.
This changes I" into a collection of disjoint embedded circles in the plane.

W -

Fig. 73

DEFINITION 12.30. The colored rotation number cr(I') of I' is defined to be the sum of
the usual rotation numbers of these circles. (See equation (231]).)

Recall that the homology H(T') of a MOY graph T is defined in Definition [6.5] and
the graded dimension gdim(C(T")) is defined to be

gdim(C(I')) = ZTEquE’i(T) € Clr,q)/(r%),

where H®*(T") is the subspace of H(I') of homogeneous elements of Zs-degree ¢ and
quantum degree 3.
Theorem follows from the next lemma.

LEMMA 12.31. Let T be a closed trivalent MOY graph. Then

(1) gdim(C(T)|r—1 = (),

(2) H'T)=04ife —cr(l) = 1.

Proof. Recall that, by Theorem 4] the sl(N) MOY polynomial (I') 5 is uniquely de-

termined by the equations in Theorem But these equations have been categorified

in Corollaries [G.1T] [T and Theorems [6.12] [614] BT 0Tl IT11 Thus, gdim(C(T))|r=1

satisfies all the equations in Theorem 23l So gdim(C(T"))|;=1 = (I')x by Theorem 24
Part (2) of the lemma can be proved by double induction on the highest color of edges

of I' and on the number of edges of I' with the highest color. The argument is extremely

similar to that in the proof of Theorem [2.41 We leave the details to the reader. m

Proof of Theorem[L3 First, by comparing Definitions [Z0 and [2.16, we can see that the
equation P (1,¢q, —1) = RT(q) follows easily from part (1) of Lemma [[231]

Next, we consider the Zs-grading. Let D be a diagram of L and I'" be any complete
resolution of D. Note that the number cr(I') does not depend on the choice of T'. We
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define cr(D) = cr(I"). At each crossing ¢ of D, define an adjustment term a(c) by

Define tc(D) = cr(D) + > a(c), where ¢ runs through all crossings of D. Then, by
Definition and part (2) of Lemma [[23T]
HSW(L)=0 ife—tc(D)=1¢Zsy.

Note that the parity of tc(D) is invariant under Reidemeister moves and unknotting .
Using these moves, we can change D into a link diagram U without crossings, that is, a
collection of disjoint colored circles. It is clear that tc(U) = tc(L). So, as elements of Zo,
te(D) = te(U) = te(L). This completes the proof of Theorem 1.3. m

(") “Unknotting” means switching the top- and bottom-strands at a crossing.



13. Invariance under fork sliding

In this section, we prove the invariance of the homotopy type of the unnormalized chain

complex associated to a knotted MOY graph under fork sliding. This is the most complex

part of the proof of the invariance of the colored sl(N) link homology. Once we have the

invariance under fork sliding, the invariance of the colored s[(N) link homology reduces to

an easy induction based on the highest color of the link. This approach is introduced in the

polynomial case in [32] and also used for the colored HOMFLYPT homology in [29] [45].
Theorem [[30] below is the main result of this section.

THEOREM 13.1. Let ij be the knotted MOY graphs in Figure [[4A Then CA'(D;':O) o~
C'(Djl) and C‘(D;O) o~ C(Dfl) That s, C‘(DZ’O) (resp. C‘(D;O)) is isomorphic in
hCh®(hmf) to C(Df) (resp. C(D;y)).

o X
B ———

+ + B
DlO Dll
n
| m+1 m—+1

o N

D3, D3, /
n
+m+l m41
v Y
DA
—+ —+ n
Dy, Dy \I/

B ———

+'m+l m—+1

Fig. 74

We prove Theorem [I3.1] by induction. The hardest part of the proof is to show that
Theorem [[3.1] is true for certain special cases in which either m = 1 or [ = 1. Once

(172]
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these special cases are proved, the rest of the induction is quite easy. Next, we state these
special cases of Theorem [[3.]] separately as Proposition and then use this propo-
sition to prove Theorem [[3.]l After that, we devote the rest of this section to proving
Proposition

PRrROPOSITION 13.2. Let D?’Ej be the knotted MOY graphs in Figure [(4.
(i) Ifl =1, then C’(D;ro) C’(D;rl) and CA'(D;O) ~ C’(D;l) fori=14.
(ii) If m =1, then C’(D+ )~ C’(D+ ) and CA'(DZ._’O) ~ C’(D:l) fori=2,3.
Proof of Theorem [I31] (assuming Proposition is true). Each homotopy equivalence
in Theorem [[31] can be proved by induction on m or I. We only give details for the proof

of
C(Df,) ~ C(Df,). (13.0.1)

The proof of the rest of Theorem [[3.1]is very similar and left to the reader.
We prove (I3.01) by induction on [. The I = 1 case is covered by part (i) of Proposi-
tion Assume that ([301) is true for some | =k > 1. Consider | = k + 1.

Fig. 75

Let lN)fb and ﬁf‘l be the first and last knotted MOY graphs in Figure By de-
composition (IT) (Theorem BI2), we have C(Dj;) = C(D,){[k + 1]} and C(D;;) =
C(D){[k + 1]} in Ch°(hmf). Consider the diagram in Figure [75] where
e h and h are the isomorphisms in Chb(hmf) induced by the apparent bouquet moves,
e « is the isomorphism in hChb(hmf) given by induction hypothesis,

e [ is the isomorphism in hCh®(hmf) given by part (i) of Proposition [3.2
e ¢ is again the isomorphism in hCh®(hmf) given by part (i) of Proposition 32
Altogether, we have
C(D{){[k + 1]} = C(DYy) ~ C(Df;) = C(D){[k + 1]}
So, by Proposition B21 C(D},) ~ C(Dy,) when | =k + 1. m
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In the remainder of this section, we concentrate on proving Proposition [13.21 We only
give the detailed proofs of C(Dfo) o~ C(Dfl) when [ = 1. The proof of the rest of the
proposition is very similar and left to the reader.

13.1. Notations used in the proof. In the rest of this section, we fix [ = 1. Then Dﬁ)
and Dﬁ are the knotted MOY graphs in Figure Keep in mind that we are trying to
prove

C(DL) ~C(DE) ifl=1. (13.1.1)

Several chain complexes appear in the proof of (I3.1.1]). We list them in this subsection.
In particular, we give names to the MOY graphs and morphisms of matrix factorizations
appearing in these chain complexes. The names will be used throughout the rest of this

section.
m 1 AN %
_—
—+ =+ n
D 10 D 11 \(
n
| m—41 m—+1

Fig. 76

Note that there is only one crossing in Dﬁ), which is of the type ciJan. We denote
by di the differential map of é(ci+1,n)~

mtjl n

m+Mn4k—m—1|
n+k m+1—k
k
n m+1
Ty
Fig. 77

Denote by I the MOY graph in Figure [[7 Then C(DIQ)) is
i+

~ CZI+1 ~ 1 d dE0+1 = ko—m—1
0= CCmnp) == CCm){g} == - ——= CIE g™ ™} =0, (13.1.2)

where ko := max{0,m + 1 — n}. Similarly, C(D7,) is
SV TI. R din s
0— C(I'z g o — ... CTp){q} = C(Tpy1) — 0. (13.1.3)
Let I', and T") be the MOY graphs in Figure Let 6 : O(TY,) — C(I'y+,) be the
morphisms defined in Definition [2.23 with explicit form given in Theorem [I2.26l Let C*
be the chain complex

lme— 5 &
0= C(I7,_y) 222ty oy, ) 22ty o 2 oy ) 0, (13.1.4)
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m 1tjn m 1tjn
ntk—m T nil k n+1
n+k m+1l—k m—k ntk41
k n+k—m
n m—+1 n m—+1
! 11
Fk Fk
Fig. 78

and C'~ the chain complex

4 4
0= O(T,) =% - 222 O(I, ) 2220y 0T, ,) — 0, (13.1.5)

where kg = max{m—n,0} and Jp—1,m—1, Prm—1,m—1 are defined in Definition[I2.23] Then,
by Lemma [[2ZI9 and Proposition [Z25, both C* and C~ are isomorphic in Ch®(hmf) to

m—1
B0 cry) = o)) —o),
j=ko

which means they are homotopic to 0.

m I, 1™ m lt j n

ntk—m "™ n+k—m n n+1

1
n+k m—k n+k m—k 1
k m k m
n m+1 n m+1
k,0 Ty
Fig. 79

Now consider C‘(Dﬁ) Note that Dfl has two crossings: one cffw and one cfn. Denote

by d,f the differential map of the cfw crossing. From Corollary[[2.28 the differential map
cfn (resp. c1,) is x! (resp. x°). Let Ty o and T’y 1 be the MOY graphs in Figure[73 Then
df acts on the left square in T'y o and Ty 1, and x°, x! act on the upper right corners of
I'y0 and I'y 1. The chain complex C(Dfl) is
ol _ — 0171 OZ— 1
0= C(Tm1) = CCmo){g™"} & Cm-11){g™'} = —
a+

Dk+ k —1—m
C(Cr1,0{d" ™} ® Ce){d" ™} = -+ =% C(Th0){d™ "™} — 0, (13.1.6)

where ko = max{m — n,0} as above and
1 + 1
X d X
axz(_thL)? D::( kgl _dz_> fork0<k<m, D:oz(d:0+l Xl)

Similarly, the chain complex C' (Dy,) is
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N, i ) )
0 = C(Tky0){g™ T 7H0} =25 oo =5 CTho){g™ T F} @ C(Tho10){g™ T F}

o, [ Om
—k) s —>1 C(Fm@){q} ©® C(Fm—l,l){q} — C(FTYL,l) — Oa (1317)
where ko = max{m — n,0} as above and
. dp, _ dy, 0 _ _
= * = for ko < k =(x* - .
[ <XO>’ 0, (XO -, or ko <k<m, 0,=I(x dy_1)
Next, we study relations between the chain complexes C (Dfl), C (Dfo) and C*.
13.2. Commutativity lemmas. To prove (I3:11]), we will frequently use the fact that

certain morphisms of matrix factorizations of MOY graphs commute with each other. We
establish two basic commutativity lemmas in this subsection.

Fig. 80

LEMMA 13.3. Consider the diagram in Figure BQ, where the morphisms are induced by
ihe apparent_local changes of MOY graphs. Then XlA ~ hyo X% o x4 ohy and XOA R
hioxY OX? ohgy. That is, up to homotopy and scaling, the diagram in FigureB0 commutes
in both directions.

Proof. Denote by Omint1 an oriented circle colored by m+n+1, and by T', TV the MOY
graphs in Figure BRIl Let I’ be I with its orientation reversed. Then, by Corollary [G.11]
Theorem [6.12] and Corollary [T1]

Homypyr (C(T1),C(To)) = H(T){(m 4 n + 1>{q(m-‘rn-‘rl)(N—m—n—1)+2m+2n+mn}
~ H(F/)<m Y+ 1>{q(m+n+1)(N—m—n—1)+27n+2n+mn}

= H(Omnt1)(m +n+1)

% [m i 1] m-+n [m +n+ 1]q(nH—n-{—l)(N—Tn—n—l)+2m+2n+7nn
m-+1

I

m+n
1 1 (m+n+1)(N—m—n—1)+2m+2n+mn )
C(Q){[m+ ][m+1} [m+n+ ][m+n+1}q
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Similarly,
Hompnie (C(To), C(T'1)) 2 H(T)(m + n 4 1) {g(m DN mmon=lt2mtantmny
m-+n
=C 1
(0){[m+ ][m+1 m4n+1
So Hompmr(C(T'1), C(Ty)) and Hompnmre(C(Ly), C(T'y)) are supported in Zs-degree 0,
have lowest non-vanishing quantum grading m + 1. And the subspaces of homogeneous
elements of quantum degree m + 1 of these spaces are 1-dimensional.

m4n+1 }

1

:| [m +n4 1] |: :| (m+n+1)(Nmn1)+2m+2n+mn}.

m+4n m+4n

Fig. 81

Let g = hgox% oxhohyand g = hyox? OX$OEQ. Note that x4, XOA, g and g are all
homogeneous of quantum degree m + 1. To show that XlA ~ g and XOA =~ g, we only need
to show that none of these morphisms are null homotopic. For this purpose, consider the
diagram in Figure 82, where ¢;, ¢;, hs and hs are induced by the apparent local changes
of MOY graphs. Let u = (—r)"*", v = Sy, . _,(=Y) and w = X,,,. Here X is the jth

m+n+1

m4n+1 mAn+1
1 P2
_— _ m+1 1
~———  m+n 1 I — {r}

m4n+1 m+n+1

m4n+1
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elementary symmetric polynomial in X. Then, by Corollary [0.3 and Lemma RBTT]

&y om(u) o gy om(v) o hig 0 g om(w) o xh o XA 0 p3o0hgopyod

m—+1
~ G om(u) o 5y o m(v) o iy 0 Gy om(w Y (1) A1k ) © 650 hs 0 62 0 6
~ Gy om(u) o Gy om(v) om( D (=) Apr1r) 0 Fig 0 G0 m(w) o gy o ho by 0 61
k=0

m—+1

~Gyomu)o by om(v Y (<1 Ansii) 0 2061
k=0

m+1
~ Gy om()o (m( D2 (1)) 0By o m(uAmiak) 0 92 ) 0 61
k=0
~ 51 © m(u) © ¢1 ~ idC(T?n#»n#»l)’
where A; is the jth elementary symmetric polynomial in A. This shows that x» and X%

are both homotopically non-trivial.
Note that, by Corollary [[0.3]

gog=haoxioxhohiohioxdox]ohsmhyoxtoxhoxdoxiohs

m

~ h - - ka— 0 E
9 om((s r) kzo( r) k) o ho
m—+1
~ hy o m(z (=) * (X1 + sXm,k)) oToa
k=0

m+1
~ m(z (—T)kAerl,k) ~ XIA o XOA.
k=0

So, the above argument also implies that
¢y om(u) o gy om(v) o hg o dzom(w)ogogogsohsodyody Xidar, ) -
This shows that g and g are both homotopically non-trivial. m

Before stating the second commutativity lemma, we introduce a shorthand notation,
which will be used throughout the rest of this section.

DEFINITION 13.4. Consider the morphisms in Figure B3] where ¢ and ¢ are the mor-
phisms induced by the apparent edge splitting and merging, h and h are induced by the
apparent bouquet moves. Define ¢ := ho ¢ and @ := ¢ o h.

By Corollary [6.1T] Lemmas and RBI7] it is easy to check that, up to homotopy
and scaling, ¢ and P are the unique homotopically non-trivial homogeneous morphisms
between C(T') and C(I') of Zy-degree 0 and quantum degree —mmn. Moreover, for \, y €
A ={( M1 > > X)) | M1 < n} they satisfy

Pom(Sr(X) - Su(—Y)) o ~ {ld%) if Xi + 1 = nfor i = 1,....m,

13.2.1
0 otherwise. (13.2.1)
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: ntm+k m4n+k
ke n+m k k| MmN
@
m—+n m n
— X Y
%)
-~
j . g m+j .
m4n4j m4n4j
¢
¢
k& m+n+tk
—
m4n
m+n
-~
J
m—+n+j
Fig. 83

LEMMA 13.5. Consider the diagram in Figure 84, where ¢; and ; are the morphisms
defined in Definition [[34] associated to the apparent local changes of the MOY graphs.
Then pa0p1 & py0ps and G, 0P, = Py0p,. That is, the diagram in Figure84 commutes
up to homotopy and scaling in both directions.

v mA-l4k btk
SN k. mantk | ™7
¥1
mngl > m+n 1
B —
®1
-
J . J m+n+j .
m4n+i+4j m+n+l+4j
To
53]\ l‘tofi ¢2T P2
by mtk |tttk Ey md4k  mintk | Mtttk
Ppa
m n4l _— m n !
< W X Y
Py
K m+j i m+j m4n+j
m4n+l4j m4n+l4j
. ry
Fig. 84

Proof. By Corollary [6.17] and decomposition (II) (Theorem [6.12]), we have
m+n+Il|{m+n
o = | Il

l n
So

Homuyr (C(T'1), C(To)) = Homuyr (C(Tg), C(T1))
> Homair (C(To), C<ro>>{ {m o q [m ’ ”] }

l n
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Let T" be the MOY graphs in Figure Then

HomHMF(C( 0),C(T'o))
<m+n+l+]+k>{q(m+n+l+J+k)(N m—n—1)— 52— }

@ N - m_n_l N-m-n-I N q(m+n+l+j+k)(N7mfnfl)fj27k2 )
k m-+n+1

HomHMF (C(Fl), C(Fo)) = HOHIHMF(C(F()), C(Fl))

O R | B | |

Thus, Hompyr(C(T'1), C(Ty)) and Hompnmre (C(To), C(T1)) are supported in Zo-degree 0
and have lowest non-vanishing quantum grading —mn — ml — nl. And the subspaces of
Hompnr(C(T1), C(To)) and Hompnr(C(Tp), C(T'1)) of homogeneous elements of quan-
tum grading —mn — ml — nl are 1-dimensional.

k

J

r
Fig. 85

Note that w201, @i0ps, P, 0P, and P; 0P, are all homogeneous of quantum degree
—mn —ml —nl. So, to prove that ps 01 ~ p4 093 and P; 0 Py =~ P53 0 P, we only need
to show that 2 0 @1, w40 @3, P; 0P, and P; 0P, are homotopically non-trivial. For this
purpose, consider equation (I3.2])) above. We get

P1 0P 0m(Sx,, 0 (X) - S (Y)) 02 001
=~y 0Py om(Sy, . (X)) 0 pa om(Sy,,,, . (Y)) 01 = ide(ry) -

This shows that s 0 ¢ and @, o @, are homotopically non-trivial. Similarly,

Pz opgom(Sy, ,(X)- Sy, .. (W))opsops
~ Pz 0@ 0m(Sy, (X)) opsom(Sy,, .., (W))oes~ider,) -

This shows that ¢4 o 3 and @5 0 g, are homotopically non-trivial. m

13.3. Another look at decomposition (IV). Decomposition (IV) (Theorem [T0.T])
plays an important role in relating C' (Dfl) to C (Dfo) and C*. In this subsection, we re-
view a special case of decomposition (IV), including the construction of all the morphisms
involved.

Consider the MOY graphs in Figure By decomposition (IV), we have

CT) ~C@) e {m-—k}. (13.3.1)
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n+k—1—m nt1

m—k

n+k—m| m+l—k n+k—m m+l—k n+k—m m+l—k
1—\ ]:‘/ ]:‘//
Fig. 86

By the construction in Subsection [[01] especially Lemmal[l0.7, we know that the inclusion
and projection morphisms of the component C'(I') in decomposition (I33.1]) are given
by the compositions in Figure 87 That is, if f = x" o hy 0o ¢ and g = ¢, o hy o X', where
the morphisms on the right hand side are induced by the apparent local changes of MOY
graphs, then f and g are homogeneous morphisms preserving the Zo & Z-grading and,
after possibly a scaling, g o f ~ id¢ ().

n—+k—m| m+1—k

n+k—m)

Fig. 87

Similarly, consider the diagram in Figure B8 where
a=x'ohyo¢y, B=dy0hy0x’,
and the morphisms on the right hand side are induced by the apparent local changes of
MOY graphs. Recall from Subsection [0.2] especially the proof of Lemma I0.12] that if

we define
m—k—1
a= m(rj)oa: (a m(T’)OO[ m(,,.?n—k—l)oa)7
j=0
m—k—1 B Om((_l)mikilAmfkfl)
_’: _1\ym—k—1—j N
/8 4 ,Bom(( 1) AnL—k—l—]) ﬂom(—Al) ,
J=0 5

where A; is the jth elementary symmetric polynomial in A, then there is a homogeneous
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1 n 1 n

,B m—k

ntk— mtl—k

n+1

n4k—m ml—k

Fig. 88

morphism 7 : C(I'"){[m —k]} — C(I'"){[m — k|} preserving the Zs & Z-grading such that
T O /8 oa ~ ﬁ odoT idC(F”){[mfk]}-
Now consider the morphisms

(.25 c(1)

c(r) o (13.3.2)
(&) CI"){[m — K[}
(%) o(r)

() & (13.3.3)

e o) {fm— k)

LEMMA 13.6. Each of diagrams [I332) and [(333) gives a pair of homogeneous ho-
motopy equivalences preserving the Zo & Z-grading that are inverses of each other.

Proof. We know that C(T') ~ C'(T") & C(I""){[m — k]}. So, to prove the lemma, we only
need to show that

g . g . )
<”5>(f a):<5>(f doT) = iderneom) im—H)

Consider g o @ and go f. By Lemma [I0.T4] we know that
gom(r’)oa~0 ifj<m-—k—1,
Bo m((_l)mikilijAm—k—l—j) of~0 ifj7>0.

This shows that _
goa=>~0 and fof~0. (13.3.4)

1 )@= Hepaed (e 0
Toﬂ Toﬁof idC(F”){[m—k]} 0 idC(F”){[mfk]}

= ido)ec@){m—k} -
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Similarly,
<%> (f 62 o} 7') >~ idC(F’)@C(F”){[mfk]} . n

Next, we apply the above discussion to the MOY graphs that appear in the chain
complexes in Subsection [3.1]

m 4 i . " 4 po
ndk—m_|™ m4+Byfk—m—1 ntk—mtnt1
1
ntk m—k ntk m4l—k ntk mtl—k
k m k k
n m+41 n m+41 n m-+41
Tio Ty I
k
m i, tn n
ntk—m_|™ 1
m—k
ntk m4l—k mtl—k
k
n m41 m—41
|

Consider the MOY graphs in Figure[89 By Corollary [6.11], we have C'(T'y0) ~ C(T'x.2)
and C(I'y) ~ C(Tk,3). By @330, C(I'k2) ~ C(Tk,3) @ C(I'},){[m — k|}. Altogether, we
have

C(Tro) ~ C(Tx) @ C(T4){[m — K]} (13.3.5)

In Figure @0, the morphism f, gk, fk and gy are defined by

fr=x"opi0h,
gr=hopox'
fk = XO °¥1,
gk =910 Xla

where the morphisms on the right hand side are induced by the apparent local changes
of MOY graphs. Then, after possibly a scaling,

gro fr ~ido, - (13.3.6)
In Figure [@1] the morphisms ay and ), are defined by
ak = X" o s,
Br =Py 0x’,

where the morphisms on the right hand side are induced by the apparent local changes
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nt b . ” —
mA B4 ke —m—1| ntk—m_|™
fr 1
ntk m+l—k ntk m—k
. 9k " m
n m-41 n m—+1
T ko
_ Ik 0 1
h N
h e X X
m T n m T n
1 1
ntk—m_|ntk—1—m ntk—m n—1
¥1
n+k mtl—k—> n+tk m—k 1
-
k P I3 m
n m+1 n m+1
s
Fig. 90
" 4 g " Y
ntk—m. T nt1 ak nt+k—m_|™
ntk m+l—k ntk m—k !
Br L o
k k m
n m+1 n m+1
/
Fk',
p2
2 m
n+k—m
n+k m—k
A
k m
n m—+1
Fig. 91
of MOY graphs. Define
m—k—1
ay = m(r’) oag = (a m(r)oay ... m(r"* 1) oay),
§=0
Brom((—1)™F A1)
m—k—1
ﬁk _ ﬁk Om((_l)m—k—l—jA k1o ) _
j=0 " ! Bk © m(_Al)

B
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Then there is a homogeneous morphism 7, : C(I'}){[m—k|} — C(I'},){[m—E]} preserving
the Zy @ Z-grading such that

Tk © B 0 Gk = B, 0 dj o Ty o)) {(m—k]} - (13.3.7)
We also have
grodr~0 and [So fr~=0. (13.3.8)
From Lemma [I3.6 we get the following corollary.

COROLLARY 13.7.

(,%5,) O(Tx)

C(Tk,0) & (13.3.9)
(k) CT[m — K]}
(%ﬁ) C(Tk)

C(Tk) ® (13.3.10)

(Fx @rom) CI){m — K]}

are two ways to explicitly write down the inclusion and projection morphisms in decom-

position ([3.3.5]).

13.4. Relating the differential maps of C* and CA'(Dfl) In this subsection, we
prove the following lemma, which relates the differential map of C* to that of C (Dfl).

LEMMA 13.8. Consider the diagram in Figure B2 where 5,?, 0,_, are defined in Def-
wmnition 1223 dz, d,_, act on the left square, and @;, P; are induced by the appar-
ent local changes of MOY graphs. Then 6; R Py 0 dz om(r™ %) o o1 and 01 =
Bom(rm k) o d,_, o 2. That is, the diagram in Figure commutes up to homotopy
and scaling in both directions.

m n4+1 5+ m n+1
ntk—m k ntk—1—m_
n+k m+1—k — ntk—1 m+2—k
6k71
k k—1
n m41 n m—+1
— m—k m—k 3.
prom(r )T lm(r )opr LPQT lipz
my o ikm n n+1 pn L T P n+1
k
B
B
n+k m—k 1 a- n+k—1 m—k+1 1
{r} k—1 {r}
n k m m-41 n k—1 m m—+1
Fig. 92

Proof. Consider the diagram in Figure[@3] where the morphisms are induces by the appar-
ent local changes of MOY graphs. By Theorem [[2.26] the composition of the morphisms
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m n+1 M ntk—m n ntl
vt b — ok
n+ my m(T"L k)o¢1
ntk mA1—k ntk m—k |1
{r}
k
n m+1 n k m m+1
l% ®3
M lntk—m| 1 M I ntk—m n n+1
n+tk n+k
n+k71C31 m41—k 7L+k71{}1 m—k |1
{r}
ntk ntk
n k m+1 n k m m+1
1o 1 [
X ®x lx ®x
M Tnfk—m—1 n+1 M Tngtk—m—1 ntk—m n n+1
ot (™ Fopy
- @ >
ntk—1 1 mtl-k <« mtk—1 1 m—k |1
P1 {r}
n k—1 k m+1 n k—1 k m Ami
Py 2
m n+1 ™ Intk—1—m n ntl
ntk—1—m_ _
P2
ntk—1 m42—k ntk—1] m—k+1 1
{r}
k—1
n m+1 n k—1 m m—+41
Fig. 93

in the left column is 5,:' and the composition of the morphisms in the right column is d;‘.
That is,

S ~pio(x @xt)ods,  df P50 (x! @x') o ds.
Since (x' ® x') o ¢3 and m(r™ %) o ¢ act on different parts of the MOY graphs, they
commute with each other. So
m(r™F)opro(x! @x') ods = (x' @ x') o gz om(r™ ) o 1.
That is, the upper rectangle in Figure commutes up to homotopy and scaling. By
Lemma [[3.3] the lower square in Figure [@3] commutes up to homotopy and scaling. That
is, P, 0 P; = Py 0 P5. Recall that, by Lemma BTl we have 7; o m(r™ %) o ¢ ~ id.
Altogether,
5 ~pio(x' @x!)ods = Bropom(r™ ) opio(x! @x') o ¢
~Pyopso(x! @x')odzom(r™F)opr =By odf om(r™ ) 0.
Similarly, consider the diagram in Figure @4 where the morphisms are induces by
the apparent local changes of MOY graphs. By Theorem [[2.2G] the composition of the
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m n+1 M lngk—1—m n n+1
ntk—1—m_
P2
ntk—1 m42—k ntk—1 m—k+1 1
{r}
k—1
n m+1 n k—1 m Pm41
P4 Y5
M Tntk—m—1 n+1 M Tntk—m—1 ntk—m n n+1
4k — 1) o1
- >
ntk—1 1 mil—bk @ e ndk—1 1 m—k |1
grom(r™F) {r}
n k—1 k m41 n k—1 k m tPmi1
0cx 0 01,0
X ®x lx X
m Y k| ntL ™ ntk—m n ntl
ntk n4k
n+k—1{}l mt1—k n+k—1{}l m—k |1
{r}
n4k ik
n k m+1 n k m tm41
ltﬁs ?3
m n+1 M ntk—m n ntl
vl — _ _
nkhen, From(r™ )
ntk m41—k n+k m—k |1
{r}
k
n m41 n k m P m41
Fig. 94

morphisms in the left column is J, _; and the composition of the morphisms in the right
column is d;__ ;. That is,
G130 (X" @x)ops, di_ =dzo(x*@x%)ops.
Since ¢5 0 (x° ® x°) and §; o m(r™~F) act on different parts of the MOY graphs, they
commute with each other. So
rom(r™ M) ogyo(x* @ x") & dyo (X’ @ x") 0By om(r™ ).
That is, the lower square in Figure commutes up to homotopy and scaling. By
Lemma 3.5 the upper square in Figure commutes up to homotopy and scaling.
That is, 1 0 @4 & 5 0 2. Again, we have B; o m(r™ ) o ) ~ id. Altogether,
So1 = dz0(X°®x°) opamdzo(x" @x") o om(r™F) 0 1 0 oy
~prom(r™ ) ogso (X @x ) opsope B om(r™ ) odi 0 pn. m

13.5. Relating the differential maps of C‘(Dfo) and CA'(Dfl) First, consider the
diagram in Figure @3 where f, and g are the diagonal morphisms in Figure @0 and the
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ntk
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m—+1

n m i N
R ntk—m
Ik
m4l—k—————————————————> n+k m—k
B
9k k m
m—+1 n
Tko
¢1[ [‘ﬁl
n fk m 1 n—1
_— n

n m41 n
0 o0 1
X ®x T X ®x
m n fk m I, 1
_— n
s
ntk—1 1 m4l—k Jk ntk—1 1 |m—k
k—1 k k—1 13 m
n m+1 n
Fig. 95

vertical morphisms are induced by the apparent local changes of MOY graphs. Note that
fr and g act on the right side of the MOY graphs only, and the vertical morphisms
act on the left side only. So each square in Figure [95 commutes in both directions up to

homotopy and scaling. Thus, we have the following lemma.

LEMMA 13.9. In Figure[, fro(x'@x")od1 ~ (x' @x1)od10 fi and jrodyo(x°@x°) ~

&0 (x°®@x°) o g

Next, consider the diagram in Figure @8] where all morphisms are induced by the

apparent local changes of the MOY graphs. We have the following lemma.

LEMMA 13.10. The four squares (A), (B), (C) and (D) in Figure @6 all commute up to

homotopy and scaling in both directions. More precisely, we have

(A) xp 0hs~haoxioxb, hsoxh ~xboxyoha,
(B) Xh 0d3~ dz0xh, ¢30xA = X% 0 ¢s,

(C) Bsoxt ~#P50xi: X} o9s ~ 50Xy,

(D) B7 0P & Pg 0 3 0 hu, 50 p7 & hy 0 $3 0 .

Altogether,

B6 © XA © P30 hs %¢7OX% 0 P5 © Xb»
Proof. Clause (A) follows from Lemma [[33l Clauses (B) and (C) are true because the
horizontal and vertical morphisms act on different parts of the MOY graphs. Clause (D)

follows from Lemma n

h30¢30X0A0806%X%0§050X$0§07-
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) )
m 4, .t m T1 n m Tl n
= 1 —
Xo T ®s i
1 - > - >
ntk—1 1 |m—k - ntk—1 1| m—k 1 Y S | i m—kt1
o ¥s5
Xo
k=1 k= m k=1 k= m k—1 k
n m1 n m1 n m+1
0 1 0 1
X+ X Xt X+
(©)
m T 1 n m T 1 n
z
hs hs %5
ntk—1 1 m—k 1 - ntk—1 i m—kt1
Y5
k—1 k m k—1 k
(A) n m+1 n m+1
h4 h4
m T, 1 Im m Tl n
1
ntk—1—1 " XA
1 ——
ntk—1 1( m—k - n4k-1 1( m—k |1
P _
N w7 7
k—1 m kE—1 m
n m+1 n m—+1 (D)
#3| | @5
®3
(B)
m 4, 4 m ]1 n
ntk—1—ip " . ) N ntk—1—mglntk—2—m
1
ntk—1| m—kt1 Xa B ntk-1 m42—k
—_— —_—
k—1 m < nt+k—1 m—k+1 1 R k—1
) 0 Pe )
n m41 XA n m—+1
k—1 m
n 1
Tr10 o Ip_13
Fig. 96

We are now ready to relate the differential map of C’(Dfo) to that of C’(Dlil) Consider

the diagram in Figure @7, where d¥ and dF are defined in Subsection I3 and fi, gk
are defined in Figure We have the following lemma.

LEMMA 13.11. In Figure @7, d;" R Jr—10 di o fr and c‘l};1 R gpod, o fr—1. That is,
the diagram in Figure [@1 commutes in both directions up to homotopy and scaling.

Proof. Denote by h(¥), E(k), (x' @xH)® and (x° ® x°)® the morphisms induced by the
local changes of MOY graphs in Figures 08 and By the definitions of fx, gx, fr and
gr in Figure @0 we know that fi ~ f o h®) and g ~ AR Jk-
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m tjl n m tjl n
m+Bnfr—m—1 dt m+Bn L k—m—2
n+k m41—k ntk—1 m+2—k
k A1 k—1
n m-41 n m—+1
Tk
ng fre
m 1 n—11m
nftk—m_|™ d;r
1 _—
ntk m—k
-
K m di_y
n m+1
Tio
Fig. 97
m tjl n m n
1
m+Mn4k—m—1| h(k) ntk—m_|ntk—1—m
_—
ntk m+l—k ntk m+l—k
-
7 (k)
k h k
n m+1 n m+1
Iy T3
Fig. 98
n m tjl n
(x'exhH® mt
—_—
m4+1—k ntk—1 1 m4+1—k
0cx, 0 (K
(x"@x")®
k-1 k
m—+1 n m—+1
Fig. 99

By the definitions of fi, g, and d,‘:, using the morphisms in Figures [35] and [QG] we

have

grorodi o fu a0 gy 0df o froh®
I o¢1)o froh®

o (P oxn) o (pgohso(x! )
Yog)o froh®

o (@6 © xh © Pz 0hz)o((x'
o(p OX%O¢5OXE) ((X1®X1)0¢1) fr o h™  (by Lemma [310)

k—

"V o (@roxtoBsoxh) o fio (X! @x") od)oh®  (by Lemma [IZ).

(k 1)

kl)
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Note that @5 o x4 ~ gk, gr © fk ~ id and ¢1 o h*) ~ h(¥) o ¢1. Putting these together, we
get

grr10df o fumh o (@roxt)o (@5 oxh)o fro(x ®x') o on®

—(k—1)

~h o¢7ox%o(xl®xl)oh(k)o¢1.

By Lemma [I33] we know that
xto (X' @x") o ht®) ~ Vo (' @ xH®.

Also, it is easy to see that ﬁ(kfl) 0Py &Py 0 E(kfl). So

—(k-1) _
grrodi o fum BV 0B 0xto (X! @xY) 0 AW 0 gy
—(k—1 B N -
~ o o h® Do (@ x )P o g m o (X! ©x)® 06y ~ df
Similarly, using ¢, AR AL o ¢, and @7 0o hF1) =~ =1 6 oy we get

geod o fiy ~ R ogrods o fiiyoh®D
~ T 0 g0 (B0 (° ©x°) 0 hy o d) o (x4 0 @g) o b
~ T 0 (B0 (X @ X%)) 0 gk o (hs 0 b3 0 x& 0 6) 0 h*D  (by Lemma [IZ0)
~ T 0 (3,0 (X @ X)) 0 i o (x4 0 5 0 X2 0 p7) 0 A~ (by Lemma [LEIT)
~ g oh o (X" ©x°) o xJowroh® D (since g o (X5 o v5) & G o fi & id)
~ G o™ o (X ®x%) oxdoh* Vo g
~ 30" oh® o (@ )M oy (by Lemma [[33)
g o(X"@x)H oprad_,. m

13.6. Decomposing C(T',,1) = C(I",). Note that the MOY graphs I',, ;1 and I',, are
identical. Consider the MOY graphs in Figure

m 1(} n m 1(} n

n n+1 m—1 n+1

n+m 1 1 n+m
m n—1

n m+41 n m+1
— 71V 1

FmJ - Fm Pm—l
Fig. 100

By Corollary 6111 C(I'),) ~ C(T'm+1). By decomposition (V) (Theorem 1), c(Ty,) =~
cry_)ecTry,). So

C(Cma) ~ C(I" )& C(Comin) (13.6.1)
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m 1tjn

n—1 n4+1

n+m—1 2

m—1

n m—+1

1’\/

m—1

Fig. 101

Recall that I, _; is the MOY graph in Figure [[0Il We have the following lemma.

LEMMA 13.12.

Homymt(C(Tm 1), C(T7, 1)) = Hompme (C (T, 1), C(Tma)) = 0.

Proof. Let T' be the MOY graph in Figure [[021 Recall that C’(me) ~ C(T7). So

Hompmr (C(Lm+1), C(T',—1)) = Hompmr (C(I7,), C(I', 1)),
~ H(P) <m +n+ 1>{q(m-l—n-i—l)(N—l)—mz—nz—i-n}

n+m-—1|m+1|lm+n+1 N Mt D—m2—n24+n
gc(m{mn[ o M ) M N Hmwﬂ}q( e (N-1) +}.

One can check that the lowest non-vanishing quantum grading of the above space is 2.

So Hompmt(C(Tyg1), C(Ty,—1)) 22 0.

Fig. 102

Denote by ' the MOY graph obtained by reversing the orientation of I'. By decom-
position (V) (Theorem [ITT]), we have C(I",_,) ~ C(T),_,)®C(I') _,). By Lemma [[20
we see that

Hompnir (C(I7), C(T14)) & H(C(T) © C(T) (m +n + 1) {gmtnt D@ —D=m?=n®tny

where fg is I} with reverse orientation, and the tensor is over the ring of partial sym-
metric polynomials in the alphabets marking the end points. Therefore,

Hompnr (C(T,-1), C(Tmy1)) = Homunr (C(T,-41), C(T,))
= Hompwr (C(I, 1), C(I,)) @ Hompmr (C(T, 5), C(T,))
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> (H(C(I) @ C(T,, 1)) & H(C(T) @ C(T,, 5)))

. <m In4+ 1>{q(m-l—n-i—l)(N—l)—mz—n2+n}
(C(I) © C(T 1) (m - 1) gD Doy
(f) <m +n+ 1>{q(m+n+1)(N71)fm27n2+n}

C(@){[n + 1] [n +:: — 1] [m;— 1] [m +: + 1} {m +]\TIL . l]q(mmﬂ)wl)ﬁnzm}’

1%

H
H

1

1%

-/

where T' is IV, with the orientation reversed, and the tensor is over the ring of

m—1
partial symmetric polynomials in the alphabets marking the end points. So the low-

est non-vanishing quantum grading of Hompnp(C(T,_ ), C(Tymy1)) is also 2. Thus,

Homhmf(c( ;nfl)vc(]-—‘erl)) =0. =

COROLLARY 13.13.

Homymt(C(Tm1), C(Ty, 1)) = Hompme (C (I, 1), C(Tmya)) = 0.
Proof. By decomposition (V) (Theorem ILI), C(I%,_;) =~ C(T" _1) & C(T _5). So

Hompmt (C(Lmi1), C(Ty, 1)) (resp. Hompm(C(I7, 1), C(Tmy1))) is a subspace of

Hompmt(C(Tpg1), C(T,_1)) (resp. Hompme(C(I',_1), C(T'pm41)).) The corollary follows
from Lemma n

LEMMA 13.14. Homhmf(C'(Fm+1), C(Fm_;_l)) ~C.

n m—+1

r
Fig. 103

Proof. Let T' be the MOY graph in Figure [[03 Then

Hompyr(C(Trna1), C(Tmi1))
= H(F) <m +n+ 1>{q(m""”"‘l)(N—1)—m2—n2+n}
o C((Z)){[m + 1] [m +n+ 1} [m +n+ 1] [ N :|q(m+n+1)(N_1)_m2_n2+n}.
" n m+n+1

It is easy to check that the above space is supported in Zy-degree 0. Its lowest non-
vanishing quantum grading is 0. And its subspace of homogeneous elements of quantum

degree 0 is 1-dimensional. Thus, Hompmt(C(Tpg1), C(Crpy1)) 2 C. m

COROLLARY 13.15.

Homhmf(C(Fm+1)7 C(Fm,l)) = Homhmf(C(Fm,l); C(FTYL-‘,-l)) = C.

Proof. This follows easily from decomposition ([[3.6.1), Corollary and Lem-
ma (377 =
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Consider the diagram in Figure [[04] where
pi=hogo(x’@x"), J:=K'®@x)ogoh,

and the morphisms on the right hand side are induced by the apparent local changes of
the MOY graphs.

m X ltjn

n nt1

n+t 1T

{r} m+n+1

n m—+1

-

Fig. 104

LEMMA 13.16. Up to homotopy and scaling, j is the inclusion of C(Lpy1) into C(Tm,1)
in decomposition (I3.6.1)), and p is the projection of C(T' 1) onto C(Tptq) in (I3GT]).

Proof. From Corollary [[3.15] one can deduce that Hompme(C(Thmt1),C(Thm,1)) (resp.
Hompmi(C(Cpmt), C(Thmy1))) is 1-dimensional and spanned by the inclusion C/(Ty, 1) —
C (T 1) (resp. the projection C(I'y, 1) — C(Tmy1)) in decomposition ([Z6.T). Note that
7 and p are both homogeneous morphisms of Zs-degree 0 and quantum degree 0. To

prove the lemma, we only need to show that j and p are not homotopic to 0. But, by
Corollary 0.3 and Lemma B1T],

pojrhodo(x"@x")o(x' ®@x')ogoh

%anom((zn:(—r)iYn_i> . (i(—r)iXm_i)> ogpoh

1= 1=

~hogom((—r)™ ™) odoh ~idyg, -
This shows that 7 and p are not homotopic to 0 and completes the proof. m

Consider the diagram in Figure [I05] where c‘lz 41 (resp. d;) is the differential map

of the chain complex C(Dyy) (resp. C(Dy,)) at homological degree 0 (resp. —1) , and

X0, xt, hlm), ﬁ(m) are induced by the apparent local changes of MOY graphs. We have
the following lemma.

(®) See Subsection [} especially the chain complexes (D) in (I3L2) and (3L3).
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mtn41

1) =C(T%)

mtjl

m+1 n—1

n—+m

n

m—+1

m 1tj n m
n n+1
Xl
n+m 1 ——=> n+m
-
n m41 n
_ !
Ly =1Y,
Fig. 105

7 7(m)
LEMMA 13.17. d} ., ~ h

~

Figure 105 commutes in both directions up to homotopy and scaling.

Proof. This follows easily from the definitions of CZL 1 J,_n, 7, p and Lemma [I3.3] =

n—1

m41

1‘Ljn

n+1

n+m—1

m 1tjn
m—1 n+1
1 ntm Im—1,m—1
n—1
Pr—1,m—1
n m+1
7
m—1
1"
J
m
1
p n
n+
m
n m+1
TV
Fm,l - Fm
Fig. 106

Denote by 37 : C(T

projection morphisms of the component C(T'/

m?

1> Jm—1,m—1 and Py, _1m,-1 are defined in
Definition [2:23] We have the following lemma.

r_1) = C(Tma) and p” : C(Ty 1) — C(T

m—1

m+1

) the inclusion and
I 1) in decomposition ([I36.1]). Consider
the diagram in Figure [[06, where 51, 6~

195

ox'ojand d, ~ pox®ohl™. That is, the diagram in



196 13. Invariance under fork sliding

LEMMA 13.18. 6,5 0" ~ Jm—1.m-1 and p" 06,, | & Py_1,m—1. That is, the diagram in
Figure 106 commutes in both directions up to homotopy and scaling.

Proof. Using Lemmas and [Z.19 one can check that
Hompme(C(Ty, 1), C(T, 1)) = Homume (C(I, 1), C(T7, 1)) = C.

Recall that Jy,—1,m—1 and Pp_1,,—1 are both homogeneous morphisms of Zy-degree 0
and quantum degree 0, and Pp—1m—-1 0 Jm—1,m—1 ~ idC(FiLl)' S0 Jm—1,m—1 and
Py—1,m—1 span these 1-dimensional spaces. Note that 4,}, o y/ and p” 04, _; are also
homogeneous morphisms of Zs-degree 0 and quantum degree 0. To prove the lemma, we
only need to show that 4 o 7/ and p” o4, , are not homotopic to 0. But, by their
definitions, we know that

/1

p'0d, 1 o0d) 0 ~idorr -

So & oy and p” 04, _; are homotopically non-trivial. m

13.7. Proof of Proposition In this subsection, we prove (311)), that is,
C(DL) ~C(DE) ifl=1.

The proof of the rest of Proposition [[3.2]is very similar and left to the reader. We prove
(3LI) by simplifying C(D;) and reducing it to C'(DF;). To do this, we need to use the
Gaussian Elimination Lemma [Il Lemma 4.2].

LEMMA 13.19 ([Il Lemma 4.2]). Let C be an additive category, and

@ A ¢ 0 B
I:“-'-—>C (,3) @ (’YE) & (pn v) F—>"'”

D E

an object of Chb(C), that is, a bounded chain complex over C. Assume that A % B is
an isomorphism in C with inverse ¢~'. Then I is homotopic to (that is, isomorphic in

hCh®(C) to)
mH=“..scthpi S prp .
In particular, if § or ~y is 0, then I is homotopic to
II=“-505DSE%F ...

Proof. Consider the chain complex

o ¢ 0
(5) (0 67’}/(;5_15) 0 v)

Il:“"'—>C

o W

A
S
D
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Define f: I —T1'and g: 1’ — I by

o, 60 P
D E
fafe () [
. (3) g (5o is) g 0, o
D E
fa fu [y [Gah) [ [
o (3 g 82 g o, 5
D E

It is easy to check that f and g are isomorphisms in Chb(C). Thus,
IZT 2116 A% B0

But 0 5 A% B 0is homotopic to 0 since ¢ is an isomorphism in C. So I ~ II. m

m 1(} n m 1tjn
ntk—m T ni41 ntk—1—mfni41
ntk mt+1—k ntk—1 m4+2—k

k k—1

n m+1 n m+1
/ /
L |
Fig. 107

LEMMA 13.20.

Homye (C(I){[m — Kg* 17}, O(T),_y)) =0,

Hompng (C(T_y), C(Ty){[m — K]+ F}) = 0.
Proof. By decomposition (V) (more precisely, Lemma [[2.19), we have

C(Iy) = C(Ty) & C(ITY_y).
Similarly to Lemma [[2.20] one can check that the lowest non-vanishing quantum grading
of Hompmr (C(I'}), C(I,)) is (j — k)(j — k + 1). So the lowest non-vanishing quantum
grading of Hompme (C(T,), C(I',_,)) and Homumr(C(IT},_,), C(T},)) is 0. Note that
Hompyr (C(I}){[m — kl¢" ™7™}, CO(T}_1))
= Hompir (C(T,), C(Th_1)){[m — kg™ F}

m—1—k
P Homuyr(C(T}), C(T}_1)), {¢*}
=0

I
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and

Homnr (C(TY,_ ), C(T4){[m — kg™ *})

= Homuur (T, ), C(T){lm — kg™ -+
m—1—k

~ B Homunr(CT}_,), C(TW)){g*T},
j=0
and the lowest non-vanishing quantum grading of the right hand side is 2 in both cases.
So
Hotns (C(T){[m — Klg* 17"}, O(T},_y)) =0,
Hompyt (C(T_y), C(Ty){[m — K]+ 7*}) = 0. =

We are now ready to prove (IZLI). We show C(D},) ~ C(Df,) first and then
C(Dyp) = C(Dyy).

Proof of C(Dyy) ~ C(D;,) when | = 1. Recall that the chain complex C’(Dfl) is

o C@mo{a'} o or  Crrro){d" ™}
0— C(Thm) ® Bl N L. ®
C(Cm-11){q¢"} C(Tr){g" ™}

o) o, ko—1-m
— - = C(Tkg,0){q™ } =0,

where ko = max{m — n,0} as above and

1
+ X
= ()
+
a;! = (korl X ) for ko < k<m,

o =(df 4 XM
From decomposition (IV) (more precisely, (I33.0))), we have
C(Tro0) = C(Tk) ® C(Ty){[m — k}.
By Corollary [6.1T] and decomposition (II) (Theorem [6.12), we find that
C(Tka) = CT){m +1 - K} = C(T){g™ "} @ CT){Im — Klg ™'},

Therefore,
C(Trp){d" ™}
@
C(Trt1,0){q" ™} C(y ) {lm =k —1g" ™}
@ ~ D for kg < k < m,
C(Tr){g" ™} cry)
&)

C(T){[m — klg"=~m1}
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and
C Tk ){g" "™}
C(Try0){g 7} ~ @
C(Ty ) [m — kolgFo—1=m}

So, C’(Dfl) is isomorphic to

C(Tr1){d" ™}

C(fm){q_l} D
ot & ot o, C(Thy){[m — &k —1g"™}
0—CTm1) = cT, ) —_ e — o)
® c(T)
C(T,_){q?} ©
C(TL){[m — Klg™}
v e CE™
LN P — 0.

C (T ) [m — kolg*o—t—™}
In this form, DZ is given by a 4 x 4 matrix (D;i7j)4x4 for kg < k < m — 1. Clearly,
0 =0 for (i,5) = (3,1),(3,2), (4,1), (4,2).
By Lemma [[3TT]

0+

~ Jt
k1,1 ™ d

k+1°

By Lemma [I3.8]
+ st
Okis,3 = 0y -

By (I333) in Corollary I3.7, we know that

+ ~ + o
0k;1,4 — 07 Dk;2,4 ~ 1dC(F§C){[m—k]qk*m*1} .

By Lemma [[3.20,
o4, 0.
k;3,4
Altogether, for kg < k <m — 1, we have
Ck&2+1 * * 0
o~ | F o GMdorpimeke
0 0 ¢,0, 0
0 0 * *

where ¢y, ¢, and ¢ are non-zero scalars and *’s stand for morphisms we have not iden-
tified. Similarly,

T+

o [ oo * ¥ 0

ako - 7 1d ;
* *x O Moy ) {Im—k+0]gro 1™y

cm_lci;; * 0
0+ ~ * * mefl idc(l—‘in,l){qu}
m 0 Crn10m—1 0 7
0 * k

7 / " y }
where cg,, ¢, Cm—1, ¢;,,_1 and ¢}, are non-zero scalars.
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Now apply Gaussian Elimination (Lemma [3.19) to ¢} ido(ry ) (jm—k]gk-m-1} in o, for
k=ko,ko+1,...,m — 1 in that order. We deduce that CA'(Dfl) is homotopic to

o O g, (T )

6+
0—=C(Tpn1) = P met L A ®
o ) C(T%)
a+ 6:0 T ko—1—m
=5 O /g } =0,
where
5+ crdf,  x
0 ~ O+ Ry for kg < k < m, (13.7.1)
ci,0p
6+0 o~ (ckDJZO_H *). (13.7.2)

Next we determine ;. By decomposition (V) (more precisely, (I3.6.1))), we have

C(Ferl)
C(FmJ) ~ (&)
cry 1)
Under this decomposition, ;. is represented by a 2 x 2 matrix. By Lemmas [3.12, [3.17
and [[3.I8 we know that

i+
ot~ (Cmdmﬂ ¥ ) , (13.7.3)

m ’
0 Cm']m—l,m—l

where ¢, and ¢}, are non-zero scalars. So C'(D;) is homotopic to

Cmp) o OO} o 5 CTe){d ™}

C(Th-1) C(T 1) cy)
or o

RLEGH —> CTr){d™ 1™} =0,

where 0 ... ,6;) are given in (I3 7TI)-I373).

Recall that, by decomposition (V) (more precisely, Lemma [TZ.19),

(T'},) =~ cryecIy_,) ifk+1<1<m-—1,
' c(ry) if k= ko.

By Proposition [[2.28] under the decomposition
C(Cr1){d* ™}

C(@Tr1){d" ™} &
e = () :
(1) &)

i)
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we see that

cmal;iHr1 *
o o~ 0 cmidear | (13.7.4)
0 0
C]JZLA * *
o~ 0 0 ¢'idery ) for ko +1 <k <m, (13.7.5)
0 0 0

where ¢} is a non-zero scalar for kg +1 < k < m. Since C(I'} ) ~ C(I'}), we have

CTror){d™ ™} CTrgrr){d™ ™}

@ ~ &)
C(T,) cIy,)
and
T+
o ck0+1dk0+2 * *
0k0+1 - ( 0 O CZ(/)+1 1dC(1";C’O) 5 (1376)

Of = (ewodf 4y %), (13.7.7)

where ¢ | is a non-zero scalar. Putting these together, we deduce that C(Dy,) is ho-

motopic to
N C(Tm){g"} C(Trs1){gd" ™}
Clmt1) 5. @ LR L o
05 & SOy he o
cr” ) @ @
C(I7—2) CTy-1)
5+ 5+ C(Thys){d™™} 4+
%k Oko+1 % ko—1—m
e 2 @ —>C(Fk){ 0 }—0,
C(Ty,)

where 0f,,..., 0/ are given in (Z74)-{370).
Applying Gaussian Elimination (Lemma [I3TJ) to ¢}’ idery_ ) in Dk for £ =
m,m — ., ko + 1, we find that C(Dj) is homotopic to

= ot = -1 1 —m
05 CFmin) 25 CE) g} 22 o S5 OF ) b

i o

5 G 0T ) ™ = 0,

where 62‘ ~ ckci,'k:_l for k=m,m—1,...,ko. Recall that ¢, # 0 for k =m, ..., ko. So this
last chain complex is isomorphic to C'(D}y) in Ch®(hmf). Therefore, C(D};) ~ C(D},). =
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Proof of C(Dy,) ~ C(D7,) when | = 1. Recall that the chain complex C’(Dfl) is
. C(Tro){a™ =%}

0, [
0= C(Tgy0){gm ' R0y Lo ... 224 ®
C(Tr—11){gm™T %}

o o CCmolay -
e o — C(Tm1) =0,

C(Tm-11){q}

where ko = max{m — n,0} as above and
0 = (i’%}) . 0 = (i’g —dz_l) for ko <k <m, 0,=(x"—d,_,).
From decomposition (IV) (more precisely, (I3:3.0))), we have
C(Tho) = O(Ty) ® C(Ty){[m — K]}
By Corollary 1T and decomposition (II) (Theorem [6.12), we have
O(Tra1) = CT{[m +1 =k} = CT){¢" ™} & CTL){[m — K] - ¢}
Therefore,

CTR){gmF}

©
C(Tr0){g™ '+ C(T{[m — klgm™ ="}
&) ~ &) for kg < k < m,
C(Tr—1,1){gm T} C(T-1)
©

C(Th_){[m +1—klgm™t>—*}
and
C(Tgy){gmtiko}
C(Thp0){g" 1 H0} = @
C Ty, ) {lm — kogm 1~}

So, C(Dy ;) is isomorphic to

C(Ty){gm*'=*}
S
C(Tky){gm 1R} - C(T){m — klg™ =}
0— ® — ®
C (T, ){[m — kolg™ 17 *0} CTy 1)
3]
O {lm +1 - Klgm+2=+}

C(Tm){q}
. o o .
L o, ) S C(Ta) — 0.

o
C(T,-){e*}
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In this form, 9, is given by a 4 x 4 matrix (0,;147j)4x4 for kg < k < m — 1. Clearly,
0p., =0 for (i,5) = (1,3),(1,4),(2,3), (2,4).
By Lemma [[3TT]
O A dy
By Lemma [I3.8]
033 ™ Op_1-
By (I3310) in Corollary [[377 we know that

Uan =00 ey p Ride(m) ) (m—rigmer-+y -

By Lemma [[3:20]

Va3 = 0.

Altogether, for kg < k <m — 1, we have

c;@f * 0 0

o * * 0 0
L * * oy * |’

O Cg idc(r;){[mik]qm,-ﬁ—l—k} O *

where ¢y, ¢, and ¢ are non-zero scalars and *’s stand for morphisms we have not iden-
tified. Similarly,

Ckodlzo *
_ * *

Oy ™ * * ’

V7
0 o ey iim—holgm 140}
Cm-1d,,_, * 0
RIS * * Crn—10m 2 * |,
/! :
0 Crm—1 1dC(F;n71){q2} 0 *

where cy,, ¢} s ¢m—1, ¢, and cj,_; are non-zero scalars.
Now apply Gaussian Elimination (Lemma [3.19) to ¢} idc(ry ) {jm—#]gm+1-+y in 9y for

k=ko,ko+1,...,m — 1 in that order. We find that C’(Dfl) is homotopic to

0 5 C(Tg, ) {gm 1oy Doy L 2oy ®
cry_y)
5 5=, CTm){q} 5
LN oy %C(FmJ)—)O,
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where
o =~ (C’“dk , 0 ) for ko < k < m, (13.7.8)
* 01
. Ckod};
U * . (13.7.9)
*

Next we determine ,,. By decomposition (V) (more precisely, (I3.6.1))), we have

C(Tm+1)
C(FmJ) ~ 3
C(I-1)
Under this decomposition, d;, is represented by a 2 x 2 matrix. By Lemmas [3.12 [3.17
and [[3.I8 we know that
A cmd_ 0
~ m 13.7.10
O ( ¥ CpPrmo1mo1 ) ’ ( )

where ¢, and ¢/, are non-zero scalars. So C'(Dy;) is homotopic to

CTi){am )

-~ Ly o, .
0 = C(T ) {gmHHoy Zoy . 2oy s
o)
L) Je| ey
o @ s @ -0,
Cc(Ty,-1) c(Ty_1)

where 0, ... ,6,;0 are given in (I37])-I3710).

Recall that, by decomposition (V) (more precisely, Lemma [[2:T9)),
, CriyyecCcIy_y) ifk+1<i<m-—1,
C(l) = I .
c(ry) if k= ko.
By Proposition [[2.28] under the decomposition
C(T){gm17F}

C(Tr){gm+1F} ®
D > C(T%-y) ,
C(l%-1) ®
C(y_s)
we observe that
o cmd,,, 0 0
0, ~ < . o idow ) 0) , (13.7.11)
cxd,, 0 0
| =« 0 0 for ko +1 < k < m, (13.7.12)
* Cgl idc(pg_l) 0
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where ¢} is a non-zero scalar for kg +1 < k < m. Since C(I'}, ) ~ C(I'}), we have

CTror){d™ ™} CTrgr1){a™ ™}

@ ~ =
C(T,) C(Iy,)
and
. Ck0+1d;0+1 0
1 x 0 : (13.7.13)
* Cho+11do(ry)
T+
o~ ( C’“Odfoﬂ ) : (13.7.14)

where ¢}/ ,; is a non-zero scalar. Putting these together, we know that C(Dy,) is homo-

topic to

C(T){g™ "}

- i C(Trys1){g™ 0} O 41 Ok-1 @
0= C(Tk){gm "0} —= ® T
o) @
C(Ty_s)
C(Tm){q} N
B o fast . C(Fm-‘rl)
ak D»m,—l a'm
AN Y C(Fxnﬁﬂ — N =0
® C(y-1)
C(Ty—2)

where 3, ... ,6,;0 are given in (3711 (37.14).
Applying Gaussian Elimination (Lemma [3T9) to ¢;’idgry ) in 0, for k = m,

m—1,...,ky + 1, we conclude that C’(Dﬁ) is homotopic to

_ 5 5o - 5 s-

0 — O ) g™ 7F0} 205 0 220 O[T {1k 25 o 2 O(Tin) — 0,
where 5,; ~ cka,; for kK = m,..., kog. Recall that ¢ # 0 for kK = m, ..., kg. So this last
chain complex is isomorphic to C'(Dy,) in Chb(hmf). Therefore, C'(Dy;) ~ C(Dy,). =

So we have completed the proof of (IZILI), that is, C(D%) ~ C(DT) if | = 1. The

proof of the rest of Proposition [[3.2]is very similar and left to the reader. This completes
the proof of Theorem [[3.1] m



14. Invariance under Reidemeister moves

In this section, we prove that the homotopy type of the normalized chain complex asso-
ciated to a knotted MOY graph is invariant under Reidemeister moves. The main result
of this section is Theorem [[4]] below. Note that Theorem [[.1]is a special case of Theo-
rem [T4.1]

THEOREM 14.1. Let Do and Dy be two knotted MOY graphs. Assume that there is a
finite sequence of Reidemeister moves that changes Dy into Dy. Then C(Dg) ~ C(Dy),
that is, they are isomorphic as objects of hChb(hmf).

Theorem [IZ4.] follows from Lemmas [[4.4] and below, in which we establish the
invariance of the homotopy type under Reidemeister moves I, 11,, 1T, and III given in
Figures [[ORHITIl The proofs of these lemmas are based on induction on the highest color
of the edges involved in the Reidemeister move. The starting point of our induction is
the following theorem by Khovanov and Rozansky [19].

D+=Tm <—>D=m<—>D—=%

~ |

Fig. 108. Reidemeister move I

~
!
3
!
)
3

Fig. 109. Reidemeister move Il,

2 " N

()= — ()
S ’ n

Fig. 110. Reidemeister move Il

[206]
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Fig. 111. Reidemeister move III

THEOREM 14.2 ([19] Theorem 2]). Let Dy and Dy be two knotted MOY graphs. Assume
that there is a Reidemeister move changing Dy into D; that involves only edges colored
by 1. Then C(Dy) ~ C(Dy), that is, they are isomorphic as objects of hCh®(hmf).

REMARK 14.3. The original statement of [I9, Theorem 2] covers only link diagrams
colored entirely by 1. But its proof in [I9, Section 8] is local in the sense that it is
based on homotopy equivalences of the chain complex associated to the part of the link
diagram involved in the Reidemeister move. So the slightly more general statement of
Theorem above also follows from the proof in [19].

14.1. Invariance under Reidemeister moves I1,, IT;, and III. With the invariance
under fork sliding (Theorem [I3)) in hand, we can easily prove the invariance of the
homotopy type under Reidemeister moves I1,, II;, III by induction using the “sliding bi-
gon” method introduced in [32] (and used in [29] [45].) The proof of the invariance under
Reidemeister move I is somewhat different and is postponed to the next subsection.

LEMMA 14.4. Let Dy and Dy be two knotted MOY graphs. Assume that there is a Rei-
demeister move of type 11, Iy, or III that changes Dq into Dy1. Then C(Dgy) ~ C(Dy),
that is, they are isomorphic as objects of hChb(hmf).

Proof. The proofs for Reidemeister moves I1,, I, and III are quite similar. We only give
details for Reidemeister move II, here and leave the other two moves to the reader.

Let Dy and D; be the knotted MOY graphs in Figure We prove by induction
on k that C(Dg) ~ C(Dy) if 1 < m,n < k. When k = 1, this statement is a special case
of Theorem [[4.2] Assume that this statement is true for some k£ > 1.

m n n m

Fig. 112

Now consider £+ 1. Assume that 1 < m,n < k+1in Dy and D;. Let I'g, I'y and I'; be
in the knotted MOY graphs in Figure[IT3l Here, in case m or n = 1, we use the convention
that an edge colored by 0 is an edge that does not exist. By decomposition (II) (Theorem
B12), we know that C(Tg) ~ C(Dg){[m][n]} and C(I'y) ~ C(D;){[m][n]}. Note that
m — 1,n — 1 < k. By induction hypothesis and the normalization in Definition [2.16]

we know that C'(Ig) ~ C(I's). By the invariance under fork sliding (Theorem [I3.1)),

we find that C(I'y) ~ C(I'). Thus, C(Iy) ~ C(I'y). By Proposition 21} it follows
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Fig. 113

that C (Dg) ~ C (D7), which, by the normalization in Definition [2-T6] is equivalent to
C(Dy) ~ C(D1). This completes the induction. m

14.2. Invariance under Reidemeister move I. The proof of invariance under Rei-
demeister move I is somewhat different from that under Reidemeister moves II and III.
The basic idea is still the “sliding bi-gon”. But we also need to do some “untwisting” to
get the invariance.

m+4n

™ n

Pm,n
Fig. 114

LEMMA 14.5. Let I'y, ,, be the MOY graph in Figure[I14l Then

Homiiip (C(Tim,n), C(Tm,0)) = Homie (C(Tm n), € (T )

m—+n n

where fm,n 18 Iy with the orientation reversed. In particular, the lowest non-vanishing
quantum degree of these spaces is 0. Therefore, for k <,

Homhmf(C(Fm,n){qk}7 C(I‘m’n){ql}) o HOmhmf(C(Fm,n){qk}, C(Tm,n){ql}) ~ 0.
Proof. Consider the MOY graph I' in Figure 31l It is easy to check that
HOHIHMF (C(Fm,n), C(F'm,n)) &~ HomHMF(C(Tm’n), C(Fm,n))
o~ H(F) <m + n>{q(nH—n)(N—Tn—n)-i-mn}.

am=c@mn{] 5",

m-+n n

By Lemma [0.3]

whose lowest non-vanishing quantum grading is —(m+n)(N —m —n) —mn. This implies
the assertion. m
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The next lemma is [54] Proposition 6.1]. The special case when m = n = 1 has
appeared in [36]. For the convenience of the reader, we prove this lemma here instead of

just citing [54].

LEMMA 14.6 ([54, Proposition 6.1]). Let an and Ffml be the knotted MOY graphs in
Figure I8l Then

C(I7,) = C(Tn){a"}, C(Ty,,) = C(Ta){a "
C(r1) = C(Cna){g"}, C(T,,) = CTm){a ™™},

is the isomorphism in hCh®(hmf).

Ua?

where

14+n 14+n
X
Iy, r
m41 m-+41
X
N\ O\ . 1
Jr —
Fm,l Fm,l 5
Fig. 115

Proof. We only give the details for C’(I‘fn) ~ C(T'1.,){g™} here. The proof for C‘(I‘il)
~ C(T'1,m){q™} is very similar and left to the reader. Recall that
C(Fl n) = “0— C(Fl n) —07.
Let T} ,, and I' ,, be the MOY graphs in Flgure Then, by Corollary T2.28]
C(Irf,) =0 - CI,) = O, ){g '} =07,

C(y,) = 0= C(T{ Ha} X, C(I,) — 07,
where x° and ! are induced by the apparent local changes in MOY graphs.
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Note that I/

1.n is obtained from Ty, by an edge splitting. Denote by C(I'1,,) —
C('y,,) and C(I ,,) 2, C(T'1,,) the morphisms induced by this edge splitting and its

reverse edge merging. By decomposition (II) (Theorem [612), we know that

n
C(T,) ~ CTa){[n+1]} = P C(T1n){g "} (14.2.1)
j=0

It is not hard to explicitly write down the inclusion and projection morphisms in this
decomposition. For j = 0,...,n, define a; = m(r?)o¢ and f; = pom(X,,_;), where X}, is
the kth elementary symmetric polynomial in X. Then C(Ty ,,){g " "%} 2, C(TI'y,) and
c(ry,,) LN C(T1,,){g "%} are homogeneous morphisms preserving the Zs ®Z-grading.
And, by Lemma RTT]

id —nt2iy  if 1 =7,
/8_] oy ~ C(Flv"){q +2J} ‘]
0 otherwise.

Clearly, v; and 3; are the inclusion and projection morphisms in decomposition (IZ2T]).
By Corollary .11l and decomposition (II) (Theorem [612), we have

C(rY,) ~CT1n){ }_@c {q i+, (14.2.2)

By decompositions (IZZI) and [[ZZ32), C (I‘l,n) is isomorphic to

C(Tin){g™"} C(Tin){g™"}
2] 2]
CCin){g ™ CTua){g""?}
0— ® Xy ® -0,
2] 2]
C(Tyn){q"} C(T1n){g" %}
where x! is represented by an n x (n + 1) matrix (le,j)nx(nJrl)' By Lemma [I4.5
Xi; =0 ifi> (14.2.3)
Similarly, C (I'1,,) is isomorphic to
C(T1n){a "} C(Tin){g™"}
2] 2]
CT{a™) CT){a?)
0— b X, D -0,
2] 2]
C(Tyn){q"} C(Tin){q"}

where x? is represented by an (n + 1) x n matrix (X?7j)(n+1)><n' By Lemma [I4.5
Xo;~0 ifi>j+1. (14.2.4)



14.2. Invariance under Reidemeister move I 211

Consider the composition 8;+1 o x° o x* o aj. On the one hand, by Lemma BIT] and
Corollary 0.9

Bixr1ox"ox' o~ Bipiom(r—s)oa; ~pom(X,_j_1r(r—s)) oo ~ider, ) -

On the other hand, by (IZ2Z3) and (IZZ4),

n—1

0 1 - 0 1 .0 1
Bit1ox ox oaj = Z Xj+1,k © Xk,j = Xj+1,5 © Xj5-
k=1

So, X?+Lj o X},j ~ idg(r, ,,)- This shows that Xg+1,j and X},j are both isomorphisms in
hmf.
Using ([[Z2.3)), we apply Gaussian Elimination (Lemma [I3T9) to xj ; in c (T'f,,) for
j=1,2,...,n in that order. This reduces C’(I‘fn) to
0—C(Typn){d"} —0.

So C’(an) ~ C(Ty,,){q"}. Similarly, using (IZZJ), we apply Gaussian Elimination
(Lemma I3T9) to X7, C’(an) for j = n,n —1,...,1 in that order. This reduces

C(I‘in) to
0— C(T1n){g" "} — 0.

So C(I'y,) = C(T1n){g "} =
LEMMA 14.7. Let DT, D~ and D be the knotted MOY graphs in Figure I08. Then

C(DY) = C(D)(m)|Im||{g~ "N+, (14.2.5)
C(D™) = C(D)(m)||—m| {g" N+ =3, (14.2.6)
where || x || means shifting the homological grading by . (See Definition [330])

Proof. We prove ([£2.3) by induction on m. The proof of ([Z20]) is similar and left to
the reader.

If m = 1, then (IZ23) follows from [19, Theorem 2]. (See Theorem above.)
Assume that (IZ2Z70) is true for some m > 1. Let us prove (IL23) for m + 1.

Consider the knotted MOY graphs I'1,...,I'7 in Figure [T7 By decomposition (II)
(Theorem [612]), we have

CMy) ~C(DT){m+1]} and C(T7) ~ C(D){[m+1]}.
By Theorem I3} we have C(I'1) ~ C(T'y). Since ([ZZF) is true for 1, we know that

C(Iy) ~ C(Is)(1)]|1][{¢g"N}. From Lemma IZZ4 one can see that C(I's) ~ C(I).
Since ([[Z2Z0) is true for m, we know that C(I'y) ~ C(T's)(m)||m|/{g-™N+1=m)} By
Lemma I8, we deduce that C(I's) ~ C(I¢){¢™} and C(I's) ~ C(I'7){¢"}. Putting

these together, we get
C(I'1) = C(T7){m + 1) m + 1||{g~ " FDN=™}.

From Proposition 221} it follows that ([Z2X3) is true for m + 1. This completes the
induction. m
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m+1 m—+1 m—+1

@/
SNV

I Iy
m 1
m—+1 m—+1
m—+1
m+1 m—+1 m—+1
m—+1
m
Iy = D\ Ts = To= ;= \
1 m m—+1
1
m m—+1
m 1
m-+1 m+1
Fig. 117

LEMMA 14.8. Let Dy and D1 be two knotted MOY graphs. Assume that there is a Rei-
demeister move of type 1 that changes Dy into Dy. Then C(Dy) ~ C(Dy), that is, they
are isomorphic as objects of hCh®(hmf).

Proof. The lemma follows easily from Lemma [IZ7 and the normalization in Defini-
tion T2Z.16l m
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Two index charts

Morphisms induced by local changes of MOY graphs

Morphism Change of MOY graph Defined in
h bouquet move (Figure [T3]) Corollary and Lemma
L circle creation Definition
€ circle annihilation Definition
0] edge splitting (Figure [I7) Definition
) edge merging (Figure [I7) Definition

x? and ! Figure Proposition

(special cases in Corollaries [@.9] [0.3))
) loop addition (Figure 22]) Definition
7 loop removal (Figure 22]) Definition
7 saddle move (Figure 24]) Definition
pand P Figure Definition [[34]

(for use in Section [[3 only)
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Some basic concepts

Concept Defined in
abstract MOY graph Definition 2.1]
chain complex of a knotted MOY graph/link diagram Definition 2.4
colored rotation number Definition
end point Definition 211
fully additive C-category Definition FTT]
generating class of a colored circle Definition [7.4]
graded-free module Definition
graded matrix factorization Definition 3.4
homology of a matrix factorization over a base ring Definition
homology of a MOY graph Definition
homotopic graded matrix factorizations Definition
homotopically finite graded matrix factorizations Definition
internal vertex Definition 2.1]
isomorphic graded matrix factorizations Definition
knotted MOY graph Definition 211
Koszul matrix factorization Definition
Krull-Schmidt C-category Definition 1T
locally finite-dimensional C-category Definition EETT]
marking of a knotted MOY graph Definition
marking of a MOY graph Definition
matrix factorization of a MOY graph Definition
morphism of matrix factorizations Definition
MOY graph Definition 1]
MOY polynomial Equation ([Z3.2)
non-degenerate potential Definition £1]
normalized chain complex of a crossing Definition
pregrading Subsection B3]
quantum integer Definition
regular sequence Definition
renormalized Reshetikhin—Turaev s[(IN) polynomial Definition
unnormalized chain complex of a crossing Definition
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