
1. Introdu
tionThe main purpose of our study is to show some generalizations and appli
ations of theKantorovi
h�Rubinstein maximum prin
iple. First we prove this prin
iple for nonlinearfun
tionals of Hammerstein type. This result is based on a series of lemmas 
on
erninglo
al 
hanges of Lips
hitzian fun
tions. Then we show that the Kantorovi
h�Rubinsteinmaximum prin
iple 
ombined with the LaSalle invarian
e prin
iple yields new su�
ient
onditions for the asymptoti
 stability of Markov semigroups. These 
riteria are appliedto the semigroups generated by dis
rete time sto
hasti
ally perturbed dynami
al sys-tems, Poisson driven sto
hasti
 di�erential equations and to the Tjon�Wu version of theBoltzmann equation.The outline of the paper is as follows. In Chapter 2 we 
onsider some properties of
ontra
tive fun
tions whi
h satisfy the inequality(1) |f(x) − f(y)| < ̺(x, y) for x, y ∈ X, x 6= y,where (X, ̺) is a metri
 spa
e. It is shown that under some additional 
onditions 
on
ern-ing the spa
e X a fun
tion f satisfying (1) may be lo
ally 
hanged (in a neighbourhoodof a 
ompa
t set) in su
h a way that the inequality (1) is preserved. The proofs arepartially based on the M
Shane extension theorem (see [31, Theorem 1℄).In Chapter 3 we study nonlinear fun
tionals Φµ of the form
Φµ(f) =

\
X

k(x, f(x))µ(dx) for f ∈ L,where L is the spa
e of Lips
hitzian fun
tions with Lips
hitz 
onstant 1 and µ is a given�nite signed measure. We show that if a fun
tion f0 ∈ L maximizes Φµ, then there existtwo di�erent points x, y ∈ X su
h that
|f0(x) − f0(y)| = ̺(x, y).This is a nonlinear version of the 
lassi
al Kantorovi
h�Rubinstein maximum prin
iple.In the same 
hapter we prove maximum prin
iples for fun
tionals de�ned on the subset

F of L of fun
tions satisfying the additional 
ondition |f | ≤ 1. The maximum prin
iplesallow us to establish interesting properties of the Hut
hinson and Fortet�Mourier metri
s.In Chapter 4 we use these properties to prove that some semigroups of Markov op-erators a
ting on the spa
e of signed measures are 
ontra
tive. In Chapter 5 we showa new version of the invarian
e prin
iple for dynami
al systems a
ting on a topologi
alHausdor� spa
e. It generalizes the results of A. Lasota (see [20, Theorem 2.1℄) and A. La-sota and J. Traple (see [26, Theorem 1.1℄). We also give an appli
ation of the invarian
e[7℄
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kiprin
iple in the theory of the Tjon�Wu equation
dψ

dt
+ ψ = Pψ,where the unknown fun
tion ψ takes values in the spa
e of signed measures and P is a
ollision operator. Similar results for ψ with values in L1(R+) were proved by A. Lasotaand J. Traple (see [26, Theorem 3.1℄).In Chapter 6 we show new su�
ient 
onditions for the asymptoti
 stability for semi-groups of Markov operators. They are formulated in terms of adjoint operators. Thisapproa
h simpli�es further appli
ations. We use these 
riteria to study sto
hasti
allyperturbed dynami
al systems

xn+1 = S(xn, ξn) for n = 0, 1, . . . ,where ξn, n = 1, 2, . . . , are independent identi
ally distributed random variables. Ourresults generalize theorems of A. Lasota and M. C. Ma
key (see [23, Theorem 2℄) andK. �oskot and R. Rudni
ki (see [29, Theorem 3℄), the latter in the 
ase of lo
ally 
ompa
tseparable metri
 spa
es.Further, we 
onsider sto
hasti
 di�erential equation of the form
dξ(t) = a(ξ(t))dt+

\
Θ

σ(ξ(t), θ)Np(dt, dθ) for t ≥ 0,where {ξ(t)}t≥0 is a sto
hasti
 pro
ess with values in the d-dimensional real spa
e Rdand Np is a Poisson random measure with intensity λ. Our result interse
ts with thoseof Traple (see [37, Theorem 7.3℄) and Szarek (see [34, Theorem 8.3.1℄).We 
lose Chapter 6 by giving an appli
ation to the mathemati
al model of the 
ell
y
le introdu
ed by A. Lasota and M. C. Ma
key [25℄.The present paper is based on the results 
ontained in [10�12℄. However, many the-orems are now stated in a more general form and some new results are in
luded. Inparti
ular in Se
tion 3.3 we prove a new nonlinear version of the maximum prin
iplefor the Fortet�Mourier norm (Theorem 3.3.1). Furthermore, the main result of Chap-ter 5, Theorem 5.1.2 
on
erning the invarian
e prin
iple, has never been published before.Also some results on the asymptoti
 stability of the Poisson driven sto
hasti
 di�erentialequation (Theorem 6.3.1) and the Tjon�Wu equation (Theorem 5.2.4) are new.
2. Lo
al 
hanges of Lips
hitzian fun
tionsThe aim of this 
hapter is to show two lemmas 
on
erning lo
al 
hanges of Lips
hitzianfun
tions. In Chapter 3 we will apply these results in the theory of nonlinear fun
tionalsof Hammerstein type (see [13, Theorem 4.4℄ and [12, Theorem 2℄).2.1. Lo
al 
hanges of 
ontra
tive bounded fun
tions. A fun
tion f : X → Rde�ned on a metri
 spa
e (X, ̺) will be 
alled 
ontra
tive if(2.1.1) |f(x) − f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Re
all that a separable metri
 spa
e X is lo
ally 
ompa
t i� X is an in
reasing unionof 
ompa
t sets. One 
an then de�ne an equivalent metri
 on X (
ompatible with the
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 9topology) su
h that every 
losed ball is 
ompa
t. In this paper, a �lo
ally 
ompa
tseparable metri
 spa
e� will always mean a lo
ally 
ompa
t separable metri
 spa
e su
hthat every 
losed ball is 
ompa
t.Lemma 2.1.1. Let (X, ̺) be a lo
ally 
ompa
t separable metri
 spa
e and let f : X → Rbe a 
ontra
tive fun
tion satisfying(2.1.2) inf f > −∞.Further let an open set G ⊂ X and a 
ompa
t set K ⊂ G be given. Then there exists an
ε0 > 0 su
h that for every ε ∈ (0, ε0) there is a 
ontra
tive fun
tion f̃ : X → R satisfying(2.1.3) f̃(x) = f(x) for x ∈ X \G, f̃(x) = f(x) + ε for x ∈ K,and(2.1.4) f(x) ≤ f̃(x) ≤ f(x) + ε for x ∈ G \K.Proof. We may assume that K 6= ∅ and X \ G 6= ∅; otherwise the theorem is trivial.Repla
ing f by f − inf f we may assume that f(x) ≥ 0 for x ∈ X. Let(2.1.5) δ = inf{̺(x, y) : x ∈ K, y 6∈ G}.Sin
e K is 
ompa
t, this number is positive. For every a ∈ K we de�ne ha : X → R by

ha(x) = inf{f(u) + ̺(u, x) : ̺(u, a) ≥ δ} for x ∈ X.From the inequality f(x) − f(u) < ̺(x, u) it follows immediately that(2.1.6) ha(x) ≥ f(x) for x ∈ X.Moreover(2.1.7) ha(x) = f(x) for ̺(x, a) ≥ δ.It is also evident that(2.1.8) |ha(x) − ha(y)| ≤ ̺(x, y) for x, y ∈ X.We 
laim that(2.1.9) ha(a) > f(a) for a ∈ K.To prove this �x a ∈ K and de�ne
A = {u ∈ X : ̺(a, u) > r + 2δ}, B = {u ∈ X : δ ≤ ̺(a, u) ≤ r + 2δ},where r = maxx∈K f(x). Sin
e a ∈ K and f(u) ≥ 0, we have(2.1.10) f(u) + ̺(u, a) > f(a) + 2δ for u ∈ A.A

ording to (2.1.1) the fun
tion u 7→ f(u)+̺(u, a)−f(a) is positive on B. Moreover,sin
e B is 
ompa
t, we have

f(u) + ̺(u, a) ≥ f(a) + σ for u ∈ B,where σ is a positive 
onstant. This and (2.1.10) imply (2.1.9).De�ne
f̄(x) = sup{ha(x) : a ∈ K}.
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kiFrom (2.1.5)�(2.1.7) it follows that
f(x) ≤ f̄(x) <∞ for x ∈ X and f̄(x) = f(x) for x ∈ X \G.Sin
e f̄(x) <∞, 
ondition (2.1.8) implies that

|f̄(x) − f̄(y)| ≤ ̺(x, y) for x, y ∈ X.Further from (2.1.9) it follows that f(x) < f̄(x) for x ∈ K.Let ε0 = 1
2 minx∈K(f̄(x) − f(x)). Then for every ε ∈ (0, ε0) the desired fun
tion f̃ isgiven by the formula(2.1.11) f̃(x) = 1

2 (f(x) + min{f̄(x), f(x) + 2ε}).The following example shows that in the statement of Lemma 2.1.1 assumption (2.1.2)is essential.Example 2.1.1. Consider the set X = N ∪ {0} of nonnegative integers with the metri

̺(n,m) =

{
n+m for n 6= m,
0 for n = m.Let f : X → R be given by the formula

f(n) =

{
0 for n = 0,
n−1 − n for n > 0.It is easy to verify that f is 
ontra
tive. In the spa
e (X, ̺) the one-point set {0} issimultaneously open and 
ompa
t. So we may take K = G = {0} and ex
ept (2.1.2),all the assumptions of Lemma 2.1.1 are satis�ed. Now �x ε ∈ (0, ε0) and 
onsider thefun
tion

f̃(n) =

{
f(0) + ε for n = 0,
f(n) for n > 0,as des
ribed in Lemma 2.1.1. For n > 1/ε we have

|f̃(n) − f̃(0)| = |−n+ n−1 − ε| > n = ̺(n, 0),whi
h shows that f̃ is not 
ontra
tive.Repla
ing f by −f we obtain from Lemma 2.1.1 the following result.Remark 2.1.1. If sup f < ∞ and f : X → R is a 
ontra
tive fun
tion then there existsan ε0 > 0 su
h that for every ε ∈ (−ε0, 0) there is a 
ontra
tive fun
tion f̃ : X → Rsatisfying 
onditions (2.1.3) and the inequality(2.1.12) f(x) + ε ≤ f̃(x) ≤ f(x) for x ∈ G \K.2.2. Lo
al 
hanges of 
ontra
tive unbounded fun
tions. Assumption (2.1.2) 
anbe omitted if we assume that the spa
e X has some additional properties. We say thata metri
 spa
e (X, ̺) is metri
ally 
onvex if for any two di�erent points x, y ∈ X and
λ ∈ (0, ̺(x, y)) there exists a point z ∈ X su
h that

̺(x, z) = λ and ̺(x, y) = ̺(x, z) + ̺(z, y).Lemma 2.2.1. Let (X, ̺) be a lo
ally 
ompa
t separable, metri
ally 
onvex metri
 spa
eand let f : X → R be a 
ontra
tive fun
tion. Moreover let an open set G ⊂ X and a
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ompa
t set K ⊂ G be given. Then there exists an ε0 > 0 su
h that for every ε ∈ (0, ε0)there is a 
ontra
tive fun
tion f̃ : X → R satisfying 
onditions (2.1.3) and (2.1.4).Proof. Again we may assume that K 6= ∅ and X \G 6= ∅. Let δ be given by (2.1.5). Then
G0 = {x ∈ X : ̺(x,K) < δ} is a subset of G. We de�ne an auxiliary fun
tion f̄ : X → Rby

f̄(x) = inf{f(u) + ̺(x, u) : u ∈ X \G0}.It is easy to verify that
f̄(x) ≥ f(x) for x ∈ X,(2.2.1)

f̄(x) = f(x) for x ∈ X \G,(2.2.2)

|f̄(x) − f̄(y)| ≤ ̺(x, y) for x, y ∈ X.Let r = δ + diamK. We are going to show that(2.2.3) f̄(x) = ¯̄f(x) for x ∈ K,where(2.2.4) ¯̄f(x) = inf{f(u) + ̺(x, u) : u ∈ X \G0 and ̺(x, u) ≤ 2r}.It is obvious that f̄(x) ≤ ¯̄f(x) for every x ∈ X. To show the opposite inequality for
x ∈ K it is su�
ient to prove the following 
laim. For every x ∈ K and u ∈ X \G0 thereexists v ∈ X \G0 su
h that ̺(x, v) ≤ 2r and(2.2.5) f(v) + ̺(x, v) ≤ f(u) + ̺(x, u).If ̺(x, u) ≤ 2r we may 
hoose v = u and 
ondition (2.2.5) is satis�ed. Now assume that
x ∈ K and ̺(x, u) > 2r. Then due to the metri
 
onvexity of X there exists a point
v ∈ X su
h that ̺(x, v) = 2r and(2.2.6) ̺(x, u) = ̺(x, v) + ̺(v, u).Using the de�nition of r it is easy to verify that v ∈ X \G0. Moreover using (2.2.6)and the inequality f(v) − f(u) ≤ ̺(v, u) we obtain

f(v) + ̺(x, v) = f(v) + ̺(x, u) − ̺(v, u) ≤ f(v) + ̺(x, u) − [f(v) − f(u)],whi
h gives (2.2.5) and 
ompletes the proof of the 
laim. This in turn implies (2.2.3).Observe that for x ∈ K and u ∈ X \G0 we have x 6= u and 
onsequently
f(u) + ̺(x, u) > f(x).Moreover for every x ∈ K the set

{u ∈ X \G0 : ̺(x, u) ≤ 2r}is 
ompa
t. Consequently, ¯̄f(x) > f(x) for x ∈ K. From this and (2.2.3) it follows that
f̄(x) > f(x) for x ∈ K. Sin
e K is 
ompa
t, there exists a 
onstant ε0 > 0 su
h that

f̄(x) ≥ f(x) + 2ε0 for x ∈ K.For ε ∈ (0, ε0) the desired fun
tion f̃ is again given by formula (2.1.11).The following example shows that in the statement of Lemma 2.2.1 the assumptionthat X is lo
ally 
ompa
t separable is essential.
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kiExample 2.2.1. Let C be the 
omplex plane and let
An = {z ∈ C : |z| ≤ 4, arg z = π/n} for n = 1, 2 . . . .In the spa
e X =
⋃

n∈N
An we de�ne the metri
 ̺ by the formula

̺(z, w) =

{
|z − w| if z, w ∈ An for some n ∈ N,

|z| + |w| otherwise,so that (X, ̺) is a metri
ally 
onvex spa
e. Now 
onsider the fun
tion
f(z) = (n−1 − 1)|z| for z ∈ An, n = 1, 2, . . . .Let K = {0} and G = {z ∈ X : |z| < 2}. Evidently f is 
ontra
tive. Now �x an arbitrary

ε > 0 and assume that a fun
tion f̃ : X → R satis�es the 
onditions
f̃(0) = f(0) + ε = ε and f̃(z) = f(z) for z ∈ X \G.We have
|f̃(z) − f̃(0)| = |(n−1 − 1)|z| − ε| for z ∈ An, |z| ≥ 2.For |z| = 2 and n > 2/ε the right hand side is larger than 2 and the fun
tion f̃ is not
ontra
tive.Remark 2.2.1. Under 
onditions of Lemma 2.2.1 there exists an ε0 > 0 su
h that forevery ε ∈ (−ε0, 0) there is a 
ontra
tive fun
tion f̃ : X → R satisfying (2.1.3) and

f(x) + ε ≤ f̃(x) ≤ f(x) for x ∈ G \K.

3. Maximum prin
iplesThe purpose of this 
hapter is to present maximum prin
iples for fun
tionals of Ham-merstein type de�ned on the spa
e of Lips
hitzian fun
tions. Our proofs are based onthe lemmas 
on
erning lo
al 
hanges of Lips
hitzian fun
tions. Using this method weprove new versions of the maximum prin
iples for the Hut
hinson and Fortet�Mouriermetri
es.3.1. Metri
s and norms in the spa
e of measures. Let (X, ̺) be a Polish spa
e,i.e., a separable, 
omplete metri
 spa
e. We denote by BX the σ-algebra of Borel subsetsof X and by M the family of all �nite (nonnegative) Borel measures on X.Let M1 denote the subset of those µ ∈ M su
h that µ(X) = 1. The elements of M1will be 
alled distributions. Further let
Msig = {µ1 − µ2 : µ1, µ2 ∈ M}be the spa
e of �nite signed measures. For arbitrary µ ∈ Msig we denote by µ

+
and µ

−the positive and negative parts of µ. Then we set(3.1.1) µ
+
− µ

−
= µ and µ

+
+ µ

−
= |µ|,where |µ| is 
alled the total variation of the measure µ.Let c be a �xed element of X. For every real number α ≥ 1 we de�ne the sets M1,αand Msig,α by setting

M1,α = {µ ∈ M1 : mα(µ) <∞} and Msig,α = {µ ∈ Msig : mα(µ) <∞}
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mα(µ) =

\
X

(̺(x, c))α |µ|(dx).Evidently Msig,α ⊂ Msig,β for α ≥ β. Moreover, we denote by M0
sig,α the subset ofthose µ ∈ Msig,α for whi
h µ(X) = 0. It is evident that these spa
es do not depend onthe 
hoi
e of c.As usual, B(X) denotes the spa
e of all bounded Borel measurable fun
tions f : X →

R, and C(X) the subspa
e of all bounded 
ontinuous fun
tions. Both spa
es are endowedwith the supremum norm
‖f‖ = sup

x∈X
|f(x)|.For every f : X → R and µ ∈ Msig we write(3.1.2) 〈f, µ〉 =

\
X

f(x)µ(dx),whenever this integral exists.In M1 we introdu
e the Fortet�Mourier metri
 (see [7, Proposition 8.2℄) by the for-mula(3.1.3) ‖µ1 − µ2‖F = sup{|〈f, µ1 − µ2〉| : f ∈ F},where F is the set of fun
tions f : X → R satisfying
‖f‖ ≤ 1 and |f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X.Remark 3.1.1. It is known thatM1 with the Fortet�Mourier metri
 is a 
omplete metri
spa
e. Furthermore, if X has at least one a

umulation point then Msig with this metri
is not 
omplete (see [9, Theorem 3.1.7℄).We say that a sequen
e (µn) ⊂ M1 
onverges weakly to a measure µ ∈ M1 if(3.1.4) lim

n→∞
〈f, µn〉 = 〈f, µ〉 for f ∈ C(X).Sin
e X is a Polish spa
e, 
ondition (3.1.4) is equivalent to

lim
n→∞

‖µn − µ‖F = 0(see [7, Theorem 8.3℄).In M1 we also introdu
e another metri
 
alled the Hut
hinson metri
 (see [15, De�-nition 4.3.1℄) by the formula(3.1.5) ‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ H} for µ1, µ2 ∈ M1,where H is the set of fun
tions f : X → R whi
h satisfy the 
ondition
|f(x) − f(y)| ≤ ̺(x, y) for x, y ∈ X.Fix c ∈ X. It is easy to see that

‖µ1 − µ2‖H = sup{|〈f, µ1 − µ2〉| : f ∈ Hc} for µ1, µ2 ∈ M1,where Hc = {f ∈ H : f(c) = 0}.
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kiIt should be noted that the Hut
hinson metri
 is strongly related by a duality prin
ipleto the Kantorovi
h�Rubinstein norm (see [32, Corollary 6.1.1℄).Denote by B(x, r) the 
losed ball in X with 
entre x ∈ X and radius r. Let µ ∈ M1.We de�ne the support of µ by setting
suppµ = {x ∈ X : µ(B(x, ε)) > 0 for every ε > 0}.Remark 3.1.2. Every set M1,α for α ≥ 1 
ontains the subset of all measures µ ∈ M1with 
ompa
t support. This subset is dense in M1 with respe
t to the Fortet�Mouriernorm (see [3, Theorem 4, p. 237℄).3.2. Nonlinear version of the Kantorovi
h�Rubinstein maximum prin
iple.The main result of this se
tion is stimulated by the following 
lassi
al Kantorovi
h�Rubinstein maximum prin
iple. Let (X, ̺) be a separable metri
 spa
e and let L be thespa
e of fun
tions f : X → R whi
h satisfy the Lips
hitz 
ondition. The spa
e L is
onsidered with the seminorm(3.2.1) ‖f‖L = sup

{
|f(x) − f(y)|

̺(x, y)
: x 6= y; x, y ∈ X

}
.If µ is a given �nite signed measure, then the linear fun
tional ϕµ : L → R de�ned bythe formula(3.2.2) ϕµ(f) =

\
X

f(x)µ(dx) for f ∈ Lhas the following properties (for details see [33, Corollary 6.2℄):Theorem 3.2.1 (Kantorovi
h�Rubinstein maximum prin
iple). For every µ1, µ2 ∈ M1,1,

µ1 6= µ2, there exists a fun
tion f ∈ H su
h that
ϕµ1−µ2

(f) = ‖µ1 − µ2‖H.Moreover , every fun
tion f for whi
h the distan
e is attained (with µ1 6= µ2) satis�es
|f(x) − f(y)| = ̺(x, y)for some x, y ∈ X,x 6= y.The aim of this part is to prove analogous results for a nonlinear fun
tional Φµ : L→ Rgiven by the formula(3.2.3) Φµ(f) =
\
X

k(x, f(x))µ(dx), f ∈ L,where (see (3.1.1) for the de�nition of |µ|)(i) µ ∈ Msig,1, µ(X) = 0, |µ| > 0,(ii) the fun
tion k : X × R → R is 
ontinuous, has 
ontinuous derivative ky withrespe
t to the se
ond variable, and satis�es
(3.2.4) |k(x, y)| ≤ β0̺(x, c) + β1|y| + β2 for (x, y) ∈ X × R,where β0, β1, β2 are nonnegative 
onstants and c ∈ X is a given point.
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iple 15Remark 3.2.1. Conditions (i) and (ii) imply that for every f ∈ Hc the integral (3.2.3)exists and
sup

f∈Hc

|Φµ(f)| <∞.This is an immediate 
onsequen
e of the inequality(3.2.5) |k(x, f(x))| ≤ (β0 + β1)̺(x, c) + β2 for x ∈ X and f ∈ Hcand the assumption that µ ∈ Msig,1.Fun
tionals of this type are in general studied by methods of 
onvex analysis in the
ase when X is a ve
tor spa
e (see [8℄).Now we are ready to state the main theorem of this se
tion.Theorem 3.2.2. Assume that the spa
e (X, ̺) is lo
ally 
ompa
t , separable, metri
ally
onvex and that µ and k satisfy 
onditions (i), (ii). Assume moreover that(3.2.6) ky(x, y) > 0 for (x, y) ∈ X × R.Then(3.2.7) Φµ(f) < sup
g∈Hc

Φµ(g)for every 
ontra
tive fun
tion f ∈ Hc.Proof. Suppose that there exists a 
ontra
tive f ∈ Hc su
h that(3.2.8) Φµ(f) = sup
g∈Hc

Φµ(g).Let µ = µ
+
− µ

−
be the Jordan de
omposition of µ and let X = X+ ∪ X− be the
orresponding Hahn de
omposition. We start from the 
ase when c /∈ X+. Sin
e µ is anontrivial measure and µ(X) = 0, a

ording to the Ulam theorem (see [3, Theorem 1.4℄)there is a 
ompa
t set K ⊂ X+ su
h that(3.2.9) µ

+
(K) > 0 and µ

−
(K) = 0.De�ne

δ0 = inf{ky(x, f(x) + z) : x ∈ K, z ∈ [0, 1]},(3.2.10)
δ1 = sup{ky(x, f(x) + z) : (x, z) ∈ K × {0}}.(3.2.11)Using the 
ompa
tness of K we 
an �nd a δ > 0 su
h that(3.2.12) ky(x, f(x) + z) ≤ δ1 + 1 for x ∈ Kδ, 0 ≤ z ≤ δ,where Kδ = {x ∈ X : ̺(x,K) < δ}. Changing δ if ne
essary, we may assume that(3.2.13) µ
−
(Kδ \K) ≤

1

2

δ0µ+
(K)

1 + δ1
and ̺(c,K) > δ.Sin
e K ⊂ Kδ and Kδ is an open set, by Lemma 2.2.1 there exists an ε ≤ min(δ, 1)and a 
ontra
tive fun
tion f̃ : X → R satisfying (2.1.3) and (2.1.4) with G = Kδ. By themean value theorem we have

Φµ(f̃) − Φµ(f) =
\
X

ky(x, f(x) + θ(x)(f̃(x) − f(x)))(f̃(x) − f(x))µ(dx),
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kiwhere θ(x) ∈ (0, 1). From (2.1.3), (2.1.4) and the equality µ
−
(K) = 0 it follows that

Φµ(f̃) − Φµ(f) ≥ ε
\
K

ky(x, f(x) + θ(x)ε)µ
+
(dx)

− ε
\

Kδ\K

ky(x, f(x) + θ(x)(f̃(x) − f(x)))µ
−
(dx).Now using (3.2.10), (3.2.11) and (3.2.12) we obtain

Φµ(f̃) − Φµ(f) ≥ εδ0µ+
(K) − ε(δ1 + 1)µ

−
(Kδ \K),whi
h in virtue of (3.2.13) gives

Φµ(f̃) ≥ Φµ(f) +
εδ0
2
µ

+
(K).Sin
e f̃ ∈ Hc, this 
ontradi
ts (3.2.8) and 
ompletes the proof in the 
ase when c /∈ X+.If c /∈ X− the argument is similar. It is based on Remark 2.2.1.Remark 3.2.2. Theorem 3.2.2 remains true if the spa
e Hc is repla
ed by H. The proofis similar. However, in this 
ase the value supg∈H Φµ(g) may be in�nite.We 
lose this se
tion with the following nonlinear version of the Kantorovi
h�Rubin-stein maximum prin
iple.Theorem 3.2.3. Assume that the spa
e (X, ̺) is 
omplete and separable and that µ and

k satisfy 
onditions (i), (ii) and (3.2.6). Then there exists an f0 ∈ Hc su
h that(3.2.14) Φµ(f0) = sup
f∈Hc

Φµ(f).Moreover , if (X, ̺) is a lo
ally 
ompa
t , separable and metri
ally 
onvex spa
e then everyfun
tion f0 ∈ Hc satisfying (3.2.14) is not 
ontra
tive.Proof. From Remark 3.2.1 it follows immediately that there exists a sequen
e (fn) ⊂ Hcsatisfying(3.2.15) lim
n→∞

Φµ(fn) = sup
f∈Hc

Φµ(f) <∞.By the Ulam theorem we 
an 
hoose an in
reasing sequen
e of 
ompa
t sets Ks ⊂ Xsu
h that
|µ|(X \Ks) < 1/s for every s = 1, 2, . . . .We may also assume that c ∈ Ks for every s ∈ N. Using the Arzelà�As
oli theorem andthe diagonal Cantor pro
ess we 
an �nd a subsequen
e (fαn

) whi
h 
onverges pointwiseon the set
K =

∞⋃

s=1

Ks,to a fun
tion f̂ : K → R. Evidently f̂ satis�es the Lips
hitz 
ondition with 
onstant 1and f̂(c) = 0.A

ording to the M
Shane theorem (see [31, Theorem 1℄) there exists an extension
f0 of f̂ de�ned on the spa
e X and satisfying the Lips
hitz 
ondition with the same
onstant.
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 17From inequality (3.2.5) it follows that the fun
tions k(·, fαn
(·)) for n ∈ N are boundedby a |µ|-integrable fun
tion. As the sequen
e (fαn

) 
onverges to f0 on K and |µ|(X \K)

= 0, by the Lebesgue dominated 
onvergen
e theorem we have
lim

n→∞
Φµ(fαn

) = Φµ(f0).This and (3.2.15) imply (3.2.14). By Theorem 3.2.2 the fun
tion f0 is not 
ontra
tive.3.3. Maximum prin
iple for the Fortet�Mourier metri
. In this se
tion we willprove a maximum prin
iple for fun
tionals a
ting on the spa
e of uniformly bounded anduniformly Lips
hitzian fun
tions. In Se
tion 6.5 we will show appli
ations of this resultin the theory of the 
ell 
y
le (see [12, Proposition 2℄). As before we 
onsider a nonlinearfun
tional of the form(3.3.1) Φµ(f) =
\
X

k(x, f(x))µ(dx) for f ∈ F ,where (X, ̺) is a metri
 spa
e, k : X × [−1, 1] → R is a given fun
tion and µ ∈ Msig.We will assume that the fun
tion k : X × R → R and the signed measure µ satisfythe following 
onditions:(i) µ = µ1 − µ2, µ1, µ2 ∈ M1.(ii) The fun
tion k : X × [−1, 1] → R is 
ontinuous and has a 
ontinuous derivative
ky with respe
t to the se
ond variable. Moreover,

(3.3.2) −∞ <
\
X

k(x,−1) |µ|(dx) and \
X

k(x, 1) |µ|(dx) <∞,

(3.3.3) ky(x, y) > 0 for (x, y) ∈ X × [−1, 1].Theorem 3.3.1. Assume that the spa
e (X, ̺) is 
omplete and separable and that µ and
k satisfy 
onditions (i) and (ii). Then there exists a fun
tion f ∈ F su
h that(3.3.4) Φµ(f) = sup

g∈F
Φµ(g).Moreover , if (X, ̺) is lo
ally 
ompa
t separable spa
e, |µ| > 0 and a fun
tion f ∈ Fsatis�es (3.3.4) then it ful�lls at least one of the following two 
onditions :

1o There exist two points x, y ∈ X, x 6= y, su
h that
(3.3.5) |f(x) − f(y)| = ̺(x, y).

2o The fun
tion f has the following properties :
(3.3.6) f(x) = 1 for x ∈ suppµ

+
,

(3.3.7) f(x) = −1 for x ∈ suppµ
−
.Proof. The proof of the existen
e of f ∈ F satisfying (3.3.4) is similar to that of Theorem3.2.3.To 
omplete the proof note that we have two possibilities: either f is not 
ontra
tiveand then (3.3.5) holds for some x and y, or f is 
ontra
tive. In the latter 
ase assumethat(3.3.8) f(x0) < 1 for some x0 ∈ suppµ

+
.
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kiThen there is a 
losed ball B(x0, r0) su
h that
f(x) < 1 for x ∈ B(x0, r0).Moreover

µ
+
(B(x0, r0)) > 0.Let X = X+ ∪X− be the Hahn de
omposition 
orresponding to µ. As before, a

ordingto the Ulam theorem there is a 
ompa
t set K ⊆ B(x0, r0) ∩X+ su
h that(3.3.9) µ

+
(K) > 0, µ

−
(K) = 0.De�ne

Kδ = {x ∈ X : ̺(x,K) < δ}.Sin
e K is 
ompa
t, we 
an �nd a δ > 0 su
h that(3.3.10) µ
−
(Kδ \K) ≤ µ

+
(K)

δ0
2δ1

and sup
x∈Kδ

f(x) < 1,where
δ0 = inf{ky(x, y) : (x, y) ∈ K × [−1, 1]},(3.3.11)
δ1 = sup{ky(x, y) : (x, y) ∈ Kδ × [−1, 1]}, δ1 <∞.(3.3.12)Sin
e K ⊂ Kδ and Kδ is open, by Lemma 2.1.1 there exists ε > 0 and a 
ontra
tivefun
tion f̃ : X → R satisfying 
onditions (2.1.3), (2.1.4) with G = Kδ and the inequality(3.3.13) ε < 1 − sup

x∈Kδ

f(x).By the mean value theorem we have
Φµ(f̃) − Φµ(f) =

\
X

ky(x, f(x) + θ(x)(f̃(x) − f(x)))(f̃(x) − f(x))µ(dx),where θ(x) ∈ (0, 1). From (2.1.3), (2.1.4) and the equality µ
−
(K) = 0 it follows that

Φµ(f̃) − Φµ(f) ≥ ε
\
K

ky(x, f(x) + θ(x)ε)µ
+
(dx)

− ε
\

Kδ\K

ky(x, f(x) + θ(x)(f̃(x) − f(x)))µ
−
(dx).Now using (3.3.11) and (3.3.12) we obtain

Φµ(f̃) − Φµ(f) ≥ εδ0µ+
(K) − ε δ1µ−

(Kδ \K),whi
h in virtue of (3.3.10) gives
Φµ(f̃) − Φµ(f) ≥

εδ0
2
µ

+
(K).Further, from (3.3.13) it follows that f̃ ∈ F . Consequently, the last inequality 
ontradi
ts(3.3.4) and �nishes the proof in this 
ase. If f(x0) > −1 for some x0 ∈ suppµ

−
, theargument is similar, based on Remark 2.1.1.Given two nonempty sets A,B ⊂ X we de�ne

dist(A,B) = inf{̺(x, y) : x ∈ A, y ∈ B}.
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 19Using Theorem 3.3.1 it is easy to prove the following 
orollary whi
h will be applied inSubse
tions 4.3 and 6.4.Corollary 3.3.1. Let µ = µ2 − µ1, where µ2, µ1 ∈ M1, µ1 6= µ2 and(3.3.14) dist(suppµ
+
, suppµ

−
) < 2.Then every f0 ∈ F satisfying (3.3.4) with µ = µ2 − µ1 ful�lls 
ondition 1o.Proof. The proof is straightforward. Suppose, on the 
ontrary, that there exists a 
on-tra
tive f0 ∈ F su
h that(3.3.15) Φµ(f0) = sup

g∈F
Φµ(g).Using (3.3.14) we 
an �nd x0 ∈ suppµ

+
and y0 ∈ suppµ

−
su
h that ̺(x0, y0) < 2. Onthe other hand, by 
ondition 2o of the maximum prin
iple we have f0(x0) − f0(y0) = 2,whi
h is impossible.Observe that the spe
ial linear fun
tion k(x, y) = y for (x, y) ∈ X × [−1, 1] satis�es
ondition (ii) of Theorem 3.3.1. In this 
ase (3.3.1) redu
es to Φµ(f) = 〈f, µ〉. Using thisfa
t we obtainRemark 3.3.1. Assume that (X, ̺) is a lo
ally 
ompa
t separable metri
 spa
e and µsatis�es 
ondition (i). Then there exists a fun
tion f0 ∈ F su
h that(3.3.16) 〈f0, µ〉 = ‖µ‖F .Moreover, if |µ| > 0 and a fun
tion f0 ∈ F satis�es (3.3.16), then it ful�lls at least oneof the following two 
onditions:

1o There exist two points x, y ∈ X, x 6= y, su
h that(3.3.17) |f0(x) − f0(y)| = ̺(x, y).

2o The fun
tion f0 has the following properties:
f0(x) = 1 for x ∈ suppµ

+
,(3.3.18)

f0(x) = −1 for x ∈ suppµ
−
.(3.3.19)

4. Asymptoti
ally 
ontra
tive semigroups of Markov operatorsIn this 
hapter we study a 
lass of asymptoti
ally 
ontra
tive lo
ally Lips
hitzian Markovsemigroups a
ting on the spa
e of signed measures. Our results are based on maximumprin
iples. In Chapter 6 we will apply these 
riteria to the stability theory of Markov�Feller semigroups.4.1. Markov operators. An operator P : M → M is 
alled a Markov operator if itsatis�es the following 
onditions:(i) P is positively linear:
P (λ1µ1 + λ2µ2) = λ1Pµ1 + λ2µ2for λ1, λ2 ≥ 0 and µ1, µ2 ∈ M,
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ki(ii) P preserves the measure of the spa
e:(4.1.1) Pµ(X) = µ(X) for µ ∈ M.Remark 4.1.1. Every Markov operator P 
an be uniquely extended as a linear operatorto the spa
e of signed measures. Namely for every µ ∈ Msig we de�ne
Pµ = Pµ1 − Pµ2, where µ = µ1 − µ2, µ1, µ2 ∈ M.It is easy to verify that this de�nition does not depend on the 
hoi
e of µ1, µ2.A Markov operator P is 
alled regular if there exists an operator U : B(X) → B(X)on the spa
e of bounded Borel measurable fun
tions su
h that(4.1.2) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ B(X), µ ∈ M.The operator U is 
alled dual to P . If in addition Uf ∈ C(X) for f ∈ C(X), then theregular operator P is 
alled a Markov�Feller operator.Setting µ = δx in (4.1.2) we obtain(4.1.3) (Uf)(x) = 〈f, Pδx〉 for f ∈ B(X), x ∈ X,where δx ∈ M1 is the point (Dira
) measure supported at x.From formula (4.1.3) it follows immediately that U is linear and

Uf ≥ 0 for f ≥ 0, f ∈ B(X),(4.1.4)
U1X = 1X ,(4.1.5)
Ufn ↓ 0 for fn ↓ 0, fn ∈ B(X).(4.1.6)Here fn ↓ 0 means that the sequen
e (fn) is de
reasing and pointwise 
onverges to 0.Conditions (4.1.4)�(4.1.6) allow one to reverse the roles of P and U . Namely, if alinear operator U satisfying (4.1.4)�(4.1.6) is given we may de�ne a Markov operator

P : M → M by setting(4.1.7) Pµ(A) = 〈U1A, µ〉 for µ ∈ M, A ∈ BX .A mapping π : X×BX → [0, 1] is 
alled a transition fun
tion if π(x, ·) is a probabilitymeasure for every x ∈ X and π(·, A) is a measurable fun
tion for every A ∈ BX .Having a transition fun
tion π we may de�ne the 
orresponding Markov operator
P : Msig → Msig by the formula(4.1.8) Pµ(A) =

\
X

π(x,A)µ(dx) for µ ∈ Msig, A ∈ BXand its dual operator U : B(X) → B(X) by(4.1.9) Uf(x) =
\
X

f(u) π(x, du).Conversely, having a regular Markov operator P we may de�ne π : X × BX → [0, 1] bysetting(4.1.10) π(x,A) = Pδx(A).Clearly π is a transition fun
tion su
h that 
onditions (4.1.8) and (4.1.9) are satis�ed.



Appli
ations of the Kantorovi
h�Rubinstein maximum prin
iple 21Thus, 
onditions (4.1.8), (4.1.10) yield a one-to-one 
orresponden
e between the reg-ular Markov operators and transition fun
tions.Note that a Markov operator P is Markov�Feller if and only if its transition fun
tionhas the following property:
xn → x implies π(xn, ·) → π(x, ·) (weakly).If this 
ondition is satis�ed the transition fun
tion π is 
alled Feller.Remark 4.1.2. Observe that a Markov�Feller operator is 
ontinuous with respe
t toweak 
onvergen
e. Namely, the weak 
onvergen
e of (µn) to a measure µ implies theweak 
onvergen
e of (Pµn) to Pµ. This is a straightforward 
onsequen
e of (4.1.2).The dual operator U has a unique extension to the set of all Borel measurable nonneg-ative (not ne
essarily bounded) fun
tions on X, su
h that formula (4.1.2) holds. Namelyfor a Borel measurable fun
tion f : X → R+ we write

Uf(x) = lim
n→∞

Ufn(x),where (fn) ⊂ B(X) is an in
reasing sequen
e of bounded Borel measurable fun
tions
onverging pointwise to f . Sin
e the sequen
e (Ufn) is in
reasing the limit Uf exists.Further from the Lebesgue monotone 
onvergen
e theorem it follows that Uf satis�es(4.1.2). This formula shows that the limit is de�ned in a unique way and does notdepend on the 
hoi
e of the sequen
e (fn). Evidently this extension is positively linearand monotoni
.For given c ∈ X de�ne
̺c(x) := ̺(x, c) for x ∈ X.An important role in the study of the asymptoti
 behaviour of a Markov�Feller operator

P is played by the fun
tion U̺c, where U denotes the dual operator to P . Sin
e ̺c is
ontinuous and nonnegative the fun
tion U̺c is well de�ned.If in addition U̺c is �nite, i.e.(4.1.11) U̺c(x) <∞ for x ∈ X,then the operator U 
an be extended to a linear spa
e of fun
tions satisfying an ap-propriate growth 
ondition. To formulate this fa
t pre
isely we introdu
e the followingnotion:A fun
tion f : X → R will be 
alled linearly bounded if there exist nonnegative
onstants A,B su
h that(4.1.12) |f(x)| ≤ A̺c(x) +B for x ∈ X.The family of linearly bounded fun
tions will be denoted by L(X).Remark 4.1.3. If 
ondition (4.1.11) is satis�ed then for every f ∈ L(X) the fun
tions
Uf+, Uf− also belong to L(X). Therefore the fun
tion(4.1.13) Uf(x) := Uf+(x) − Uf−(x)is well de�ned and belongs to L(X). Elementary 
al
ulations show that U de�ned by(4.1.13) has the following properties:
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ki1. U maps L(X) into itself.2. U is linear and nonde
reasing.3. |Uf | ≤ U |f | for f ∈ L(X).Using the above remark it is easy to prove the following proposition:Proposition 4.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual. Assume that U̺c is a linearly bounded fun
tion. Then(4.1.14) P (Msig,1) ⊂ Msig,1.Moreover , for every f ∈ L(X) and µ ∈ Msig,1 the integrals 〈Uf, µ〉, 〈f, Pµ〉 are �niteand(4.1.15) 〈Uf, µ〉 = 〈f, Pµ〉 for f ∈ L(X), µ ∈ Msig,1.Proof. Conditions (4.1.14) and (4.1.15) follow immediately from the fa
t that for f ∈

L(X) and µ ∈ Msig,1 the eight integrals 〈f+, Pµ+〉, . . . 〈Uf−, µ−〉 exist and are �nite.Let d be an arbitrary metri
 on Msig. A Markov operator P : Msig → Msig is 
alledLips
hitzian with respe
t to d with 
onstant k > 0 if(4.1.16) d(Pµ1, Pµ2) ≤ k d(µ1, µ2) for µ1, µ2 ∈ Msig.If k ≤ 1 then P is nonexpansive.A Markov operator P : Msig → Msig is 
alled 
ontra
tive in the 
lass M̃ ⊂ Msigwith respe
t to d if(4.1.17) d(Pµ1, Pµ2) < d(µ1, µ2) for µ1, µ2 ∈ M̃.Remark 4.1.4. Note that a regular operator P : Msig → Msig is nonexpensive withrespe
t to the Fortet�Mourier metri
 if and only if U(F) ⊂ F . This is an immediate
onsequen
e of formula (4.1.2).Let T be a nontrivial semigroup of nonnegative real numbers. More pre
isely weassume that {0}  T ⊂ R+ and(4.1.18) t1 + t2 ∈ T, t1 − t2 ∈ T for t1, t2 ∈ T, t1 ≥ t2.A family of Markov operators (P t)t∈T is 
alled a semigroup if
P t+s = P t P s for t, s ∈ Tand P 0 = I where I is the identity operator.If the Markov operators P t are Markov�Feller for t ∈ T , we say that (P t)t∈T is aMarkov�Feller semigroup. We denote by (U t)t∈T the semigroup of the dual operators to

(P t)t∈T .A Markov semigroup (P t)t∈T is 
alled lo
ally Lips
hitzian with respe
t to d in the
lass M̃ ⊂ Msig if there exists a lo
ally bounded fun
tion k : T → R+ su
h that forevery t ∈ T and µ1, µ2 ∈ M̃,(4.1.19) d(P tµ1, P
tµ2) ≤ k(t)d(µ1, µ2).If k(t) ≤ 1 for t ∈ T , then (P t)t∈T is a nonexpansive semigroup.
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 23A nonexpansive semigroup (P t)t∈T is 
alled asymptoti
ally 
ontra
tive with respe
t to
d in the 
lass M̃ ⊂ Msig if for every µ1, µ2 ∈ M̃, µ1 6= µ2, there is t0 ∈ T su
h that

d(P t0µ1, P
t0µ2) < d(µ1, µ2).4.2. Asymptoti
ally 
ontra
tive semigroups with respe
t to the Hut
hinsonmetri
. In this se
tion we study Markov�Feller semigroups whi
h are asymptoti
ally
ontra
tive in the 
lass M1,α with respe
t to the Hut
hinson metri
. To verify thatsome semigroups have the desired asymptoti
 properties we use the maximum prin
ipleformulated in Theorem 3.2.3.Theorem 4.2.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T su
h that for every f ∈ H,

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(4.2.1)

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(4.2.2)Moreover , assume that there exists a 
onstant α > 1 su
h that(4.2.3) P t(M1,α) ⊂ M1,α for t ≥ 0.Then (P t)t∈T is asymptoti
ally 
ontra
tive with respe
t to the Hut
hinson metri
 in the
lass M1,α.Proof. From (4.2.1)�(4.2.3), it follows immediately that (P t)t∈T is nonexpansive onM1,αwith respe
t to the Hut
hinson metri
. Indeed, for µ1, µ2 ∈ M1,α and t ∈ T we have
‖P tµ1 − P tµ2‖H = sup{|〈f, P tµ1 − P tµ2〉| : f ∈ H}(4.2.4)

= sup{|〈U tf, µ1 − µ2〉| : f ∈ H} ≤ ‖µ1 − µ2‖H.Note that M1,α ⊂ M1,1 for α > 1 and �x µ1, µ2 ∈ M1,α, µ1 6= µ2. By Theorem3.2.1 there exists f ∈ H su
h that(4.2.5) 〈f, P t0µ1 − P t0µ2〉 = ‖P t0µ1 − P t0µ2‖H.This may be rewritten in the form
〈U t0f, µ1 − µ2〉 = ‖P t0µ1 − P t0µ2‖H.As U t0f satis�es (4.2.1), by the se
ond part of Theorem 3.2.1 we obtain(4.2.6) 〈U t0f, µ1 − µ2〉 < ‖µ1 − µ2‖H.This inequality and (4.2.4) show that (P t)t∈T is asymptoti
ally 
ontra
tive with respe
tto the Hut
hinson metri
 in M1,α.Remark 4.2.1. Sometimes (4.2.3) 
an be veri�ed using amore expli
it 
ondition. Namely,let c be a �xed element of X and ̺α

c (x) := (̺(x, c))α for x ∈ X, α > 0. If there exist
onstants A,B ≥ 0 and α > 1 su
h that(4.2.7) (U t̺α
c )(x) ≤ A̺α

c (x) +B for x ∈ X and t ∈ T,then the 
ondition (4.2.3) is satis�ed.As a 
onsequen
e of Theorem 4.2.1 we obtain the following
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kiCorollary 4.2.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual operator. Assume that for every f ∈ H,(4.2.8) |Uf(x) − Uf(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Moreover , assume that there exists a 
onstant α > 1 su
h that P (M1,α) ⊂ M1,α. Then
(Pn)n∈N is asymptoti
ally 
ontra
tive with respe
t to the Hut
hinson metri
 in the 
lass
M1,α.4.3. Asymptoti
ally 
ontra
tive semigroups with respe
t to the Fortet�Mou-rier metri
. In this se
tion we study Markov�Feller semigroups whi
h are asymptoti-
ally 
ontra
tive in the 
lass M1 with respe
t to the Fortet�Mourier metri
. The proofsare based on the maximum prin
iple formulated in Remark 3.3.1.Theorem 4.3.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that the following 
onditions are satis�ed :(i) For every t ∈ T ,
(4.3.1) |U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X.There is t0 ∈ T su
h that for every f ∈ F ,
(4.3.2) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists t1 ∈ T su
h that either P t1(µ1) =

P t1(µ2) or
(4.3.3) dist(supp(P t1(µ1 − µ2))+

, supp(P t1(µ1 − µ2))−) < 2.Then (P t)t∈T is asymptoti
ally 
ontra
tive with respe
t to the Fortet�Mourier metri
 inthe 
lass M1.Proof. From (4.3.1), it follows immediately that U t(F) ⊂ F for t ∈ T, and that (P t)t∈Tis nonexpansive. Indeed, for µ1, µ2 ∈ M1 and t ∈ R+ we have
‖P tµ1 − P tµ2‖F = sup{|〈U tf, µ1 − µ2〉| : f ∈ F}(4.3.4)

≤ sup{|〈f, µ1 − µ2〉| : f ∈ F} = ‖µ1 − µ2‖F .Fix µ1, µ2 ∈ M1, µ1 6= µ2. By Remark 3.3.1 there exists f0 ∈ F su
h that(4.3.5) 〈f0, P
t0+t1µ1 − P t0+t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .This may be rewritten in the form(4.3.6) 〈U t0f0, P

t1µ1 − P t1µ2〉 = ‖P t0+t1µ1 − P t0+t1µ2‖F .If P t1µ1 = P t2µ2 then automati
ally(4.3.7) ‖P t0+t1µ1 − P t0+t1µ2‖F < ‖µ1 − µ2‖F .If not, we 
an apply Remark 3.3.1 to the measure P t1µ1 − P t1µ2 and the 
ontra
tivefun
tion U t0f0. By Corollary 3.3.1 this gives(4.3.8) 〈U t0f0, P
t1µ1 − P t1µ2〉 < ‖P t1µ1 − P t1µ2‖F .The last inequality and (4.3.4) again imply (4.3.7).
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h�Rubinstein maximum prin
iple 25Theorem 4.3.2. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that the following 
onditions are satis�ed :(i) For every t ∈ T ,
(4.3.9) |U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T.There is t0 ∈ R+ su
h that for every f ∈ F

(4.3.10) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) There exist 
onstants t0, t1, t2 ∈ T su
h that for every f ∈ F we have either
U t0+t1f(x) ∈ (−1, 1] for x ∈ Xor
U t0+t2f(x) ∈ [−1, 1) for x ∈ X.Then (P t)t∈T is asymptoti
ally 
ontra
tive in the 
lass M1 with respe
t to the Fortet�Mourier metri
.Proof. We may repeat the argument used in the proof of Theorem 4.3.1. However, inthis 
ase for µ1, µ2 ∈ M1, µ1 6= µ2, equality (4.3.5) should be repla
ed by(4.3.11) 〈f0, P

t0+t̃µ1 − P t0+t̃µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F ,where t̃ = min(t1, t2) and f0 ∈ F . This equality may be rewritten in the form(4.3.12) 〈U t0+t̃f0, µ1 − µ2〉 = ‖P t0+t̃µ1 − P t0+t̃µ2‖F .From (4.3.10), (4.3.9) it follows that(4.3.13) |U t0+t̃f0(x) − U t0+t̃f0(y)| < ̺(x, y) for x, y ∈ X, x 6= y.A

ording to Remark 3.3.1 
onditions (ii), (4.3.13) and (4.3.12) imply
‖P t0+t̃µ1 − P t0+t̃µ2‖ < ‖µ1 − µ2‖.This inequality and (4.3.9) show that the semigroup (P t)t∈T is asymptoti
ally 
ontra
tivein M1 with respe
t to the Fortet�Mourier metri
.We may simplify the veri�
ation of 
ondition (ii). Namely we have the followingProposition 4.3.1. Let π : X × BX → [0, 1] be a transition fun
tion and let U be the
orresponding dual operator. Assume that(4.3.14) supp π(x, ·) = X for x ∈ X.Then for every f ∈ C(X), ‖f‖ ≤ 1 either

Uf(x) = 1 for x ∈ Xor
Uf(x) = −1 for x ∈ Xor
Uf(x) ∈ (−1, 1) for x ∈ X.
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kiProof. Fix f ∈ C(X), ‖f‖ ≤ 1, and suppose that there exists an x1 ∈ X su
h that
Uf(x1) = 1. By the properties of the dual operator we have

U 1X(x1) − U f(x1) =
\
X

[1X(y) − f(y)]π(x1, dy) = 0.From this and the inequality f ≤ 1X it follows that(4.3.15) f(x) = 1 π(x1, ·)-almost everywhere.This and 
ondition (4.3.14) imply that f(x) = 1 for x ∈ X. Sin
e U is the dual operator,we �nally obtain Uf(x) = 1 for x ∈ X. If there exists an x2 ∈ X su
h that Uf(x2) = −1the argument is similar.The following example shows that in the statement of Proposition 4.3.1 the assumption(4.3.14) is essential.Example 4.3.1. Let X = R with the Eu
lidean metri
. Further, let P : Msig → Msigbe the Markov�Feller operator de�ned by the formula(4.3.16) Pµ(A) = µ(−A).It is easy to verify that π(x,A) = δx(−A) and 
onsequently
supp π(1, ·) = {−1} 6= X and supp π(−1, ·) = {1} 6= XFurther let f0 ∈ F be given by the formula

f0(x) =





1 for x ≥ 1,

x for x ∈ (−1, 1),

−1 for x ≤ −1.From the de�nition of the dual operator it follows immediately that
Uf0(−1) = 〈f0, P δ−1〉 = 〈f0, δ1〉 = 1 and Uf0(1) = 〈f0, P δ1〉 = 〈f0, δ−1〉 = −1.

5. Invarian
e prin
ipleIn 1976 J. P. LaSalle (see [19, Chapter 1, Theorem 10.7℄) proved that every 
ompa
ttraje
tory of a dynami
al system (St)t∈T 
onverges to the largest invariant subset of theset {x : V̇ (x) = 0}, where V is a Lyapunov�LaSalle fun
tion and V̇ its derivative withrespe
t to the system. This result is 
alled the invarian
e prin
iple. Various versions ofthe invarian
e prin
iple were studied and used in the proofs of the asymptoti
 stabilityof dynami
al systems (see for example [20, Theorem 2.1℄, [26, Theorem 1.1℄ and [38,Chapter IV Theorem 4.2℄). We show a new version of this prin
iple whi
h generalizesthe results of A. Lasota (see [20℄, Theorem 2.1) and A. Lasota and J. Traple (see [26,Theorem 1.1℄).5.1. Criteria for the asymptoti
 stability of traje
tories. For the 
onvenien
e ofthe reader we re
all a few de�nitions from the theory of dynami
al systems. (For detailssee [20℄.)
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 27Let X be a Hausdor� topologi
al spa
e. Further, let T be a nontrivial semigroupof nonnegative real numbers as in Chapter 4, i.e., we assume that T satis�es 
ondition(4.1.18).A semigroup (St)t∈T of maps X → X is 
alled a semidynami
al system if X ∋ x 7→

Stx ∈ X is 
ontinuous for every t ∈ T .If a semidynami
al system (St)t∈T is given, then for every �xed x ∈ X the fun
tion
T ∋ t 7→ Stx ∈ X will be 
alled the traje
tory starting from x and denoted (Stx). Apoint y ∈ X is 
alled the limiting point of the traje
tory (Stx) if there exists a sequen
e
(tn) ⊂ T su
h that tn → ∞ and

lim
n→∞

Stnx = y.The set of all limiting points of the traje
tory (Stx) will be denoted Ω(x). Further, wewrite
γ(x) = {Stx : t ∈ T} and Γ(x) = γ(x) ∪ Ω(x).A set C ⊂ X is 
alled invariant with respe
t to (St)t∈T if St(C) ⊂ C for t ∈ T .Remark 5.1.1. Let (St)t∈T be a semidynami
al system and let {Cλ}λ∈Λ be a family ofinvariant sets. It is easy to see that their union and interse
tion are also invariant withrespe
t to (St)t∈T .From Remark 5.1.1 it follows immediately that every set C ⊂ X 
ontains the maximalinvariant subset M whi
h is the union of all invariant subsets of C. The set M may of
ourse be empty.We say that a fun
tion ϕ : T → X 
onverges to a set A ⊂ X if for every open G ⊃ Athere exists t0 ∈ T su
h that(5.1.1) ϕ(t) ∈ G for t ≥ t0, t ∈ T.From this de�nition it follows that A 6= ∅. Observe that if A ⊂ B ⊂ X and ϕ 
onvergesto A then it also 
onverges to B.If A = {a} is a singleton then ϕ 
onverges to {a} if and only if limt→∞ ϕ(t) = a.Remark 5.1.2. If (St)t∈T is a semidynami
al system then the sets γ(x),Ω(x) and Γ(x)are invariant for every x ∈ X. It is easy to verify that Γ(x) is the minimal invariantsubset of X whi
h 
ontains x and Ω(x).Let (St)t∈T be a semidynami
al system and let x ∈ X. We say that a traje
tory

(Stx) is sequentially 
ompa
t if for every sequen
e (tn) ⊂ T with tn → ∞, there exists asubsequen
e (tkn
) su
h that (Stknx) 
onverges to a point y ∈ X.Remark 5.1.3. If the traje
tory (Stx) is sequentially 
ompa
t, then Ω(x) is a nonempty,sequentially 
ompa
t set and Stx 
onverges to Ω(x). Moreover in this 
ase Ω(x) is stri
tlyinvariant , i.e.

St(Ω(x)) = Ω(x) for t ∈ T.A point x∗ ∈ X is 
alled stationary (or invariant) with respe
t to a semidynami
alsystem (St)t∈T if(5.1.2) Stx∗ = x∗ for t ∈ T.



28 H. Ga
kiA semidynami
al system (St)t∈T is 
alled asymptoti
ally stable if there exists a sta-tionary point x∗ ∈ X su
h that(5.1.3) lim
t→∞

Stx = x∗ for x ∈ X.Remark 5.1.4. Sin
e X is a Hausdor� spa
e, an asymptoti
ally stable dynami
al systemhas exa
tly one stationary point.Let a nonempty invariant set A ⊂ X be given. A fun
tion V : A → R is 
alled aLyapunov�LaSalle fun
tion for a semidynami
al system (St)t∈T if V is 
ontinuous and(5.1.4) V (St1(x)) ≥ V (St2(x)) for x ∈ A and t1 ≤ t2, t1, t2 ∈ T(see [19, Chapter I, De�nition 6.1 and De�nition 8.2℄).A fun
tion d : X ×X → R+ is 
alled a distan
e if d is 
ontinuous and(5.1.5) d(x, y) = 0 ⇔ x = y for x, y ∈ X.In the proof of our main result Theorem 5.1.2 we will use the following properties ofLyapunov�LaSalle fun
tions:Theorem 5.1.1. Let (St)t∈T be a semidynami
al system and let x0 ∈ X. Assume that
V : Γ(x0) → R is a Lyapunov�LaSalle fun
tion. Then there exists β ∈ R+ su
h that(5.1.6) Ω(x0) ⊂ V −1(β).Further , if the traje
tory (Stx0) is sequentially 
ompa
t , then(5.1.7) β = lim

t→∞
V (St(x0))satis�es (5.1.6) and the traje
tory (Stx0) 
onverges to the largest invariant subset M(x0)of V −1(β). In this 
ase Ω(x0) ⊂M(x0).The proof of Theorem 5.1.1 
an be found in [20, pp. 113�114℄ and [38, pp. 168�170℄.In order to formulate our theorem we 
onsider a semidynami
al system (St)t∈T whi
hhas at least one sequentially 
ompa
t traje
tory. Further, let d be an arbitrary distan
eon X. We denote by Z the set of all z ∈ X su
h that the traje
tory (Stz) is sequentially
ompa
t. Sin
e Z 6= ∅ we have

Ω =
⋃

z∈Z

Ω(z) 6= ∅.The main result of this 
hapter is the following.Theorem 5.1.2. Let x∗ ∈ Ω be �xed. Assume that for every x ∈ Ω, x 6= x∗, there is
t(x) ∈ T su
h that(5.1.8) d(St(x)x, St(x)x∗) < d(x, x∗).Further assume that the semidynami
al system (St)t∈T is nonexpansive with respe
t to d,i.e.,(5.1.9) d(Stx, Sty) ≤ d(x, y) for x, y ∈ X and t ∈ T.Then x∗ is a stationary point of (St)t∈T and(5.1.10) lim

t→∞
d(Stz, x∗) = 0 for z ∈ Z.



Appli
ations of the Kantorovi
h�Rubinstein maximum prin
iple 29Proof. We break up the proof of Theorem 5.1.2 into three steps.Step I. Choose x0 ∈ Z su
h that x∗ ∈ Ω(x0). We 
laim that every point y ∈ Ω(x0)is stationary with respe
t to (St)t∈T . To prove this �x r ∈ T and 
onsider the fun
tion
Vr : Γ(x0) → R+ given by the formula

Vr(x) = d(Srx, x) for x ∈ Γ(x0).Using (5.1.9) it is easy to verify that Vr is a Lyapunov�LaSalle fun
tion. In fa
t, for every
x ∈ Γ(x0) and t1 ≥ t2 (t1, t2 ∈ T ) we have

Vr(S
t1x) = d(St1+rx, St1x) = d(St1−t2(St2+rx), St1−t2(St2x))

≤ d(St2+r(x), St2x) = Vr(S
t2x).Sin
e x0 ∈ Z, the traje
tory (Stx0) is sequentially 
ompa
t and 
onverges to Ω(x0) whi
his an invariant subset of the set

{x : Vr(x) = β} where β = lim
t→∞

Vr(S
tx0).Further, sin
e x∗ ∈ Ω(x0) and Vr is 
ontinuous, we have Vr(x∗) = β. Now we are goingto show that β = 0. Suppose not. Then d(Srx∗, x∗) > 0 and Srx∗ 6= x∗. Using theinvarian
e of Ω(x0), the in
lusion Ω(x0) ⊂ V −1

r (β) and the 
ondition (5.1.8) we obtain
β = Vr(S

t(Srx∗)x∗) = d(St(Srx∗)(Srx∗), S
t(Srx∗)x∗) < d(Srx∗, x∗) = Vr(x∗) = β,whi
h is impossible. Thus we get β = 0. Let y ∈ Ω(x0) be given and let tn → ∞ be su
hthat y = limn→∞ Stnx0. We have limn→∞ V (Stnx0) = 0 and 
onsequently

d(Sry, y) = lim
n→∞

d(Stn+rx0, S
tnx0) = 0.This shows that Sry = y for y ∈ Ω(x0). Sin
e r ∈ T was arbitrary, the proof of the 
laimis 
omplete.Step II. Sin
e x∗ ∈ Ω(x0), we have St(x∗) = x∗ and so (5.1.9) yields(5.1.11) d(Stx, x∗) ≤ d(x, x∗) for x ∈ X.Now we are going to prove that for every z ∈ Z and ε > 0 for whi
h the set Kz(ε) =

Ω(z) ∩ {x ∈ X : d(x, x∗) ≥ ε} 6= ∅ there exists a 
onstant t0 > 0 su
h that(5.1.12) d(St0x, x∗) < d(x, x∗) for x ∈ Kz(ε) and t ≥ t0, t ∈ T.Suppose not. Then for some z ∈ Z and ε > 0 there exists a sequen
e (xn) ⊂ Kz(ε) anda sequen
e (tn) ⊂ T su
h that
d(Stxn, x∗) = d(xn, x∗) for n ≥ 1 and lim

n→∞
tn = ∞.Passing to a subsequen
e if ne
essary, we may assume that (xn) 
onverges to a point

x̄ ∈ Kz(ε). Fix t ∈ T and 
hoose n̄ ∈ N su
h that tn > t for n ≥ n̄. It is evident that
d(Stxn, x∗) = d(xn, x∗) for n ≥ n̄.From the 
ontinuity of d and St it follows immediately that(5.1.13) d(Stx̄, x∗) = d(x̄, x∗) for t ∈ T.
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kiMoreover, from the de�nition of Kz(ε) and the 
ontinuity of d it follows that d(x̄, x∗) ≥ εand x̄ 6= x∗. Thus a

ording to (5.1.8) and (5.1.13) we have
d(x̄, x∗) = d(St(x̄)x̄, x∗) < d(x̄, x∗),whi
h is impossible. The proof of the inequality (5.1.12) is 
omplete.Step III. Now we are going to prove that all the sets Ω(z) are identi
al singletons:(5.1.14) Ω(z) = {x∗} for z ∈ Z.Fix z ∈ Z and suppose, on the 
ontrary, that(5.1.15) ε = sup{d(v, x∗) : v ∈ Ω(z)} > 0.Sin
e the fun
tion v 7→ d(v, x∗) ∈ R+ is 
ontinuous and Ω(z) is sequentially 
ompa
t,there exists a point ṽ ∈ Ω(z) su
h that(5.1.16) ε = d(ṽ, x∗).Evidently ṽ ∈ Kz(ε). Thus a

ording to Step II there exists t0 ∈ T su
h that(5.1.17) d(St0x, x∗) < d(x, x∗) for x ∈ Kz(ε).Fix t̃ > t0 > 0, t̃ ∈ T . Sin
e Ω(z) is stri
tly invariant, there exists ũ ∈ Ω(z) su
h that

S t̃ũ = ṽ. Further, by (5.1.11) and (5.1.16) we have
ε = d(ṽ, x∗) = d(S t̃ũ, x∗) ≤ d(ũ, x∗).Sin
e ũ ∈ Ω(z) the last inequality and (5.1.15) imply that d(ũ, x∗) = ε. Consequently,

ũ ∈ Kz(ε) and we 
an apply inequality (5.1.17) to the point ũ. This and (5.1.11) give
ε = d(ũ, x∗) > d(St0 ũ, x∗) ≥ d(S t̃−t0(St0 ũ), x∗) = d(S t̃ũ, x∗) = ε,whi
h is impossible. Therefore 
ondition (5.1.14) is satis�ed.Sin
e the traje
tory (Stz) 
onverges to Ω(z) = {x∗} for every z ∈ Z, this 
ompletesthe proof.5.2. Asymptoti
 stability of a nonlinear Boltzmann-type equation. To illustratethe appli
ation of the results developed in Se
tion 5.1 we will dis
uss an example drawnfrom the kineti
 theory of gases. This example was stimulated by the problem of stabilityof solutions of the following version of the Boltzmann equation:(5.2.1) ∂u(t, x)

∂t
+ u(t, x) =

∞\
x

dy

y

y\
0

u(t, y − z)u(t, z) dz, t ≥ 0, x ≥ 0.Due to the physi
al interpretation equation (5.2.1) is 
onsidered with the additional
onditions(5.2.2) ∞\
0

u(t, x) dx =

∞\
0

xu(t, x) dx = 1.Equation (5.2.1) was derived by J. A. Tjon and T. T. Wu from the Boltzmann equation(see [36℄). Following Barnsley and Cornille [1℄ we 
all it the Tjon�Wu equation. It iseasy to see that the fun
tion u∗(t, x) := exp(−x) is a (stationary) solution of (5.2.1).
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h�Rubinstein maximum prin
iple 31M. F. Barnsley and G. Tur
hetti (see [2, p. 369℄) proved that this solution is stable inthe 
lass of all initial fun
tions u0 := u(0, ·) satisfying the 
ondition(5.2.3) ∞\
0

u0(x)e
x/2 dx <∞.This 
ondition was repla
ed by T. Dªotko and A. Lasota (see [6℄, Theorem 3) by a lessrestri
tive(5.2.4) ∞\

0

xnu0(x) dx <∞ for n = 2, 3, . . . .In 1990 Z. Kieªek (see [18, Theorem 1.1℄) su

eeded in proving that the stationary solution
u∗ is asymptoti
ally stable if (5.2.4) is satis�ed for n = 2.Equation (5.2.1) has a simple interpretation. For �xed t ≥ 0 the fun
tion u(t, ·)denotes the density distribution fun
tion of the energy of the parti
le in an ideal gas. Inthe time interval (t, t+∆t) the parti
le 
hanges its energy with the probability ∆t+o(∆t)and the 
hange is equal to [−u(t, x)+P (u(t, x))]∆t+o(∆t), where the operator P is givenby the formula(5.2.5) (Pv)(x) =

∞\
x

dy

y

y\
0

v(y − z)v(z) dz.In order to understand the a
tion of P 
onsider three independent random variables ξ1, ξ2and η su
h that ξ1, ξ2 have the same density distribution fun
tion v and η is uniformlydistributed on the interval [0, 1]. Then Pv is the density distribution fun
tion of therandom variable(5.2.6) η(ξ1 + ξ2).Physi
ally this means that the energies of the parti
les before a 
ollision are independentand that a parti
le after 
ollision takes the η part of the sum of the energies of the
olliding parti
les.The assumption that η has a density distribution fun
tion of the form 1[0,1] is quiterestri
tive. In general, if η has the density distribution h, then the random variable(5.2.6) has the density distribution fun
tion(5.2.7) (Pv)(x) =

∞\
0

h

(
x

y

)
dy

y

y\
0

v(y − z) v(z) dz.In 1999 A. Lasota and J. Traple (see [26, Theorem 1.1℄) studied the asymptoti
 behaviourof solutions of the equation(5.2.8) u′ + u = Pu,where u : R → L1(R) is an unknown fun
tion and P is the operator given by (5.2.7).Equation (5.2.8) was studied in the spa
es Lp(R+) with p = 1, 2 and di�erent weights.
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kiIn the proof the following 
onditions on h were used:
∞\
0

h(x) dx = 2

∞\
0

xh(x) dx = 1, 2

∞\
0

xph(x) dx < 1,(5.2.9)
sup

x
{xh(x) : x ≥ 0} <∞,(5.2.10)

h(x) > 0 for 0 < x < x0,(5.2.11)where p > 1 and x0 > 0.Now, we will 
onsider a generalized version of (5.2.8) in the spa
e Msig(R+) of allsigned measures on R+. Set(5.2.12) D := {µ ∈ M1 : m1(µ) = 1}, where m1(µ) =

∞\
0

xµ(dx).We study the asymptoti
 behaviour of solutions of the equation(5.2.13) dψ

dt
+ ψ = Pψ for t ≥ 0with the initial 
ondition(5.2.14) ψ(0) = ψ0,where P : D → D is a nonlinear operator on measures analogous to (5.2.7) and ψ0 ∈ D.In order to de�ne pre
isely P we will introdu
e several notations.Re
all that the 
onvolution of measures µ, ν ∈ Msig is a unique measure µ∗ν satisfying(5.2.15) (µ ∗ ν)(A) :=

\
R+

\
R+

1A(x+ y)µ(dx) ν(dy) for A ∈ BX .It is easy to verify that(5.2.16) 〈f, µ ∗ ν〉 =
\

R+

\
R+

f(x+ y)µ(dx) ν(dy),for every Borel measurable f : R+ → R su
h that (x, y) 7→ f(x + y) is integrable withrespe
t to the produ
t of the measures |µ| and |ν|. For every n ∈ N we de�ne the
onvolution operator of order n, P∗n : Msig → Msig, by the formula(5.2.17) P∗1 µ := µ, P∗(n+1) µ := µ ∗ P∗n µ for µ ∈ Msig.Remark 5.2.1. Observe that P∗n is not the nth power of P∗1 but P∗nµ is the nth
onvolution power of µ.It is easy to verify that P∗n(M1) ⊂ M1 for every n ∈ N. Moreover, P∗n|M1
has asimple probabilisti
 interpretation. Namely, if ξ1, . . . , ξn are independent random vari-ables with the same distribution µ, then P∗nµ is the distribution of ξ1 + . . .+ ξn.Another 
lass of operators we are going to study is related to multipli
ation of randomvariables (see [22, p. 302℄). The formal de�nition is as follows. Given µ, ν ∈ Msig, wede�ne their elementary produ
t µ ◦ ν by(5.2.18) (µ ◦ ν)(A) :=

\
R+

\
R+

1A(xy)µ(dx) ν(dy) for A ∈ BR+
.
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h�Rubinstein maximum prin
iple 33It follows that(5.2.19) 〈f, µ ◦ ν〉 =
\

R+

\
R+

f(xy)µ(dx) ν(dy)for every Borel measurable f : R+ → R su
h that (x, y) 7→ f(xy) is integrable withrespe
t to the produ
t of |µ| and |ν|. For �xed ϕ ∈ M1 we de�ne a linear operator
Pϕ : Msig → Msig by(5.2.20) Pϕ µ := ϕ ◦ µ for µ ∈ Msig.Again, as in the 
ase of 
onvolution, Pϕ(M1) ⊂ M1. For µ ∈ M1 the measure Pϕ µ hasan immediate probabilisti
 interpretation. If ϕ and µ are the distributions of randomvariables ξ and η respe
tively, then Pϕ µ is the distribution of the produ
t ξη.Now we return to equation (5.2.13) and give a pre
ise de�nition of P :(5.2.21) P := Pϕ P∗2,where ϕ ∈ M1 and m1(ϕ) = 1/2. From (5.2.21) it follows that P (M1) ⊂ M1. Furtherusing (5.2.17) and (5.2.20) it is easy to verify that for µ ∈ D,(5.2.22) m1(P∗2µ) = 2 and m1(Pϕµ) = 1/2.Remark 5.2.2. Evidently every �xed point of the operator P is a stationary solution ofequation (5.2.13).We will show that if equation (5.2.13) has a stationary measure u∗ su
h that supp u∗
= R+ (that is, u∗(B(x, ε)) > 0 for every ε > 0 and x ≥ 0), then this measure isasymptoti
ally stable.A similar problem for (5.2.1) was studied by A. Lasota and J. Traple (see [26, Theorem3.3℄). The positivity of u∗ plays an important role in the proof of the stability. Namely, itallows one to apply the maximum and invarian
e prin
iple to show that the Hut
hinsondistan
e between u∗ and an arbitrary solution u de
reases in time. We start with twosimple lemmas 
on
erning the support of Pµ.Lemma 5.2.1. Assume that ϕ ∈ M1 satis�es

ϕ 6= δ1/2,(5.2.23)
m1(ϕ) = 1/2.(5.2.24)Then there exists β > 1 su
h thatif v ∈ D and supp v ⊃ (a, b), then suppPv ⊃ (β a, β b).Proof. First we re
all a well-known property of the support of 
onvolution of measures.If v ∈ D satis�es supp v ⊃ (a, b) then the support of P∗2 v = v ∗ v 
ontains the interval

(2a, 2b). In fa
t, �x c ∈ (2a, 2b) and 
hoose x, y ∈ (a, b) su
h that c = x + y. Let ε > 0.An elementary 
al
ulation show that(5.2.25) P∗2 v((c− ε, c+ ε)) ≥ v((x− ε/2, x+ ε/2))v((y − ε/2, y + ε/2)) > 0,and 
onsequently c ∈ suppP∗2 v.From (5.2.23) and (5.2.24), it follows immediately that there exists β > 1 su
h that(5.2.26) ϕ((β/2 − ε, β/2 + ε)) > 0 for ε > 0.
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kiFix z ∈ (βa, βb) and ε > 0. Setting x = 2z/β we 
an 
hoose positive numbers ε1 < xand ε2 < β/2 su
h that(5.2.27) ε1 β/2 + xε2 + ε1 ε2 < ε.Now using (5.2.25) and (5.2.26) we obtain(5.2.28) Pv((z − ε, z + ε)) ≥ ϕ((β/2 − ε2, β/2 + ε2))P∗2 v((x− ε1, x+ ε1)) > 0.This �nally gives Pv((z − ε, z + ε)) > 0, whi
h shows that z ∈ suppPv and 
ompletesthe proof.The following result may be proved in mu
h the same way as Lemma 5.2.1.Lemma 5.2.2. Assume that there is σ0 > 0 su
h that (0, σ0) ⊂ suppϕ. Then for every
v ∈ M there exists σ > 0 su
h that(5.2.29) suppPv ⊃ (0, σ) whenever v 6= δ0.Proof. Fix v ∈ M and assume that v 6= δ0. Then there exists x1 > 0 su
h that x1 ∈

suppP∗2 v. Set σ = x1 σ0. Fix z ∈ (0, σ) and ε > 0. Now we may repeat the 
onstru
tionused in the proof of Lemma 5.2.1. Let x2 = z/x1 and(5.2.30) ε1 x2 + ε2 x1 + ε1 ε2 < ε,where ε1, ε2 > 0 with ε1 < x1 and ε2 < x2. Then(5.2.31) Pv((z − ε, z + ε)) ≥ ϕ((x2 − ε2, x2 + ε2))P∗2 v((x1 − ε1, x1 + ε1)) > 0.Consequently, z ∈ suppPv, whi
h �nishes the proof.We are in a position to formulate the following theorem.Theorem 5.2.1. Let ϕ be a probability measure and let m1(ϕ) = 1/2. Assume that :(i) There is σ0 > 0 su
h that(5.2.32) (0, σ0) ⊂ suppϕ.(ii) The operator P has a �xed point v ∈ M su
h that v 6= δ0.Then(5.2.33) supp v = R+.Proof. From Lemmas 5.2.2 and 5.2.1 it follows that supp v ⊃ (0, βnσ) for n ∈ N. Sin
e
β > 1, this 
ompletes the proof.Remark 5.2.3. If ϕ ∈ M1 and m1(ϕ) = 1/2, then the operator P given by (5.2.21) isnonexpansive on D with respe
t to the Hut
hinson norm, i.e.(5.2.34) ‖Pv − P w‖H ≤ ‖v − w‖H for v, w ∈ D.In fa
t, using the 
onditions m1(ϕ) = 1/2, m1(v + w) = 2 it is easy to show that thefun
tion f̃ : R+ → R given by

f̃(x) =
\

R+

\
R+

f((x+ y)z)ϕ(dz) (w(dy) + v(dy)) for x ∈ R+
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 35belongs to H for f ∈ H. Furthermore,
〈f, Pv − Pw〉 = 〈f̃ , v − w〉 for f ∈ H, v, w ∈ D.Finally

‖Pv − Pw‖H = sup{|〈f, Pv − Pw〉| : f ∈ H} ≤ sup{|〈g, v − w〉| : g ∈ H} = ‖v − w‖H.Now we are ready to state the main theorem of this 
hapter.Theorem 5.2.2. Let ϕ be a probability measure with m1(ϕ) = 1/2 and let 0 be ana

umulation point of suppϕ. Further let v, w ∈ D be su
h that v 6= w and(5.2.35) supp(v + w) = R+.Then inequality (5.2.34) is stri
t , i.e.(5.2.36) ‖Pv − Pw‖H < ‖v − w‖H.Proof. Suppose not. Then there exist two di�erent measures v, w ∈ D su
h that
supp(v + w) = R+ and(5.2.37) ‖Pv − Pw‖H = ‖v − w‖H.By Theorem 3.2.1 applied to the measure Pv − Pw there exists f0 ∈ H su
h that(5.2.38) ‖Pv − Pw‖H = 〈f0, Pv − Pw〉.Using the last equality and (5.2.37) we obtain
‖v − w‖H = 〈f0, Pv〉 − 〈f0, Pw〉

=
\

R+

\
R+

\
R+

f0((x+ y)z)ϕ(dz) v(dx) v(dy) −
\

R+

\
R+

\
R+

f0((x+ y)z)ϕ(dz)w(dx)w(dy).This may be rewritten in the form(5.2.39) ‖v − w‖H =
\

R+

\
R+

g(x+ y) (v(dy) + w(dy)) (v(dx) − w(dx)).where
g(r) =

\
R+

f0(rz)ϕ(dz) for r ∈ R+.Introdu
ing the fun
tion f1 : R+ → R by the formula(5.2.40) f1(x) =
\

R+

\
R+

f0((x+ y)z)ϕ(dz)(v(dy) + w(dy)) for x ∈ R+,it is easy to verify that(5.2.41) ‖v − w‖H = 〈f1, v − w〉.The fun
tion f1 is again an element of H. By the maximum prin
iple applied to theequality (5.2.41) there exist x1, x2 ∈ R+, x1 < x2 and 
onstants θ, σ (θ2 = 1) su
h that
f1(x) = θx+ σ for x ∈ (x1, x2).It follows that

|f1(x1 + ε) − f1(x1)| = ε for ε ∈ (0, x2 − x1).
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kiRepla
ing f0 by −f0 if ne
essary we may assume that(5.2.42) f1(x1 + ε) − f1(x1) = ε.Now we are going to show that(5.2.43) f0(x) = x+ c for x ∈ R+,where c ∈ R. Observe that f0 ∈ H and so to prove (5.2.43) it su�
es to show that
f0(u2) − f0(u1) ≥ u2 − u1 for 0 ≤ u1 < u2.To prove this let u1, u2 ∈ R+ with u1 < u2 and suppose that(5.2.44) f0(u2) − f0(u1) < u2 − u1.Hen
e, we 
an �nd a point ū ∈ (u1, u2) su
h that the upper right Dini derivative (see [35,p. 9℄) of f0 at ū satis�es(5.2.45) D+f0(ū) < 1.A

ording to the de�nition of the Dini derivative there is a δ0 > 0 su
h that(5.2.46) f0(ū+ δ) − f0(ū)

δ
< 1 for δ ∈ (0, δ0).Now 
onsider the fun
tion

(5.2.47) h(y, z, ε)

=
f0((x1 + ε+ y)z) − f0((x1 + y)z)

ε z
for (y, z, ε) ∈ R+ × (0,∞) × (0,∞).By (5.2.42) and the de�nition of f1 for all ε ∈ (0, x2 − x1) we have(5.2.48) 1 =

f1(x1 + ε) − f1(x1)

ε
=
\

R+

\
R+

h(y, z, ε)z ϕ(dz) (v(dy) + w(dy)).Let A×B ∈ BR+×R+
. We de�ne a measure q on BR+×R+

by the formula
q(A×B) =

\\
A×B

z ϕ(dz) (v(dy) + w(dy)).Evidently q is a probability measure. Sin
e 0 is an a

umulation point of suppϕ, there is a
z̄ ∈ suppϕ su
h that x1z̄ < ū. On the other hand, by (5.2.35) there exists ȳ ∈ supp(v+w)su
h that

ū− x1 z̄ = ȳ z̄.Finally, observe that for every ε̄ ∈ (0, x2 − x1) su
h that ε̄ z̄ ≤ δ0 we have
h(ȳ, z̄, ε̄) < 1.From this and 
ontinuity of h it follows that there are two 
losed balls B(ȳ, rȳ) and

B(z̄, rz̄) su
h that for (y, z) ∈ B(ȳ, rȳ) ×B(z̄, rz̄) we obtain(5.2.49) h(y, z, ε̄) < 1.Moreover, it is easy to see that q(B(ȳ, rȳ) ×B(z̄, rz̄)) > 0. Consequently,\
R+

\
R+

h(y, z, ε̄) q(dy, dz) < 1.
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iple 37This 
ontradi
ts (5.2.48). Therefore f0(x) = x + c for x ∈ R+, where c is a 
onstant.Sin
e Pv and Pw belong to D we have 〈f0, Pv − Pw〉 = 0. A

ording to (5.2.37) thisimplies v = w, whi
h is a 
ontradi
tion.We �nish this 
hapter with a new su�
ient 
ondition for the asymptoti
 stability ofsolutions of a generalized version of the Tjon�Wu equation of the form (5.2.13). We showthat this equation may by 
onsidered in a 
onvex 
losed subset of a ve
tor spa
e of signedmeasures. This approa
h seems to be quite natural and it is related to the 
lassi
al results
on
erning semigroups and di�erential equations on 
onvex subsets of Bana
h spa
es (see[4, 5℄).Before formulating the main result we re
all some known results 
on
erning existen
eand uniqueness of solutions of ordinary di�erential equations in Bana
h spa
es.Let (E, ‖ · ‖) be a Bana
h spa
e and let D̃ be a 
losed, 
onvex, nonempty subset of E.In the spa
e E we 
onsider an evolutionary di�erential equation(5.2.50) du

dt
= −u+ P̃ u for t ∈ R+with the initial 
ondition(5.2.51) u(0) = u0, u0 ∈ D̃,where P̃ : D̃ → D̃ is a given operator.A fun
tion u : R+ → E is 
alled a solution of problem (5.2.50), (5.2.51) if it is stronglydi�erentiable on R+, u(t) ∈ D̃ for all t ∈ R+ and u satis�es relations (5.2.50), (5.2.51).We start from the following theorem whi
h is usually stated in the 
ase E = D̃.Theorem 5.2.3. Assume that the operator P̃ : D̃ → D̃ satis�es the Lips
hitz 
ondition(5.2.52) ‖P̃ v − P̃w‖ ≤ l ‖v − w‖ for u,w ∈ D̃,where l is a nonnegative 
onstant. Then for every u0 ∈ D̃ there exists a unique solution

u of problem (5.2.50), (5.2.51).The standard proof of Theorem 5.2.3 is based on the fa
t that a fun
tion u : R+ → D̃is a solution of (5.2.50), (5.2.51) i� it is 
ontinuous and satis�es the integral equation(5.2.53) u(t) = e−t u0 +

t\
0

e−(t−s)P̃ u(s) ds for t ∈ R+.By 
ompleteness of D̃ the integral on the right hand side is well de�ned and equation(5.2.53) may be solved by the method of su

essive approximations.Observe that thanks to the properties of D̃ for every u0 ∈ D̃ and every 
ontinuousfun
tion u : R+ → D̃ the right hand side of (5.2.53) is also a fun
tion with values in D̃.The solutions of (5.2.53) generate a semigroup of operators (P̃ t)t≥0 on D̃ given by(5.2.54) P̃ t u0 = u(t) for t ∈ R+, u0 ∈ D̃.Now we are going to apply Theorem 5.2.3 to problem (5.2.13), (5.2.14).We start with the following observations:1. From (5.2.12) it follows immediately that D is a 
onvex subset of Msig,1.
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ki2. It is known that D with the Hut
hinson metri
 is a 
omplete metri
 spa
e (see [22,Theorem 2.1℄).3. If ϕ ∈ M1 and m1(ϕ) = 1/2, then the operator P maps the set D into itself.Note that the last 
ondition 
orresponds to the 
ondition (5.2.9) in the model ofLasota�Traple (see [26, Theorem 1.1℄). In the 
lassi
al Tjon�Wu equation ϕ has thedensity distribution fun
tion of the form 1[0,1].We may summarize this dis
ussion with the followingCorollary 5.2.1. If ϕ ∈ M1 and m1(ϕ) = 1/2 then for every ψ0 ∈ D there exists aunique solution u of problem (5.2.13), (5.2.14).Denote by (P t)t≥0 the unique semigroup on D 
orresponding to (5.2.13), (5.2.14).We have the following result 
on
erning the asymptoti
 stability of (P t)t≥0.Theorem 5.2.4. Let P be an operator given by (5.2.21). Moreover , let ϕ be a probabilitymeasure with m1(ϕ) = 1/2 and let 0 be an a

umulation point of suppϕ. If P has a �xedpoint ψ∗ ∈ D su
h that(5.2.55) suppψ∗ = R+,then(5.2.56) lim
t→∞

‖ψ(t) − ψ∗‖H = 0for every 
ompa
t solution ψ of (5.2.13), (5.2.14).Proof. First we show that (P t)t≥0 is nonexpansive on D with respe
t to the Hut
hinsonmetri
. In fa
t, let η0, ϑ0 ∈ D. For t ∈ R+ de�ne υ(t) = P t η0−P t ϑ0. Condition (5.2.53)implies that
υ(t) = e−tυ(0) +

t\
0

e−(t−s)(P (P sη0) − P (P sϑ0)) ds for t ∈ R+.From this and (5.2.34), it follows immediately that
‖υ(t)‖H ≤ e−t ‖υ(0)‖H +

t\
0

e−(t−s) ‖υ(s)‖H ds for t ∈ R+.This may be rewritten in the form
f(t) ≤ ‖υ(0)‖H +

t\
0

f(s) ds for t ∈ R+,where f(t) = et ‖υ(t)‖H. From the Gronwall inequality it follows that
f(t) ≤ et‖υ(0)‖H.This is equivalent to the fa
t that (P t)t≥0 is nonexpansive on D with respe
t to theHut
hinson metri
. Furthermore, from Theorem 5.2.2 we have

‖P tη0 − ψ∗‖H < e−t‖η0 − ψ∗‖H +

t\
0

e−(t−s)‖P sη0 − ψ∗‖H ds for η0 ∈ D and t > 0.
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h�Rubinstein maximum prin
iple 39Consequently, from the nonexpansiveness of (P t)t≥0 we obtain
‖P tη0−ψ∗‖H < e−t‖η0−ψ∗‖H+(1−e−t)‖η0−ψ∗‖H = ‖η0−ψ∗‖H for η0 ∈ D and t > 0.An appli
ation of Theorem 5.1.2 
ompletes the proof.Remark 5.2.4. By virtue of Theorem 5.2.1 assumption (5.2.55) 
an be repla
ed by themore e�e
tive 
ondition (5.2.32). Observe that in the 
ase of the 
lassi
al Tjon�Wuequation (5.2.1) the measure ϕ is absolutely 
ontinuous with density 1[0,1]. Moreover,
u∗(t, x) := exp(−x) is the density fun
tion of the stationary solution of (5.2.1). This is asimple illustration of the situation des
ribed by Theorems 5.2.1 and 5.2.4.For a general model in
luding (5.2.13) existen
e of a stationary solution has beenstudied in [22℄.Remark 5.2.5. It is interesting to note that if there exists a 
onstant r > 1 su
h that(5.2.57) 2mr(ϕ) < 1,then for every ψ0 ∈ D the solution ψ(t) = P tψ0 of (5.2.13), (5.2.14) is 
ompa
t (see [22,Theorem 4.2℄, [26, Theorem 3.3℄ and [27, Theorem 6℄).

6. Maximum prin
iples in the stability theoryof Markov semigroupsIn this last 
hapter we present new su�
ient 
onditions for the asymptoti
 stability ofMarkov�Feller operators on the spa
e of signed measures Msig. Our proofs are basedon the invarian
e prin
iple and the maximum prin
iple. We will also show appli
ationsof these 
riteria in the proofs of the asymptoti
 stability of a sto
hasti
ally perturbeddynami
al system with dis
rete time and a semigroup generated by a Poisson drivensto
hasti
 di�erential equation (see [10, Proposition 4.1℄ and [11, Theorem 3℄). Moreover,we will dis
uss the problem of the asymptoti
 stability of a Markov operator appearingin the theory of the 
ell 
y
le (see [12, Proposition 2℄, [17, Theorem 4℄ and [25, Theorem3.2℄). We use the notation of Chapter 4.6.1. Appli
ations of the Kantorovi
h�Rubinstein maximum prin
iple. In thisse
tion we study the problem of the asymptoti
 stability of semigroups asymptoti
ally
ontra
tive with respe
t to the Hut
hinson metri
 in the 
lass M1,α. In parti
ular we willdis
uss the problem of the asymptoti
 stability of lo
ally Lips
hitzian Markov semigroups.As before (X, ̺) denotes a lo
ally 
ompa
t separable metri
 spa
e.We start with a simple method of proving the Prokhorov property. It is based on thenotion of Lyapunov fun
tion and the Chebyshev inequality.A 
ontinuous V : X → [0,∞) is 
alled a Lyapunov fun
tion if(6.1.1) lim
̺(x,x0)→∞

V (x) = ∞for some x0 ∈ X. Of 
ourse this de�nition is meaningful only in the 
ase when X is anunbounded spa
e. It is evident that the validity of (6.1.1) does not depend on the 
hoi
eof x0.
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kiA family Π of probability measures on X is said to be tight if for every positive εthere exists a 
ompa
t set K su
h that(6.1.2) µ(K) ≥ 1 − ε for all µ ∈ Π.Using the Lyapunov fun
tion, it is easy to give a su�
ient 
ondition for the tightnessof traje
tories of a Markov semigroup. Again assume that T ⊂ R+ satis�es 
ondition(4.1.18).Lemma 6.1.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semigroup.Assume that there exists a Lyapunov fun
tion V su
h that(6.1.3) U t V (x) ≤ AV (x) +B for x ∈ X and t ∈ T,where A,B are nonnegative 
onstants. Then for every µ ∈ M1 the family of distributions
{P tµ}t∈T is tight.Proof. Fix ε > 0 and µ ∈ M1. By the Ulam theorem we may 
hoose a 
ompa
t set
K ⊂ X su
h that µ(K) ≥ 1 − ε/2. Set VK = supx∈K V (x). We de�ne a new measure
µ̄ by the formula µ̄(E) = µ(E ∩K), where E ∈ BX . Let Y = V −1([0, q]), where q is apositive number satisfying(6.1.4) q ≥

2

ε
(AVK +B).Using the Chebyshev inequality and the de�nition of µ̄ we have

P tµ(Y ) ≥ P tµ̄(Y ) ≥ 1 −
ε

2
−

1

q

\
X

V (x)P t µ̄(dx) = 1 −
ε

2
−

1

q

\
X

U t V (x) µ̄(dx).Now using inequality (6.1.3) we obtain
P tµ(Y ) ≥ 1 −

ε

2
−

1

q

[
A
\
X

V (x) µ̄(dx) +Bµ̄(K)
]
.From this and (6.1.4) it follows that

P tµ(Y ) ≥ 1 −
ε

2
−

1

q
[AVK +B] ≥ 1 − ε for t ∈ T.Sin
e the set Y is bounded and 
losed, it is 
ompa
t.As before let c be a �xed element of X and let ̺α

c (x) := (̺(x, c))α for x ∈ X and
α > 0.Theorem 6.1.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T su
h that for every f ∈ H the following two 
onditionsare satis�ed :

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.1.5)
|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.1.6)Moreover , assume that there exist 
onstants A,B ≥ 0 and α > 1 su
h that(6.1.7) (U t̺α

c )(x) ≤ A̺α
c (x) +B for x ∈ X and t ∈ T.Then (P t)t∈T is asymptoti
ally stable with respe
t to the Hut
hinson metri
.
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h�Rubinstein maximum prin
iple 41Proof. From Remark 4.2.1 it follows that P t(M1,α) ⊂ M1,α for t ≥ 0, and, by Theorem4.2.1, the semigroup (P t)t∈T is asymptoti
ally 
ontra
tive with respe
t to the Hut
hinsonmetri
 in the 
lass M1,α.Now we are going to verify that for every µ ∈ M1,α the traje
tory {P tµ}t∈T isrelatively 
ompa
t in M1,α. Fix µ ∈ M1,α. Let (tn) denote a sequen
e of integers su
hthat tn → ∞ and tn ∈ T for n = 1, 2, . . . .From Lemma 6.1.1 and 
ondition (6.1.7) it follows that the family of distributions
{P tnµ}n∈N is tight. So from the Prokhorov theorem (see [3, Chapter 1, �6℄) it followsimmediately that there exists a subsequen
e (P tknµ) whi
h 
onverges weakly to a measure
µ0 ∈ M1. Now we are going to show that µ0 ∈ M1,α and (P tknµ) is 
onvergent to µ0with respe
t to the Hut
hinson metri
. For given r > 0 de�ne

gr(x) =

{
̺α

c (x) for x ∈ K(c, r),

rα for x 6∈ K(c, r).Condition (6.1.7) implies that(6.1.8) 〈gr, P
tknµ〉 = 〈U tkn gr, µ〉 ≤ l, where l = A〈̺α

c , µ〉 +B.The fun
tion gr is 
ontinuous and bounded. Consequently,
lim

n→∞
〈gr, P

tknµ〉 = 〈gr, µ0〉.Sin
e r > 0 was arbitrary, the last equality and (6.1.8) imply that µ0 ∈ M1,α. So itsu�
es to verify that
lim

n→∞
‖P tknµ− µ0‖H = 0.Sin
e P tknµ and µ0 belong to M1,α, an elementary 
al
ulation shows that(6.1.9) \

X\K(c,r)

̺c(x)P
tknµ(dx) ≤

l

rα−1
and \

X\K(c,r)

̺c(x)µ0(dx) ≤
l

rα−1
.Fix ε > 0 and 
hoose r > 0 su
h that 4l

/
rα−1 ≤ ε. De�ne

△ = [−r, r] and F△,1 = {f ∈ C(X) : |f(x)| ≤ r and |f(x) − f(y)| ≤ ̺(x, y)}.On the set M1 the metri

‖µ1 − µ2‖F△,1

= sup{〈f, µ1 − µ2〉; f ∈ F△,1},is equivalent to the Fortet�Mourier metri
. For f ∈ H de�ne
fr(x) = max{min[f(x), r],−r}.Evidently fr ∈ F△,1. Furthermore for f ∈ Hc the fun
tion fr has the following properties:(a) fr(x) = f(x) for x ∈ K(r, c),(b) |f(x) − fr(x)| ≤ 2̺c(x) for x ∈ X.From this and (6.1.9), it follows immediately that

〈f, P tknµ− µ0〉 ≤ ‖P tknµ− µ0‖F△,1
+

4l

rα−1
≤ ‖P tknµ− µ0‖F△,1

+ εfor f ∈ Hc. This shows that (P tknµ) 
onverges to µ0 with respe
t to the Hut
hinsonnorm. Thus the traje
tory {P tµ}t∈T is 
ompa
t on M1,α. Therefore, a

ording to
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kiTheorem 5.1.2 the measure µ0 is a stationary point of (P t)t∈T and
lim

t→∞
‖P tµ− µ0‖H = 0 for µ ∈ M1,α.To 
omplete the proof it is su�
ient to observe that the set M1,α is dense in M1 andby (6.1.5) the Markov�Feller semigroup (P t)t∈T is nonexpansive on M1 with respe
t tothe Fortet�Mourier norm.It is not di�
ult to verify that in the 
ase of lo
ally Lips
hitzian Markov semigroups(see (4.1.19)) Theorem 6.1.1 may be repla
ed by the followingTheorem 6.1.2. Let (P t)t∈T be a lo
ally Lips
hitzian Markov semigroup on Msig andlet (U t)t∈T denote the semigroup dual to (P t)t∈T . Assume that there is t0 ∈ T su
h thatfor every f ∈ H,(6.1.10) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.Moreover , assume that there exist 
onstants A,B ≥ 0 and α > 1 su
h that(6.1.11) (Unt0̺α

c )(x) ≤ A̺α
c (x) +B for x ∈ X and n = 0, 1, 2, . . . .Then (P t)t∈T is asymptoti
ally stable with respe
t to the Hut
hinson metri
.6.2. Dis
rete time sto
hasti
ally perturbed dynami
al systems. Let (Ω,Σ, prob)be a probability spa
e, E the expe
tation on (Ω,Σ, prob) and (Y,A) a measurable spa
e.We 
onsider a dis
rete time sto
hasti
ally perturbed dynami
al system on a lo
ally 
om-pa
t separable spa
e (X, ̺) given by the re
urren
e formula(6.2.1) xn+1 = S(xn, ξn) for n = 0, 1, . . . ,where ξn : Ω → Y is a sequen
e of random elements and S : X × Y → X is a givendeterministi
 transformation. In our study of the asymptoti
 behaviour of (6.2.1) weassume that the following 
onditions are satis�ed:(i) The fun
tion S is measurable on the produ
t spa
e X × Y and for every �xed

y ∈ Y the fun
tion S(·, y) is 
ontinuous.(ii) The random elements ξ0, ξ1, . . . are independent and have the same distribution,i.e., the measure
ϕ(A) = prob(ξn ∈ A) for A ∈ Ais the same for all n.(iii) The initial value x0 : Ω → X is independent of the sequen
e (ξn).It is easy to derive a re
urren
e formula for the measures

µn(A) = prob(xn ∈ A), A ∈ B(X),
orresponding to the dynami
al system (6.2.1). Namely µn+1 = Pµn, n = 0, 1, . . . ,where the operator P : M1 → M1 is given by the formula(6.2.2) Pµ(A) =
\
X

(\
Y

1A(S(x, y))ϕ(dy)
)
µ(dx).
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 43The operator P is a Markov�Feller operator and its dual U has the form(6.2.3) Uf(x) =
\
Y

f(S(x, y))ϕ(dy) for f ∈ C(X).Now de�ne a sequen
e of fun
tions Sn by setting
S1(x, y1) = S(x, y1), Sn(x, y1, . . . , yn) = S(Sn−1(x, y1, . . . , yn−1), yn).Using this notation we have

Unf(x) =
\
Y

· · ·
\
Y

f(Sn(x, y1, . . . , yn))ϕ(dy1) · · ·ϕ(dyn).Proposition 6.2.1. Assume that the mapping S : X × Y → X and the sequen
e ofrandom elements (ξn) satisfy 
onditions (i)�(iii). Assume moreover that there is n ∈ Nsu
h that(6.2.4) E(̺(S(x, ξn), S(x, ξn)) < ̺(x, x) for x, x ∈ X, x 6= x,and there exist 
onstants α > 1 and A,B ∈ R+ su
h that(6.2.5) Un̺α
c (x) ≤ A̺α

c (x) +B, for x ∈ X, n = 0, 1, 2, . . .Then the operator P de�ned by (6.2.2) is asymptoti
ally stable with respe
t to the Hut
hin-son metri
.Proof. It is su�
ient to verify 
ondition (6.1.10). A

ording to (6.2.4), for f ∈ H and
x 6= x we have

|Uf(x) − Uf(x)| ≤
\
Y

|f(S(x, y) − f(S(x, y)|ϕ(dy)

≤
\
Y

̺(S(x, y), S(x, y))ϕ(dy) < ̺(x, x).Using Proposition 6.2.1 it is easy to obtain a few known results 
on
erning the stabilityof Markov operators.In fa
t from Proposition 6.2.1 we immediately obtain as a spe
ial 
ase the stabilitytheorem of Lasota�Ma
key (see [23, Theorem 2℄) where the 
onditions
E(|S(x, ξn) − S(z, ξn)|) < |x− z| for x, z ∈ X ⊂ Rd, x 6= zand

E(|S(x, ξn)|2) ≤ A|x|2 +B for x ∈ X ⊂ Rd,were assumed. The symbol | · | denotes an arbitrary, not ne
essarily Eu
lidean, norm in
Rd and A and B are nonnegative 
onstants with A < 1.Furthermore, in the 
ase when X is a lo
ally 
ompa
t separable metri
 spa
e, Propo-sition 6.2.1 
ontains a result of �oskot and Rudni
ki (see [29, Theorem 3℄). Namely, theyproved the asymptoti
 stability of P if

̺(S(x, y), S(x, y)) ≤ λ(y)̺(x, x) for x, x ∈ Xand
E̺c(S(c, ξ1)) <∞,where λ : Y → R+ and Eλ(ξ1) < 1.
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kiIn the spe
ial 
ase when Y = {1, . . . , N}, the sto
hasti
 dynami
al system (6.2.1)redu
es to an iterated fun
tion system
(S1, . . . , SN ; p1, . . . , pN ) where Sk(x) = S(x, k) and pk = prob(ξn = k).Now the operators (6.2.2) and (6.2.3) have the form(6.2.6) Pµ(A) =

N∑

k=1

pkµ(S−1
k (A)) and Uf(x) =

N∑

k=1

pkf(Sk(x)).We will assume the following 
onditions:
N∑

k=1

pk̺(Sk(x), Sk(x)) < ̺(x, x) for x, x ∈ X, x 6= x,(6.2.7)
̺(Sk(x), c) ≤ Lk̺(x, c) for x ∈ X, k = 1, . . . , N,(6.2.8)where c is a given point in X and the Lk are nonnegative 
onstants.In this 
ase Proposition 6.2.1 implies the following resultCorollary 6.2.1. If the IFS (S1, . . . , SN ; p1, . . . , pN ) satis�es 
onditions (6.2.7), (6.2.8)and there exists a 
onstant α > 1 su
h that(6.2.9) N∑

k=1

pkL
α
k < 1,then this system is asymptoti
ally stable.In the 
ase when there exist i, j ∈ {1, . . . , N} su
h that(6.2.10) ̺(Si(x), Si(y)) 6= ̺(Sj(x), Sj(y)) for x, y ∈ X, x 6= y,the stri
t inequality (6.2.7) may be repla
ed by(6.2.11) N∑

k=1

pk̺(Sk(x), Sk(y)) ≤ ̺(x, y).In fa
t, for every d ∈ (0, 1) the fun
tion ̺d : X ×X → R+ given by
̺d(x, y) = [̺(x, y)]dis again a metri
 on X and 
onditions (6.2.10), (6.2.11) imply

N∑

k=1

pk̺
d(Sk(x), Sk(y)) < ̺d(x, y) for x, y ∈ X, x 6= y.These observations generalize the su�
ient 
onditions of the asymptoti
 stability ofMarkov operators generated by iterated fun
tion systems given in [21, Theorem 3.2℄.6.3. Semigroups generated by Poisson driven di�erential equations. In this se
-tion we will apply Theorem 6.1.2 to the semigroup (P t)t≥0 of Markov operators generatedby a Poisson driven sto
hasti
 di�erential equation. This equation has the form(6.3.1) dξ(t) = a(ξ(t))dt+

\
Θ

σ(ξ(t), θ)Np(dt, dθ) for t ≥ 0
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 45and will be 
onsidered with the initial 
ondition(6.3.2) ξ(0) = ξ0,where {ξ(t)}t≥0 is a sto
hasti
 pro
ess with values in Rd. In the spe
ial 
ase ξ(0) = xa.s. this solution will be denoted by ξx.In order to formulate pre
ise 
onditions 
on
erning equation (6.3.1) and the formalde�nitions of the semigroup (P t)t≥0 we denote by ‖·‖, (·|·) the Eu
lidean norm and s
alarprodu
t in Rd. As before, B(Rd) denotes the spa
e of all bounded Borel measurablefun
tions de�ned on Rd, and C(Rd) the subspa
e of all bounded 
ontinuous fun
tions.Both spa
es are endowed with the supremum norm. Further C1
0 (Rd) denotes the spa
eof all fun
tions with 
ompa
t support and 
ontinuous �rst derivatives.In our study of solutions of (6.3.1), (6.3.2) we make the following assumptions:(i) The 
oe�
ient a : Rd → Rd is Lips
hitzian with Lips
hitz 
onstant la, i.e.,

‖a(x) − a(y)‖ ≤ la‖x− y‖ for x, y ∈ Rd.(ii) (Θ,G, ñ) is a �nite measure spa
e with ñ(Θ) = 1.(iii) The perturbation 
oe�
ient σ : Rd×Θ → Rd is BRd×G/BRd -measurable. Further
σ(z, ·) ∈ L2(ñ) for ea
h z ∈ Rd and there exists lσ > 0 su
h that

(6.3.3) ‖σ(x, ·) − σ(y, ·)‖L2(ñ) ≤ lσ‖x− y‖ for x, y ∈ Rd.(iv) The mapping q : Rd × Θ → Rd given by
(6.3.4) q(z, θ) = z + σ(z, θ) for z ∈ Rd, θ ∈ Θis su
h that q(z, ·) ∈ L1( ñ) for z ∈ Rd. Moreover there exists a positive 
onstant

lq su
h that
(6.3.5) |q(x, ·) − q(y, ·)|L1(ñ) ≤ lq‖x− y‖ for x, y ∈ Rd.(v) There is a probability spa
e (Ω,F , prob), a sequen
e (ti)i∈N0

of nonnegative ran-dom variables and a sequen
e (θi)i∈N of random elements with values in Θ. Thevariables ∆ti = ti − ti−1 (t0 = 0) are nonnegative, independent and identi
allydistributed with probability density fun
tion λe−λt for t ≥ 0. The elements θiare independent identi
ally distributed with distribution ñ. The sequen
es (ti)and (θi) are also independent. Under this 
ondition the mapping
Ω ∋ ω 7→ p(ω) = (ti(ω), θi(ω))i∈Nde�nes a stationary Poisson point pro
ess (see [16, Chapter I, �9℄).(vi) For every µ ∈ M1 there is an Rd-valued random ve
tor ξµ de�ned on Ω, inde-pendent of p and having the distribution µ.Condition (v) implies that for every measurable set Z ⊂ (0,∞) × Θ the variable

Np(Z) = #{i : (ti, θi) ∈ Z}is Poisson distributed. It is 
alled the Poisson random 
ounting measure.Denote by E the expe
tation on the probability spa
e (Ω,F , prob). It 
an be provedthat
E(Np((0, t] ×K)) = λtñ(K)for t ∈ (0,∞),K ∈ G.
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kiBy a solution of (6.3.1), (6.3.2) we mean a sto
hasti
 pro
ess (ξ(t))t≥0 with values in
Rd su
h that with probability one the following two 
onditions are satis�ed:(a) The sample paths are right-
ontinuous fun
tions su
h that for t > 0 the limit

ξ(t−) = lim
s→t−0

ξ(s)exists and(b)
ξ(t) = ξ0 +

t\
0

a(ξ(s))ds+

t\
0

\
Θ

σ(ξ(s−), θ)Np(ds, dθ) for t ≥ 0,where
t\
0

\
Θ

σ(ξ(s−), θ)Np(ds, dθ) =
∑

tn≤t

σ(ξ(tn−), θn) for t ≥ 0 and p = (ti, θi)i∈N,(see [16, Chapter II, �3℄). It is easy to write expli
itly the formula for the solutionof (6.3.1), (6.3.2). Denote by πt the dynami
al system de�ned by
(6.3.6) πt(x) = y(t) for t ∈ R+,where y is the solution of the ordinary di�erential equation
(6.3.7) y′(t) = a(y(t)) for t ∈ R+,with the initial 
ondition
(6.3.8) y(0) = x.Then for every �xed value of p = (ti, θi)i∈N the solution of (6.3.1), (6.3.2) is givenby

ξ(t) = πt−ti(ξ(ti)) for t ∈ [ti, ti+1), i ∈ N0,where
ξ(0) = ξ0, ξ(ti) = ξ(ti−) + σ(ξ(ti−), θi) for i ∈ N.For x ∈ Rd denote by (ξx(t))t≥0 the solution of the initial value problem (6.3.1),(6.3.2) with ξ0 = x. For every t ≥ 0 and f ∈ C(Rd) de�ne(6.3.9) U tf(x) = E(f(ξx(t))) for t ≥ 0.Remark 6.3.1. The 
lassi
al theory of equation (6.3.1) ensures that under 
onditions(i)�(vi), (ξx(t))t≥0 is a homogeneous-in-time Markov pro
ess and (U t)t≥0 is a 
ontinuoussemigroup of bounded linear operators a
ting on the spa
e C(Rd).Analogously for given µ ∈ M1 we 
an �nd a solution ξµ(t), t ≥ 0, of (6.3.1), (6.3.2)su
h that ξµ(0) has the distribution µ. For every t ≥ 0 we de�ne P tµ as the distributionof ξµ(t), i.e.,(6.3.10) P tµ(A) = prob(ξµ(t) ∈ A) for t ≥ 0, A ∈ BRd .The operators P t and U t satisfy the duality 
ondition(6.3.11) 〈f, P tµ〉 = 〈U tf, µ〉 for t ≥ 0, f ∈ C, µ ∈ M1.
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 47Using (6.3.11) the semigroup (P t)t≥0 
an be easily extended to the ve
tor spa
e
Msig. It is lo
ally Lips
hitzian and weakly 
ontinuous. Moreover, using the Phillipsperturbation theorem it is easy to �nd a formula for (U t)t≥0.In fa
t, let G0 be a linear operator given by the formula(6.3.12) G0f(x) =

\
Θ

f(q(x, θ)) ñ(dθ) for f ∈ C(Rd), x ∈ Rd,and let (T t)t≥0 be the semigroup 
orresponding to the unperturbed system (6.3.7), i.e.(6.3.13) T tf(x) = f(πt(x)) for f ∈ C(Rd), x ∈ Rd.Then (see [37, p. 170℄)(6.3.14) U tf = e−λt
∞∑

n=0

U t
nf for f ∈ C(Rd),where

U t
n+1f = λ

t\
0

T t−sG0 U
s
nf ds, n = 0, 1, . . . ,(6.3.15)

U t
0f = T tf for t ≥ 0.Many di�erent 
riteria for the asymptoti
 stability of the �ow of measures generatedby equation (6.3.1) are known. Here we mention only a few of them whi
h are relatedto our methods. J. Mal
zak (see [30, Proposition 7.1℄) studied the asymptoti
 stabilityof the �ow of the densities of the measures {P tµ}. His results were based on the lowerbound te
hnique. Using a double 
ontra
tion prin
iple A. Lasota (see [21, Proposition5.1℄) proved the asymptoti
 stability of the semigroup (P t)t≥0 a
ting on the spa
e ofsigned measures. His result were generalized by J. Traple (see [37, Theorem 7.3℄) who
onsidered the 
ase when the intensity λ of the Poisson pro
ess depends on the positionof the solution. Another generalization was given by T. Szarek (see [34, Theorem 7.8.3℄)who studied equation (6.3.1) in a Bana
h spa
e. In all these results an important rolewas played by the following two 
onditions:

‖πtx− πty‖ ≤ eγt‖x− y‖ for x, y ∈ Rd, t ≥ 0,(6.3.16)
lq < exp{−γ/λ}.(6.3.17)Using (6.3.16) and (6.3.17) it is possible to prove the asymptoti
 stability of (P t)t≥0by the invarian
e prin
iple. However, this prin
iple 
an also be useful in some 
ases wheninequality (6.3.17) is not satis�ed. We illustrate this fa
t by the followingTheorem 6.3.1. Assume that assumptions (i)�(vi) are satis�ed with a given λ > 0 and

lq = 1. Further , assume that(6.3.18) ‖πtx− πty‖ < ‖x− y‖ for x, y ∈ Rd, x 6= y and t > 0.Assume moreover that there exist 
onstants α0, β0 ∈ R su
h that(6.3.19) (a(x)|2x) + λ
\
Θ

(σ(x, θ)|x) ñ(dθ) ≤ α0‖x‖
2 + β0 for x ∈ Rd,
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kiand(6.3.20) 2α0 < −λl2σ.Then the semigroup (P t)t≥0 de�ned by (6.3.10) is asymptoti
ally stable with respe
t tothe Hut
hinson metri
.Proof. We are going show that the semigroup (U t)t≥0 satis�es the assumptions of The-orem 6.1.2. First we prove by indu
tion that for every f ∈ H,(6.3.21) |(U t
nf)(x) − (U t

nf)(y)| <
(λt)n

n!
‖x− y‖ for x, y ∈ Rd, n ∈ N ∪ {0}, t > 0.For n = 0 from (6.3.13) and (6.3.15) we obtain

|(U t
0f)(x) − (U t

0f)(y)| ≤ |f(πtx) − f(πty)|

≤ ‖πtx− πty‖ < ‖x− y‖ for x, y ∈ Rd, t > 0.Now let (6.3.21) be satis�ed for some integer n ≥ 0. From (6.3.12), (6.3.13) and (6.3.15)it follows immediately that
|(G0U

s
n f)(x) − (G0U

s
nf)(y)| ≤

\
Θ

|(Us
nf)(q(x, θ))− (Us

nf)(q(y, θ))| ñ(dθ)

<
(λs)n

n!

\
Θ

‖q(x, θ) − q(y, θ)‖ ñ(dθ)

≤
(λs)n

n!
‖x− y‖ for x, y ∈ Rd and s ∈ (0, t].For s ∈ (0, t] and f ∈ H we also have

T t−sG0U
s
nf(x) − T t−sG0U

s
nf(y)| <

(λs)n

n!
‖x− y‖ for x, y ∈ Rd.This and (6.3.15) 
omplete the indu
tion argument.From (6.3.14) and (6.3.21) we obtain(6.3.22) |U tf(x) − U tf(y)| < ‖x− y‖, x, y ∈ Rd, f ∈ H.Therefore 
ondition (6.1.10) of Theorem 6.1.2 is satis�ed.To prove (6.1.11) 
onsider the fun
tion V (x) = ‖x‖2. Following the proof of Theorem3 in [14℄ (see p. 236) it is easy to dedu
e that for every t > 0 there exists a 
onstant ktsu
h that

E‖ξx(s)‖2 ≤ ekt sV (x) + 1 for x ∈ Rd and s ≤ t.The last inequality may be rewritten in the form
UsV (x) ≤ ekt sV (x) + 1 for x ∈ Rd and s ≤ t.(6.3.23)Hen
e, the mapping t 7→ U tV (x) is lo
ally bounded for all x ∈ Rd.Now for the semigroup (U t)t≥0 we 
an write the formula(6.3.24) U tf(x) = f(x) +

t\
0

UsAUf(x) ds for x ∈ Rd, f ∈ C1(Rd)
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ations of the Kantorovi
h�Rubinstein maximum prin
iple 49using its in�nitesimal operator(6.3.25) AUf(x) = (a(x)|fx(x)) − λf(x) + λ
\
Θ

f(x+ σ(x, θ)) ñ(dθ).Consequently,(6.3.26) U tV (x) = V (x) +

t\
0

Us ψ(x) ds for x ∈ Rd,where(6.3.27) ψ(x) = (a(x)|2x) + λ
\
Θ

(‖x+ σ(x, θ)‖2 − ‖x‖2) ñ(dθ).By (6.3.20) there exists a 
onstant c > 0 su
h that(6.3.28) α = 2α0 + λl2σ + λclσ‖σ(0, ·)‖L2(ñ) < 0.Now, we will verify that(6.3.29) ψ(x) ≤ αV (x) + β for x ∈ Rd,where
β = λ(1 + 1/c)(1 + ‖σ(0, ·)‖L2(ñ)) + λclσ + β0.In fa
t, by the de�nition of ψ for every x ∈ Rd we have

ψ(x) = 2
(
(a(x)|x) + λ

\
Θ

(σ(x, θ)|x) ñ(dθ)
)

+ λ
\
Θ

‖σ(x, θ)‖2 ñ(dθ).(6.3.30)Further, from inequality (6.3.3) it follows immediately that\
Θ

‖σ(x, θ)‖2 ñ(dθ) ≤ lσ‖x‖ + 2
\
Θ

‖σ(0, θ)‖ ‖σ(x, θ)− σ(0, θ)‖ ñ(dθ)

+
\
Θ

‖σ(0, θ)‖2 ñ(dθ) for x ∈ Rd.Sin
e b ≤ c
2 · b2 + 1

2c for every b ∈ R, the last inequality implies that\
Θ

‖σ(x, θ)‖2 ñ(dθ)

≤ (l2σ + clσ‖σ(0, ·)‖L2(ñ))‖x‖
2 + ((1 + 1/c)(1 + ‖σ(0, ·)‖L2(ñ)) + clσ)This inequality and 
onditions (6.3.19), (6.3.30) imply (6.3.29).Now using (6.3.26) and (6.3.29) we obtain the inequality(6.3.31) d

dt
U t V (x) ≤ αU t V (x) + β.From (6.3.31) we 
on
lude that(6.3.32) U t V (x) ≤ V (x)eαt +

β

α
(eαt − 1) for x ∈ R, t ≥ 0.Sin
e α < 0, this implies (6.1.11) with c = 0 and ̺2

0(x) = V (x). Thus by Theorem 6.1.2the semigroup (P t)t≥0 is asymptoti
ally stable.
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ki6.4. Appli
ations of the maximum prin
iple for the Fortet�Mourier metri
.Again let (X, ̺) be a lo
ally 
ompa
t separable spa
e. The relationship between themaximum prin
iple for the Fortet�Mourier metri
 and the stability theory of the Markov�Feller semigroups is given in the followingTheorem 6.4.1. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T su
h that for every f ∈ F :(i)
|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.4.1)

|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.4.2)(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists t1 ∈ T that
(6.4.3) dist(supp(P t1(µ1 − µ2))+

, supp(P t1(µ1 − µ2))−) < 2.(iii) There exists a Lyapunov fun
tion V su
h that
(6.4.4) U t V (x) ≤ AV (x) +B for x ∈ X and t ∈ T,where A,B are nonnegative 
onstants.Then (P t)t∈T is asymptoti
ally stable with respe
t to the Fortet�Mourier metri
.Proof. From (6.4.1), it follows immediately that U t(F) ⊂ F for t ∈ T and, by Theorem4.3.1, the semigroup (P t)t∈T is asymptoti
ally 
ontra
tive with respe
t to the Fortet�Mourier metri
 in the 
lass M1.To 
omplete the proof it is su�
ient to verify that for every µ ∈ M1 the traje
tory
{P tµ}t≥0 is 
ompa
t with respe
t to the Fortet�Mourier metri
. Let (tn) be a sequen
eof numbers su
h that tn → ∞ and tn ∈ T for n ∈ N. From Lemma 6.1.1 and 
on-dition (6.4.4) it follows that the family of distributions {P tnµ}n∈N is tight. From theProkhorov theorem it follows immediately that there exists a subsequen
e (P tknµ)n∈Nwhi
h 
onverges weakly to a measure µ0 ∈ M1.We have veri�ed that (P t)t≥0 is asymptoti
ally 
ontra
tive with respe
t to the Fortet�Mourier metri
 in the 
lass M1 and that the orbits are 
ompa
t. A

ording to theinvarian
e prin
iple the semigroup (P t)t≥0 is asymptoti
ally stable.For lo
ally Lips
hitzian Markov semigroups the following version of Theorem 6.4.1
an be proved similarly:Theorem 6.4.2. Let (P t)t∈T be a lo
ally Lips
hitzian Markov semigroup on Msig andlet (U t)t∈T denote the semigroup dual to (P t)t∈T . Assume that :(i) There exists t0 ∈ T su
h that for every f ∈ F ,
(6.4.5) |U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) For every µ1, µ2 ∈ M1, µ1 6= µ2, there exists n0 ∈ N su
h that
(6.4.6) dist(supp(Pn0t0(µ1 − µ2))+

, supp(Pn0t0(µ1 − µ2))−) < 2.
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h�Rubinstein maximum prin
iple 51(iii) There exists a Lyapunov fun
tion V su
h that
(6.4.7) Unt0 V (x) ≤ AV (x) +B for x ∈ X, n ≥ 0,where A,B are nonnegative 
onstants.Then (P t)t∈T is asymptoti
ally stable with respe
t to the Fortet�Mourier metri
.We 
omplete this series of su�
ient 
onditions for the asymptoti
 stability of Markovsemigroups with the followingTheorem 6.4.3. Let (P t)t∈T be a Markov�Feller semigroup and (U t)t∈T its dual semi-group. Assume that there is t0 ∈ T su
h that for every f ∈ F :(i)

|U tf(x) − U tf(y)| ≤ ̺(x, y) for x, y ∈ X and t ∈ T,(6.4.8)
|U t0f(x) − U t0f(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(6.4.9)(ii) There exist 
onstants t0, t1, t2 ∈ T su
h that for every f ∈ F either

U t0+t1f(x) ∈ (−1, 1] for x ∈ Xor
U t0+t2f(x) ∈ [−1, 1) for x ∈ X.(iii) There exists a Lyapunov fun
tion V su
h that

(6.4.10) U t V (x) ≤ AV (x) +B for x ∈ X, t ∈ T,where A,B are nonnegative 
onstants.Then (P t)t∈T is asymptoti
ally stable with respe
t to the Fortet�Mourier metri
.Proof. Again the proof is similar to that of Theorem 6.4.1. In this 
ase we 
an useTheorem 4.3.2 to verify that the semigroup (P t)t∈T is asymptoti
ally 
ontra
tive withrespe
t to the Fortet�Mourier metri
 in the 
lass M1.As a 
onsequen
e of Proposition 4.3.1 and Theorem 6.4.3 we obtain the followingCorollary 6.4.1. Let P : Msig → Msig be a Markov�Feller operator and let U be itsdual. Assume that :(i) For every f ∈ F ,
(6.4.11) |Uf(x) − Uf(y)| < ̺(x, y) for x, y ∈ X, x 6= y.(ii) The transition π : X×BX → [0, 1] 
orresponding to P , given by (4.1.10), satis�es
(6.4.12) supp π(x, ·) = X for x ∈ X.(iii) There exists a Lyapunov fun
tion V su
h that
(6.4.13) Un V (x) ≤ AV (x) +B for x ∈ X, n ≥ 0,where A,B are nonnegative 
onstants.Then (Pn)n∈N is asymptoti
ally stable with respe
t to the Fortet�Mourier metri
.
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ki6.5. Appli
ations in a mathemati
al model of the 
ell 
y
le. In order to illustratethe utility of Theorem 6.4.3 we show a su�
ient 
ondition for the asymptoti
 stabilityof a spe
ial Markov operator introdu
ed by A. Lasota and M. C. Ma
key in the theorydes
ribing the division and stability of 
ellular populations (see [25, Theorem 3.2℄). Again,let (X, ̺) be a lo
ally 
ompa
t separable metri
 spa
e. Further, let (I, κ) be anothermetri
 spa
e, whi
h will be 
onsidered as the spa
e of indi
es. We 
onsider a 
ontinuoustransformation
S : X × I → Xand a fun
tion

F : X × BI → [0, 1].where BI denotes the σ-algebra of Borel subsets of I. We assume that:(1) For every x ∈ X the mapping F (x, ·) : BI → [0, 1] is a probability measure.(2) For every A ∈ BI the fun
tion F (·, A) : X → X is measurable.Now we present an impre
ise des
ription of the pro
ess 
onsidered in this example.Choose an arbitrary point x0 ∈ X and randomly sele
t a point i0 ∈ I a

ording tothe distribution F (x0, ·). When the point t0 is drawn we de�ne x1 = S(x0, i0). Having
x1 we sele
t i1 ∈ I a

ording to the distribution F (x1, ·) and we de�ne x2 = S(x1, i1) andso on. Denoting by µn, n = 0, 1, . . . , the distribution of xn, i.e. µn(A) = prob(xn ∈ A),we de�ne P as the transition operator su
h that µn+1 = Pµn.The above pro
edure 
an be easily formalized. To do this �x x ∈ X and set µ0 = δx.A

ording to the des
ription of our pro
ess and from the de�nition of the dual operator
U we have

Uf(x) = 〈Uf, δx〉 = 〈f, P δx〉 = 〈f, µ1〉 for f ∈ B(X).This means that Uf(x) is the expe
tation of f(x1) if x0 = x is �xed. On the other hand,a

ording to our des
ription, the expe
tation of f(x1) is equal to\
I

f(S(x, i))F (x, di).Sin
e x was arbitrary this implies(6.5.1) Uf(x) =
\
I

f(S(x, i))F (x, di) for x ∈ X.We admit formula (6.5.1) as the pre
ise formal de�nition of the operator U . It is easyto verify that the operator given by (6.5.1) satis�es 
onditions (4.1.5) and (4.1.7). Thuswe 
an de�ne P to be the Markov operator 
orresponding to U . It is the unique operatorsatisfying(6.5.2) 〈f, Pµ〉 = 〈Uf, µ〉.The transition fun
tion π : X × BX → [0, 1] 
orresponding to P is de�ned by(6.5.3) π(x,A) = Pδx(A) =
\
I

1A(S(x, i))F (x, di) for (x,A) ∈ X × BX .To formulate su�
ient 
onditions of the asymptoti
 stability of P we introdu
e thefollowing notations.



Appli
ations of the Kantorovi
h�Rubinstein maximum prin
iple 53Consider the 
lass Φ of fun
tions ϕ : [0,∞) → [0,∞) satisfying the following three
onditions:(a) ϕ is 
ontinuous and ϕ(0) = 0;(b) ϕ is nonde
reasing and 
on
ave;(
) ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.We denote by Φ0 the family of fun
tions satisfying 
onditions (a), (b).An important role in the study of the asymptoti
 behaviour of Markov operator P isplayed by the inequality(6.5.4) ω(t) + ϕ(r(t)) ≤ ϕ(t) for t ≥ 0,where r, ω ∈ Φ0 are given fun
tions. In [28, pp. 58�60℄ Lasota and Yorke dis
ussed the
ases when the fun
tional inequality (6.5.4) has a solution belonging to Φ.We are not going to re
all all these results. However, it is worthwhile to note that ifthe fun
tion ω satis�es the Dini 
ondition:
ε\
0

ω(t)

t
dt <∞ for some ε > 0and r(t) = λt (0 ≤ λ < 1) then (6.5.4) has a solution ϕ ∈ Φ.Finally, denote by ‖ · ‖T the total variation norm in the spa
e Msig(I). Following [24,Subse
tion 12.2℄, if {A1, . . . , An} is a measurable partition of X, that is,

X =
n⋃

i=1

Ai, Ai ∩Aj = ∅ for i 6= j, Ai ∈ BX ,then for µ ∈ Msig we set(6.5.5) ‖µ‖T = sup
{ n∑

i=1

|µ(Ai)|
}
,where the supremum is taken over all possible measurable partitions of X (with arbi-trary n). In the spe
ial 
ase where µ ∈ M1 we have ‖µ‖T = 1. The value ‖µ‖T is 
alledthe total variation norm of the measure µ, and the 
onvergen
e with respe
t to this normis 
alled the strong 
onvergen
e of measures.Theorem 6.5.1. Let ω, r ∈ Φ0 and let 0 ≤ r(x) < x. Assume that the fun
tionalinequality (6.5.4) has a solution in the 
lass Φ. Moreover , assume that :\

I

̺(S(x, i), S(y, i))F (x, di) ≤ r(̺(x, y)) for x, y ∈ X,(6.5.6)
‖F (x, ·) − F (y, ·)‖T ≤ ω(̺(x, y)) for x, y ∈ X,(6.5.7)

sup
x∈X

\
I

̺(x0, S(x0, i)) F (x, di) <∞(6.5.8)for some x0 ∈ X and(6.5.9) supp π(x, ·) = X for x ∈ X,where π is the transition fun
tion given by (6.5.3). Then the operator P given by (6.5.1)and (6.5.2) is asymptoti
ally stable with respe
t to the Fortet�Mourier metri
.
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kiProof. Consider a solution ϕ̃ ∈ Φ of (6.5.4) 
orresponding to the pair (ω, r). Sin
e r(t) < tthe fun
tion ϕ(t) = ϕ̃(t) + t satis�es(6.5.10) ω(t) + ϕ(r(t)) < ϕ(t) for t ≥ 0.Now using properties (a)�(
) it is easy to verify that the fun
tion ̺ϕ given by the formula(6.5.11) ̺ϕ(x, y) = ϕ(̺(x, y)) for x, y ∈ Xis again a metri
 on X. Denote by ‖ · ‖ϕ the Fortet�Mourier norm generated by ̺ϕ, i.e.
‖µ‖Fϕ

= sup{|〈f, µ〉| : f ∈ Fϕ} for µ ∈ Msig,where Fϕ ⊂ C(X) is the set of all f su
h that |f | ≤ 1 and
|f(x) − f(y)| ≤ ̺ϕ(x, y) for x, y ∈ X.Now �x f ∈ Fϕ. We are going to show that Uf is a 
ontra
tive fun
tion with respe
tto the metri
 ̺ϕ. Using (6.5.1), (6.5.7) and the 
ontinuity of S it is easy to verify that

Uf ∈ C(X) and that |Uf | ≤ 1. Moreover for x, y ∈ X, x 6= y we have
|Uf(x) − Uf(y)| =

∣∣∣
\
I

f(S(x, i))F (x, di)−
\
I

f(S(y, i))F (y, di)
∣∣∣

≤ ‖F (x, ·) − F (y, ·)‖T +
\
I

|f(S(x, i)) − f(S(y, i))|F (x, di).From this and (i) it follows that
|Uf(x) − Uf(y)| ≤ ω(̺(x, y)) +

\
I

ϕ(̺(S(x, i), S(y, i)))F (x, di)

≤ ω(̺(x, y)) + ϕ
(\

I

̺(S(x, i), S(y, i))F (x, di)
)

≤ ω(̺(x, y)) + ϕ(r(̺(x, y))).A

ording to (6.5.10), the last inequality implies(6.5.12) |Uf(x) − Uf(y)| < ̺ϕ(x, y).Now, we will verify that(6.5.13) Un V (x) ≤ r(1)V (x) +B for x ∈ X and n ∈ N,where V (x) = ̺(x, x0) and
B = (1 − r(1))−1

(
r(1) + sup

x∈X

\
I

̺(x0, S(x0, i))F (x, di)
)
.In fa
t from (6.5.6) it follows that(6.5.14) \

I

̺(S(x, i), x0)F (x, di) ≤ r(̺(x, x0)) +
\
I

̺(x0, S(x0, i))F (x, di).Moreover, sin
e r is nonde
reasing, 
on
ave and r(0) = 0, we have
r(x) ≤ r(1)x+ r(1).The last inequality and 
onditions (6.5.1) and (6.5.14) imply (6.5.13).



Appli
ations of the Kantorovi
h�Rubinstein maximum prin
iple 55By virtue of Corollary 6.4.1 the operator P is asymptoti
ally stable with respe
t tothe Fortet�Mourier metri
 ‖ · ‖Fϕ
generated by the metri
 ̺ϕ.Finally, sin
e the 
lasses of 
onvergent sequen
es in both spa
es (Msig, ‖ · ‖Fϕ

) and
(Msig, ‖ · ‖F ) are the same, the operator P is asymptoti
ally stable with respe
t to theFortet�Mourier metri
 ‖ · ‖F . This 
ompletes the proof.A
knowledgements. I am grateful to the anonymous referees for their 
ontribution toimproving this manus
ript.
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Notation and symbolsLet (X, ̺) be a metri
 spa
e. Given c ∈ X and α > 0 we denote by ̺c and ̺α
c , respe
tively,

̺c(x) := ̺(x, c) and ̺α
c (x) := (̺(x, c))α for x ∈ X. The notation fn ↓ 0 means that thesequen
e (fn) of real-valued fun
tions is de
reasing and pointwise 
onverges to 0.The following is a list of the most 
ommonly used symbols and their meaning:

a.e. almost everywhere
BX σ-algebra of Borel subsets of the spa
e X
B(X) spa
e of bounded Borel measurable fun
tions f : X → R

B(x, r) 
losed ball in X with 
entre x ∈ X and radius r
C(X) spa
e of bounded 
ontinuous fun
tions f : X → R

C1
0 (Rd) spa
e of fun
tions f : Rd → R with 
ompa
t supportsand 
ontinuous �rst derivatives

dist(A,B) distan
e between sets A and B, 18
D+ upper right Dini derivative
δx point (Dira
) measure supported at x
Eξ expe
tation of the random variable ξ
〈f, µ〉 Lebesgue integral of f : X → R with respe
t to the measure µ
F set of test fun
tions f : X → R for the Fortet�Mourier metri
, 13
H set of test fun
tions f : X → R for the Hut
hinson metri
, 13
Hc subset of f ∈ H for whi
h f(c) = 0, 13
1A 
hara
teristi
 fun
tion of the set A
L spa
e of Lips
hitzian fun
tions f : X → R

L(X) set of linearly bounded fun
tions, 21
µ ∗ ν 
onvolution of the measures µ, ν ∈ Msig, 32
µ ◦ ν elementary produ
t of the measures µ, ν ∈ Msig, 32
‖µ‖F Fortet�Mourier norm of the measure µ, 13
‖µ‖Fϕ

Fortet�Mourier norm of the measure µ generated by the metri
 ̺ϕ, 54
‖µ‖H Hut
hinson norm of the measure µ, 13
‖µ‖T total variation norm of the measure µ, 53
µ

+
, µ

−
positive part and negative part of the measure µ

|µ| total variation of the measure µ
M family of �nite (nonnegative) Borel measures
M1 spa
e of probability measures, 12
Msig spa
e of �nite signed measures, 12
mα(µ) αth moment of the measure µ ∈ M1, 13[57℄
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ki
mα(|µ|) αth moment of the measure µ ∈ Msig, 13
M1,α subset of measures µ ∈ M1 su
h that mα(µ) <∞, 12
Msig,α subset of measures µ ∈ Msig su
h that mα(|µ|) <∞, 12
N positive integers
Np Poisson random 
ounting measure, 45
(Ω,Σ, prob) probability spa
e
Ω(x) set of limiting points of the traje
tory (Stx), 27
P Markov operator, 19
P∗n 
onvolution operator of order n, 32
(P t)t∈T semigroup of Markov operators, 22
π transition fun
tion, 20
̺ϕ Fortet�Mourier metri
 
orresponding to the pair (̺, ϕ), 54
R real numbers
R+ nonnegative real numbers
Rd d-dimensional real spa
e
‖ · ‖ Eu
lidean norm in Rd

(·|·) s
alar produ
t in Rd

(St)t∈T semidynami
al system, 27
(Stx) traje
tory starting from x, 27
suppµ support of measure µ, 14
(S1, . . . , SN ; p1, . . . , pN ) iterated fun
tion system, 44
T nontrivial semigroup of nonnegative real numbers
U dual operator to P , 20
(U t)t∈T dual semigroup 
orresponding to (P t)t∈T , 22



Indexasymptoti
ally 
ontra
tive semigroup, 23
ontra
tive fun
tion, 8
ontra
tive operator, 22
onvolutionof measures, 32operator, 32power, 32distan
e, 28distributions, 12dual operator, 20elementary produ
tof measures, 32evolutionary di�erential equation, 37Fortet�Mourier metri
, 13Hut
hinson metri
, 13invarian
e prin
iple, 26invariantpoint, 27set, 27iterated fun
tion system, 44limiting point, 27linearly bounded fun
tion, 21Lyapunov fun
tion, 39Lyapunov�LaSalle fun
tion, 28Markov operator, 19Markov�Feller operator, 20Markov�Feller semigroup, 22

maximum prin
ipleKantorovi
h�Rubinstein, 16nonlinear version, 16nonexpansive semigroup, 22nonexpensive operator, 22Poisson driven sto
hasti
 di�erentialequation, 44Poisson random 
ounting measure, 45regular operator, 20semidynami
al system, 27asymptoti
ally stable, 28signed measures, 12spa
elo
ally 
ompa
t separable, 9metri
ally 
onvex, 10stationarypoint, 27Poisson point pro
ess, 45solution, 30sto
hasti
 dynami
al system, 42, 44strong 
onvergen
e, 53support of a measure, 14tight family of distributions, 40Tjon�Wu equation, 30total variation norm, 53traje
tory, 27sequentially 
ompa
t, 27transition fun
tion, 20weak 
onvergen
e of measures, 13
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