1. Introduction

The main purpose of our study is to show some generalizations and applications of the
Kantorovich—-Rubinstein maximum principle. First we prove this principle for nonlinear
functionals of Hammerstein type. This result is based on a series of lemmas concerning
local changes of Lipschitzian functions. Then we show that the Kantorovich—Rubinstein
maximum principle combined with the LaSalle invariance principle yields new sufficient
conditions for the asymptotic stability of Markov semigroups. These criteria are applied
to the semigroups generated by discrete time stochastically perturbed dynamical sys-
tems, Poisson driven stochastic differential equations and to the Tjon—Wu version of the
Boltzmann equation.

The outline of the paper is as follows. In Chapter 2 we consider some properties of
contractive functions which satisfy the inequality

(1) If(x) = f(y)| < olw,y) foraz,ye X, x#y,

where (X, p) is a metric space. It is shown that under some additional conditions concern-
ing the space X a function f satisfying (1) may be locally changed (in a neighbourhood
of a compact set) in such a way that the inequality (1) is preserved. The proofs are
partially based on the McShane extension theorem (see [31, Theorem 1]).

In Chapter 3 we study nonlinear functionals ¢,, of the form

Ou(f) = | k(z, f(2)) p(dw) for f € L,
X

where L is the space of Lipschitzian functions with Lipschitz constant 1 and p is a given
finite signed measure. We show that if a function fy € L maximizes @, then there exist
two different points x,y € X such that

|fo(z) = fo(y)| = o(z,y).

This is a nonlinear version of the classical Kantorovich—-Rubinstein maximum principle.
In the same chapter we prove maximum principles for functionals defined on the subset
F of L of functions satisfying the additional condition |f| < 1. The maximum principles
allow us to establish interesting properties of the Hutchinson and Fortet—Mourier metrics.

In Chapter 4 we use these properties to prove that some semigroups of Markov op-
erators acting on the space of signed measures are contractive. In Chapter 5 we show
a new version of the invariance principle for dynamical systems acting on a topological
Hausdorff space. It generalizes the results of A. Lasota (see [20, Theorem 2.1]) and A. La-
sota and J. Traple (see [26, Theorem 1.1]). We also give an application of the invariance
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8 H. Gacki

principle in the theory of the Tjon—Wu equation

dip

T Y = Py,
where the unknown function ) takes values in the space of signed measures and P is a
collision operator. Similar results for ¢ with values in L!(R, ) were proved by A. Lasota
and J. Traple (see |26, Theorem 3.1]).

In Chapter 6 we show new sufficient conditions for the asymptotic stability for semi-

groups of Markov operators. They are formulated in terms of adjoint operators. This
approach simplifies further applications. We use these criteria to study stochastically

perturbed dynamical systems
Tpt1 = S(xp, &) form=0,1,...,

where &,, n = 1,2,..., are independent identically distributed random variables. Our
results generalize theorems of A. Lasota and M. C. Mackey (see [23, Theorem 2|) and
K. Loskot and R. Rudnicki (see [29, Theorem 3]), the latter in the case of locally compact
separable metric spaces.

Further, we consider stochastic differential equation of the form

de(t) = a(¢(t)dt + | o(€(), 0) Ny (dt,dp) for t >0,
(S]
where {£(t)}1>0 is a stochastic process with values in the d-dimensional real space R?
and N, is a Poisson random measure with intensity A. Our result intersects with those
of Traple (see [37, Theorem 7.3]) and Szarek (see [34, Theorem 8.3.1]).

We close Chapter 6 by giving an application to the mathematical model of the cell
cycle introduced by A. Lasota and M. C. Mackey [25].

The present paper is based on the results contained in [10-12]. However, many the-
orems are now stated in a more general form and some new results are included. In
particular in Section 3.3 we prove a new nonlinear version of the maximum principle
for the Fortet—Mourier norm (Theorem 3.3.1). Furthermore, the main result of Chap-
ter 5, Theorem 5.1.2 concerning the invariance principle, has never been published before.
Also some results on the asymptotic stability of the Poisson driven stochastic differential
equation (Theorem 6.3.1) and the Tjon-Wu equation (Theorem 5.2.4) are new.

2. Local changes of Lipschitzian functions

The aim of this chapter is to show two lemmas concerning local changes of Lipschitzian
functions. In Chapter 3 we will apply these results in the theory of nonlinear functionals
of Hammerstein type (see [13, Theorem 4.4] and [12, Theorem 2]).

2.1. Local changes of contractive bounded functions. A function f : X — R
defined on a metric space (X, ¢) will be called contractive if

(2.1.1) [f(x) = f(y)| < elz,y) forzyec X, z#y.

Recall that a separable metric space X is locally compact iff X is an increasing union
of compact sets. One can then define an equivalent metric on X (compatible with the
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topology) such that every closed ball is compact. In this paper, a “locally compact
separable metric space” will always mean a locally compact separable metric space such
that every closed ball is compact.

LEMMA 2.1.1. Let (X, 0) be a locally compact separable metric space and let f: X — R
be a contractive function satisfying

(2.1.2) inf f > —oo0.

Further let an open set G C X and a compact set K C G be given. Then there exists an
go > 0 such that for every e € (0,e¢) there is a contractive function f : X — R satisfying

(2.1.3) flz)=f(x) forze X\G, f(z)=f(x)+e forzek,
and
(2.1.4) f(@) < f(z) < f(z)+e  forzeG\K.

Proof. We may assume that K # ) and X \ G # (); otherwise the theorem is trivial.
Replacing f by f — inf f we may assume that f(z) > 0 for z € X. Let

(2.1.5) d =inf{o(z,y) 1z € K, y & G}.

Since K is compact, this number is positive. For every a € K we define h, : X — R by
ha(z) = inf{f(u) + o(u, x) : o(u,a) >} for z € X.

From the inequality f(z) — f(u) < o(z,u) it follows immediately that

(2.1.6) he(z) > f(x) forz € X.
Moreover

(2.1.7) ho(z) = f(x) for go(x,a) > 0.

It is also evident that

(2.1.8) lha(z) = ha(y)| < o(@,y) forz,y € X.
We claim that

(2.1.9) he(a) > f(a) fora € K.

To prove this fix ¢ € K and define
A={ue X :o(a,u) >r+20}, B={ueX:0<yg(a,u) <r+20},
where 7 = max,cx f(z). Since a € K and f(u) > 0, we have
(2.1.10) fu)+ o(u,a) > f(a)+25 for u e A.
According to (2.1.1) the function u — f(u)+o(u, a)— f(a) is positive on B. Moreover,

since B is compact, we have
f(u)+ o(u,a) > f(a)+ o foru € B,
where o is a positive constant. This and (2.1.10) imply (2.1.9).
Define
f(z) = sup{ha(z) : a € K}.
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From (2.1.5)—(2.1.7) it follows that
fz) < f(z)<oo forxe X and f(x)= f(xr) forze X\G.
Since f(x) < oo, condition (2.1.8) implies that
(@) - Fw) < olwy) forzy € X.
Further from (2.1.9) it follows that f(x) < f(z) for z € K.

Let cg = 3 mingex (f(z) — f(x)). Then for every ¢ € (0,&0) the desired function fis
given by the formula

(2.1.11) F(o) = 1(f(2) + min{ f(2), £(2) +2¢}). m
The following example shows that in the statement of Lemma 2.1.1 assumption (2.1.2)
is essential.

EXAMPLE 2.1.1. Consider the set X = NU {0} of nonnegative integers with the metric

o(n,m) = {

Let f: X — R be given by the formula
0 for n =0,
o ={",

n~*—n forn>0.

n—+m for n #m,

0 for n = m.

It is easy to verify that f is contractive. In the space (X, o) the one-point set {0} is
simultaneously open and compact. So we may take K = G = {0} and except (2.1.2),
all the assumptions of Lemma 2.1.1 are satisfied. Now fix ¢ € (0,¢9) and consider the
function

- f(0)+e forn=0,
f(n) =
f(n) for n > 0,
as described in Lemma 2.1.1. For n > 1/¢ we have
[f(n) = FO)] = [-n+n"" —e| > n = o(n,0),
which shows that f is not contractive.

Replacing f by —f we obtain from Lemma 2.1.1 the following result.

REMARK 2.1.1. If sup f < oo and f : X — R is a contractive function then there exists
an €9 > 0 such that for every ¢ € (—&p,0) there is a contractive function f : X — R
satisfying conditions (2.1.3) and the inequality

(2.1.12) f(@)+e< f(x) < f(z) forzeG\K.

2.2. Local changes of contractive unbounded functions. Assumption (2.1.2) can
be omitted if we assume that the space X has some additional properties. We say that
a metric space (X, g) is metrically convez if for any two different points =,y € X and
A € (0, o(x,y)) there exists a point z € X such that

oz, z) =X and o(z,y) = o(z, 2) + o(z,y).

LEMMA 2.2.1. Let (X, ) be a locally compact separable, metrically convex metric space
and let f : X — R be a contractive function. Moreover let an open set G C X and a
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compact set K C G be given. Then there exists an g9 > 0 such that for every e € (0,¢¢)
there is a contractive function f : X — R satisfying conditions (2.1.3) and (2.1.4).

Proof. Again we may assume that K # () and X \ G # (). Let 6 be given by (2.1.5). Then
Go={r € X : 9(z,K) < 0} is a subset of G. We define an auxiliary function f: X — R
by
f(z) =inf{f(u) + o(z,u) : u € X\ Go}.
It is easy to verify that
(2.2.1) f(z) > f(x) for x € X,
(2.2.2) f(z) = f(=) for x € X\ G,
[f(@) = f()l < o(z,y) forz,yeX.
Let r = § 4+ diam K. We are going to show that

(2.2.3) flx) = f(z) forzeK,
where
(2.2.4) f(z) = inf{f(u) + o(z,u) s u € X \ Gy and o(z,u) < 2r}.

It is obvious that f(z) < f(x) for every x € X. To show the opposite inequality for
x € K it is sufficient to prove the following claim. For every € K and u € X \ G there
exists v € X \ Gy such that o(x,v) < 2r and
(2.2.5) f) + o(z,v) < f(u) + o(z,u).
If o(z,u) < 2r we may choose v = u and condition (2.2.5) is satisfied. Now assume that
x € K and o(x,u) > 2r. Then due to the metric convexity of X there exists a point
v € X such that o(z,v) = 2r and
(2.2.6) o(x,u) = o(z,v) + o(v, u).

Using the definition of r it is easy to verify that v € X \ Go. Moreover using (2.2.6)
and the inequality f(v) — f(u) < o(v,u) we obtain

f) +o(z,v) = f(v) + o(z,u) — o(v,u) < f(v) + o(z,u) — [f(v) — f(u)],

which gives (2.2.5) and completes the proof of the claim. This in turn implies (2.2.3).
Observe that for z € K and u € X \ Gg we have x # u and consequently

fu) + o(z,u) > f(z).
Moreover for every x € K the set
{ue X\ Go:o(z,u) <2r}

is compact. Consequently, f(z) > f(z) for z € K. From this and (2.2.3) it follows that
f(z) > f(x) for x € K. Since K is compact, there exists a constant £y > 0 such that

f(z) > f(x) +2e¢g forzeK.
For ¢ € (0,&0) the desired function f is again given by formula (2.1.11). =

The following example shows that in the statement of Lemma 2.2.1 the assumption
that X is locally compact separable is essential.
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ExXAMPLE 2.2.1. Let C be the complex plane and let
A, ={z€C:|z|<4,argz=n/n} forn=1,2....

In the space X = A,, we define the metric p by the formula

neN
o(z,w) = {
so that (X, g) is a metrically convex space. Now consider the function

f(z) ="' =1)|z] forz€A,,n=1,2,....

Let K = {0} and G = {z € X : |z| < 2}. Evidently f is contractive. Now fix an arbitrary
€ > 0 and assume that a function f: X — R satisfies the conditions

fO)=f0)+e=¢ and f(z)=f(z) forze X\G.

|z —w| if z,w € A, for some n € N,

|z] + |w| otherwise,

We have
F(2) = Ol = |0 = 1)[z| —&| for z € A, |2] = 2.
For |z| = 2 and n > 2/¢ the right hand side is larger than 2 and the function f is not
contractive.

REMARK 2.2.1. Under conditions of Lemma 2.2.1 there exists an ¢y > 0 such that for
every € € (—&g, 0) there is a contractive function f: X — R satisfying (2.1.3) and

f(@)+e< f(x) < f(z) forzeG\K.

3. Maximum principles

The purpose of this chapter is to present maximum principles for functionals of Ham-
merstein type defined on the space of Lipschitzian functions. Our proofs are based on
the lemmas concerning local changes of Lipschitzian functions. Using this method we
prove new versions of the maximum principles for the Hutchinson and Fortet—Mourier
metrices.

3.1. Metrics and norms in the space of measures. Let (X, o) be a Polish space,
i.e., a separable, complete metric space. We denote by Bx the o-algebra of Borel subsets
of X and by M the family of all finite (nonnegative) Borel measures on X.

Let M; denote the subset of those p € M such that u(X) = 1. The elements of M,
will be called distributions. Further let

Meig = {111 — p2 = p1, po € M}
be the space of finite signed measures. For arbitrary u € Mg, we denote by p, and p_
the positive and negative parts of . Then we set
(3.1.1) p, —po=p and p, +p =yl
where |p| is called the total variation of the measure p.

Let ¢ be a fixed element of X. For every real number o > 1 we define the sets M
and Mg o by setting

My o ={p €My :my(p) <oco} and Msiga = {1t € Msig : ma(p) < 0o}
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where
ma(u) = | (o(x,0))* |l (dz).
X
Evidently Mgig o C Msig g for o > 3. Moreover, we denote by Mgig@ the subset of

those p € Mg o for which p(X) = 0. It is evident that these spaces do not depend on
the choice of c.

As usual, B(X) denotes the space of all bounded Borel measurable functions f : X —
R, and C'(X) the subspace of all bounded continuous functions. Both spaces are endowed
with the supremum norm

Il = sup |f(z)].
reX
For every f: X — R and 1 € My, we write
(3.1.2) (fm) =\ f(2) p(da),

X
whenever this integral exists.
In M; we introduce the Fortet-Mourier metric (see [7, Proposition 8.2]) by the for-
mula

(3.1.3) 1 = pallr = sup{|(f, 1 — p2)| : f € F},
where F is the set of functions f : X — R satisfying
Ifll<1 and |f(z) = f(y)| < o(z,y) forz,ye X,

REMARK 3.1.1. It is known that M, with the Fortet—-Mourier metric is a complete metric
space. Furthermore, if X has at least one accumulation point then Mg, with this metric
is not complete (see [9, Theorem 3.1.7]).

We say that a sequence (u,) C Mj converges weakly to a measure p € My if
(3.1.4) B (fpua) = (o) for [ € C(X),
Since X is a Polish space, condition (3.1.4) is equivalent to
Jim i, — pll7 =0

(see [7, Theorem 8.3]).
In M; we also introduce another metric called the Hutchinson metric (see [15, Defi-
nition 4.3.1]) by the formula

(3.1.5) 1 = pallse = sup{|(f, 1 — p2)| : f € H}  for pur, po € My,

where H is the set of functions f : X — R which satisfy the condition
|f(x) = fy)| < olx,y) forz,ye€X.

Fix ¢ € X. It is easy to see that

|1 — pallz = sup{|(f, 1 — p2)| : f € He}  for pa, pa € My,
where H, = {f € H : f(c) = 0}.
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It should be noted that the Hutchinson metric is strongly related by a duality principle
to the Kantorovich-Rubinstein norm (see [32, Corollary 6.1.1]).

Denote by B(x,r) the closed ball in X with centre € X and radius r. Let u € M.
We define the support of u by setting

supp p = {z € X : u(B(z,€)) > 0 for every € > 0}.

REMARK 3.1.2. Every set M, , for o > 1 contains the subset of all measures y € M;
with compact support. This subset is dense in M7 with respect to the Fortet—Mourier
norm (see [3, Theorem 4, p. 237]).

3.2. Nonlinear version of the Kantorovich—Rubinstein maximum principle.
The main result of this section is stimulated by the following classical Kantorovich—
Rubinstein maximum principle. Let (X, o) be a separable metric space and let L be the
space of functions f : X — R which satisfy the Lipschitz condition. The space L is
considered with the seminorm

[f(z) = f(y)]

(3:2.1) P e

If u is a given finite signed measure, then the linear functional ¢, : L — R defined by

:x;«éy;m,yeX}.

the formula

(3.2.2) oul(f) = | f@) p(dz) for feL
X

has the following properties (for details see [33, Corollary 6.2]):

THEOREM 3.2.1 (Kantorovich-Rubinstein maximum principle). For every u1, g2 € M 1,
1 # pa, there exists a function f € H such that

Opr—pa (f) = |1 — p2l -

Moreover, every function f for which the distance is attained (with py # o) satisfies

[f(x) = f(y)] = e(z,y)
for some xz,y € X, x # y.

The aim of this part is to prove analogous results for a nonlinear functional @, : L — R
given by the formula

(3.2.3) Ou(f) =\ k(z, f(@)) p(dz), [ €L,

X
where (see (3.1.1) for the definition of |u|)

(1) IS Msig,h M(X) = 07 |M| > 07
(ii) the function k : X x R — R is continuous, has continuous derivative k, with
respect to the second variable, and satisfies

(3.2.4) |k(z,y)| < Boo(z,c) + Bily| + B2 for (x,y) € X xR,

where [y, 81, 02 are nonnegative constants and ¢ € X is a given point.
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REMARK 3.2.1. Conditions (i) and (ii) imply that for every f € H,. the integral (3.2.3)
exists and

sup [P,(f)] < oo.
fEHc

This is an immediate consequence of the inequality
(3.2.5) |k(z, f(x))] < (Bo+ P1)o(x,¢c)+ B2 forx € X and f € H,
and the assumption that u € Mgy 1.

Functionals of this type are in general studied by methods of convex analysis in the
case when X is a vector space (see [8]).
Now we are ready to state the main theorem of this section.

THEOREM 3.2.2. Assume that the space (X, o) is locally compact, separable, metrically
convez and that i and k satisfy conditions (i), (ii). Assume moreover that

(3.2.6) ky(z,y) >0 for (z,y) € X xR.
Then
(3.2.7) D,(f) < sup Pu(g)

gE€EH.

for every contractive function f € H..

Proof. Suppose that there exists a contractive f € H, such that
(3.2.8) P,(f) = sup Pu(g).

g€H,
Let yp = p, — p_ be the Jordan decomposition of p and let X = X, U X_ be the
corresponding Hahn decomposition. We start from the case when ¢ ¢ X, . Since u is a
nontrivial measure and pu(X) = 0, according to the Ulam theorem (see [3, Theorem 1.4])
there is a compact set K C Xy such that

(3.2.9) p,(K)>0 and pu_(K)=0.

Define

(3.2.10) do = inf{ky(z, f(x)+2) :z € K, z € [0,1]},

(3.2.11) 01 =sup{ky(z, f(z) + 2) : (z,2) € K x {0}}.

Using the compactness of K we can find a § > 0 such that

(3.2.12) ky(z, f(x)+2) <01+1 forze K;, 0<2z<4,

where K5 = {z € X : o(z, K) < §}. Changing ¢ if necessary, we may assume that
(3.2.13) (K \K) < LR e k) > 6

2 1+6

Since K C Kj and K is an open set, by Lemma 2.2.1 there exists an ¢ < min(4, 1)
and a contractive function f : X — R satisfying (2.1.3) and (2.1.4) with G = K. By the
mean value theorem we have

Ou(f) = Du(f) = | by, f(2) + 0(2) (F(@) = F(@)(f(@) = f(@)) plda),

X
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where 0(z) € (0,1). From (2.1.3), (2.1.4) and the equality u_(K) = 0 it follows that

Bu(f) = Bu(f) > & | ky(w, f(2) + 0(2)e) p, (du)
K

—e S ky(@, f(z) +0()(f(x) = f(2))) p_(dx).
Ks\K
Now using (3.2.10), (3.2.11) and (3.2.12) we obtain

D, (f) = D, (f) = ebop, (K) — (61 + Dp_ (K5 \ K),

which in virtue of (3.2.13) gives
P e,
Pu(F) 2 Du(f) + = w, (K).

Since f € H,, this contradicts (3.2.8) and completes the proof in the case when ¢ ¢ X .
If ¢ ¢ X_ the argument is similar. It is based on Remark 2.2.1. =

REMARK 3.2.2. Theorem 3.2.2 remains true if the space H,. is replaced by H. The proof
is similar. However, in this case the value sup ¢ ®,,(g) may be infinite.

We close this section with the following nonlinear version of the Kantorovich—Rubin-
stein maximum principle.

THEOREM 3.2.3. Assume that the space (X, p) is complete and separable and that p and
k satisfy conditions (i), (ii) and (3.2.6). Then there exists an fo € H. such that
(3.2.14) D, (fo) = sup @,(f).

feH.
Moreover, if (X, 0) is a locally compact, separable and metrically convex space then every
function fy € H. satisfying (3.2.14) is not contractive.

Proof. From Remark 3.2.1 it follows immediately that there exists a sequence (f,,) C H.
satisfying
(3.2.15) lim &,(f,) = sup @,(f) < oc.
n—oo feEH.
By the Ulam theorem we can choose an increasing sequence of compact sets Ky C X
such that
|| (X \ Ks) <1/s forevery s=1,2,....

We may also assume that ¢ € K for every s € N. Using the Arzela—Ascoli theorem and
the diagonal Cantor process we can find a subsequence (f,, ) which converges pointwise

on the set
K =] K.,
s=1
to a function f : K — R. Evidently f satisfies the Lipschitz condition with constant 1
and f(c) =0.

According to the McShane theorem (see [31, Theorem 1]) there exists an extension
fo of f defined on the space X and satisfying the Lipschitz condition with the same
constant.
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From inequality (3.2.5) it follows that the functions k(-, f,, () for n € N are bounded
by a |u|-integrable function. As the sequence (f,, ) converges to fo on K and |u|(X \ K)
= 0, by the Lebesgue dominated convergence theorem we have

nh—{go ¢,Uz(foén) = ¢M(f0)'
This and (3.2.15) imply (3.2.14). By Theorem 3.2.2 the function fy is not contractive. m

3.3. Maximum principle for the Fortet—Mourier metric. In this section we will
prove a maximum principle for functionals acting on the space of uniformly bounded and
uniformly Lipschitzian functions. In Section 6.5 we will show applications of this result
in the theory of the cell cycle (see [12, Proposition 2]). As before we consider a nonlinear
functional of the form

(3.3.1) Ou(f) = | k(x, f(z)) pldz) for f € F,
X

where (X, o) is a metric space, k: X x [-1,1] — R is a given function and p € M.
We will assume that the function k£ : X x R — R and the signed measure p satisfy
the following conditions:

(i) =g — p2, p, pa € My.
(ii) The function k : X x [-1,1] — R is continuous and has a continuous derivative
k, with respect to the second variable. Moreover,

(3.3.2) — o0 < | Kz, ~1)[ul(dx) and | k(2,1)|ul(dr) < oo,
X X
(3.3.3) ky(z,y) >0 for (z,y) € X x [-1,1].

THEOREM 3.3.1. Assume that the space (X, o) is complete and separable and that p1 and
k satisfy conditions (i) and (ii). Then there exists a function f € F such that

(3.3.4) Pu(f) = sup Pu(9)-

Moreover, if (X, p) is locally compact separable space, || > 0 and a function f € F
satisfies (3.3.4) then it fulfills at least one of the following two conditions:

1° There exist two points x,y € X, x # y, such that

(3.3.5) [f(z) = f(y)] = o(z,y).

2° The function f has the following properties:
(3.3.6) flx)=1 for x € supp
(3.3.7) f(z)=—1 forx €supppu_.

Proof. The proof of the existence of f € F satisfying (3.3.4) is similar to that of Theorem
3.2.3.

To complete the proof note that we have two possibilities: either f is not contractive
and then (3.3.5) holds for some z and y, or f is contractive. In the latter case assume
that

(3.3.8) f(xg) <1  for some zy € supp i, .
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Then there is a closed ball B(zg, 7o) such that
f(z) <1 for z € B(zg,ro).

Moreover
o, (B(zo,70)) > 0.

Let X = X UX_ be the Hahn decomposition corresponding to u. As before, according
to the Ulam theorem there is a compact set K C B(zg,79) N X+ such that

(3.3.9) py(K)>0, pu_(K)=0.

Define
Ks={z e X:o(x K) <}

Since K is compact, we can find a § > 0 such that

(3.3.10) p_(Ks\ K) < p, (K) 2570 and sup f(z) <1,
1 zEKs
where
(3.3.11) 0o = inf{ky(z,y) : (z,y) € K x [-1,1]},
(3.3.12) 01 =sup{ky(z,y) : (z,y) € K5 x [-1,1]}, 1 < o0.

Since K C Ks and Kj is open, by Lemma 2.1.1 there exists ¢ > 0 and a contractive
function f : X — R satisfying conditions (2.1.3), (2.1.4) with G = K, and the inequality

(3.3.13) e<1l— sup f(z).
zeKs

By the mean value theorem we have

Bu(f) = Bu(f) = | ky(@, f(z) + 0(2)(F(@) - F(@))(f(@) = f(2)) plda),
X
where 6(z) € (0,1). From (2.1.3), (2.1.4) and the equality u_(K) = 0 it follows that
> ¢

Du(f) = Bu(f) = € | by (w, f(@) + 0(2)e)s, (dx)

K
—e | Ry f@) +0@)(f(2) = @) p_(dw).
K5\ K
Now using (3.3.11) and (3.3.12) we obtain

qu(f) —@u(f) > edop, (K) —edip (K5 \ K),

which in virtue of (3.3.10) gives
~ 650
Pu(f) = Pulf) = 7M+(K)-

Further, from (3.3.13) it follows that f € F. Consequently, the last inequality contradicts
(3.3.4) and finishes the proof in this case. If f(xo) > —1 for some z¢ € supp u_, the
argument is similar, based on Remark 2.1.1. =

Given two nonempty sets A, B C X we define
dist(A, B) = inf{o(z,y) : x € A, y € B}.
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Using Theorem 3.3.1 it is easy to prove the following corollary which will be applied in
Subsections 4.3 and 6.4.

COROLLARY 3.3.1. Let = po — p1, where g, 11 € My, p1 # po and
(3.3.14) dist(supp p,supp p_) < 2.
Then every fo € F satisfying (3.3.4) with u = pe — py fulfills condition 1°.

Proof. The proof is straightforward. Suppose, on the contrary, that there exists a con-
tractive fo € F such that

(3.3.15) Pu(fo) = Sgg%(g)

Using (3.3.14) we can find o € supp pu, and yo € supp p_ such that o(zg,y0) < 2. On
the other hand, by condition 2° of the maximum principle we have fo(zo) — fo(yo) = 2,
which is impossible. m

Observe that the special linear function k(z,y) = y for (z,y) € X x [—1,1] satisfies
condition (ii) of Theorem 3.3.1. In this case (3.3.1) reduces to @,(f) = (f, 1). Using this
fact we obtain

REMARK 3.3.1. Assume that (X, o) is a locally compact separable metric space and p
satisfies condition (i). Then there exists a function fy € F such that

(3.3.16) (fos ) = [l

Moreover, if |u| > 0 and a function fy € F satisfies (3.3.16), then it fulfills at least one
of the following two conditions:

1° There exist two points z,y € X, x # y, such that

(3-3.17) [fo(z) = fo(y)| = oz, y).

2° The function fy has the following properties:
(3.3.18) fo(z) =1 for 2 € supp p, ,
(3.3.19) fo(z) = -1 forxz € suppp_.

4. Asymptotically contractive semigroups of Markov operators

In this chapter we study a class of asymptotically contractive locally Lipschitzian Markov
semigroups acting on the space of signed measures. Our results are based on maximum
principles. In Chapter 6 we will apply these criteria to the stability theory of Markov—
Feller semigroups.

4.1. Markov operators. An operator P : M — M is called a Markov operator if it
satisfies the following conditions:
(i) P is positively linear:
P(Ap + Aapre) = MiPpa + Aapo
for A1, A2 > 0 and p1, pe € M,
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(ii) P preserves the measure of the space:
(4.1.1) Pu(X)=pu(X) forpue M.

REMARK 4.1.1. Every Markov operator P can be uniquely extended as a linear operator
to the space of signed measures. Namely for every i € My, we define

Pu = Puy — Puz, where p =y — pa, p1,pu2 € M.
It is easy to verify that this definition does not depend on the choice of 1, po.
A Markov operator P is called regular if there exists an operator U : B(X) — B(X)

on the space of bounded Borel measurable functions such that
(4.1.2) (Uf, 1) = (f, P)  for f € B(X), p € M.
The operator U is called dual to P. If in addition Uf € C(X) for f € C(X), then the

regular operator P is called a Markov—Feller operator.
Setting u = d, in (4.1.2) we obtain

(4.1.3) (Uf)(x)=(f,Pdy) for feB(X),xzeX,

where §, € M is the point (Dirac) measure supported at x.
From formula (4.1.3) it follows immediately that U is linear and

(4.1.4) Uf>0 for f>0, fe B(X),
(4.1.5) Ulx =1x,
(4.1.6) Ufn, 10 for f, |0, f, € B(X).

Here f,, | 0 means that the sequence (f,) is decreasing and pointwise converges to 0.

Conditions (4.1.4)—(4.1.6) allow one to reverse the roles of P and U. Namely, if a
linear operator U satisfying (4.1.4)—(4.1.6) is given we may define a Markov operator
P: M — M by setting

(4.1.7) Pu(A)=(Uly,p) for pe M, A€ By.
A mapping 7 : X x Bx — [0, 1] is called a transition function if w(x,-) is a probability
measure for every © € X and (-, A) is a measurable function for every A € Bx.

Having a transition function 7 we may define the corresponding Markov operator
P : Mgy — Mg by the formula

(4.1.8) Pu(A) = { w(x, A) p(dz)  for ji € My, A € Bx
X
and its dual operator U : B(X) — B(X) by
(4.1.9) Uf(w) =\ f(u)n(z,du).
X

Conversely, having a regular Markov operator P we may define 7 : X x Bx — [0,1] by
setting

(4.1.10) (z, A) = P5,(A).

Clearly 7 is a transition function such that conditions (4.1.8) and (4.1.9) are satisfied.
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Thus, conditions (4.1.8), (4.1.10) yield a one-to-one correspondence between the reg-
ular Markov operators and transition functions.

Note that a Markov operator P is Markov—Feller if and only if its transition function
has the following property:

Zn, — x implies w(x,, ) — 7(x,-) (weakly).
If this condition is satisfied the transition function 7 is called Feller.

REMARK 4.1.2. Observe that a Markov—Feller operator is continuous with respect to
weak convergence. Namely, the weak convergence of (u,) to a measure p implies the
weak convergence of (Pp,,) to Pu. This is a straightforward consequence of (4.1.2).

The dual operator U has a unique extension to the set of all Borel measurable nonneg-
ative (not necessarily bounded) functions on X, such that formula (4.1.2) holds. Namely
for a Borel measurable function f : X — RT we write

Uf(z) = nler;o Ufn(x),

where (f,) C B(X) is an increasing sequence of bounded Borel measurable functions
converging pointwise to f. Since the sequence (U f,) is increasing the limit U f exists.
Further from the Lebesgue monotone convergence theorem it follows that U f satisfies
(4.1.2). This formula shows that the limit is defined in a unique way and does not
depend on the choice of the sequence (f,,). Evidently this extension is positively linear
and monotonic.

For given ¢ € X define

oc(z) == o(x,c) forxe X.

An important role in the study of the asymptotic behaviour of a Markov—Feller operator
P is played by the function Up., where U denotes the dual operator to P. Since g. is
continuous and nonnegative the function Up, is well defined.

If in addition Ug, is finite, i.e.

(4.1.11) Uoc(z) <oo forx e X,

then the operator U can be extended to a linear space of functions satisfying an ap-
propriate growth condition. To formulate this fact precisely we introduce the following
notion:

A function f : X — R will be called linearly bounded if there exist nonnegative
constants A, B such that

(4.1.12) |f(z)| < Ao.(xr)+B forzeX.
The family of linearly bounded functions will be denoted by £(X).

REMARK 4.1.3. If condition (4.1.11) is satisfied then for every f € £(X) the functions
Uf+,Uf~ also belong to L(X). Therefore the function

(4.1.13) Uf(z):=Uft(x) - Uf ()

is well defined and belongs to £(X). Elementary calculations show that U defined by
(4.1.13) has the following properties:
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1. U maps £(X) into itself.
2. U is linear and nondecreasing.
3. |Uf| <U|f| for f e L(X).

Using the above remark it is easy to prove the following proposition:

PROPOSITION 4.1. Let P : Mgg — Msig be a Markov-Feller operator and let U be its
dual. Assume that Up,. is a linearly bounded function. Then

(4.1.14) P(Msigﬂ) C Msig,l-

Moreover, for every f € L(X) and p € Mgig1 the integrals (Uf, ), (f, Pu) are finite
and

(4.1.15) (Uf,p)=(f,Pu) for f € L(X), p € Miig1.

Proof. Conditions (4.1.14) and (4.1.15) follow immediately from the fact that for f €
L(X) and p € Mg 1 the eight integrals (f*, Pu™),...(Uf~, 1) exist and are finite. m

Let d be an arbitrary metric on Mg;z. A Markov operator P : Mg, — My, is called
Lipschitzian with respect to d with constant k > 0 if

(4.1.16) d(Ppi1, Pug) < kd(pi, pa)  for pq, po € Mgig.

If £ <1 then P is nonexpansive.
A Markov operator P : Mg, — M, is called contractive in the class M C Mg
with respect to d if

(4.1.17) d(Pu1, Puo) < d(p1,pu2)  for py, pus € M.

REMARK 4.1.4. Note that a regular operator P : Mg, — M., is nonexpensive with
respect to the Fortet—Mourier metric if and only if U(F) C F. This is an immediate
consequence of formula (4.1.2).

Let T be a montrivial semigroup of nonnegative real numbers. More precisely we
assume that {0} ¢ T C R and

(4.1.18) ty+ta €T, t1 —ta €T forty,to €T, t1 > to.
A family of Markov operators (P?);cr is called a semigroup if
ptts =ptps fort,seT

and P° = I where I is the identity operator.

If the Markov operators P! are Markov-Feller for t € T, we say that (P!);cr is a
Markov—Feller semigroup. We denote by (U');er the semigroup of the dual operators to
(P")ier-

A Markov semigroup (P!);cr is called locally Lipschitzian with respect to d in the

class M C M if there/gxists a locally bounded function k : 7" — R™ such that for
every t € T and 1, s € M,
(4.1.19) d(Pur, P'pz) < k(t)d(pa, pa)-

If k(t) <1 for t € T, then (P!)ier is a nonezpansive semigroup.
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A nonexpansive semigroup (P?);cr is called asymptotically contractive with respect to
d in the class M C Mg if for every pq, us € M, p1 # po, there is ¢ty € T such that

d(P™uy, PP us) < d(pa, po)-

4.2. Asymptotically contractive semigroups with respect to the Hutchinson
metric. In this section we study Markov—Feller semigroups which are asymptotically
contractive in the class M; , with respect to the Hutchinson metric. To verify that
some semigroups have the desired asymptotic properties we use the maximum principle
formulated in Theorem 3.2.3.

THEOREM 4.2.1. Let (P);cr be a Markov—Feller semigroup and (U')icr its dual semi-
group. Assume that there is tg € T such that for every f € 'H,

(4.2.1) U f(x) = U f(y)| < o(x,y) forz,y€ X andt €T,
(4.2.2) U f(z) =Uf(y) < o(a,y) forzye X, a#y.
Moreover, assume that there exists a constant o > 1 such that

(4.2.3) P'(Mi4) C Mg  fort>0.

Then (P)scr is asymptotically contractive with respect to the Hutchinson metric in the

class M 4.

Proof. From (4.2.1)—(4.2.3), it follows immediately that (P');cr is nonexpansive on M ,
with respect to the Hutchinson metric. Indeed, for ui, o € M; o and t € T we have

(424)  [[P'pa— P'palle = sup{|[(f, P'pa — P'pa)| : f € H}
=sup{[(U"f, 1 — p2)| = f € H} < [lpa — paall-

Note that M; , C My for a > 1 and fix pq, e € Miq, p1 # po. By Theorem
3.2.1 there exists f € H such that

(4.2.5) (fs P — Ppg) = ||P* 1 — P a3
This may be rewritten in the form
(U™ f, 1 — p2) = [Py — PP ol
As U'o f satisfies (4.2.1), by the second part of Theorem 3.2.1 we obtain
(4.2.6) (U f, 1 = p2) < [l = pz e

This inequality and (4.2.4) show that (P!);cr is asymptotically contractive with respect
to the Hutchinson metric in M . =

REMARK 4.2.1. Sometimes (4.2.3) can be verified using a more explicit condition. Namely,
let ¢ be a fixed element of X and p%(z) := (o(x,c))® for z € X, a > 0. If there exist
constants A, B > 0 and « > 1 such that

(4.2.7) (Uto%)(z) < Ap%(x) + B forx € X and t € T,
then the condition (4.2.3) is satisfied.

As a consequence of Theorem 4.2.1 we obtain the following
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COROLLARY 4.2.1. Let P : Mg, — Mz be a Markov-Feller operator and let U be its
dual operator. Assume that for every f € H,

(4.2.8) Uf(x) =Uf(y)l < o(x,y) forz,ye X, z#y.
Moreover, assume that there exists a constant a > 1 such that P(My o) C My o. Then
(P™)nen 1s asymptotically contractive with respect to the Hutchinson metric in the class

Mi.a.

4.3. Asymptotically contractive semigroups with respect to the Fortet—Mou-
rier metric. In this section we study Markov—Feller semigroups which are asymptoti-
cally contractive in the class M; with respect to the Fortet—Mourier metric. The proofs
are based on the maximum principle formulated in Remark 3.3.1.

THEOREM 4.3.1. Let (P')icr be a Markov—Feller semigroup and (U")icr its dual semi-
group. Assume that the following conditions are satisfied:

(1) For everyt € T,
(4.3.1) U f(x) = U f(y)| < o(x,y) forz,y € X.
There is tg € T such that for every f € F,
(4.3.2) U f(z) = U f(y)l < olx,y) forzye X, x#y.

(ii) For every pi, po € My, 1 # po, there exists t1 € T such that either PY () =
P (p2) or

(4.3.3) dist(supp(P"* (u1 — pi2)) ., supp(P"* (1 — pi2)) ) < 2.

Then (PY)ier is asymptotically contractive with respect to the Fortet—Mourier metric in
the class M.

Proof. From (4.3.1), it follows immediately that U*(F) C F for t € T, and that (P?);cr
is nonexpansive. Indeed, for pi, o € M; and t € RT we have

(4.3.4) 1P* iy = Plpa|l 7 = sup{[(U" f, pr — p2)| : f € F}
< sup{[(f,p1 — p2)| - f € F} = |lpr — p2| 7
Fix p1, po € My, p1 # pe. By Remark 3.3.1 there exists fo € F such that
(4.3.5) (fo, PF4 g — PoFh ) = [[PYoF0 g — Ploth pg |
This may be rewritten in the form
(4.3.6) (U fo, PP iy — P pg) = [P+ g — P+t
If Pty = P2y then automatically
(4.3.7) [P g — PRt | 7 <l — ol

If not, we can apply Remark 3.3.1 to the measure P%y; — P'puy and the contractive
function U fy. By Corollary 3.3.1 this gives

(4.3.8) (U™ fo, P pa — P pz) < [P pia — P pia| 7.
The last inequality and (4.3.4) again imply (4.3.7). =
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THEOREM 4.3.2. Let (P);cr be a Markov—Feller semigroup and (Ut)icr its dual semi-
group. Assume that the following conditions are satisfied:

(i) For everyt e T,
(4.3.9) U f(z) = U f(y)| < o(z,y) forz,y€ X andt e T.
There is to € RY such that for every f € F
(4.3.10) U f@) =U"f(y)l < e(z.y) forazyeX z#y.
(ii) There exist constants to,t1,ta € T such that for every f € F we have either
Uttt f(z) e (=1,1] forze X
or
Uttt f(z) € [-1,1) forx € X.

Then (P%)ier 1s asymptotically contractive in the class My with respect to the Fortet—
Mourier metric.

Proof. We may repeat the argument used in the proof of Theorem 4.3.1. However, in
this case for pi, us € My, p1 # e, equality (4.3.5) should be replaced by

(4.3.11) (fo, P+ g — PYo*p) = || Pty — Pt 1,

where £ = min(ty,t3) and fy € F. This equality may be rewritten in the form
(4.3.12) (U fo, py — o) = || P+ g — Pt ]| .

From (4.3.10), (4.3.9) it follows that

(4.3.13) U* fo() — U fo(y)| < o(w,y)  forz,y € X, z#y.
According to Remark 3.3.1 conditions (ii), (4.3.13) and (4.3.12) imply

[P+ py — P sl < [lpug — pa.

This inequality and (4.3.9) show that the semigroup (P?!);cr is asymptotically contractive
in M; with respect to the Fortet—-Mourier metric. m

We may simplify the verification of condition (ii). Namely we have the following

PROPOSITION 4.3.1. Let m : X x Bx — [0,1] be a transition function and let U be the
corresponding dual operator. Assume that

(4.3.14) supp7(z,-) =X  forx € X.
Then for every f € C(X), | f|l <1 either

Uf(x)=1 forze X
or

Uf(x)=-1 forze X

Uf(z) e (-1,1) forzxze X.
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Proof. Fix f € C(X), ||f]l < 1, and suppose that there exists an z; € X such that
Uf(z1) = 1. By the properties of the dual operator we have

Ulx(z1) = U f(z1) = {[1x(y) = f(®)] 7 (21,dy) = 0.
X

From this and the inequality f < 1x it follows that
(4.3.15) f(x) =1 7(z1,-)-almost everywhere.

This and condition (4.3.14) imply that f(z) =1 for € X. Since U is the dual operator,
we finally obtain U f(x) =1 for x € X. If there exists an 2 € X such that U f(z3) = —1
the argument is similar. m

The following example shows that in the statement of Proposition 4.3.1 the assumption
(4.3.14) is essential.

EXAMPLE 4.3.1. Let X = R with the Euclidean metric. Further, let P : Mg, — Mg
be the Markov—Feller operator defined by the formula

(4.3.16) Pu(A) = u(—A).

It is easy to verify that m(x, A) = §,(—A) and consequently

supp7(l,-) ={-1}#X and suppn(-1,")={1}#X
Further let f, € F be given by the formula
1 for x > 1,
fol)=qz forze(-1,1),
—1 for x < —1.

From the definition of the dual operator it follows immediately that

Ufo(—l) = <f0,P(S_1> = <f0,51> = 1 and Ufo(l) = <f0,P51> = <f0,5_1> = —1.

5. Invariance principle

In 1976 J. P. LaSalle (see [19, Chapter 1, Theorem 10.7]) proved that every compact
trajectory of a dynamical system (S?);c7 converges to the largest invariant subset of the
set {z : V(z) = 0}, where V is a Lyapunov-LaSalle function and V its derivative with
respect to the system. This result is called the invariance principle. Various versions of
the invariance principle were studied and used in the proofs of the asymptotic stability
of dynamical systems (see for example [20, Theorem 2.1], [26, Theorem 1.1] and [38,
Chapter TV Theorem 4.2]). We show a new version of this principle which generalizes
the results of A. Lasota (see [20], Theorem 2.1) and A. Lasota and J. Traple (see [26,
Theorem 1.1]).

5.1. Criteria for the asymptotic stability of trajectories. For the convenience of
the reader we recall a few definitions from the theory of dynamical systems. (For details
see [20].)
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Let X be a Hausdorff topological space. Further, let 7" be a nontrivial semigroup
of nonnegative real numbers as in Chapter 4, i.e., we assume that T satisfies condition
(4.1.18).

A semigroup (S%)ier of maps X — X is called a semidynamical system if X > z —
Stx € X is continuous for every t € T.

If a semidynamical system (S?);cr is given, then for every fixed z € X the function
T >t +— Stz € X will be called the trajectory starting from z and denoted (S'z). A
point y € X is called the limiting point of the trajectory (S'x) if there exists a sequence
(tn) C T such that ¢, — oo and

lim Sz = y.
n—oo
The set of all limiting points of the trajectory (S'z) will be denoted Q(x). Further, we
write
y(x)={S'zr:t €T} and T(z)=~(z)UQ(x).
A set C' C X is called invariant with respect to (S*)er if S'(C) C C for t € T.

REMARK 5.1.1. Let (S?);er be a semidynamical system and let {Cy}rca be a family of
invariant sets. It is easy to see that their union and intersection are also invariant with
respect to (S)ier.

From Remark 5.1.1 it follows immediately that every set C' C X contains the maximal
invariant subset M which is the union of all invariant subsets of C. The set M may of
course be empty.

We say that a function ¢ : T'— X converges to a set A C X if for every open G D A
there exists tg € T such that

(5.1.1) o(t)e G fort>ty, teT.

From this definition it follows that A # (). Observe that if A C B C X and ¢ converges
to A then it also converges to B.
If A= {a} is a singleton then ¢ converges to {a} if and only if lim; . ¢(t) = a.

REMARK 5.1.2. If (S%);cr is a semidynamical system then the sets vy(z), Q2(z) and T'(z)
are invariant for every z € X. It is easy to verify that I'(x) is the minimal invariant
subset of X which contains = and Q(z).

Let (S%)ser be a semidynamical system and let x € X. We say that a trajectory
(Stx) is sequentially compact if for every sequence (t,) C T with ¢, — oo, there exists a
subsequence (t, ) such that (S*nx) converges to a point y € X.

REMARK 5.1.3. If the trajectory (Stx) is sequentially compact, then (z) is a nonempty,
sequentially compact set and S?z converges to (). Moreover in this case Q(z) is strictly

tnvariant, i.e.

SH(Q(z) =Qx) forteT.

A point z, € X is called stationary (or invariant) with respect to a semidynamical
system (S?)ier if

(5.1.2) Sy, =z, forteT.
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A semidynamical system (S%);cr is called asymptotically stable if there exists a sta-
tionary point x, € X such that

(5.1.3) lim S'zr =z, forzeX.

t—oo
REMARK 5.1.4. Since X is a Hausdorff space, an asymptotically stable dynamical system
has exactly one stationary point.

Let a nonempty invariant set A C X be given. A function V : A — R is called a
Lyapunov-LaSalle function for a semidynamical system (S!);cr if V is continuous and

(5.1.4) V(8" (z)) > V(S™(z)) forz € Aandty <to, t1,t2€T
(see [19, Chapter I, Definition 6.1 and Definition 8.2]).

A function d : X x X — R7 is called a distance if d is continuous and
(5.1.5) dz,y) =0 & z=y forz,yeX.

In the proof of our main result Theorem 5.1.2 we will use the following properties of
Lyapunov-LaSalle functions:

THEOREM 5.1.1. Let (S%)ier be a semidynamical system and let xg € X. Assume that
V :T(xz0) — R is a Lyapunov-LaSalle function. Then there exists 8 € Ry such that

(5.1.6) Qzo) C VD).
Further, if the trajectory (Stzq) is sequentially compact, then
(5.1.7) 8= tlim V(S (x0))

satisfies (5.1.6) and the trajectory (S'zg) converges to the largest invariant subset M (xq)
of V=Y(B). In this case Q(xg) C M (z0).

The proof of Theorem 5.1.1 can be found in [20, pp. 113—-114| and [38, pp. 168-170].

In order to formulate our theorem we consider a semidynamical system (S%);c7 which
has at least one sequentially compact trajectory. Further, let d be an arbitrary distance
on X. We denote by Z the set of all 2 € X such that the trajectory (S%z) is sequentially
compact. Since Z # () we have

Q=[] () #0.

2€Z
The main result of this chapter is the following.

THEOREM 5.1.2. Let z, € Q be fized. Assume that for every x € Q, x # x,, there is
t(z) € T such that

(5.1.8) d(St @z, §'@y. ) < d(x, x.).

Further assume that the semidynamical system (S*)icr is nonexpansive with respect to d,
i.e.,

(5.1.9) d(S'z, S'y) < d(z,y) forxz,yc X andtcT.
Then x, is a stationary point of (St)ier and

(5.1.10) tlim d(S'z,z.) =0 forz€ Z.
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Proof. We break up the proof of Theorem 5.1.2 into three steps.

STEP I. Choose zg € Z such that =, € Q(zg). We claim that every point y € Q(xo)
is stationary with respect to (S?);er. To prove this fix » € T' and consider the function
V, : T'(xg) — RT given by the formula

Vi(z) =d(S"z,x) for x € T'(x).
Using (5.1.9) it is easy to verify that V. is a Lyapunov—LaSalle function. In fact, for every
x € T'(xg) and t; > to (t1,t2 € T) we have
Vo (Shz) =d(S" T x, ST x) = d(Sh (S r), St (St )
<d(S™1"(x), S™x) = V,.(S™2).

Since x¢ € Z, the trajectory (S'z) is sequentially compact and converges to (zo) which
is an invariant subset of the set

{z :V.(z) =5} where (= tlim V. (Stxg).
Further, since z,. € Q(x¢) and V. is continuous, we have V,.(z,) = 8. Now we are going

to show that § = 0. Suppose not. Then d(S"z.,z.) > 0 and S"z, # z.. Using the
invariance of (z), the inclusion Q(zo) C V,71(3) and the condition (5.1.8) we obtain

8= VT(St(STz")J)*) _ d(St(ST:E*)(ST.T*)7St(srm*)x*) < d(ST.Z‘*,J)*) _ VT(Z‘*) =3,

which is impossible. Thus we get 8 = 0. Let y € Q(z() be given and let ¢,, — 0o be such
that y = lim,, o, St z0. We have lim,, .o, V(S x¢) = 0 and consequently

d(S"y,y) = nh~>nolo d(S™*" g, S xg) = 0.
This shows that Sy = y for y € Q(x¢). Since r € T was arbitrary, the proof of the claim
is complete.
STEP II. Since . € Q(xg), we have S*(x,) = z, and so (5.1.9) yields
(5.1.11) d(S'z,z,) <d(z,z,) forxze X.

Now we are going to prove that for every z € Z and ¢ > 0 for which the set K,(g) =
Q(z)N{z € X : d(x,z.) > €} # () there exists a constant ¢y > 0 such that

(5.1.12) d(S"™z,z,) < d(z,v.) forx e K,(c)andt>tg, teT.

Suppose not. Then for some z € Z and £ > 0 there exists a sequence (z,) C K, (¢) and
a sequence (t,) C T such that

d(S'z,,r.) = d(zp,v,) formn>1 and lim ¢, = oco.

n—oo

Passing to a subsequence if necessary, we may assume that (z,) converges to a point
Z € K,(¢). Fix t € T and choose 7 € N such that ¢, > ¢ for n > 1. It is evident that

d(S'z,,r.) = d(x,,r,) forn>n.
From the continuity of d and S* it follows immediately that
(5.1.13) d(S'z,z,) = d(z,z,) fortcT.
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Moreover, from the definition of K, () and the continuity of d it follows that d(Z,z.) > ¢
and Z # x,. Thus according to (5.1.8) and (5.1.13) we have

d(z,x,) = d(S* @z, 2,) < d(z,z.),
which is impossible. The proof of the inequality (5.1.12) is complete.
STEP III. Now we are going to prove that all the sets (z) are identical singletons:
(5.1.14) O(z) ={x.} forzeZ
Fix z € Z and suppose, on the contrary, that
(5.1.15) e =sup{d(v,z.) : v € Qz)} > 0.

Since the function v + d(v,z,) € R is continuous and Q(z) is sequentially compact,
there exists a point ¢ € )(z) such that

(5.1.16) e =d(0,x.).
Evidently ¢ € K, (¢). Thus according to Step II there exists to € T such that
(5.1.17) d(S"™x,z,) < d(z,z.) forx € K,(e).

Fix t >ty >0,1¢€T. Since Q(z) is strictly invariant, there exists % € () such that
St = 0. Further, by (5.1.11) and (5.1.16) we have

e =d(D,x.) = d(S0,2,) < d(@, z.).
Since @ € Q(z) the last inequality and (5.1.15) imply that d(@,z.) = €. Consequently,
i € K, (g) and we can apply inequality (5.1.17) to the point @. This and (5.1.11) give
e =d(i,,) > d(S"a,x,) > d(S”g_tO (S"a), z,) = d(Sgﬁ,x*) =g,
which is impossible. Therefore condition (5.1.14) is satisfied.

Since the trajectory (S?z) converges to Q(z) = {x.} for every z € Z, this completes
the proof. m

5.2. Asymptotic stability of a nonlinear Boltzmann-type equation. To illustrate
the application of the results developed in Section 5.1 we will discuss an example drawn
from the kinetic theory of gases. This example was stimulated by the problem of stability
of solutions of the following version of the Boltzmann equation:

e e} Yy

oult d
(5.2.1) ut,z) | ut,w) = | Llulty—2ult,2)dz, 20,220,
ot Yy
Due to the physical interpretation equation (5.2.1) is considered with the additional
conditions
(5.2.2) S u(t, z) de = S zu(t,x) de = 1.
0 0

Equation (5.2.1) was derived by J. A. Tjon and T. T. Wu from the Boltzmann equation
(see [36]). Following Barnsley and Cornille [1] we call it the Tjon—Wu equation. It is
easy to see that the function u.(t,x) := exp(—z) is a (stationary) solution of (5.2.1).
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M. F. Barnsley and G. Turchetti (see [2, p. 369]) proved that this solution is stable in
the class of all initial functions ug := u(0, -) satisfying the condition

oo

(5.2.3) S uo(2)e®/? da < co.
0

This condition was replaced by T. Dlotko and A. Lasota (see [6], Theorem 3) by a less
restrictive
(5.2.4) S z"ug(x)de < oo forn=2,3,....

0

In 1990 Z. Kietek (see [18, Theorem 1.1]) succeeded in proving that the stationary solution
u, is asymptotically stable if (5.2.4) is satisfied for n = 2.

Equation (5.2.1) has a simple interpretation. For fixed ¢ > 0 the function wu(t,-)
denotes the density distribution function of the energy of the particle in an ideal gas. In
the time interval (¢, ¢+ At) the particle changes its energy with the probability At+o(At)
and the change is equal to [—u(t, z) + P(u(t, z))]At+0(At), where the operator P is given
by the formula

(5.2.5) (Pv)(x) = S m Sv(y — 2)v(z) dz.
T 0

In order to understand the action of P consider three independent random variables &7, &2

and 7 such that &£, & have the same density distribution function v and 7 is uniformly

distributed on the interval [0,1]. Then Pv is the density distribution function of the

random variable

(5.2.6) n(& + &)

Physically this means that the energies of the particles before a collision are independent
and that a particle after collision takes the 7 part of the sum of the energies of the
colliding particles.

The assumption that 7 has a density distribution function of the form 1y ;) is quite
restrictive. In general, if n has the density distribution A, then the random variable
(5.2.6) has the density distribution function

o d y
(5.2.7) (Pv)(x) = S h(f) i S v(y — z)v(z) dz.

0 ¥y, 93
In 1999 A. Lasota and J. Traple (see [26, Theorem 1.1]) studied the asymptotic behaviour
of solutions of the equation

(5.2.8) u +u = Pu,

where v : R — L!(R) is an unknown function and P is the operator given by (5.2.7).
Equation (5.2.8) was studied in the spaces LP(Ry) with p = 1,2 and different weights.
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In the proof the following conditions on h were used:

oo o0 o0

(5.2.9) \h@)de =2\ ah(@)de =1, 2| a"n(@)dz <1,
0 0 0

(5.2.10) sup {zh(x) : z > 0} < o0,

(5.2.11) h(z) >0 for 0 <z < o,

where p > 1 and zy > 0.
Now, we will consider a generalized version of (5.2.8) in the space Mg;z(R) of all
signed measures on R . Set

(5.2.12) D:={peM;:mi(pn) =1}, where mq(pn) = S x p(dx).
0
We study the asymptotic behaviour of solutions of the equation
d
(5.2.13) d—f +p =Py fort>0

with the initial condition

(5.2.14) ¥(0) = o,
where P : D — D is a nonlinear operator on measures analogous to (5.2.7) and g € D.
In order to define precisely P we will introduce several notations.

Recall that the convolution of measures ji, v € Mg, is a unique measure pxv satisfying

(5.2.15) (wxv)(A) =\ | 1@ +y)u(dr)v(dy) for A€ Bx.
Ry Ry

It is easy to verify that

(5.2.16) (fopr vy =\ | fla+y) ude) vidy),

Ry Ry
for every Borel measurable f : Ry — R such that (z,y) — f(z + y) is integrable with
respect to the product of the measures |u| and |v|. For every n € N we define the
convolution operator of order n, P, : Mgy — Mg, by the formula

(5.2.17) Pap:=p, Pingrypp:=px Py for p € Mg,.

REMARK 5.2.1. Observe that P,, is not the nth power of P,; but P,,u is the nth
convolution power of p.

It is easy to verify that Py,(M;) C M; for every n € N. Moreover, P,,|r, has a
simple probabilistic interpretation. Namely, if &1,...,&, are independent random vari-
ables with the same distribution p, then P, p is the distribution of &; + ...+ &,.

Another class of operators we are going to study is related to multiplication of random
variables (see [22, p. 302]). The formal definition is as follows. Given pu,v € Mgz, we
define their elementary product p o v by

(5.2.18) (ow)(A) =\ | 1a(zy) p(dz) v(dy) for A€ Ba,.
Ry Ry
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It follows that
(5.2.19) (fruovy =\ | flay) plde)v(dy)
for every Borel measurable f : Ry — R such that (x,y) — f(zy) is integrable with
respect to the product of |u| and |v|. For fixed ¢ € M; we define a linear operator
P«p : Msig - Msig by
(5.2.20) Pop:=pop forpe M.
Again, as in the case of convolution, P,(M;) C M. For y1 € M; the measure P, i has
an immediate probabilistic interpretation. If ¢ and p are the distributions of random
variables £ and 7 respectively, then P, pu is the distribution of the product &7.

Now we return to equation (5.2.13) and give a precise definition of P:
(5.2.21) P:=P,P,,
where ¢ € M and my(¢) = 1/2. From (5.2.21) it follows that P (M;) C M;. Further
using (5.2.17) and (5.2.20) it is easy to verify that for p € D,
(5.2.22) my(Psop) =2 and mi(Pyp) =1/2.

REMARK 5.2.2. Evidently every fixed point of the operator P is a stationary solution of
equation (5.2.13). m

We will show that if equation (5.2.13) has a stationary measure u, such that supp u,
= R4 (that is, u.(B(z,e)) > 0 for every ¢ > 0 and = > 0), then this measure is
asymptotically stable.

A similar problem for (5.2.1) was studied by A. Lasota and J. Traple (see [26, Theorem
3.3]). The positivity of u, plays an important role in the proof of the stability. Namely, it
allows one to apply the maximum and invariance principle to show that the Hutchinson
distance between u, and an arbitrary solution u decreases in time. We start with two
simple lemmas concerning the support of Pu.

LEMMA 5.2.1. Assume that ¢ € My satisfies
(5.2.23) © # 012,
(5.2.24) mi(p) =1/2.
Then there exists 3 > 1 such that
if v € D and suppv D (a,b), then supp Pv D (Ba, 3b).

Proof. First we recall a well-known property of the support of convolution of measures.
If v € D satisfies suppv D (a,b) then the support of P.ov = v % v contains the interval
(2a,2b). In fact, fix ¢ € (2a,2b) and choose z,y € (a,b) such that ¢ =z +y. Let € > 0.
An elementary calculation show that
(5.2.25) Pov((c—¢e,c+¢e)) >v((x—¢e/2,x+¢/2))v((y —€/2,y +€/2)) > 0,
and consequently ¢ € supp Pio v.

From (5.2.23) and (5.2.24), it follows immediately that there exists 8 > 1 such that

(5.2.26) e((B/2—¢€,8/24+¢€)) >0 fore>0.
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Fix z € (Ba, 0b) and € > 0. Setting x = 22/ we can choose positive numbers £; < x
and 2 < (/2 such that

(5.2.27) €10/2+ a0+ 169 <e.
Now using (5.2.25) and (5.2.26) we obtain
(5.2.28) Pu((z—¢e,z24¢)) > p((B/2 —¢e2,8/2+ €2)) Puov((x — 1,2 +€1)) > 0.

This finally gives Pv((z — €,z 4+ €)) > 0, which shows that z € supp Pv and completes
the proof. m

The following result may be proved in much the same way as Lemma 5.2.1.

LEMMA 5.2.2. Assume that there is og > 0 such that (0,00) C supp p. Then for every
v € M there exists o > 0 such that

(5.2.29) supp Pv D (0,0)  whenever v # dg.

Proof. Fix v € M and assume that v # §y. Then there exists x; > 0 such that x; €
supp P.ov. Set 0 = x1 0¢. Fix z € (0,0) and £ > 0. Now we may repeat the construction
used in the proof of Lemma 5.2.1. Let 25 = 2/ and

(5.2.30) €1%2 +eox1 +E169 <€,
where €1,62 > 0 with €7 < 1 and €3 < x5. Then
(5.2.31) Pu((z—¢,z24¢)) > p((x2 — €2, 22 + €2)) Prov((x1 — €1, 21 + €1)) > 0.
Consequently, z € supp Pv, which finishes the proof. =
We are in a position to formulate the following theorem.
THEOREM 5.2.1. Let ¢ be a probability measure and let mi(p) = 1/2. Assume that:
(1) There is o9 > 0 such that

(5.2.32) (0,00) C supp ¢.

(ii) The operator P has a fized point v € M such that v # &y.
Then
(5.2.33) suppv = Ry.

Proof. From Lemmas 5.2.2 and 5.2.1 it follows that suppv D (0, 8"0) for n € N. Since
(3 > 1, this completes the proof. m

REMARK 5.2.3. If ¢ € M; and my(p) = 1/2, then the operator P given by (5.2.21) is
nonexpansive on DD with respect to the Hutchinson norm, i.e.

(5.2.34) |Pv— Pw|ly < |lv—wl|x forwv,we D.

In fact, using the conditions my(p) = 1/2, my(v + w) = 2 it is easy to show that the
function f: Ry — R given by

F@)= | | fl@+v)2) pld2) (w(dy) + v(dy)) for z € Ry
Ry Ry
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belongs to H for f € H. Furthermore,
(f, Pv — Pw) = (fN,vfw> for f e H,v,we D.
Finally
|Pv— Pulls = sup{|{f, Pv — Puw)| : f € H} < sup{|{g,v — w)| : g € H} = [[v— w]. m
Now we are ready to state the main theorem of this chapter.

THEOREM 5.2.2. Let ¢ be a probability measure with m1(p) = 1/2 and let 0 be an
accumulation point of supp w. Further let v,w € D be such that v # w and

(5.2.35) supp(v + w) = Ry.
Then inequality (5.2.34) is strict, i.e.
(5.2.36) [Pv — Pw|y < |lv—wl|sn.

Proof. Suppose not. Then there exist two different measures v,w € D such that
supp(v + w) = Ry and

(5.2.37) |Pv — Pw|x = |lv— wl|x.
By Theorem 3.2.1 applied to the measure Pv — Pw there exists fy € H such that
(5.2.38) |Pv — Pwl|ly = (fo, Pv — Pw).

Using the last equality and (5.2.37) we obtain
v = wllw = (fo, Pv) = (fo, Pw)
= |V | Al@+y)2) eldz) olda)vidy) = | | | fol(@ +9)2) w(dz) w(de) w(dy).
R, Ry Ry R, Ry Ry
This may be rewritten in the form
(5.2.39) lo—wlz = | | g(@+y) (v(dy) + w(dy)) (v(dz) — w(dz)).
R, R,

where

g(r) = S fo(rz)e(dz) forreR,.
R

Introducing the function f; : R; — R by the formula

(5.2.40) A@) = | | fol@+y)2)e(d2)(v(dy) + w(dy) for z € Ry,
Ry Ry

it is easy to verify that

(5.2.41) lv —wllx = (f1,v— w).

The function f; is again an element of H. By the maximum principle applied to the
equality (5.2.41) there exist 21,79 € Ry, 71 < 29 and constants 6,0 (% = 1) such that

filzx) =0z +o forxz € (w1, 7).

It follows that
|fi(z1+€) = fi(z1)=¢ fore € (0,22 — ).
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Replacing fy by — fy if necessary we may assume that

(5.2.42) Sz + 6) — fi(z1) =e.
Now we are going to show that
(5.2.43) fole)=x+c forzeRy,

where ¢ € R. Observe that f € H and so to prove (5.2.43) it suffices to show that
foluz) = fo(ur) > ug —uy  for 0<uy < us.

To prove this let uq,us € Ry with w3 < ug and suppose that

(5.2.44) foluz) — fo(ur) < ug — uy.

Hence, we can find a point @ € (u1, uz) such that the upper right Dini derivative (see [35,
p. 9]) of fy at @ satisfies

(5.2.45) D+ fo(@) < 1

According to the definition of the Dini derivative there is a §; > 0 such that

Jo(u+96) — fo(u)

(5.2.46) 5

<1 ford e (0,6).
Now consider the function
(5.2.47)  h(y,z,¢)

_ Jollzr +e+y)z) = fol(z1 +y)2)
£z
By (5.2.42) and the definition of f; for all ¢ € (0,29 — 1) we have

fi(z +52_f1(x1) - S S h(y, z,€)z p(dz) (v(dy) + w(dy)).
Ry Ry

for (ya 275) € R-l‘ X (0700) X (0,00)

(5.2.48) 1=

Let A x B € Bg, xr,. We define a measure q on Bg, xrg, by the formula

g(Ax B) = || 20(d2) (v(dy) + w(dy)).
AxB
Evidently ¢ is a probability measure. Since 0 is an accumulation point of supp ¢, there is a
z € supp p such that z1Z < @. On the other hand, by (5.2.35) there exists § € supp(v+w)
such that

U—a12=7%.
Finally, observe that for every € € (0, x2 — x1) such that £z < §; we have
h(y, 7, &) < 1.

From this and continuity of h it follows that there are two closed balls B(y,r;) and
B(Zz,7z) such that for (y,z) € B(y,r5) x B(Z,73) we obtain

(5.2.49) h(y,z,€) < 1.
Moreover, it is easy to see that ¢(B(y,r5) x B(Z,rz)) > 0. Consequently,

S S h(y, z,€) q(dy, dz) < 1.
Ry R,
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This contradicts (5.2.48). Therefore fo(x) = x + ¢ for x € R, where ¢ is a constant.
Since Pv and Pw belong to D we have (fy, Pv — Pw) = 0. According to (5.2.37) this
implies v = w, which is a contradiction. m

We finish this chapter with a new sufficient condition for the asymptotic stability of
solutions of a generalized version of the Tjon-Wu equation of the form (5.2.13). We show
that this equation may by considered in a convex closed subset of a vector space of signed
measures. This approach seems to be quite natural and it is related to the classical results
concerning semigroups and differential equations on convex subsets of Banach spaces (see
4, 5)).

Before formulating the main result we recall some known results concerning existence
and uniqueness of solutions of ordinary differential equations in Banach spaces.

Let (E, | -||) be a Banach space and let D be a closed, convex, nonempty subset of E.
In the space E we consider an evolutionary differential equation

d ~
(5.2.50) di: = —u+Pu forteR,
with the initial condition
(5.2.51) u(0) = ug, ug € D,

where P: D —» Disa given operator.
A function u : Ry — FE is called a solution of problem (5.2.50), (5.2.51) if it is strongly
differentiable on R, u(t) € D for all t € R, and u satisfies relations (5.2.50), (5.2.51).
We start from the following theorem which is usually stated in the case E = D.

THEOREM 5.2.3. Assume that the operator P:D—D satisfies the Lipschitz condition
(5.2.52) |Pv — Pw|| <l|v—w| foruweD,

where | is a nonnegative constant. Then for every ug € D there exists a unique solution
u of problem (5.2.50), (5.2.51).

The standard proof of Theorem 5.2.3 is based on the fact that a function u : Ry — D
is a solution of (5.2.50), (5.2.51) iff it is continuous and satisfies the integral equation
t
(5.2.53) u(t) = e ‘ug +S e~ =9 Pu(s)ds forteRy.
0
By completeness of D the integral on the right hand side is well defined and equation
(5.2.53) may be solved by the method of successive approximations.
Observe that thanks to the properties of D for every ug € D and every continuous
function v : Ry — D the right hand side of (5.2.53) is also a function with values in D.
The solutions of (5.2.53) generate a semigroup of operators (P*);>o on D given by

(5.2.54) Plug =u(t) forteRy, ug€ D.

Now we are going to apply Theorem 5.2.3 to problem (5.2.13), (5.2.14).
We start with the following observations:

1. From (5.2.12) it follows immediately that D is a convex subset of Mg, 1.
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2. Tt is known that D with the Hutchinson metric is a complete metric space (see [22,
Theorem 2.1]).
3. If ¢ € M; and mq(p) = 1/2, then the operator P maps the set D into itself.

Note that the last condition corresponds to the condition (5.2.9) in the model of
Lasota—Traple (see [26, Theorem 1.1]). In the classical Tjon—-Wu equation ¢ has the
density distribution function of the form 1y 1.

We may summarize this discussion with the following

COROLLARY 5.2.1. If p € My and mi(p) = 1/2 then for every ¥y € D there exists a
unique solution u of problem (5.2.13), (5.2.14). m

Denote by (P');>o the unique semigroup on D corresponding to (5.2.13), (5.2.14).
We have the following result concerning the asymptotic stability of (P*);>¢.

THEOREM 5.2.4. Let P be an operator given by (5.2.21). Moreover, let ¢ be a probability
measure with my () = 1/2 and let 0 be an accumulation point of supp ¢. If P has a fized
point Y, € D such that

(5.2.55) supp ¢, = Ry,
then
(5.2.56) 0 ([(t) = ullr =0

for every compact solution ¢ of (5.2.13), (5.2.14).

Proof. First we show that (P");>( is nonexpansive on D with respect to the Hutchinson
metric. In fact, let 9,99 € D. For t € R, define v(t) = P!y — P! Jy. Condition (5.2.53)
implies that
t
u(t) = e7"0(0) + | e (P(Po) — P(P*0))ds  for t € Ry.
0
From this and (5.2.34), it follows immediately that
t
Jo(®) I < e [0l + § ¢ o(s)llpeds  for ¢ € R,
0
This may be rewritten in the form
t
FO) < o)l + | f(s)ds  fort € Ry,
0

where f(t) = et ||u(t)||7. From the Gronwall inequality it follows that
F(#t) < €'lo(0)]n-

This is equivalent to the fact that (P');>( is nonexpansive on D with respect to the
Hutchinson metric. Furthermore, from Theorem 5.2.2 we have
t
1Pf0 =l < e llmo = ullpe + [ e~ [Pno —wllseds  for o € D and £ > 0.
0
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Consequently, from the nonexpansiveness of (P');>o we obtain

[P 10—l < e [lnmo—tullne+ (L —e ) o= llre = o=l forne € D andt > 0.
An application of Theorem 5.1.2 completes the proof. =

REMARK 5.2.4. By virtue of Theorem 5.2.1 assumption (5.2.55) can be replaced by the
more effective condition (5.2.32). Observe that in the case of the classical Tjon—-Wu
equation (5.2.1) the measure ¢ is absolutely continuous with density 1( ;. Moreover,
Uy (t, x) := exp(—x) is the density function of the stationary solution of (5.2.1). This is a
simple illustration of the situation described by Theorems 5.2.1 and 5.2.4.

For a general model including (5.2.13) existence of a stationary solution has been
studied in [22].

REMARK 5.2.5. It is interesting to note that if there exists a constant » > 1 such that
(5.2.57) 2m,(p) < 1,

then for every g € D the solution 1 (t) = Pt of (5.2.13), (5.2.14) is compact (see [22,
Theorem 4.2], [26, Theorem 3.3] and [27, Theorem 6]).

6. Maximum principles in the stability theory
of Markov semigroups

In this last chapter we present new sufficient conditions for the asymptotic stability of
Markov—Feller operators on the space of signed measures Mg;,. Our proofs are based
on the invariance principle and the maximum principle. We will also show applications
of these criteria in the proofs of the asymptotic stability of a stochastically perturbed
dynamical system with discrete time and a semigroup generated by a Poisson driven
stochastic differential equation (see [10, Proposition 4.1] and [11, Theorem 3]). Moreover,
we will discuss the problem of the asymptotic stability of a Markov operator appearing
in the theory of the cell cycle (see [12, Proposition 2], [17, Theorem 4] and [25, Theorem
3.2]). We use the notation of Chapter 4.

6.1. Applications of the Kantorovich—Rubinstein maximum principle. In this
section we study the problem of the asymptotic stability of semigroups asymptotically
contractive with respect to the Hutchinson metric in the class M . In particular we will
discuss the problem of the asymptotic stability of locally Lipschitzian Markov semigroups.
As before (X, g) denotes a locally compact separable metric space.

We start with a simple method of proving the Prokhorov property. It is based on the
notion of Lyapunov function and the Chebyshev inequality.

A continuous V' : X — [0,00) is called a Lyapunov function if
(6.1.1) lim V(z)=o00

o(z,xg)—00
for some 2y € X. Of course this definition is meaningful only in the case when X is an
unbounded space. It is evident that the validity of (6.1.1) does not depend on the choice
of xg.
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A family IT of probability measures on X is said to be tight if for every positive &
there exists a compact set K such that

(6.1.2) w(K)>1—¢ forall pell

Using the Lyapunov function, it is easy to give a sufficient condition for the tightness

of trajectories of a Markov semigroup. Again assume that 7' C R, satisfies condition
(4.1.18).

LEMMA 6.1.1. Let (Pt);er be a Markov—Feller semigroup and (U?)cr its dual semigroup.
Assume that there exists a Lyapunov function V' such that

(6.1.3) UV(z)<AV(z)+B forxe X andteT,

where A, B are nonnegative constants. Then for every u € My the family of distributions
{Ptutier is tight.

Proof. Fix ¢ > 0 and p € M;. By the Ulam theorem we may choose a compact set
K C X such that p(K) > 1 —¢/2. Set Vg = sup,cx V(x). We define a new measure
fi by the formula ji(E) = u(E N K), where E € Bx. Let Y = V71([0,q]), where ¢ is a
positive number satisfying

(6.1.4) ¢> g(AVK—kB).

Using the Chebyshev inequality and the definition of i we have

1 1
P'u(Y) = PU(Y) > 1- = = . J V(@) Pt agds) =1- < - . | U V() a(de)
X
Now using inequality (6.1.3) we obtain
1
Pp(¥) 21 =5 = A\ V() ptdz) + Ba(K) |

From this and (6.1.4) it follows that
1
Pm(y)z1—§—7[AVK+B] >1-¢ forteT.
q

Since the set Y is bounded and closed, it is compact. =

As before let ¢ be a fixed element of X and let 9% (z) := (o(z,¢))® for € X and
a > 0.

THEOREM 6.1.1. Let (P);cr be a Markov—Feller semigroup and (Ut)icr its dual semi-
group. Assume that there is tg € T such that for every f € H the following two conditions
are satisfied:

(6.1.5) U f(z) = U'f(y)| < o(x,y) forz,y€ X andteT,
(6.1.6) U f(x) =Uf(y)l < ol,y)  foraz,ye X, x#y.
Moreover, assume that there exist constants A, B > 0 and o > 1 such that
(6.1.7) (Uto®)(x) < Ao%(x)+ B  forx € X andteT.

Then (P)scr is asymptotically stable with respect to the Hutchinson metric.
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Proof. From Remark 4.2.1 it follows that P*(M; ) C Mj 4 for t > 0, and, by Theorem
4.2.1, the semigroup (P?);cr is asymptotically contractive with respect to the Hutchinson
metric in the class My 4.

Now we are going to verify that for every p € M, , the trajectory {P'u}ier is
relatively compact in M . Fix u € My 4. Let (¢,,) denote a sequence of integers such
that ¢, = ccand t,, € T forn=1,2,....

From Lemma 6.1.1 and condition (6.1.7) it follows that the family of distributions
{P' u}nen is tight. So from the Prokhorov theorem (see [3, Chapter 1, §6]) it follows
immediately that there exists a subsequence (P ;1) which converges weakly to a measure
po € M;. Now we are going to show that py € My, and (P'n ) is convergent to pg
with respect to the Hutchinson metric. For given r > 0 define

0% (z) for x € K(e,r),
wio)={ 2
r for x & K(c,r).
Condition (6.1.7) implies that
(6.1.8) (gr, Pn ) = (U g, u) <1, where 1= Ao, n) + B.

The function g, is continuous and bounded. Consequently,

lim (g, P*» 1) = (gr, po)-

n—oo
Since r > 0 was arbitrary, the last equality and (6.1.8) imply that ug € M;j,. So it
suffices to verify that

lim [P 1 — pigllne = 0.

n—oo

Since P'ny and o belong to M ,, an elementary calculation shows that

l

po—1°

(6.1.9) S 0c(z) P p(dr) < o and S 0c(x) po(dz) <
X\K(c,r) X\K(c,r)

Fix € > 0 and choose » > 0 such that 41 /ra’l < e. Define
A=[=rr] and Fay={feCX):[f(z)| <rand|f(z) - fy)| <oz, y)}-
On the set M; the metric
1 — p2llzn, = sup{(f, p1 — p2); f € Fanl,
is equivalent to the Fortet—Mourier metric. For f € H define
fr(z) = max{min[f(z), ], —r}.
Evidently f, € Fa 1. Furthermore for f € H, the function f, has the following properties:

(a) fr(x)= f(x) for x € K(r,c),
(b) |f(z) — fr(z)| < 20.(x) for z € X.

From this and (6.1.9), it follows immediately that
4l
(f, Pt — pio) < [|[P"n i — piol| 7, + T = | P — pioll7s, +€

for f € H.. This shows that (P'npu) converges to po with respect to the Hutchinson
norm. Thus the trajectory {P‘u}ier is compact on M; ,. Therefore, according to
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Theorem 5.1.2 the measure y is a stationary point of (P?);cr and
tlim |P'u— ol =0  for p € My q.
—00

To complete the proof it is sufficient to observe that the set M, , is dense in M; and
by (6.1.5) the Markov—Feller semigroup (P');cr is nonexpansive on M; with respect to
the Fortet—Mourier norm. m

It is not difficult to verify that in the case of locally Lipschitzian Markov semigroups
(see (4.1.19)) Theorem 6.1.1 may be replaced by the following

THEOREM 6.1.2. Let (P');er be a locally Lipschitzian Markov semigroup on Mg, and
let (U')ier denote the semigroup dual to (P')ier. Assume that there is to € T such that
for every f € 'H,

(6.1.10) Ut f(2) — U f(y)] < o(w,y)  fora,ye X, a#y.

Moreover, assume that there exist constants A, B > 0 and o > 1 such that
(6.1.11) (U™ 02)(z) < Ag¥(z)+ B  forz€ X andn=0,1,2,....

Then (P)icr is asymptotically stable with respect to the Hutchinson metric. m

6.2. Discrete time stochastically perturbed dynamical systems. Let (2,3, prob)
be a probability space, E the expectation on (2, ¥, prob) and (Y, .A) a measurable space.
We consider a discrete time stochastically perturbed dynamical system on a locally com-
pact separable space (X, g) given by the recurrence formula

(6.2.1) Tpy1 = S(xn, &) forn=0,1,...,

where &, : 0 — Y is a sequence of random elements and S : X x Y — X is a given
deterministic transformation. In our study of the asymptotic behaviour of (6.2.1) we
assume that the following conditions are satisfied:

(i) The function S is measurable on the product space X x Y and for every fixed
y € Y the function S(-,y) is continuous.

(ii) The random elements &y, &1, . .. are independent and have the same distribution,
i.e., the measure

p(A) =prob({, € A) forAe A

is the same for all n.
(iii) The initial value g : @ — X is independent of the sequence ().

It is easy to derive a recurrence formula for the measures
tn(A) = prob(z, € A), A€ B(X),

corresponding to the dynamical system (6.2.1). Namely p,r1 = Py, n = 0,1,...,
where the operator P : M; — M is given by the formula

(6.2.2) Pu(A) = | ([ 14(5(, 1)) oldy) )u(de).
X Y
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The operator P is a Markov—Feller operator and its dual U has the form
(6.2.3) Uf(z) =\ F(S(z,y) ¢(dy) for f € C(X).

Y
Now define a sequence of functions S, by setting

Sl(x7y1) = S(xayl), Sn(xayl, cee 7yn) = S(Snfl(xvyla cee 7yn71)7yn)~
Using this notation we have

Unfa) =\ FSalm s wn)) eldyn) - o(dya).

Y Y
PROPOSITION 6.2.1. Assume that the mapping S : X XY — X and the sequence of
random elements (&,) satisfy conditions (1)—(iii). Assume moreover that there is n € N
such that

(6.2.4) E(o(S(x,&,),5(%, &) < o(x,T)  forx,T € X, x #T,
and there exist constants o > 1 and A, B € Rt such that
(6.2.5) Uro(x) < Ao (z)+ B, forze X, n=0,1,2,...

Then the operator P defined by (6.2.2) is asymptotically stable with respect to the Hutchin-
son metric.

Proof. Tt is sufficient to verify condition (6.1.10). According to (6.2.4), for f € H and
x # T we have

U f(x) — f(S(@, y)| p(dy)

’~<L,=
q

IN

SQ T,y)) o(dy) < o(z,7). =

Using Proposition 6.2.1 it is easy to obtain a few known results concerning the stability
of Markov operators.

In fact from Proposition 6.2.1 we immediately obtain as a special case the stability
theorem of Lasota—Mackey (see [23, Theorem 2|) where the conditions

E(S(z, &) — S(z,&)|) < |t — 2| forxz,ze X CRY 2 # 2
and

E(|S(z, &)%) < Alz]* + B forz € X C RY,

were assumed. The symbol | - | denotes an arbitrary, not necessarily Euclidean, norm in
R? and A and B are nonnegative constants with A < 1.

Furthermore, in the case when X is a locally compact separable metric space, Propo-
sition 6.2.1 contains a result of Loskot and Rudnicki (see [29, Theorem 3|). Namely, they
proved the asymptotic stability of P if

o(5(z,y), S(x,y)) < Ay)e(z,T) forz,Te X
and
Eoc(5(c,&1)) < o0
where A: Y — Ry and EX(§) < 1
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In the special case when Y = {1,..., N}, the stochastic dynamical system (6.2.1)
reduces to an iterated function system

(S1,-..,Sn;p1,---,pN) where Si(z) = S(x,k) and p, = prob(&, = k).
Now the operators (6.2.2) and (6.2.3) have the form

N N
(6.2.6) Pu(A) = pep(S, ' (A)) and Uf(z) =Y prf(Sk()).
k=1 k=1
We will assume the following conditions:
(6.2.7) g:pkg(Sk(x), Sk(T)) < o(x,T) forz,Te€ X, x#7,
(6.2.8) . o(Sk(z),c) < Lyo(z,c) forzxe X, k=1,...,N,

where c is a given point in X and the Lj are nonnegative constants.
In this case Proposition 6.2.1 implies the following result

COROLLARY 6.2.1. If the IFS (S1,...,SN;D1,-..,pN) Satisfies conditions (6.2.7), (6.2.8)
and there exists a constant o« > 1 such that

N
(6.2.9) > peLf <1,
k=1

then this system is asymptotically stable.
In the case when there exist 4,5 € {1,..., N} such that

(6.2.10) o(Si(x), Si(y)) # o(S;(x), S;(y))  for x,y € X, x #y,
the strict inequality (6.2.7) may be replaced by

N
(6.2.11) > pro(Sk(x), Sk(y)) < o(a,y).
k=1

In fact, for every d € (0,1) the function o? : X x X — R, given by

o’ (x,y) = [o(z,y))*
is again a metric on X and conditions (6.2.10), (6.2.11) imply

N
> ko (Sk(x), Sk(y) < o'(x,y)  for z,y € X,z #y.
k=1

These observations generalize the sufficient conditions of the asymptotic stability of
Markov operators generated by iterated function systems given in [21, Theorem 3.2].

6.3. Semigroups generated by Poisson driven differential equations. In this sec-
tion we will apply Theorem 6.1.2 to the semigroup (P*);>( of Markov operators generated
by a Poisson driven stochastic differential equation. This equation has the form

(6.3.1) d&(t) = a(¢(t))dt + | o(€(t), 0) Np(dt,dB) for t >0
(S)
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and will be considered with the initial condition

(6.3.2) £(0) = &o,

where {£(t)}4>0 is a stochastic process with values in R%. In the special case £(0) = z
a.s. this solution will be denoted by &,.

In order to formulate precise conditions concerning equation (6.3.1) and the formal
definitions of the semigroup (P?);>o we denote by |||, (:|-) the Euclidean norm and scalar
product in R%. As before, B(R?) denotes the space of all bounded Borel measurable
functions defined on R?, and C(R?) the subspace of all bounded continuous functions.
Both spaces are endowed with the supremum norm. Further CJ(R9) denotes the space
of all functions with compact support and continuous first derivatives.

In our study of solutions of (6.3.1), (6.3.2) we make the following assumptions:

(i) The coefficient a : R? — RY is Lipschitzian with Lipschitz constant ,, i.e.,
la(z) = a(y)]| < lallz —y| for 2,y € R
(ii) (©,G,n) is a finite measure space with 7(0) = 1.
(iii) The perturbation coefficient o : R4x© — R is Bga X G /Bga-measurable. Further
o(z,-) € L*(7) for each z € R? and there exists [, > 0 such that

(6.3.3) lo(z,) = oy, Mrzm) < lollz —yll forz,y € R,

(iv) The mapping ¢ : R? x © — R? given by
(6.3.4) q(z,0) =2+0(2,0) forzcR% HecO

is such that ¢(z,-) € L'( 72) for z € RY. Moreover there exists a positive constant
l, such that

(6.3.5) la(@,-) = a(y: )iy < lglle =yl for z,y € R

(v) There is a probability space (£2, F, prob), a sequence (¢;);cn, of nonnegative ran-
dom variables and a sequence (6;);en of random elements with values in ©. The
variables At; = t; — t;_1 (to = 0) are nonnegative, independent and identically
distributed with probability density function Ae=*! for ¢ > 0. The elements 6;
are independent identically distributed with distribution 7. The sequences (¢;)
and (6;) are also independent. Under this condition the mapping

Q5w pw) = (ti(w),0i(w))ien
defines a stationary Poisson point process (see [16, Chapter I, §9]).

(vi) For every ju € M, there is an R%-valued random vector &, defined on (2, inde-

pendent of p and having the distribution u.

Condition (v) implies that for every measurable set Z C (0,00) x © the variable
Np(Z) = #{i: (t:,6:) € Z}
is Poisson distributed. It is called the Poisson random counting measure.
Denote by E the expectation on the probability space (€2, F, prob). It can be proved
that
E(WN,((0,t] x K)) = Mn(K)

fort € (0,0),K € G.
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By a solution of (6.3.1), (6.3.2) we mean a stochastic process (£(t));>0 with values in
R? such that with probability one the following two conditions are satisfied:

(a) The sample paths are right-continuous functions such that for ¢ > 0 the limit

€)= lim_£(s)

exists and
(b) t t
£t) = &0+ Va(¢(s))ds + | { o(&(s—), 0)N; (ds, d)  for ¢ >0,
0 0O
where

t

V) o(e(s=), 00N, (ds, dO) = >~ o(€(tn—),0n) fort>0 and p= (t;,0;)icn,

0O tn <t

(see [16, Chapter II, §3]). It is easy to write explicitly the formula for the solution
of (6.3.1), (6.3.2). Denote by 7! the dynamical system defined by

(6.3.6) ml(z) =y(t) forteRT,
where y is the solution of the ordinary differential equation
(6.3.7) y'(t) = a(y(t)) forteRT,
with the initial condition
(6.3.8) y(0) = z.
Then for every fixed value of p = (¢;, 0;);en the solution of (6.3.1), (6.3.2) is given

b
’ E(t) =77 (E(t)) for t € [tiytiv), i € N,
where
€(0) =&, &(t;) = &(ti—) +o(&(ti—),0;) forieN.
For € R? denote by (£,(t));>0 the solution of the initial value problem (6.3.1),
(6.3.2) with & = x. For every t > 0 and f € C(RY) define
(6.3.9) U () = B(f(&(t)) for t > 0.

REMARK 6.3.1. The classical theory of equation (6.3.1) ensures that under conditions
(i)—(vi), (£4(t))¢>0 is a homogeneous-in-time Markov process and (U*);>¢ is a continuous
semigroup of bounded linear operators acting on the space C(R?).

Analogously for given p € M; we can find a solution &,(t), ¢ > 0, of (6.3.1), (6.3.2)
such that &,(0) has the distribution p. For every ¢ > 0 we define P’y as the distribution

of &,(t), i.e.,

(6.3.10) P'u(A) = prob(¢,(t) € A)  fort >0, A € Bga.
The operators P! and U? satisfy the duality condition

(6.3.11) (f,P'uy =(U'"f,u) fort>0,fe€C, pecM,.
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Using (6.3.11) the semigroup (P!);>o can be easily extended to the vector space
Mig. It is locally Lipschitzian and weakly continuous. Moreover, using the Phillips
perturbation theorem it is easy to find a formula for (U*);>o.

In fact, let Gg be a linear operator given by the formula

(6.3.12) Gof(x) =\ f(a(x,0))A(dd) for f € C(R?), z € RY,
e
and let (T");>o be the semigroup corresponding to the unperturbed system (6.3.7), i.e.
(6.3.13) T'f(x) = f(r'(x)) for f € C(RY), z € RY.
Then (see [37, p. 170])

(6.3.14) U'f=e MY ULf  for feCRY),
n=0
where
t
6.3.15 U f=A\T"*GoUsfds, n=0,1,...,
n+1 n
0

Ulf=T'f fort>0.

Many different criteria for the asymptotic stability of the flow of measures generated
by equation (6.3.1) are known. Here we mention only a few of them which are related
to our methods. J. Malczak (see [30, Proposition 7.1]) studied the asymptotic stability
of the flow of the densities of the measures {P'u}. His results were based on the lower
bound technique. Using a double contraction principle A. Lasota (see [21, Proposition
5.1]) proved the asymptotic stability of the semigroup (P*);>( acting on the space of
signed measures. His result were generalized by J. Traple (see [37, Theorem 7.3]) who
considered the case when the intensity A of the Poisson process depends on the position
of the solution. Another generalization was given by T. Szarek (see [34, Theorem 7.8.3])
who studied equation (6.3.1) in a Banach space. In all these results an important role
was played by the following two conditions:

(6.3.16) |rte — 'yl < |z —y| forz,y e R, ¢ >0,
(6.3.17) ly < exp{—v/A}.
Using (6.3.16) and (6.3.17) it is possible to prove the asymptotic stability of (P*):>¢

by the invariance principle. However, this principle can also be useful in some cases when
inequality (6.3.17) is not satisfied. We illustrate this fact by the following

THEOREM 6.3.1. Assume that assumptions (i)—(vi) are satisfied with a given X\ > 0 and
lg = 1. Further, assume that

(6.3.18) |rte — wly|| < |z —yl|  forx, y €RY x#y and t > 0.
Assume moreover that there exist constants o, By € R such that

(6.3.19) (a(z)|22) + A S (o(z,0)|z) n(dh) < agllz||* + Bo  for x € RY,
1)



48 H. Gacki

and
(6.3.20) 200 < — 2.

Then the semigroup (P');>o defined by (6.3.10) is asymptotically stable with respect to
the Hutchinson metric.

Proof. We are going show that the semigroup (U?);>( satisfies the assumptions of The-
orem 6.1.2. First we prove by induction that for every f € H,

(6.321)  |(ULf) (=) — (UL f)(y)| < (A;)n

For n = 0 from (6.3.13) and (6.3.15) we obtain

(UG (@) = UGN W) < |f(7'z) — f(n'y)]
<7tz —nty|| < ||z —y| for z,y € RY ¢ > 0.

|z —y|| forz,yeR: neNU{0},t>0.

Now let (6.3.21) be satisfied for some integer n > 0. From (6.3.12), (6.3.13) and (6.3.15)
it follows immediately that

(GoU;y (@) = (GoUn ()] < § 1T f)a(x,0)) = (U f)(a(y, 0))] ()
©

As)™ .
< O ¥ 2. 0) — gt 0)(a6)
)
< ()\7;9') |z —yl for z,y € R and s € (0,1].

For s € (0,t] and f € H we also have
(As)"

n!

T 35GoUS f(x) — T 5GoUS f(y)| < lz—y| forzyeRY

This and (6.3.15) complete the induction argument.
From (6.3.14) and (6.3.21) we obtain

(6.3.22) U () = U f(y)l < llz —yll, zyeR? fen.

Therefore condition (6.1.10) of Theorem 6.1.2 is satisfied.

To prove (6.1.11) consider the function V(x) = ||x||?. Following the proof of Theorem
3 in [14] (see p. 236) it is easy to deduce that for every ¢ > 0 there exists a constant k;
such that

Ell&(s)]? < ek sV(z)+1 forz e R? and s < t.
The last inequality may be rewritten in the form
(6.3.23) UsV(z) <eP*V(z)+1 forzeR%and s <t
Hence, the mapping t +— UV (z) is locally bounded for all z € R%.

Now for the semigroup (U");>o we can write the formula

t
(6.3.24) U'f(x) = f(z) + | U*Au f(x)ds for z € RY, | € C(RY)
0



Applications of the Kantorovich—Rubinstein maximum principle 49

using its infinitesimal operator

(6.3.25) Avf(@) = (a(@)|f2(2)) = Af (@) + A | f(@ + o(x,0)) 7(dD).
Consequently, ’

(6.3.26) UV (z) =V(z) +§ Usy(z)ds for z € RY,

where O

(6.3.27) P(x) = (a(x)|22) + A é)(llw +o(z,0)|” — ||=||*) 7(do).

By (6.3.20) there exists a constant ¢ > 0 such that

(6.3.28) a =200 + A2 + Al ||0(0, ) || 2@y < 0.
Now, we will verify that

(6.3.29) Y(x) <aV(z)+ B forzeRY,
where

B=A1+1/c)(1+[lo(0,)llr2(s)) + Acls + Bo.
In fact, by the definition of ¢ for every x € R we have
(6.3.30) o(z) = 2((a(sc)|33) +A (0@ o)) ﬁ(d@)) + A [ o, )12 7(ds).
) e
Further, from inequality (6.3.3) it follows immediately that
[ (e, )12 7d8) < 1o ] + 2 | (0, 0)] (. 8) — (0, 0) | (o)
e e
+ {100, 0)[?7(d0) ~ for = € R™.
)

Since b < £ - b + 2% for every b € R, the last inequality implies that

3
| llo(, 0)(1 7(do)
(S}
< (I +clello(0, ) L2yl + (1 +1/e) (X + (|00, )| L2@y) + clo)
This inequality and conditions (6.3.19), (6.3.30) imply (6.3.29).
Now using (6.3.26) and (6.3.29) we obtain the inequality
d
(6.3.31) EU‘f V(z) <aU'V(x)+ 6.
From (6.3.31) we conclude that

p

(6.3.32) UlV(z) <V(z)e® + = (e* —1) forx eR, t>0.
«

Since a < 0, this implies (6.1.11) with ¢ = 0 and eZ(z) = V(x). Thus by Theorem 6.1.2
the semigroup (P?);>¢ is asymptotically stable. m
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6.4. Applications of the maximum principle for the Fortet—Mourier metric.
Again let (X, ) be a locally compact separable space. The relationship between the
maximum principle for the Fortet—Mourier metric and the stability theory of the Markov—
Feller semigroups is given in the following

THEOREM 6.4.1. Let (P')icr be a Markov—Feller semigroup and (U")icr its dual semi-
group. Assume that there is tg € T such that for every f € F:

(i)

(6.4.1) U f(z) = U f(y)| < o(x,y) forz,y€ X andt €T,
(6.4.2) U f(x) = U f(y)| < olx,y) foraz,ye X, z#y.

(il) For every py, po € My, 1 # po, there exists t1 € T that
(6.4.3) dist(supp(P"* (11 — pi2)) ., supp(P" (1 — p2)) ) < 2.

(iii) There ezxists a Lyapunov function V such that
(6.4.4) U'V(r)<AV(x)+B forx € X andt €T,
where A, B are nonnegative constants.

Then (P)ier is asymptotically stable with respect to the Fortet—Mourier metric.

Proof. From (6.4.1), it follows immediately that U*(F) C F for t € T' and, by Theorem
4.3.1, the semigroup (P%);cr is asymptotically contractive with respect to the Fortet—
Mourier metric in the class Mj.

To complete the proof it is sufficient to verify that for every yu € M; the trajectory
{P'u}s>0 is compact with respect to the Fortet-Mourier metric. Let (¢,) be a sequence
of numbers such that t,, — oo and ¢, € T for n € N. From Lemma 6.1.1 and con-
dition (6.4.4) it follows that the family of distributions {P! u},cn is tight. From the
Prokhorov theorem it follows immediately that there exists a subsequence (P%n 1), ey
which converges weakly to a measure pg € Mj.

We have verified that (P');>( is asymptotically contractive with respect to the Fortet—
Mourier metric in the class M; and that the orbits are compact. According to the
invariance principle the semigroup (P');>0 is asymptotically stable. m

For locally Lipschitzian Markov semigroups the following version of Theorem 6.4.1
can be proved similarly:

THEOREM 6.4.2. Let (P')ier be a locally Lipschitzian Markov semigroup on Mg, and
let (UY)ser denote the semigroup dual to (Pt);cr. Assume that:

(i) There exists to € T such that for every f € F,
(6.4.5) Ut f(z) = U™ f(y)| < o(z,y) forx,y€ X, x#y.
(i1) For every pi, ug € My, p1 # pe, there exists ng € N such that

(6.4.6) dist (supp(P™% (pu1 — p2)), , supp(P™% (g — p2)) ) < 2.
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(i) There exists a Lyapunov function V such that
(6.4.7) UM V(z) < AV(z)+ B forx € X, n >0,
where A, B are nonnegative constants.

Then (Pt)icr is asymptotically stable with respect to the Fortet-Mourier metric.

We complete this series of sufficient conditions for the asymptotic stability of Markov
semigroups with the following

THEOREM 6.4.3. Let (P)ier be a Markov-Feller semigroup and (U')er its dual semi-
group. Assume that there is tg € T such that for every f € F:

(i)
(6.4.8) U f(z) = U f(y)| < o(w,y) forx,y€ X andt T,
(6.4.9) U f(z) =Uf(y)| < o(z,y) foraz,ye X, z#y.
(ii) There exist constants to,t1,t2 € T such that for every f € F either
Uhth f(z) e (-1,1] forxe X

or

Utett f(z) € [-1,1)  forx € X.
(iii) There exists a Lyapunov function V such that
(6.4.10) UV(z) < AV(z)+ B forze X, teT,
where A, B are nonnegative constants.

Then (P)ser is asymptotically stable with respect to the Fortet-Mourier metric.

Proof. Again the proof is similar to that of Theorem 6.4.1. In this case we can use
Theorem 4.3.2 to verify that the semigroup (P!);cr is asymptotically contractive with
respect to the Fortet—Mourier metric in the class M. =

As a consequence of Proposition 4.3.1 and Theorem 6.4.3 we obtain the following

COROLLARY 6.4.1. Let P : Mg, — Mg be a Markov—Feller operator and let U be its
dual. Assume that:

(i) For every f € F,

(6.4.11) Uf(z) =Uf(y)l <olz,y) forz,yeX,z#y.
(i1) The transition m : X x Bx — [0, 1] corresponding to P, given by (4.1.10), satisfies
(6.4.12) suppm(z,-) =X forzxe X.

(iii) There exists a Lyapunov function V such that
(6.4.13) UtV(z)<AV(z)+B forzeX,n>0,
where A, B are nonnegative constants.

Then (P™),en is asymptotically stable with respect to the Fortet—Mourier metric. m
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6.5. Applications in a mathematical model of the cell cycle. In order to illustrate
the utility of Theorem 6.4.3 we show a sufficient condition for the asymptotic stability
of a special Markov operator introduced by A. Lasota and M. C. Mackey in the theory
describing the division and stability of cellular populations (see [25, Theorem 3.2]). Again,
let (X, 0) be a locally compact separable metric space. Further, let (I,x) be another
metric space, which will be considered as the space of indices. We consider a continuous
transformation
S: X xI—-X

and a function

F:X xBy—|[0,1].
where B; denotes the o-algebra of Borel subsets of 1. We assume that:

(1) For every x € X the mapping F(z,-) : By — [0, 1] is a probability measure.
(2) For every A € By the function F(-, A) : X — X is measurable.

Now we present an imprecise description of the process considered in this example.

Choose an arbitrary point o € X and randomly select a point iy € I according to
the distribution F(xg,-). When the point ¢ is drawn we define 1 = S(zg, ). Having
x1 we select i1 € I according to the distribution F'(x1,-) and we define x5 = S(x1,41) and
so on. Denoting by u,,n =0,1,..., the distribution of z,, i.e. u,(A) = prob(z, € A),
we define P as the transition operator such that p,+1 = Pu,.

The above procedure can be easily formalized. To do this fix x € X and set ug = 9.
According to the description of our process and from the definition of the dual operator
U we have

Uf(z) =(Uf,0:) = ([, Pés) = (f, ) for f € B(X).

This means that U f(z) is the expectation of f(x;) if zy = x is fixed. On the other hand,
according to our description, the expectation of f(x1) is equal to

VF(S(,1) F(x, di).

I
Since x was arbitrary this implies
(6.5.1) Uf(z) =\ f(S(,i)) F(z,di) forz € X.

I

We admit formula (6.5.1) as the precise formal definition of the operator U. It is easy
to verify that the operator given by (6.5.1) satisfies conditions (4.1.5) and (4.1.7). Thus
we can define P to be the Markov operator corresponding to U. It is the unique operator
satisfying

(6.5.2) (f, Pp) = (Uf, ).
The transition function 7 : X X Bx — [0, 1] corresponding to P is defined by
(6.5.3) w(z, A) = Po,(A) = | 14(S(x,i)) F(z,di) for (z,4) € X x Bx.
I

To formulate sufficient conditions of the asymptotic stability of P we introduce the
following notations.
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Consider the class ® of functions ¢ : [0,00) — [0,00) satisfying the following three
conditions:

(a) ¢ is continuous and ¢(0) = 0;
(b) ¢ is nondecreasing and concave;
(c) ¢(x) >0 for z > 0 and lim, . p(z) = oco.

We denote by @ the family of functions satisfying conditions (a), (b).
An important role in the study of the asymptotic behaviour of Markov operator P is
played by the inequality

(6.5.4) w(t) +o(rt) < () fort>0,

where r,w € @ are given functions. In [28, pp. 58-60] Lasota and Yorke discussed the
cases when the functional inequality (6.5.4) has a solution belonging to ®.

We are not going to recall all these results. However, it is worthwhile to note that if
the function w satisfies the Dini condition:
€
S@dt<oo for some € > 0

0

and r(t) = At (0 < X < 1) then (6.5.4) has a solution ¢ € ®.

Finally, denote by || - ||z the total variation norm in the space Mg, (I). Following [24,

Subsection 12.2], if {A;,..., A, } is a measurable partition of X, that is,
X=JA, A4nA;j=0 fori#j, A €Bx,
i=1
then for u € M, we set

(65.5) Il = sup { 3 (401},

where the supremum is taken over all possible measurable partitions of X (with arbi-
trary n). In the special case where p € M; we have ||u|/7 = 1. The value ||u||7 is called
the total variation norm of the measure u, and the convergence with respect to this norm
is called the strong convergence of measures.

THEOREM 6.5.1. Let w,7 € ®y and let 0 < r(x) < x. Assume that the functional
inequality (6.5.4) has a solution in the class . Moreover, assume that:

(6.5.6) SQ(S(;U,Z’), S(y,i))F(x,di) < r(o(z,y)) forx,ye X,
I
(6.5.7) 1E(z,) = F(y,)lr <wlo(x,y))  forz,yeX,
(6.5.8) sug S o(zo, S(xo,4)) F(z,di) < oo
S I

for some xg € X and
(6.5.9) suppm(z,-) =X forze X,

where T is the transition function given by (6.5.3). Then the operator P given by (6.5.1)
and (6.5.2) is asymptotically stable with respect to the Fortet—-Mourier metric.
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Proof. Consider a solution ¢ € ® of (6.5.4) corresponding to the pair (w, ). Since r(t) < t
the function p(t) = @(t) + t satisfies

(6.5.10) w(t) +o(rt)) < et) fort>0.

Now using properties (a)—(c) it is easy to verify that the function o, given by the formula
(6.5.11) 00(2,9) = plo(z,y)) forz,ye X

is again a metric on X. Denote by | - ||, the Fortet-Mourier norm generated by o, i.e.

el = sup{|(fom)] s f € Fo} for € Mg,
where F, C C(X) is the set of all f such that |f| <1 and

|f(x) = f(y)| < op(x,y) forz,y € X.

Now fix f € F,. We are going to show that U f is a contractive function with respect
to the metric g,. Using (6.5.1), (6.5.7) and the continuity of S it is easy to verify that
Uf € C(X) and that |Uf| < 1. Moreover for z,y € X, x # y we have

UF) ~ US| = | [ £5(,0) Fla, di) = § £(5(5,1)) Fy, i
1 1

<|1F(x,) = F(y,)llr + V1 F(S(x,8) = F(S(y,0))| Fa, di).
I

From this and (i) it follows that

Uf(z) =Uf(y) <wlolz,y)) +S p(o(S(x,),5(y, 1)) F(x, di)
I

< wle(@.) + (| e(S(.1). S(.0)) F(a, di))

I
<w(e(z,y)) + e(r(e(z,y))).
According to (6.5.10), the last inequality implies

(6.5.12) Uf(z) = Uf(y)l < op(,y).
Now, we will verify that
(6.5.13) UV(z) <r()V(z)+B forxze€ X and n €N,

where V(z) = o(z,z¢) and

B=(1-r(1)" (r(1) + sup | o(zo, S(0,4)) F(x, di)>‘
zEXI

In fact from (6.5.6) it follows that

(6.5.14) S 0(S(x,4),x0) F(z,di) < r(o(x,z0)) + S o(xzo, S(xg,1)) F(x,di).
I I

Moreover, since r is nondecreasing, concave and r(0) = 0, we have
r(z) <r(l)z+r(l).
The last inequality and conditions (6.5.1) and (6.5.14) imply (6.5.13).
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By virtue of Corollary 6.4.1 the operator P is asymptotically stable with respect to

the Fortet-Mourier metric || - ||, generated by the metric g,.

Finally, since the classes of convergent sequences in both spaces (Mg, || - ||#,) and

(Mg, || - || #) are the same, the operator P is asymptotically stable with respect to the
Fortet—-Mourier metric || - ||#. This completes the proof. m
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Notation and symbols

Let (X, o) be a metric space. Given ¢ € X and a > 0 we denote by o. and o2, respectively,
0c(z) == o(x,c) and 0% (x) := (o(z,c))® for x € X. The notation f, | 0 means that the
sequence ( f,,) of real-valued functions is decreasing and pointwise converges to 0.

The following is a list of the most commonly used symbols and their meaning:

a.e. almost everywhere
Bx o-algebra of Borel subsets of the space X
B(X) space of bounded Borel measurable functions f: X — R
B(x,r) closed ball in X with centre x € X and radius r
C(X) space of bounded continuous functions f : X — R
Ce(RY) space of functions f : R — R with compact supports
and continuous first derivatives
dist(A4, B) distance between sets A and B, 18
D+t upper right Dini derivative
O point (Dirac) measure supported at x
E¢ expectation of the random variable £
(f, ) Lebesgue integral of f : X — R with respect to the measure
F set of test functions f : X — R for the Fortet—-Mourier metric, 13
H set of test functions f: X — R for the Hutchinson metric, 13
H. subset of f € H for which f(¢) =0, 13
14 characteristic function of the set A
L space of Lipschitzian functions f: X — R
L(X) set of linearly bounded functions, 21
e convolution of the measures p,v € Mg, 32
pwov elementary product of the measures u,v € Mg, 32
el = Fortet-Mourier norm of the measure p, 13
l[eell 7, Fortet-Mourier norm of the measure v generated by the metric g,, 54
[l Hutchinson norm of the measure u, 13
el total variation norm of the measure p, 53
By b positive part and negative part of the measure p
|l total variation of the measure
M family of finite (nonnegative) Borel measures
My space of probability measures, 12
Mg space of finite signed measures, 12
me () ath moment of the measure p € My, 13
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ath moment of the measure u € Mg, 13

subset of measures p € M such that mq(p) < oo, 12
subset of measures p € Mg, such that mq(|u|) < oo, 12
positive integers
Poisson random counting measure, 45
probability space
set of limiting points of the trajectory (Stz), 27
Markov operator, 19
convolution operator of order n, 32
semigroup of Markov operators, 22
transition function, 20
Fortet—Mourier metric corresponding to the pair (g, ¢), 54
real numbers
nonnegative real numbers
d-dimensional real space
Euclidean norm in R?
scalar product in R?
semidynamical system, 27
trajectory starting from x, 27
support of measure u, 14
,pn) iterated function system, 44
nontrivial semigroup of nonnegative real numbers
dual operator to P, 20
dual semigroup corresponding to (P?);cr, 22



asymptotically contractive semigroup, 23

contractive function, 8
contractive operator, 22
convolution
of measures, 32
operator, 32
power, 32

distance, 28
distributions, 12
dual operator, 20

elementary product
of measures, 32
evolutionary differential equation, 37

Fortet—Mourier metric, 13
Hutchinson metric, 13

invariance principle, 26
invariant

point, 27

set, 27
iterated function system, 44

limiting point, 27

linearly bounded function, 21
Lyapunov function, 39
Lyapunov-LaSalle function, 28

Markov operator, 19
Markov—Feller operator, 20
Markov—Feller semigroup, 22

maximum principle
Kantorovich—Rubinstein, 16
nonlinear version, 16

nonexpansive semigroup, 22
nonexpensive operator, 22

Poisson driven stochastic differential
equation, 44
Poisson random counting measure, 45

regular operator, 20

semidynamical system, 27
asymptotically stable, 28
signed measures, 12
space
locally compact separable, 9
metrically convex, 10
stationary
point, 27
Poisson point process, 45
solution, 30
stochastic dynamical system, 42, 44
strong convergence, 53
support of a measure, 14

tight family of distributions, 40
Tjon—Wu equation, 30
total variation norm, 53
trajectory, 27

sequentially compact, 27
transition function, 20

weak convergence of measures, 13



