1. Introduction

Classical Sobolev spaces, based upon the Lebesgue spaces L, have been widely accepted
as one of the crucial instruments in Functional Analysis and have played a significant
role in numerous parts of mathematics for many years; in particular, in connection with
PDE’s. Embeddings of the Sobolev spaces play a major role. Sobolev’s classical embedding
theorem [30] states that if 2 C R™ is a domain with a sufficiently smooth boundary, then
W) (£2) — Ly(£2) continuously whenever p < n/k and p < ¢ < np/(n — pk) (see also
for instance [1, Lemmas 5.12 and 5.14]). In the limiting case, i.e., when p = n/k, this
inclusion does not hold for ¢ = oo, unless p = 1 so that k£ = n. However, we do have

(1.1) Wf/k(Q) — Ly(82) forallg p<g<oo

(see for example [1, Corollary 5.13 and Lemma 5.14]). Therefore, the optimal integrability
conditions satisfied by functions in erf /) CANNot be specified as simple L, conditions.

In 1967 Trudinger [33] (see also Pokhozhaev [29] and Yudovich [34]) found refinements
of (1.1) expressed in terms of Orlicz spaces of exponential type. He was able to prove
that a continuous embedding of the form

(1.2) W, (2) = La(£2),

where kp = n and (2 is a bounded domain in R™, n > 1, with a smooth boundary, holds
for the Orlicz space Lg(f2) generated by the function @(t) = expt? for large ¢, where
A =n/(n—1) for all £ € N. Such an Orlicz space is clearly contained in Lq({2) for
every ¢ < oo. Trudinger also showed that the value A\ = n/(n — 1) is the best possible
when k = 1. However, when k > 2, Strichartz [32] noted that Trudinger’s result could be
improved with the larger power A = p’ = n/(n — k). The reason why Trudinger did not
obtain the optimal power is that the case k > 2 was reduced to the case k = 1 by using
a Sobolev result, namely if u € W} (2), k > 2, kp = n, then u € W,(£2). Strichartz
on the other hand used a direct argument. He also observed that A = p’ = n/(n — k)
is the best possible value of A for any choice of £ < n — 1. Note that in 1966, Peetre
[28, Theorem 9.1] proved a limiting embedding concerning Besov spaces from which
Trudinger’s and Strichartz’s limiting embeddings follow for p = 2.

To obtain further refinements of the limiting case of the Sobolev embedding theo-
rem, it is necessary to work with a wider class of function spaces, such as the Lorentz—
Zygmund spaces LP9(log L)*(§2) introduced by Bennett and Rudnick [2]. Let us just
remark that the Orlicz space Lg(£2), defined above, coincides with the Lorentz—Zygmund
space L (log L)~'/*(£2), also denoted by E\(£2) in some literature.
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In 1979 Hansson [19, pp. 96-101] and, independently, in 1980 Brézis and Wainger [5,
Theorem 2, p. 781] proved the embedding

WH(2) — L(log L) (),

where kp = n and (2 is a bounded domain with smooth boundary.

As pointed out in both [19] and [5], the space L°P(log L)~1(§2) is strictly smaller
than the various versions of the space Lg({2) which appear in (1.2). This fact also agrees
with what was considered previously and with Theorem 9.5 of [2], where various inclusion
relations among the Lorentz—Zygmund spaces were established.

In more recent times, Sobolev type embeddings in the limiting case have attracted
some attention, mostly restricted to the case of classical Sobolev spaces where k =
n/p € N, but in the context of general rearrangement-invariant spaces; see for instance
Cwikel and Pustylnik [6] and Edmunds, Kerman and Pick [14]. We refer to Edmunds
and Triebel [15] for embeddings of fractional Sobolev spaces and Besov spaces into
rearrangement-invariant spaces. In particular, Cwikel and Pustylnik [6] showed that the
space L>°P(log L)~1(£2) is the smallest rearrangement-invariant Banach function space
into which Wzﬂ“(()), with kp = n, can be continuously embedded. A more detailed de-
scription can be found in [6], [14] and [15].

When the space L™(log L)* is used instead of L™ as the underlying space, then the
corresponding Sobolev space is embedded in another Orlicz space of single exponential
type if a < 0 (see Fusco, Lions and Sbordone [17], Edmunds, Gurka and Opic [9, Re-
mark 3.11(iv)], and [10, Section 6]), while if a = (n — 1)/n there is an embedding into
an Orlicz space of double exponential type (see Edmunds, Gurka and Opic [9]-[11]). See
Edmunds, Gurka and Opic [12] for the case when the Sobolev space is modelled upon a
generalised Lorentz—Zygmund space.

In this paper we consider the Lorentz-Karamata spaces L, 4.,(R) where p, g € (0, 00],
b is a slowly varying function on [1,00) and (R, u) a measure space. With convenient
choices of slowly varying functions these spaces give the generalised Lorentz—Zygmund
(GLZ) spaces Ly g:a1,....a,, (R) (introduced by Edmunds, Gurka and Opic [12]), Lorentz—
Zygmund spaces LP?(log L)*(R) (introduced by Bennett and Rudnick [2]), Zygmund
spaces LP(log L)*(R), Lorentz spaces LP*4(R) and Lebesgue spaces LP(R).

When 1 < p < 00, ¢ € [1,00], and (R, ) is a resonant measure space, it is proved
that L, ¢.»(R), endowed with a convenient norm, is a rearrangement-invariant Banach
function space with associate space Ly q.1/5(R). This result generalises Theorem IV.4.7
of [3], where the case of Lorentz spaces is considered, and also extends Lemma 3.4 of [12],
where the case of generalised Lorentz—Zygmund spaces is considered.

Sufficient conditions on the indices p, ¢ and on the slowly varying functions b are
given in order to have embeddings between Lorentz—Karamata spaces. When p varies
we consider the underlying measure space with finite measure. This condition is also
necessary if the underlying measure space is resonant. When p is fixed the results are given
for any measure space. These results extend and give the counterpart of the embedding
results for the Lorentz—Zygmund spaces (see Bennett and Rudnick [2] and Bennett and
Sharpley [3]) and generalised Lorentz—Zygmund spaces (see Evans, Opic and Pick [16]
for GLZ spaces over a finite non-atomic measure space, case m = 2 and p fixed).
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Embedding theorems for certain Bessel-potential spaces modelled upon Lorentz—
Karamata spaces, referred to in what follows as Lorentz—Karamata—Bessel potential
spaces, into Lorentz—Karamata spaces are given when the power exponent p is in the
sublimiting case, i.e., 1 < p < n/o, where ¢ € (0,n), and when p has the limiting value
n/o, with o € (0,n). These results generalise and improve (limiting case) those of Ed-
munds, Gurka and Opic [12], and refine the one of Hansson [19]. In order to do that,
weighted Hardy-type inequalities involving slowly varying functions are considered.

A decomposition of the Luxemburg norm of the functions in an Orlicz space into two
terms where one is of Marcinkiewicz type, provided the Young function satisfies a Lorentz
type condition, is given and used to obtain embeddings of certain Lorentz—Karamata—
Bessel potential spaces (limiting case) into Orlicz spaces, considered either on subsets
of R™ with finite volume or on R™. These results extend those of Edmunds, Gurka and
Opic [10], [12] and Gurka and Opic [18], and give refinements of those of Trudinger [33]
and Strichartz [32]. The results of Gurka and Opic [18] concern embeddings of Bessel-
potential spaces H?Y (R"), modelled upon appropriate generalised Lorentz—Zygmund
spaces Y (R™), into Orlicz spaces Lg(R™), where @(t) = exp(exp(...exp(t’)...)), for
large t, v > 0, and ®(t) = 9, for small ¢, with v and ¢ satisfying certain conditions. It
was this modification of @ near the origin that permitted the authors to consider the
global embedding; see [7] for the case of fractional Sobolev spaces, and [1] and [8] for the
case of Sobolev spaces.

We also present estimates for an appropriate norm of the convolution of a function
f in a Lorentz space with one g in the intersection of a Lorentz—Karamata space with
the Lebesgue L; space. In particular, we consider the case when f is the Riesz kernel I,
0 < 0 < n. These results extend those of Edmunds, Gurka and Opic [9] on convolutions
of functions in generalised Lorentz—Zygmund spaces which lead to double exponential
integrability, and those of Brézis—Wainger [5] on convolution of functions in Lorentz spaces
which lead to single exponential integrability. Furthermore, in some cases we improve the
results of Edmunds, Gurka and Opic [9] by obtaining a triple exponential Orlicz space
rather than a double exponential one. Moreover, we also obtain results related to that of
Mizuta and Shimomura [22].

Acknowledgements. It is a pleasure to thank Prof. D. E. Edmunds for his helpful
suggestions during the preparation of this paper. The author is indebted to the Referee
for his several suggestions. The author is also grateful to Calouste Gulbenkian Foundation
and to Mathematics Department of the University of Coimbra for the financial support.

2. Notation and preliminaries

As usual, R™ denotes Euclidean n-dimensional space. Let (R, X, 1), usually denoted by
(R, 1), be a totally o-finite measure space, referred to in what follows only as a measure
space. A set E € X is called an atom of (R, X, pu) if u(E) > 0and F C E, F € ¥
implies either p(F) = 0 or pu(E \ F) = 0. If there are no atoms, then (R, X, u) is called
non-atomic. A measure space (R, p) is called resonant if it is one of the following two
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types: (i) non-atomic; (ii) completely atomic, with all atoms having equal measure. We
refer to [3, pp. 45-51] for more details and for a different, but equivalent, definition. When
R = R™ we always take u to be Lebesgue measure pu,, and write [§2|,, = p,(§2) for any
measurable subset {2 of R™. The family of all extended scalar-valued (real or complex)
p-measurable functions on R will be denoted by M(R, u); Mo(R, ) will stand for the
subset of M(R, u1) consisting of all those functions which are finite p-a.e. and M (R, p)
(resp. M¢ (R, i) will represent the subset of M(R, i) (resp. Mo(R, 1)) made up of all
those functions which are non-negative p-a.e.
Let f € Mo(R, ). The distribution function py of f is defined by

1) = pfe € R+ [f(@)] > A} for all A >0,

the non-increasing rearrangement of f is the function f deﬁned on [0,00) by
flry @) =inf{A>0:pup(N) <t} for all t>0,

and the maximal function f(*g ) of f*R is defined by

t
—le ds forall t > 0.
t
0

If (R, p1) is a finite measure space, then the distribution function 5 is bounded above
by u(R) and so fp (t) = 0 for all ¢ > p(R). In this case we may regard ffy , as a
function defined on the interval [0, u(R)); for more details we refer to [3]. If there is no
danger of confusion, we write f* (resp. f**) or f (resp. f5*) instead of frw (resp.
f (*Igu))'

Two functions f € My(R, u) and g € Mo (S, v) are said to be equimeasurable if they
have the same distribution function, i.e., if (X)) = v4(A) for all A > 0.

Although the non-increasing rearrangement does not preserve sums or products of
functions, there are some basic inequalities that govern the process.

The next result concerns an inequality for sums [3, Theorem II.3.4].

THEOREM 2.1. If f and g belong to My(R, 1), then
(f+9)™@) < f*@)+g™ (@) forall t>0.

We also need the following Hardy-Littlewood inequality for products [3, Theorem
11.2.2].

THEOREM 2.2. If f and g belong to Mo(R, ), then

{17gldu < | 1097 0) .
R 0

For general facts about Banach function spaces with Banach function norm (or simply
a function norm) g over a measure space (R, 1) we refer to [3, Chaps. 1, 2]. Nevertheless,
let us recall a few concepts and results, for the convenience of the reader.

A function norm p over a measure space (R, u) is said to be rearrangement-invariant
if o(f) = o(g) for every pair of equimeasurable functions f and g in Mg (R, ).
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Let (R, ) be a measure space and let ¢ be a function norm. The associate function
norm ¢ of o is defined on M (R, 1) by

(2.1) o(9) =sup{ | fodu: f € M*(Rp), o(f) <1},

R
for each g € M™T(R, u). The collection X = X (p) of all functions f in M(R, u) for which
o(|f]) is finite is called a Banach function space. The norm of a function f in X is given
by
(2.2) 1£lx = e(l71).

The Banach function space X = X(p) generated by a rearrangement-invariant function
norm g is called a rearrangement-invariant space. The Banach function space X (o) de-
termined by o, where o’ is the associate norm of g, is called the associate space of X(p)
and is denoted by X’. It follows from (2.1) and (2.2) that the norm of a function g in the
associate space X' is given by

lallx = sup { [ 1ol dpe: € X [1fllx < 1f.
R

The next result formulates the Holder inequality in terms of the Banach function
spaces X and X' generated by ¢ and ¢, respectively [3, Corollary I1.4.5].

THEOREM 2.3. Let X be a rearrangement-invariant space over a resonant measure space
(R, ). If f belongs to X and g to X', then

[1raldn < | 79"t de < (171 xlgllx-
R 0

We shall also need the Lorentz—Luxemburg theorem [3, Theorem 1.2.7].

THEOREM 2.4. FEvery Banach function space X coincides with its second associate space
X" :=(X"). In other words, a function f belongs to X if, and only if, it belongs to X"
and in that case ||fl|lx = || fllx~-

REMARK 2.1. If X and Y are two Banach function spaces such that ¥ = X', up to
equivalence of norms, then it follows, by the Lorentz—Luxemburg theorem (Theorem 2.4),
and by the definition of Y”, that Y/ = X, up to equivalence of norms. In other words, X
and Y are mutually associate, up to equivalence of norms.

Now we recall the Luxemburg representation theorem [3, Theorem I1.4.10].

THEOREM 2.5. Let ¢ be a rearrangement-invariant function norm over a resonant mea-
sure space (R, ). Then there is a (not necessarily unique) rearrangement-invariant func-
tion morm @ over (R*, 1) such that o(f) = o(f*) for all f in Mg (R, ).

Furthermore, if o is any rearrangement-invariant function norm over (R, uy) which
represents o, in the sense that o(f) = o(f*) for all f in Mg (R,p), then the associate
norm o' of o is represented in the same way by the associate norm o' of o, that is,
d'(9) = 0'(g") for all g in Mg (R, p).

Let p € (0,00]. We denote by L,(R) the Lebesgue space endowed with the (quasi-)
norm || - ||p; -
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Let X be a rearrangement-invariant Banach function space over (R™, iy, ). Then, by
[3, Theorem I1.6.6], X — Li(R™) + Lo(R™). Therefore, if f € X and g € L1(R"),
frxg=gxfe MoR" pn,), where f x g is the convolution of f and g.

By a Young function & we mean a continuous non-negative, strictly increasing and
convex function on [0, 00) satisfying

Jlim @(t)/t = lim ¢/@(t) = 0.

Given a Young function @, the Orlicz space Lg(R) is defined to be the collection of
all functions f € Mo(R, p) for which there is a A > 0 such that

Vo1 £1/2) dp < o0,

R
equipped with the Luzemburg norm || - ||, r given by
I£llo, = inf {A >0 | B(f1/A) du < 1}.

R
We refer to [1, Chapter VIII] and [20, Chapter III] for more details.

Let @1 and @5 be Young functions. Recall that @5 dominates @1 globally if there is a
positive constant x such that
(2.3) D1(t) < Da(rit)

for all ¢ > 0. Similarly, @5 dominates @1 near infinity if there are positive constants
and to such that (2.3) holds for all ¢t € [tg,0). Two Young functions are said to be
equivalent globally (resp. near infinity) if each dominates the other globally (resp. near
infinity). From [1, Theorem 8.12, pp. 234-235] we have the following result: If $; and @,
are equivalent globally (or near infinity and p(R) < o0), then Lg, (R) = Lg,(R) and the
corresponding norms are equivalent.

Let @ be a non-negative, non-decreasing, left-continuous function on [0,00) with
&(0+) = 0 and P(c0) = 00. Let (R, 1) be a measure space and let f belong to Mo(R, p).
Then

Vorndu =\ o(r; ) dt
R 0

(cf. [3, p. 87]). Therefore, if @ is a Young function,
| fllon = inf {2 >0 § @(f0)/N) at <1}
0
for all f € La(R).
The Riesz kernel I,, 0 < 0 < n, is defined by

I(§) = €177, §eR™
The Bessel kernel g5, o > 0, is defined by

1 T d
S e mIE 2 gma/(4m) po-m)/2 BT e g

95(8) = @mernr(o/2) ) x
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(cf. [31, Chap. 5]). It is known that g, is a positive, integrable function which is analytic
except at the origin, ||g,||1;z» = 1 and its Fourier transform is

o) = @m) P+ g% geRY,
where the Fourier transform fof a function f is given by

f&)=@m) 2\ e fa)de, ¢cR™

R’VL
Now let m € N and a = (a1,...,a,) € R™. We denote by 97 the real function

defined by

IR (t) = Hff" (t) for all ¢t € (0,00),
i=1
where ¢4, ..., ¢, are positive functions defined on (0, c0) by

6() =1+ |logt|, £4i(t)=1+1logli_1(t), i€{2,...,m}, m>2.

Let £y be the function on (0, 00) defined by ¢y (t) = max{1/t,¢} for each t > 0. We define
the numbers expq, ..., exp, by

expy =e, exp; =P e{2,...,m}, m>2.

Denote by u* the real function defined by

(a4

ur(t) = Hl:“ (t) for all t € [expm,o0),
i=1
where Iy, ..., [, are the positive functions defined by
l1(t) = logt, t>e,

li(t):logli_l(t), t > exp;, i6{2,...,m}, m > 2.

For formal reasons, we put, if m = 0,
m
o =] =py =1
i=1

The symbol exp,, will represent the function expoexpo...oexp and the symbol

m times
Exp,,, will represent the positive function defined on (0, 00) by induction:

r—1

Exp,,(x) =e itm=1, Exp,(z)= P Pm—1 (@) =1 iy > 9,

Given @ = (aq,...,am),8 = (B1,---,0m) € R™ and 0 € R, we write a + 3 =
(1 4+ 61, sam+Bm),at+o = (a1 +0,....,a0 +0), ca = (0ay,...,00y). f a =
(0,...,0) € R™, we denote ax by 0. We write 8 < «, or a > 3, if one of the following
conditions is satisfied:

B1—aq <0 {

We use the symbol 8 < @, or a > 3, to mean that either 8 < a or 8 = a. Let p € [1, o0],
k e {1,...,m}. We denote by 0,.m r the m-tuple (41,...,d,,) € R™, where 6; = 1/p,
i=1,....k,and, if k+1<m, §;=0,i=k+1,...,m.

there exists k € {2,...,m} such that
Bi=ajforj=1,...,k—1and B —ay <0.
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In what follows, we let ¢ denote a positive constant. In a chain of inequalities ¢ may
stand for several different constants if it is not important to distinguish between them,
otherwise we use ¢ with subscripts. For two non-negative expressions (i.e. functions or
functionals) A, B, the symbol A = B means that A < ¢B for some positive constant ¢
independent of the variables in A and B. If 4 X B and B 3 A, we write A ~ B.

We adopt the convention that a/oo = 0 and a/0 = oo for all a > 0. If p € [1, 0], the
conjugate number p’ is given by 1/p+1/p’ = 1.

3. Slowly varying functions and Lorentz—Karamata spaces

A positive and Lebesgue-measurable function b is said to be slowly varying (s.v.) on
[1,00) in the sense of Karamata if, for each ¢ > 0, t°b(¢) is equivalent to a non-decreasing
function and ¢~°b(t) is equivalent to a non-increasing function on [1,00); see Chapter I
in [4] for a detailed study of the Karamata theory.

Properties and examples of s.v. functions can be found in [36, Chapter V, p. 186], [4]
and [14]. The following functions are s.v. on [1,00):

(i) b(t) = 92 (t) with m € N and o € R™;
(ii) b(t) = exp(log™ t) with 0 < a < 1;
(iil) by (t) = exp(£%,(t)) with 0 < @ < 1 and m € N.
Note that if m > 2 in the last example, we may consider a = 1. In this case b,,, =~ £,,,_1.
Given a slowly varying function b on [1,00), we denote by =, the positive function

defined by
Y(t) = b(max{t,1/t}) for all ¢t > 0.

It follows easily that the product of two slowly varying functions b; and b2 on [1, 00)
is still a slowly varying function on [1,00) and
Yoybo (8) = Vo, (E) V0, (t)  for all ¢ > 0.
LEMMA 3.1. Let b be a slowly varying function on [1,00).
(i) Let r € R. Then b" is a slowly varying function on [1,00) and
Yor(t) =y (t)  for allt > 0.
(ii) For each ¢ > 0, t°y,(t) is equivalent to a positive non-decreasing function on
(0,00) and t—Svp(t) is equivalent to a positive non-increasing function on (0, 00).
(iii) Let k > 0. Then
Yo(kt) = vp(t)  for allt > 0.
(iv) If

S 771b(7) dr < 00,
1
then by defined by

o0

() =\ rto(r)dr,  t>1,
).

is a slowly varying function on [1, 00
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(v) Let > 0. Then
¢

(3.1) Sra_lfyb(T) dr = sup T (T) = t*w(t)  for all t > 0;
5 o<r<t
(3.2) S T by (T)dr & sup T (7)) Aty (t)  for all t > 0.
t<T<00

¢
(vi) If a <0, then

t 00

STa_l’yb(T) dr = sup 7%(1) = S 77 Ay (1) dr
5 o<r<t p
= sup 7 “yw(r)=00 forall t>0.
t<r<oco

Proof. The easy proofs of (i), (iii) and (vi) are omitted. In (v), the estimates (3.2) follow
from (3.1) by taking into account that v, (t) = v5(1/t) for all ¢ > 0.

For (ii), let € > 0. We denote by f. the non-decreasing function equivalent to ¢°b(t)
on [1,00), and by f_. the non-increasing function equivalent to t~¢b(t) on [1,00). Then
it is easy to verify that ¢+,(t) is equivalent to the positive non-decreasing function I on
(0,00) defined by
L)

f-e(1)
and that t77,(t) is equivalent to the positive non-increasing function I'_. on (0, c0)
defined by

f(1)

Toc(t) = fo(max{t, 1/txon (1) + 7= 55

To prove (iv), for each € > 0, let f. and f_. be as before. Then it is easy to verify
that ¢°b; (t) is equivalent to the non-decreasing function g. on [1,00) defined by

o0
gty =t=\ 77 f(rydr, t>1,
t

I.(t) Joe(max{t, 1/t})x(0,1)(t) + fe(max{t,1/t})x[1,00)(t), t >0,

Joe(max{t, 1/t})x[1,00)(t), t>0.

and that t7°by (¢) is equivalent to the non-increasing function g_. on [1,00) defined by

o0
ge)y=t=\ s f(r)dr, t>1
t
Let us now prove the estimates (3.1) in (v). Let
t
g1 (t) = STa_l’yb(T) dr forallt >0,

0
Joo(t) = sup 7%y(7) forallt > 0.
o<r<t
Let ¢ > 0. Then by (ii), we have
¢
(3.3) g1(8) 2t (t) | 7o dr T (0 = oy ().

0
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On the other hand, for each ¢ > 0,
t

(3.4) 1) 3ty () | 7927 dr w0 2 (1)1 = 1 (8).
0

It now follows from (3.3) and (3.4) that
(3.5) g1(t) = t*y(t) for all t € (0,00).

The estimate goo(t) = t*y(t) for all ¢ > 0, follows easily, and together with (3.5)
gives (3.1). m

Let v € (0,1]. Let K, be the class of all positive and Lebesgue-measurable functions
b defined on [1,00) such that, for each € > 0, exp(ef$(t))b(t) is equivalent to a non-
decreasing function and exp(—ef$(t))b(t) is equivalent to a non-increasing function on
[1, 00).

REMARK 3.1. Let « € (0,1].

(i) If & =1, then K, coincides with the class of slowly varying functions.
(ii) Let r € R and b € K. Then " € K,,.
(iii) Let b1,b5 € K. Then b1by € K.
(iv) Let a € R, § € [0, ] and let bs be the function defined by bs(t) = exp(als°(t))
for t > 1. Then by & K. However, bs € K, if 0 < 6 < a.
(v) Let 0 < a < 8 < 1. Then K, € Kp.

In order to prove the results of Sections 5 and 6 and some of this section, we shall
need weighted Hardy inequalities where the weights are slowly varying functions, and
give general results below; the proofs are omitted since they simply involve checking
well-known criteria (cf. e.g. [24, Theorems 5.9 & 5.10 & 6.2 & 6.3]).

LEMMA 3.2. Let p,q € [1,00], v # 0 and let by, by be two slowly varying functions on
[1,00).

(i) The inequality

(3.6)

t
e (o) Loty S 20 0 9Ol

holds for all g € M*((0,00), p1) if, and only if , v < 0 and one of the following conditions
1s satisfied:
bo(1/x)
su
O<rgl b1(1/x)
ba(1/2)

< h 1_1
Nt 0o, where — =<
bl(l/x) r;(0,1) r q

(3.7) 1<p<g<oo,

< Q5

(3.8) 1<g<p<oo

(ii) The inequality

(3.9)

oo
eV, @) a1 50 00 o
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holds for all g € MT((0,00), 1) if, and only if, v > 0 and one of conditions (3.7)—(3.8)
1s satisfied.
REMARK 3.2. Suppose m € N, a = (1,...,a),8 = (81,...,0m) € R™, by = 97 and
= .

(i) Let 1 < p < ¢ < oo. Then (3.7) is satisfied if, and only if, 3 < «. In this case,
the previous lemma gives the result of [12, Lemma 3.1].

(ii) Let 1 < g < p < co. Then (3.8) is satisfied if, and only if, 8+ 1/¢ < ac + 1/p.

(iii) See [16, Lemma 3.1], where the case m = 2 is considered, but with the interval
(0,00) in (3.6) and (3.9) replaced by the interval (0,1).
REMARK 3.3. Let m € N, p,q € [1,00], 1,41 € Rand 0 < a < 1. Let ¢1, ¢ € K, and
let by, be be slowly varying functions on [1, 00) defined by

by (t) = €= D/P( H O (1) exp(an 02 (1)) 1 (b1 (t))  for t > 1,

by(t) = £~ D/a(p) H 6 9(8) exp(BLL% (1)) do (b1 (t))  for t > 1.
i=1
(i) Let 1 < p < g < oo. If either 81 < ay or B1 = aq and ¢ 3 ¢1, then (3.7) is
satisfied.
(ii) Let 1 < ¢ < p < o0. If B1 < aq, then (3.8) is satisfied.

LEMMA 3.3. Let p,q € [1,00] and let by, be be two slowly varying functions on [1,00).
(i) If 1 <p < q < oo, then the inequality

1
(3.10) (O VO WO I e Y VRO PICO] e

¢;(0,1)

-~

holds for all g € M™((0,1), 1) if, and only if, there is a positive constant ¢ such that
(311) Y b (1/8) | g0 | (/2 b1 (/) Mgy < ¢ for all x € (0,1).

(ii) If 1 < g < p < oo, then (3.10) holds for all g € MT((0,1), 1) if, and only if,
1

(3812) | 1Yo (1/0) 0. | (7 by (/)BT 17 (@7 by (1)) de
0

is finite, where 1/r =1/q — 1/p.

REMARK 3.4. Letp,q € [1,00],m € N, @ = (a1, ..., ;) ER™and let k € {1,...,m} be
such that o, # 1/p" and, if k> 2, a; =1/p',i=1,...,k—1.Let 8= (51,...,0m) € R™
with B # —1/q and, if k > 2, B; = —-1/q,i=1,...,k — 1. Put by =97 and by = 5.

(i) Let 1 < p < g < oo. Then (3.11) holds if, and only if,
Bk <—=1/q and B+ dsmr =& — 0pmk-
If we omit the assumption 8y # —1/q¢ the assertion (3.11) will still hold provided that
(3.13) 1<p<g=oc0, B=0, —op+1/p'<0.
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Moreover, with k = m, if we also omit the assumption a,, # 1/p’, the assertion (3.11)
will still hold provided that

p=1 qg=o00, a=p8=0.
(ii) Let 1 < ¢ < p < 0o. Then (3.12) holds if, and only if,
B <—-1/q and B+1/¢=<a—0imi+1/p.

(iii) We refer to [16, Lemmas 3.2(ii), 3.3(ii) & Remark 3.4(iii)] for the case m = 2. In
[16], only the case k =m = 2 in (3.13) is considered.

REMARK 3.5. Let m € N, p,q € [1,00], a1, 01 € Rand 0 < o < 1.

(i) Suppose 1 # 0. Let by, b2 be slowly varying functions on [1,00) defined by
by(t) = £, D7 (1) H O (#) exp(anl® (t))  for t > 1,

m—1

ba(t) = €570ty TT 69 () exp(B165, () for t > 1.

i=1
(a) Let 1 < p < ¢q < oo. Then (3.11) holds if, and only if,
B1 <0 and B <a.
Moreover, if we omit the assumption 8; # 0 the assertion (3.11) will still
hold provided that
either 1<p<g=o0, ;=0 and a; >0
or p=1,g¢g=00, (=0 and a; =0.
(b) Let 1 < ¢ < p < co. Then (3.12) holds if, and only if,
ﬂl <0 and ﬂl < 1.

(ii) Suppose that a3 # 0 and B1 # 0. Let ¢1, o € K, and let by, bs be slowly varying
functions on [1, 00) defined by

by (t) = ;D7 (¢ HWP Yexp(arl® (£)) ¢1(bm_1(t)) fort > 1,

ba(t) = £le=D/a(t) H M98 exp(BLL2 (1) do(bm1(t))  for t > 1.
i=1
(a) Let 1 <p < gq<oo. If B <0, either f1 < a1 or B = ay and ¢ = ¢q, then
(3.11) is satisfied.
(b) Let 1 <g<p<oo. If B <0 and B; < ay, then (3.12) is satisfied.

DEFINITION 3.1. Let p,q € (0,00] and let b be a slowly varying function on [1,00).
The Lorentz-Karamata (LK) space Ly 4p(R) is defined to be the set of all functions
f € Mo(R, 1) such that

(3.14) £ lpgitir 2= 1877 95(8) £ (£) 450,00

is finite. Here || - [|4;(0,00) Stands for the usual Ly (quasi-) norm over the interval (0, c0).
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IfmeN a=(uv,...,an) € R" and b = 97, then L, ,4(R) is precisely the
generalised Lorentz—Zygmund (GLZ) space Ly, 4. (R), introduced in [12], endowed with
the (quasi-) norm || f||p,g:a;r- We remark that in [12], the GLZ space Ly 4.o(R) and the
quasi-norm ||-||p.q:a;r defined above are denoted by Ly g:a1.....a,, (R) and || ||p.g:a1,....cm: Ro
respectively. We use the notation of [12] only when we are considering particular cases.
Let us observe that when we consider a = (0, ..., 0), we obtain the Lorentz space L, ,(R)
endowed with the (quasi-) norm ||+ ||, ¢;z, which is just the Lebesgue space L, (R) endowed
with the (quasi-) norm || - ||, when p = ¢; if p = ¢, m = 1 and (R, p) = (2, ), we
obtain the Zygmund space LP(log L)*! ({2) endowed with the (quasi-) norm || - ||p:a:0-

When 0 < p < oo, the Lorentz—Karamata space L, 4.,(R) contains other functions
than the null function; when p = oo, it is different from the trivial space if, and only if,
[£/P= Y9, ()] g:(0,00) < 00. Observe that, when p = oo, [[tY/P~1/ 9y, (t)]|,.0.00) < 0 if,
and only if, ||t/P= 9y, ()| 4:0,1) < 00

Lorentz—Karamata spaces with s.v. functions considered in Remark 3.5 have not been
considered before in the literature, as far as we are aware.

Let p,q € (0,00] and let b be a slowly varying function on [1,00). Let us introduce
the functional || - ||, q:):r defined by

(3.15) 1l pastysre = NEYP7H 99 (8) £ (8) | 50,000
this is identical with that defined in (3.14) except that f* has been replaced by f**.

LEMMA 3.4. Suppose 1 < p < o0, 1 < q < oo and let b be a slowly varying function on
[1,00). Then

(3.16) I.f |;v,q;b;R < Hf”(p,q;b);R 2f |;v,q;b;R for all f € Mo(R, p).

In particular, the Lorentz—Karamata space L, 4.4(R) consists of all those functions f for
which || fl|(p.q:):r 15 finite.

Proof. The first inequality follows immediately since f* < f** for all f € Mo(R, ). As
for the second, since p > 1, we see from Lemma 3.2(i) that

t
||fH(p,q;b);R _ Htl/pflfl/q%(t)sjc*(s) dqu'(O 00)
0

ST () (D)l gs0,00) = I llpgitir- ®

When m € N, a € R™ and b = 97}, the previous lemma coincides with Lemma 3.2
of [12].

Since, by Theorem 2.1, f ~— f** is subadditive, it is easy to verify that || - |[(,q:6);r 18
a norm provided that g > 1.

LEMMA 3.5. Let 1 < p,q < oo and let b be a slowly varying function on [1,00). Let
g € Mo(R™, p1). Define @ in (0,00) by

D(s) = s () (97(s))"F, s >0,
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Then

o(s) 3 | B(r)rtdr  fors>0.
s/2

Proof. Since g* is non-increasing, we have

(3.17) | o(r)r=tdr (g7 (s))27t | 792~ (7))t dr,
5/2 s/2

Now let € > 1. Then q/p — 14+ > 0 and, by Lemma 3.1, t9/P~1%5(v,())? is equivalent
to a positive non-decreasing function on (0,00). Then, for each s > 0,

s s
(318) | 1 e e = | 0 gy () S
s/2 s/2

2 (529771 (q(s/2)) %7 (27 — 1)s~°
~ 5P (p(s/2))7 & 5P ().
Now the result follows from (3.17) and (3.18). =

THEOREM 3.1. Let 1 < p < 00,1 < q < 00 and let b be a slowly varying function on
[1,00). If (R, p) is a resonant measure space, then

X = (Lp,q;b(R)v H : H(p,q;b);R) and Y = (Lp’,q’;l/b(R)v H : ||(p’,q/;l/b);R)

are rearrangement-invariant Banach function spaces and they are mutually associate, up
to equivalence of norms.

Proof. There is no difficulty in verifying that X and Y are Banach function spaces and
the rearrangement-invariance is obvious, since two equimeasurable functions have the
same non-increasing rearrangement.

Now we prove that X and Y are mutually associate.

Suppose g € Y. Then for any f € X with ||f||x < 1, by the Hardy-Littlewood
inequality (cf. Theorem 2.2), Holder’s inequality, Lemma 3.1(i) and Lemma 3.4 we have

[1£gldu < | g (t) dt < liglly [1£]1x-
R 0

Hence taking the supremum over all f € X with || f||x < 1, we get

(3.19) lgllxr = sup { § Ifgldp: f € X, |Ifllx <1} < llglly-
R

To establish an inequality reverse to (3.19), for all g € X', we follow the proof of
Theorem IV.4.7 in [3] and the proof of Lemma 3.4 in [12], although with some tech-
nical differences which even simplify the proof of [12, Lemma 3.4]. By the Luxemburg
representation theorem (cf. Theorem 2.5), it is sufficient to do so for the measure space
(R, ) = (RT, py1) and functions g in R for which g = g*. Let g be a simple function on
RT for which g = ¢g*; such a function belongs to the associate space X’ of X.
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Assume 1 < ¢ < 00, and define f by

o

fls)=\ ®(r)r~tdr forall s >0,
s/2
where
(3.20) D(s) = sq,/p,_l(Wl/b(s))q/g*(s)q,_l for all s > 0.

Since ¢ is a simple function and p’ < oo, it follows from Lemma 3.1(i) and (3.1) that
Hng’,q’;l/b;R < Q. By (320),

oo

(3.21) | 2(s)9"(s) ds = 1911% o e

0
Note that f is non-increasing and hence f = f*. Moreover, f € X. In fact, if 1 < g < oo,
then Lemma 3.4, the change of variables ¢ = s/2, properties (i) and (iii) of Lemma 3.1,
and Lemma 3.2(ii) imply

(3:22) |Ifllx = ||s/7~aq(s) | @(r)r " ar
s/2

S NPV (OB 0.0 = 91751 . < 00
If ¢ = oo, then since 1/p’ — 1 < 0, by (3.2) we have

)z Htl/p_l/q'yb(t) S @(7)7'_1 dr
t

¢;(0,00 ¢;(0,00)

oo

(323) W) =10 = | T e dr s (/2 (1/2) ~ B(0).
t/2

Hence, by Lemma 3.4 and (3.23),

(3.24) 1F 11 2 [1F lpoosps e 2 [1E /P60 Y 1 ()| oos(0,00) = 1.

If 1 < ¢ < 00, then by Lemma 3.5 with the slowly varying function 1/b, and with p
and ¢ replaced by p’ and ¢/, respectively, it follows that

S

(3.25) o(s) 3 | ®(r)rtdr foralls >0,
s/2
Now, by (3.21), (3.25) and Theorem 2.3, we have

o S

(3.26) 1912 g1 pr 5§ (] @) ar) g7 (s) ds
0 s/2

oo

< | £ ()97 (s)ds < IIfl1x llgllx-
0
Using (3.26) and (3.22), we see that HgHZj)q,;l/b;R 3 HgHZi)/;,;l/b;R llgllx, which gives
(3:27) gllpr a1 /68 3 Nlgllx-
If ¢ = oo, it follows from (3.21), (3.23), (3.24) and Theorem 2.3 that

(3.28) I9llpr 11 /mr 2 Mfllx llgllx = llgllx-
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If ¢ = 1, then by Theorem 2.3,

o

(3.29) tg™ (t) = | x(0.(8)9"(s) ds < |IxconlIx gl x
0

for each ¢t > 0. On the other hand, by Lemma 3.4 and (3.1),
¢

(3.30) .0 llx = X008 lp1wr = {577 1u(s) ds ~ £7P3(8).
0

It now follows from (3.29), (3.30) and Lemma 3.1(i) that

(3.31) 191l 0051/ < sUD 7 51 (1)g™ (1)

S supt (0 (0)lglxe = gl
>
Therefore, Lemma 3.4, (3.27), (3.28) and (3.31) yield

(3.32) lglly = llgllx

for all simple g such that g* = ¢g. Now it follows from the Fatou property (cf. [3, Property
(P3) in Definition I1.1.1]) and rearrangement-invariance of X’ (cf. [3, Corollary 1.1.4.4])
that (3.32) holds for all g € X".

The estimates (3.19) and (3.32) together show that Y coincides with the associate
space X' of X, up to equivalence of norms, and hence (cf. Remark 2.1) the spaces X and
Y are mutually associate. m

The next lemma provides upper pointwise estimates of f* and f** when f belongs
to an LK space, under certain conditions, which will be needed in Sections 5 and 6.

LEMMA 3.6. Let p € (1,00), ¢ € [1,00] or p = q = o0, and let b be a slowly varying
function on [1,00). Then there exists a positive constant ¢ = c(p, q,b) such that for every
feLpgp(R) and all t >0,

FO << )
*tS **t SC— ,q;b;R-
"/b(t) p,q
Proof. The first inequality is obvious. To prove the second inequality, we use the fact
(3.33) £ lp.ait 2 11877 9(8) % (1) 430,009

according to Lemma 3.4. If ¢ = oo the result follows immediately. If ¢ € [1,00), then
(3.33) and (3.1) give
t 1/p—1 L/a 1
Iy = 77§ (7 a(s))rds] ™ w7 (/o)
0
for all £ > 0, and the result now follows. =

When m =2, a e R™, b =97, p € (1,00) and ¢ € [1, 0], we obtain the result of [9,
Lemma 3.3].

Note that it can be proved as above that when p € (0,00), ¢ € (0, 00] or p = ¢ = o0,
and b is a slowly varying function on [1, 00), there exists a positive constant ¢ = ¢(p, q,b)
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such that for every f € L, 4(R) and all ¢ > 0,
Fy<et

) <ec
Yo(t)

When m € N, a € R™, b =97, p € (0,00), ¢ € (0,00] or p = g = oo, this gives [18,
Lemma 4.4].

||f||p,q;b;R~

The remaining results in this section establish embeddings between Lorentz—Kara-
mata spaces.

THEOREM 3.2. Let 0 < p < 00, 0 < q1,92 < o0 and let by,bs be two slowly varying
functions on [1,00). Suppose that

(3.34) /P90y (1/ ) gy300) < 00 if p = o0

Then

(3.35) Ly gy, (R) = Ly gp0, (R),

provided either

(3.36) 0<qr < g <00, sup bo(1/t)/b1(1/t) < o0,
o<t<1

or

(3.37) 0<qe<q <oo, [t ba(1/6)/b1(1/6)]lr0,1) < 00,

where 1/r =1/qz — 1/q,.
Proof. (i) Let us first prove the case (3.36). Observe that under our conditions,
Voo (t) 3 b, (t)  for all ¢t > 0.

Suppose 0 < ¢1 < 00, otherwise the result follows trivially. Let € > 0 and set €, = 1/p+-e.
Let f € Ly g, (R). By (3.1) and the fact that f* is non-increasing, we have, for each
t>0,

t

00, (0£°(0) = o (0 7(0) m 02570 [ (750 (0 )™

-

Hence,
(3.38) [ fllp,00i2:r D MNfllpsgrsv;r for all f € Ly g6, (R),

which establishes (3.35) in the case ga = 0.
Suppose now that 0 < ¢1 < g2 < 0o and let f € Ly, 4,5, (R). Then

/a1
(o= oy, () () )

A

O e o+ O e o+

1/q1
(7_1/p71/q1,yb1 (1) (1)) dT) S Fllpqribasr-

T /a2
Flpasair = ( § /P00 () (=Y, () ()7 )
0

1—
Syt 15 o
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When combined with (3.38), this gives || f/p.g0:00:8 Z ||fllp,qusbr;r for all f € Ly g, (R),
which establishes (3.35) in the case 0 < ¢; < go < 0.

(ii) Let us next prove the case (3.37). Since 0 < g2 < ¢1 < 00, we deduce, by Holder’s
inequality with exponents q1 /g2 and ¢1/(q1 — g2) if ¢1 < o0, and immediately if g1 = o0
that
—1/r Yoa ()

Yoy (t)

HO W ”f

|p7(I17b1 ’

7;(0,00)

where 1/r = 1/g2 — 1/q1. Since the last integral is finite if, and only if,
[¢7/7ba(1/8) /b1(1/1)l|rs(0,1) < 00,
the embedding (3.35) now follows. m
REMARK 3.6. Let m € N, a = (a1,...,am),8 = (B1,...,0m) € R™, by = 97 and
by = V.
(i) Then (3.34) is satisfied if, and only if,
either 0< ¢ <oco and a<-1/¢ +0,
or q1 = o0 and o =<0.

See [16, Lemma 6.1], where conditions are given in order to have the generalised Lorentz—
Zygmund space, for the case m = 2, as the trivial space.

(ii) The second condition in (3.36) holds if, and only if, 8 < a.

(iii) The second condition in (3.37), is verified if, and only if, B+ 1/¢2 < a+ 1/¢1.

When p = oo, condition (3.36) can be weakened for some values of g1, ¢s. To this
end we shall make use of the following simple lemma with p = oo, which generalises |2,
Lemma 9.2] and [16, Lemma 6.2].

LEMMA 3.7. Let 0 < p <00, 0 < q1 < g2 < oo and let by, bs be slowly varying functions
n [1,00). Then
1
(3.39) 1 £ lpasivaire < ILFUE0 g Ll o 2

for every f € Mo(R, ), where bz is the slowly varying function on [1,00) defined by

O R
balt) = [(bf@))ql}

Proof. Let f € My(R, 1) and suppose that the right-hand side of (3.39) is finite, other-
wise the result is trivial. Then

. t> 1.

oo

I i = § (E /P70, ()7 () (£ Py (£) £ (£)) % o (WA [P |
0

and the result now follows. m

THEOREM 3.3. Let 0 < g1 < 00, 0 < g2 < o0 and let by, bs be slowly varying functions
n [1,00). Suppose that

Hfl/qlbl(l/t)||q1;(0,1) < 0.
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Let Iy, q,) be the slowly varying function on [1,00) defined by

o0

/¢
I(bl,qn(t):(S(T‘”‘“bl(f))‘“df) . t>1
t

Then

(3.40) Leo.qu:0, (R) = Lo gp:0,(R),
provided either

(3.41) 0<q < g =00, sup M < 0,

o<t<1 by ,q)(1/1)

{(m@/ﬁ)%}”“rfl” L
(b: (/) Loy a0 (1/1)

or

(3.42) 0< g1 < gz < o0, sup
0<t<1

Q.

In particular, if 0 < ¢ < o0,
(3.43) Loo,giip: (R) — LOO,OOJ(bl.ql)(R) = Loo,o0b (R).
Proof. (i) Suppose (3.41) is satisfied. Let f € Loo, gy, (R). Then for each ¢t > 0,

o0

/a1
Yoo () () R V104, 0y () = f*(t)( S (r= Y0y, (7)) dT) !
max{t,1/t}
min{¢,1/t} Ve ¢ e
= f*(t) S (r= Y0y, (7)) dr) < *(t)(S(T Vi, ()0 dT)
0 0

1/ 1
< (e, ey an) ™ <l fllogmin
0

Therefore, ||f|loo,coibe:8 S || flloo,qi:br;r for all f € Lo gy, (R), which establishes (3.40)
with go = 0.
(ii) Assume condition (3.42) holds. By Lemma 3.7, with p = oo, we have

(344) ||f||007QZ;bz;R < (H.f||oo,q1;b1;R)ql/Q2 (Hf”oo,oo;bg;R)liql/qZ,
where b is the slowly varying function on [1, 00) defined by

(ol M)
balt) = [(b?@))ql}

On the other hand, since condition (3.41) is satisfied with by replaced by bs, it follows

. t> 1.

from the previous case that

(3.45) £ lloo,00ibs: R < M1 flloo,q1 501 -

Now the result follows from (3.44) and (3.45).

(iii) The first embedding in (3.43) follows from (3.40), because 0 < ¢; < g2 = 00 and
condition (3.41), with by = I(3, 4,), holds. The second embedding in (3.43) follows from
Theorem 3.2, because

bi(1/t)

3.46 Sup ————— %
(3.46) o<t<1 L(py q)(1/1)
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Indeed, let € > 0. Since for each ¢t > 1,

o0

Ly (1) 2 112y <t>( |

1 1/‘11 1
) —7-1+E dT) = —El/ql bl (t)7

we have by (t) X I(p, q,)(t) for all £ > 1, which entails (3.46). =

REMARK 3.7. Let 0 < ¢1 < 00,0 < g2 < oo, m € N, a = («,...,0p) € R™, B =
(Bi,.-Bm) €R™, by =95 and by = I3 Let k € {1,...,m} be such that oy, < —1/q1,
and, if k > 1, then a; = —1/¢qy fori=1,...;k—1. Let v = (y1,...,7m) € R™ be defined
by ¥ = a4 d4,:m k- Note that v, <0 and, if K > 1, theny; =0for j=1,...,k—1, and
that

Iy = [ 7 @), t>1.
Jj=1

Now, either (3.41) or (3.42) hold if, and only if, B + dgpim .k = @ + g m k-

From Theorems 3.2, 3.3 and Remarks 3.6, 3.7, we get the sufficiency part of [16,
Theorem 6.3], where the case of a Lorentz—Zygmund space with m = 2 and (R, 41) a finite
non-atomic measure space was considered.

The next theorem concerns embeddings between two Lorentz—Karamata spaces when
their first indices are different.

THEOREM 3.4. Let 0 < ps < p1 < 00, 0 < q1,q2 < 00 and let by, by be slowly varying
functions on [1,00). Suppose that

([P =1 0y (1/8) || gys0y < 00 if p1 = 0.
Then
(3.47) Ly, qy61 (R) = Lypy 230, (R),
provided (R, p) is a finite measure space.

Proof. Since by (3.35), we have Ly, q,:6,(R) < Ly, o, (R), in order to prove (3.47) it
will be enough to prove the embedding

(3'48) LPl,OO;bl (R) - Lpz,fn;bz (R)’

with (R, p) a finite measure space.
Suppose 0 < g2 < oo and let f € Ly, oo, (R). Since py < p1, by Lemma 3.1(v), we
have

w(R) q2 1/q2
t
e N e )
0 ’Yb1(t)

_ R))
~ 0o0:bs: R 1/p2 1/171% ~ co:by Ry
Hf”Ph 7517R(/IJ( ) Yo, (,U/(R>) ||pr17 bR

which establishes (3.48). The case g2 = oo is proved similarly. Therefore the embedding
(3.47) follows. m
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4. Decomposition of the Luxemburg norm

The next lemma indicates a relation between Orlicz spaces Lg(R) and Marcinkiewicz
spaces, when @ satisfies what we call a Lorentz-type condition (cf. [21, Theorem 2]).

LEMMA 4.1 [25, Lemma 8.5]. Let f € My(R, 1) and let & be a Young function such that

(4.1) S D(yd~ 1 (1/t))dt < 0o for some 7y > 0.
0
Then f € Lg(R) if, and only if , there exists a constant K = K(f) such that
[T (@)
——— = K < o0.
02100 B1(1/1) =
It is clear that if @(t) = ¢4 for small positive ¢, with ¢ > 1, then @ does not satisfy

(4.1), because

{ o(y0 -1 (1/t)) dt = oo
1

for any v > 0. Therefore Lemma 4.1 does not hold for instance for the Orlicz space
Ls(R™) generated by the Young function defined by &(¢) = ¢4 for small enough ¢ > 0,
with ¢ > 1, and defined by &(t) = expt* for large enough ¢ > 0, with A > 0, which
appears as the target space of some global embeddings, as we will see in Section 5.

We aim to generalise the previous lemma, in order to include other cases. For this,
we first need the following auxiliary result.

LEMMA 4.2. Let 0 < tg < co. Let f € Mo(R,p) and let @ be a Young function. Then

(4.2) {o(rwy/Ndt <1 forall x>0
to

if, and only if, f*(t) =0 for all t > ty.

Proof. It f*(t) =0 for all ¢t > ¢y, then the result is trivial.

Conversely, suppose (4.2) holds but f*(t) > € > 0 in some interval (to,to + v). Then,
for each \ > 0,

[e'e] to+v
1> o @)/nde> | o @)/N) dt > d(e/N) v,

Since P(s) T oo as s | 0o, we obtain a contradiction. Hence, f*(t) = 0 for all ¢ > ¢y. By
the right-continuity of f*, it also follows that f*(tp) =0. =

The next result gives us the generalisation of Lemma 4.1.

THEOREM 4.1. Let 0 <ty < oo and 0 < L < co. Let f € Mo(R, ) and let P be a Young
function which satisfies a Lorentz-type condition, i.e.,

to

S D(y®~H(1/t))dt < o0 for some v > 0.

0
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Then f € Lg(R) if, and only if

(4.3) 02120 % < oo and tO§L¢(f*(t)/'yo) dt < oo for some vy > 0.
Moreover,

N G T e
(4.4) 1Fllo.nm sup o5 +int {r=0: | erwna <)

to+L
Proof. Let f be a function, not identically null, that belongs to Mo(R, 1) and for which
(4.3) holds.
Let us just mention that since @ is convex and ¢(0) = 0, there is a positive constant

¢ for which -
| @(m) dt < 1.
to L cY
Let -
(4.5) = inf{)\>0: | o @)/n e < 1}.

to+L
For o > 0, the infimum is attained; in fact, letting A decrease toward « in the inequality

| o @<,
to+L
we obtain by the monotone convergence theorem
| o @)/eyde <.
to+L
Now, let A = K/v + «, where
*(t
K := sup )

o<t<to D7H(1/t)
and « is defined by (4.5). Then we have

@6) o @w/nd < \ o t)/N) dt+ Lo(f(to)/N) + | S(F*(1)/N) dt
0 0 to+L
<(Lfto+ 1)\ B(Fr (/N dt+ | B(Fe(t)/N) dt
0 to+L
< (Lto+ D) et /n)di+ | B(F ()N dr.
0 to+L
If 0 < typ < oo and o > 0, it follows from (4.6) that

(4.7) Vo m/ndt < (Ljto+1) o0t /)de+ | o(f(1)/a)dt
0 0 to+L
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< (L/to+1) S[)@(v@_l(l/t)) dt +1 < oo.
0

Hence, f belongs to Lg(R). Again, since @ is convex and $(0) = 0, there is a positive

S @(f_(t)) dt < 1,
cA
0
and so ||flle.r S K + a.

If tg = oo, then a = 0, and by (4.6) it follows that

constant ¢ such that

Vo dt < | (et (1/1) dt < .
0 0
As previously, it follows that ||flle.r 3 K = K + a.
If 0 < tp < 0o and a = 0, by Lemma 4.2 we have f*(¢t) = 0 for all ¢ > ty + L. Then,
by (4.6),

Osoqﬁ(f*(t)/A) dt = S(]@('y@_l(l/t)) dt +0 < oo,

and as before ||f|lo.r 3 K = K + a.
Conversely, assume f € Lgr) and suppose f is not identically null. Then

oo

(4.8) o @)/ fllor)dt <1.

0
Let ¢t € (0,9). Then by (4.8),
¢

= S‘P<||J;*|(:;) o= 4,(”?*&) .

0

which is equivalent to
(4.9) @) <\ flle,r 27H(1/1).
Also by (4.8),

| o @)/ fllor)dt <1,
to+L
and hence
(4.10) a<|fler.

Therefore, by (4.9) and (4.10) it follows that K +a X || f|le,z- =

oo

REMARK 4.1. (i) If ¢ty = oo, we have StD+L

(i) If 0 < tg < t1 < o0, then

&(f*(t)/N) dt = 0, and we recover Lemma 4.1.

wy IO )

o<t<to PHL/E)  o<t<t, PTN(L/E)
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COROLLARY 4.1. Let (R,pu) be a finite measure space. Let 0 < tog < p(R). Let [ €
Mo(R, 1) and let @ be a Young function which satisfies a Lorentz-type condition, i.e.,
to
S D(y®~H(1/t))dt < oo for some v > 0.
0
Then f € Lg(R) if, and only if,

fr(@)
(4.11) Oilfto F1(1/1) < 0.
Moreover,
(4.12) Iflor ~ sup —2D_ o J(0)

——t -~ sup ————.
o<t<to @HL/t)  octapm @H(1/T)

Proof. This follows from Theorem 4.1, with t9 = pu(R) and L = p(R) — to, because

f*(t)=0forallt > u(R). m

EXAMPLE 4.1. Let m € N, @ = (a1, ..., ) € R™ and let {2 be a measurable subset of
R™ with finite volume. Let k € {1,...,m} be such that ay, < 0, and, if k¥ > 2, then o; =0
fori=1,....,k—1.Ifk<m,let B=(B1,...,0m_r) € R" % with 3; = —a; 1/ for
i=1,....m—k.

(i) If k = m, let ¥, be the Young function defined by ¥,,(t) = Exp,,(t~/*m) for
all large enough ¢ > 0. Then ¥, 1(1/t) = £,,%m(t), for all small enough ¢ > 0. It is now
possible to check that ¥, satisfies the Lorentz-type condition with some ¢y € (0, c0), for
some vy € (0,1).

(ii) If & < m, let ¥, be the Young function defined by ¥y (t) = Exp;,(fm—r(t)) for all
large enough t > 0, where f,,_ is the increasing function defined by

Fmi(t) = 7957k (1)

for all large enough ¢ > 0. Since f%ik(t) Tk 192’*’“(15) for all large enough ¢ > 0, with
v = apB, we have ¥, '(1/t) ~ 9™, (t) for all small enough ¢ > 0. By straightforward
arguments it is now possible to check that ¥; satisfies the Lorentz-type condition with
some tg € (0, 00) for some v € (0,1).

(iii) Let ¥, be the Young function defined in (i) if & = m and defined in (ii) if £ < m.
Then (i), (ii) and the previous corollary entail

(413) Loo,oo;a(g) = L‘Pk(“o)’

with equivalent (quasi-) norms.

(iv) Let @), be the Young function defined by &y (t) = expk(tfl/akug%k(t)) for all
large enough t > 0, where, according to our conventions, ugL—k =1 if m = k. Since ¥y,
defined in (i) if £ = m and defined in (i) if & < m, and @, are equivalent near infinity and
{2 has finite volume, by [1, Theorem 8.12] and (4.13) we have Lo o0;a(£2) = Ly, (2) =
Lg, (£2), with equivalent (quasi-) norms.

(v) We refer to [2, Theorem D] for the case m = k = 1, and to [10, Lemma 4.2] for
the case m = k = 2; see also [13, Lemma 2.1] for the case m = k =1 and m = k = 2,
and [12] for the case m = k, although it is not explicitly proven there. The case k = 1
and m = 2 is given by Lemma 2.2(vi) of [16].
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Note the streamlined appearance of the proofs of Theorem 4.1 and Corollary 4.1 as
compared with the proofs of related results in the literature, such as [2, Theorem D] and
[10, Lemma 4.2].

5. Bessel-potential-type embedding theorems

In this section we present some embedding results for certain Bessel-potential spaces
modelled upon Lorentz—Karamata spaces either into Lorentz—Karamata spaces or Orlicz
spaces. Namely when the power exponent p is in the sublimiting case, i.e., 1 < p < n/o,
where o € (0,n), and when p has the limiting value n/o, with o € (0,n).

Let 0 > 0, p € (1,00), ¢ € [1,00], and let b be a s.v. function on [1,00). The
Lorentz—Karamata—Bessel potential space H? Ly, ;.,(R™) is defined to be

{usu=goxf, f€Lpgp(R")}
and is equipped with the (quasi-) norm ||u||e:p.qib = || fllp,q:p-

When we consider m € N, a = (aq,...,q,,) € R™ and b = 97

a

we obtain the loga-
rithmic Bessel potential space H? Ly, 4.o(R™), endowed with the (quasi-) norm |[u||sp,q:b,
considered in [12]. Note that if &« = (0,...,0), then H?L, ,.o(R™) is simply the (frac-
tional) Sobolev space of order o.

Bessel potential spaces modelled upon Lorentz—Karamata spaces with s.v. functions b,
where b = by and by considered in Remark 3.5, have not appeared before in the literature,
as far as we are aware.

The next lemma, due to Edmunds, Gurka and Opic [10, Lemma 3.5], provides us the
important estimate (5.1) for the non-increasing rearrangement of the Bessel kernel.

LEMMA 5.1. Let 0 < o < n. Then there exist constants A, B € (0,00) such that
(5.1) gi(t) < At/ Lexp(=BtY™)  for all t > 0,
(5.2) g (t) < gAtf’/"—l for all t > 0.
If t € (1,00), Gurka and Opic [18, Lemma 4.2] proved a better estimate for the

maximal function of the non-increasing rearrangement of the Bessel kernel than that
considered in Lemma 5.1, namely

(5.3) gt 3t fort € (1,00).

~

The next result which considers the sublimiting case is an extension of [12, Theo-
rem 4.8] and a refinement of [20, Theorem 5.7.7(i)].

THEOREM 5.1. Let o € (0,n), 1 < p < n/o, q € [1,00] and let b be a slowly varying
function on [1,00). Then

(5.4) H Ly gp(R™) — Ly, g5 (R"),

where 1/r =1/p — o /n.

Proof. Put X = H Ly, /5 .(R"). Let u € X. Then u = g, * f, where f € Ly, /5 . (R")
and || flln/0p6 = llullx-
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By O’Neil’s inequality (cf. e.g. [35, Lemma 1.8.8]) we have
(5.5) ut() <t () < tgy (0 () + | gh(r)fi(r)dr forall t > 0.
¢
The estimates (5.2) and (5.5) yield for every ¢t > 0,

t 00

(5.6) w'(t) 37 ey dr - { e () dr
0 ¢

Now from (5.6) we obtain

(5.7) [ullr,qp 3 N1+ Na,

where

t
Ny = ||y ryar]|
o ¢;(0,00)

oo

Ny = |[t/r=eim=tian, @) § 7o/ g (r) dr|
t

4:(0,00)
Applying Lemma 3.2(i), we have
(5-8) N1 Z P79 () ¥ (O lgsc0,00) = I1F llpugsv-
Finally, Lemma 3.2(ii) gives
(5.9) Na Z (P79 () £ ()] gs0,00) = 1 F [lpgio-

The result now follows from inequalities (5.7)—(5.9). m

Next, we are going to investigate limiting embeddings. To this end we need the fol-
lowing lemma.

LEMMA 5.2. Let 0 € (0,n), p,q € [1,00] and let by, by be slowly varying functions on
[1,00). Suppose that
(5.10) [t 9ba (1/1) [l gs0.1) < 00

and either conditions (3.7), (3.11) or conditions (3.8), (3.12) are satisfied. Then
(5.11) [0 loo,q:b250.1) = [telloin /o piby
Jor allu € H? Ly, ) pip, (R™).

Proof. Put X = H? Ly, /5 pip, (R™). Let u € X. Then u = g, * f, where f € L, /5 5, (R")
and || f{l,/0,pip, = |lul|x. Hence by O’Neil’s inequality we have (5.5), which together with
the estimate (5.2) yields, for every ¢t € (0, 1),

t 1 00
(5.12)  w'(t) < ZAt"/"_l V@) ar +\gz(r) (o) dr + § g5 (o) () dr.
0 t 1

By Lemma 3.6, there is a positive constant ¢ such that

t—a/n

(5.13) P00 < e W oo 130
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Using (5.1) and (5.13) we obtain

oo 0 T—U/n

(5.14) S G (T) f* (1) dr < C flln/opiby S ro/n=1 eXp(—BTI/”) —dr
1 1 bi(7)
= Cl”an/cr,p;bl'
The estimates (5.12) and (5.14) imply
(5.15) 1" [loo,qiba;(0,1) S N1+ N+ N3l flln/opibs »
where
t
Ny = etV 1) § £ (o) e |
o ¢;(0,1)
1
Ny = [ 001/ §gp () (yar|
" ¢;(0,1)

N3 = [t 9b2(1/)ll 4500, -

By hypothesis (5.10) we have N3 < co. Applying Lemma 3.2, we obtain

(5.16) N 3 Hto/n_l-i_l/pl'%l (t) f*(t)”p;(O,OO) = ||an/cr,p;b1'
Finally, Lemma 3.3 and the estimate (5.1) yield
(5.17) Ny 37 3, (77 Ollpso,1) 3 1F oo i

Now the result follows from inequalities (5.15)—(5.17). m

COROLLARY 5.1. Let 0 € (0,n), p,q € [1,00], m € N, a = (a1,...,qm) € R™ and let
ke {l,...,m} be such that oy, # 1/p’ and, if k > 2, then a; = 1/p’ fori=1,...,k—1.
Let B = (B1,.-.,0m) € R™ with By, # —1/q and, if k > 2, then 5; = —1/q for i =
1,....k—1. Then

(518) ||U*Hoo7q, B;(0,1) ~ ”uHU in/o,p;a

for all u € H? Ly, ) p:o(R™) provided one of the following conditions is satisfied:

(5.19) 1<p<qg<oo, Br<-1/q, B+0smr = —0pmi;
(5.20) 1<g<p<oo, p[u<-—-1/qg, PB+1/¢g<0a—0imi+1/p.
If we omit the assumption By, # —1/q the result will still hold provided that
(5.21) 1<p<qg=o0, B=0, —ap+1/p<0.

Moreover, for k = m, if we also omit the assumption a,, # 1/p’, the result will still hold
provided that

(5.22) p=1 g¢=oc0, a=p=0.
Proof. We consider by = 97 and by = 93" Since 8 < —1/q (or B8 = 0 if ¢ = o0), by
Remark 3.6(i) condition (5.10) is satisfied.

By Remarks 3.2 and 3.4, either conditions (3.7), (3.11) or conditions (3.8), (3.12) are
satisfied. Now the result follows from Lemma 5.2. m
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The situation when oy = ... = ay, = 1/p’ is also covered by the previous corollary, by
using & = (&1, ...,0m+1) € R™" in place of a € R™, where a;; = 1/p’ for j =1,...,m
and &m+1 =0.

We remark that when k = m, ¢ = oo and 3, = a,,, — 1/p’ < 0 in Corollary 5.1, we
obtain
(5.23) sup [ () (0] 3 [ulloin /o

te(0,1)
for all u € H? L, /5, (R™), which is precisely a result due to Edmunds, Gurka and Opic
[12, Lemma 4.10]; see [10, Lemma 4.1] for the case m = 2.

Observe that Corollary 5.1 gives a better estimate than [12, Lemma 4.10]. In fact,
suppose we are under the conditions of Corollary 5.1 with k = m, ¢ € [p,00) and a,, <
1/p'. Let B = vy — 1/g — 1/p’. Then

sup (Lo =P (0w (8)] 2 [0 |oogm:0.1) 3 oo pia
te(0,1)

for all w € H? Ly, /5 .o (R™) (for the first estimate see the proof of (3.43) in Theorem 3.2).

THEOREM 5.2. Let o € (0,n), p,q € [1,00] and let by, bs be slowly varying functions on
[1,00). Suppose that

£/ 9b5(1/1)

and either conditions (3.7), (3.11) or conditions (3.8), (3.12) are satisfied. Let I, 4) be
the s.v. function on [1,00) defined by

|q;(0,1) < o0

1/q
I(bQ,q ( S 1/qb2 da) y t Z 1,
t

if 1 < q < oo, and by Iy, ¢)(t) = ba(t), t € [1,00), if ¢ = co. Let £2 be a measurable subset
of R™ with finite volume. Then

(524) HUL”/UxPﬂH (Rn) — Loo,g;bs (“Q) - LOO7OO;I(b2,q) (“Q)

Proof. First we remark that by Lemma 3.1, I, 4 is a slowly varying function on [1, c0).
With no loss of generality we shall assume that [{2|,, = 1. Then by (5.11) of Lemma 5.2,
it follows that
”uHoo’q;bz;Q = ||t_1/q'7b2 (t)U*Q(t)”q;(O,l) < Ht_l/q"ﬂu (t)U*(t)”q;(O,l) 3 ||“||a;n/d,p;b1
for all u € H? Ly, 4 pp, (R™), which gives H Ly, /5 pp, (R™) <= Lo g;,(£2). On the other
hand by Theorem 3.3 we have the embedding
(5'25) LOO#;bz ('Q) — Loo,oo;l(bz.q) ('Q)’

and the result follows. m

If we consider ¢ = oo in the previous theorem, the second embedding in (5.24) is
trivial.

COROLLARY 5.2. Let 0 € (0,n), p,q € [l,00] and m € N. Let a,8 € R™ and k €
{1,...,m} as in Corollary 5.1. Let v = (v1,...,Vm) € R™ with vy = Bx + 1/q and, if
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E>2,v;=0forj=1,....,k—=1,and, if k+1<m,v; =06 forj=k+1,...,m. Let
2 be a measurable subset of R™ with finite volume. Then

(5.26) HULn/mp;a(Rn) — Lioo,;8(£2) = Loo,cow (£2),
provided one of the conditions (5.19)—(5.22) is satisfied.

Proof. We consider by = 9 and by = 9. Since B < —1/q (or B8 = 0 if ¢ = o0), by
Remark 3.6(i) condition (5.10) is satisfied.

By Remarks 3.2 and 3.4, either conditions (3.7), (3.11) or conditions (3.8), (3.12) are
satisfied. Now the result follows from Theorem 5.2 and Remark 3.7. m

If we consider ¢ = oo in the previous theorem, the second embedding in (5.26) is
trivial.

REMARK 5.1. Assume that the conditions of the previous corollary hold.

Let 1 < p,qg < 00, @ = (a1,...,05,) € R™ and let k € {1,...,m} be such that
ar # 1/p" and, if k > 2, then a; = 1/p’ for i = 1,...,k — 1. Suppose additionally that
ar > 1/p’ (or &« =0, k=m and p =1). Then

HJLn/o,p;a(Rn) — LOO(“Q) - L007Q§ﬂ(9)

with 8 = (61,...,0m) € R™, B < —1/q (B < 0if ¢ = 00) and, if m > 1, then
B;j = —1/q for j = 1,...,m — 1. The first embedding follows from the previous corol-
lary, because of (5.21)—(5.22), and the second embedding follows from Theorem 3.2 and
Remark 3.6.

As we shall see in Remark 5.3, there is a better result than the previous one.

Let 1 < p,qg < 00, &, € R™ and k € {1,...,m} as in Corollary 5.1. Suppose
additionally that ay < 1/p" and that one of conditions (5.19)—(5.20) is satisfied. Then

HULn/mp;a(Rn) — Lo pw (£2) = Loo 4:8(£2),

where v = (11,...,vp) € R™ with v, = ax — 1 and, if & > 2, then v; = —1/p for
j=1,...,k—=1, and, if k+1 < m, then v; = a5 for j = k+1,...,m. The first
embedding follows from the previous corollary with ¢ = p. Since 01.m 1k = Op.mk + Oprim i
and v = o — 1., k, the second embedding follows from Theorem 3.2 and Remark 3.6 if
q < p, and from Theorem 3.3 and Remark 3.7 if ¢ > p.

REMARK 5.2. The case m = k = 1 of inequality (5.18) in Corollary 5.1 and of the first
embedding in (5.26) of Corollary 5.2, with 1 < p < ¢ < 00, ay, < 1/p" (@, = By = 0
if p=1, ¢ = 00) are contained in [27, Theorem 5.1(a)], which is a consequence of [26,
Theorem 3.2]. Nevertheless, we remark that we only had access to these articles after our
results had been proved.

We refer to Remark 3.5 for other examples of s.v. for which Lemma 5.2 and Theorem
5.2 hold.

COROLLARY 5.3. Let 0 € (0,n), p € [1,00] and m € N. Let o = (aq,...,0,) € R™
and let k € {1....,m} be such that oy # 1/p' and, if k > 1, then a; = 1/p’ for
j=1,...,k—1. Assume ay, < 1/p'. Let B = (f1,.--,0m) € R™ with B = o — 1/p’
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and, if k> 1, then 3; =0 forj=1,..., k=1, and, if k+1 < m, then §; = o  for
j=k+1,...,m. Suppose that 2 C R™ is such that |{2|, < co. Then
HJLn/U,p;a(Rn) — L@k (9)7
where the Young function @y, is given by
& (t) = expk(t_l/ﬂ’“u.y “k(t))  for all large enough t > 0,

with, if k<m, v =1, Ym—k) € R™ % and v; = —Bis1,/Bk fori=1,...,m — k.
Proof. Since a, 8 satisfy condition (5.19), with ¢ = oo, we deduce from Corollary 5.2
that H7 Ly, /5 pia(R") = Lo 00;8(£2). Now, by Example 4.1, Lg, (£2) = Loo,00;5(£2), with
equivalent (quasi-) norms, and the result follows. m

When k = m, the previous corollary gives a result due to Edmunds, Gurka and Opic

[12, Theorem 4.3].
The next result gives us a natural generalisation of the previous one.

THEOREM 5.3. Let o € (0,n), p € [1,00] and let b be a slowly varying function on [1,00).
Let @ be a Young function for which the restriction of =1 to [1,00) is a slowly varying
function on [1,00). Suppose that

1

(5.27) S@(y@‘l(l/t)) dt < oo  for some vy >0,
0
(5.28) sip ——— <o
- 02ac1 & L(L/a)b(1/z)
1 ,
(5.29) sup ————||(tYPb(1/t)) " |pr: (1) < 00

0<z<1 @71(1/@
Let {2 be a measurable subset of R™ with finite volume. Then

H Ly, pp(R™) — Lg(£2).

Proof. With no loss of generality we assume that [£2], = 1. Let by = b and by(t) =
1/®71(t), t > 1. Note that by is a s.v. function on [1,00). Since &' is an increasing
function and @~1(¢) > 0, t > 0, it follows that

1

S ba(1/t) = ——— < o0,
oup ba(1/) = Gy < o0

and condition (5.10) with ¢ = oo is then satisfied. Condition (3.7) with ¢ = oo is precisely

(5.28). Since
1
bo(1/t) = ————,
iR, 0 = i)
condition (3.11), with ¢ = oo, is precisely (5.29). Therefore, the conditions of Theorem
5.2 are satisfied and we have the embedding

HgLn/a,p;b(Rn) - LOO7OO;52 (Q)
Since @ satisfies a Lorentz-type condition, i.e. satisfies condition (5.27), it follows from

Corollary 4.1 that Lo oo, (2) = La(£2) with equivalent (quasi-) norms, and the result
is established. m
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The previous results concern either local estimates or local embeddings. However,
following the ideas of [18], we are also able to consider global ones.

THEOREM 5.4. Let o € (0,n), p,q,s € [1,00] and let by, ba, by be slowly varying functions
on [1,00).

(i) Suppose that [[t=1/2bs(1/t)|4.0,1) < 0o and either conditions (3.7), (3.11) or con-
ditions (3.8), (3.12) are satisfied. Then
(5'30) ||U*||oo,q;b2;(0,1) f/ ”u”a;n/o,p;bl
Jor all w € H? Ly, /o pip, (R™).

(ii) Suppose that either condition (3.7) or condition (3.8) is satisfied, with q replaced
by s and by replaced by bs. Then
(5.31) ||U*Hn/d,5;bs;(1,00) 3 ||uHo;n/a,p;bl

for all w € HLy 50, (R"). Moreover, if either n/o < s < oo, or s = nj/o and
SUP] oo 1/b3(2) < 00, then

(5.32) [|u*

|s;(1,oo) j ||u||0;n/0,17§b1
for all w € H? Ly, /o pip, (R™).

Proof. Put X = H Ly, /5 pp, (R"). Let w € X. Then u = g, * f, where f € L, /5 14, (R")
and || fln/o.pp, = llullx. The estimate (5.30) is precisely (5.11) of Lemma 5.2. To prove
(5.31) we follow the proof of the estimate (4.9) in [18, Theorem 3.1], which is the coun-
terpart of (5.32) for logarithmic Bessel potential spaces.

By O’Neil’s inequality we have (5.5). Consequently

(5.33) 1 [l o s5031,00) < N7 T2 03(8) 957 (0 (D)l s501,00)
0
S8 IO R WA P GOl [
=: N1 + Ny t
The estimate (5.3) yields
(5.34) Ny 3167/ by () £ () ss(1.00)

t

fr(r)dr +S £ () d’r)

1

ta/nfl/sfl bg(t) (

$3(1,00)

O ey

1
< (§ 7 dr ) I/ by (1) 1.0
0

+

t7/m () | (r) dr
1

53(1,00)
=: Ni1 + Nia.
Since n/o > 1, by (3.2) we have [[t7/""1/5=1bs(t)[|4,(1,00) & b3(1) & 1, and thus, by
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Holder’s inequality and (3.1),
1 1
(5:35)  Nu 3| r@dar =\
0 0
1 / 1/p/
1 p
~ ”f”n o, 1( ( - a/n—> dT)
/o,p;b § (1/t)

~ ”f”n/o,p;ln (bl( )) ~ ||f||n/o,p;b1~
Applying Lemma 3.2 (the estimate (3.6) with v = o/n — 1 < 0), we have

YR (/) f* () (P (b (1/8) 7Y dr

(5.36) Nig < |[t7/m= Vo= oy (1) \ f*(7) dr

$3(0,00)

— Ot o+

i Hto/n_l-H/p Tor (t) *(t)Hp;(O’OO) = Hflln/a,p;bl-

Together with (5.35), this yields
(537) Nl j ||f||n/<7,p;bl'

Using Lemma 3.2 (the estimate (3.9) with v = o/n > 0), the estimate (5.1), and the fact
that t7/™ exp(—Bt'/™) 2 1 for all t € (0,00), we arrive at

(5.38) Ny <

00
ta/nfl/sf)/bs (t) S 9o (7)f" (1) dr 5;(0,00)
) ;(0,00

ST A, () 958 £ ()l psc0,00)
,_5 Hta/n—&-l/p’%l(t)tg/n—lexp( Btl/n) ( H;D (0,00)

S P, () S (O lpic0,00) = 1 /o it

and (5.31) now follows from inequalities (5.33), (5.37) and (5.38).

Let us prove (5.32). If n/o < s < oo, then t7/"~1/$bs(t) is equivalent to a non-
decreasing function on [1,00). Hence,
(5.39) [|w 5(1,00)-
If s =n/o and sup; ., 1/b3(z) < oo, then (5.39) also holds. Now, (5.32) follows from
(5.31) and (5.39). m

The first version of the previous theorem did not contain the estimate (5.31), only the
estimate (5.32) with s > p. We are grateful to the Referee for suggesting this improvement
to us.

See [23, Theorem 4.3] ([27, Theorem 5.1]) for the estimate near infinity, estimate
(5.31), where the case of Bessel potential spaces (with logarithmic smoothness) modelled
upon Lorentz—Zygmund spaces is considered.

COROLLARY 5.4. Let o € (0,n), p,q € [1,00] and m € N. Let o, 3 € R™ and k €
{1,...,m} be as in Corollary 5.1.
(i) Suppose that one of conditions (5.19)—(5.22) is satisfied. Then
(5-4()) ||U*‘|m7q;ﬁ (0,1) ~ HUHJ in/o,pia
for all uw € H? Ly, /g p.o(R™).
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(ii) Let s € [1,00] and let v € R™. Suppose that
either 1<p<s<oco and v«

or 1<s<p<oo and v+1/s<a+1/p.
Then
(5.41) ™ |n/o,s:(1,00) D Ntllosn/opia
for all w € H? Ly, ) .o (R™). Moreover, if either n/o < s < oo, or s =n/o and 0 X v,
then
(5.42) u*lls;1,00) B Nelloin/opia

for all v € H L, /5 p:a(R™).

Proof. We consider by = 95, by = 93 and by = ¥}}'. Part (i) is precisely Corollary 5.1.
To prove (ii), we deduce by Remark 3.2 that either (3.7) or (3.8) holds. By taking into
consideration Remark 3.6(ii), the result now follows from Theorem 5.4. m

REMARK 5.3. Let 0 € (0,n), p € [1,00] and m € N. Let & = (ag, ..., ) € R™ and let
ke {l,...,m} be such that ay, # 1/p’ and, if k > 2, then o; =1/p’ fori=1,...,k— 1.
Suppose additionally that ay > 1/p’. Then the previous corollary with ¢ = s = co and
B = 0 gives

HgLn/a,p;a(Rn) - LOO(Rn)a
which is a result due to Edmunds, Gurka and Opic [12, Lemma 4.5 & Corollary 4.6 &
Remark 4.7]. It also follows that the previous embedding holds with p =1 and a = 0.

THEOREM 5.5. Let 0 € (0,n), p € [1,00) and let b be a slowly varying function on [1,00).
Let s € [p,00) and suppose that either n/o < s < 00, or s =n/o and SUP; o0 1/b(2)
< 00. Let @ be a Young function such that ®(t) = t° for all small enough t > 0, and
for which the restriction of @1 to [1,00) is a slowly varying function on [1,00). Suppose
that conditions (5.27)-(5.29) are also satisfied. Then

(5.43) H Ly, p(R") = La(R).

Proof. Let by = b and by(t) = 1/®~1(t), t > 1. Note that by is an s.v. function on [1, ).
As in the proof of Theorem 5.3, it follows that the conditions of Theorem 5.4 are satisfied
with ¢ = co. Therefore the estimate (5.30) gives

u* (1) o n
(5.44) Os<1;1<)1 m = Hu||a;n/g7p;b for all u € H7 Ly, /o s (R™).

Let b3 = by = b. Then Theorem 5.4(ii) (estimate (5.32)) gives us the two estimates
(5.45) [l

si(1,00) = Ntllosnjope  for all uw € H7 Ly, /6 0 (R™),

and
(5.46) u'(1) = [[u*lloos1,00) < Blltllgnsopn  forall u € H Ly 5 50 (R™),

where k is a positive constant.
Now we follow the end of Step 3 in the proof of [18, Theorem 3.1].
Let tg € (0,1) be such that

(5.47) P(t) =t° forall 0 <t <.
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If k < tg, we deduce from (5.45)—(5.47) that

o0 * t
(5.48) | @(“7()> dt 31 forall u € HO Ly /y pp(R).
1 [lloin/o.p
If k > tp, then taking « € (to, k] and ¢; = P(k)/t] we have &(x) < $(k) < ¢1 2°. Together
with (5.47), this implies that @(x) < ca® for all x € [0, k], where ¢ = max{1, ¢; }. Then,
by (5.45),
oo *( o) * (4 s
(5.49) 845(“7”) dt < c | (“—()) dt <1
1 1

Hu“(y;n/a,p;b ||U’HU§7L/0'1P§5

for all u € H? L, /5 p:p(R™).
Since @ is convex with ¢(0) = 0, it follows from (5.48) and (5.49) that

o0
(5.50) inf {2 >0 [ @(u(0)/2) dt <1} 3 [ulloin/ops
1
for all u € H7 Ly, /5 5 (R™).
Now, because @ satisfies the Lorentz-type condition (5.27), it follows from Theorem
4.1, (5.44) and (5.50) that ||ulle 3 [|ullen/opp for all u € H7 Ly, /g 5 (R™), which gives
the embedding (5.43). m

D3

COROLLARY 5.5. Let o € (0,n), p € [1,00] and m € N. Let o = (aq,...,q,) € R™
and let k € {1....,m} be such that oy, # 1/p" and, if k > 1, then a; = 1/p’ for
j=1,...,k—1. Assume ap, < 1/p’ and let B = (B1,...,0m) € R™ be defined by
B =a—08y.m1 Suppose that s € [p,00) and that either s > njo, or s =n/o andp > 1.
Then
H Ly /o pia(R") — Lo, (R),
where the Young function @y, is given by
Bu(t) — t° for all small enough t > 0,
k()= expk(t_l/ﬂ’mf/"_k(t)) for all large enough t > 0,
with, if k <m, vy = (Y1, Ym—k) € R™ % and v; = —Bis1/Br, i=1,...,m — k.
Proof. Let ¥, be the Young function defined by
) s {0 0<t<ty<l,
(5.51) w(t) = Exp,, (t71/50m =k (1)), 1 <to << 00,
where tp is small enough and ¢ is large enough. Let T, = Wi (tso) > 1. Then
G () 2 0(t),  t > T,

and it follows that the restriction of ! to [1,00) is a s.v. function on [1, c0).

From Example 4.1, ¥} satisfies the Lorentz-type condition (5.27). Let us consider
b = 9. Then conditions (5.28) and (5.29) are also easily verified. Taking into account
Remark 3.6(ii), it now follows from Theorem 5.5 that H? L, /5 .o (R") = Ly, (R™). Since
&), and ¥y, are equivalent globally, we have Lg, (R™) = Ly, (R™), with equivalent norms,
and the result follows. m

The previous corollary with k = m coincides with [18, Theorem 3.1].
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6. Riesz-potential-type embedding theorems

In [9], the authors proved the following result which characterises boundedness of convo-
lution operators in generalised Lorentz—Zygmund spaces.

THEOREM 6.1 [9, Theorem 2.1]. Let s,q € (1,00), 7,6 € R. Let q1,q92 € (1,00] be such
that 0 < 1/q1 +1/q2 < 1 and set 1/p = 1/q1 + 1/q2. Let o« = (1/p',6/p) and B =
(=1/q,7/q). Assume f € Ls 4 (R™), g € Ly 4,.0(R™) N LY(R"), uw = f x g and suppose
that

either p<gq,v< —1, VTH—‘S%JrlgO;
(6. {or p>q,'y<—1,77+1—5%1+1<0.
Then
(6.2) [t loo,q:8:0,1) < Mf 15,00 (lglls7 g230 + lgll1)-

The next result, which also characterises boundedness of convolution operators in
generalised Lorentz—Karamata spaces, generalises and extends Theorem 6.1, as we will
see later on.

THEOREM 6.2. Let s € (1,00), ¢ € [1,00]. Let q1,q2 € [1,00] be such that 1/q1 +1/g2 < 1
and set 1/p =1/q1 + 1/qa. Let by, be be slowly varying functions on [1,00). Suppose that

) _1/4b2(1/t)
6.3 +—Vap 1/t < 00, Ht 1/q22\2/ %)
(6.3) I 2(1/0)[lg;(0,1) b1 (L/8) |l 40,1

Suppose that either 1 < p < g < oo and (3.11) is satisfied, or 1 < g < p < oo and (3.12)
is satisfied. Assume f € L 4, (R™), g € Ly 4o, (R™) N LY (R™), u = f x g. Then

(6.4) 14" lso,giba(0.1) M lls.an (Ngllsq0 + Nlglln)-
Moreover, if §2 is a measurable subset of R™ with finite volume, then v € Lo 4.4, (£2) and
(6.5) [elloogibai2 T M Flls.ar (19lls7.g2500 +[1gl]1)-
Proof. Since u = f * g, by O’Neil’s inequality (cf. e.g. [35, Lemma 1.8.8]) we have
(6.6) wH(t) Su () ST ) + | (g (7) dr
t
By Lemma 3.6, for all t > 0 we have
(6.7) @< 3 s
©5) <™ 3 ol
. g () < g™ (1) 3 9lls’ q2ib1 -
Yo (t) o
Using (6.6) and the previous estimates, for ¢ € (0,1), we obtain
1 oo
* ok 1 * * * *
69)  w'(®) <u”®) 3 sl learllgls ame +\ (Mg () dr + | £ (r)g" () dr.
! t 1

The estimate (6.7) together with the obvious inequality

g'(r) <g”(r) < Mgl T>0,
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gives

(6.10) [ £ (g dr 3 1 lenlglly § 77 dr & [ £l gl
1 1

Therefore, the estimates (6.9) and (6.10) imply

(6.11) [0 oo,q:b250.1) T N 15,00 90l s7.q20: N1+ Na 4 (| flls5,01 119111 N,

where

Ny = Ht—l/q Vo, (t)
Vo, (t)

b
¢;(0,1)
1

N
> (A EAC ] A

N3 = ‘|t71/q7bz (t)”q;(o,l)-
By hypothesis N7 < co and N3 < oco. Finally, Lemma 3.3 and Hélder’s inequality yield
(6:12)  No 317 0, (67 (£)9" () lpsgo,1) = 1EY/* 71/ ()6 92, ()9 () o,
<SR ) lgas0, 0 187230, (09" (Dl gasi0,1) = 1 lssan 19l gt -

Now (6.4) follows from inequalities (6.11)—(6.12).
Now with no loss of generality we shall assume that |{2|,, = 1. Then, from (6.4), we
obtain

ltll oo gibaiz < 118 9y, (8" (1)

which gives (6.5). m

|q;(0,1) ,5 ||f

5.1 (l9lls7.q2:00 + llgll1),

Note that if {2 is a measurable subset of R™ with finite volume and g is a measurable
function on R"™ with suppg C (2, then g € L, ,»(R™) N LY(R") if, and only if, g €
Ly ¢5(R™), where p € (1,00), ¢ € [1,00] and b is a slowly varying function on [1, c0).

COROLLARY 6.1. Let s € (1,00), g € [1,00] and m € N. Let q1,q2 € [1,00] be such
that 1/q1 +1/q2 < 1 and set 1/p = 1/q1 + 1/qa2. Let a = (a1,...,qm) € R™ and let
ke{l,...,m} be such that oy, # 1/p’ and, if k > 2, then a; = 1/p’ fori=1,...,k—1.
Let B = (B1,.-.,0m) € R™ with By, # —1/q and, if k > 2, then 5; = —1/q for i =
1,...,k—1. Assume f € Ls 4, (R"), g € Ly 4,.a(R") N LY (R™), u = f x g. Suppose one of
the following conditions is satisfied:

(6.13) l<p<g<oo, Br<-1/q, B+gmr =0 —0p.mk;
(6.14) 1<g<p<oo, Bp<-1/g, B+1/g=a—08imki+1/p;
(6.15) p=1,g=00, B <0, B=a.

Then

(6.16) [t loo,q:80,1) 2 M1f 15,0 (lglls7 ga3a + [1gll1)-

Moreover, if 2 is a measurable subset of R™ with finite volume, then u € Lo 4,8(12) and

(6.17) [tlloc.g8:2 Z W flls.a (1glls7 g0 + [1g1]1)-
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If we omit the assumption B # —1/q the result will still hold provided that
(6.18) 1<p<qg=o0, B=0, —ap+1/p<0.

Moreover, for k = m, if we also omit the assumption «,, # 1/p’, the result will still hold
provided that
(6.19) p=1 g=o00, pB=0, «a=0.

Proof. Let by = Jg" and by = ¥j'. Then under our conditions (note that p > 1 in
(6.13)), condition (6.3) is satisfied. According to Lemma 3.3 and Remark 3.4, either
1 <p<q<ooand (3.11) is satisfied, or 1 < g < p < oo and (3.12) is satisfied. Hence
the result follows from Theorem 6.2. m

REMARK 6.1. Assume that the conditions of the previous corollary hold.
When 1 <p < oo, a > 1/p" (or & =0, if p=1), we have
[0 [ocs0.0) = 1 lls.a (9l g2ze + [lgll1)-

In particular, if {2 is a measurable subset of R™ with finite volume, it follows that

[wllocs2 T M lls a0 g1l 20 + Nl l1)-

Let 1 <p<oo,1<qg<o0. Take o, € R™ and k € {1,...,m} as in Corollary 6.1.
Suppose additionally that oy < 1/p" and that one of conditions (6.13)—(6.14) is satisfied.
Then

[0 oo paws0.1) Z N lls.01 ([19lls7,250 + [lgll1),

where v = o — 01, k, which is better than the estimate

[0 |sc.g:8:01) B M Ws.00 (N9 lls7 0250 + llgll1)-

In particular, if {2 is a measurable subset of R™ with finite volume, it follows that

[elloo sz Z M flls.1 ([1glls7 g2+ Nlgll1)-

REMARK 6.2. Under the conditions of Theorem 6.1, if we choose § = p — 1, we have

10" [o0.q::00.1) = M 15,01 (191l g250 + [lgll1)
for all f € Ls 4 (R") and g € Ly gp.a(R™) N LY (R™), where u = fx g, a = (1/p/,1/p'),

B=(-1/¢,7/q) and v < 1.
However, from Corollary 6.1, with m = k = 3 and a3 = 0, it follows that

(6.20) 10" |s0.g:8::0.1) B NS W50 (g lls7 g2500 + llgll1)
for all f € Ls 4, (R") and g € Ly gy.0, (R")N L (R™), where u = fxg, a1 = (1/p’,1/p’,0),
B1=(-1/q,—1/q,Bs), with B3 satisfying either (6.13) or (6.14).

Since Ly gp;a(R") = Ly gy;0, (R") and [[u"]]c,g:8:(0,1) < 114" [lo0,q5815(0,1), Corollary 6.1
gives us the better estimate (6.20).

In the special case when the function w is a Riesz-potential of the function g, i.e.
u = I, *x g, where I,, 0 < 0 < n, is the Riesz kernel, we have the following corollary,
which generalises and extends the sufficiency part of Theorem 2.2 and Remark 3.11(iv)
in [9].
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COROLLARY 6.2. Let o € (0,n), p,q € [1,00]. Let by, by be slowly varying functions on
[1,00) such that condition (6.3) holds and either 1 < p < q¢ < oo and (3.11) is satisfied,
or1<q<p<ooand (3.12) is satisfied. Assume g € Ly, /g pp, (R") NLY(R™), u = I, *g.
Then

(621) HU*HOO,q;bQ, 0,1) ~ ||g||n/o,p,b1 + HgHI

Moreover, if {2 is a measurable subset of R™ with finite volume, then w € Log b, (£2) and

(6.22) [elloc,giba:2 S N9llnsopion + llglla-

Proof. One can easily compute that (I,)*(t) = (t/w,)?/™ 1, t > 0 (see [35, pp. 97-98]),
where wy, is the volume of the unit ball in R". Therefore, I, € Ly, /(n—),00(R"), and the
result now follows from Theorem 6.2 on putting s =n/(n — o) and g1 = co. m

COROLLARY 6.3. Let 0 € (0,n), p,q € [1,00] and m € N. Let o, € R™ and k €
{1,...,m} as in Corollary 6.1. Assume g € Ly, /5 p:a(R™) N LY (R™), u = I, % g. Suppose
that one of conditions (6.13)—(6.15), (6.18)—(6.19) is satisfied. Then
(6-23> HU*HOO,q;ﬁ 0,1) ~ ||g||n/a,pa + ||g||1
Moreover, if £2 is a measurable subset of R™ with finite volume, then u € Lo 4.3(12) and
(6.24) [tlloc.qi8:2 T 19lln/opia + 11911
Proof. The result follows from Corollary 6.1 on putting s = n/(n — o), ¢1¢ = oo and
f =1, € Ln/(nfo),oo(Rn)- ]
REMARK 6.3. Assume that the conditions of the previous corollary hold.

When 1 <p < oo, ar > 1/p' (or @« =0 if p=1), we have

" locs0,1) R N19llnso,pia + llgll1-
In particular, if {2 is a measurable subset of R™ with finite volume, it follows that
HUHOO,Q i ||g||n/0,p;a + HgH1

Let 1 <p<oo,1<qg<o0. Take o, € R™ and k € {1,...,m} as in Corollary 6.3.
Suppose additionally that «y < 1/p’ and that one of conditions (6.13)—(6.14) is satisfied.
Then

[u*lloo,piws0,1) 3 9llnsopa + gl
where v = & — 01,1, Which is better than the estimate
l[u*lloo,q:8500,1) < N9llnsopa + lgll1-
In particular, if {2 is a measurable subset of R™ with finite volume, it follows that
[ullsopivse T N9llnsope + N9l

REMARK 6.4. Following the reasoning of Remark 6.2, the previous corollary with m =
k=3, a3 = 0and 1 < g < oo gives a better estimate than the one given by [9,
Theorem 2.2]. More precisely, we obtain

||u*||oo,q;ﬂ;(0,1) j ||g||n/a,p;a + ||g||1a
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for all g € Ly/opa(®™) N LYR™), where u = I, x g, a = (1/p/,1/p',0) and B =
(=1/q,—1/q, B3), with B3 satisfying either (6.13) or (6.14), rather than the estimate

HU*||oo,q;,31;(O,1) j Han/a,p;a + ||g||1
for all g € Ly /o pa(R™) N LY(R"), where u = I, x g, a = (1/p',1/p’,0) and B =
(—=1/¢,7/q), with v < —1.
The following results extend and improve [9, Corollary 2.3(ii), Corollary 2.4(ii)].

THEOREM 6.3. Let s € (1,00) and let g1,q2 € [1,00] be such that 1/g1 + 1/q2 < 1 and
set 1/p =1/q1 + 1/qa. Let b be a slowly varying function on [1,00). Let & be a Young
function for which the restriction of =1 to [1,00) is a slowly varying function on [1,0).

Suppose that
1

(6.25) S@(*y@‘l(l/t)) dt < oo  for somey >0,
’ 1
(6:26) o2 & (1 /eb(1 /) <>
1 ’
(6.27) sup === || (1P b(1/8) T s 1y < o0

o<z<1 @7 H(1/x)
Let §2 be a measurable subset of R™ with finite volume. If f € Ls 4, (R™), g € Lg/ 4,.(R™)
NLY(R"™) and u = f x g, then u € Lg(2) and
ulle, Z 1 lls.a lgllsr a0 + llgll2)-

Proof. With no loss of generality we assume that [2], = 1. Let by = b and by(t) =
1/@1(t), t > 1. Note that by is a s.v. function on [1,00). Since ¢! is an increasing
function and @~1(t) > 0, t > 0, it follows that

222, I = G
and the first condition in (6.3), with ¢ = oo, is satisfied. The second condition in (6.3),
with ¢ = oo, is precisely (6.26). Since

< 00,

1
22,0 = iy
it follows from (6.27) that (3.11) with ¢ = oo is satisfied. Therefore, the conditions of The-
orem 6.2 are satisfied and the estimate ||t s 00:0:2 = | flls,q: (19]l57,g2:60 + [|gl1) follows.
Since ¢ satisfies a Lorentz-type condition, i.e. satisfies (6.25), we see from Corollary 4.1

that Lo cob, (£2) = La(£2) with equivalent (quasi-) norms, and the result is established. m

Now it is easy to verify the next three results.

COROLLARY 6.4. Let o € (0,n), p € [1,00]. Let b be a slowly varying function on [1,00).
Let @ be a Young function for which the restriction of =1 to [1,00) is a slowly varying
function on [1,00). Suppose that conditions (6.25)—(6.27) are also satisfied. Let §2 be a
measurable subset of R™ with finite volume. Then I, x g € Lg(12) and

1o * glle,2 S N19lln/opn + 19l
for all g € Ly /o pp(R™) N L' (R™).
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COROLLARY 6.5. Let s € (1,00) and m € N. Let g1, q2 € [1,00] be such that 1/q1 + 1/q2
<1 and set 1/p =1/q1 +1/q2. Let a = (a1,..., ) € R™ and let k € {1,...,m} be
such that oy, # 1/p" and, if k > 1, thena; =1/p' forj=1,...,k—1. Assume oy, < 1/p’
and let B = (B1,...,0m) € R™ be defined by B = & — Oprom . Let 2 be a measurable
subset of R™ with finite volume. Let @y be the Young function defined by

D (t) = expk(tfl/ﬁ’“,uz%k(t)) for all large enough t > 0,

with, if k < m, v = (71, ,Ym—%) € R™* and v; = —Bisx/Br fori=1,...,m — k.
Then u € Lg, (£2) and

lulley,2 3 11 flls,q0 glls ga;e + lgll1)
for all f € Ly 4, (R") and g € Ly 4,.o(R™) N LY (R™).

COROLLARY 6.6. Let o € (0,n), p € [1,00] and m € N. Let o, € R™, k € {1,...,m}
and Dy, as in Corollary 6.5. Let (2 be a measurable subset of R™ with finite volume. Then
u=1I,%g¢€ Lg, (£2) and

||I<7 * QH%,Q j ||g||n/a,p;a + ||g||1
forall g € Ly g pia(R™) N L (R™).

REMARK 6.5. Following the same line of reasoning as in Remarks 6.2 and 6.4, and Corol-
laries 6.5 and 6.6, with m = 3 and a3 = 0, we arrive at a triple exponential Orlicz space as
a target space, improving in this way [9, Corollary 2.3(ii), Corollary 2.4(ii)], with § = p—1
(see Theorem 6.1), which give a double exponential Orlicz space.

Corollary 6.6 with £k = 1, m = 2 and p = n/o gives a result related to the one of
Mizuta and Shimomura [22, Theorem A].

The previous remark extends [9, Remark 3.11(iv)].
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