Introduction

This paper solves the functional inequality

(1) af(s) +bf(t) = flas+pt), s,t>0,

with four positive parameters a,b,«, 3 arbitrarily fixed. The unknown function f :
(0,00) — R is assumed to satisfy the regularity condition

(2) limsup f(s) <0.
s—0+

Two cases of inequality (1) have had a long history of research (cf. Section 1):

e Jensen-convexity, i.e., (1) witha=b=a=0=1/2.
o Subadditivity, i.e., (1) witha=b=a==1.

Recently, four other cases of (1) were analyzed (cf. Section 1):

e Generalized Jensen-convexity, i.e., (1) with a +b =1, o + 8 = 1. In this case the
solutions to (1)—(2) are either convex or constant (N. Kuhn [1984, 1987], Z. Dardczy
and Zs. Pales [1987], S. Krynski [1993], Z. Kominek [1992], J. Matkowski and M. Py-
cia [1995b]).

e Generalized subadditivity, i.e., (1) with 3 = b = 1. In this case the solutions
to (1)—(2) share some regularity properties of subadditive functions (J. Matkow-
ski [1994b], J. Matkowski and T. Swiatkowski [1994]).

e (1) witha=a,b=0,a <1< a+g. In this case the solutions to (1)-(2) are
linear (J. Matkowski [1990b, 1992a, 1992b], Matkowski and Pycia [1995a]).

e (1) witha =a, b=, o+ < 1. In this case there are special pairs of functions
f1 < f2 such that every f with fi(t) < f(t) < f2(t) for ¢t > 0 satisfies (1)—(2) (this
result is implied by K. Baron, J. Matkowski and K. Nikodem [1994]).

There are also quadruples of parameters such that

e (1)—(2) is satisfied only by the zero function (e.g. according to Corollary 7.4 this
holds true for a =1/2, 6 =2,a=2,b=1/2).

In this paper, we show which parameters «, 3, a, b give classes of solutions of (1)—(2)
that resemble the first five examples rather than the last two. The latter quadruples, and
also some quadruples resembling the last example, are called critical (cf. Section 2). The
paper gives precise descriptions of all critical classes of solutions, which consist of either
convex, or constant nonpositive, or zero, or generalized subadditive, or homogeneous
convex functions, or certain functions whose right-hand limit superior is subadditive and
satisfies some homogeneity conditions.

(5]
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This paper shows which parameters «, 3, a, b, give classes of solutions of (1)—(2) that
resemble the first five examples rather than the last two. Such quadruples of parameters
are called critical (cf. Section 2). The paper gives precise descriptions of the classes of
solutions for all the critical parameters.

The main results of the paper show that the classes of solutions of (1)—(2) for the
critical parameters consist of either

convex, or
constant nonpositive, or

Zero, or

generalized subadditive, or
homogeneous convex functions, or

certain functions whose right-hand side limit superior is subadditive and satisfies
some homogeneity conditions.

For almost all parameters the last two classes are reduced to classes of power functions
with fixed signs and exponents.

The paper also shows which quadruples of parameters are huge, i.e., resemble the
sixth example, and shows which quadruples are trivial, i.e., have only the zero solution.
In addition, the paper determines the sign of the solutions and estimates their rates of
growth.

Section 1 presents a history of research on the family of inequalities (1).

Section 2 explains the notions specific to this paper, e.g. it defines huge and triv-
ial classes of functions, and huge, trivial, and critical parameter quadruples («, 3, a,b)
and pairs (a,b). It introduces the partial order < in the parameter space (0,00)* and
the related notions of being above or below a set. It also presents some lemmas used
throughout the paper.

Section 3 shows that the set of critical quadruples for positive solutions, as well as
the one for negative solutions, is a three-dimensional topological manifold in the four-
dimensional space of parameters «,3,a,b. Every quadruple of parameters («,/,a,b)
not belonging to the critical manifold for positive solutions is either above or below
this manifold (with respect to the order <); every quadruple above the manifold has a
huge class of positive solutions; every quadruple below the manifold has a trivial class of
positive solutions. Similarly, every quadruple of parameters (a, 53, a,b) not belonging to
the critical manifold for negative solutions is either above or below the manifold; every
quadruple above the manifold is trivial; every quadruple below the manifold is huge.
For fixed «, 3, the same applies to the critical, huge, and trivial pairs (a,b). Section 3
discusses separately the positive and negative solutions and does not take into account
the solutions which take both positive and negative values. This restriction causes no loss
of generality because Theorems 4.1, 5.1, 5.2, 6.1, 6.3, 6.4, and 6.5, taken together, imply
that if the class of solutions of (1)—(2) is huge then either the class of negative solutions is
huge or the class of positive solutions is huge; moreover, if the class of negative solutions
is trivial and the class of positive solutions is trivial then the zero function is the only
real solution to (1)—(2).
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Section 4 shows that if « < 1 < a+ 3, then every solution to (1)—(2) is either positive,
or negative, or zero. It also shows that every solution to (1)—(2), with any parameters
a, 3, a,b, is bounded on finite intervals and gives power estimates on the rates of growth
of the solutions at 0 and infinity (1) .

Section 5 deals with (1)—(2) for a+3 < 1. It establishes the set of parameters such that
all solutions of (1)—(2) are nonpositive (henceforth referred to as the nonpositive region
of parameters), and the set of parameters such that all solutions of (1)—(2) are nonneg-
ative (the nonnegative region of parameters). The critical quadruples of the parameters
analyzed by N. Kuhn [1984] have convex solutions. The critical quadruples analyzed by
Z. Kominek [1992] have constant solutions. The remaining critical quadruples lead to
(1)—(2) with either only the zero solution or constant nonpositive solutions.

Section 6 deals with (1)—(2) for either 8 =1, or a =1, or «, 8 > 1. It establishes the
nonpositive and nonnegative regions of parameters. The critical quadruples with f =1
or « = 1 are described by J. Matkowski [1994b] and have one-sided limits. If o, 3 > 1,
then (1)—(2) with positive critical parameters have only the zero solution, and the set of
negative critical parameters is empty.

Section 7 deals with (1)—(2) for @ < 1 < a + (. It establishes the nonpositive and
nonnegative regions of parameters in the case § < 1 (the next section characterizes the
regions if § > 1). The main results show that the class of solutions for critical parameters
consists of either constant and nonpositive functions, or convex functions that satisfy the
homogeneity conditions

flut) =uPf(t), f(wt) =wPf(t), ¢>0,
for fixed parameters u,w, p that depend on «, 3, a, b; for almost all parameters a, 3, the
solutions in this class are power functions.
Section 8 deals with @« < 1 < (. It establishes the nonpositive and nonnegative
regions of parameters. The right-hand-side limit superior of each solution for the critical
parameters is subadditive and satisfies the homogeneity conditions

flat) =af(t), f(Bt)=0f(t), t>0;
for almost all critical parameters the solutions are power functions. The section discusses
also a counterpart of (1) on R ; then the class of solutions for critical parameters con-
sists of either zero function or subadditive functions satisfying the above homogeneity
conditions.

Section 9 contains a discussion of the role of condition (2) and its counterparts. Con-
dition (2) excludes pathological solutions, e.g., nonmeasurable additive functions. For
a+ b > 1, it also excludes huge classes of positive solutions.

Section 10 deals with a multidimensional counterpart of the problem (1)—(2). It gives
immediate extensions of the main results of Sections 7 and 8 onto cones in linear spaces
and uses them to characterize F-pseudonorms, p-homogeneity, and p-convexity. It also

(*) The analogues of results of Sections 3 and 4 hold true for functional inequalities
arf(s1) +---+anf(se) > flousy +--- +axsk), s1,...,80 >0,

for any k > 2 and arbitrarily fixed positive parameters a1, ..., ar,a1,. .., Qk-
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proposes a simple proof of Matkowski’s [1993] theorem that the axiom of homogeneity of
norms might be considerably weakened.

The last section is followed by eight figures illustrating the sets of critical parameters
and the nonnegative and nonpositive regions of parameters.

1. A review of related results

The subadditivity and Jensen-convexity have attracted most of the attention devoted to
inequality (1) in the literature.

The basic results in the theory of subadditive functions are due to E. Hille [1948§]
and R. A. Rosenbaum [1950] who dealt with boundedness of subadditive functions, their
rates of growth, continuity, and differentiability. R. Cooper [1927] dealt with measurable
discontinuous subadditive functions; A. Bruckner [1960] constructed maximal subaddi-
tive extensions of subadditive functions; E. Berz [1975] considered subadditive functions
satisfying the homogeneity condition f(nt) = nf(t) for n = 2,3,... and t € R. Some
further references may be found in E. Hille and R. S. Phillips [1957, Chapter 7] and
M. Kuczma, [1985, Chapter XVI].

Recently, J. Matkowski and T. Swiatkowski [1991, 1993a, 1993b] considered one-
to-one subadditive functions, and established when they are homeomorphisms. This
allowed them to prove some results on extensions of subadditive functions. Matkowski
and Swigtkowski [1994] also extended their results to one-to-one solutions of inequality (1)
with 8 = b =1, i.e., to the inequality

af(s)+ f(t) > flas+1t), s,t>0.

Matkowski [1994b]| extended some of Hille’s results on solutions of this inequality (cf.
Section 6).

Jensen-convexity is named after J. L. W. V. Jensen who showed in [1906] that an
upper bounded Jensen-convex function is continuous on open subsets of the domain, gave
a differential condition of convexity, and derived some convexity-related inequalities. At
the same time G. Hamel [1905] constructed an example of a discontinuous additive, hence
Jensen-convex and subadditive, function. Then, F. Bernstein and G. Doetsch [1915] im-
proved Jensen’s main result by showing that a Jensen-convez function is continuous on
the interior of its domain if it is bounded above on an open set (cf. Lemma 2A.6).
W. Sierpinski [1920] showed that a Jensen-convexr function is continuous if it is mea-
surable, A. Ostrowski [1929] showed that a Jensen-convex function bounded on a set
of positive measure is continuous, E. Mohr [1952] proved multidimensional analogues
of the Bernstein-Doetsch and Hamel theorems, and M. R. Mehdi [1964] showed that
a Jensen-convex function bounded above on a set of second Baire category is continuous.
M. Kuczma [1985] discussed in detail the Bernstein—Doetsch-like conditions on continu-
ity of Jensen-convex functions and results on Jensen-convexity on domains other than
intervals in R. An exposition of inequalities derived from Jensen-convexity may be found
e.g. in G. H. Hardy, J. E. Littlewood, G. Polya [1952] and M. Kuczma [1985].
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Since Kuczma wrote his survey [1985] some other special cases of (1) have been ana-
lyzed. N. Kuhn [1984] dealt with solutions of the inequality

af(s)+ (1 —a)f(t) = flas+ (1 —a)),
where a € (0, 1) is a fixed parameter, and showed that they are Jensen-convex. Z. Dardczy
and Zs. Pales [1987] gave a short proof of this result (cf. proof of Lemma 5A.2). In [1987]
Kuhn considered the inequality of the so-called («, a)-convexity:

af(s)+ (1 —a)f(t) > flas+ (1 —a)t),
where «,a € (0, 1) are fixed, and proved that its solutions are Jensen-convex. Kuhn con-
jectured that (o, a)-convex functions are constant for some «, a. Independently of Kuhn,
S. Krynski [1993] considered the («, a)-convex functions in the context of metrical convex-
ity and proved that a convex and (o, a)-convex function with a # « is nondecreasing, and
consequently, constant. Answering a problem posed by S. Rolewicz, Z. Kominek [1992]
showed that if a # « then every (a,a)-conver function satisfying some weak regularity
conditions (e.g. measurability) is constant. J. Matkowski and M. Pycia [1995b] solved
the Kuhn problem proving that («, a)-convezr functions are constant if , and only if , the

parameters o and a are not algebraically conjugate.
K. Baron, J. Matkowski, and K. Nikodem [1994] showed that f : (0,00) — R satisfies

af(s)+(A=a)f(t) = flas+ (A —a)t), s,t>0,a€(0,)),
(where A € (0,1)) if and only if there exists a convex function g : (0,00) — R such that
A rg(0\) < f(t) < g(t), t>0.

This result means in particular that the classes of solutions to (1)—(2) are huge if o+ < 1,
a=a,b=0.

Investigations of inequality (1) for 0 < a <1 < a+ 3, a = a, b = 3 were initiated by
J. Matkowski [1990b, 1992a, 1992b] (cf. also Matkowski and Pycia [1995a]) who proved
that solutions to (1)—(2) are linear. In [1992b] he applied this inequality to characterize
LP-norms in the class of LP-like functionals, i.e. functionals of the form

Pyu(x) = v § sowdn)
Q
for the argument x being a function defined on a measure space ({2, ¥, 1) and the param-

eter functions ¢, ¢ satisfying some weak regularity conditions. Matkowski [1990a, 1992b,
1996] checked which LP-like functionals satisfy the Minkowski inequality: if the mea-
sure space ({2, X, ) contains both small and large sets then the subadditivity of Py
implies that ¢, are power functions (cf. also A. C. Zaanen [1982], W. Wnuk [1984],
Matkowski [1994], and Matkowski and Pycia [1996]). As a by-product Matkowski ob-
tained a general inequality that contains the Hélder and Minkowski inequalities as special
cases [1990b, 1991].

Matkowski [1994a] used inequality (1) to show that in a measure space containing
both small and large sets the LP-like functionals satisfying the Ho6lder inequality are
simply LP-norms. Matkowski and Pycia [1995a] proved that if 0 < o < 1 < a+ 3, a = «,
b = (3 then LP-norms are the only LP-like functionals which satisfy (1). Some results of
Section 8 below were announced in Pycia [1993].
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Let us note that the general linear equation
af(s) +bf(t) = flas+pt), s teR,

was studied by many authors. G. Hamel [1905] constructed nonmeasurable additive
functions and M. Fréchet [1913, 1914] proved that every measurable additive function is
continuous, and consequently, linear. Simple proofs and extensions of Fréchet’s theorem
were later proposed by many authors (cf. M. Kuczma [1985, Sec. IX.4] and J. Aczél
[1966, Sec. 2.1]). The equation was solved in Z. Daréczy [1964] (cf. L. Losonczi [1964],
and also Z. Daréczy [1961], J. Aczél [1948], [1966, Sec. 2.2.6], and M. Kuczma [1985,
Sec. XII1.10]). Ewvery solution to the above equation is of the form f(t) = f(0) + g(t),
where g is an additive function. If there exists a nonconstant continuous solution, then
a = «, b= . If the pairs (o, 3), (a,b) are conjugate, i.e., if there exists an isomorphism
¢ from the field generated by «, B onto the field generated by a,b such that ¢(a) = a and
¢(B) = b, then every real function defined on a Hamel basis of R over the field generated
by «, 8 may be extended to a function f satisfying the above equation.

2. Preliminaries

Each section is divided into two parts: the expository and the auxiliary, which contains
proofs. The labels of the auxiliary parts, their subsections, lemmas, and formulas contain
the letter “A”. Since we refer to auxiliary part formulas only within sections, the first
auxiliary formula is labelled (A1) in each auxiliary section.

We denote by N, Z, Q, R, and R, the nonnegative integers, integers, rationals, reals,
and nonnegative reals, respectively. By positive we mean strictly greater than 0; by
negative we mean strictly smaller than 0. By the zero function we mean (0,00) 3t — 0.
In this paper it is convenient to use the term power function for any function of the form
(0,00) 2 ¢ — ct? with parameters ¢ € R and p > 0.

Consider an arbitrary class F of functions f : (0,00) — R. A subclass G of F is called
an F-strip if there are f1, fo € G such that fi(s) < f2(s) for s € (0,00), and

G={9eF:Vs€(0,00), fi(s) <g(s) < fa(s)}-

We say that a class of functions is F-huge if it contains an F-strip, and it is F-trivial if
its intersection with F is either empty, or contains only the zero function.

REMARK 2.1. The class of solutions of (1)—(2) is huge with respect to the class of all real
functions if it contains either a positive or a negative function fy such that

afo(s) +bfo(t) > K fo(as + (Bt),

where the real constant K is greater than 1 for positive fy, and belongs to (0,1) for
negative fy. Indeed, under the above assumptions the class of solutions contains the
strip of functions f : (0,00) — R such that fo(t) < f(t) < Kfo(t), t > 0. A strip
constructed in this way is called a strip around fy.

We say that a quadruple («, 5, a,b) is F-huge if it leads to (1)—(2) with F-huge class
of solutions; we call it F-trivial if it leads to (1)—(2) with F-trivial class of solutions; and
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we call it F-critical if in every neighborhood of («, 3,a,b) in (0,00)* there are F-huge
and F-trivial quadruples of parameters.

Having fixed the parameters «, 3, we apply the notions of F-huge, F-trivial, and F-
critical to the pairs of parameters (a,b). We say that a pair (a,b) is F-huge if («, 5, a,b)
is F-huge, and we say that (a,b) is F-trivial if («, 3, a,b) is F-trivial. We say that a
pair (a,b) is F-critical if in every neighborhood of (a,b) in (0,00)? there are F-huge and
F-trivial pairs of parameters.

Unless mentioned otherwise, in the following we take F equal to the class of either
all, or all nonnegative, or all nonpositive real functions on (0,00). For these classes F,
instead of writing F-huge, F-trivial, F-critical we simply write huge, (or positive huge, or
negative huge, respectively), trivial (or positive trivial, or negative trivial, respectively),
critical (or positive critical, or negative critical, respectively). In Section 3 describing
the three-dimensional critical manifolds we take F equal to the class of power functions
on (0,00), and we then write power-huge for F-huge, etc. We also use the phrase “huge
class of positive solutions” instead of “positive huge class of solutions”, and “huge class of
positive power solutions” instead of “positive power-huge class of solutions”, etc.

By the F-critical set we mean the set of F-critical quadruples or pairs. It is proved
in Section 3 that every nonempty critical set of pairs is a curve. Having proved this, we
use the term critical curve to refer to the set of critical pairs.

It is clear that trivial points are not huge. A priori critical points might be trivial or
huge. In fact, this paper shows that there are points that are simultaneously critical and
trivial. It also shows that there are no points that are simultaneously critical and huge
(though there are points which are simultaneously power-critical and power-huge).

It is also clear that every trivial pair corresponds to a trivial quadruple; every huge pair
corresponds to a huge quadruple; and vice versa. Also, every critical pair corresponds to
a critical quadruple. Not every critical quadruple corresponds to a critical pair, as shown
in Remarks 5.3 and 6.6.

Let us introduce a partial order on the set (0, 00)* by

(@ B,a,b) < (a,B,a,b) fa>a,B3>6,a<a,b<b.

Writing « > y we mean y < x. Having fixed «, 3 we use the partial order induced by < on
the quadrant (0,00)2, i.e.,
(@b)<(a,b) ifa<a,b<b.

Both in the two-dimensional and four-dimensional case we say that a point = is above
a set if there is an element y of the set such that y < =, and we say that a point x is below
a set if there is an element y of the set such that = < y. The relations of those notions to
the problem (1)-(2) are explored in Section 3.

In the auxiliary part of this section and in Sections 8 and 9 we consider the counterpart
of (1) on the closed half-line R, i.e. the inequality

(1s.) af(s)+bf(t) = flas+0Bt), 5.t 0.

In the auxiliary part of this section and in Section 10 we consider the counterpart of (1)
on a cone in a linear space over the real or complex numbers. A subset C of a linear
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space is called a cone if it contains at least two elements and satisfies C + C' C C and
tC C C for all t > 0. For a function f : C' — R the inequality

(1o) af(x) +bf(y) = flax+ By), x,y€eC,
generalizes (1). Then, a counterpart of condition (2) is
(2¢) limsup f(sz) <0, ze€C.

s—0+

2A. Auxiliary lemmas. The auxiliary part of this section provides lemmas which will
be used throughout the other auxiliary parts. We formulate them in a general form for
real functions defined on a cone C' (in the following they will be used for C equal to either
(0,00) or Ry).

LEMMA 2A.1 (Matkowski [1990b]). Suppose a,b, o, 3 > 0. If f: C — R satisfies (1¢)
then
(%) N ()
f(sij) = f(ZOéN*’ﬂi > Si,j), 5i; €C, N=1,2,....
1 i=0

Jj=1

N
Z oN-ipi
i=0

Proof. Setting © = sp1, y = s11 in (1¢) we obtain the inequality of the lemma for

N = 1. Suppose that this inequality holds true for a positive N € N. Applying in turn

the identity

N1 (") () N (7)

N
; o N+1=ipi Z sij = aZaNfibi Z iy erZaNfibi Z Si+1,(ifl)+j

j=1 i=0 j=1 i=0 j=1

j=

(which holds true for all N € N, s, ; € C), inequality (1¢), the inductive hypothesis, and
again the above identity, shows that the inequality holds true for N + 1, which completes
the proof. m

For given real «, 3 we put
_|_
Do = {kza”ﬂmH myneN k=1,..., <n m)}

m

In connection with inequality (1), the numbers

Aag=ka"B" € Dy s and Agyp = ka"b™ Tt
are called corresponding. When referring to D, 3 and the corresponding elements
Aa,3s Aab, we always implicitly assume that m,n € Nand k € {1,..., ("1™ }.

LEMMA 2A.2. Let a,b,a, 8 > 0. For Ao 3 = ka" 3™ € D, g and the corresponding A, p,
put
Ca, = (o + 6)n+m — A8 Ca,b = (a+ b)n+m — Xa,b-

If a function [ : C — R satisfies inequality (1¢) then
Aapf(8) +capf(6/cap) = f(Aaps+6), s,6€C.

Proof. Take s,6 € C and apply Lemma 2A.1 with N =n+m, s;,,1 =+ = Sy = 5,
and the remaining s; ; = 6/cq,3. =

We will use the following version of the well known result of Kronecker:
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LEMMA 2A3. If 0 < a < 1 < 8 and logB/loga is irrational, then the set {a™3™ :
n,m € N} is dense in (0,00). m
LEMMA 2A.4 (Matkowski and Pycia [1995a]). If 0 < o < 1 < 3 then D, g is dense in
(0,00).
Proof. Tf log 3/log « is irrational then, by the preceding lemma, the subset {a"3™*! :
m,n € N} of Dq s is dense in (0,00). In the remaining case there exist n,m € N such
that log 3/loga = —n/m, which means a"3™ = 1. Because k < (k”,:;szm) for every
k,jeN, k>0, and

k()éjﬁ — kakn+jﬁkm—‘rl7
we see that ka’3 € D, 3 and so D, 3 contains a dense subset {ka’B:k,j €N}. m

The next lemma allows us to replace the assumption o + 6 > 1 with 8 > 1 in some
considerations.
LEMMA 2A.5 (Matkowski [1990b]). If a,b,, 3 > 0 satisfy

a+p(>1,
then there exist 51 > 1 and by > 0 such that every f : C — R satisfying (1¢) satisfies

af(x) +b1f(y) > flax + Bry), z,ye€C.

If , moreover, a +b > 1 then there exist 31 > 1 and by > 1 such that every f : C — R
satisfying (1¢) satisfies the above inequality.
Proof. Choose k € N such that 3(a + 3)* > 1, and put

bi=bla+b)* B =pBa+p)"
Suppose that f satisfies (1¢). Then

fla+B)rz) < (a+b)*f(z), zeC,
and for all z,y € C,
flax + Bry) = flaz + Bla + B)*y) < af(x) +bf((a + B6)"y)

<af(x)+bla+)"f(y) = af(x) +bi f(y).

If a + b > 1 then for large enough k we obtain b; > 1. =
Finally, let us quote the famous

LEMMA 2A.6 (F. Bernstein and G. Doetsch [1915]). If a Jensen-convez function defined
on an open interval is bounded above on an open subset of the domain, then the function
is continuous. In particular it is convex, i.e., for x,y from the domain of the function f
we have

tfx)+ (1 —=t)f(y) > flz+ (1 —1t)y), te(0,1). m

3. Parameter space and critical manifolds

In this section we investigate the relations between inequality (1) and the notions of being
huge, trivial, or critical, the partial order <, and the notions of being above or below a
set. These notions were introduced in Section 2.
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We discuss separately the positive and negative solutions and we do not take into
account the solutions that take both positive and negative values. This approach will be
justified by Theorems 4.1, 5.1, 5.2, 6.1, 6.3, 6.4, and 6.5, which show that if the class of
solutions of (1)—(2) is huge, then either the class of negative solutions is huge or the class
of positive solutions is huge; moreover, if the class of negative solutions is trivial and the
class of positive solutions is trivial, then the zero function is the only real solution to
(1)-(2).

Let us begin with the following simple, but important

LEMMA 3.1. Let o, 3 > 0 be fized. If a positive fo satisfies (1)—(2) with positive real
ag, by in place of a,b, then for every (a,b) above (ag,by), i-e., (a,b) > (ag,bo), the class
of positive solutions of (1)—(2) is huge and contains strips around fo.

As a consequence of the lemma we get

THEOREM 3.2. Let o, > 0 be fized.

o If the set of positive critical pairs (a,b) is empty then every pair (a,b) € (0,00)? is
huge.

e If the critical set is nonempty, then it is a curve and every pair (a,b) € (0,00)?
that does not belong to this curve is either above or below it. Moreover,

o every pair (a,b) above the critical set leads to (1)—(2) with huge class of positive
solutions;

o every pair (a,b) below the critical set leads to (1)—(2) with trivial class of positive
solutions.

Now consider the whole parameter space (0,00)* and strips with respect to the class
of positive increasing power functions. Theorem 3.4 will show that the set of positive
power-critical quadruples (a,b, o, 3) is a three-dimensional topological manifold. One of
the goals of this paper is to show that this manifold coincides with the set of positive
critical quadruples (a, b, «, 3). This will follow when we prove Theorems 5.1, 5.2, 6.3, 6.4,
and 6.5, and Corollaries 7.4, 7.5, and 8.5.

Let us start with an analogue of Lemma 3.1.

LEMMA 3.3. If an increasing positive power function fo satisfies (1)—(2) with positive
real o, Po,ao,by in place of «,f,a,b, then for every (a,B,a,b) above (ag, o, ao,bo),
ie., (a,B,a,b) > (ag, Bo,ao,bo), the class of positive solutions of (1)—(2) is power-huge
and contains strips around f.

THEOREM 3.4. The set of positive power-critical quadruples («, 3,a,b) € (0,00)* is a
three-dimensional topological manifold. FEvery quadruple (o, 3,a,b) € (0,00)* that does
not belong to this manifold is either above or below it. Moreover,

e cvery quadruple above the critical power set leads to (1)—(2) with huge class of
positive power solutions;

e cvery quadruple below the critical power set leads to (1)—(2) with trivial class of
positive power solutions.
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In a similar way to the results 3.3 and 3.4, one may prove their analogues for the
class of increasing positive homeomorphisms (instead of the class of positive increasing
power functions). Theorems 5.1, 5.2, 6.3, 6.4, and 6.5, and Corollaries 7.4, 7.5, and 8.5
will show that the critical set established in this way coincides with the critical set of
Theorem 3.4.

In the second part of this section we consider negative solutions of (1)—(2). The
results are analogous to those for positive solutions. First consider quadrants with fixed
positive a, (.

LEMMA 3.5. Let o, 3 > 0 be fized. If a negative fy satisfies (1)—(2) with positive real
ag, bo in place of a, b, then for every (a,b) below (ag,by), i.e., (a,b) < (ap,bo), the class
of negative solutions of (1)—(2) is huge and contains strips around fo.

THEOREM 3.6. Let o, 5 > 0 be fized.

o If the set of negative critical pairs (a,b) is empty then every pair (a,b) € (0,00)? is
huge.

o If the critical set is nonempty, then it is a curve and every pair (a,b) € (0,00)2
that does not belong to this curve is either above or below it. Moreover,

o every pair (a,b) above the critical set leads to (1)—(2) with trivial class of negative
solutions;

o every pair (a,b) below the critical set leads to (1)—(2) with huge class of negative
solutions.

Now consider the whole parameter space (0,00)* and strips with respect to the

class of negative decreasing power functions. Theorem 3.8 shows that the set of
negative power-critical quadruples (a,b,«,3) is a three-dimensional topological mani-
fold. One of the goals of this paper is to show that this manifold coincides with
the set of negative critical quadruples (a,b,«, 3). As in the case of positive solutions,
this will follow from Theorems 5.1, 5.2, 6.3, 6.4, and 6.5, and Corollaries 7.4, 7.5,
and 8.5.

Let us start with an analogue of Lemmas 3.3 and 3.5:

LEMMA 3.7. If a decreasing negative power function fo satisfies (1)—(2) with positive
real ag, Bo, ag, bo in place of a, B, a, b, then for every («, 8, a,b) below («o, Bo, ao,bo), €.,
(a, B,a,b) < (a, Bo, ao,bo), the class of negative solutions of (1)—(2) is power-huge and
contains strips around fo.

THEOREM 3.8. The set of negative power-critical quadruples («, 3,a,b) € (0,00)* is a
three-dimensional topological manifold. Every quadruple (o, 3,a,b) € (0,00)* that does
not belong to this manifold is either above or below it. Moreover,

e cvery quadruple above the critical power set leads to (1)—(2) with trivial class of
negative power solutions;

e cvery quadruple below the critical power set leads to (1)—(2) with huge class of
negative power solutions.
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Since two-dimensional critical sets are curves and four-dimensional critical sets are
three-dimensional manifolds, in the following we refer to them as critical curves and
critical manifolds. From Lemmas 3.1 and 3.5 we infer

COROLLARY 3.9. If positive «, 3, a,b lead to the class of positive solutions of (1)—(2) that
is neither huge nor empty, then (a,b) belongs to the positive critical curve for o, 3. If
positive o, 3,a,b lead to the class of negative solutions that is neither huge nor empty,
then (a,b) belongs to the negative critical curve for a, (3.

3A. Proofs

Proof of Lemma 8.1. Under the assumptions of the lemma every function f : (0,00) —
(0, 00) such that

ht) < F0) < min(i, ﬁ)fou» £>0,
Qg bo

satisfies

af(s) + (1) > afo(s) + bfolt) > min(a%, bﬁ) (a0fo(s) + bofo(t))

2min<£7£>fo(as+ﬁt)zf(as—i—ﬁt), s,t >0,
ap bo

hence, it is a solution to (1)—(2). m

Proof of Theorem 3.2. For brevity we write “critical” instead of “positive critical”, “huge”
instead of “positive huge”, “trivial” instead of “positive trivial”.
Consider the family of rays

L, ={(a,b) € (0,00)> :a=z+b}, z€R.
Lemma 3.1 implies the following trichotomy for each fixed x € R: either

e there are no positive solutions to (1)—(2) for (a,b) € L,, or

o for all (a,b) € L, the class of positive solutions of (1)—(2) is huge, or

o there exists a critical point (a(x),b(x)) € L, such that for all (a, ) below (a(x), b(x))
the class of positive solutions is trivial, and for all (a,b) above (a(z), b(x)) this class
is huge.

If there are no critical pairs (a,b) then either all (0,00)? consists of huge pairs or it
consists of trivial ones. Since for a > a, b > ( all linear functions satisfy (1)—(2), all the
pairs of (0,00)? are huge.

Now assume that the set of critical points is nonempty. First, we show that every
critical point is of the form (a(z),b(x)) defined above. Indeed, take an arbitrary critical
point (ag, bo) € (0,00)%. Then:

e There is a sequence of points (a,,, b, )n=1,2,... from (0, 00)? which tends to (ao, by) and
such that every point (a,,b,) leads to a huge class of positive solutions to (1)—(2).
By Lemma 3.1 every pair belonging to the quadrant {(a,b) : (a,b) > (an,b,)} leads
to a huge class of positive solutions to (1)—(2). Consequently, every pair (a, b) from
the set-theoretical sum of the quadrants does, and every (a,b) € {(a,b) : (a,b) >
(ag,bo)} does.
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e Similarly, there exists a sequence of points (a_p,b_,)n=12 .. from (0,00)? tending
to (ag,bp) and such that every point (a_,,b_,) leads to a trivial class of positive
solutions to (1)—(2). By Lemma 3.1 every pair from the rectangle {(a,b) : (0,0) <
(a,b) < (a_pn,b_y,)} leads to a trivial class of solutions to (1)—(2). Thus every pair
from the set-theoretical sum of the rectangles does, and every pair (a,b) € {(a,b) :
(0,0) < (a,b) < (ag,by)} does.

It follows that (ag,bg) € La,—b, is the unique critical point on the ray Lq,—p,-

Denote by I the set of reals = leading to critical points (a(z),b(z)). The set I is
nonempty. In order to prove that the set of critical points is a curve we show that

e [ is convex;
e I 32+ (a(x),b(r)) is a homeomorphism between I and the critical set.

To show the convexity of I take z,y € I, x < y, and z from the open interval (z,y).
Then L, has a nonempty intersection with the set of positive huge points {(a,b) : (a,b) >
(a(z),b(x))}. Since L, also intersects {(a,b) € (0,00)? : (a,b) < (a(x),b(z)) or (a,b) <
(a(y),b(y))}, it contains positive trivial points. Consequently, there is a positive critical
point (a,b,).

Now take z,y € I with < y and infer from Lemma 3.1 that (a(y),b(y)) lies on the
closed segment with endpoints (a(x),a(x) —y) and (b(z) +vy,b(x)). So, the Euclidean R?
distance || - — - || between (a(y),b(y)) and (a(x),b(x)) satisfies the estimates

% ly — 2| <|l(a(y),b(y)) — (a(z),b(2))|| <y — =],

and the mapping I 3 z — (a(x),b(x)) is a homeomorphism.

Thus, we have proved that the set of positive critical pairs is a curve. Applying now
Lemma 3.1 we note that every pair above the positive critical curve gives (1)—(2) with
huge classes of positive solutions and every pair below the positive critical curve gives
(1)—(2) with no positive solutions. It remains to show that every point in (0,00)? that
does not belong to the set of critical pairs is either above or below the above set (this
will show in particular that I has more than one element, i.e., the critical curve is not
degenerate). For an indirect proof let us take (ag,bp) that is neither critical, nor above
the set of critical points, nor below it. Since (ag,bg) € La,—b, the trichotomy observed
at the beginning of the proof shows that (ag,bp) is either huge or trivial.

First assume that (ag, bo) is huge. Since (ag, bo) is not above the set of critical points,
no point below (ag, bg) is critical. Moreover, if a point (a,b) below (ag, bg) is trivial then
Lemma 3.1 would imply that there exists a critical point on the segment with endpoints
(a,b) and (ag,bp), so that (ag,bp) would be above a critical point. However, (ag,bp) is
not above the critical set. Hence, every point below (ag, bg) is huge. Note that for every
(a,b) € (0,00)? there exists (a,b1) € (0,00)? such that

(&1,b1)<1(a,b), (al,bl) <1(a0,b0).

We have just shown that (a1,b;) is huge, so Lemma 3.1 implies that (a,b) is huge. Thus
the set of critical points would be empty, which is a contradiction.
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Similarly, if (ag, bo) is trivial then every point above (ag,by) would be trivial, and
consequently, every point in (0,00)? would be trivial. =

Proof of Lemma 3.3. Similarly to the proof of Lemma 3.1, every power function f :
(0,00) — (0,00) such that
b
o0 < 0 <min( 21 ) oo, >0

agp bo
is a solution of (1)—(2). m
Proof of Theorem 8.4. Analogously to the proof of Theorem 3.2 define the rays

Lyy.={(a,B3,a,b) € (0,00)* ta=a+ba=y—b B=2-b}, z,y,2z€R;

define the positive power-critical points

(alz,y,2), B(x,y,2), a(z,y, 2),b(x,y, 2)) € Lay,-;
use Lemma 3.3 instead of Lemma 3.1 and repeat the argument of that proof.

In this way we construct a convex subset C' C R? and a homeomorphism between C'
and the positive power-critical set. The critical set is hence a topological manifold. The
argument from the proof of Theorem 3.2 shows that every point in (0, c0)* that does not
belong to the set of critical quadruples is either above or below that set. Lemma 3.3 says
that points above the critical set are huge and points below it are trivial. m

Proof of Lemmas 3.5 and 3.7. Similarly to the proof of Lemma 3.1, every function f :
(0,00) — (—00,0) such that
b
o0 < 0 <min( 2, D)0, >0
an bo
is a solution to (1)—(2). m

Proof of Theorems 3.6 and 3.8. One may use the rays L, and L., . defined in the
previous proofs and follow the same argument as in the proofs of the positive counterparts
of those results. m

Proof of Corollary 3.9. For the proof of the positive part of the corollary, note that,
by Lemma 3.1, for (d,b) above (a,b) the class of positive solutions to (1)-(2) (with @, b
substituted for a, b) is huge; for (@, b) below (a, b) the class of positive solutions to (1)—(2)
is trivial. Hence («, 8, a,b) is critical.

For the proof of the negative part, use Lemma 3.5 to show that the class of negative

solutions to (1)—(2) is trivial for (a, b) above (a,b) and that the class of negative solutions
to (1)—(2) is huge for (a,b) below (a,b). m

4. Sign, boundedness, rate of growth of solutions

The results of this section show that even huge classes of solutions of (1)—(2) have some
special structure. The results will be used in Sections 5-8.

Let us start with a theorem that allows us to consider separately nonnegative and
nonpositive solutions to (1)—(2).
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THEOREM 4.1. Let «,3,a,b > 0 be such that a« <1 < a+ 0. If f:(0,00) >R isa
solution of (1)—(2) then f is either positive, or negative, or identically zero.

Actually a stronger regularity is true, and Theorems 5.1, 5.2, 6.1, 6.3, 6.4, and 6.5,
which we will prove in the following sections, imply that for positive «, 3, a, b:

o if either (o, B,a,b > 1), or (« + B,a+b < 1),0or (¢ =a, =0, a+ [ =1) then
there are solutions to (1)—(2) that take both negative and positive values;

e otherwise, the solutions to (1)—(2) are either nonnegative or nonpositive; if moreover
a # « or b # [, then the solutions of (1)-(2) are either all nonnegative or all
nonpositive.

THEOREM 4.2. Let o, 3,a,b > 0 be such that o <1 < a+ (3, and define A =loga/loga.
Then there is a B € R such that for every nonzero f : (0,00) — R satisfying (1)—(2)
there exists a real M # 0 such that

L B A ) L o4 B

7S T@ <MY re(0,1) Lt < @) <MEP, b > 1

REMARK 4.3. If 8 > 1 then the inequalities of Theorem 4.2 are true for B = logb/log 3
and some M # 0. If 8 <1 then an estimation of B may be obtained by inspecting the
use of Lemma 2A.5 in the proof of the theorem. In particular, if a +b > 1 then the
inequalities are true for some positive B.

THEOREM 4.4. Let o, f3,a,b > 0. If f:(0,00) — R satisfies (1)—(2) then f is bounded
on every interval (0,T], T > 0.

PROPOSITION 4.5. Let «, 3,a,b > 0 be such that o < 1, and define A = loga/loga. If
f:(0,00) — R satisfies (1)—(2) then there exists a positive constant M such that

f) <Mt te(0,1; Mt < f(1), t>1

This section gives a complete account of power estimates on solutions of (1)—(2) that
hold true without any assumptions on a,b. Note that by using Lemmas 4A.1-4A.6 one
may additionally determine the sign of the constant M for some quadruples «, 3, a,b.
Moreover, Sections 5 and 7 improve the estimation of exponents in Theorem 4.2 and
Proposition 4.5.

4A. Proofs. This subsection starts with six lemmas and the proof of Theorem 4.4.
Then using Lemmas 4A.5, 4A.6 we prove Theorem 4.1; using Lemmas 4A.1, 4A.3 we
prove Proposition 4.5; and, finally, using Theorems 4.1, 4.4 and Lemmas 4A.1-4A.6 we
prove Theorem 4.2.

For brevity, this subsection skips explicit references to the global assumption that
«, B,a,b are positive and f is a real function on (0, c0).

LeEMMA 4A.1. Suppose o < 1, and define A = loga/loga. If f satisfies (1)—(2) and
there exists M € R such that

fO) =Mt tella™,
then f(t) > Mt4 for every t > 1.
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Proof. Take arbitrary t € [a~!,a~2) and a sequence of positive reals £, — 0. Then for
large n we have at + (3¢, € [1,a™!), and consequently, (1) implies

F(t) 2 a” flat + Be,) — a ' bf(a) > a M(at + o) — a”'bf (<),

Letting n tend to infinity and applying (2) we get f(t) > Mt for t € [a~!,a"2). By
induction, f(t) > Mt4 for t € [a™",a " !) with n = 0,1,2,.... So, f(t) > Mt for
t>1. nm

LEMMA 4A.2 Suppose 8 > 1, and define B = logb/log 8. If [ satisfies (1)-(2) and there
exists M € R such that

ft)=Mt?, e[,
then f(t) > Mt for everyt € (0,1).
Proof. Take arbitrary ¢t € [372,37!) and a sequence of positive reals ¢,, — 0. Then for
large n we have ae, + 3t € [371, 1), and consequently, (1) implies

ft) > b flag, + Bt) —b raf(e,) > b ' M(ae, + 8t)% — b af(e,).

Letting n tend to infinity and applying (2) we get f(t) > MtP for t € [372,371). By
induction, f(t) > Mt? for t € [37"~1,37") with n = 0,1,2,.... So, f(t) > MtP for
€(0,1). m

LEMMA 4A.3. Suppose a < 1, and define A = loga/loga. If [ satisfies (1)—(2) and
there exists M € R such that

ft) <Mt te(a,l],
then f(t) < Mt for every t € (0,1].

Proof. Take arbitrary ¢t € (a?,a] and a sequence of positive reals £, — 0. Then for
large n we have (t — 8z,)/a € («, 1], and consequently, (1) implies

o <or(L) woen ant () o)

Letting n tend to infinity and applying (2) we get f(t) < Mt4 for t € (a2, al.
induction, f(t) < Mt for t € (a™,a" '] with n = 1,2,.... So, f(t) < Mt" for t €
(0,1]. m

LEMMA 4A.4. Suppose B > 1, and define B =logb/log 8. If f satisfies (1)—(2) and there
exists M € R such that

fFt) <Mt?, te (1,0,
then f(t) < Mt for every t > 1.

Proof. Take arbitrary ¢t € (3!, 3% and a sequence of positive reals ¢, — 0. Then for
large n we have (t — ae,,)/8 € (1, ], and consequently, (1) implies

B
10) < aften) + b5 (T2 ) <apten +one (052
< MtE for t € (6',3%. By
1,2,.... So, f(t) < MtP for

Letting n tend to infinity and applying (2) we get f(t)
induction, f(t) < Mt? for t € (8", 4"1] with n = 0,
t>1. m
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LEMMA 4A.5. If o <1 and f is a nonpositive solution to (1)—(2) that is not identically 0,
then

sup{f(s):s >z} <0, x>0.
Proof. For an indirect proof assume that there is a sequence (z,), ©, > z, n € N, such
that lim, . f(z,) = 0. Fix s € (0,a"'z). Then t,, = (x, — as)B~! is positive for all
n € N and by (1) we have

af(s) +bf(tn) = flas+ Bt,) = f(zn), neN.

Letting n tend to the infinity we would get f(s) > 0 for every s € (0,a 'z). Hence
Lemma 4A.1 with M = 0 and with the function ¢ — f(xt) in place of f would give
f(s) > 0 for all s € (0,00). But f is nonpositive and nonzero. This contradiction
completes the proof. m

LEMMA 4A6. If a <1 < a+ 0 and [ is a nonnegative solution to (1)—(2) that is not
identically 0, then for every compact interval I C (0,00),
inf{f(s):sel}>0.

Proof. By Lemma 2A.5 we may assume that 5 > 1. For an indirect argument assume
that there exists a sequence (s,)n=12,.., $n € I, such that f(s,) — 0. We may assume
that s, converges to an s € I. Lemma 2A.2 and condition (2) show that for every
Aa,8 € Dq, g, for the corresponding A, 5, and for every positive sequence §,, — 0, we have

0 S f(Aa,Bsn + 511) S )\a,bf(sn) + Ca,bf((sn/ca,ﬂ) — 0.

Fix t € (0,00). Since 0 < o < 1 < 3, the set D, g is dense in (0, 00) and we may choose
Aa,3 and 4, so that the sequence t, = A\, gsp + 0y, is increasing and ¢,, — B~ 't. Because
f(t,) — 0, condition (2) leads to

0< f(t) =f(at‘5t” +5tn) Saf<

«@
and consequently, f would be the zero function. =

t_/gtn
«

) +bf(tn) — O,

Proof of Theorem 4.4. First let us prove that f is bounded above on (0,7]. For an
indirect argument assume that there exists a sequence t,, € (0,7T] such that f(¢,) — oo.
By (2) there exists a positive § such that f is bounded above on (0,d). Consequently,
we may assume that ¢, € [§,T] and the sequence t,, converges to to, € [6,7]. Put
z = (tos — 300) /3 and note that for n € N so large that ¢, > Sz, inequality (1) would
give

af(@) +bf(x) = f(tn) — o0

For n large enough (¢, — Bx)/a = (tn — teo)/a+6/2 € (0, 4], so the values f((t, — fz)/a)
are bounded above uniformly with respect to n, and hence f(z) = oo, which is a contra-
diction. Hence, there exists a positive M such that

f&) <M, te(0,T].

To prove that f is bounded below on (0, 7] take an arbitrary ¢ € (0,7). We have
already proved that f is bounded above on finite intervals, so we may assume that f is
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bounded above by a constant M on (0, (a/B)T). The number s = (o/B)(T — t) belongs
to (0, (a/B)T), so inequality (1) implies that
f(aT) = f(at + Bs) < af(t) + bf(s),
and consequently, -
J(t) = a”M(f(aT) —b]), L€ (0,T). m
Proof of Theorem 4.1. By Lemma 2A.5 we may assume that 3 > 1. Define

{f>0}={te€(0,00): f(t) >0}, {f<0}={se€(0,00): f(s) <0}
From (1) we infer that
af(a't —e) > f(t) —bf(Brae), e€(0,a't),t>0,
and consequently, (2) gives
(A1) te{f>0} = >0, (at—c,at)C{f >0}
Take Ao 3 € Do g- Lemma 2A.2 gives
Xavf(t) 4+ capf(8/cas) > f(Aapt+9d), t0>0,

where A\, 1, Cqob, Ca,p are corresponding positive constants. Hence, making use of (2) we
obtain
te{f <0} = F>0, NasgtAast+e) C{f <0}

Now assume that {f < 0} is nonempty. According to Lemma 2A.4 the set D, s is
dense in (0, 00). By the above implication {f < 0} is dense in (0, c0). Since {f < 0} and
{f > 0} are disjoint there does not exist a nonempty open interval contained in {f > 0}.
Applying (A1) we conclude that {f < 0} is empty. This shows that f is either nonnegative
or nonpositive, and Lemmas 4A.5 and 4A.6 complete the proof. =

Proof of Proposition 4.5. This proposition follows from Theorem 4.4 and Lemmas 4A.1
and 4A.3. =

Proof of Theorem 4.2. Recall that according to Lemma, 2A.5 we may assume that 5 > 1,
and consequently, use all the preceding lemmas. Because of Theorem 4.1 it is enough to
consider positive and negative solutions to (1)—(2).

First suppose that a nonzero function f is a negative solution to (1)—(2). To complete
the proof in this case it is enough to find m 4, M4, mp, Mp < 0 such that

mptB < f(t) < Mat?, 0<t<1; mat? < f(t) < Mpt?, t>1.

Theorem 4.4 and Lemmas 4A.1 and 4A.2 give the constants m 4, mp and the relevant
inequalities. Lemmas 4A.3, 4A.4, and 4A.5 give the constants M4, Mp and the relevant
inequalities.

Now suppose that a nonzero function f is a positive solution to (1)—(2). To complete
the proof it is enough to find my, M4, mp, Mp > 0 such that

mpt? < f(t) < Mat?, 0<t<1; mat? < f(t) < Mpt®, t>1.
Theorem 4.4 and Lemmas 4A.3 and 4A.4 give the constants M4, Mp and the relevant

inequalities. Lemmas 4A.1, 4A.2, and 4A.6 give the constants m 4, mp and the relevant
inequalities. m
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5. Convex and constant solutions

This section examines inequality (1) for «, 8 such that o + 8 < 1. We show that in this
case the solutions on the critical curves are convex or constant. Recall that the precise
meaning of being above or below a set is given in Section 2. In the following theorems,
by large exponents we mean exponents from a neighborhood of infinity; by small ones
we mean exponents from a neighborhood of 0.

All the figures appear after Section 10.

THEOREM 5.1 (cf. Figure 2). Suppose that o, 3,a,b >0 and o+ 5 = 1.

o If a+b <1 then all the solutions to (1)—(2) are nonpositive; the class of negative
solutions is huge and contains strips around power functions with small positive
exponents.

o If a+b=1 then

o if a = a, then the class of solutions of (1)—(2) consists of the conver functions
satisfying (2) (N. Kuhn [1984]);

o if a # « then the class of solutions to (1)—(2) consists of nonpositive constant
functions (Z. Kominek [1992]).

o If a+b>1 and a“b® < a®BP then the only solution to (1)—(2) is the zero function.
o If a®b’ = a*B” then
o if a = a, then the class of solutions of (1)—(2) consists of the convex functions

satisfying (2) (N. Kuhn [1984]);
o if a # « then the only solution to (1)—(2) is the zero function.

o If a®b® > B3P then all the solutions to (1)—(2) are positive; the class of positive
solutions is huge and contains strips around power functions with large positive
exponents.

Because for any constants v, sg the function s — g(s) = vg + f(s + so) satisfies (1)
iff f does, we can replace assumption (2) with f being bounded from above on an open
subset of the domain. Moreover, f can be defined on any convex set instead of (0, 00).
Alternatively, one can use Sierpinski [1920] to replace assumption (2) by measurability
of f.

Note the relation between the assumptions a + b > 1 and a®b® > a®35. Since the
function (0,1) 3 a — aloga+ (1 — a)log(l — a) has a unique global maximum at a = «,
the assumption

a®b? > a*p°
implies
aloga+ (1 —a)logh > aloga+ (1 —a)logf = aloga+ (1 —a)log(l — «)
> aloga+ (1—a)logl —a,
and consequently, b > 1 — a, that is,
a+b>1
with equality only if a = «.
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Hence, the theorem implies that the positive critical curve for a + § = 1 is given by

o a/B
bpositive critical(a) =0 (_) , a> 0,

a

and the negative critical curve is given by

bnegative critical(a) =1-—a, a € (O, 1).
THEOREM 5.2 (cf. Figure 1). Suppose that o, 3,a,b > 0 and o+ 3 < 1. Then the class

of positive solutions of (1)—(2) is huge and contains strips around power functions with
large positive exponents. Moreover,

e if a+0b < 1, then the class of negative solutions of (1)—(2) is huge and contains
strips around power functions with small positive exponents.

e if a+b> 1, then all solutions to (1)—(2) are nonnegative;

o if a+b =1, then the class of negative solutions of (1) consists of constant functions.

REMARK 5.3. Theorems 5.1 and 5.2 show that if & + 8 = 1, then the pairs (a,b) such
that a®b® < a®B3” do not belong to the positive critical curve for (o, 3). However, the
quadruples (o, 3, a,b) such that a + 8 = 1, a®b® < a®3? are critical. See Figures 1-2.

5A. Proofs

LEMMA 5A.1. Let a,b,«a, 3 be positive. If there exists a positive p such that
a b
J + @ <1,

then (1) is satisfied by functions from a strip around (0,00) > t — —tP. In particular,
the class of negative solutions to (1)—(2) is huge.

Proof. Define
a b

Then for s,t > 0 we have
a as Pp Ot P
—as? —bt? = — P — — > K £y
a5 (a5 + 5t) (ap<as+5t) +ﬂp(as+ﬁt>>_ (a5 + BE)7,
and according to Remark 2.1, the class of solutions to (1)—(2) contains a strip around
(0,00) 2t — —tP. m

Let us present two lemmas from the literature of the subject. The first one was
proved by N. Kuhn [1987]; the second one is a particular case of the main result of
Z. Kominek [1992].

LEMMA 5A.2 (Kuhn [1987]). If «,(3,a,b > 0 are such that a + 5 =1, a+b =1, then
each function f satisfying (1) is Jensen-convex.

Following Matkowski and Pycia [1995b] we give a simple proof of this lemma based
on an idea of Dardczy and Pales [1987]:
Proof. From the identity

s+t
5~

a{as—’—t—&—ﬁt} +ﬂ[as+ﬁ

s+t
2

2
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and (1) we have, for all s,t > 0,
s+t s+1 s+t
f< 5 > f(a[az Jrﬂt] +ﬂ{as+52 ])

Saf(a%”%—ﬂt) +bf<oz8+ﬁas+t>

2
< a2f<s;Lt> +abf(t) + baf(s) +b2f<ST+t>,
which means that
a(l—a)f(sgt)ga(l—a)w, s,t >0,

and the lemma follows. =

LEMMA 5A.3 (Kominek [1992]). If «,3,a,b > 0 are such that « + 3 =1, a+b = 1,
« # a, then each function [ satisfying (1)—(2) is constant.

Following Matkowski and Pycia [1995b] we give an elementary proof of this lemma:

Proof. According to Lemma 5A.2 the function f is Jensen-convex; Bernstein-Doetsch’s
Lemma 2A.6 implies that f is convex and continuous.

Let us fix an arbitrary point ¢, > 0 and define the function g : (—tp,00) — R,
g(t) = f(to +t) — f(to). It can be checked that g is convex and satisfies

ag(s) +bg(t) > glas+ Bt), s,t > —to.
Since g(0) = 0, from this inequality we obtain
glat) <ag(t), g(Bt) <bg(t), t>—to.

Hence we get

glat) _ag(t) g(Bt) _ b gt

(A1) ot Sa t° Bt =@ ¢ 70
glat) _ag(t) g(Bt) _ bgt)

(42) ot 2ot gt 25 ¢ (€0

As a convex function, g has one-sided derivatives ¢',, g’ at 0. So, letting ¢ tend to 0 in
inequalities (A1), we get

g (0) <aa"'g,(0), ¢(0) <bB g (0).

Since a # «, it follows that ¢/, (0) = 0. In the same way, making use of (A2), we show
that ¢’ (0) = 0. Thus we have proved that ¢’(0) = 0. By the definition of g we hence get
f'(to) = ¢’(0) = 0. Since ¢y has been arbitrarily chosen, this completes the proof. m

In the proofs of the theorems we will also use Lemma 5A.4, which allows us to improve
estimates of Section 4, and Lemma 5A.5, which allows us to estimate the parameters of
Lemma 5A.4. Lemma 5A.5 is a particular case of the Holder inequality.
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LeEMMA 5A.4. Suppose that o, 3,a,b >0, q, M € R, s € (0,1), and

(A3) m <min(as™, (1 —-5)""), 0<m<1,
(A4) o=aa 1T+ b879(1—s)! < 1.
If f:(0,00) — R satisfies (1), and
(A5) f(t) < Mto, te(0,1],
then
M +log o/logm
(AG) f(t)ggtq £ oro8 ) te(oa”
Proof. Put

r=s/a, y=(1-s)/p.
First, by induction, we show that
(A7) ft) < Mo™"t?,  t<m",
for all n € N. In view of (A5) this inequality is true for n = 0. For the inductive step fix

n € N, suppose (A7) holds true, and take t < m"*!. By (A3) we have

+1 n+1

st<m Ut <m Im"t=m", yt<mt<mim =m".
Hence, by (1), the equality ax + Sy = 1, and the definition of p,
F(t) < af(xt) +bf(yt) < aMo"(xt)? + bM " (yt)? = M" (ax? + by?)t? = Mo" 111,
which proves (AT).
Rewrite inequality (A7) in the form
f) < % o't te (m™t m"], neN.

Conditions (A3) and (A4) give log o/logm > 0. Consequently, for t € (m"*1 m"] we get

f(t) < % Qn—l-ltq — % (mlog g/logm)n+1tq _ % (mn+1)logg/logmtq
N 0
< M tlogo/logmyq M a+log o/logm.
0 0

Because [J,—,(m"",m"] = (0,1], the above inequality yields (A6) and the proof is
complete. m

LEMMA 5A.5. Suppose that o, (3,a,b > 0 and q > 1. Then there exists exactly one
€ (0,1) such that

s g () = min (s ).

al 16} $€(0,1) 34
Moreover,
B @
Sq¢ = ot qimﬁ7
and

; 4 q 1 !
sg(ltl)fll) < * @( =9 > - ( Vajao+ q?/ﬁ/bﬁ) .
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Proof. Consider the function
a b
0.1]3 5= By(s) = o+ (1= )",
Since &7 is positive, and &, (0) < 0, (1) > 0, the function &, is strictly convex,
decreasing on an interval [0, s,], and increasing on [sq,1]. The minimum s, € (0,1) is
uniquely determined by & (s,) = 0. Put

o(q) = QSQ(SQ),

and note that the definition of s, means that

a b _
(A8) o 54 1=:Eg(1—8qﬁ g
SO
a b _ [
Q(Q):SqasglJr(l*Sq)@(l Sq)qlzasgl

Solving (A8) gives

@
%= o+ q_\l/aﬁ/abﬁ'

Hence,

o) = ( Wai QWM,)“7

which completes the proof. m

REMARK 5A.6. For positive a, b, o, § define the function F = F, o5 : [0,1] x Ry — R
by the formula

F(s,r)=aa™"s"+b87"(1—9)", s€]0,1],r>0.

Note that the function (0,00) 2 ¢ — ¢" satisfies (1) if and only if F(s,7) > 1for s € (0,1).
Indeed, (1) means that

T T

s
b >1,  st>0,
“ (as + Bt)T * (as+ pt)r — s

and substitution of s for as/(as + (t) completes the proof.
Similarly, the function (0,00) 3 t — —t" satisfies (1) if and only if F(s,r) < 1 for
€ (0,1).

Proof of Theorem 5.1. Taking s =t in (1) we note that
(A9) (a+0b)f(t) > f(t), t>0.

Hence, if a + b < 1 then each f : (0,00) — R satisfying (1)—(2) is nonpositive. Moreover,
the class of negative solutions to (1)—(2) is huge by Lemma 5A.1 applied with p > 0 such
that a+b < aP,a+b < GP.

The case a + b =1, a = « (and hence b = (3) follows from Kuhn’s Lemma 5A.2 and
Bernstein—Doetsch’s Lemma 2A.6. The case a + b = 1, a # «, follows from Kominek’s
Lemma 5A.3.
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Taking into account the second remark following Theorem 5.1 we may assume in the
following that a + b > 1. By (A9) all solutions are nonnegative in this case. Define the
function

(o) 3 am o) = inf (st 55 (0-07).

(0,1) \ a4

According to Lemma 5A.5 for every g > 1 there is a uniquely determined number s, €
(0,1) such that

> (1= s5q)7.

¢ (8)7 + 34

e = ( Wai WTW) ~

Define two auxiliary functions

o= 00 =3 [%ar Y5 v =i Tarog e T p0s g1

and note that

1
¢'(q) = ——3 (@), V(<0 forg>1.
(¢—1)
If a®b® > a3 (the condition of the last item of Theorem 5.1) then
lim ¥(q) = ozlogg +ﬁlog§ < 0.
q—o0 a b

Since v is negative in a neighborhood of infinity the above formula on ¢’ implies that in
the neighborhood of infinity ¢ increases to lim,_. ¢(¢) = 1. Hence o(q) = ¢(q)' 9 is
greater than 1 in the neighborhood of infinity. According to Remark 5A.6, the class of
solutions to (1)—(2) is huge and for any ¢ > 1 such that o(q) > 1, the class contains strips
around (0,00) 3 ¢ — t9.

Now it only remains to prove the theorem for a +b > 1 and

(A10) a®bP < apP.

The latter condition shows that either a < «a, or b < 3. By symmetry it is enough to
consider the case a < a. Since a +b > 1 = a + £, it follows that b > 3, and (A10) gives
a < a. Because of (A10) we also have

lim ¥(q) = ozlogg Jrﬂlog% > 0.
a

q—0o0

So, the decreasing function ) is strictly positive; and the formula on ¢’ implies that ¢
decreases to lim,_.o ¢(¢) = 1. Hence

olg) =plg)"9<1, ¢>1

The idea of the rest of the proof is to apply Proposition 4.5 and Lemma 5A.4 to
estimate solutions of (1)—(2) from above. First put

loga
Q=

b

- log

and estimate log o(q) for ¢ > ¢1. To this end note that there is a positive constant C
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such that 1’(q) < —C/(q —1)? for ¢ > 1. Hence
T C c C
> ————)dr > e — 1.
w2 Jim o) - | (- ) arz 0+ S = L o
q
Next,
'q) < — 1 c _ C
R Ve S IS )X
and
N C c
> i — - )dr=14 —— 1.
pla) = lim o(p) S < (T1)3> r=ltoe 17
q
Consequently, there is a positive C, such that
C C
1 >1 1 > e
ogp(q) = Og( M 1)2) 2oy 1Zm
and
(A11) log 0(q) = (1 — q)log (q) < (1 —q) Co __ Ce >
Now define
()
m(g) = min .
sq 1—3s4
Inserting here the value of s, calculated in Lemma 5A.5 gives
. q—1 (Lﬁ q—1 ba q—1 aﬁ
= R P — - 1
m(q) = min (a+ 5> ,//Baaﬂi) at o BE (1),
and
1 q—1 Clﬁ 6
"(q) = — U log — > 0.
For C' = —flog %7 we have
C
m’(q) < ,oa>1,
& (¢—1)?
and -
This inequality (for large ¢) and m(q) > « > 0 (for small ¢) give us a positive C,,, such
that
(A12) 0> logm(q) > — Cm q>q
= @-n T
Finally, consider the increasing sequence (¢, )n=1,2,... defined by
log 0(gy)
= —5Edn) =1,2,.
qn+1 n logm(qn)’ )4y

By (All) and (A12) there exists a constant A = C,/C,, > 0 such that
(A13) Gnt1 > qn+4, n=12....
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Consequently, for each f satisfying (1)—(2) Proposition 4.5 gives a constant M > 0 such
that

) <M, te(0,1],
and Lemma 5A.4, with m(g,) substituted for m, and o(g,) substituted for p, and s,
substituted for s, gives by induction

M

fH)< — g e (0,1, n=1,2....
() o(q1) -+ o(qn) (0.1
Consequently, (A13) leads to
A 1A

(A14) f) < Mt

olg1)  olgn)’
Consider g, > 2. Then the concavity of the (¢, — 1)-root and the equality oo+ 5 = 1 give

te(0,1,n=1,2,....

< ( 1 )th—l B 1 B (2)
~\ "Vlafa)a + (5/b)B ~ (ofa)a+ BB~ 0

Hence, for positive ¢t < o(2)'/4 the estimate (A14) means that f(t) < 0. Fix now an
arbitrary > 0, and consider the function

(0,00) Btng(t):f<Q(22ﬁt>.

Since the function g, satisfies (1)—(2), we have

) = a2 50272 ) <o

which completes the proof of Theorem 5.1. m

Proof of Theorem 5.2. The class of positive solutions contains strips around the power
functions ¢ — tP for large p. Indeed, take p such that

min(a, b)

 (a+p)P L

note that for s,¢ > 0 we have
as? +bt? > K(a+ B)P(sP +tP) > K(a+ §)P(max(s,t))? > K(as + [t)P,

and take into account Remark 2.1.

If a+b<1 then
b

a
o + =<1
for small positive p. Thus Lemma 5A.1 shows that the class of negative solutions contains
strips around ¢ — —tP for small positive p.
Now suppose a + b > 1. If f is a solution to (1)—(2), and there exists s > 0 such that
f(s) <0, then
flla+B)"s) < (a+b)"f(s), neN.
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Consequently, (o + 3)"s — 0 and f((a + 3)™s) — —oo, which would contradict Theo-
rem 4.4. So, for all s > 0 we have f(s) > 0.
Suppose now that a + b =1 and f is a nonpositive solution to (1). Define

S = lim iélf f(s),

and fix a decreasing sequence of positive reals s, — 0 such that f(s,) — S. By Theo-
rem 4.4 we have liminf, .o f(s) > —oo, so S is a nonpositive real. Take now arbitrary
t > 0 and fix the sequence t,, such that as,, + 0t, = t. Note that for large n the numbers
t,, are positive. For these n we have, from (1) and nonpositivity of f,

f@t) <af(sn) +bf(tn) < af(sn) — al.
This is true for arbitrary positive ¢, so in particular f(¢,) < aS, and we get
f@) <af(sn)+bf(tn) <af(sn)+baS — (a+ ad)s.

Repeating the procedure we obtain f(t) < (a + b(a + ab))S = a(1 + b + b?)S, etc.

Consequently,
1

1-b
which shows that f(¢) < S for all t > 0. On the other hand, by (1) we have

f@&)=@+d)"ft) > f((a+B)"t) forn=1,2,....
Letting n tend to infinity we get f(¢) > S. Thus, f is constant. =

fO <al+b+b>+b*+---)S=a S=8,

6. Subadditive-like solutions

This section is devoted to the case of 3 = 1 or « = 1. Additionally, the last theorem
of the section deals with the case o, 5 > 1. Along with Sections 7 and 8, this section
provides a complete solution to (1)—(2) for parameters such that min(a, 8) <1 < a+ 5.
Theorems 6.1, 7.1, 7.3, and 8.2, and Proposition 8.1 give a complete description of the
solutions to (1)—(2) for critical quadruples.

First consider the case b = 8 = 1, which reduces inequality (1) to

af(s)+ f(t) > fas+1t), s,t>0.

Solutions to this inequality were considered by J. Matkowski [1994b], who called them
(a, a)-subadditive functions. He showed that («,a)-subadditive functions satisfy prop-
erties originally proved by E. Hille [1948, Section 7] and R. A. Rosenbaum [1950] for
subadditive functions. Among other results, Matkowski proved

THEOREM 6.1 (J. Matkowski [1994b]). Suppose that a,oc > 0 and b = § = 1. If
f :(0,00) — R satisfies (1)—(2) then for every t > 0, the one-sided limits f_(t) =
limg_,_ f(s) and fyi(t) =lim,_,, f(s) exist, and

f () < f(t) < F-(1).

In particular, for every quadruple considered in this theorem the class of solutions of
(1)—(2) is not huge. It is also not trivial because it contains either positive (if a > «) or
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negative (if @ < «) linear functions. Thus for every (a, 3) € (0,00)? such that 3 = 1,

e the set {(a,b) € (0,00)? : b =1, a > a} is contained in the positive critical curve;
e the set {(a,b) € (0,00)? : b =1, a < a} is contained in the negative critical curve.

REMARK 6.2. J. Matkowski and T. Swigtkowski [1994] considered one-to-one (a,a)-
subadditive functions. Among other results, they proved that if a,a > 0, b =
=1, and f : (0,00) — R is one-to-one and satisfies (1)—(2), then f is an increasing
homeomorphism of (0,00) onto the range of f. They considered the case of subadditive
functions in [1991].

As in Section 5, large exponents in the following theorems mean exponents from a
neighborhood of infinity; small exponents are from a neighborhood of 0.

THEOREM 6.3 (cf. Figure 6). Let f =a = 1.

e If a,b > 1 then all solutions to (1)—(2) are nonnegative; the class of positive so-
lutions is huge and contains strips around power functions with exponents from
(0,1).

e Ifa,be (0,1) then all solutions to (1)—(2) are nonpositive; the class of negative so-
lutions of (1)—(2) is huge and contains strips around power functions with exponents
greater than 1.

e If0<a<l<bor0<b<l<a then the class of solutions of (1)—(2) is trivial.

THEOREM 6.4 (cf. Figure 7). Let =1, a > 1.

o If a,b > 1 then all solutions to (1)—(2) are nonnegative; the class of positive solu-
tions is huge and contains strips around power functions with small exponents.

e If b>1and 0 < a <1 then (1)—(2) has only the zero solution.

o If 0 < b <1 then all solutions to (1)—(2) are nonpositive; the class of nonpositive
solutions is huge and contains strips around power functions with large exponents.

Symmetry gives the counterpart of Theorem 6.4 for 3 > 1, a = 1. The case =1,
a <1 (or 8<1, a=1) will be treated in Corollary 7.5.

THEOREM 6.5 (cf. Figure 8). Let o, > 1, a,b > 0. Then the class of negative solu-
tions to (1)—(2) is huge and contains strips around power functions with large exponents.
Moreover,

e Ifa,b> 1 then there is a huge class of positive solutions of (1)—(2) which contains
strips around power functions with small exponents.
e Ifa <1 orb <1 then all solutions to (1)—(2) are nonpositive.

REMARK 6.6. Theorems 6.3 and 6.4 show that if &« > § = 1 then the pairs (a,b) such
that b > 1 do not belong to the negative critical curve for (a,3). However, the quad-
ruples (a, 3, a,b) such that « > 8 =1, b > 1 are critical (this follows from comparison
of Figures 6-8). Similarly, if 3 > o« = 1 then the pairs (a,b) such that a > 1 do not
belong to the negative critical curve for (o, 8), but the quadruples («, 3, a,b) are criti-
cal.



Linear functional inequalities 33

6A. Proofs

Proof of Theorem 6.1 (Matkowski [1994b]). Fix ¢ > 0 and choose two sequences (¢, ), (sn)
such that t < t, < s,, n € N, lim,,_,~ s, = ¢, and

limiﬂff(s) = lim f(t,), limsup f(s)= lim f(s,).
S— n—oo s—t+

Theorem 4.4 implies that lim, ., f(t,) and lim,, . f(s,) are finite. From (1) we have
f(sn) = f(a(a_l(sn —tn)) +tn) < a,f(oz_l(sn —tn)) + f(tn), mneN.
Letting n tend to infinity and making use of (2) we get

limsup f(s) < liminf f(s),
s—t+ s—t+

which proves that the right limit f, () exists. Similarly,
flsa) = fla(a™ (sn = 1) +1) S af(a™ (sn = 1)) + f(t), neEN,
and, letting n — oo in this inequality, we obtain f1(¢) < f(¢).
In a similar way, choosing (t,), (s,) such that ¢, < s, <t,n €N, lim,_, t, =t we
can prove that the left limit f_(¢) exists and f(¢) < f_(¢). m

LEMMA 6A.1. If 0<a <1< a and b, > 0, then all solutions to (1)—(2) are nonposi-
tive.

Proof. Take f : (0,00) — R which satisfies (1)—(2) and fix a positive €. By (2) there is §
such that ¢ is an upper bound of f on (0,4). For s € (0,4), t > 0, inequality (1) gives

flas +Bt) < af(s) +0f(t) <e+bf(1).
Letting ¢ — 0 we find that ¢ is an upper bound of f on (0,«d). By induction, ¢ is an

upper bound of f on (0,a"d) for n = 1,2,.... Consequently, ¢ is an upper bound of f
on (0,00). Now, since ¢ was fixed arbitrarily, f is nonpositive. m

LEMMA 6A.2. If 8 =1<b and «,a > 0 then every solution of (1)—(2) is nonnegative.

Proof. For an indirect argument suppose that f(tg) < 0 for some to > 0. By (2) there
exists a positive ¢ such that

af(s) < 3(1=b)f(to), s€(0,4],
and consequently, by (1),
flas+to) < af(s)+bf(to) < 3(1+0b)f(to), s€(0,6],
and, for s € (0, ],
flas+ty) = f(a%s —i—a%s +t0) < af(%s) +bf(a%s+t0)
< 3(1=0)f(to) +bz(1+0)f(to) = 5(1+ %) f(to)-

By induction, for all n € N,
1
f(as+t0):f(a ++C¥%+t0) <§(1+bn)f(t0), 86(0,6].

Letting n tend to oo gives f(as + tyg) = —oo for s € (0, ¢], and completes the proof. =

S
n

LEMMA 6A.3. If 5 =1>0b and a,a > 0 then every solution of (1)—(2) is nonpositive.
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Proof. The indirect proof is analogous to that of Lemma 6A.2. Assume f(to) > 0. By
(2) there exists § € (0,to) such that

©f(s) < l(% - 1)f(t0), s € (0,4].

2
Consequently, for s € (0, 4] inequality (1) implies that
1 a 1 1/1 1 1
—as) > - - - — (== == - )
o= a9)2 3 )~ § 1(6) > 5 100~ 3 (5~ 1) 700 = 5 (143 ) e
and by induction, for all n = 1,2,..., we obtain
1 1
f(t() — 018) > 5 (1 + b—n)f(t()), ENS (07 (5]

Letting n tend to oo gives f(tp — as) = oo for s € (0, d] and completes the proof. m

Proof of Theorem 6.3. If a,b > 1 then by Lemma 6A.2 all solutions to (1)—(2) are nonneg-
ative. Since positive power functions with exponents from (0, 1) are positive subadditive,
Lemma 3.1 implies that the class of positive solutions to (1)—(2) is huge and contains
strips around power functions.

If a,b € (0,1) then by Lemma 6A.3 all solutions to (1)—(2) are nonpositive. Since
negative power functions with exponents greater than 1 are subadditive, Lemma 3.5
implies that the class of negative solutions to (1)—(2) is huge and contains strips around
power functions.

IfO<a<l<bor0<b<1< athen each solution is nonnegative (by Lemma 6A.2
and its counterpart for « = 1 < a) and at the same time nonpositive (by Lemma 6A.3
and its counterpart for « = 1 > a). Hence the class of solutions of (1)—(2) is trivial. =

Proof of Theorem 6.4. If a,b > 1 then Lemma 6A.2 shows that all solutions to (1)—(2)
are nonnegative. Take K € (1, min(a, b)) and a positive p < 1 satisfying KaP < a. Then

K(as+t)? < KaPs? + KtP < as? + bt?,

so, according to Remark 2.1, the class of positive solutions to (1)—(2) contains strips
around t — tP.

If a <1 then Lemma 6A.1 shows that every solution of (1)—(2) is nonpositive. Since
Theorem 6.1 says that the class of solutions to (1)—(2) is not huge for b = 1, Lemma 3.5
implies that the class of solutions to (1)—(2) is trivial if b > 1.

If b < 1 then Lemma 6A.3 shows that all solutions to (1)—(2) are nonpositive. Take a
real p > 1 such that a? > a. Then

(as+t)P > aPsP +tP > min(a®/a, 1/b)(as? + btP),
so, according to Remark 2.1, the class of negative solutions of (1)—(2) contains strips

around t — —tP. m

Proof of Theorem 6.5. The class of negative solutions of (1)—(2) is huge because large
positive p satisfy the condition of Lemma 5A.1.

In order to show for a,b > 1 that the class of positive solutions is huge take a pos-
itive p < 1 such that a > oP, b > (P. By the subadditivity and homogeneity of the
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power function (0,00) 3 t — fo(t) = t? we have fo(as + 8t) < aPfo(s) + P fo(t), and
consequently, every function f : (0,00) — R such that
fo(t) < f(t) < min(a/a”,b/8%) fo(t), >0,
satisfies (1)—(2).
The remaining statement of the theorem follows from Lemma 6A.1. u

7. Convex homogeneous solutions

In this section we consider (1)—(2) with parameters a,b, a, 3 such that o < 1 < a + .
Theorems 7.1 and 7.3 give a complete description of the solutions to (1)—(2) for critical
quadruples.

The auxiliary Subsection 7A.1 shows that for each pair (¢, ) such that a < 1 < a+ 0
there exists a unique pair (u, g, ws g) of positive reals such that
Wa,p <1 <Uap, QUap+Pas=1, aUapgloguas=—Fwapslogwa,s.

We use the name scaling factors of the pair (o, 3) when referring to (v, wa,5). For
brevity we will write u and w whenever it is clear that the symbols refer to the scaling
factors of the pair («, 3). The pair of scaling factors (u, w) depends continuously on («a, 3).
This notion is used in the formulation of the theorems of this section.

THEOREM 7.1. Suppose that 0 < a < 1 < a+ 3, and denote by (u,w) the pair of scaling
factors for (o, 3). If a,b,p > 0 are such that

oau = au?, [w = buwP,
then a function f : (0,00) — R satisfies (1)—(2) if and only if it is convex and
Flut) = f(t),  flwt) = wrf(t), t> 0,
Observe that (cf. Subsection 7A.5):

e ifa € (o, ) then p € (0,1), and consequently, solutions to (1)—(2) are nonpositive;
e if ¢ < a then p > 1, and consequently, solutions to (1)—(2) are nonnegative.

For almost all «, 8 considered in the above theorem log u/logw is irrational; then the
solutions of (1)—(2) are power functions. If ¢ = a, b = 3 then the solutions are linear.
COROLLARY 7.2. Let a,b,a, 0 and u,w,p be as in Theorem 7.1.

(1) If logu/logw is irrational then f satisfies (1)—(2) if, and only if,

f@)=r@)er,  t>0,
where f(1) is nonnegative for p > 1, and nonpositive for p € (0,1).
(2) If p=1 then f satisfies (1)—(2) if, and only if,
f@®) =f(nt, t>o.

The second part of this corollary was proved in a different way by J. Matkowski (cf.
Matkowski [1990b, 1992a] and Matkowski and Pycia [1995a]).
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THEOREM 7.3. Suppose that 0 < a < 1 < a+ 3, and denote by (u,w) the pair of scaling
factors for (o, B). If a € [au,1] and b =1 — a, then f : (0,00) — R satisfies (1)—(2) if
and only if f is constant and nonpositive.

The above two theorems completely describe the critical curves in the half-plane
{(a,b) : a > a} and the classes of solutions of (1)—(2) for the parameters from the critical
curves. The description of the remaining part of the critical curves depends on whether
[ is smaller than, equal to, or greater than 1. If 8§ < 1 then a and 3 play symmetric
roles, and the above theorems may be applied to describe solutions and critical curves.
Recall that the precise meaning of being below, or above, a set is given in Section 2.

COROLLARY 7.4 (cf. Figure 3). Suppose that 0 < «,8 < 1 < a+ (3, and denote
by (Ua,p,Wa,p) the scaling factors for (o, (), and by (up.a,ws.o) the scaling factors

for (B,a). Then the positive critical curve is given by
ﬁl/ﬁwa,ﬁaauu,ﬁ/ﬁwa,ﬁ’ a<a,
bpositivecritical(a) =

1 @ [e3 pyes
B/ Bws.aqaus.a/Pupa g > @

and the negative critical curve is given by

1—a, [O aug, 04]
BY/Bws.agous.a/Brse g € [aug.q,0l,

b ti iti l(a) =
negative critical ﬂl/ﬁwaﬁ aaua,ﬁ/ﬁwa,ﬁ’ [a AU, ﬁ]
1—a, [ QU 3, ]

o If (a,b) is above the positive critical curve then all solutions to (1)—(2) are positive,
and the class of positive solutions is huge.

o If (a,b) is below the positive critical curve and above the negative critical curve then
the only solution to (1)—(2) is the zero function.

o If (a,b) is below the negative critical curve then all solutions are nonpositive, and
the class of nonpositive solutions is huge.

The huge classes of this corollary contain strips around power functions.
The description of the case § = 1, begun in Section 6, is also completed by:

COROLLARY 7.5 (cf. Figure 4). Suppose that 0 < a < 1, 8 =1, and denote by (u,w) the
scaling factors for («, 8). Then the positive critical curve is given by

51/Bwaozu/ﬂw7 a<a,

bpositive critical (@) = {

1, a > a,
and the negative critical curve is given by
1, a € [0,q],
bnegative critical (@) = { BY/PCa®/Pv  q € [, g g),
1-a, a € [ouq g, 1].

o If (a,b) is above the positive critical curve then all solutions to (1)—(2) are positive,
and the class of positive solutions is huge.
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e If (a,b) is below the positive critical curve and above the negative critical curve then
the only solution to (1)—(2) is the zero function.

o If (a,b) is below the negative critical curve then all solutions are nonpositive, and
the class of nonpositive solutions is huge.

The huge classes of this corollary contain strips around power functions.

The case § > 1 requires some new results and will be discussed in Section 8.

7A. Proofs

7A.1. Scaling factors. We show the existence and uniqueness of the scaling factors (u, w)
for the pair (a, 8) such that 0 < @ < 1 < a+ . The scaling factors are defined as positive
reals such that:
O<w<1<u,

(A1) au+ fw = 1,
(A2) aulogu = —fwlogw.
Condition (A1) will be satisfied if w = (1 — au)/B. Given this, the inequalities will be
satisfied if u € (1,a~!). Indeed, first note that a+3 > 1 implies that w = (1 — au)/3 < 1
if u > 1. Moreover, w = (1 — au)/8 > 0 if u < a~!.

Consequently, it is enough to prove that there exists a unique u € (1,a~') such that
—au 1—au

1 =0.
3 og 3 0

The existence of u follows from the continuity of ¢ and the relation

$(1) <0< lim_ (s),

Y(u) = aulogu+ 8 L

which is a consequence of the inequality @ < 1 < a + . The uniqueness of u is a
consequence of the monotonicity of 1; the monotonicity follows from
1—au

5

Finally, the monotonicity of ¢ and its continuous dependence on the parameters «,
implies the continuous dependence of u (and hence w) on « and g.

> 0.

Y (u) = alogu — alog

7A.2. Basic lemma. The proofs of the results of Section 7 are based on Lemma, 7A.2.
In its proof we apply

LEMMA TA.1. Suppose p € (0,1) and a,b € R satisfy pa + (1 — p)b = 0. Let E be the
closed additive subgroup of R generated by a,b. Then every upper bounded and upper
semicontinuous function ¢ : E — R satisfying

(A3) o(t) <pop(t+a)+ (1 -p)op(t+0b), tek,
1s constant.

Proof (suggested by S. Kwapieri). If ¢ is not constant on F then there exist z,y € F
such that ¢(z) > ¢(y). By the upper semicontinuity of ¢ there exist a neighborhood V/
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of y — x and an € > 0 such that
o) —e>P(s), scx+V={z+t:teV}
Inequality (A3) gives, by induction with respect to N = 1,2,... (in the sums below, the

numbers aq,...,ay are taken from the set {a,b}; if a; = a then p; = p; if a; = b then
p; = 1 — p; in the inductive step, (A3) is applied to the second summand),
N
o)< Y 3 P pad(t+ar+ -+ an)
n=1la;¢V,...,a1++an_1¢V, a1+-+an, €V
+ > pre- pn@(t+ar+ - +an).

a1¢V, ey a1+---+aN,1¢V, a1+~~-+aN¢V
Let M be a global upper bound of ¢. The above inequalities give
N

o) < (X > prepa ) (6(x) — )

n=1 a;¢V,...,a1+ +an_1¢V,a1++an€V
+ ( Z p1-- 'PN)M'
a1V, ...,a1++an_1¢V,a1++tan gV

Consider the probability measure 1 on E given by p(a) = p and u(b) =1 — p. In the
lemma we assumed that u(a)a + p(b)b = 0, so the random walk on E governed by the
measure p is recurrent (cf. W. Feller [1971, Th. VI.10.4]). Thus the probability that the
random walk starting from 0 reaches V' in the 1st, 2nd, ..., or Nth step tends to 1 as
N — o0, that is,

N
5 5 P L
Z p1---pn — 0.

a1¢V,...,a1++an-1¢V,a1+--+an gV
Consequently, ¢(z) < ¢(x) — e, which is a contradiction. m
The above lemma is a particular case of an equivalence between the structure of the
class of superharmonic functions on a Markov chain and the recurrence of the chain.
J. Azéma, M. Kaplan-Duflo and D. Revuz [1966, 1969], R. K. Getoor [1990], and M. Py-
cia [1997] study this equivalence for various classes of Markov chains.
As a corollary we obtain the following crucial

LEMMA TA.2. Let a,b,a,8 > 0, u,w > 0, p > 0 be such that « < 1 < a+ (8 and (A1)
holds true. Suppose that

(A4) au? 4+ bw? =1,

(A5) auP logu = —bw” logw.

If f:(0,00) — R satisfies (1) and the function (0,00) > t +— f(t)/tP is bounded above,

then f is convexr and

(A6) Flut) =w?f (1), fwt) = wf(), t>0.
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If, in addition, logu/logw is irrational then
f(t) = Fyer, >0
Proof. Define ¢ : R — R by the formula

o(t) = f(e")/e", tER,
and note that it is bounded above. Substituting ut for s, wt for ¢, taking into account
(A1), and writing (1) in terms of the function ¢ gives the following inequality of the
form (A3):
auPp(t +logu) + bwPp(t +logw) > ¢(t), teR.
Put
E = closure of {jlogw +ilogu: j,i € Z} in R,

and adopt the notation t + E = {t + s : s € E}. Now if ¢|;4 g is upper semicontinuous
then, by (A4), (A5), and boundedness above of ¢, the conditions of Lemma 7A.1 are
satisfied. Hence, if @[, g is upper semicontinuous then it is constant. The rest of the
proof is divided into two independent parts.

CASE logu/logw € Q. Take t € R. Then the sets E and ¢t + E are discrete. Hence @[ g
is continuous, and consequently, constant. Thus f satisfies (A6).
To show the convexity of f, apply (A6) and (1) to get

au® f(s) + bwP f(t) = af(us) + bf(wt) > f(aus + fwt), s,t> 0.

Since au, au? € (0,1), this inequality means that f is (au,auP)-convex; and Kuhn’s
Lemma 5A.2 says that f is Jensen-convex. Since f is locally bounded above and Jensen-
convex, by the Bernstein-Doetsch Lemma 2A.6, the function f is convex, which completes
the proof in the first case.

CasE logu/logw ¢ Q. The auxiliary function g : (0,00) — R given by

g(t)=1lm sup f(s)
0—=0 5 (t—5,t+6)

is well defined. Note that it is upper semicontinuous and g(¢)/t? is bounded above. In
order to show that g satisfies (1), fix arbitrary s,¢ > 0 and take s,, — s and t,, — ¢ such
that f(as, + Btn) — g(as+ Gt). Then

ag(s) +bg(t) = lim sup(af(sn) +bf(tn)) = lim f(as, + ftn) = glas + ft).

Now, substituting g for f in the preparatory reasoning of the proof, we infer that, being
upper semicontinuous on E = R, the function ¢(t) = g(e!)/eP! is constant. Consequently,

(AT) g(t) =g(L)t?, t>0.
Fix t € (0,00). If s, — uw~'t then equality (A1) gives
as, + Bt — (1 — fw)w 't + pt = w™'t.

Thus, taking a sequence (s,) such that s, — uw™'t and f(as, + Bt) — g(w~'t), we
have, by (1),

F@) =07 f(asn + Bt) — af(sn)] = b [f(ewsn + Bt) — ag(sn)].
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Letting n tend to oo, using (A7) and (A4), we get

F(t) = b7 g(w™'t) — ag(uw™'t)] = g(1)¢7.
On the other hand, f(t) < g(¢t) = ¢g(1)t*. Thus f(¢t) = g(1)t?, which ends the proof of

the lemma. =

7A.3. Proof of Theorem 7.1 and Corollary 7.2. Lemma 7A.2 easily yields the proof of
Theorem 7.1 for nonpositive f. However, the case of nonnegative solutions needs some
additional preparatory considerations.

For positive a, b, i, 5 define the function F' = F, ; o 5 : [0,1] Xx R — R by

F(s,r)=aa""s"+087"(1—-s)", s€][0,1],r>0.

In Remark 5A.6 we have noted that the function (0,00) > t — ¢" satisfies (1) if and only
if F(s,r) > 1 for s € (0,1), and the function (0,00) > ¢t — —t" satisfies (1) if and only if
F(s,r) <1for s € (0,1).

We start with three lemmas.
LEMMA 7TA3. Let O0<a<l<a+pf,a,b>0,u>1>w>0 and p > 1 satisfy (A1),
(A2), and
(A8) ou =au’, fw=bw’.
Then:

e The function (0,00) > t +— tP satisfies (1) and

inf F —F =1
Lt (s,p) = F(au,p)

o If ¢ > 1 and the function (0,00) > t — t7 satisfies (1) then ¢ = p. Moreover, for
every € € (0, min{au, 1 — au}) there exists a 6 > 0 such that

0< inf F(s,r)<1, r€[p—46p) U(p,p+19].

s€(au—e,aute)

Proof. First note that the function (0,00) > ¢ — P satisfies (1). Indeed, it is convex, so
by (A8) and (A1),

as? + bt? = auP (s/u)? + bw? (t/w)?
> (auP(s/u) + bwP(t/w))P = (au(s/u) + fw(t/w))? = (as + Gt)P.

Consequently, inf,c (o 1) F'(s,p) > 1 and direct computation shows that F(au,p) = 1.
To prove the second bullet point of the lemma define

a b
= inf F = inf s+ —(1—s) 1.
ola) 5.5%,1) (5:9) se%,n (oﬂ $ 34 (1-s) )’ q~>

According to Lemma 5A.5 we have

L Y e
ofa) J2as s,

e N S (Y (L NS oy e
dqg(q) B CEE aaloga-i- bﬁlogb .

SO
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Hence, (A8) gives

diqg(q)l/ufq) _ _ﬁ(u(mmqma log  + w®/@=D) Glog ).

Since u,w are positive and different from 1, the function (0,00) > z +— u®alogu +
w®Blogw is strictly increasing. Since (A2) implies that it is equal to 0 for x = 1, this
function is positive for 2 > 1 and negative for x < 1. Consequently, diqg(q)l/ (1-9) jg
negative for ¢ € (1,p), equal to 0 for ¢ = p, and positive for ¢ > p, which proves that

o@D > o(p) /P =1, g e (1,p) U (p,0).
Because g > 1, we hence get
a b
A9 inf [—s9+—(1-5))= <1, € (1,p) U (p,0).
(A9) sé{é,l)(oﬂs +5q( s) ) 0(q) q € (L,p) U (p,00)
Thus the first part of the second bullet point of the lemma is proved.
To prove the “moreover” part, fix positive ¢ < min{owu, 1 —au} and a compact interval

I C (1,00) such that p € I. Since F(-,p) is strictly concave with minimum p(p) = 1
attained at au, we have

inf F(s,p) > 1.
s€l0,au—e]U[aute,1] ( p)

By the uniform continuity of F on ([0, cu —e]U [au+¢,1]) x I there is a 6 > 0 such that

inf F(s,r)>1, rep—-6p+dClI.
s€[0,au—e]U[au+te,1]

Hence, making use of (A9),

inf F(s,r)<1, re€p—-6p)U(p,p+d]. =

s€lau—e,aute]

The next lemma is an analogue of Lemma 5A 4.

LEMMA TA.4. Suppose that o, 3,a,b >0, ¢, M,m € R, s € (0,1),

(A10) m > max(as™, B(1—s5)71), m>1,
and
(A11) o=aa 15T+ 06791 —s5)? < 1.
If f:(0,00) — R satisfies (1) and
(A12) ) <M1, t>1,
then
M +log o/logm
(A13) Ft) < —atloseflosm 4 5
0

Proof. Define
r=s/a, y=(1-s)/8.
First, by induction, we show that

(A14) f(t) < M™9, t>m", neN.
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In view of (A12) this inequality is true for n = 0. For the inductive step fix n € N,
suppose (A14), and take t > m"*!. By (A10) we have
xt>m > m imt = m",  yt> m~t > m imt = mn,
Hence, by (1), the equality ax + Sy = 1, and the definition of p,
f@t) <af(at) +bf(yt) < aM™(xt)? + bM " (yt)" = Mo" (ax? + by?)t? = Mo" ¢4,

which completes the proof of (A14).
Rewrite inequality (A14) in the form

M
(A15) OEES I te [mm,m™Y), ne N

The conditions ¢ < 1 and (A10) give log o/logm < 0. Consequently, for t € [m™, m"*1)
we get

M

flt) < — QnJrltq - % (mlog Q/IOgm)n+1tq _ M
4

e (mn+1)log o/log myq
0
< M tloge/logmyq M tatlogo/logm
o 0
Because |J - [m™, m"*!) = [1,00), the above inequality yields (A13) and the proof is
complete. m
Now we present the main lemma that reduces Theorem 7.1 to Lemma 7A.2.

LEMMA TA5. Let 0 <a<l<a+8,a,0>0,0<w<1<uandp>1 satisfy (A1),
(A2), (A8). If f:(0,00) — R satisfies (1)—(2), then sup,~q f(t)/tP < oc.

Proof. According to Theorem 4.1, the function f is either nonpositive or nonnegative. In
the first case there is nothing to prove. So, assume that f is nonnegative. First let us
show that sup,~; f(t)/t? < oco.

Let us start with a few definitions. Let €, be as in Lemma 7A.3. For every r €
[p — 0,p + 0] choose s, € [au — €, au + €] such that

F(sp,r)= min F(s,r).

s€lau—e,aute]

The numbers s, are uniquely determined by the strict convexity of F(-,r). Uniqueness
of s, and uniform continuity of ' on [au—¢,au+¢e] X [p— 9§, p+ 0] imply that s, depends
continuously on r. Now according to Lemma 7A.3,

F(sp,p)=1, O0<F(sp,r)<1l, re[p—4dp) U(pp+d].
Take a number
(A16) m > max(1,a(au — &)™, (1 — au — &)™),
and note that m satisfies (A10) with s € [au — €, au + €]. We do not repeat this while
referring to Lemma 7A.4. Finally, define
L={reR:3M >0, f(t) < Mt", t>1}.

According to Theorem 4.2 the set L is nonempty. In order to complete the proof, it is
enough to show that p € L.
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Because (inf L,c0) C L, p ¢ L implies p < inf L. If inf L > p then, by Lemma 7A.3,
the function (0,00) 3 t — ™ would not satisfy (1). Consequently, according to Re-
mark 5A.6 one could find an s € (0,1) such that the number o defined by (A11) is
less than 1; and the assertion (A13) of Lemma 7A.4 with ¢ = inf L. would show that
inf L = q >inf L. This contradiction proves that p € L or p = inf L. So, in the following
we may assume that

=infL.

Let us introduce the sequence (g, ). First, using the numbers s, fixed for every r €
(p,p + 4] define an auxiliary function

0:[pp+6]— (0,1, o(r) = F(sp,r),

whose range is determined according to (A15). Then put

1
=p+0,  Gua1=qn log 3(qy,).
P+, Gnt1=¢ +10gm 0g 0(qn)

The definition of (g,,) is correct because gy € (p,p + 6] C L and, by induction, if ¢, €
[p,p+ 6] NL then also g, +1 € (p,p+d]NL. Indeed, Lemma 7A 4 gives ¢,+1 € L C [p, 0);
the definition of g and inequality (A16) give ¢nt1 < ¢ < p+39.

The sequence (g,,) is decreasing and bounded below. Let

1 )
Al im — li n — P log o n)-
(A17) Gim = lim gn = g0 + 7;) 0g 2(¢)

To observe that p = g, note that otherwise gy, > p, and there would exist a positive
€1 such that
F(S(himv qlim) S 1-— 461.

Since F' is continuous and s, depends continuously on r we would have
F(sq,,qn) <1—2e; for suitable large n € N.
Hence, the series Y~ log 6(¢,) would be divergent to —oo, contrary to (A17).

Note that the convergence of the above series implies the convergence of the infinite
product [[77, 0(gn), and set
o0
=[] a(a) > o.
n=0

Take a real Mj such that
f(t) < Mgt®, t>1.

Induction, based on Lemma 7A.4, gives

M,
ft) < =———>—1%, neN,

- Ilizo o(a)
Letting n tend to infinity and applying the definition of M, we obtain f(t) < (My/M)tP.
In a similar way one may show that sup,c (g ) f(t)/t* < co: use Lemma 5A.4 instead
of Lemma 7A .4, take

m' < min(1, a(au +¢)"1 B(1 —au+¢e)7h),
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define
L'={r:3M >0, f(t) < Mt", t € (0,1]},

show that p = sup L/, and construct the sequence

1 _
WW=p—0, qhy1 =0+ Tog log 0(q),). =

We are now prepared to prove Theorem 7.1. In its proof we refer to the conditions of
the theorem by labels introduced in the proof-part of this section.

Proof of Theorem 7.1. First let us show that f(¢)/t? is bounded above for p € (0,1]. We
consider separately t € (0,1] and ¢ > 1.

To prove the estimate for ¢ < 1 put A = loga/log o and observe that (A1) and (AS),
which are assumed in Theorem 7.1, imply (au)? > au = auP. So of > a, ie. A > p.
According to Theorem 4.2, there is M > 0 such that

ft) < Mt te(0,1].
Hence
FOET < firt <M, te (0.1,
To prove the estimate for ¢ > 1 fix n € N\ {0} such that (o + )" —a”™ > 1 and put

log by

a=a", fo=(a+p)"—a", a=a", by=(a+b)"—a", Bozlogﬁo'

By Lemma 2A.1 every solution g to (1) satisfies
(A18) aog(s) +bog(t) > g(aos + Bot),  s,t > 0.

The negative function (0, 00) 3 ¢t — —t? satisfies (1), because of its convexity and relations
(A1), (A8) between parameters of (1). Consequently, this function satisfies (A18); so
Remark 4.3 and Theorem 4.2 give My > 0 such that

—tP < —MytPo, ¢ >1.
Hence, p > By. Since [ satisfies (A18), Theorem 4.2 and Remark 4.3 give a positive M
such that
ft) < MtBo < M, t> 1.
Thus we have showed that f(¢)¢? is uniformly bounded above for ¢ > 0 in the case

p < 1. For p > 1 the estimate is established by Lemma 7A.5. Consequently, Lemma 7A.2
completes the proof of the first implication of Theorem 7.1.

To prove the converse implication, assume that f satisfies (A6) and it is convex.
Taking into account the assumptions (A1) and (A8) of Theorem 7.1 we get
af (5) + bf(t) = au? fu™"s) + bu? f(w )
> flauu™'s + fww't) = flas+ ft), s,t>0,

so (1) holds true. Since p > 0, the equations (A6) of Theorem 7.1 imply that lims_,o4 f(s)
= 0, and consequently, (2) is fulfilled. m
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Proof of Corollary 7.2. Both “if” parts are easy. To prove the “only if” parts note that
according to Theorem 7.1 a function f fulfilling (1)—(2) satisfies

fww™t) = (W"w™)Pf(t), t>0,nm=01,....
If log u/log w is irrational then by the Kronecker Lemma, 2A.3 the set {u"w™ : n,m =
0,1,...} is dense in (0, 00) and the continuity of f, shown in Theorem 7.1, completes the
proof of the first item of the corollary.

Suppose now that p = 1. Fix arbitrary s,t > 0 and take n € N such that s €
(w™t,u™t). Then there exists A € [0,1] such that s = Adw™t + (1 — A\)u"t and

tf(s) =tf(Aw™t + (1 — Nu"t)
St Af(W™) + (1= A)f(u"t) = (A"t + (1 = Mu"t) f(t) = sf (),
which shows that f(s) < sf(1) and tf(1) < f(¢t). =
7A.4. Proof of Theorem 7.3

LEMMA 7A.6. Let o, 3 > 0 and (u,w) be the scaling factors for (o, ). Suppose a €
[au,1), and b=1—a, p=0. Then there exrist u, W such that 0 < w < 1 < u and (Al),
(A4), (AB) with u, W in place of u, w, respectively, hold true.

Proof. Since p = 0, the relation (A4) holds automatically for all @, w > 0. Equation (A5)
means that @ = 7%/ (1) so to establish (A1) it is enough to show that there exists & > 1
such that
ot + fue/ et =1,

This follows from the Darboux property of the continuous function

[1,u] 3 5= (s) = as+ g/ (7
and the inequalities

P(1)=a+p8>1,
Y(u) = au+ fu® @ < qu + pue/ @D =1 u

Proof of Theorem 7.3. First consider the casea = 1,b = 0. Take s > Oandt € (as,a™'s).
Then (t — as)/B, (s — at) /B are positive and (1) gives

f(s) =z flas + B(t —as)/B) = f(b),

f@) = flat + B(s — at)/B) = f(s).
Hence, f is locally constant, and consequently, constant.

Now assume a € [au,1). By (2) the function f is bounded above on an interval (0, J]
for small enough positive 4, i.e. there exists M > 0 such that

fity <M, te(0,4].
Using (1) we obtain by induction
fla+B)™) <(a+b)"M =M, neN,te(0,d],
that is,

fey <M, te|Ja+p)"0,6 =(0,00).

n=0
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Consequently, the above lemma and Lemma 7A.2 with p = 0 and u, w substituted for
u, w, respectively, imply that f is convex and satisfies (A6), i.e.

ft) = f@"t), f(t)=f@"), t>0,neN
Fix arbitrary s,t > 0 and take n € N such that s € (w™¢,u"t). Thus, there exists
A € [0,1] such that s = Aw™t + (1 — A\)u"t and

fls) = FQw™t + (1 = A)u"t) < Af(w"t) + (1 = A)f(u"t) = f(b),

which proves that f is constant. Condition (2) implies that f is nonpositive. On the
other hand, all nonpositive constant functions satisfy (1) and (2). =

TA.5. Proofs of the remark following Theorem 7.1 and of Corollaries 7.4, 7.5
Proof of the remark following Theorem 7.1. From convexity and the homogeneity prop-

erty of f we get

~1 1— ! ~1
((ober s i) = o st +

U —u- Uu—u

1—wu?

— f(ut) = f(t), t>0.

uU—u
Now, if p > 1 then

u—1 1—ut u—1 1—ut P
—u P+ — up>( — u™t 4 —u) =1,
uU—u uU—u uU—u U —u

and f is nonnegative. If p < 1 then

u—1 1—ut u—1 1—ut p
—u P+ — up<( —u '+ —u) =1,
uU— U U— U u—Uu u—1u

and f is nonpositive. m

Proof of Corollaries 7.4 and 7.5. The critical curves of Corollary 7.4 are established by
Theorems 7.1 and 7.3. The critical curves of Corollary 7.5 are established by Theo-
rems 6.1, 7.1, and 7.3. The remaining statements follow from Theorem 4.1 and Lem-
mas 3.1 and 3.5. =

8. Subadditive homogeneous solutions

This section is devoted to (1)—(2) with a < 1 < 3.
PROPOSITION 8.1. Suppose 0 < a <1<, a>1.
o If b=1 then f: (0,00) — R satisfies (1)—(2) if and only if f = 0.
o If b > 1 then all solutions of (1)—(2) are nonnegative; the class of nonnegative

solutions is huge, and contains strips around power functions with erponents from
a neighborhood of 0.

In particular, {(a,b) : b = 1, a > 1} is contained in the positive critical curve for
(ar, B). Other parts of critical curves are described by

THEOREM 8.2. Let o, 3,a,b >0, a <1< (3, be such that
loga logb

3 = > 0.

(3) loga  logp

Suppose that a function f: (0,00) — R satisfies (2).
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If log B/log v is irrational, then fsatisfies (1) if and only if f(t) = f(1)t?, t > 0,
where p =loga/loga and f(1) <0if p>1and f(1) >0 if p<1.
If f is subadditive and

(4) flat)=af(t), f(Bt)=0f(t), t>0,
then f satisfies (1).

If f satisfies (1) then the function foup, 4 : Ry —R given by foup+(t) =limsup, ;. f(s)
is subadditive and satisfies (4).

As a consequence of J. Matkowski’s Corollary 7.2(2), under the assumptions of the
above theorem, if p=1 (i.e. a = o, b = 3), then the function [ is linear.

The description of solutions of (1) given by Theorem 8.2 is not complete. However,
the description is a complete characterization of solutions of a counterpart of (1) for
functions defined on R, as shown by

THEOREM 8.3. Let o, (,a,b > 0, a < 1 < 3, satisfy (3). Then f : Ry — R satisfies
(1]R+)7 i.€.
af(s) +0f(t) > flas+pt), s,t>0,

and satisfies (2g, ), i.e.

f(0)<0 and  lim f(s) <0,

if and only if [ is subadditive and (4) holds.
In particular, if log 3/log o is #rrational and (2w, ) holds, then each f satisfying (1r_)
is of the form f(t) = f(1)tP, t > 0, where p = loga/log .

The characterization of solutions of (1) becomes complete also when we impose an ad-
ditional weak regularity condition—for example the right-continuity of f. The difference
between Theorems 8.2 and 8.3 is inherent to the problem. In the case log8/loga € Q
there are solutions of (1)—(2) which do not satisfy (4). The following example illustrates
this situation:

EXAMPLE 8.4. Assume 0 < a <1< f3,a=a?, b= pP, pe(0,1), and log3/loga € Q,
i.e. there exist relatively prime integers n, m such that log 3/loga = —n/m. Put v = /"
and note that v > 1. Finally, take a real M € [p,1), a sequence (fi)rez such that
fr € [1,Mv+ (1 — M)], and define the function f : (0,00) — R by
£(t) = {vp’“(kat + (1= M), te @k vh),
vPk fy t=vk,

Then f is subadditive and satisfies (1); the proof is given at the end of the proof-part of
this section. On the other hand, we may choose fi so that f does not satisfy (4).

ke Z.

Since linear combinations with positive coefficients of solutions of (1)—(2) also satisfy
(1)—(2), the above example allows us to find even wilder solutions of (1)—(2). However, the
author does not know whether every f : (0,00) — R satisfying (1)—(2), with parameters
considered in Theorem 8.2, must be subadditive.

Making use of Theorems 7.1 and 7.3 and the results of this section we may now
completely describe the critical curves for a < 1 < 3.
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COROLLARY 8.5 (cf. Figure 3). Suppose 0 < a < 1 < (3 and denote by (u,w) the pair of
scaling factors for (o, 8). Then the positive critical curve is given by
ﬂl/ﬁwaau/ﬂw, a<a,

bpositive critical (@) = { loga/loga a € [o,1],
1, a>1,
and the negative critical curve is given by
5log_f,<1/logo¢7 a € [07 a]7
bnegativecritical(a) = ﬂl/ﬁwaau/ﬁw’ a € [Oz, aua,ﬂ]a
1—a, a € [aug g, 1].

o If (a,b) is above the positive critical curve then all solutions to (1)—(2) are nonneg-
ative, and the class of positive solutions is huge.

o If (a,b) is below the positive critical curve and above the negative critical curve then
the only solution to (1)—(2) is the zero function.

o If (a,b) is below the negative critical curve then all solutions to (1)—(2) are non-
positive, and the class of negative solutions is huge.

The huge classes of this corollary contain strips around power functions.
COROLLARY 8.6. Let o, (3,a,b > 0 satisfy a« <1< 3 and (3).

o If b < (3 then every function f : (0,00) — R satisfying (1)—(2) is nonnegative.
o If b> (3 then every function f : (0,00) — R satisfying (1)—(2) is nonpositive.

8A. Proofs. The proofs of Theorems 8.2 and 8.3 are based on ideas of J. Matkowski, who
considered the case 0 < a < 1 < a+ 3, a = a, b = 3. Following Matkowski [1992a] we
prove Theorem 8.2 via a right-hand limit function satisfying (1g,)—(2g, ). Lemmas 8A.2
and 8A.3 are simple extensions of the results of Matkowski [1990D].

First, let us introduce the condition
loga  logb
loga  logf3 ’
and, given f : (0,00) — R, define fyup+ : Ry — R by

fsup + (t) = lim Sup f(S)
s—t+

(A1) a,b>0, O<a<l<fp, p=

If f satisfies (1)—(2) then, according to Theorem 4.4, it is locally bounded, and conse-
quently, foup+ is well defined, and satisfies (1r_, )—(2r, ).

LEMMA 8A.1. Assume (Al). Let f:(0,00) — R satisfy (1)—(2). If
Frup+ () = Fup s (VF, £20,
then also
f(t) = fsuer(l)tp, t> 0.

Proof. Fix t > 0, take an increasing sequence t, — o~ !'t, and for each n choose an
Sp € (tn,a™1t) such that

f(sn) Sfsup+(tn)+1/n:fSup+(1)(tn)p+1/n, n € N.
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Hence, we have

() < af(sn) + bf(t O

B

> < afaup (D)(t)? + -+ bf<t _;sn)

By (2), letting n — oo, one gets
f@t) < afsUp+(1>(0‘_1t)p = foup+(1)tF.

Similarly, take a decreasing sequence ¢, — at and for each n choose an s, €
(tn,tn + 1/n) such that

f(sn) Zfsup+(tn)_1/n:fsup+(1)(tn)p_1/n7 n € N.
Then

)z (s - 0f (25) ) 2 0 (Fap 000 - & —0r(25).

which for n — oo yields f(¢) > fsup+(1)t*, and ends the proof. m

LEMMA 8A.2. Suppose (Al) and log3/loga ¢ Q. If f: R, — R satisfies (1r, ) (2r,)
then f(t) = f(1)t?, t > 0.

Proof (ct. Matkowski [1990b]). By Theorem 4.2 and Remark 4.3 there exists a positive
constant M such that

Ft) < MtP,  t>0.

Applying Lemma 2A.1 with N =n+m+1, spp11 =8, Smi1,2 =¢/(a” M), 5, =0
for the remaining i, j, we get

@D f(s) b f(e/ (@ BT) > Flam B s )
for all n,m € N and s,¢ > 0. Combining the above two inequalities gives
(@™ BTN f(s) 4+ MeP > f(a" ™ s4e), n,meN,se>0.

According to Lemma 2A.3, the set D = {a" 3™"! : n,m € N} is dense in (0,00), and we
can write the preceding inequality in the form

(A2) NP f(s)+ MeP > f(As+¢€), Ae€D,se>0.
Now fix arbitrary s,t > 0 and take a sequence (\,) such that
M €D, A<t (neN), nan;OAn:t.
Setting e = (t — \,,)s in (A2), we get ¢ > 0 and
AP f(8)+ Mt —=A)s)P > f(Ans+(t—Ay)s) = f(ts), mneN.
By (A1) we know that p > 0. Letting n tend to infinity we obtain ¥ f(s) > f(ts), which
implies that t? f(s) = f(ts). Consequently, f(t) = f(1)t?, ¢ > 0. m
LEMMA 8A.3. Suppose (Al) and log3/loga € Q. A function f : Ry — R such that
f(0) <0 satisfies (1r. ) if and only if f is subadditive and satisfies (4).

Proof (cf. Matkowski [1990b]). The “if” part is obvious. In order to prove the “only if”
part let us assume that f satisfies (1) and n,m € N satisfy —n/m = log/log«. Let
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s,t € R4. Substituting N = n+m, s;m,1 =5, Sm,2 =, and s; ; = 0 for the remaining
indices in Lemma 2A.1, and making use of a"3™ = 1, we get

fls)+ f(t) = f(s+1),

i.e., the function f is subadditive.
Similarly, for ¢ > 0 we have

af(t) = f(at),
and
flat) = aa™ 0" f(at) > af(a" 1 mat) = af(t),
so af(t) = f(at). Analogously, bf(t) = f(8t) for allt > 0. m

Proof of Proposition 8.1. Suppose a < 1< and a > 1. If f(t) < 0 for some ¢ > 0 then,
according to Theorem 4.1, the function f would be nonpositive. Since a > 1, we would

get
f(%t) > af(%t) >af(%t) + (1) > f(%t)

which is a contradiction. Thus, f is nonnegative.
If b =1 then (1) with s = 0 gives

fsup-ﬁ-(t) Z fSup-‘,—(/Bt), t Z 0.

The nonnegativity of f and (2) imply that
i fp () =0,
and thus fsup+ = 0. Applying Lemma 8A.1, we obtain f = 0.
If b > 1, then take p € (0,1) such that GP < b. Since also o < 1 < a, we have

as? 4+ bt? > min(a/a®,b/BP)(aPs? + BPEP) > min(a/a®, b/FP)(as + Bt)P,  s,t >0,

and Remark 2.1 shows that the class of solutions of (1)—(2) contains strips around (0, co) >
t—tP. m

Proof of Theorem 8.2. The function fy,, satisfies (1g,)-(2r, ). So, in the case
log B/loga ¢ Q, it is enough to apply consecutively Lemmas 8A.2 and 8A.1. In the
case log #/log @ € Q it is enough to apply Lemma 8A.3. m

Proof of Theorem 8.3. If log 3/logax € Q then Lemma 8A.3 gives the assertion. If
log B/log o ¢ Q, then Lemma 8A.2 proves one of the implications of the theorem. The
remaining implication is obvious. m

Proof of Example 8.4. By construction f satisfies (2). In order to prove that f satisfies (1)
take s,¢ > 0. Because of the homogeneity-like behavior of f we may assume that as+ 5t
€ (1,v). Note that

f@) >, t>0.

Using this observation and the definition of f let us note that:
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If as, 5t € (1,v), then
af(s) +bf(t) = aa™" f(as) + b8~ f(Bt)
> aPa P(Mas + (1 — M) + P67 (MGt + (1 - M)
=M(as+ 8t) +2(1 — M) > f(as+ Gt).

If as, 6t < 1, then
af(s)+bf(t) > as? +bt? = (as)? + (Bt)? > (as) + (6t)
= M(as+ 0t) + (as+ pt)(1 — M)
> M(as+pt)+ (1 — M) = f(as + 5t).
If as € (1,v), Bt < 1, then
af(s)+bf(t) > aPa ™ P(Mas+ (1 —M))+ 8Pt > Mas+ (1 — M) + gt
> M(as+0t)+ (1 — M) = f(as+ 5t).

If as <1, gt € (1,v), then we may proceed analogously to the preceding case.

This proves (1). The proof of subadditivity of f may be divided into four cases depending
on whether s,t are greater or smaller than 1, and carried out analogously. m

Proof of Corollary 8.5. The critical curves are established by Theorems 7.1, 7.3, Propo-
sition 8.1, and Theorem 8.2. The remaining statements follow from Theorem 4.1 and
Lemmas 3.1 and 3.5. =

Proof of Corollary 8.6. Suppose that f satisfies (1)—(2), fix ¢ > 0, and take n € N and
k € N such that g™ —k € [0,1). Then, by Theorem 8.2,

bnfsup+(t) = fsup-&-(ﬂnt) < kfsup+(t) =+ fsup-i-((ﬁn - k)t)

According to Theorem 4.4, the values fg,p + ((6" —k)t) are uniformly bounded above with
respect to n, k € N, and the displayed inequality gives

o nonnegativity of fqup+(t) if b < 8,
e nonpositivity of feup(t) if b > .

Now, the argument used to prove Lemma 8A.1 completes the proof. m

9. Remarks about regularity assumptions

This section is devoted to a discussion of the role of the regularity assumption (2) and
its counterparts. The examples and remarks build on J. Matkowski [1990b]. The role of
regularity assumptions is basically the same in our general case as in the case 0 < a <
1<a+p,a=a,b=0, considered by Matkowski.

Some regularity conditions imposed on solutions of (1) are necessary to avoid discon-
tinuous additive solutions. This is explained by the results of G. Hamel [1905], M. Fréchet
[1913, 1914], J. Aczél [1948], Z. Dar6czy [1961, 1964], and L. Losonczi [1964], presented
at the end of Section 1. The irregular behavior of discontinuous additive functions is well
known.
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ExAMPLE 9.1. Let «, 0 be positive, p < 1, and let v : R — R be a discontinuous additive
function homogeneous with respect to o and 8. Put a = a?, b = $P. Then f = |7\f’(0 00)
satisfies (1).

One may be interested in solutions of (1) satisfying

(5) lim f(s) =0.
Roughly speaking, this condition leads to the same theory as the weaker condition (2). If
the solutions to (1)—(2) are zero, power, convex, or subadditive, then the solutions to (1)
and (5) are zero, power, convex, or subadditive. Condition (5) is satisfied by all critical
solutions other than the nonpositive constant solutions of Theorems 5.1, 5.2, and 7.3,
and some convex functions of Theorem 5.1. Moreover, all the arguments of Section 3
remain valid for problem (1) and (5). Thus, there is a natural question if substitution
of (5) for (2) changes the critical curves, enlarging the trivial regions. It does not,
because of Theorems 5.1, 5.2, and 6.5, and the following consequence of Theorem 4.4 and
Lemmas 2A.5 and 4A.2:

COROLLARY 9.2. If a+3 > 1 and a+b > 1 then every solution of (1)—(2) satisfies (5). m

Another natural question concerns inequality (1g, ). If 0 belongs to the domain of f
then assumption (2g, ) can be weakened. We have the following

REMARK 9.3. Let o, > 0, a,b > 0 and a,a < 1. Suppose that f : R, — R satis-
fies (1g_, ). Then (2) is easily implied by

(i) f(0) <0;
(ii) f is bounded above in a neighborhood of 0.

Both assumptions (i) and (ii) are necessary as shown in the following two examples.

EXAMPLE 9.4. The function f : R, — Rgivenby f(t) =t~ %, ¢ > 0, and f(0) = 0 satisfies
inequality (1g, ) for positive a, b, o, B such that a = a, b = 3 and 0 < min(a,b) < 1 < a+b.

ExaMPLE 9.5. Let a = a = 1/2, b = 8 = 2. The function f : [0,00) — R given by
f@®)=1,t€[0,1), and f(t) = —t, ¢t > 1, satisfies inequality (1).

The last example shows that for functions defined on (0, 00) assumption (2) cannot
be replaced by condition (ii) of Remark 9.3. This example also shows that assumption
(2) cannot be easily released in Theorem 4.1 about the sign of solutions to (1)—(2).

Also in Theorems 4.2 and 4.4 and Proposition 4.5 condition (2) is indispensable. This
is demonstrated by

EXAMPLE 9.6. The following functions satisfy (1) and do not satisfy (2):

o f:(0,00) — R, satisfying (a +b)~'c < f(t) < ¢, where ¢ > 0 is a constant (in the
case a +b > 1);
e (0,00) 3t tP, where p < 0 is a constant (in the case a = a?, b = 3P).
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10. Multidimensional inequality

This section applies the main results of the paper to study an analogue of inequality (1)
for functions defined on cones in linear spaces. Note that the main results of this paper
were formulated for functions on (0, 00). This is the minimal set on which we can study
(1) with arbitrary parameters. Indeed, this is the minimal subset of the one-dimensional
linear space R such that, for arbitrary fixed positive a, 3, if s, t belong to the subset then
as + Bt belongs to it. The results formulated on (0, c0) are easily applicable across many
richer contexts. This section will give examples of such applications.

First note that we could take [0, c0) to be the set of arguments for f without changing
much in the theory (cf. Section 9). Moreover, an analogue of Theorem 5.1 remains true
on any interval while analogues of Theorems 4.4 (with oo+ 8 < 1) and 5.2 are true on
intervals that have 0 as an endpoint.

Now, let X denote an arbitrary real (or complex) linear space. A set C C X is said
tobeaconeif C+C={z+y:z,ycC}CCandtC={te:xzeC} CCforallit>D0.
For a function f : C — R, a counterpart of inequality (1) is

(10) af(2) +bf(y) > flaz +By), @ yeC,
and a counterpart of condition (2) is
(20) limsup f(sz) <0, z¢€C.

5s—0+

The qualitative behavior of solutions of (1¢)—(2¢) in this general multidimensional
case is similar to that of (1)—(2). The argument leading to the division of the space of
parameter quadruples («, 3,a,b) into critical manifolds and regions of huge and empty
classes of solutions remains valid. The regions of parameters with trivial classes of mul-
tidimensional solutions contain the regions of parameters with trivial classes of solutions
to (1)—(2).

Theorems 7.1 and 8.3 allow us to characterize p-homogeneous F-pseudonorms and
p-convex functions. Before formulating these results let us recall some definitions (cf.
S. Rolewicz [1984, pp. 4, 15, 90]).

Let X be a real or complex linear space. By ¢,t¢,, we denote scalars, by x, x; vectors
from X, and by p a real number. A functional f: X — R, is called an F-pseudonorm if
it satisfies the following regularity conditions:

e f(trx) — 0 provided ¢ — 0,
e f(txy) — 0 provided z;, — 0,
o f(tpzy) — 0 provided tx — 0, z — 0,
e f is subadditive,
and
(6) flte) = f(z) for [t[=1.

An F-pseudonorm f: X — R is called a p-pseudonorm if it is p-homogeneous, i.e.
o f(tx) =1tPf(x), t > 0.
An F-pseudonorm is an F-norm if

o f(x)=0if and only if x = 0.
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Let p € (0,1] and C be a convex subset of X. A function f : C' — R is called p-convex
if it satisfies

tpf(w) + (1 - t)pf(y) > f(t.T + (1 - t)y)? T,y € Ca te [O? 1]'
This notion was introduced by W. W. Breckner [1978] who proved that every locally upper
bounded p-convex function defined on an open convex subset of a linear topological space
is continuous. The relations of p-convexity to other types of convexity were analyzed by
H. Hudzik and L. Maligranda [1994]. In the definition of p-pseudonorm the condition of
subadditivity may be replaced by p-convexity. Note that for p ¢ (0, 1] the p-pseudonorm
becomes the trivial 0 functional.
Recall that the scaling factors were defined at the beginning of Section 7.

THEOREM 10.1. Suppose that X is a linear space and C is a cone in X. Let 0 < a <
1 < a+ 0, and denote by (u,w) the pair of scaling factors for (a, 3). If there exists p > 0
such that a = au~P, b= Bw!' =P, then f : C — R satisfies (1¢) —(2¢) if and only if it is
convez, 1i.e.
tfx)+ (A =0)f(y) = fltz+ (A -t)y), =x,yeC tel01],
and
fluz) =P f(x), flwz)=wPf(z), ze€C.
Moreover:
o If p€(0,1) then f is nonpositive.
o If p>1 then f is nonnegative.
o If p € (0,1], logw/logu ¢ Q, C = X, and f additionally satisfies (6) and the
reqularity conditions of F-pseudonorms, then f is a p-pseudonorm.
THEOREM 10.2. Suppose that X is a linear space and C is a cone in X such that 0 € C.
If 0 < a <1< and there exists a p > 0 such that a = aP, b= P, then f: C — R
satisfies (1c)—(2¢) if and only if it is subadditive and satisfies
flaa) = a?f(@),  f(Br) = F'f(a), weC,

Moreover:

If p€(0,1), then f is nonnegative.
If p> 1, then f is nonpositive.
If log B/loga ¢ Q, then f is p-convex and
fltx) =t f(x), =x€C, te(0,00).
If logB/loga ¢ Q, p € (0,1), C = X, and f additionally satisfies (6) and the
regularity conditions of F-pseudonorms, then f is a p-pseudonorm.

THEOREM 10.3 (Matkowski and Pycia [1995a]). Suppose that X is a linear space and C
isacomein X. If 0<a<l<a+pf,a=a b=0, then f:C — R satisfies (1¢)—(2¢)
if and only if it is subadditive and positive homogeneous, i.e. f(tx) = tf(z) for t > 0,
xzeC.

THEOREM 10.4. Suppose that X is a linear space and p € (0,1). If a p-conver f : X — R
satisfies (6) and the regularity conditions of F-pseudonorms, and for every x € X there
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exists a real B, > 1 such that
f(Bay) < B2f(y),  yel{te:teR},

then f is a p-pseudonorm.

The idea of Theorem 10.4 comes from J. Matkowski [1993], who showed that if X
is a real linear space, f is subadditive and satisfies (6), for every x € X the function
(0,00) 3 t — f(tx) is bounded above on an open set, and f(Bzx) < [f(x) for some
Bz € (0,1), then f is a seminorm. Matkowski’s proof is based on the theory of subadditive
functions. Note that his result is an immediate consequence of Corollary 7.2(2).

10A. Proofs

Proof of Theorem 10.1. For every fixed x € C, Theorem 7.1, applied to the function f
restricted to the ray {tz : ¢ > 0}, gives

u’f(z) = f(ux), w’f(z)=f(wz), =ze€C.
Thus from (1) we have
au” f(z) +bw® f(y) = af(ux) + bf(wy) = f(our + Pwy), z,y € C.

Fix z1, 2o € C and consider the function [0,1] 3 ¢ — (t) = f(tz1+(1—t)z2). Because u, w
are the scaling factors for «, 3, we have au + fw = 1. Moreover, au? = au, bw? = fw,
and the above inequality implies the (au,au?)-convexity of ¢. Now, according to the
Kuhn Lemma 5A.2 the function ¢ is Jensen-convex, hence f is Jensen-convex, and
p(t) = flter + (1 = t)z2) < 5f(2tz1) + 5£(2(1 — t)22), € (0,1).

The functions (0,00) 3 ¢ — f(2tz1), (0,00) 2 ¢t — f(2tzz) satisfy (1)—(2), and accord-
ing to Theorem 4.4, they are bounded on (0,1). Consequently, ¢ is bounded above and
Jensen-convex. It follows from the Bernstein—Doetsch Lemma 2A.6 that ¢ is convex.
Hence, f is convex. Thus the “only if” part is proved. The “if” part is easy, so we
omit it.

The first two “moreover” statements follow from the remark after Theorem 7.1, the
last one follows from Corollary 7.2(1). m

Proof of Theorem 10.2. Taking = € C and restricting the function f to {tx : ¢ > 0}, we
deduce from Theorem 8.3 that
af(x) = f(ax), bf(x)=f(Br), =zeC.
So, (1) gives
f@)+ fy) =af(@/a) +0f(y/B) = f(z+y), x,yeC,
i.e. f is subadditive, and the “only if” statement is proved. The “if” statement is obvious.

The first two “moreover” statements follow from Corollary 8.6. If log8/loga ¢ Q,

then Theorem 8.3 gives
P f(x) = f(tx), t>0,z¢€C,

and subadditivity implies that
P fx)+ A=) fly) = flte) + (A -t)y) > fltz+ (L —t)y), te€(0,1), z,yeC,

i.e., f is p-convex. Now, the last two “moreover” statements follow. m
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Proof of Theorem 10.3. The homogeneity of f follows from J. Matkowski’s Corol-
lary 7.2(2). Then the subadditivity is a consequence of (1). m

Proof of Theorem 10.4. Fix an arbitrary € X and put f,(t) = f(tx). Then p-convexity
and the condition involving 3, give

M f(s) + By (L= NP fa(t) = N fa(s) + (1 = NP fa(Bat) = fu(As + (1 = A)Bet)

for all s,t > 0, A € (0,1). Taking A such that S, A < 1 and 5,/X ¢ Q, noting that the
first regularity condition of F-pseudonorms implies (2¢), we get from Theorem 7.1 the
p-homogeneity of f. Now the subadditivity is a consequence of p-convexity. m

Figures of critical curves
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Fig. 1. Dependence of the class of solutions of (1)-(2) on the parameters a, b for fixed a+ 8 < 1.
Cf. Theorem 5.2.

e In the region P all solutions are nonnegative, and the class of positive solutions is huge.
e In the region N + P there are huge classes of both positive and negative solutions; there
are also solutions taking both positive and negative values.

b‘.
1 7 P
Y
T
0 a 1 a

Fig. 2. Dependence of the class of solutions of (1)—(2) on the parameters a, b for fixed o = 2/3,
B =1/3. Cf. Theorem 5.1.

e In P all solutions are nonnegative, and the class of positive solutions is huge.
e In N all solutions are nonpositive, and the class of negative solutions is huge.
e In 7 only the zero function satisfies (1)—(2).
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N

0 owgae a Quagpg 1 a

Fig. 3. Dependence of the class of solutions of (1)-(2) on the parameters a, b for fixed o = 0.57,
B = 0.57. The parameter uq,3 is the first scaling factor for («, ), the parameter wgs o is the
second scaling factor for (3, «). Cf. Corollary 7.4 and Theorems 7.1, and 7.3.

e In P all solutions are nonnegative, and the class of positive solutions is huge.
e In N all solutions are nonpositive, and the class of negative solutions is huge.
e In 7 only the zero function satisfies (1)—(2).

by
T P
B=1
N T
0 a  QUag 1 a

Fig. 4. Dependence of the class of solutions of (1)-(2) on the parameters a, b for fixed o = 0.25,
B = 1. The parameter uq, g is the first scaling factor for («,3). Cf. Corollary 7.5 and Theo-
rems 6.1, 7.1, and 7.3.

e In P all solutions are nonnegative, and the class of positive solutions is huge.
e In N all solutions are nonpositive, and the class of negative solutions is huge.
e In 7 only the zero function satisfies (1)—(2).

Fig. 5. Dependence of the class of solutions of (1)-(2) on the parameters a, b for fixed o = 0.43,
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0 a QUq,sl a

B = 1.33. The parameter u, g is the first scaling factor for (o, 3). Cf. Corollary 8.5, Theo-
rems 7.1, 7.3, 8.2, and Proposition 8.1.
e In P all solutions are nonnegative, and the class of positive solutions is huge.

e In N all solutions are nonpositive, and the class of negative solutions is huge.
e In 7 only the zero function satisfies (1)—(2).
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0 1 a

Fig. 6. Dependence of the class of solutions of (1)—(2) on the parameters a, b for fixed « = 8 = 1.
Cf. Theorems 6.1 and 6.3.

e In P all solutions are nonnegative, and the class of positive solutions is huge.

e In N all solutions are nonpositive, and the set of negative solutions is huge.

e In 7 the zero function is the only solution to (1)-(2).
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Fig. 7. Dependence of the class of solutions of (1)—(2) on the parameters a, b for fixed a« > 8 = 1.
Cf. Theorems 6.1 and 6.4.

e In P all solutions are nonnegative, and the class of positive solutions is huge.

e In N all solutions are nonpositive, and the class of negative solutions is huge.

e In 7 the zero function is the only solution to (1)—(2).
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b
P+N
1
N
0 1 a

Fig. 8. Dependence of the class of solutions of (1)—(2) on the parameters a, b for fixed o, 8 > 1.
Cf. Theorem 6.5.

e In N all solutions are nonpositive, and the class of negative solutions is huge.
e In N + P there are huge classes of both positive and negative solutions; there are also
solutions taking both positive and negative values.
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