
1. Introduction

Classical Sobolev spaces, based upon the Lebesgue spaces Lp, have been widely accepted

as one of the crucial instruments in Functional Analysis and have played a significant

role in numerous parts of mathematics for many years; in particular, in connection with

PDE’s. Embeddings of the Sobolev spaces play a major role. Sobolev’s classical embedding

theorem [30] states that if Ω ⊂ Rn is a domain with a sufficiently smooth boundary, then

W kp (Ω) →֒ Lq(Ω) continuously whenever p < n/k and p ≤ q ≤ np/(n− pk) (see also

for instance [1, Lemmas 5.12 and 5.14]). In the limiting case, i.e., when p = n/k, this

inclusion does not hold for q =∞, unless p = 1 so that k = n. However, we do have

W kn/k(Ω) →֒ Lq(Ω) for all q, p ≤ q <∞(1.1)

(see for example [1, Corollary 5.13 and Lemma 5.14]). Therefore, the optimal integrability

conditions satisfied by functions in W kn/k cannot be specified as simple Lq conditions.

In 1967 Trudinger [33] (see also Pokhozhaev [29] and Yudovich [34]) found refinements

of (1.1) expressed in terms of Orlicz spaces of exponential type. He was able to prove

that a continuous embedding of the form

W kp (Ω) →֒ LΦ(Ω),(1.2)

where kp = n and Ω is a bounded domain in Rn, n > 1, with a smooth boundary, holds

for the Orlicz space LΦ(Ω) generated by the function Φ(t) = exp t
λ for large t, where

λ = n/(n− 1) for all k ∈ N. Such an Orlicz space is clearly contained in Lq(Ω) for

every q < ∞. Trudinger also showed that the value λ = n/(n− 1) is the best possible

when k = 1. However, when k ≥ 2, Strichartz [32] noted that Trudinger’s result could be

improved with the larger power λ = p′ = n/(n− k). The reason why Trudinger did not

obtain the optimal power is that the case k ≥ 2 was reduced to the case k = 1 by using

a Sobolev result, namely if u ∈ W kp (Ω), k ≥ 2, k p = n, then u ∈ W
1
n(Ω). Strichartz

on the other hand used a direct argument. He also observed that λ = p′ = n/(n− k)

is the best possible value of λ for any choice of k ≤ n − 1. Note that in 1966, Peetre

[28, Theorem 9.1] proved a limiting embedding concerning Besov spaces from which

Trudinger’s and Strichartz’s limiting embeddings follow for p = 2.

To obtain further refinements of the limiting case of the Sobolev embedding theo-

rem, it is necessary to work with a wider class of function spaces, such as the Lorentz–

Zygmund spaces Lp,q(logL)α(Ω) introduced by Bennett and Rudnick [2]. Let us just

remark that the Orlicz space LΦ(Ω), defined above, coincides with the Lorentz–Zygmund

space L∞,∞(logL)−1/λ(Ω), also denoted by Eλ(Ω) in some literature.
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In 1979 Hansson [19, pp. 96–101] and, independently, in 1980 Brézis and Wainger [5,

Theorem 2, p. 781] proved the embedding

W kp (Ω) →֒ L
∞,p(logL)−1(Ω),

where kp = n and Ω is a bounded domain with smooth boundary.

As pointed out in both [19] and [5], the space L∞,p(logL)−1(Ω) is strictly smaller

than the various versions of the space LΦ(Ω) which appear in (1.2). This fact also agrees

with what was considered previously and with Theorem 9.5 of [2], where various inclusion

relations among the Lorentz–Zygmund spaces were established.

In more recent times, Sobolev type embeddings in the limiting case have attracted

some attention, mostly restricted to the case of classical Sobolev spaces where k =

n/p ∈ N, but in the context of general rearrangement-invariant spaces; see for instance

Cwikel and Pustylnik [6] and Edmunds, Kerman and Pick [14]. We refer to Edmunds

and Triebel [15] for embeddings of fractional Sobolev spaces and Besov spaces into

rearrangement-invariant spaces. In particular, Cwikel and Pustylnik [6] showed that the

space L∞,p(logL)−1(Ω) is the smallest rearrangement-invariant Banach function space

into which W kp (Ω), with kp = n, can be continuously embedded. A more detailed de-

scription can be found in [6], [14] and [15].

When the space Ln(logL)a is used instead of Ln as the underlying space, then the

corresponding Sobolev space is embedded in another Orlicz space of single exponential

type if a < 0 (see Fusco, Lions and Sbordone [17], Edmunds, Gurka and Opic [9, Re-

mark 3.11(iv)], and [10, Section 6]), while if a = (n− 1)/n there is an embedding into

an Orlicz space of double exponential type (see Edmunds, Gurka and Opic [9]–[11]). See

Edmunds, Gurka and Opic [12] for the case when the Sobolev space is modelled upon a

generalised Lorentz–Zygmund space.

In this paper we consider the Lorentz–Karamata spaces Lp,q;b(R) where p, q ∈ (0,∞],

b is a slowly varying function on [1,∞) and (R,µ) a measure space. With convenient

choices of slowly varying functions these spaces give the generalised Lorentz–Zygmund

(GLZ) spaces Lp,q;α1,...,αm(R) (introduced by Edmunds, Gurka and Opic [12]), Lorentz–

Zygmund spaces Lp,q(logL)α(R) (introduced by Bennett and Rudnick [2]), Zygmund

spaces Lp(logL)α(R), Lorentz spaces Lp,q(R) and Lebesgue spaces Lp(R).

When 1 < p < ∞, q ∈ [1,∞], and (R,µ) is a resonant measure space, it is proved

that Lp,q;b(R), endowed with a convenient norm, is a rearrangement-invariant Banach

function space with associate space Lp′,q′;1/b(R). This result generalises Theorem IV.4.7

of [3], where the case of Lorentz spaces is considered, and also extends Lemma 3.4 of [12],

where the case of generalised Lorentz–Zygmund spaces is considered.

Sufficient conditions on the indices p, q and on the slowly varying functions b are

given in order to have embeddings between Lorentz–Karamata spaces. When p varies

we consider the underlying measure space with finite measure. This condition is also

necessary if the underlying measure space is resonant. When p is fixed the results are given

for any measure space. These results extend and give the counterpart of the embedding

results for the Lorentz–Zygmund spaces (see Bennett and Rudnick [2] and Bennett and

Sharpley [3]) and generalised Lorentz–Zygmund spaces (see Evans, Opic and Pick [16]

for GLZ spaces over a finite non-atomic measure space, case m = 2 and p fixed).
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Embedding theorems for certain Bessel-potential spaces modelled upon Lorentz–

Karamata spaces, referred to in what follows as Lorentz–Karamata–Bessel potential

spaces, into Lorentz–Karamata spaces are given when the power exponent p is in the

sublimiting case, i.e., 1 < p < n/σ, where σ ∈ (0, n), and when p has the limiting value

n/σ, with σ ∈ (0, n). These results generalise and improve (limiting case) those of Ed-

munds, Gurka and Opic [12], and refine the one of Hansson [19]. In order to do that,

weighted Hardy-type inequalities involving slowly varying functions are considered.

A decomposition of the Luxemburg norm of the functions in an Orlicz space into two

terms where one is of Marcinkiewicz type, provided the Young function satisfies a Lorentz

type condition, is given and used to obtain embeddings of certain Lorentz–Karamata–

Bessel potential spaces (limiting case) into Orlicz spaces, considered either on subsets

of Rn with finite volume or on Rn. These results extend those of Edmunds, Gurka and

Opic [10], [12] and Gurka and Opic [18], and give refinements of those of Trudinger [33]

and Strichartz [32]. The results of Gurka and Opic [18] concern embeddings of Bessel-

potential spaces HσY (Rn), modelled upon appropriate generalised Lorentz–Zygmund

spaces Y (Rn), into Orlicz spaces LΦ(R
n), where Φ(t) = exp(exp(. . . exp(tν) . . .)), for

large t, ν > 0, and Φ(t) = tq, for small t, with ν and q satisfying certain conditions. It

was this modification of Φ near the origin that permitted the authors to consider the

global embedding; see [7] for the case of fractional Sobolev spaces, and [1] and [8] for the

case of Sobolev spaces.

We also present estimates for an appropriate norm of the convolution of a function

f in a Lorentz space with one g in the intersection of a Lorentz–Karamata space with

the Lebesgue L1 space. In particular, we consider the case when f is the Riesz kernel Iσ,

0 < σ < n. These results extend those of Edmunds, Gurka and Opic [9] on convolutions

of functions in generalised Lorentz–Zygmund spaces which lead to double exponential

integrability, and those of Brézis–Wainger [5] on convolution of functions in Lorentz spaces

which lead to single exponential integrability. Furthermore, in some cases we improve the

results of Edmunds, Gurka and Opic [9] by obtaining a triple exponential Orlicz space

rather than a double exponential one. Moreover, we also obtain results related to that of

Mizuta and Shimomura [22].

Acknowledgements. It is a pleasure to thank Prof. D. E. Edmunds for his helpful

suggestions during the preparation of this paper. The author is indebted to the Referee

for his several suggestions. The author is also grateful to Calouste Gulbenkian Foundation

and to Mathematics Department of the University of Coimbra for the financial support.

2. Notation and preliminaries

As usual, Rn denotes Euclidean n-dimensional space. Let (R,Σ, µ), usually denoted by

(R,µ), be a totally σ-finite measure space, referred to in what follows only as a measure

space. A set E ∈ Σ is called an atom of (R,Σ, µ) if µ(E) > 0 and F ⊂ E, F ∈ Σ

implies either µ(F ) = 0 or µ(E \ F ) = 0. If there are no atoms, then (R,Σ, µ) is called

non-atomic. A measure space (R,µ) is called resonant if it is one of the following two
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types: (i) non-atomic; (ii) completely atomic, with all atoms having equal measure. We

refer to [3, pp. 45–51] for more details and for a different, but equivalent, definition. When

R = Rn we always take µ to be Lebesgue measure µn, and write |Ω|n = µn(Ω) for any

measurable subset Ω of Rn. The family of all extended scalar-valued (real or complex)

µ-measurable functions on R will be denoted by M(R,µ); M0(R,µ) will stand for the

subset ofM(R,µ) consisting of all those functions which are finite µ-a.e. andM+(R,µ)

(resp.M+0 (R,µ)) will represent the subset ofM(R,µ) (resp.M0(R,µ)) made up of all

those functions which are non-negative µ-a.e.

Let f ∈M0(R,µ). The distribution function µf of f is defined by

µf (λ) = µ{x ∈ R : |f(x)| > λ} for all λ ≥ 0,

the non-increasing rearrangement of f is the function f∗(R,µ) defined on [0,∞) by

f∗(R,µ)(t) = inf{λ ≥ 0 : µf (λ) ≤ t} for all t ≥ 0,

and the maximal function f∗∗(R,µ) of f
∗
(R,µ) is defined by

f∗∗(R,µ)(t) =
1

t

t\
0

f∗(R,µ)(s) ds for all t > 0.

If (R,µ) is a finite measure space, then the distribution function µf is bounded above

by µ(R) and so f∗(R,µ)(t) = 0 for all t ≥ µ(R). In this case we may regard f
∗
(R,µ) as a

function defined on the interval [0, µ(R)); for more details we refer to [3]. If there is no

danger of confusion, we write f∗ (resp. f∗∗) or f∗R (resp. f
∗∗
R ) instead of f

∗
(R,µ) (resp.

f∗∗(R,µ)).

Two functions f ∈M0(R,µ) and g ∈M0(S, ν) are said to be equimeasurable if they

have the same distribution function, i.e., if µf (λ) = νg(λ) for all λ ≥ 0.

Although the non-increasing rearrangement does not preserve sums or products of

functions, there are some basic inequalities that govern the process.

The next result concerns an inequality for sums [3, Theorem II.3.4].

Theorem 2.1. If f and g belong toM0(R,µ), then

(f + g)∗∗(t) ≤ f∗∗(t) + g∗∗(t) for all t > 0.

We also need the following Hardy–Littlewood inequality for products [3, Theorem

II.2.2].

Theorem 2.2. If f and g belong toM0(R,µ), then\
R

|fg| dµ ≤

∞\
0

f∗(t)g∗(t) dt.

For general facts about Banach function spaces with Banach function norm (or simply

a function norm) ̺ over a measure space (R,µ) we refer to [3, Chaps. 1, 2]. Nevertheless,

let us recall a few concepts and results, for the convenience of the reader.

A function norm ̺ over a measure space (R,µ) is said to be rearrangement-invariant

if ̺(f) = ̺(g) for every pair of equimeasurable functions f and g inM+0 (R,µ).
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Let (R,µ) be a measure space and let ̺ be a function norm. The associate function

norm ̺′ of ̺ is defined onM+(R,µ) by

̺′(g) = sup
{\
R

fg dµ : f ∈M+(R,µ), ̺(f) ≤ 1
}
,(2.1)

for each g ∈M+(R,µ). The collection X = X(̺) of all functions f inM(R,µ) for which

̺(|f |) is finite is called a Banach function space. The norm of a function f in X is given

by

‖f‖X = ̺(|f |).(2.2)

The Banach function space X = X(̺) generated by a rearrangement-invariant function

norm ̺ is called a rearrangement-invariant space. The Banach function space X(̺′) de-

termined by ̺′, where ̺′ is the associate norm of ̺, is called the associate space of X(̺)

and is denoted by X ′. It follows from (2.1) and (2.2) that the norm of a function g in the

associate space X ′ is given by

‖g‖X′ := sup
{\
R

|fg| dµ : f ∈ X, ‖f‖X ≤ 1
}
.

The next result formulates the Hölder inequality in terms of the Banach function

spaces X and X ′ generated by ̺ and ̺′, respectively [3, Corollary II.4.5].

Theorem 2.3. Let X be a rearrangement-invariant space over a resonant measure space

(R,µ). If f belongs to X and g to X ′, then\
R

|fg| dµ ≤

∞\
0

f∗(t)g∗(t) dt ≤ ‖f‖X‖g‖X′ .

We shall also need the Lorentz–Luxemburg theorem [3, Theorem I.2.7].

Theorem 2.4. Every Banach function space X coincides with its second associate space

X ′′ := (X ′)′. In other words , a function f belongs to X if , and only if , it belongs to X ′′,

and in that case ‖f‖X = ‖f‖X′′ .

Remark 2.1. If X and Y are two Banach function spaces such that Y = X ′, up to

equivalence of norms, then it follows, by the Lorentz–Luxemburg theorem (Theorem 2.4),

and by the definition of Y ′, that Y ′ = X, up to equivalence of norms. In other words, X

and Y are mutually associate, up to equivalence of norms.

Now we recall the Luxemburg representation theorem [3, Theorem II.4.10].

Theorem 2.5. Let ̺ be a rearrangement-invariant function norm over a resonant mea-

sure space (R,µ). Then there is a (not necessarily unique) rearrangement-invariant func-

tion norm ̺ over (R+, µ1) such that ̺(f) = ̺(f
∗) for all f inM+0 (R,µ).

Furthermore, if σ is any rearrangement-invariant function norm over (R+, µ1) which

represents ̺, in the sense that ̺(f) = σ(f∗) for all f in M+0 (R,µ), then the associate

norm ̺′ of ̺ is represented in the same way by the associate norm σ′ of σ, that is ,

̺′(g) = σ′(g∗) for all g inM+0 (R,µ).

Let p ∈ (0,∞]. We denote by Lp(R) the Lebesgue space endowed with the (quasi-)

norm ‖ · ‖p;R.
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Let X be a rearrangement-invariant Banach function space over (Rn, µn). Then, by

[3, Theorem II.6.6], X →֒ L1(R
n) + L∞(R

n). Therefore, if f ∈ X and g ∈ L1(R
n),

f ∗ g = g ∗ f ∈M0(R
n, µn), where f ∗ g is the convolution of f and g.

By a Young function Φ we mean a continuous non-negative, strictly increasing and

convex function on [0,∞) satisfying

lim
t→0+
Φ(t)/t = lim

t→∞
t/Φ(t) = 0.

Given a Young function Φ, the Orlicz space LΦ(R) is defined to be the collection of

all functions f ∈M0(R,µ) for which there is a λ > 0 such that\
R

Φ(|f |/λ) dµ <∞,

equipped with the Luxemburg norm ‖ · ‖Φ,R given by

‖f‖Φ,R = inf
{
λ > 0 :

\
R

Φ(|f |/λ) dµ ≤ 1
}
.

We refer to [1, Chapter VIII] and [20, Chapter III] for more details.

Let Φ1 and Φ2 be Young functions. Recall that Φ2 dominates Φ1 globally if there is a

positive constant κ such that

Φ1(t) ≤ Φ2(κt)(2.3)

for all t ≥ 0. Similarly, Φ2 dominates Φ1 near infinity if there are positive constants κ

and t0 such that (2.3) holds for all t ∈ [t0,∞). Two Young functions are said to be

equivalent globally (resp. near infinity) if each dominates the other globally (resp. near

infinity). From [1, Theorem 8.12, pp. 234–235] we have the following result: If Φ1 and Φ2
are equivalent globally (or near infinity and µ(R) <∞), then LΦ1(R) = LΦ2(R) and the

corresponding norms are equivalent.

Let Φ be a non-negative, non-decreasing, left-continuous function on [0,∞) with

Φ(0+) = 0 and Φ(∞) =∞. Let (R,µ) be a measure space and let f belong toM0(R,µ).

Then \
R

Φ(|f |) dµ =

∞\
0

Φ(f∗µ(t)) dt

(cf. [3, p. 87]). Therefore, if Φ is a Young function,

‖f‖Φ,R = inf
{
λ > 0 :

∞\
0

Φ(f∗µ(t)/λ) dt ≤ 1
}

for all f ∈ LΦ(R).

The Riesz kernel Iσ, 0 < σ < n, is defined by

Iσ(ξ) = |ξ|
σ−n, ξ ∈ Rn.

The Bessel kernel gσ, σ > 0, is defined by

gσ(ξ) =
1

(4π)σ/2Γ (σ/2)

∞\
0

e−π|ξ|
2/x e−x/(4π) x(σ−n)/2

dx

x
, ξ 6= 0
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(cf. [31, Chap. 5]). It is known that gσ is a positive, integrable function which is analytic

except at the origin, ‖gσ‖1;Rn = 1 and its Fourier transform is

ĝσ(ξ) = (2π)
−n/2(1 + |ξ|2)−σ/2, ξ ∈ Rn,

where the Fourier transform f̂ of a function f is given by

f̂(ξ) = (2π)−n/2
\

Rn

e−iξ·x f(x) dx, ξ ∈ Rn.

Now let m ∈ N and α = (α1, . . . , αm) ∈ Rm. We denote by ϑmα the real function

defined by

ϑmα (t) =
m∏

i=1

ℓαii (t) for all t ∈ (0,∞),

where ℓ1, . . . , ℓm are positive functions defined on (0,∞) by

ℓ1(t) = 1 + |log t|, ℓi(t) = 1 + log ℓi−1(t), i ∈ {2, . . . ,m}, m ≥ 2.

Let ℓ0 be the function on (0,∞) defined by ℓ0(t) = max{1/t, t} for each t > 0. We define

the numbers exp1, . . . , expm by

exp1 = e, expi = e
expi−1 , i ∈ {2, . . . ,m}, m ≥ 2.

Denote by µmα the real function defined by

µmα (t) =

m∏

i=1

lαii (t) for all t ∈ [expm,∞),

where l1, . . . , lm are the positive functions defined by

l1(t) = log t, t ≥ e,

li(t) = log li−1(t), t ≥ expi, i ∈ {2, . . . ,m}, m ≥ 2.

For formal reasons, we put, if m = 0,

ϑmα =

m∏

i=1

ℓαii = µ
m
α = 1.

The symbol expm will represent the function exp ◦ exp ◦ . . . ◦ exp︸ ︷︷ ︸
m times

and the symbol

Expm will represent the positive function defined on (0,∞) by induction:

Expm(x) = e
x−1 if m = 1, Expm(x) = e

Expm−1(x)−1 if m ≥ 2.

Given α = (α1, . . . , αm),β = (β1, . . . , βm) ∈ Rm and σ ∈ R, we write α + β =

(α1 + β1, . . . , αm + βm), α + σ = (α1 + σ, . . . , αm + σ), σα = (σα1, . . . , σαm). If α =

(0, . . . , 0) ∈ Rm, we denote α by 0. We write β ≺ α, or α ≻ β, if one of the following

conditions is satisfied:

β1 − α1 < 0;

{
there exists k ∈ {2, . . . ,m} such that

βj = αj for j = 1, . . . , k − 1 and βk − αk < 0.

We use the symbol β � α, or α � β, to mean that either β ≺ α or β = α. Let p ∈ [1,∞],

k ∈ {1, . . . ,m}. We denote by δp;m,k the m-tuple (δ1, . . . , δm) ∈ Rm, where δi = 1/p,

i = 1, . . . , k, and, if k + 1 ≤ m, δi = 0, i = k + 1, . . . ,m.
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In what follows, we let c denote a positive constant. In a chain of inequalities c may

stand for several different constants if it is not important to distinguish between them,

otherwise we use c with subscripts. For two non-negative expressions (i.e. functions or

functionals) A, B, the symbol A - B means that A ≤ cB for some positive constant c

independent of the variables in A and B. If A - B and B - A, we write A ≈ B.

We adopt the convention that a/∞ = 0 and a/0 =∞ for all a > 0. If p ∈ [1,∞], the

conjugate number p′ is given by 1/p+ 1/p′ = 1.

3. Slowly varying functions and Lorentz–Karamata spaces

A positive and Lebesgue-measurable function b is said to be slowly varying (s.v.) on

[1,∞) in the sense of Karamata if, for each ε > 0, tεb(t) is equivalent to a non-decreasing

function and t−εb(t) is equivalent to a non-increasing function on [1,∞); see Chapter I

in [4] for a detailed study of the Karamata theory.

Properties and examples of s.v. functions can be found in [36, Chapter V, p. 186], [4]

and [14]. The following functions are s.v. on [1,∞):

(i) b(t) = ϑmα (t) with m ∈ N and α ∈ Rm;

(ii) b(t) = exp(logα t) with 0 < α < 1;

(iii) bm(t) = exp(ℓ
α
m(t)) with 0 < α < 1 and m ∈ N.

Note that ifm ≥ 2 in the last example, we may consider α = 1. In this case bm ≈ ℓm−1.

Given a slowly varying function b on [1,∞), we denote by γb the positive function

defined by

γb(t) = b(max{t, 1/t}) for all t > 0.

It follows easily that the product of two slowly varying functions b1 and b2 on [1,∞)

is still a slowly varying function on [1,∞) and

γb1b2(t) = γb1(t)γb2(t) for all t > 0.

Lemma 3.1. Let b be a slowly varying function on [1,∞).

(i) Let r ∈ R. Then br is a slowly varying function on [1,∞) and

γbr(t) = γ
r
b (t) for all t > 0.

(ii) For each ε > 0, tεγb(t) is equivalent to a positive non-decreasing function on

(0,∞) and t−εγb(t) is equivalent to a positive non-increasing function on (0,∞).

(iii) Let κ > 0. Then

γb(κt) ≈ γb(t) for all t > 0.

(iv) If
∞\
1

τ−1 b(τ ) dτ <∞,

then b1 defined by

b1(t) =

∞\
t

τ−1 b(τ ) dτ, t ≥ 1,

is a slowly varying function on [1,∞).
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(v) Let α > 0. Then

t\
0

τα−1γb(τ ) dτ ≈ sup
0<τ<t

ταγb(τ ) ≈ t
αγb(t) for all t > 0;(3.1)

∞\
t

τ−α−1γb(τ ) dτ ≈ sup
t<τ<∞

τ−αγb(τ ) ≈ t
−αγb(t) for all t > 0.(3.2)

(vi) If α < 0, then

t\
0

τα−1γb(τ ) dτ = sup
0<τ<t

ταγb(τ ) =

∞\
t

τ−α−1γb(τ ) dτ

= sup
t<τ<∞

τ−αγb(τ ) =∞ for all t > 0.

Proof. The easy proofs of (i), (iii) and (vi) are omitted. In (v), the estimates (3.2) follow

from (3.1) by taking into account that γb(t) = γb(1/t) for all t > 0.

For (ii), let ε > 0. We denote by fε the non-decreasing function equivalent to t
εb(t)

on [1,∞), and by f−ε the non-increasing function equivalent to t
−εb(t) on [1,∞). Then

it is easy to verify that tεγb(t) is equivalent to the positive non-decreasing function Γε on

(0,∞) defined by

Γε(t) =
fε(1)

f−ε(1)
f−ε(max{t, 1/t})χ(0,1)(t) + fε(max{t, 1/t})χ[1,∞)(t), t > 0,

and that t−εγb(t) is equivalent to the positive non-increasing function Γ−ε on (0,∞)

defined by

Γ−ε(t) = fε(max{t, 1/t})χ(0,1)(t) +
fε(1)

f−ε(1)
f−ε(max{t, 1/t})χ[1,∞)(t), t > 0.

To prove (iv), for each ε > 0, let fε and f−ε be as before. Then it is easy to verify

that tεb1(t) is equivalent to the non-decreasing function gε on [1,∞) defined by

gε(t) = t
ε

∞\
t

τ−1+ε f−ε(τ ) dτ, t ≥ 1,

and that t−εb1(t) is equivalent to the non-increasing function g−ε on [1,∞) defined by

g−ε(t) = t
−ε

∞\
t

τ−1−ε fε(τ ) dτ, t ≥ 1.

Let us now prove the estimates (3.1) in (v). Let

g1(t) =

t\
0

τα−1γb(τ ) dτ for all t > 0,

g∞(t) = sup
0<τ<t

ταγb(τ ) for all t > 0.

Let t > 0. Then by (ii), we have

g1(t) % t
−1γb(t)

t\
0

τα dτ ≈ t−1γb(t)t
α+1 = tαγb(t).(3.3)
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On the other hand, for each t > 0,

g1(t) - t
α/2γb(t)

t\
0

τα/2−1 dτ ≈ tα/2γb(t)t
α/2 = tαγb(t).(3.4)

It now follows from (3.3) and (3.4) that

g1(t) ≈ t
αγb(t) for all t ∈ (0,∞).(3.5)

The estimate g∞(t) ≈ t
αγb(t) for all t > 0, follows easily, and together with (3.5)

gives (3.1).

Let α ∈ (0, 1]. Let Kα be the class of all positive and Lebesgue-measurable functions

b defined on [1,∞) such that, for each ε > 0, exp(εℓα1 (t))b(t) is equivalent to a non-

decreasing function and exp(−εℓα1 (t))b(t) is equivalent to a non-increasing function on

[1,∞).

Remark 3.1. Let α ∈ (0, 1].

(i) If α = 1, then Kα coincides with the class of slowly varying functions.

(ii) Let r ∈ R and b ∈ Kα. Then b
r ∈ Kα.

(iii) Let b1, b2 ∈ Kα. Then b1b2 ∈ Kα.

(iv) Let a ∈ R, δ ∈ [0, α] and let bδ be the function defined by bδ(t) = exp(aℓ
α−δ
1 (t))

for t ≥ 1. Then b0 6∈ Kα. However, bδ ∈ Kα if 0 < δ ≤ α.

(v) Let 0 < α < β ≤ 1. Then Kα ( Kβ.

In order to prove the results of Sections 5 and 6 and some of this section, we shall

need weighted Hardy inequalities where the weights are slowly varying functions, and

give general results below; the proofs are omitted since they simply involve checking

well-known criteria (cf. e.g. [24, Theorems 5.9 & 5.10 & 6.2 & 6.3]).

Lemma 3.2. Let p, q ∈ [1,∞], ν 6= 0 and let b1, b2 be two slowly varying functions on

[1,∞).

(i) The inequality

∥∥∥tν−1/q γb2(t)
t\
0

g(u) du
∥∥∥
q;(0,∞)

- ‖tν+1/p
′

γb1(t) g(t)‖p;(0,∞)(3.6)

holds for all g ∈M+((0,∞), µ1) if , and only if , ν < 0 and one of the following conditions

is satisfied:

1 ≤ p ≤ q ≤ ∞, sup
0<x<1

b2(1/x)

b1(1/x)
<∞;(3.7)

1 ≤ q < p ≤ ∞,

∥∥∥∥x
−1/r b2(1/x)

b1(1/x)

∥∥∥∥
r;(0,1)

<∞, where
1

r
=
1

q
−
1

p
.(3.8)

(ii) The inequality

∥∥∥tν−1/q γb2(t)
∞\
t

g(u) du
∥∥∥
q;(0,∞)

- ‖tν+1/p
′

γb1(t) g(t)‖p;(0,∞)(3.9)
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holds for all g ∈M+((0,∞), µ1) if , and only if , ν > 0 and one of conditions (3.7)–(3.8)

is satisfied.

Remark 3.2. Suppose m ∈ N, α = (α1, . . . , αm),β = (β1, . . . , βm) ∈ Rm, b1 = ϑ
m
α and

b2 = ϑ
m
β .

(i) Let 1 ≤ p ≤ q ≤ ∞. Then (3.7) is satisfied if, and only if, β � α. In this case,

the previous lemma gives the result of [12, Lemma 3.1].

(ii) Let 1 ≤ q < p ≤ ∞. Then (3.8) is satisfied if, and only if, β + 1/q ≺ α+ 1/p.

(iii) See [16, Lemma 3.1], where the case m = 2 is considered, but with the interval

(0,∞) in (3.6) and (3.9) replaced by the interval (0, 1).

Remark 3.3. Let m ∈ N, p, q ∈ [1,∞], α1, β1 ∈ R and 0 < α < 1. Let φ1, φ2 ∈ Kα and

let b1, b2 be slowly varying functions on [1,∞) defined by

b1(t) = ℓ
−(α−1)/p′

m (t)

m−1∏

i=1

ℓ
1/p′

i (t) exp(α1ℓ
α
m(t))φ1(ℓm−1(t)) for t ≥ 1,

b2(t) = ℓ
(α−1)/q
m (t)

m−1∏

i=1

ℓ
−1/q
i (t) exp(β1ℓ

α
m(t))φ2(ℓm−1(t)) for t ≥ 1.

(i) Let 1 ≤ p ≤ q ≤ ∞. If either β1 < α1 or β1 = α1 and φ2 - φ1, then (3.7) is

satisfied.

(ii) Let 1 ≤ q < p ≤ ∞. If β1 < α1, then (3.8) is satisfied.

Lemma 3.3. Let p, q ∈ [1,∞] and let b1, b2 be two slowly varying functions on [1,∞).

(i) If 1 ≤ p ≤ q ≤ ∞, then the inequality

∥∥∥t−1/q b2(1/t)
1\
t

g(u) du
∥∥∥
q;(0,1)

- ‖t1/p
′

b1(1/t)g(t)‖p;(0,1)(3.10)

holds for all g ∈M+((0, 1), µ1) if , and only if , there is a positive constant c such that

‖t−1/q b2(1/t)‖q;(0,x)‖(t
1/p′ b1(1/t))

−1‖p′;(x,1) ≤ c for all x ∈ (0, 1).(3.11)

(ii) If 1 ≤ q < p ≤ ∞, then (3.10) holds for all g ∈M+((0, 1), µ1) if , and only if ,

1\
0

[‖t−1/q b2(1/t)‖q;(0,x)‖(t
1/p′ b1(1/t))

−1‖
p′/q′

p′;(x,1)]
r(x1/p

′

b1(1/x))
−p′ dx(3.12)

is finite, where 1/r = 1/q − 1/p.

Remark 3.4. Let p, q ∈ [1,∞],m ∈ N, α = (α1, . . . , αm) ∈ Rm and let k ∈ {1, . . . ,m} be

such that αk 6= 1/p
′ and, if k ≥ 2, αi = 1/p

′, i = 1, . . . , k−1. Let β = (β1, . . . , βm) ∈ Rm

with βk 6= −1/q and, if k ≥ 2, βi = −1/q, i = 1, . . . , k − 1. Put b1 = ϑ
m
α and b2 = ϑ

m
β .

(i) Let 1 ≤ p ≤ q ≤ ∞. Then (3.11) holds if, and only if,

βk < −1/q and β + δq;m,k � α− δp′;m,k.

If we omit the assumption βk 6= −1/q the assertion (3.11) will still hold provided that

1 ≤ p ≤ q =∞, β = 0, −αk + 1/p
′ < 0.(3.13)
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Moreover, with k = m, if we also omit the assumption αm 6= 1/p
′, the assertion (3.11)

will still hold provided that

p = 1, q =∞, α = β = 0.

(ii) Let 1 ≤ q < p ≤ ∞. Then (3.12) holds if, and only if,

βk < −1/q and β + 1/q ≺ α− δ1;m,k + 1/p.

(iii) We refer to [16, Lemmas 3.2(ii), 3.3(ii) & Remark 3.4(iii)] for the case m = 2. In

[16], only the case k = m = 2 in (3.13) is considered.

Remark 3.5. Let m ∈ N, p, q ∈ [1,∞], α1, β1 ∈ R and 0 < α < 1.

(i) Suppose β1 6= 0. Let b1, b2 be slowly varying functions on [1,∞) defined by

b1(t) = ℓ
−(α−1)/p′

m (t)
m−1∏

i=1

ℓ
1/p′

i (t) exp(α1ℓ
α
m(t)) for t ≥ 1,

b2(t) = ℓ
(α−1)/q
m (t)

m−1∏

i=1

ℓ
−1/q
i (t) exp(β1ℓ

α
m(t)) for t ≥ 1.

(a) Let 1 ≤ p ≤ q ≤ ∞. Then (3.11) holds if, and only if,

β1 < 0 and β1 ≤ α1.

Moreover, if we omit the assumption β1 6= 0 the assertion (3.11) will still

hold provided that

either 1 ≤ p ≤ q =∞, β1 = 0 and α1 > 0

or p = 1, q =∞, β1 = 0 and α1 = 0.

(b) Let 1 ≤ q < p ≤ ∞. Then (3.12) holds if, and only if,

β1 < 0 and β1 < α1.

(ii) Suppose that α1 6= 0 and β1 6= 0. Let φ1, φ2 ∈ Kα and let b1, b2 be slowly varying

functions on [1,∞) defined by

b1(t) = ℓ
−(α−1)/p′

m (t)
m−1∏

i=1

ℓ
1/p′

i (t) exp(α1ℓ
α
m(t))φ1(ℓm−1(t)) for t ≥ 1,

b2(t) = ℓ
(α−1)/q
m (t)

m−1∏

i=1

ℓ
−1/q
i (t) exp(β1ℓ

α
m(t))φ2(ℓm−1(t)) for t ≥ 1.

(a) Let 1 ≤ p ≤ q ≤ ∞. If β1 < 0, either β1 < α1 or β1 = α1 and φ2 - φ1, then

(3.11) is satisfied.

(b) Let 1 ≤ q < p ≤ ∞. If β1 < 0 and β1 < α1, then (3.12) is satisfied.

Definition 3.1. Let p, q ∈ (0,∞] and let b be a slowly varying function on [1,∞).

The Lorentz–Karamata (LK ) space Lp,q;b(R) is defined to be the set of all functions

f ∈M0(R,µ) such that

‖f‖p,q;b;R := ‖t
1/p−1/qγb(t)f

∗(t)‖q;(0,∞)(3.14)

is finite. Here ‖ · ‖q;(0,∞) stands for the usual Lq (quasi-) norm over the interval (0,∞).
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If m ∈ N, α = (α1, . . . , αm) ∈ Rm and b = ϑmα , then Lp,q;b(R) is precisely the

generalised Lorentz–Zygmund (GLZ) space Lp,q;α(R), introduced in [12], endowed with

the (quasi-) norm ‖f‖p,q;α;R. We remark that in [12], the GLZ space Lp,q;α(R) and the

quasi-norm ‖·‖p,q;α;R defined above are denoted by Lp,q;α1,...,αm(R) and ‖·‖p,q;α1,...,αm;R,

respectively. We use the notation of [12] only when we are considering particular cases.

Let us observe that when we consider α = (0, . . . , 0), we obtain the Lorentz space Lp,q(R)

endowed with the (quasi-) norm ‖·‖p,q;R, which is just the Lebesgue space Lp(R) endowed

with the (quasi-) norm ‖ · ‖p;R when p = q; if p = q, m = 1 and (R,µ) = (Ω,µn), we

obtain the Zygmund space Lp(logL)α1(Ω) endowed with the (quasi-) norm ‖ · ‖p;α1;Ω.

When 0 < p < ∞, the Lorentz–Karamata space Lp,q;b(R) contains other functions

than the null function; when p = ∞, it is different from the trivial space if, and only if,

‖t1/p−1/qγb(t)‖q;(0,∞) < ∞. Observe that, when p = ∞, ‖t
1/p−1/qγb(t)‖q;(0,∞) < ∞ if,

and only if, ‖t1/p−1/qγb(t)‖q;(0,1) <∞.

Lorentz–Karamata spaces with s.v. functions considered in Remark 3.5 have not been

considered before in the literature, as far as we are aware.

Let p, q ∈ (0,∞] and let b be a slowly varying function on [1,∞). Let us introduce

the functional ‖ · ‖(p,q;b);R defined by

‖f‖(p,q;b);R := ‖t
1/p−1/qγb(t)f

∗∗(t)‖q;(0,∞);(3.15)

this is identical with that defined in (3.14) except that f∗ has been replaced by f∗∗.

Lemma 3.4. Suppose 1 < p ≤ ∞, 1 ≤ q ≤ ∞ and let b be a slowly varying function on

[1,∞). Then

‖f‖p,q;b;R ≤ ‖f‖(p,q;b);R - ‖f‖p,q;b;R for all f ∈M0(R,µ).(3.16)

In particular , the Lorentz–Karamata space Lp,q;b(R) consists of all those functions f for

which ‖f‖(p,q;b);R is finite.

Proof. The first inequality follows immediately since f∗ ≤ f∗∗ for all f ∈ M0(R,µ). As

for the second, since p > 1, we see from Lemma 3.2(i) that

‖f‖(p,q;b);R =
∥∥∥t1/p−1−1/qγb(t)

t\
0

f∗(s) ds
∥∥∥
q;(0,∞)

- ‖t1/p−1+1/q
′

γb(t)f
∗(t)‖q;(0,∞) = ‖f‖p,q;b;R.

When m ∈ N, α ∈ Rm and b = ϑmα , the previous lemma coincides with Lemma 3.2

of [12].

Since, by Theorem 2.1, f 7→ f∗∗ is subadditive, it is easy to verify that ‖ · ‖(p,q;b);R is

a norm provided that q ≥ 1.

Lemma 3.5. Let 1 < p, q < ∞ and let b be a slowly varying function on [1,∞). Let

g ∈M0(R
+, µ1). Define Φ in (0,∞) by

Φ(s) = sq/p−1(γb(s))
q (g∗(s))q−1, s > 0.
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Then

Φ(s) -

s\
s/2

Φ(τ )τ−1 dτ for s > 0.

Proof. Since g∗ is non-increasing, we have

s\
s/2

Φ(τ )τ−1 dτ % (g∗(s))q−1
s\
s/2

τ q/p−1(γb(τ ))
qτ−1 dτ.(3.17)

Now let ε > 1. Then q/p − 1 + ε > 0 and, by Lemma 3.1, tq/p−1+ε(γb(t))
q is equivalent

to a positive non-decreasing function on (0,∞). Then, for each s > 0,

s\
s/2

τ q/p−1(γb(τ ))
qτ−1 dτ =

s\
s/2

τ q/p−1+ε(γb(τ ))
qτ−1−ε dτ(3.18)

% (s/2)q/p−1+ε(γb(s/2))
qε−1(2ε − 1)s−ε

≈ sq/p−1(γb(s/2))
q ≈ sq/p−1(γb(s))

q.

Now the result follows from (3.17) and (3.18).

Theorem 3.1. Let 1 < p < ∞, 1 ≤ q ≤ ∞ and let b be a slowly varying function on

[1,∞). If (R,µ) is a resonant measure space, then

X = (Lp,q;b(R), ‖ · ‖(p,q;b);R) and Y = (Lp′,q′;1/b(R), ‖ · ‖(p′,q′;1/b);R)

are rearrangement-invariant Banach function spaces and they are mutually associate, up

to equivalence of norms.

Proof. There is no difficulty in verifying that X and Y are Banach function spaces and

the rearrangement-invariance is obvious, since two equimeasurable functions have the

same non-increasing rearrangement.

Now we prove that X and Y are mutually associate.

Suppose g ∈ Y . Then for any f ∈ X with ‖f‖X ≤ 1, by the Hardy–Littlewood

inequality (cf. Theorem 2.2), Hölder’s inequality, Lemma 3.1(i) and Lemma 3.4 we have\
R

|fg| dµ ≤

∞\
0

f∗(t)g∗(t) dt ≤ ‖g‖Y ‖f‖X .

Hence taking the supremum over all f ∈ X with ‖f‖X ≤ 1, we get

‖g‖X′ = sup
{\
R

|fg| dµ : f ∈ X, ‖f‖X ≤ 1
}
≤ ‖g‖Y .(3.19)

To establish an inequality reverse to (3.19), for all g ∈ X ′, we follow the proof of

Theorem IV.4.7 in [3] and the proof of Lemma 3.4 in [12], although with some tech-

nical differences which even simplify the proof of [12, Lemma 3.4]. By the Luxemburg

representation theorem (cf. Theorem 2.5), it is sufficient to do so for the measure space

(R,µ) = (R+, µ1) and functions g in R+ for which g = g∗. Let g be a simple function on

R+ for which g = g∗; such a function belongs to the associate space X ′ of X.



Lorentz–Karamata spaces 19

Assume 1 < q ≤ ∞, and define f by

f(s) =

∞\
s/2

Φ(τ )τ−1 dτ for all s > 0,

where

Φ(s) = sq
′/p′−1(γ1/b(s))

q′g∗(s)q
′−1 for all s > 0.(3.20)

Since g is a simple function and p′ < ∞, it follows from Lemma 3.1(i) and (3.1) that

‖g‖p′,q′;1/b;R <∞. By (3.20),

∞\
0

Φ(s)g∗(s) ds = ‖g‖q
′

p′,q′;1/b;R.(3.21)

Note that f is non-increasing and hence f = f∗. Moreover, f ∈ X. In fact, if 1 < q <∞,

then Lemma 3.4, the change of variables t = s/2, properties (i) and (iii) of Lemma 3.1,

and Lemma 3.2(ii) imply

‖f‖X ≈
∥∥∥s1/p−1/qγb(s)

∞\
s/2

Φ(τ )τ−1 dτ
∥∥∥
q;(0,∞)

≈
∥∥∥t1/p−1/qγb(t)

∞\
t

Φ(τ )τ−1 dτ
∥∥∥
q;(0,∞)

(3.22)

- ‖t1/p−1/qγb(t)Φ(t)‖q;(0,∞) = ‖g‖
q′/q
p′,q′;1/b;R <∞.

If q =∞, then since 1/p′ − 1 < 0, by (3.2) we have

f∗(t) = f(t) =

∞\
t/2

τ1/p
′−1γ1/b(τ )τ

−1 dτ ≈ (t/2)1/p
′−1γ1/b(t/2) ≈ Φ(t).(3.23)

Hence, by Lemma 3.4 and (3.23),

‖f‖X ≈ ‖f‖p,∞;b;R ≈ ‖t
1/pγb(t)t

1/p′−1γ1/b(t)‖∞;(0,∞) ≈ 1.(3.24)

If 1 < q < ∞, then by Lemma 3.5 with the slowly varying function 1/b, and with p

and q replaced by p′ and q′, respectively, it follows that

Φ(s) -

s\
s/2

Φ(τ )τ−1 dτ for all s > 0.(3.25)

Now, by (3.21), (3.25) and Theorem 2.3, we have

‖g‖q
′

p′,q′;1/b;R -

∞\
0

( s\
s/2

Φ(τ )τ−1 dτ
)
g∗(s) ds(3.26)

≤

∞\
0

f∗(s)g∗(s) ds ≤ ‖f‖X ‖g‖X′ .

Using (3.26) and (3.22), we see that ‖g‖q
′

p′,q′;1/b;R - ‖g‖
q′/q
p′,q′;1/b;R ‖g‖X′ , which gives

‖g‖p′,q′;1/b;R - ‖g‖X′ .(3.27)

If q =∞, it follows from (3.21), (3.23), (3.24) and Theorem 2.3 that

‖g‖p′,1;1/b;R - ‖f‖X ‖g‖X′ ≈ ‖g‖X′ .(3.28)
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If q = 1, then by Theorem 2.3,

tg∗∗(t) =

∞\
0

χ(0,t)(s)g
∗(s) ds ≤ ‖χ(0,t)‖X‖g‖X′(3.29)

for each t > 0. On the other hand, by Lemma 3.4 and (3.1),

‖χ(0,t)‖X ≈ ‖χ(0,t)(s)‖p,1;b;R =

t\
0

s1/p−1γb(s) ds ≈ t
1/pγb(t).(3.30)

It now follows from (3.29), (3.30) and Lemma 3.1(i) that

‖g‖p′,∞;1/b;R ≤ sup
t>0
t1/p

′

γ1/b(t)g
∗∗(t)(3.31)

- sup
t>0
t1/p

′

γ1/b(t)t
−1/p′γb(t)‖g‖X′ = ‖g‖X′ .

Therefore, Lemma 3.4, (3.27), (3.28) and (3.31) yield

‖g‖Y - ‖g‖X′(3.32)

for all simple g such that g∗ = g. Now it follows from the Fatou property (cf. [3, Property

(P3) in Definition I.1.1]) and rearrangement-invariance of X ′ (cf. [3, Corollary I.I.4.4])

that (3.32) holds for all g ∈ X ′.

The estimates (3.19) and (3.32) together show that Y coincides with the associate

space X ′ of X, up to equivalence of norms, and hence (cf. Remark 2.1) the spaces X and

Y are mutually associate.

The next lemma provides upper pointwise estimates of f∗ and f∗∗ when f belongs

to an LK space, under certain conditions, which will be needed in Sections 5 and 6.

Lemma 3.6. Let p ∈ (1,∞), q ∈ [1,∞] or p = q = ∞, and let b be a slowly varying

function on [1,∞). Then there exists a positive constant c = c(p, q, b) such that for every

f ∈ Lp,q;b(R) and all t > 0,

f∗(t) ≤ f∗∗(t) ≤ c
t−1/p

γb(t)
‖f‖p,q;b;R.

Proof. The first inequality is obvious. To prove the second inequality, we use the fact

‖f‖p,q;b;R ≈ ‖t
1/p−1/qγb(t)f

∗∗(t)‖q;(0,∞),(3.33)

according to Lemma 3.4. If q = ∞ the result follows immediately. If q ∈ [1,∞), then

(3.33) and (3.1) give

‖f‖p,q;b;R % f∗∗(t)
[ t\
0

(s1/p−1/qγb(s))
q ds
]1/q
≈ f∗∗(t)t1/pγb(t)

for all t > 0, and the result now follows.

When m = 2, α ∈ Rm, b = ϑmα , p ∈ (1,∞) and q ∈ [1,∞], we obtain the result of [9,

Lemma 3.3].

Note that it can be proved as above that when p ∈ (0,∞), q ∈ (0,∞] or p = q =∞,

and b is a slowly varying function on [1,∞), there exists a positive constant c = c(p, q, b)
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such that for every f ∈ Lp,q;b(R) and all t > 0,

f∗(t) ≤ c
t−1/p

γb(t)
‖f‖p,q;b;R.

When m ∈ N, α ∈ Rm, b = ϑmα , p ∈ (0,∞), q ∈ (0,∞] or p = q = ∞, this gives [18,

Lemma 4.4].

The remaining results in this section establish embeddings between Lorentz–Kara-

mata spaces.

Theorem 3.2. Let 0 < p ≤ ∞, 0 < q1, q2 ≤ ∞ and let b1, b2 be two slowly varying

functions on [1,∞). Suppose that

‖t1/p−1/q1b1(1/t)‖q1;(0,1) <∞ if p =∞.(3.34)

Then

Lp,q1;b1(R) →֒ Lp,q2;b2(R),(3.35)

provided either

0 < q1 ≤ q2 ≤ ∞, sup
0<t<1

b2(1/t)/b1(1/t) <∞,(3.36)

or

0 < q2 < q1 ≤ ∞, ‖t−1/rb2(1/t)/b1(1/t)‖r;(0,1) <∞,(3.37)

where 1/r = 1/q2 − 1/q1.

Proof. (i) Let us first prove the case (3.36). Observe that under our conditions,

γb2(t) - γb1(t) for all t > 0.

Suppose 0 < q1 <∞, otherwise the result follows trivially. Let ε > 0 and set εp = 1/p+ε.

Let f ∈ Lp,q1;b1(R). By (3.1) and the fact that f
∗ is non-increasing, we have, for each

t > 0,

t1/pγb2(t)f
∗(t) = tεpγb2(t)t

−εf∗(t) ≈ t−εf∗(t)
( t\
0

(τ εp−1/q1γb2(τ ))
q1 dτ
)1/q1

=
( t\
0

(τ εp−1/q1γb2(τ )t
−εf∗(t))q1 dτ

)1/q1

-
( t\
0

(τ1/p−1/q1γb1(τ )f
∗(τ ))q1 dτ

)1/q1
- ‖f‖p,q1;b1;R.

Hence,

‖f‖p,∞;b2;R - ‖f‖p,q1;b1;R for all f ∈ Lp,q1;b1(R),(3.38)

which establishes (3.35) in the case q2 =∞.

Suppose now that 0 < q1 ≤ q2 <∞ and let f ∈ Lp,q1;b1(R). Then

‖f‖p,q2;b2;R =
(∞\
0

(τ1/pγb2(τ )f
∗(τ ))q2−q1(τ1/p−1/q1γb2(τ )f

∗(τ ))q1 dτ
)1/q2

- ‖f‖
1−q1/q2
p,∞;b2;R

‖f‖
q1/q2
p,q1;b1;R

.
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When combined with (3.38), this gives ‖f‖p,q2;b2;R - ‖f‖p,q1;b1;R for all f ∈ Lp,q1;b1(R),

which establishes (3.35) in the case 0 < q1 ≤ q2 <∞.

(ii) Let us next prove the case (3.37). Since 0 < q2 < q1 ≤ ∞, we deduce, by Hölder’s

inequality with exponents q1/q2 and q1/(q1 − q2) if q1 <∞, and immediately if q1 =∞,

that

‖f‖p,q2;b2 - ‖f‖p,q1;b1

∥∥∥∥t
−1/r γb2(t)

γb1(t)

∥∥∥∥
r;(0,∞)

,

where 1/r = 1/q2 − 1/q1. Since the last integral is finite if, and only if,

‖t−1/rb2(1/t)/b1(1/t)‖r;(0,1) <∞,

the embedding (3.35) now follows.

Remark 3.6. Let m ∈ N, α = (α1, . . . , αm),β = (β1, . . . , βm) ∈ Rm, b1 = ϑ
m
α and

b2 = ϑ
m
β .

(i) Then (3.34) is satisfied if, and only if,

either 0 < q1 <∞ and α ≺ −1/q1 + 0,

or q1 =∞ and α � 0.

See [16, Lemma 6.1], where conditions are given in order to have the generalised Lorentz–

Zygmund space, for the case m = 2, as the trivial space.

(ii) The second condition in (3.36) holds if, and only if, β � α.

(iii) The second condition in (3.37), is verified if, and only if, β + 1/q2 ≺ α+ 1/q1.

When p = ∞, condition (3.36) can be weakened for some values of q1, q2. To this

end we shall make use of the following simple lemma with p = ∞, which generalises [2,

Lemma 9.2] and [16, Lemma 6.2].

Lemma 3.7. Let 0 < p ≤ ∞, 0 < q1 < q2 <∞ and let b1, b2 be slowly varying functions

on [1,∞). Then

‖f‖p,q2;b2;R ≤ ‖f‖
q1/q2
p,q1;b1;R

‖f‖
1−q1/q2
p,∞;b3;R

(3.39)

for every f ∈M0(R,µ), where b3 is the slowly varying function on [1,∞) defined by

b3(t) =

[
(b2(t))

q2

(b1(t))q1

]1/(q2−q1)
, t ≥ 1.

Proof. Let f ∈ M0(R,µ) and suppose that the right-hand side of (3.39) is finite, other-

wise the result is trivial. Then

‖f‖q2p,q2;b2;R =

∞\
0

(t1/pγb1(t)f
∗(t))q1(t1/pγb3(t)f

∗(t))q2−q1
dt

t
≤ ‖f‖q1p,q1;b1;R‖f‖

q2−q1
p,∞;b3;R

,

and the result now follows.

Theorem 3.3. Let 0 < q1 < ∞, 0 < q2 ≤ ∞ and let b1, b2 be slowly varying functions

on [1,∞). Suppose that

‖t−1/q1b1(1/t)‖q1;(0,1) <∞.
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Let I(b1,q1) be the slowly varying function on [1,∞) defined by

I(b1,q1)(t) =
(∞\
t

(τ−1/q1b1(τ ))
q1 dτ
)1/q1
, t ≥ 1.

Then

L∞,q1;b1(R) →֒ L∞,q2;b2(R),(3.40)

provided either

0 < q1 < q2 =∞, sup
0<t<1

b2(1/t)

I(b1,q1)(1/t)
<∞,(3.41)

or

0 < q1 < q2 <∞, sup
0<t<1

[
(b2(1/t))

q2

(b1(1/t))q1

]1/(q2−q1) 1

I(b1,q1)(1/t)
<∞.(3.42)

In particular , if 0 < q1 <∞,

L∞,q1;b1(R) →֒ L∞,∞;I(b1,q1)(R) →֒ L∞,∞;b1(R).(3.43)

Proof. (i) Suppose (3.41) is satisfied. Let f ∈ L∞,q1;b1(R). Then for each t > 0,

γb2(t)f
∗(t) - γI(b1,q1)(t)f

∗(t) = f∗(t)
( ∞\
max{t,1/t}

(τ−1/q1γb1(τ ))
q1 dτ
)1/q1

= f∗(t)
(min{t,1/t}\

0

(τ−1/q1γb1(τ ))
q1 dτ
)1/q1

≤ f∗(t)
( t\
0

(τ−1/q1γb1(τ ))
q1 dτ
)1/q1

≤
( t\
0

(τ−1/q1γb1(τ )f
∗(τ ))q1 dτ

)1/q1
≤ ‖f‖∞,q1;b1;R.

Therefore, ‖f‖∞,∞;b2;R - ‖f‖∞,q1;b1;R for all f ∈ L∞,q1;b1(R), which establishes (3.40)

with q2 =∞.

(ii) Assume condition (3.42) holds. By Lemma 3.7, with p =∞, we have

‖f‖∞,q2;b2;R ≤ (‖f‖∞,q1;b1;R)
q1/q2 (‖f‖∞,∞;b3;R)

1−q1/q2 ,(3.44)

where b3 is the slowly varying function on [1,∞) defined by

b3(t) =

[
(b2(t))

q2

(b1(t))q1

]1/(q2−q1)
, t ≥ 1.

On the other hand, since condition (3.41) is satisfied with b2 replaced by b3, it follows

from the previous case that

‖f‖∞,∞;b3;R - ‖f‖∞,q1;b1;R.(3.45)

Now the result follows from (3.44) and (3.45).

(iii) The first embedding in (3.43) follows from (3.40), because 0 < q1 < q2 =∞ and

condition (3.41), with b2 = I(b1,q1), holds. The second embedding in (3.43) follows from

Theorem 3.2, because

sup
0<t<1

b1(1/t)

I(b1,q1)(1/t)
<∞.(3.46)
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Indeed, let ε > 0. Since for each t ≥ 1,

I(b1,q1)(t) % t
ε/q1b1(t)

(∞\
t

1

τ1+ε
dτ

)1/q1
=
1

ε1/q1
b1(t),

we have b1(t) - I(b1,q1)(t) for all t ≥ 1, which entails (3.46).

Remark 3.7. Let 0 < q1 < ∞, 0 < q2 ≤ ∞, m ∈ N, α = (α1, . . . , αm) ∈ Rm, β =

(β1, . . . , βm) ∈ Rm, b1 = ϑ
m
α and b2 = ϑ

m
β . Let k ∈ {1, . . . ,m} be such that αk < −1/q1,

and, if k > 1, then αi = −1/q1 for i = 1, . . . , k−1. Let γ = (γ1, . . . , γm) ∈ Rm be defined

by γ = α+ δq1;m,k. Note that γk < 0 and, if k > 1, then γj = 0 for j = 1, . . . , k− 1, and

that

I(b1,q1)(t) ≈

m∏

j=1

ℓ
γj
j (t), t ≥ 1.

Now, either (3.41) or (3.42) hold if, and only if, β + δq2;m,k � α+ δq1;m,k.

From Theorems 3.2, 3.3 and Remarks 3.6, 3.7, we get the sufficiency part of [16,

Theorem 6.3], where the case of a Lorentz–Zygmund space with m = 2 and (R,µ) a finite

non-atomic measure space was considered.

The next theorem concerns embeddings between two Lorentz–Karamata spaces when

their first indices are different.

Theorem 3.4. Let 0 < p2 < p1 ≤ ∞, 0 < q1, q2 ≤ ∞ and let b1, b2 be slowly varying

functions on [1,∞). Suppose that

‖t1/p1−1/q1b1(1/t)‖q1;(0,1) <∞ if p1 =∞.

Then

Lp1,q1;b1(R) →֒ Lp2,q2;b2(R),(3.47)

provided (R,µ) is a finite measure space.

Proof. Since by (3.35), we have Lp1,q1;b1(R) →֒ Lp1,∞;b1(R), in order to prove (3.47) it

will be enough to prove the embedding

Lp1,∞;b1(R) →֒ Lp2,q2;b2(R),(3.48)

with (R,µ) a finite measure space.

Suppose 0 < q2 < ∞ and let f ∈ Lp1,∞;b1(R). Since p2 < p1, by Lemma 3.1(v), we

have

‖f‖p2,q2;b2;R ≤ ‖f‖p1,∞;b1;R

( µ(R)\
0

(
t1/p2−1/p1−1/q2

γb2(t)

γb1(t)

)q2
dt

)1/q2

≈ ‖f‖p1,∞;b1;R(µ(R))
1/p2−1/p1

γb2(µ(R))

γb1(µ(R))
≈ ‖f‖p1,∞;b1;R,

which establishes (3.48). The case q2 = ∞ is proved similarly. Therefore the embedding

(3.47) follows.
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4. Decomposition of the Luxemburg norm

The next lemma indicates a relation between Orlicz spaces LΦ(R) and Marcinkiewicz

spaces, when Φ satisfies what we call a Lorentz-type condition (cf. [21, Theorem 2]).

Lemma 4.1 [25, Lemma 8.5]. Let f ∈M0(R,µ) and let Φ be a Young function such that

∞\
0

Φ(γΦ−1(1/t)) dt <∞ for some γ > 0.(4.1)

Then f ∈ LΦ(R) if , and only if , there exists a constant K = K(f) such that

sup
0<t<∞

f∗(t)

Φ−1(1/t)
=: K <∞.

It is clear that if Φ(t) = tq for small positive t, with q > 1, then Φ does not satisfy

(4.1), because
∞\
1

Φ(γΦ−1(1/t)) dt =∞

for any γ > 0. Therefore Lemma 4.1 does not hold for instance for the Orlicz space

LΦ(R
n) generated by the Young function defined by Φ(t) = tq for small enough t > 0,

with q > 1, and defined by Φ(t) = exp tλ for large enough t > 0, with λ > 0, which

appears as the target space of some global embeddings, as we will see in Section 5.

We aim to generalise the previous lemma, in order to include other cases. For this,

we first need the following auxiliary result.

Lemma 4.2. Let 0 < t0 <∞. Let f ∈M0(R,µ) and let Φ be a Young function. Then
∞\
t0

Φ(f∗(t)/λ) dt ≤ 1 for all λ > 0(4.2)

if , and only if , f∗(t) = 0 for all t ≥ t0.

Proof. If f∗(t) = 0 for all t ≥ t0, then the result is trivial.

Conversely, suppose (4.2) holds but f∗(t) ≥ ε > 0 in some interval (t0, t0 + ν). Then,

for each λ > 0,

1 ≥

∞\
t0

Φ(f∗(t)/λ) dt ≥

t0+ν\
t0

Φ(f∗(t)/λ) dt ≥ Φ(ε/λ) ν.

Since Φ(s) ↑ ∞ as s ↑ ∞, we obtain a contradiction. Hence, f∗(t) = 0 for all t > t0. By

the right-continuity of f∗, it also follows that f∗(t0) = 0.

The next result gives us the generalisation of Lemma 4.1.

Theorem 4.1. Let 0 < t0 ≤ ∞ and 0 ≤ L <∞. Let f ∈M0(R,µ) and let Φ be a Young

function which satisfies a Lorentz-type condition, i.e.,

t0\
0

Φ(γΦ−1(1/t)) dt <∞ for some γ > 0.
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Then f ∈ LΦ(R) if , and only if ,

sup
0<t<t0

f∗(t)

Φ−1(1/t)
<∞ and

∞\
t0+L

Φ(f∗(t)/γ0) dt <∞ for some γ0 > 0.(4.3)

Moreover ,

‖f‖Φ,R ≈ sup
0<t<t0

f∗(t)

Φ−1(1/t)
+ inf

{
λ > 0 :

∞\
t0+L

Φ(f∗(t)/λ) dt ≤ 1
}
.(4.4)

Proof. Let f be a function, not identically null, that belongs toM0(R,µ) and for which

(4.3) holds.

Let us just mention that since Φ is convex and Φ(0) = 0, there is a positive constant

c for which
∞\
t0+L

Φ

(
f∗(t)

c γ0

)
dt ≤ 1.

Let

α := inf
{
λ > 0 :

∞\
t0+L

Φ(f∗(t)/λ) dt ≤ 1
}
.(4.5)

For α > 0, the infimum is attained; in fact, letting λ decrease toward α in the inequality
∞\
t0+L

Φ(f∗(t)/λ) dt ≤ 1,

we obtain by the monotone convergence theorem
∞\
t0+L

Φ(f∗(t)/α) dt ≤ 1.

Now, let λ = K/γ + α, where

K := sup
0<t<t0

f∗(t)

Φ−1(1/t)

and α is defined by (4.5). Then we have

∞\
0

Φ(f∗(t)/λ) dt ≤

t0\
0

Φ(f∗(t)/λ) dt+ LΦ(f∗(t0)/λ) +

∞\
t0+L

Φ(f∗(t)/λ) dt(4.6)

≤ (L/t0 + 1)

t0\
0

Φ(f∗(t)/λ) dt+

∞\
t0+L

Φ(f∗(t)/λ) dt

≤ (L/t0 + 1)

t0\
0

Φ(γΦ−1(1/t)) dt+

∞\
t0+L

Φ(f∗(t)/λ) dt.

If 0 < t0 <∞ and α > 0, it follows from (4.6) that

∞\
0

Φ(f∗(t)/λ) dt ≤ (L/t0 + 1)

t0\
0

Φ(γΦ−1(1/t)) dt+

∞\
t0+L

Φ(f∗(t)/α) dt(4.7)
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≤ (L/t0 + 1)

t0\
0

Φ(γΦ−1(1/t)) dt+ 1 <∞.

Hence, f belongs to LΦ(R). Again, since Φ is convex and Φ(0) = 0, there is a positive

constant c such that
∞\
0

Φ

(
f∗(t)

cλ

)
dt ≤ 1,

and so ‖f‖Φ,R - K + α.

If t0 =∞, then α = 0, and by (4.6) it follows that

∞\
0

Φ(f∗(t)/λ) dt ≤

∞\
0

Φ(γΦ−1(1/t)) dt <∞.

As previously, it follows that ‖f‖Φ,R - K = K + α.

If 0 < t0 <∞ and α = 0, by Lemma 4.2 we have f
∗(t) = 0 for all t ≥ t0 + L. Then,

by (4.6),
∞\
0

Φ(f∗(t)/λ) dt -

t0\
0

Φ(γΦ−1(1/t)) dt+ 0 <∞,

and as before ‖f‖Φ,R - K = K + α.

Conversely, assume f ∈ LΦ(R) and suppose f is not identically null. Then

∞\
0

Φ(f∗(t)/‖f‖Φ,R) dt ≤ 1.(4.8)

Let t ∈ (0, t0). Then by (4.8),

1 ≥

t\
0

Φ

(
f∗(s)

‖f‖Φ,R

)
ds ≥ Φ

(
f∗(t)

‖f‖Φ,R

)
t,

which is equivalent to

f∗(t) ≤ ‖f‖Φ,R Φ
−1(1/t).(4.9)

Also by (4.8),
∞\
t0+L

Φ(f∗(t)/‖f‖Φ,R) dt ≤ 1,

and hence

α ≤ ‖f‖Φ,R.(4.10)

Therefore, by (4.9) and (4.10) it follows that K + α - ‖f‖Φ,R.

Remark 4.1. (i) If t0 =∞, we have
T∞
t0+L
Φ(f∗(t)/λ) dt = 0, and we recover Lemma 4.1.

(ii) If 0 < t0 < t1 <∞, then

sup
0<t<t0

f∗(t)

Φ−1(1/t)
≈ sup
0<t<t1

f∗(t)

Φ−1(1/t)
.
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Corollary 4.1. Let (R,µ) be a finite measure space. Let 0 < t0 ≤ µ(R). Let f ∈

M0(R,µ) and let Φ be a Young function which satisfies a Lorentz-type condition, i.e.,

t0\
0

Φ(γΦ−1(1/t)) dt <∞ for some γ > 0.

Then f ∈ LΦ(R) if , and only if ,

sup
0<t<t0

f∗(t)

Φ−1(1/t)
<∞.(4.11)

Moreover ,

‖f‖Φ,R ≈ sup
0<t<t0

f∗(t)

Φ−1(1/t)
≈ sup
0<t<µ(R)

f∗(t)

Φ−1(1/t)
.(4.12)

Proof. This follows from Theorem 4.1, with t0 = µ(R) and L = µ(R) − t0, because

f∗(t) = 0 for all t ≥ µ(R).

Example 4.1. Let m ∈ N, α = (α1, . . . , αm) ∈ Rm and let Ω be a measurable subset of

Rn with finite volume. Let k ∈ {1, . . . ,m} be such that αk < 0, and, if k ≥ 2, then αi = 0

for i = 1, . . . , k − 1. If k < m, let β = (β1, . . . , βm−k) ∈ Rm−k with βi = −αi+k/αk for

i = 1, . . . ,m− k.

(i) If k = m, let Ψm be the Young function defined by Ψm(t) = Expm(t
−1/αm) for

all large enough t > 0. Then Ψ−1m (1/t) = ℓ
−αm
m (t), for all small enough t > 0. It is now

possible to check that Ψm satisfies the Lorentz-type condition with some t0 ∈ (0,∞), for

some γ ∈ (0, 1).

(ii) If k < m, let Ψk be the Young function defined by Ψk(t) = Expk(fm−k(t)) for all

large enough t > 0, where fm−k is the increasing function defined by

fm−k(t) = t
−1/αkϑm−kβ (t)

for all large enough t > 0. Since f−1m−k(t) ≈ t
−αkϑm−kγ (t) for all large enough t > 0, with

γ = αkβ, we have Ψ
−1
k (1/t) ≈ ϑ

m
−α(t) for all small enough t > 0. By straightforward

arguments it is now possible to check that Ψk satisfies the Lorentz-type condition with

some t0 ∈ (0,∞) for some γ ∈ (0, 1).

(iii) Let Ψk be the Young function defined in (i) if k = m and defined in (ii) if k < m.

Then (i), (ii) and the previous corollary entail

L∞,∞;α(Ω) = LΨk(Ω),(4.13)

with equivalent (quasi-) norms.

(iv) Let Φk be the Young function defined by Φk(t) = expk(t
−1/αkµm−kβ (t)) for all

large enough t > 0, where, according to our conventions, µm−kβ = 1 if m = k. Since Ψk,

defined in (i) if k = m and defined in (ii) if k < m, and Φk are equivalent near infinity and

Ω has finite volume, by [1, Theorem 8.12] and (4.13) we have L∞,∞;α(Ω) = LΨk(Ω) =

LΦk(Ω), with equivalent (quasi-) norms.

(v) We refer to [2, Theorem D] for the case m = k = 1, and to [10, Lemma 4.2] for

the case m = k = 2; see also [13, Lemma 2.1] for the case m = k = 1 and m = k = 2,

and [12] for the case m = k, although it is not explicitly proven there. The case k = 1

and m = 2 is given by Lemma 2.2(vi) of [16].
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Note the streamlined appearance of the proofs of Theorem 4.1 and Corollary 4.1 as

compared with the proofs of related results in the literature, such as [2, Theorem D] and

[10, Lemma 4.2].

5. Bessel-potential-type embedding theorems

In this section we present some embedding results for certain Bessel-potential spaces

modelled upon Lorentz–Karamata spaces either into Lorentz–Karamata spaces or Orlicz

spaces. Namely when the power exponent p is in the sublimiting case, i.e., 1 < p < n/σ,

where σ ∈ (0, n), and when p has the limiting value n/σ, with σ ∈ (0, n).

Let σ > 0, p ∈ (1,∞), q ∈ [1,∞], and let b be a s.v. function on [1,∞). The

Lorentz–Karamata–Bessel potential space HσLp,q;b(R
n) is defined to be

{u : u = gσ ∗ f, f ∈ Lp,q;b(R
n)}

and is equipped with the (quasi-) norm ‖u‖σ;p,q;b := ‖f‖p,q;b.

When we consider m ∈ N, α = (α1, . . . , αm) ∈ Rm and b = ϑmα , we obtain the loga-

rithmic Bessel potential space HσLp,q;α(R
n), endowed with the (quasi-) norm ‖u‖σ;p,q;b,

considered in [12]. Note that if α = (0, . . . , 0), then HσLp,p;α(R
n) is simply the (frac-

tional) Sobolev space of order σ.

Bessel potential spaces modelled upon Lorentz–Karamata spaces with s.v. functions b,

where b = b1 and b1 considered in Remark 3.5, have not appeared before in the literature,

as far as we are aware.

The next lemma, due to Edmunds, Gurka and Opic [10, Lemma 3.5], provides us the

important estimate (5.1) for the non-increasing rearrangement of the Bessel kernel.

Lemma 5.1. Let 0 < σ < n. Then there exist constants A,B ∈ (0,∞) such that

g∗σ(t) ≤ At
σ/n−1 exp(−Bt1/n) for all t > 0,(5.1)

g∗∗σ (t) ≤
n

σ
Atσ/n−1 for all t > 0.(5.2)

If t ∈ (1,∞), Gurka and Opic [18, Lemma 4.2] proved a better estimate for the

maximal function of the non-increasing rearrangement of the Bessel kernel than that

considered in Lemma 5.1, namely

g∗∗σ (t) - t
−1 for t ∈ (1,∞).(5.3)

The next result which considers the sublimiting case is an extension of [12, Theo-

rem 4.8] and a refinement of [20, Theorem 5.7.7(i)].

Theorem 5.1. Let σ ∈ (0, n), 1 < p < n/σ, q ∈ [1,∞] and let b be a slowly varying

function on [1,∞). Then

HσLp,q;b(R
n) →֒ Lr,q;b(R

n),(5.4)

where 1/r = 1/p− σ/n.

Proof. Put X = HσLn/σ,p;b(R
n). Let u ∈ X. Then u = gσ ∗ f , where f ∈ Ln/σ,p;b(R

n)

and ‖f‖n/σ,p;b = ‖u‖X .
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By O’Neil’s inequality (cf. e.g. [35, Lemma 1.8.8]) we have

u∗(t) ≤ u∗∗(t) ≤ tg∗∗σ (t)f
∗∗(t) +

∞\
t

g∗σ(τ )f
∗(τ ) dτ for all t > 0.(5.5)

The estimates (5.2) and (5.5) yield for every t > 0,

u∗(t) - tσ/n−1
t\
0

f∗(τ ) dτ +

∞\
t

τσ/n−1f∗(τ ) dτ.(5.6)

Now from (5.6) we obtain

‖u‖r,q;b - N1 +N2,(5.7)

where

N1 =
∥∥∥t1/p−1−1/q γb(t)

t\
0

f∗(τ ) dτ
∥∥∥
q;(0,∞)

,

N2 =
∥∥∥t1/p−σ/n−1/q γb(t)

∞\
t

τσ/n−1f∗(τ ) dτ
∥∥∥
q;(0,∞)

.

Applying Lemma 3.2(i), we have

N1 - ‖t1/p−1/qγb(t) f
∗(t)‖q;(0,∞) = ‖f‖p,q;b.(5.8)

Finally, Lemma 3.2(ii) gives

N2 - ‖t1/p−1/q γb(t) f
∗(t)‖q;(0,∞) = ‖f‖p,q;b.(5.9)

The result now follows from inequalities (5.7)–(5.9).

Next, we are going to investigate limiting embeddings. To this end we need the fol-

lowing lemma.

Lemma 5.2. Let σ ∈ (0, n), p, q ∈ [1,∞] and let b1, b2 be slowly varying functions on

[1,∞). Suppose that

‖t−1/qb2(1/t)‖q;(0,1) <∞(5.10)

and either conditions (3.7), (3.11) or conditions (3.8), (3.12) are satisfied. Then

‖u∗‖∞,q;b2;(0,1) - ‖u‖σ;n/σ,p;b1(5.11)

for all u ∈ HσLn/σ,p;b1(R
n).

Proof. Put X = HσLn/σ,p;b1(R
n). Let u ∈ X. Then u = gσ ∗ f , where f ∈ Ln/σ,p;b1(R

n)

and ‖f‖n/σ,p;b1 = ‖u‖X . Hence by O’Neil’s inequality we have (5.5), which together with

the estimate (5.2) yields, for every t ∈ (0, 1),

u∗(t) ≤
n

σ
Atσ/n−1

t\
0

f∗(τ ) dτ +

1\
t

g∗σ(τ )f
∗(τ ) dτ +

∞\
1

g∗σ(τ )f
∗(τ ) dτ.(5.12)

By Lemma 3.6, there is a positive constant c such that

f∗(t) ≤ f∗∗(t) ≤ c
t−σ/n

γb1(t)
‖f‖n/σ,p;b1 , t > 0.(5.13)
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Using (5.1) and (5.13) we obtain

∞\
1

g∗σ(τ )f
∗(τ ) dτ ≤ C‖f‖n/σ,p;b1

∞\
1

τσ/n−1 exp(−Bτ1/n)
τ−σ/n

b1(τ )
dτ(5.14)

= C1‖f‖n/σ,p;b1 .

The estimates (5.12) and (5.14) imply

‖u∗‖∞,q;b2;(0,1) - N1 +N2 +N3‖f‖n/σ,p;b1 ,(5.15)

where

N1 =
∥∥∥tσ/n−1−1/qb2(1/t)

t\
0

f∗(τ ) dτ
∥∥∥
q;(0,1)

,

N2 =
∥∥∥t−1/q b2(1/t)

1\
t

g∗σ(τ )f
∗(τ ) dτ

∥∥∥
q;(0,1)

,

N3 = ‖t
−1/q b2(1/t)‖q;(0,1).

By hypothesis (5.10) we have N3 <∞. Applying Lemma 3.2, we obtain

N1 - ‖tσ/n−1+1/p
′

γb1(t) f
∗(t)‖p;(0,∞) = ‖f‖n/σ,p;b1 .(5.16)

Finally, Lemma 3.3 and the estimate (5.1) yield

N2 - ‖t1/p
′

γb1(t) t
σ/n−1 f∗(t)‖p;(0,1) - ‖f‖n/σ,p;b1 .(5.17)

Now the result follows from inequalities (5.15)–(5.17).

Corollary 5.1. Let σ ∈ (0, n), p, q ∈ [1,∞], m ∈ N, α = (α1, . . . , αm) ∈ Rm and let

k ∈ {1, . . . ,m} be such that αk 6= 1/p
′ and , if k ≥ 2, then αi = 1/p

′ for i = 1, . . . , k − 1.

Let β = (β1, . . . , βm) ∈ Rm with βk 6= −1/q and , if k ≥ 2, then βi = −1/q for i =

1, . . . , k − 1. Then

‖u∗‖∞,q;β;(0,1) - ‖u‖σ;n/σ,p;α(5.18)

for all u ∈ HσLn/σ,p;α(R
n) provided one of the following conditions is satisfied:

1 ≤ p ≤ q ≤ ∞, βk < −1/q, β + δq;m,k � α− δp′;m,k;(5.19)

1 ≤ q < p ≤ ∞, βk < −1/q, β + 1/q ≺ α− δ1;m,k + 1/p.(5.20)

If we omit the assumption βk 6= −1/q the result will still hold provided that

1 ≤ p ≤ q =∞, β = 0, −αk + 1/p
′ < 0.(5.21)

Moreover , for k = m, if we also omit the assumption αm 6= 1/p
′, the result will still hold

provided that

p = 1, q =∞, α = β = 0.(5.22)

Proof. We consider b1 = ϑ
m
α and b2 = ϑ

m
β . Since βk < −1/q (or β = 0 if q = ∞), by

Remark 3.6(i) condition (5.10) is satisfied.

By Remarks 3.2 and 3.4, either conditions (3.7), (3.11) or conditions (3.8), (3.12) are

satisfied. Now the result follows from Lemma 5.2.
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The situation when α1 = . . . = αm = 1/p
′ is also covered by the previous corollary, by

using α̃ = (α̃1, . . . , α̃m+1) ∈ Rm+1 in place of α ∈ Rm, where α̃j = 1/p
′ for j = 1, . . . ,m

and α̃m+1 = 0.

We remark that when k = m, q = ∞ and βm = αm − 1/p
′ < 0 in Corollary 5.1, we

obtain

sup
t∈(0,1)

[ℓαm−1/p
′

m (t)u∗(t)] - ‖u‖σ;n/σ,p;α(5.23)

for all u ∈ HσLn/σ,p;α(R
n), which is precisely a result due to Edmunds, Gurka and Opic

[12, Lemma 4.10]; see [10, Lemma 4.1] for the case m = 2.

Observe that Corollary 5.1 gives a better estimate than [12, Lemma 4.10]. In fact,

suppose we are under the conditions of Corollary 5.1 with k = m, q ∈ [p,∞) and αm <

1/p′. Let βm = αm − 1/q − 1/p
′. Then

sup
t∈(0,1)

[ℓαm−1/p
′

m (t)u∗(t)] - ‖u∗‖∞,q;β;(0,1) - ‖u‖σ;n/σ,p;α

for all u ∈ HσLn/σ,p;α(R
n) (for the first estimate see the proof of (3.43) in Theorem 3.2).

Theorem 5.2. Let σ ∈ (0, n), p, q ∈ [1,∞] and let b1, b2 be slowly varying functions on

[1,∞). Suppose that

‖t−1/qb2(1/t)‖q;(0,1) <∞

and either conditions (3.7), (3.11) or conditions (3.8), (3.12) are satisfied. Let I(b2,q) be

the s.v. function on [1,∞) defined by

I(b2,q)(t) =
(∞\
t

(τ−1/qb2(τ ))
q dτ
)1/q
, t ≥ 1,

if 1 ≤ q <∞, and by I(b2,q)(t) = b2(t), t ∈ [1,∞), if q =∞. Let Ω be a measurable subset

of Rn with finite volume. Then

HσLn/σ,p;b1(R
n) →֒ L∞,q;b2(Ω) →֒ L∞,∞;I(b2,q)(Ω).(5.24)

Proof. First we remark that by Lemma 3.1, I(b2,q) is a slowly varying function on [1,∞).

With no loss of generality we shall assume that |Ω|n = 1. Then by (5.11) of Lemma 5.2,

it follows that

‖u‖∞,q;b2;Ω = ‖t
−1/qγb2(t)u

∗
Ω(t)‖q;(0,1) ≤ ‖t

−1/qγb2(t)u
∗(t)‖q;(0,1) - ‖u‖σ;n/σ,p;b1

for all u ∈ HσLn/σ,p;b1(R
n), which gives HσLn/σ,p;b1(R

n) →֒ L∞,q;b2(Ω). On the other

hand by Theorem 3.3 we have the embedding

L∞,q;b2(Ω) →֒ L∞,∞;I(b2,q)(Ω),(5.25)

and the result follows.

If we consider q = ∞ in the previous theorem, the second embedding in (5.24) is

trivial.

Corollary 5.2. Let σ ∈ (0, n), p, q ∈ [1,∞] and m ∈ N. Let α,β ∈ Rm and k ∈

{1, . . . ,m} as in Corollary 5.1. Let ν = (ν1, . . . , νm) ∈ Rm with νk = βk + 1/q and , if
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k ≥ 2, νj = 0 for j = 1, . . . , k − 1, and , if k + 1 ≤ m, νj = βj for j = k + 1, . . . ,m. Let

Ω be a measurable subset of Rn with finite volume. Then

HσLn/σ,p;α(R
n) →֒ L∞,q;β(Ω) →֒ L∞,∞;ν(Ω),(5.26)

provided one of the conditions (5.19)–(5.22) is satisfied.

Proof. We consider b1 = ϑ
m
α and b2 = ϑ

m
β . Since βk < −1/q (or β = 0 if q = ∞), by

Remark 3.6(i) condition (5.10) is satisfied.

By Remarks 3.2 and 3.4, either conditions (3.7), (3.11) or conditions (3.8), (3.12) are

satisfied. Now the result follows from Theorem 5.2 and Remark 3.7.

If we consider q = ∞ in the previous theorem, the second embedding in (5.26) is

trivial.

Remark 5.1. Assume that the conditions of the previous corollary hold.

Let 1 ≤ p, q ≤ ∞, α = (α1, . . . , αm) ∈ Rm and let k ∈ {1, . . . ,m} be such that

αk 6= 1/p
′ and, if k ≥ 2, then αi = 1/p

′ for i = 1, . . . , k − 1. Suppose additionally that

αk > 1/p
′ (or α = 0, k = m and p = 1). Then

HσLn/σ,p;α(R
n) →֒ L∞(Ω) →֒ L∞,q;β(Ω)

with β = (β1, . . . , βm) ∈ Rm, βm < −1/q (βm ≤ 0 if q = ∞) and, if m > 1, then

βj = −1/q for j = 1, . . . ,m − 1. The first embedding follows from the previous corol-

lary, because of (5.21)–(5.22), and the second embedding follows from Theorem 3.2 and

Remark 3.6.

As we shall see in Remark 5.3, there is a better result than the previous one.

Let 1 ≤ p, q ≤ ∞, α,β ∈ Rm and k ∈ {1, . . . ,m} as in Corollary 5.1. Suppose

additionally that αk < 1/p
′ and that one of conditions (5.19)–(5.20) is satisfied. Then

HσLn/σ,p;α(R
n) →֒ L∞,p;ν(Ω) →֒ L∞,q;β(Ω),

where ν = (ν1, . . . , νm) ∈ Rm with νk = αk − 1 and, if k ≥ 2, then νj = −1/p for

j = 1, . . . , k − 1, and, if k + 1 ≤ m, then νj = αj for j = k + 1, . . . ,m. The first

embedding follows from the previous corollary with q = p. Since δ1;m,k = δp;m,k+δp′;m,k
and ν = α− δ1;m,k, the second embedding follows from Theorem 3.2 and Remark 3.6 if

q ≤ p, and from Theorem 3.3 and Remark 3.7 if q > p.

Remark 5.2. The case m = k = 1 of inequality (5.18) in Corollary 5.1 and of the first

embedding in (5.26) of Corollary 5.2, with 1 ≤ p ≤ q ≤ ∞, αm < 1/p
′ (αm = βm = 0

if p = 1, q = ∞) are contained in [27, Theorem 5.1(a)], which is a consequence of [26,

Theorem 3.2]. Nevertheless, we remark that we only had access to these articles after our

results had been proved.

We refer to Remark 3.5 for other examples of s.v. for which Lemma 5.2 and Theorem

5.2 hold.

Corollary 5.3. Let σ ∈ (0, n), p ∈ [1,∞] and m ∈ N. Let α = (α1, . . . , αm) ∈ Rm

and let k ∈ {1. . . . ,m} be such that αk 6= 1/p
′ and , if k > 1, then αj = 1/p

′ for

j = 1, . . . , k − 1. Assume αk < 1/p
′. Let β = (β1, . . . , βm) ∈ Rm with βk = αk − 1/p

′
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and , if k > 1, then βj = 0 for j = 1, . . . , k − 1, and , if k + 1 ≤ m, then βj = αj for

j = k + 1, . . . ,m. Suppose that Ω ⊂ Rn is such that |Ω|n <∞. Then

HσLn/σ,p;α(R
n) →֒ LΦk(Ω),

where the Young function Φk is given by

Φk(t) = expk(t
−1/βkµm−kγ (t)) for all large enough t > 0,

with, if k < m, γ = (γ1, . . . , γm−k) ∈ Rm−k and γi = −βi+k/βk for i = 1, . . . ,m− k.

Proof. Since α,β satisfy condition (5.19), with q = ∞, we deduce from Corollary 5.2

that HσLn/σ,p;α(R
n) →֒ L∞,∞;β(Ω). Now, by Example 4.1, LΦk(Ω) = L∞,∞;β(Ω), with

equivalent (quasi-) norms, and the result follows.

When k = m, the previous corollary gives a result due to Edmunds, Gurka and Opic

[12, Theorem 4.3].

The next result gives us a natural generalisation of the previous one.

Theorem 5.3. Let σ ∈ (0, n), p ∈ [1,∞] and let b be a slowly varying function on [1,∞).

Let Φ be a Young function for which the restriction of Φ−1 to [1,∞) is a slowly varying

function on [1,∞). Suppose that

1\
0

Φ(γΦ−1(1/t)) dt <∞ for some γ > 0,(5.27)

sup
0<x<1

1

Φ−1(1/x)b(1/x)
<∞,(5.28)

sup
0<x<1

1

Φ−1(1/x)
‖(t1/p

′

b(1/t))−1‖p′;(x,1) <∞.(5.29)

Let Ω be a measurable subset of Rn with finite volume. Then

HσLn/σ,p;b(R
n) →֒ LΦ(Ω).

Proof. With no loss of generality we assume that |Ω|n = 1. Let b1 = b and b2(t) =

1/Φ−1(t), t ≥ 1. Note that b2 is a s.v. function on [1,∞). Since Φ
−1 is an increasing

function and Φ−1(t) > 0, t > 0, it follows that

sup
0<t<1

b2(1/t) =
1

Φ−1(1)
<∞,

and condition (5.10) with q =∞ is then satisfied. Condition (3.7) with q =∞ is precisely

(5.28). Since

sup
0<t<x

b2(1/t) =
1

Φ−1(1/x)
,

condition (3.11), with q = ∞, is precisely (5.29). Therefore, the conditions of Theorem

5.2 are satisfied and we have the embedding

HσLn/σ,p;b(R
n) →֒ L∞,∞;b2(Ω).

Since Φ satisfies a Lorentz-type condition, i.e. satisfies condition (5.27), it follows from

Corollary 4.1 that L∞,∞;b2(Ω) = LΦ(Ω) with equivalent (quasi-) norms, and the result

is established.
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The previous results concern either local estimates or local embeddings. However,

following the ideas of [18], we are also able to consider global ones.

Theorem 5.4. Let σ ∈ (0, n), p, q, s ∈ [1,∞] and let b1, b2, b3 be slowly varying functions

on [1,∞).

(i) Suppose that ‖t−1/qb2(1/t)‖q;(0,1) <∞ and either conditions (3.7), (3.11) or con-

ditions (3.8), (3.12) are satisfied. Then

‖u∗‖∞,q;b2;(0,1) - ‖u‖σ;n/σ,p;b1(5.30)

for all u ∈ HσLn/σ,p;b1(R
n).

(ii) Suppose that either condition (3.7) or condition (3.8) is satisfied , with q replaced

by s and b2 replaced by b3. Then

‖u∗‖n/σ,s;b3;(1,∞) - ‖u‖σ;n/σ,p;b1(5.31)

for all u ∈ HσLn/σ,p;b1(R
n). Moreover , if either n/σ < s ≤ ∞, or s = n/σ and

sup1<x<∞ 1/b3(x) <∞, then

‖u∗‖s;(1,∞) - ‖u‖σ;n/σ,p;b1(5.32)

for all u ∈ HσLn/σ,p;b1(R
n).

Proof. Put X = HσLn/σ,p;b1(R
n). Let u ∈ X. Then u = gσ ∗ f , where f ∈ Ln/σ,p;b1(R

n)

and ‖f‖n/σ,p;b1 = ‖u‖X . The estimate (5.30) is precisely (5.11) of Lemma 5.2. To prove

(5.31) we follow the proof of the estimate (4.9) in [18, Theorem 3.1], which is the coun-

terpart of (5.32) for logarithmic Bessel potential spaces.

By O’Neil’s inequality we have (5.5). Consequently

‖u∗‖n/σ,s;b3;(1,∞) ≤ ‖t
σ/n+1−1/s b3(t) g

∗∗
σ (t)f

∗∗(t)‖s;(1,∞)(5.33)

+
∥∥∥tσ/n−1/s b3(t)

∞\
t

g∗σ(τ )f
∗(τ ) dτ

∥∥∥
s;(1,∞)

=: N1 +N2

The estimate (5.3) yields

N1 - ‖tσ/n−1/s b3(t) f
∗∗(t)‖s;(1,∞)(5.34)

=
∥∥∥tσ/n−1/s−1 b3(t)

( 1\
0

f∗(τ ) dτ +

t\
1

f∗(τ ) dτ
)∥∥∥
s;(1,∞)

≤
( 1\
0

f∗(τ ) dτ
)
‖tσ/n−1/s−1 b3(t)‖s;(1,∞)

+
∥∥∥tσ/n−1/s−1 b3(t)

t\
1

f∗(τ ) dτ
∥∥∥
s;(1,∞)

=: N11 +N12.

Since n/σ > 1, by (3.2) we have ‖tσ/n−1/s−1 b3(t)‖s;(1,∞) ≈ b3(1) ≈ 1, and thus, by
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Hölder’s inequality and (3.1),

N11 -

1\
0

f∗(τ ) dτ =

1\
0

(τσ/n−1/pb1(1/t)f
∗(τ ))(τ1/p−σ/n(b1(1/t))

−1) dτ(5.35)

- ‖f‖n/σ,p;b1

( 1\
0

(
τ1/p−σ/n

1

b1(1/t)

)p′
dτ

)1/p′

≈ ‖f‖n/σ,p;b1 (b1(1))
−1 ≈ ‖f‖n/σ,p;b1 .

Applying Lemma 3.2 (the estimate (3.6) with ν = σ/n− 1 < 0), we have

N12 ≤
∥∥∥tσ/n−1/s−1 γb3(t)

t\
0

f∗(τ ) dτ
∥∥∥
s;(0,∞)

(5.36)

- ‖tσ/n−1+1/p
′

γb1(t) f
∗(t)‖p;(0,∞) = ‖f‖n/σ,p;b1 .

Together with (5.35), this yields

N1 - ‖f‖n/σ,p;b1 .(5.37)

Using Lemma 3.2 (the estimate (3.9) with ν = σ/n > 0), the estimate (5.1), and the fact

that tσ/n exp(−Bt1/n) - 1 for all t ∈ (0,∞), we arrive at

N2≤
∥∥∥tσ/n−1/sγb3(t)

∞\
t

g∗σ(τ )f
∗(τ ) dτ

∥∥∥
s;(0,∞)

(5.38)

- ‖tσ/n+1/p
′

γb1(t) g
∗
σ(t) f

∗(t)‖p;(0,∞)

- ‖tσ/n+1/p
′

γb1(t)t
σ/n−1 exp(−Bt1/n)f∗(t)‖p;(0,∞)

- ‖tσ/n−1/pγb1(t)f
∗(t)‖p;(0,∞) = ‖f‖n/σ,p;b1

and (5.31) now follows from inequalities (5.33), (5.37) and (5.38).

Let us prove (5.32). If n/σ < s ≤ ∞, then tσ/n−1/sb3(t) is equivalent to a non-

decreasing function on [1,∞). Hence,

‖u∗‖s;(1,∞) ≤ ‖u
∗‖n/σ,s;b3;(1,∞).(5.39)

If s = n/σ and sup1<x<∞ 1/b3(x) <∞, then (5.39) also holds. Now, (5.32) follows from

(5.31) and (5.39).

The first version of the previous theorem did not contain the estimate (5.31), only the

estimate (5.32) with s ≥ p. We are grateful to the Referee for suggesting this improvement

to us.

See [23, Theorem 4.3] ([27, Theorem 5.1]) for the estimate near infinity, estimate

(5.31), where the case of Bessel potential spaces (with logarithmic smoothness) modelled

upon Lorentz–Zygmund spaces is considered.

Corollary 5.4. Let σ ∈ (0, n), p, q ∈ [1,∞] and m ∈ N. Let α,β ∈ Rm and k ∈

{1, . . . ,m} be as in Corollary 5.1.

(i) Suppose that one of conditions (5.19)–(5.22) is satisfied. Then

‖u∗‖∞,q;β;(0,1) - ‖u‖σ;n/σ,p;α(5.40)

for all u ∈ HσLn/σ,p;α(R
n).
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(ii) Let s ∈ [1,∞] and let ν ∈ Rm. Suppose that

either 1 ≤ p ≤ s ≤ ∞ and ν � α

or 1 ≤ s < p ≤ ∞ and ν + 1/s ≺ α+ 1/p.

Then

‖u∗‖n/σ,s;ν;(1,∞) - ‖u‖σ;n/σ,p;α(5.41)

for all u ∈ HσLn/σ,p;α(R
n). Moreover , if either n/σ < s ≤ ∞, or s = n/σ and 0 � ν,

then

‖u∗‖s;(1,∞) - ‖u‖σ;n/σ,p;α(5.42)

for all u ∈ HσLn/σ,p;α(R
n).

Proof. We consider b1 = ϑ
m
α , b2 = ϑ

m
β and b3 = ϑ

m
ν . Part (i) is precisely Corollary 5.1.

To prove (ii), we deduce by Remark 3.2 that either (3.7) or (3.8) holds. By taking into

consideration Remark 3.6(ii), the result now follows from Theorem 5.4.

Remark 5.3. Let σ ∈ (0, n), p ∈ [1,∞] and m ∈ N. Let α = (α1, . . . , αm) ∈ Rm and let

k ∈ {1, . . . ,m} be such that αk 6= 1/p
′ and, if k ≥ 2, then αi = 1/p

′ for i = 1, . . . , k − 1.

Suppose additionally that αk > 1/p
′. Then the previous corollary with q = s = ∞ and

β = 0 gives

HσLn/σ,p;α(R
n) →֒ L∞(R

n),

which is a result due to Edmunds, Gurka and Opic [12, Lemma 4.5 & Corollary 4.6 &

Remark 4.7]. It also follows that the previous embedding holds with p = 1 and α = 0.

Theorem 5.5. Let σ ∈ (0, n), p ∈ [1,∞) and let b be a slowly varying function on [1,∞).

Let s ∈ [p,∞) and suppose that either n/σ < s < ∞, or s = n/σ and sup1<x<∞ 1/b(x)

< ∞. Let Φ be a Young function such that Φ(t) = ts for all small enough t ≥ 0, and

for which the restriction of Φ−1 to [1,∞) is a slowly varying function on [1,∞). Suppose

that conditions (5.27)–(5.29) are also satisfied. Then

HσLn/σ,p;b(R
n) →֒ LΦ(R

n).(5.43)

Proof. Let b1 = b and b2(t) = 1/Φ
−1(t), t ≥ 1. Note that b2 is an s.v. function on [1,∞).

As in the proof of Theorem 5.3, it follows that the conditions of Theorem 5.4 are satisfied

with q =∞. Therefore the estimate (5.30) gives

sup
0<t<1

u∗(t)

Φ−1(1/t)
- ‖u‖σ;n/σ,p;b for all u ∈ HσLn/σ,p;b(R

n).(5.44)

Let b3 = b1 = b. Then Theorem 5.4(ii) (estimate (5.32)) gives us the two estimates

‖u∗‖s;(1,∞) - ‖u‖σ;n/σ,p;b for all u ∈ HσLn/σ,p;b(R
n),(5.45)

and

u∗(1) = ‖u∗‖∞;(1,∞) ≤ κ‖u‖σ;n/σ,p;b for all u ∈ HσLn/σ,p;b(R
n),(5.46)

where κ is a positive constant.

Now we follow the end of Step 3 in the proof of [18, Theorem 3.1].

Let t0 ∈ (0, 1) be such that

Φ(t) = ts for all 0 ≤ t < t0.(5.47)
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If κ ≤ t0, we deduce from (5.45)–(5.47) that
∞\
1

Φ

(
u∗(t)

‖u‖σ;n/σ,p;b

)
dt - 1 for all u ∈ HσLn/σ,p;b(R

n).(5.48)

If κ > t0, then taking x ∈ (t0, κ] and c1 = Φ(κ)/t
s
0 we have Φ(x) ≤ Φ(κ) ≤ c1 x

s. Together

with (5.47), this implies that Φ(x) ≤ cxs for all x ∈ [0, κ], where c = max{1, c1}. Then,

by (5.45),
∞\
1

Φ

(
u∗(t)

‖u‖σ;n/σ,p;b

)
dt ≤ c

∞\
1

(
u∗(t)

‖u‖σ;n/σ,p;b

)s
dt - 1(5.49)

for all u ∈ HσLn/σ,p;b(R
n).

Since Φ is convex with Φ(0) = 0, it follows from (5.48) and (5.49) that

inf
{
λ > 0 :

∞\
1

Φ(u∗(t)/λ) dt ≤ 1
}

- ‖u‖σ;n/σ,p;b(5.50)

for all u ∈ HσLn/σ,p;b(R
n).

Now, because Φ satisfies the Lorentz-type condition (5.27), it follows from Theorem

4.1, (5.44) and (5.50) that ‖u‖Φ - ‖u‖σ;n/σ,p;b for all u ∈ H
σLn/σ,p;b(R

n), which gives

the embedding (5.43).

Corollary 5.5. Let σ ∈ (0, n), p ∈ [1,∞] and m ∈ N. Let α = (α1, . . . , αm) ∈ Rm

and let k ∈ {1. . . . ,m} be such that αk 6= 1/p
′ and , if k > 1, then αj = 1/p

′ for

j = 1, . . . , k − 1. Assume αk < 1/p
′ and let β = (β1, . . . , βm) ∈ Rm be defined by

β = α− δp′;m,k. Suppose that s ∈ [p,∞) and that either s > n/σ, or s = n/σ and p > 1.

Then

HσLn/σ,p;α(R
n) →֒ LΦk(R

n),

where the Young function Φk is given by

Φk(t) =

{
ts for all small enough t ≥ 0,

expk(t
−1/βkµm−kγ (t)) for all large enough t > 0,

with, if k < m, γ = (γ1, . . . , γm−k) ∈ Rm−k and γi = −βi+k/βk, i = 1, . . . ,m− k.

Proof. Let Ψk be the Young function defined by

Ψk(t) =

{
ts, 0 ≤ t < t0 ≤ 1,

Expk(t
−1/βkϑm−kγ (t)), 1 < t∞ < t <∞,

(5.51)

where t0 is small enough and t∞ is large enough. Let T∞ = Ψk(t∞) > 1. Then

Ψ−1k (t) ≈ ϑ
m
−β(t), t > T∞,

and it follows that the restriction of Ψ−1 to [1,∞) is a s.v. function on [1,∞).

From Example 4.1, Ψk satisfies the Lorentz-type condition (5.27). Let us consider

b = ϑmα . Then conditions (5.28) and (5.29) are also easily verified. Taking into account

Remark 3.6(ii), it now follows from Theorem 5.5 that HσLn/σ,p;α(R
n) →֒ LΨk(R

n). Since

Φk and Ψk are equivalent globally, we have LΦk(R
n) = LΨk(R

n), with equivalent norms,

and the result follows.

The previous corollary with k = m coincides with [18, Theorem 3.1].
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6. Riesz-potential-type embedding theorems

In [9], the authors proved the following result which characterises boundedness of convo-

lution operators in generalised Lorentz–Zygmund spaces.

Theorem 6.1 [9, Theorem 2.1]. Let s, q ∈ (1,∞), γ, δ ∈ R. Let q1, q2 ∈ (1,∞] be such

that 0 < 1/q1 + 1/q2 < 1 and set 1/p = 1/q1 + 1/q2. Let α = (1/p
′, δ/p) and β =

(−1/q, γ/q). Assume f ∈ Ls,q1(R
n), g ∈ Ls′,q2;α(R

n) ∩ L1(Rn), u = f ∗ g and suppose

that {
either p ≤ q, γ < −1, γ+1q −

δ+1
p + 1 ≤ 0;

or p > q, γ < −1, γ+1q −
δ+1
p + 1 < 0.

(6.1)

Then

‖u∗‖∞,q;β;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).(6.2)

The next result, which also characterises boundedness of convolution operators in

generalised Lorentz–Karamata spaces, generalises and extends Theorem 6.1, as we will

see later on.

Theorem 6.2. Let s ∈ (1,∞), q ∈ [1,∞]. Let q1, q2 ∈ [1,∞] be such that 1/q1+1/q2 ≤ 1

and set 1/p = 1/q1 + 1/q2. Let b1, b2 be slowly varying functions on [1,∞). Suppose that

‖t−1/qb2(1/t)‖q;(0,1) <∞,

∥∥∥∥t
−1/q b2(1/t)

b1(1/t)

∥∥∥∥
q;(0,1)

<∞.(6.3)

Suppose that either 1 ≤ p ≤ q ≤ ∞ and (3.11) is satisfied , or 1 ≤ q < p ≤ ∞ and (3.12)

is satisfied. Assume f ∈ Ls,q1(R
n), g ∈ Ls′,q2;b1(R

n) ∩ L1(Rn), u = f ∗ g. Then

‖u∗‖∞,q;b2;(0,1) - ‖f‖s,q1(‖g‖s′,q2;b1 + ‖g‖1).(6.4)

Moreover , if Ω is a measurable subset of Rn with finite volume, then u ∈ L∞,q;b2(Ω) and

‖u‖∞,q;b2;Ω - ‖f‖s,q1(‖g‖s′,q2;b1 + ‖g‖1).(6.5)

Proof. Since u = f ∗ g, by O’Neil’s inequality (cf. e.g. [35, Lemma 1.8.8]) we have

u∗(t) ≤ u∗∗(t) ≤ tf∗∗(t)g∗∗(t) +

∞\
t

f∗(τ )g∗(τ ) dτ.(6.6)

By Lemma 3.6, for all t > 0 we have

f∗(t) ≤ f∗∗(t) - t−1/s‖f‖s,q1 ,(6.7)

g∗(t) ≤ g∗∗(t) -
t−1/s

′

γb1(t)
‖g‖s′,q2;b1 .(6.8)

Using (6.6) and the previous estimates, for t ∈ (0, 1), we obtain

u∗(t) ≤ u∗∗(t) -
1

γb1(t)
‖f‖s,q1‖g‖s′,q2;b1 +

1\
t

f∗(τ )g∗(τ ) dτ +

∞\
1

f∗(τ )g∗(τ ) dτ.(6.9)

The estimate (6.7) together with the obvious inequality

g∗(τ ) ≤ g∗∗(τ ) ≤ τ−1‖g‖1, τ > 0,
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gives
∞\
1

f∗(τ )g∗(τ ) dτ - ‖f‖s,q1‖g‖1

∞\
1

τ−(1+1/s) dτ ≈ ‖f‖s,q1‖g‖1.(6.10)

Therefore, the estimates (6.9) and (6.10) imply

‖u∗‖∞,q;b2;(0,1) - ‖f‖s,q1‖g‖s′,q2;b1N1 +N2 + ‖f‖s,q1‖g‖1N3,(6.11)

where

N1 =

∥∥∥∥t
−1/q γb2(t)

γb1(t)

∥∥∥∥
q;(0,1)

,

N2 =
∥∥∥t−1/qγb2(t)

1\
t

f∗(τ )g∗(τ )
∥∥∥
q;(0,1)

,

N3 = ‖t
−1/qγb2(t)‖q;(0,1).

By hypothesis N1 <∞ and N3 <∞. Finally, Lemma 3.3 and Hölder’s inequality yield

N2 - ‖t1/p
′

γb1(t)f
∗(t)g∗(t)‖p;(0,1) = ‖t

1/s−1/q1f∗(t)t1/s
′−1/q2γb1(t)g

∗(t)‖p;(0,1)(6.12)

≤ ‖t1/s−1/q1f∗(t)‖q1;(0,1)‖t
1/s′−1/q2γb1(t)g

∗(t)‖q2;(0,1) = ‖f‖s,q1‖g‖s′,q2;b1 .

Now (6.4) follows from inequalities (6.11)–(6.12).

Now with no loss of generality we shall assume that |Ω|n = 1. Then, from (6.4), we

obtain

‖u‖∞,q;b2;Ω ≤ ‖t
−1/qγb2(t)u

∗(t)‖q;(0,1) - ‖f‖s,q1(‖g‖s′,q2;b1 + ‖g‖1),

which gives (6.5).

Note that if Ω is a measurable subset of Rn with finite volume and g is a measurable

function on Rn with supp g ⊂ Ω, then g ∈ Lp,q;b(R
n) ∩ L1(Rn) if, and only if, g ∈

Lp,q;b(R
n), where p ∈ (1,∞), q ∈ [1,∞] and b is a slowly varying function on [1,∞).

Corollary 6.1. Let s ∈ (1,∞), q ∈ [1,∞] and m ∈ N. Let q1, q2 ∈ [1,∞] be such

that 1/q1 + 1/q2 ≤ 1 and set 1/p = 1/q1 + 1/q2. Let α = (α1, . . . , αm) ∈ Rm and let

k ∈ {1, . . . ,m} be such that αk 6= 1/p
′ and , if k ≥ 2, then αi = 1/p

′ for i = 1, . . . , k − 1.

Let β = (β1, . . . , βm) ∈ Rm with βk 6= −1/q and , if k ≥ 2, then βi = −1/q for i =

1, . . . , k− 1. Assume f ∈ Ls,q1(R
n), g ∈ Ls′,q2;α(R

n)∩L1(Rn), u = f ∗ g. Suppose one of

the following conditions is satisfied:

1 < p ≤ q ≤ ∞, βk < −1/q, β + δq;m,k � α− δp′;m,k;(6.13)

1 ≤ q < p ≤ ∞, βk < −1/q, β + 1/q ≺ α− δ1;m,k + 1/p;(6.14)

p = 1, q =∞, βk < 0, β � α.(6.15)

Then

‖u∗‖∞,q;β;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).(6.16)

Moreover , if Ω is a measurable subset of Rn with finite volume, then u ∈ L∞,q;β(Ω) and

‖u‖∞,q;β;Ω - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).(6.17)
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If we omit the assumption βk 6= −1/q the result will still hold provided that

1 ≤ p ≤ q =∞, β = 0, −αk + 1/p
′ < 0.(6.18)

Moreover , for k = m, if we also omit the assumption αm 6= 1/p
′, the result will still hold

provided that

p = 1, q =∞, β = 0, α = 0.(6.19)

Proof. Let b1 = ϑ
m
α and b2 = ϑ

m
β . Then under our conditions (note that p > 1 in

(6.13)), condition (6.3) is satisfied. According to Lemma 3.3 and Remark 3.4, either

1 ≤ p ≤ q ≤ ∞ and (3.11) is satisfied, or 1 ≤ q < p ≤ ∞ and (3.12) is satisfied. Hence

the result follows from Theorem 6.2.

Remark 6.1. Assume that the conditions of the previous corollary hold.

When 1 ≤ p ≤ ∞, αk > 1/p
′ (or α = 0, if p = 1), we have

‖u∗‖∞;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).

In particular, if Ω is a measurable subset of Rn with finite volume, it follows that

‖u‖∞;Ω - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).

Let 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Take α,β ∈ Rm and k ∈ {1, . . . ,m} as in Corollary 6.1.

Suppose additionally that αk < 1/p
′ and that one of conditions (6.13)–(6.14) is satisfied.

Then

‖u∗‖∞,p;ν;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1),

where ν = α− δ1;m,k, which is better than the estimate

‖u∗‖∞,q;β;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).

In particular, if Ω is a measurable subset of Rn with finite volume, it follows that

‖u‖∞,p;ν;Ω - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1).

Remark 6.2. Under the conditions of Theorem 6.1, if we choose δ = p− 1, we have

‖u∗‖∞,q;β;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1)

for all f ∈ Ls,q1(R
n) and g ∈ Ls′,q2;α(R

n) ∩ L1(Rn), where u = f ∗ g, α = (1/p′, 1/p′),

β = (−1/q, γ/q) and γ < −1.

However, from Corollary 6.1, with m = k = 3 and α3 = 0, it follows that

‖u∗‖∞,q;β1;(0,1) - ‖f‖s,q1(‖g‖s′,q2;α1 + ‖g‖1)(6.20)

for all f ∈ Ls,q1(R
n) and g ∈ Ls′,q2;α1(R

n)∩L1(Rn), where u = f ∗g, α1 = (1/p
′, 1/p′, 0),

β1 = (−1/q,−1/q, β3), with β3 satisfying either (6.13) or (6.14).

Since Ls′,q2;α(R
n) = Ls′,q2;α1(R

n) and ‖u∗‖∞,q;β;(0,1) - ‖u∗‖∞,q;β1;(0,1), Corollary 6.1

gives us the better estimate (6.20).

In the special case when the function u is a Riesz-potential of the function g, i.e.

u = Iσ ∗ g, where Iσ, 0 < σ < n, is the Riesz kernel, we have the following corollary,

which generalises and extends the sufficiency part of Theorem 2.2 and Remark 3.11(iv)

in [9].
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Corollary 6.2. Let σ ∈ (0, n), p, q ∈ [1,∞]. Let b1, b2 be slowly varying functions on

[1,∞) such that condition (6.3) holds and either 1 ≤ p ≤ q ≤ ∞ and (3.11) is satisfied ,

or 1 ≤ q < p ≤ ∞ and (3.12) is satisfied. Assume g ∈ Ln/σ,p;b1(R
n)∩L1(Rn), u = Iσ ∗ g.

Then

‖u∗‖∞,q;b2;(0,1) - ‖g‖n/σ,p;b1 + ‖g‖1.(6.21)

Moreover , if Ω is a measurable subset of Rn with finite volume, then u ∈ L∞,q;b2(Ω) and

‖u‖∞,q;b2;Ω - ‖g‖n/σ,p;b1 + ‖g‖1.(6.22)

Proof. One can easily compute that (Iσ)
∗(t) = (t/ωn)

σ/n−1, t > 0 (see [35, pp. 97–98]),

where ωn is the volume of the unit ball in Rn. Therefore, Iσ ∈ Ln/(n−σ),∞(R
n), and the

result now follows from Theorem 6.2 on putting s = n/(n− σ) and q1 =∞.

Corollary 6.3. Let σ ∈ (0, n), p, q ∈ [1,∞] and m ∈ N. Let α,β ∈ Rm and k ∈

{1, . . . ,m} as in Corollary 6.1. Assume g ∈ Ln/σ,p;α(R
n) ∩ L1(Rn), u = Iσ ∗ g. Suppose

that one of conditions (6.13)–(6.15), (6.18)–(6.19) is satisfied. Then

‖u∗‖∞,q;β;(0,1) - ‖g‖n/σ,p;α + ‖g‖1.(6.23)

Moreover , if Ω is a measurable subset of Rn with finite volume, then u ∈ L∞,q;β(Ω) and

‖u‖∞,q;β;Ω - ‖g‖n/σ,p;α + ‖g‖1.(6.24)

Proof. The result follows from Corollary 6.1 on putting s = n/(n− σ), q1 = ∞ and

f = Iσ ∈ Ln/(n−σ),∞(R
n).

Remark 6.3. Assume that the conditions of the previous corollary hold.

When 1 ≤ p ≤ ∞, αk > 1/p
′ (or α = 0 if p = 1), we have

‖u∗‖∞;(0,1) - ‖g‖n/σ,p;α + ‖g‖1.

In particular, if Ω is a measurable subset of Rn with finite volume, it follows that

‖u‖∞;Ω - ‖g‖n/σ,p;α + ‖g‖1.

Let 1 < p ≤ ∞, 1 ≤ q ≤ ∞. Take α,β ∈ Rm and k ∈ {1, . . . ,m} as in Corollary 6.3.

Suppose additionally that αk < 1/p
′ and that one of conditions (6.13)–(6.14) is satisfied.

Then

‖u∗‖∞,p;ν;(0,1) - ‖g‖n/σ,p;α + ‖g‖1,

where ν = α− δ1;m,k, which is better than the estimate

‖u∗‖∞,q;β;(0,1) - ‖g‖n/σ,p;α + ‖g‖1.

In particular, if Ω is a measurable subset of Rn with finite volume, it follows that

‖u‖∞,p;ν;Ω - ‖g‖n/σ,p;α + ‖g‖1.

Remark 6.4. Following the reasoning of Remark 6.2, the previous corollary with m =

k = 3, α3 = 0 and 1 ≤ q < ∞ gives a better estimate than the one given by [9,

Theorem 2.2]. More precisely, we obtain

‖u∗‖∞,q;β;(0,1) - ‖g‖n/σ,p;α + ‖g‖1,
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for all g ∈ Ln/σ,p;α(R
n) ∩ L1(Rn), where u = Iσ ∗ g, α = (1/p

′, 1/p′, 0) and β =

(−1/q,−1/q, β3), with β3 satisfying either (6.13) or (6.14), rather than the estimate

‖u∗‖∞,q;β1;(0,1) - ‖g‖n/σ,p;α + ‖g‖1

for all g ∈ Ln/σ,p;α(R
n) ∩ L1(Rn), where u = Iσ ∗ g, α = (1/p

′, 1/p′, 0) and β1 =

(−1/q, γ/q), with γ < −1.

The following results extend and improve [9, Corollary 2.3(ii), Corollary 2.4(ii)].

Theorem 6.3. Let s ∈ (1,∞) and let q1, q2 ∈ [1,∞] be such that 1/q1 + 1/q2 ≤ 1 and

set 1/p = 1/q1 + 1/q2. Let b be a slowly varying function on [1,∞). Let Φ be a Young

function for which the restriction of Φ−1 to [1,∞) is a slowly varying function on [1,∞).

Suppose that
1\
0

Φ(γΦ−1(1/t)) dt <∞ for some γ > 0,(6.25)

sup
0<x<1

1

Φ−1(1/x)b(1/x)
<∞,(6.26)

sup
0<x<1

1

Φ−1(1/x)
‖(t1/p

′

b(1/t))−1‖p′;(x,1) <∞.(6.27)

Let Ω be a measurable subset of Rn with finite volume. If f ∈ Ls,q1(R
n), g ∈ Ls′,q2;b(R

n)

∩ L1(Rn) and u = f ∗ g, then u ∈ LΦ(Ω) and

‖u‖Φ,Ω - ‖f‖s,q1(‖g‖s′,q2;b + ‖g‖1).

Proof. With no loss of generality we assume that |Ω|n = 1. Let b1 = b and b2(t) =

1/Φ−1(t), t ≥ 1. Note that b2 is a s.v. function on [1,∞). Since Φ
−1 is an increasing

function and Φ−1(t) > 0, t > 0, it follows that

sup
0<t<1

b2(1/t) =
1

Φ−1(1)
<∞,

and the first condition in (6.3), with q = ∞, is satisfied. The second condition in (6.3),

with q =∞, is precisely (6.26). Since

sup
0<t<x

b2(1/t) =
1

Φ−1(1/x)
,

it follows from (6.27) that (3.11) with q =∞ is satisfied. Therefore, the conditions of The-

orem 6.2 are satisfied and the estimate ‖u‖∞,∞;b2;Ω - ‖f‖s,q1(‖g‖s′,q2;b1 + ‖g‖1) follows.

Since Φ satisfies a Lorentz-type condition, i.e. satisfies (6.25), we see from Corollary 4.1

that L∞,∞;b2(Ω) = LΦ(Ω) with equivalent (quasi-) norms, and the result is established.

Now it is easy to verify the next three results.

Corollary 6.4. Let σ ∈ (0, n), p ∈ [1,∞]. Let b be a slowly varying function on [1,∞).

Let Φ be a Young function for which the restriction of Φ−1 to [1,∞) is a slowly varying

function on [1,∞). Suppose that conditions (6.25)–(6.27) are also satisfied. Let Ω be a

measurable subset of Rn with finite volume. Then Iσ ∗ g ∈ LΦ(Ω) and

‖Iσ ∗ g‖Φ,Ω - ‖g‖n/σ,p;b + ‖g‖1

for all g ∈ Ln/σ,p;b(R
n) ∩ L1(Rn).
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Corollary 6.5. Let s ∈ (1,∞) and m ∈ N. Let q1, q2 ∈ [1,∞] be such that 1/q1 + 1/q2
≤ 1 and set 1/p = 1/q1 + 1/q2. Let α = (α1, . . . , αm) ∈ Rm and let k ∈ {1, . . . ,m} be

such that αk 6= 1/p
′ and , if k > 1, then αj = 1/p

′ for j = 1, . . . , k−1. Assume αk < 1/p
′

and let β = (β1, . . . , βm) ∈ Rm be defined by β = α − δp′;m,k. Let Ω be a measurable

subset of Rn with finite volume. Let Φk be the Young function defined by

Φk(t) = expk(t
−1/βkµm−kγ (t)) for all large enough t > 0,

with, if k < m, γ = (γ1, . . . , γm−k) ∈ Rm−k and γi = −βi+k/βk for i = 1, . . . ,m − k.

Then u ∈ LΦk(Ω) and

‖u‖Φk,Ω - ‖f‖s,q1(‖g‖s′,q2;α + ‖g‖1)

for all f ∈ Ls,q1(R
n) and g ∈ Ls′,q2;α(R

n) ∩ L1(Rn).

Corollary 6.6. Let σ ∈ (0, n), p ∈ [1,∞] and m ∈ N. Let α,β ∈ Rm, k ∈ {1, . . . ,m}

and Φk as in Corollary 6.5. Let Ω be a measurable subset of Rn with finite volume. Then

u = Iσ ∗ g ∈ LΦk(Ω) and

‖Iσ ∗ g‖Φk,Ω - ‖g‖n/σ,p;α + ‖g‖1

for all g ∈ Ln/σ,p;α(R
n) ∩ L1(Rn).

Remark 6.5. Following the same line of reasoning as in Remarks 6.2 and 6.4, and Corol-

laries 6.5 and 6.6, withm = 3 and α3 = 0, we arrive at a triple exponential Orlicz space as

a target space, improving in this way [9, Corollary 2.3(ii), Corollary 2.4(ii)], with δ = p−1

(see Theorem 6.1), which give a double exponential Orlicz space.

Corollary 6.6 with k = 1, m = 2 and p = n/σ gives a result related to the one of

Mizuta and Shimomura [22, Theorem A].

The previous remark extends [9, Remark 3.11(iv)].
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