1 . .
I. Classes of L -convergence of Fourier series

1.1. Classical and neoclassical results. Denote by L(T) the Banach space of all
complex, Lebesgue integrable functions on the unit circle T. To every function f € L*(T)
corresponds the Fourier series of f,

(F)~ D> Fme™, where f(n) =

[n|<oco

1 )
o et dt, |n| < oo,
T

are the Fourier coefficients of f.
The sequence of partial sums will be denoted by

Sulf) = Su(f,t) = > FR)e*, n=0,1,...,

|k|<n

while the (C,1)-means (Fejér sums) of the sequence of partial sums will be written as
1 n
n =op(f,t) = —— Sk(f,t), =0,1,....
o) = 0ul) = g Sl f0)
The Dirichlet kernel is denoted by

B Sln TL+]-/2)]
__+§jcoskt Tosin(t/2)

and the Fejér kernel by

n

P - 1 ZDk(t) _ 2( 1 [sin[(.n—l—l)t/Qq .

n+1c& n+1) sin(t/2)
Note that
4
| Dnll1 = — logn+O(1), n— oo,
|Fnlli =1  for every n, where || ||; denotes the L*(T)-norm.
Let
ZSI ) = O (t/2) — cos[(n + 1/2)t]
2sin(t/2)
— 1 t  ~ cos[(n + 1/2)t]
Dy(t)=—zctg-+Dp(t) = ———F75 >
(1) =—gcteg + Dnlt) 2 sin(t/2)
1 = 1 1)t
— ZDk(t = ——F—— Sint,w
n+ 1= 4sin”(t/2) n+1

(5]
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denote the conjugate Dirichlet kernel, modified Dirichlet kernel and conjugate Fejér ker-
nel, respectively.

Let L'(0,7) be the Banach space of all real, Lebesgue integrable functions on (0, 7).
Let

(o)
(C) % + ,; ap, COSNE

(S) Z a, Sin nx
n=1

be cosine and sine trigonometric series. The partial sums of real cosine and sine series
will be denoted by S, (z) and S, (z) respectively.

Let f be a 2m-periodic and even function in L'(0,7), and let {a)} be the sequence of
its Fourier coefficients. Denote by F the class of sequences of Fourier coefficients of all
such functions. It is well known (see [73, Vol. 1, p. 67]) that, in general, it does not follow
from {ax} € F that S,, converges to f in the L!(0,7)-norm, i.e. it does not follow that
1Sn — f]l = o(1), n — oo, where || - || is the L'(0, 7)-norm. However, there are examples of
subclasses of F for which a, logn = o(1), n — oo is a necessary and sufficient condition
for ||S, — f|| = o(1), n — oo.

A classical result concerning the integrability and L'-convergence of a cosine series
(C) is the following well known theorem of Young.

THEOREM 1.1 (Young [71]). If {a,}So, is a convex (A%a, = A(Aa,) = Aa, — Aapi1 =
ap, — 20p 41+ anta > 0,Yn) null sequence, then the cosine series (C) is the Fourier series
of its sum f, and

(L1) 1Su(f) = fll =0(1), n— 00 iff anlogn =o(1), n — co.

The sequences {a,} that satisfy the condition Y 7 (n + 1)|A%a,| < co are called
quasi-convez. The next theorem of Kolmogorov extends Young’s result, since every convex
null sequence is also quasi-convex.

THEOREM 1.2 (Kolmogorov [22]). If {a,} is a quasi-convex null sequence then the cosine
series (C) is the Fourier series of its sum f and (1.1) holds.

We say that a sequence {ay} is of bounded variation and we write {ax} € BV if
> oo |Aak| < co. Several authors (Sidon, Telyakovskii, Fomin, Stanojevié¢ and others)
have extended these classical results by addressing one or both of the following two
questions:

(i) If {ay} is a null sequence of bounded variation, is (C) the Fourier series of its
sum f7

(ii) If {a,} € BV, is (C) the Fourier series of some function f € L' and does (1.1)
hold?
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THEOREM 1.3 (Sidon [34]). Let {a,}22, and {pn}52, be sequences such that |a,| <1
for every n and Y., |pn| < co. If

0o k
an:Z%Zal, n=12,...,
k=n l=n

then the cosine series (C) is the Fourier series of its sum f.

It is obvious that Sidon’s conditions imply that {a,} € BV.

Telyakovskil [45] defined an extension of the class of quasi-convex sequences, denoted
by S, as follows: a null sequence {a,, }°2 , belongs to S if there exists a decreasing sequence
{A,}22, such that > 2 /A, < oo and |Aa,| < A, for all n. He proved that the Sidon
class is equivalent to the class S. Therefore, the class S is usually called the Sidon—
Telyakovskit class.

THEOREM 1.4 (Telyakovskil [45]). Let {an}S>, € S. Then the cosine series (C) is the
Fourier series of its sum f and (1.1) holds.

On the other hand, Kano extended the classical result of Kolmogorov by answering
the first question (i).

THEOREM 1.5 (Kano [19]). If {an} is a null sequence such that
= 2| A2(9n
; " ‘A < n )‘ < %0

then (C) is a Fourier series, or equivalently it represents an integrable function.
The following lemma was proved by Telyakovskil in [46].

LEMMA 1.1 ([46]). The condition Y- n*|A?(a,/n)| < co is equivalent to the simulta-

neous fulfillment of the conditions > o | |ay|/n < oo and Y o7 (n+ 1)|A%a,| < cc.

REMARK 1.1. In view of this lemma, Theorem 1.5 is a corollary of Theorem 1.2.
Later, Kumari and Ram proved the following theorem:

THEOREM 1.6 (Kumari-Ram [23]). Suppose (k + 1)%|A%(ay/k)| | 0. Then
A2 ag 12| A2 Ay
() el

v=~k
exists for x € (0,7, and h € L(0, 7] iff > pey(k +1)2|A%(ay/k)| < oo.

n

h(z) = lim > [;(k +1)2
k=1

Cos kx]

The difference of noninteger order k£ > 0 of the sequence {a,}32 is defined as follows:

& _Oo m—k—1 B
(%) Aan—n;)( m )an+m (n=0,1,2,...),

where

a+m (a+1D)(a+2)...(a+m)
m m! '
It is obvious that if a,, — 0 as n — oo then the series (k) is convergent and lim,, Aka,

= 0. In [29] C. N. Moore generalized quasi-convexity of null sequences in the following
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(M) an|Ak+1an| <oo for k>0,

n=1
where the order of differences is fractional, and proved the corresponding integrability
result. It is known [8] that if {a,} is a null sequence satisfying (M), then Y7, n"|A"q,,|
< oo for all 0 < r < k. In particular {a,} is of bounded variation.

Singh and Sharma proved the following generalization of a theorem of Kolmogorov.

THEOREM 1.7 (Singh—Sharma [36]). Let k > 0. If
(i) lim a, =0,

oo
(i) Y _n*lAFq,| < oo,

n=1

then the series (C) converges in L' if and only if aylogn = o(1), n — oo.

REMARK 1.2. Theorem 1.7 is a corollary of Theorem 1.4. It suffices to show that the
conditions (i) and (ii) of Theorem 1.7 imply the Sidon—Telyakovskii type condition S.
First, we suppose that for some 0 < k < 1 the series of (M) converges. For 0 < k < 1, we
define the sequence

o0

i—n+k-—1
An:Z( i—n )|Ak+1ai.

i=n

Now, we need the following properties of the binomial coefficients (**™) (see [2, p. 885]):

(a) a>—-1= <a;rn> > 0,

a+n n
- <
(b)( " ) F(a+1)+0(1)’0<a*1’
" fa+i n+a+1
(c)?_%( ; )( " ),nEN,aGR.
‘We have

PORTED 9 B (A [ES

n=0i=n

_Z|Ak+1 Z( ?f: )
:iZ'Ak-&-laiZ<n+s—l>:i(izk)|Ak+lai|

=0
oo

WZZk|Ak+1 |+O(Z|Ak+1az|)

=0 =0



Convergence and integrability of trigonometric series 9

Since the series (x) is convergent, by condition (M), we obtain

Z |Ak+1 |Ak+la0| + Z \Ak+1ai|

=0 i=1

= (m—k—2 =
< Z ( m >am+22k|Ak+1ai < 0.

m=0 i=1

Thus, ZZOZO A, <ooand A, | 0. Then for 0 < k£ < 1, we obtain

— (i—n+k—1\ ;.
AZ( i >A
ie.
o0 .
- ~1
|Aan|fz<l 7?+k )|Ak+1ai|:An for all n.
: i—n
=N

If k > 1, by Bosanquet’s result [8], we obtain Y - n|A%a,| < oo, i.e. {a,} € S. Finally,
{an} € S for all k > 0.

In [38] C. V. Stanojevi¢ and V. B. Stanojevi¢ generalized the Telyakovskil theorem of
[45].

They defined a stronger class S,, p > 1, as follows: a null sequence {a,} of real
numbers belongs to S, if for some monotone sequence {A,,} such that 2 | A,, < co the
following condition holds:

There exists a null sequence {ay,} such that {a,} € S, but {a,} & S.
EXAMPLE. Define a sequence {a,} as follows: let Aa, = 1/m? for n = m? and

Aay,, = 0 for n # m?. First, we shall show that {a,} ¢ S. We have

oo
A2 = Z Aa; = Aay,2 + Aam2+1 +...+ Aa(m+1)2 +...= Z Aa;2

i=m?2 i=m
ie. a, — 0asn— oco. Set A = max;>, |Aq;|. Then A% | 0 and > >~ | A% = oo. Indeed,
Ar = 1/m? for (m—1)2+1§n§m2 and

kZA Z) A;; = Z Z :;zZ
=1 1)2

+1 m=1k=(m—1)2+1

tnqg

3
l

I
NE
SM‘ — u

m? = (m -1 = 3 2”:”;1 ~ 0.

m=1

3
I

Therefore for every positive sequence {A,} such that A,, > A%, we have Y~ A, = o0,

ie {an} &S.
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Now, let A,, = 1/n'+1/2P for all n. Then A, | 0, > | An < oo, and for n = m? we

have
|Aal|p 1 |Aagz]\"” - 1//€2 P
mQZ B W — \ Ape N m2Z 1/k2+1/p

THeoREM 1.8 (C. V. Stanojevi¢ and V. B. Stanojevi¢ [38]). Let {a,} € S, for some
1 <p < 2. Then the cosine series (C) is the Fourier series of its sum f and (1.1) holds.

Fomin [13] also extended the Sidon-Telyakovskii class. He defined a class F),, 1 <p<2,
of Fourier coefficients as follows: a sequence {a, } belongs to F}, if a — 0 as k — oo and

(12) 3 (;imam)l/p <.

k=1 i=k
He also gave an equivalent form of the condition (1.2) by proving the following lemma.

LEMMA 1.2 ([13]). Letp > 1. Then a sequence {ay} is in Fy, iff Y oo, 25 AP < 00, where

(p) 1 S P e
AS = 9s5—1 Z ‘Aak| :

k=25—141

In [13], Fomin noted that the class F}, is wider when p is closer to 1. Now we present
the proof of this fact.

COROLLARY 1.1 ([61]). For any 1 < r < p we have the embedding F,, C F.

Proof. Since 1/r > 1/p, we have 1/r = 1/p + 1/q for some ¢ > 0. This implies that
1/p' +1/q¢" =1, where p’ = p/r and ¢’ = ¢/r. Applying the Holder inequality, we have

23+1 23+1 25+1 1/ , 23+1 1/ ,
’ p ’ q
> Jdar= 3 Jaal s (30 jaa) (30 1)
k=25+1 k=25+1 k=241 k=25+1
2 1/p’
= (23)1/q ( Z |Aak\p)
k=2541
Then
[eS) oo 25+t 1rp!
’ rp
Z QsAgr) < 228 .98/ . 9s/q 7’< Z ‘Aak|p)
s=1 s=1 k=2s+1
1r-1/a, X2 1p &
r—1/q P
_ s — s A(P)
()" (S ) =S
k=241 s=1

Applying Lemma 1.2, Fomin proved that for the class F},, 1 < p < 2, we have positive
answers to both questions (i) and (ii).

THEOREM 1.9 (Fomin [13]). Let {a,} € F, for some 1 < p < 2. Then the cosine series
(C) is the Fourer series of its sum f and (1.1) holds.
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Next we shall prove that S, is a subclass of F), for all p > 1.
THEOREM 1.10 ([61]). For every p > 1 we have the embedding S, C F),.
Proof. Applying the Abel transformation we have

2° A
I L
k=25—141 k=25-141
2! |Aa P | Aay|P 27 | Aayl?
- Y aupy gl S
k=2s-141 j=1 Fi j=1 7
2° -1 98
1 <A |Aa 1 & | Aaylp
_ p ] S AP J
k=2s-141 =1 J =1 j
gs—1
1 | Aa,; P
s—1 J
-2 Aslﬂ(—wz )
j=1
2°—-1
:o(l)[ S RA(AD) + 2045, 24D 1+1]
k=2s—141
S AR +2TIAL -2 AR 20 AL 2 AR )
k—28*1+1
S oaeran)-o@ e )
k=2s—141

First applying the Fomin lemma, and then the Cauchy type theorem, we obtain

1/ 00
228 P) < O 228(25 I 25— 114127é 1) ! 20(22571142.;—1) < 00.
s=1

Recently, Leindler proved the important result that, conversely, the Fomin class Fj,
is a subclass of Sp; he also gave another proof of Theorem 1.10. Precisely he proved the
following theorem.

THEOREM 1.11 (Leindler [24]). For all p > 1, the classes F,, and S, are identical.

A still larger class that answers both questions, but is expressed in terms of a condition
difficult to apply, is the class BV N C, where C was defined by Garrett and Stanojevic¢
[17] as follows: a null sequence {a,} of real numbers satisfies the condition C' if for every
e > 0 there exists d(¢) > 0, independent of n, such that

J oo

S ’ Z Aaka(x)’ dx < e for every n.

0 k=n
Singh and Sharma [36] proved that the Garrett—Stanojevié class C' is stronger than the
Moore class (M).

THEOREM 1.12 (Garrett—Stanojevié¢ [17]). Let {an,} € BV N C. Then the series (C) is
the Fourier series of its sum f and (1.1) holds.
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In [16] Garrett, Rees and Stanojevié¢ proved the following theorem.

THEOREM 1.13. We have the embedding
ScBVNC.

Now, we shall prove an extension of this theorem.

THEOREM 1.14 ([50]). For all p > 1, we have the embedding
S, C BVNC.

For the proof we need the following lemma.

LEMMA 1.3 (Hausdorff-Young [73]). Let 1 < p < 2 and let {c,} € I be a sequence
of complex numbers. Then {c,} is the sequence of Fourier coefficients of some p € L4
(1/p+1/g=1) and

27 e’}

1 1/a 1/p
(37 Vletlas) < (X feu)™
0 n=-—oo
Proof of Theorem 1.14. It suffices to show that
:HZAaka ‘da:—o() n — 0o.
0 k=n

For cach n, let k,, be the least natural number such that n < 2%» — 1. Then T,, can be
majorized by

pLE. |

s "71 oo T
TngS‘ZAa] ‘ +ZH ZACL] ‘dxfjl‘i’.[g
0 Jj=n =k, 0 j=2!
The second term is written as follows:
O Vo m ol+1_1
=3{§ + |} ayn ‘dx_21+22
I=kn 0 1/20+1 j=2!

For the first term, the uniform estimate |D,,(x)| < n + 1/2 can be applied, i.e.

2L+1 1 2l+1 1
I+1
1= Z 21+1 Z [Aa;|(G +1/2) < Z 21+1 Z |[Aay|2
j=2! =21
co 2tt_q
S SUETII SR E]
=k, j=2! j=2kn

By summation by parts, and by Hélder’s inequality, we have

| Aa] \A | ' |Aa,|
Z|Az|—z aA_ZAAZ % AWZ AC;J

i=2kn i=2kn Z i=2kn Jj=1
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© hn /p
\Aagl n 1 o~ |Ag 7 \!
< Z ( Z —|— 2 Aan ﬁ 4 AP
i=2kn j=1 J
20(1)[ 3 i(AAi)+2’%A2kn]
i=2kn

Since Y77 | A, < coand A, | 0, both terms on the right-hand side of the above inequality
are o(1) as n — oo. Thus X, = o(1), n — oc.

Let
o o7 2”171A
s
n=y |13 = AD; ()| de.
I=kn 12041 j=21 J

Applying the Abel transformation, we get

T2t Ag 2 ¢ '\ Aa
J T
V> T AiDj( <> a4 | 1Y S Drla)| da
i =2t j=2! 12041 | r=1
_ Aa m PA lAa
+ Ay S Z " do+ Agny || D o Dr(@)| da.
1/20+1 1 r=1 12041 r=1 r

Applying the Hélder type inequality, we get

2t—1 ™ 2t—1

Aa, 1 Aa,
e D7’ = S 1 2 d
Vi | g D= Tom(e/2)| 2 A, Sl +1/2)al|do
1/2t+1 1 r=1 1/20+1 r=1
1
T da 1/p ™ 2'—-1 ACL,« q 1/q
< - — 1/2 d
<| | mmp] || St ymel ae]
1/20+1 1/2t+1 r=1
where 1/p+1/q = 1. Since
7r dx ™ ¢ dx
\ s—mm <5 | S sMmety
Lot [2sin(z/2)]p — 2P Lt TP
where M, is an absolute constant depending on p, it follows that
I+181/ 1/ T A 1
+ q P L
Vi < (29HYe(,) [S ; Z sin[(r + 1/2)z] d:c] .

0
Applying the Hausdorff-Young inequality to the last integral we get

32 ] <5 2y

2!t 1/p
1 |Aa,|P
+1 T
V<2 C(QZHE P ) , Cp>0.

r=1

)z }

Thus




14 7.. Tomovski

Then
co 2itt_2 ™ J A
Q.-
CED S SV i) oF L Am T
I=k, j=2! 121+t lr=1 °7
00 T 2l-1
Aa,
+3 Ay | o Dr(a)|dz
1=k, 1/20+1 r=1 r
00 L L | A
a
+ ) Agiiay S A: D, ()| dx
=k, 1/20+1 r=1
oo 212
[Z 3 jaa, +4Z2A2l}
l=kn ] 2!
Now, applying the Cauchy condensation test, we get
Z 2 Ay = 0(1), n — 0.
I=knp
But
2+l _9 2ttt g
N jAA = > A -2 Agia g + 2 Ap 4 Ay < 20 Ap 4+ 2 A + Ay
j=2! j=2+1
Thus
o 212
Z Z JAA; <222A21+2A21—0 n — 0o,
I=kn j 2!
ie. Yy =o0(1), n — oo. Finally, I, = 0(1), n — oo.
The same method applied to I; yields the estimate
2kn _q 2kn _g
L<0(1) Y |Ag +op(1)( ST jAA; 4R 1A2kn_1))
|=2kn—1 j:2kn 1

Letting n — oo completes the proof of the theorem.

REMARK 1.3. Theorem 1.8 is a corollary of Theorems 1.14 and 1.12. Thus by proving
Theorem 1.14 we obtained a new proof of Theorem 1.8.

On the other hand, Stanojevié¢ [37] proved the following inclusion connecting the
classes F},, C and BV.

THEOREM 1.15. For all 1 < p < 2 we have the embedding
F,cBVnC.

In [16] Garrett, Rees and Stanojevi¢ defined an extension of the class of null sequences
of bounded variation. Namely, a null sequence {a;} belongs to the class (BV)("™) m > 1,
if Y07, |A™ay| < oo, where A™ay, = A(A™ tay) = A" tay, — A" lagyq. For m = 1,
(BV)! = BV.
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THEOREM 1.16 (Garrett-Rees-Stanojevié¢ [16]). Let {a,} € (BV)™) for some m > 1
and aplogn = o(1), n — oo. Then ||S, — f|| = o(1), n — oo iff {an} € C.

Both Fomin [12] and Stanojevié¢ [37] considered the following natural extension of the
class F,. Let p > 1. A sequence {a} belongs to C), if a, — 0 as k — oo and

(1.3) nP~! Z |Aag|? =o(1) asn — oco.
k=n

Answering question (ii) Fomin and Stanojevi¢ proved the following result:

THEOREM 1.17 (Fomin [12], Stanojevi¢ [37]). If (C) is a Fourier series of f € L' and
{an} € C, N BV for some 1 < p <2 then (1.1) holds.

Later, Fomin extended the above result by considering a still larger class:

THEOREM 1.18 (Fomin [14]). If (C) is the Fourier series of f € L' and for each sequence
{mn} of natural numbers such that m,/n — 0 as n — oo there exists p, 1 < p < 2,
independent of {my} such that

n+mqy
(1.4) ml™ N Aal? = 0(1), n— oo,
k=n

then (1.1) holds.

The same statement holds for the sine series (S), i.e. the Fourier series of odd functions.

REMARK 1.4. It is trivial to see that Theorem 1.17 is a corollary of Theorem 1.18, that is,
that (1.3) implies (1.4) for each sequence {my} of natural numbers such that m,,/n — 0,
n — 0.

The class €}, has an interesting subclass Cj;. A null sequence {ar} belongs to Cy,

1<p<2,if

(oo}
Zk”*1|Aak|p < 0.
k=1

The next theorem is a corollary to Theorem 1.17.

THEOREM 1.19 (Fomin [12], Stanojevi¢ [37]). Let (C) be the Fourier series of some f €
LY(0,7), let 1 <p <2 and let {an} € Cy N BV. Then (1.1) holds.

A natural extension of BV is the following class: a null sequence {a} belongs to the
class P if

1 n
— E k|Aag| = o(1), n — oc.
n

k=1

Combining the class P with the condition n Aa,, = O(1), Stanojevié¢ obtained a theorem
on L'-convergence of Fourier-Stieltjes series.

THEOREM 1.20 (Stanojevié¢ [37]). Let (C) be a Fourier—Stieltjes seris with {ay} € P and
suppose that nAa, = O(1). Then (C) converges in L' iff a,logn = o(1), n — oc.
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Bojanié and Stanojevié [5] defined a subclass of P as follows: a null sequence {ay}
belongs to the class V,, p > 1, if

1 n
— E kP|AaglP = o(1), n — oo.
n

k=1

They proved the following theorems.

THEOREM 1.21 (Bojani¢-Stanojevié¢ [5]). If (C) is the Fourier series of f € L' and
{ar} €V, for some 1 < p <2 then (1.1) holds.

THEOREM 1.22 (Bojani¢-Stanojevié¢ [5]). If {ar} € V, N BV for some 1 < p < 2, then
(C) is the Fourier series iff {ax} € C.

Tanovié-Miller considered the problem of integrability of the series (C) with regard
to the classes Cp, p > 1, and C; = BV.

THEOREM 1.23 (Tanovié-Miller [40]). (i) If {ax} € U{C, : p > 1} then (C) converges
a.e. to the function

f@) =" AapDy();
k=0

moreover, in that case (C) is a Fourier series iff for some 6 > 0,
]

S

0

dr < oo,

Z Aaka (Z)

k=0

in which case (C) is the Fourier series of f.
(ii) If {ax} € U{Cp : p > 1} then (C) is a Fourier series iff {ay} € C.

These results extend Theorem 1.22 and show that the classical question of integrability
of the series (C) need not be restricted to series with coeflicients of bounded variation.

Garrett and Stanojevié obtained a theorem on L'-convergence of Fourier series with
monotone coeflicients.

THEOREM 1.24 (Garrett—Stanojevi¢ [17]). Let

ao

5 + Z(an cosnx + by, sin na)

n=1

(CS)

be a Fourier series with monotone coefficients. Then (1.1) holds, where S,, is the partial
sums of this series.

Telyakovskii and Fomin obtained a similar result for Fourier series with quasi-mono-
tone coefficients. A null sequence {a,} of positive numbers is called quasi-monotone if
for some o > 0, a,/n® | 0, n — oo or equivalently a,+1 < an(1+ a/n).

THEOREM 1.25 (Fomin-Telyakovskii [48]). Let {a,} be a quasi-monotone sequence. If
(C) is the Fourier series of its sum f, then (1.1) holds.

The proof of sufficiency of the theorem of Fomin—Telyakovskii was simplified by
Garrett—Rees—Stanojevié [15] using a more refined estimate of ||S,, — o, ||. Telyakovskil
and Fomin [48] also proved a corresponding result for the sine series, namely if {aj}
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is a quasi-monotone sequence and (S) is the Fourier series of its sum g then the same
conclusion holds for the sine series.

THEOREM 1.26 (Garrett—Rees—Stanojevié [15]). Let (CS) be a Fourier series with quasi-
monotone coefficients. Then ||S,, — oy || = 0o(1), n — o0 iff (an +by)logn = o(1), n — oco.

The class P extends not only BV, but also the class of quasi-monotone sequences.
The next theorem is a slightly weaker form of a theorem of Telyakovskii and Fomin.

THEOREM 1.27 (Stanojevié¢ [37]). Let (C) be a Fourier series with quasi-monotone coef-
ficients and suppose that nAa, = O(1). Then (1.1) holds.

Later, Bray and Stanojevié¢ [9] considered the question of L!-convergence for more
general Fourier series of so called asymptotically even functions. Concerning the Fourier
series of even functions one of the results in [9] can be stated as follows:

THEOREM 1.28 (Bray—Stanojevié). If (C) is the Fourier series of f € L' and for some
1<p<2
[An]
lim li kP~ Aag|P = 0,
Jim, 1&8;1)2 |Aay|

k=n

then (1.1) holds.

REMARK 1.5. Theorem 1.28 is corollary of Theorem 1.18.

1.2. Generalizations of the Sidon—Fomin lemma. Sidon [34] proved the inequality
named after him in 1939. It is an upper estimate for the integral norm of a linear combi-
nation of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the
estimate has many applications, for instance in L'-convergence problems and summation
methods for trigonometric series, newer and newer improvements of the original inequal-
ity has been proved by several authors. Fomin [10] gave another proof of this inequality
by applying the linear method for summing Fourier series. Therefore the inequality is
known as the Sidon—-Fomin inequality.

Also, Telyakovskil [45] gave an elegant proof of the Sidon—Fomin inequality.

LEMMA 1.4 (Sidon-Fomin). Let {a}}_, be a sequence of real numbers such that |oy,| < 1
for all k. Then there exists a positive constant C such that for any n > 0,

|32 aubeto)]| < cn+ 1.

k=0

For the proof of our new result we need the following lemma.
LEmMA 1.5. If T,(x) is a trigonometric polynomial of order n, then
IS < " | Tl

This is S. Bernstein’s inequality in the L!(0, 7)-metric (see [73, Vol. 2, p. 11]).
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LEMMA 1.6 ([52]). Let {ar}}_, be a sequence of real numbers such that |ax| < 1 for
all k. Then there exists a constant C > 0 such that for any n > 0,

H 3 akD;”(x)H < Cln+ 1),
k=0

where D,(:) (x), k=0,1,...,n, is the rth derivative of the Dirichlet kernel.

Proof. Since

iaka Zaﬁ—Z(Z i) cos kx,
k=0

k=1 i=k
we see that ZZ:O aDi(z) is a cosine trigonometric polynomial of order n. Applying first
the Bernstein inequality, and then the Sidon-Fomin lemma yields

H S D ( H (n+1)
k=0

LEMMA 1.7 (Fomin-Steckin [11]). Let 1 < p < 2 and {ax}}_, be a sequence of real num-
bers such that > _, ok < AP(n+1). Then there exists a positive constant C), depending
only on p such that

H<On+ nt C>o.

H iaiDi(x)H < CA(n+1).
1=0

LEMMA 1.8 (Bojani¢-Stanojevié¢ [5]). Let {ay}j_, be a sequence of real numbers. Then
forany 1l <p<2andn >0,

1/p

(1.5) H g:oOéka(x)H < Cp(n+1) (%—1—1 g:o |ak|P> 7

where the constant C), depends only on p.

REMARK 1.6. We note that this estimate is essentially contained (case p = 2) in Fomin
[10].

REMARK 1.7. It is easy to see that a Bojani¢é—Stanojevi¢ type inequality is not valid for
p = 1. Indeed, if o, =1 and oy =0 (k # n, k € N) then the left side of (1.5) is of order
(logn)/n while the right side is of order 1/n as n — cc.

REMARK 1.8. The Sidon-Fomin inequality is a special case of the Bojani¢-Stanojevié

inequality, i.e. it can easily be deduced from Lemma 1.8.

r)

Now, we will prove a counterpart of inequality (1.5) for D,g in place of Dg(x).

LEMMA 1.9 ([58]). Let {aw}}_, be a sequence of real numbers. Then for any 1 < p < 2,
r e NU{0} and n >0,

/p

DY (@) < Cpln+ 1)+ v
|3z aunto] < s (g L)

where the constant C}, depends only on p.



Convergence and integrability of trigonometric series 19

Proof. Applying first the Bernstein inequality, and then the Bojani¢—Stanojevié¢ inequal-
ity yields

1/p
Hzakp o <@y @] < n+1>r+1(n+lz|ak|p) |

1.3. Extensions of some classes of Fourier coefficients. In this section we shall
give the extensions of the Garrett—Stanojevi¢ class C', Sidon—Telyakovskii class S and the
class Sp, p > 1, defined by V. B. Stanojevi¢ and C. V. Stanojevié.

A null sequence {ay} belongs to the class C.., r € NU {0}, if for every € > 0 there is
a ¢ > 0 such that

HZACLD() ‘d:c<5 for all n,
0 k=n
where D,(f)(a:) is the rth derivative of the Dirichlet kernel. When r = 0, we set C, = C.
A null sequence {ay} belongs to the class S, r € NU {0}, if there exists a decreasing
sequence {Ay} such that Y, k"Ay < oo and |Aay| < Ay for all k. When r = 0 it is
clear that &, = S.
A null sequence {ay} belongs to the class Sy, 1 < p <2, r € NU{0}, if there exists
a decreasing sequence {A} such that >, k" Aj < oo and

Z |Aak|p _ 1)

When r = 0, we define S, = S,. The follovvlng lemma was proved by Ch. J. de la Vallée
Poussin (see [69]), but we shall present two other proofs.

LEMMA 1.10. If A, | 0 with >..7  n"A, < oo for some r > 0 then n"t'A, = o(1),
n — 0o.

Proof 1. Let 0 < m < n. Adding the inequalities
TLT+1AAn,1 2 07
(n—1)""AA, 5 >0,

(m+ 1)L AA,, >0,

we obtain
n—1
— A+ YT AR+ D)™ = B 4 A (m+ 1) > 0.
k=m+1

The sum on the left is o(1) because > - n"A, < oco. Hence,
Ap(m 41" — A0 > 0(1), m,n — oco.
Since m”" A,,, — 0, this means that

(1.6) Apm ™ — An™ > 0(1), m,n — co.
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We cannot have liminf,,_,.. n"T1A4,, > 0, since otherwise Zzo:l n" A,, could not converge.
Hence, in particular, for each € > 0 there is an infinite sequence of indices m for which

(1.7) m A, <e.

Now suppose that limsup,, . n"t1A4, > 0. Then there exists ¢ > 0 and an infinite
sequence of indices n such that

(1.8) n"t1A, > 2> 0.

For each m satisfying (1.7) take a larger n satisfying (1.8); then we get a contradiction
=of

to (1.6). Hence limsup,, ., n" "t A4, =0, i.e. "1 A,, = o(1), n — oo.

Proof 2. By the inequalities

oo

nrJrlAQn < nT(An—I-l + An+2 +...+ AZn) < § irAia
i=n-+1
we obtain

(oo}
(2n)" 1Ay, <27t Z i"A; =0(1), n— oo.

i=n+1
Similarly, we can get
1 r+1 oo
on+ 1) Ay 1 < (24— " A; = o(1), .
(2n+1) 2+1_<+n) i:zn;rlz o(l), n— o0

Finally n"t1A,, = o(1), n — oco.
LEMMA 1.11. If A, |0 with Y7, n"A, <oo for some r>0, then Y~ n"t1(AA,) <oco.

Proof. By partial summation,

n—1 n

STRHAA) = Y R (k- 1) A, -0 A, = o(fj KAL) -0t A,
k=1 k=1 k=1

The series on the right converges; n"1A,, = o(1), n — oo, by Lemma 1.10; so the partial
sums on the left converge as n — oo.

It is trivial to see that $,4q1 C S, for all » = 1,2,3,... Now, let {a,}32; € 1. For
any real number ag, we shall prove that the sequence {a,}52, belongs to S. We define
Ap = max(|Aagl, 41). Then |Aag| < Ao, ie. |Aa,| < A4, for all n € {0,1,2,...} and
{A4,}22, is decreasing sequence. On the other hand,

iAn§A0+inAn<oo.

n=0 n=1
Thus, {a,}32, € S, i.e. §py1 C S, for all r € NU{0}. The next example shows that the
implication
{an} €Sry1 = {an} €Sy, reNU{0},
is not reversible.

ExAMPLE ([55]). For n € NU {0} define a, = > 7 ., 1/k* Then a, — 0 as n — oo
and Aa,, = 1/(n+ 1)? for n € NU{0}. First we shall show that {a,} & 31. Let {4,}5>,
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be an arbitrary positive sequence such that A | 0 and Aa, < A,. Then Y 7 nA, >
Yoo n/(n+1)% is divergent, i.e. {a,} € 1.

Now, for all n € NU {0} let A, = 1/(n+1)%. Then A4, | 0, |Aa,| < A, and
Yoo g An =07 1/n? < oo, ie. {a,} € S.

Our next example will show that there exists a sequence {a,}52 ; such that {a,}>
€ S, but {a,}52, & Syy1, for all r € N. Namely, for all n € N let a, = > po 1/k"2.
Then a, — 0 as n — oo, and Aa,, = 1/n"*? for n € N. Let {4,}52, be an arbitrary
positive sequence such that A, | 0 and Aa, < A,,. Then

oo oo
r+1 r

I o

n=1 n=1
is divergent, i.e. {a,} & Sr+1. On the other hand, for all n € N let A, = 1/n"*2. Then
A, 10, |Aa,| <Ay, and Y07 n"A, =307 1/n? < oo, Le. {a,} € .
THEOREM 1.29 ([52]). For all r € NU{0} we have the embedding

3. Cc BVNC,.

Proof. 1t is clear that {a,} € &, implies {a,} € BV. Now for x # 0 we consider the
identity
k

iAaka(x) Z AAy) Z%Dj - 4,
J

k=n J=

M |

A
A— L Dj(x).

<.
I
=)

Later (sce proof of Theorem 3.8) we shall prove that the series 3°° | Aax D\ (x) is
uniformly convergent on any compact subset of (0, 7). This implies that

] i AakD,(:)(x)‘ dz < i(AAk 7§ Z A“J Dp(x)
k=n 0

k=n
Since |(Aa;)/A;| < 1, applying Lemmas 1.6 and 1.10, we get

Z Aag DO

j=0 J

)| de.

O e Oy

da:+An7§
0

N-1

‘i ‘dx<0 [ngn ST (A4 (k+ 1)+ A, n”‘l}
k=n k=n

O ey O,

N
=0(1) lim [Z[(k + 1)r+1 o k,rJrl]Ak — (N + 1)T+1AN} + O(nTJrlAn)

N—oo
k=n

_ o(gkmk) o) =o(l), n— oo.

Next for 7 € NU{0} we define a new class 32 as follows: a null sequence {ay} belongs
to 2 if there exists a decreasing null sequence {A;} of nonnegative numbers such that
Sore KT AAR) < 0o and |Aag| < Ay, for all k.

THEOREM 1.30. The class S, is equivalent to 32 for all r € NU{0}.

Proof. Let {a,} € ;. Applying Lemma 1.11, we get > >~ n"t1(AA4,) < oo
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Now, if {a,} € 7, we have

n"ttA, =n"t Z AA < Z E(AAL) =0(1), n— oo,

k=n k=n
i.e. n"™ A, =o0(1), n — co. Then

n—1

ZkTAk = Z (AA) Z] +A, Z] (Zwl(AAk)) L O™ A,).

k=1
Letting n — oo, we obtain Zk:l k" Ay, < o0, i.e. {an} € Sy

LEMMA 1.12 ([51]). Let {O‘j}?:I be a sequence of real numbers. Then for 1 < p < 2,
ve{0,1,...,7} and r € NU{0},

Vi = S
w/k

Z o (j +1/2)?sin](j 1/2)x+v7r/2]}dx

= (sin(x/2))r+1-v

oo (o) )

where O, depends only on p.

Proof. Applying first the Holder inequality yields

k
1 4 v . .
Vi = §k(sm($/2>)“_ j;ozj(y +1/2) sin](j + 1/2)z + vn/2]| de
T da 1/p
<|| =
T (sin(x/2))(r+1=v)p
LS q 1/q
X{S‘Zaj 4+ 1/2)sin[(j + 1/2)x —&-mr/Q]’ dx} )
0 j=1
Since
T r+l—v)p—1
S . dx < rk(rt1-v)p . -
n/k (sin(z/2))0r+1=p = (r41—v)p—1" p—1
we have

1/p
Vi < <L) (k(r+1=vp=1)1/p
“{]

Then using the Hausdorff-Young inequality we get

{HZ% (j+1/2)"sin[(j +1/2)z + 1}71'/2]‘ dx} _ O,,sz: ‘aj|pjvp)1/p]

0 Jj=1

M=

a;(j+1/2)"sin[(j + 1/2)z + v7r/2]’q d:c}l/q.

O ey
—_

1

<.
Il



Convergence and integrability of trigonometric series 23

Finally,

o

Ve = 0, (e (3 g 7))

Jj=1

=0, [(k(r+1)P—l)l/p(Z: |aj|p) 1/’)} -0, {kr+1( Z |%|p) /p}

where O,, depends only on p.

LEMMA 1.13 ([32]). Let r be a nonnegative integer and x € (0,7]. Then
rfl
+1/2)* sin[(n + 1/2)z + kr/2]
DM (z (n
LT Gy o
(n+1/2)"sin[(n 4+ 1/2)x + r7/2]
2sin(z/2) ’

where the @i are analytic functions of x, independent of n.

_|_

LEMMA 1.14. Let 1 < p <2, r € NU{0} and let the coefficients {aj}é?zo belong to the
class Sp-. Then

dz = O, (k" t1).

Proof. We have

T k T
Aaj ) _ _
0'j=1 0 w/k
Applying the inequality D! )( ) = O(n"1), we have
k k
r|Aaj| PN 1Ay
I < Osz 4, < ak Z -
j=1 j=1
k 1/p
1 A
< ak™! (E 3 | a;‘ ) =O(k™),
=1

where « is a positive constant.
Applying Lemma 1.13, we estimate the second integral:

s

- X - Ao 4D} ()| da

w/k

™ Aaj (] +1/2)Vsin[(j + 1/2)z + vr/2]

S 4; ( (sin(z/2))r+1-v ‘Pv(l’)) dx

m/k v=0
ils Aa; (j +1/2)"sin[(j +1/2)x + rm/2

’ S Z—-(j = 2s[i(r]1(x/2/)) ”‘dw:Amuk.
w/k J=
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Since ¢, are bounded, we have

= Agy (j + 1/2)" sin[(j + 1/2)z + v /2]

7r§k; j=1 Aj (sin(x/2))r+1-v Yy | dx
™k
(j+1/2)?sin[(j + 1/2)x + v /2] i
ng Z (sin(z/2))r+1-v dz,

where B is a positive constant and o; = (Aa;)/A;, j =1,..., k. Applying Lemma 1.12
to the last integral, we get

" Aaj (j+1/2)Vsin[(j + 1/2)x + vr/2]
2/ (sin(z/2)) o ()

-0 (kr+1( Z Aag|p)l/p> — 0, (k).

Since 7 is a finite value, we have A\, = O, (k"1). Slmllarly7 pr = Op(k™1). Hence
T Aq; (r)

] T
J 125 @)
0'j=1 "

LEMMA 1.15. Let 1 < p < 2, 7 € NU{0} and let the coefficients {a;}5_ belong to the
class Sp.. Then

™

S

w/k =1

dx

dz = O(k™) + O, (k") = 0, (k™).

End

Ay

O ey

Aaj )
ZA—ij ()

Jj=1

Proof. Applying first Lemma 1,14, and then Lemma 1.10, we obtain

S ZA% DO

Y dr =0,(n" T A,) =o(1), n— oo

0'j=1
THEOREM 1.31 ([51]). For each 1 < p <2 and r € NU{0} we have the embedding
Spr C BV N (.
Proof. We have
n n n—1 k |ACL| n |ACL|
r _ Il sr Il sr
> 1Aak] <D K Aak| = (A4 1 +A,LZ 1
k=1 k=1 k=1 j=1 j=1
Aaa|) ~ |Aa;|
< kE"(AAg)
Sran (z D%y
n—1 k 1/p n 1/p
1 |Aa;|P 1 |Aaj|P
41 J r+1 J
<> rraa( X B T earna, (232
k=1 j=1 J j=1 J
n—1 n
—0(1) [ SR AAL) + nT“An] - O(Z k’“Ak)

k=1 k=1
Letting n — oo, we get {a,} € BV.
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Then applying the Abel transformation and Lemmas 1.15, 1.14 and 1.11 we obtain

‘ZAa DV(x ] i AAL) §‘i%D§”(w)‘dw+o(l)
0 k=n k=n 0 j=1 J
= op(l)[z k7+1(AAk)} —o(1), n— 0.

k=n

II. Classification of quasi-monotone sequences and
its applications to L'-convergence of trigonometric series

2.1. Remarks on trigonometric series with quasi-monotone coefficients. Quasi-
monotone sequences are known to share many properties with decreasing sequences: for
example the de la Vallée Poussin theorem [69]: > 77  a, < co = na, — 0 (see also
[39]), the Cauchy condensation test for convergence, and a number of theorems about
trigonometric series.

Some proofs of convergence theorems for trigonometric series are based on the use of
modified cosine sums defined by Rees—Stanojevié¢ [31] as follows:

— %zn: Aay, + zn: [(z”: Aai) cos kx} = Sp(x) = angt1Dn ().
k=0 k=1 i=k

Marzuq proved the following theorem on L'-convergence of trigonometric series with
quasi-monotone coefficients.

THEOREM 2.1 (Marzuq [27]). Let {ax} be a nonnegative quasi-monotone sequence tend-
ing to zero, with

oo

Zf ,Z( 1)[|Aay| — Aay] < oo
(x

) € Lt [=m, 7] iff 3252, an < oo.

Singh and Sharma [35] defined a class of L!-convergence as follows. Namely, a sequence
{ar} belongs to the class S if a, — 0 as k — oo and there exists a sequence {Ay} such
that {Ay} is quasi-monotone, Y 7 | Ay < oo, and |Aag| < Ay, for all k. They proved the
following theorem.

Then lim, oo gn () =

THEOREM 2.2 ([35]). If {ar} € S’, then g,, converges to g in L.

Let A, | 0 mean that {4, } is a quasi-monotone null sequence. For convenience the
following notations are used for « > 0, p > 1 and r € {0,1,...,[a]}:

M, = {An : A, ] 0and inC‘An < oo},
n=1

oo
M = {An : A, § 0 and Zno‘An < oo}7
n=1
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Spm:{an:anHOaanoo, and

Aag|P
a7 E | ak' (1) for some A, € Ma},
n a— T

o :
Spm—{an.an—>0asn—>oo, and

A
p( )+1 E : | ak' (1) for some A, € M&}
n o— T

We note that the classes M/, and SI’,M were defined by Sheng [32].

THEOREM 2.3 ([62, 64]). The classes M, and M/, are identical.

Proof. Tt is obvious that M, C M/. To prove M/ C M,, we use an idea of Telyakovskit
[47], i.e. we define the sequence

o0 Am
(2.1) Bk:Ak—i—ﬁZ — for some 8 > 0, where A, € M.

‘We have
A
By~ Bi1 = ABy = Ady + 5 >0,

i.e. By | 0 as k — oo and

Zk“kaZk“AkJrZﬂk ZW’” SR ABY Y mr A,
= m=k k=1 k=1m=k

=D R A B Y meT 1Am_ZkaAk+62m“A < 0.
k=1 m=1n=1 k=1 m=1
Thus M, = M],.
THEOREM 2.4 ([62, 64]). The classes Spar and S,,,, are identical.

Proof. 1t is obvious that Spa,. C S}, Let {an} € S},,. It suffices to show that the
sequence (2.1) satisfies the condition

|A6Lk|p
np(a r)+1 Z 1)

Clearly,

\Aak|p |Aak\p
np(a r)+1 Z — np(a r)+1 Z 1)'

Fomin [14], applying the followmg two theorems, gave a new proof of Theorem 1.25.

THEOREM 2.5 ([13]). If (C) is mean convergent, then

lim E aan =
n—oo

for any sequence {m,} of natural numbers such that m,, <mn for all n € N.
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THEOREM 2.6 ([14]). Let {m,} be a sequence of natural numbers such that lim, . my/n
—0. If
my,—1

lim [ 3" [Aansillog(k + 1) + [ansm, llog(my, + 1)| =0,

n— o0
k=1

then the series (C) is mean convergent.

2.2. Trigonometric series with J-quasi-monotone coefficients. As an extension
of quasi-monotone sequences, Boas [4] defined d-quasi-monotone sequence as follows. A
sequence {a,} is called §-quasi-monotone if a,, — 0, a,, > 0 ultimately and Aa,, > —4,,
where §,, is sequence of positive numbers. A quasi-monotone sequence with a,, — 0 is
one that is d-quasi-monotone with ¢,, = aa, /n.

Boas [4] proved the following lemmas about d-quasi-monotone sequences.

LEMMA 2.1. If {a,} is §-quasi-monotone with Y-, nd, < oo then the convergence of
S0 | an implies that na, = o(1), n — oo.

REMARK 2.1. This lemma includes the corresponding result for classical quasi-monotone
sequences; indeed, if {ay, } is quasi-monotone we have Y >°  nd, => " " jnate=a > a,
< 00 by hypothesis.

LEMMA 2.2. Let {a,} be 6-quasi-monotone with Y.~ né, < oco. If >°° | a, < oo, then

Yoo (n+1)|Aay| < co.

Ahmad and Zahid Ali Zaini proved the following theorem.

THEOREM 2.7 ([1]). Let (CS) be a Fourier series with §-quasi-monotone coefficients with
Yoo nby, < oco. Then ||S, — a,|| = o(1), n — oo iff (an + by)logn = o(1), n — .

Applying Theorems 2.5 and 2.6 to the series (C) we shall present a new proof of this
theorem, rewritten as follows:

THEOREM 2.8. Let (C) be a Fourier series with &-quasi-monotone coefficients with
>0 ndy, < co. Then (C) is mean convergent iff a,logn = o(1), n — oo.

Proof. Suppose ||S, — f|| = o(1), n — oco. We have

a2n—1 > a2n _ 5271—1

)

n - n n
A2n—2 > A2n—1 . O2n—2 > a2n o O2n—1 . O2n—2
n—-1"n—-1 n-1"n-1 n—-1 n-1’
a2n—3 > A2n—2 _ O2n—3 > A2n, . don—1 _ don—2 _ Oon—3
n—2"n—-2 n—-2"n—-2 n—-2 n-2 n-=-2’
& an+1 B 5_n > A2n B 52n—1 B 5277,—2 o o 5_11
1 — 1 1 = 1 1 1 1

Adding these inequalities, we obtain

n Ao 1 1 1 1
oL > (14 o = Jagn — (145 4+ = G2
K 2 n 2 "

k=1
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1 1 1 On
—(1l+=-+...+4——0op—2—...— [ 14+ = |Opy1 — —
(+2+ +n1)2 2 (+2) +17
1 1 2n—1
><1+§+...+E>a2n—<l+ +. >Z5k

From the inequalities log n < 1 + % + % +...+ 5 <n for n € N, we obtain

2n—1

an—f—za nth > asgp logn — Z ko,

k=n

i.e.

n 00
agnlogn<an+z%+2k5k.

Letting n — oo and applying Theorem 2.5 we get a,, logn = o(1), n — cc.
Conversely, assume a,, logn = o(1), n — oco. Applying Theorem 2.6, it suffices to show
that

myp—1
A, = Z |Aagin|log(k+ 1) =0o(1), n— oco.
k=1
Indeed,
mp—1
An § (logmn) Z |Aak+n|
k=1

my,—1 my,—1
< (logmy,) ( Z Aagyy + 2 Z 5k+n)

my—1

= (10g mn)(anJrl - anern*l) + 2(10g mn) Z Okin
k=1
= O(an41logn) + O( Z z‘éi) =0(1), n— oo.

1=n+1

This generalizes a theorem of Garrett, Rees and Stanojevi¢ [15], where quasi-mono-
tonicity is assumed.

On the other hand, Mazhar [28] defined a class S(¢) as follows: A null sequence {a,}
belongs to S(9) if there exists a sequence {A,} such that {4, } is d-quasi-monotone,
oo nb, <00,y A, < oo and |Aa,| < A, for all n.

Later, Bor showed that the condition {a,} € S(d) is sufficient for the integrability of
the limit g(x) = limy,, 00 gn ().

THEOREM 2.9 (Bor [7]). Let {a,} € S(8). Then

é i Aay sin[(k + 1/2)x] = hix)

xT
k=1

converges for x € (0,7] and h(z)/x € L(0,n].
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In [49] we defined a new class of positive sequences. Namely, we say that a null sequence
{ax} belongs to the class S,(d), p > 1, if there exists a sequence {A} of numbers such
that

(a) {Ag} is 0-quasi-monotone and Zkék < 00.

k=1
b) ZAk < 00,

1 \Aak|p
n+lz o).

In view of the above definitions it is obvious that S(§) C S,(d). Applying the Hélder—
Hausdorff-Young technique (as in the proof of Theorem 1.14) we can get the following
lemma.

LEMMA 2.3 ([56]). Let 1 <p <2 and {a;} € Sp(5). Then

k
Aa
> T Di@)

j=0 "

de=0,(k+1), k— oo,

O ey

where O, depends only on p.
LEMMA 2.4 ([56]). Let 1 <p <2 and {a;} € Sp(5). Then

A, A“J D;(

(z)

dx =o(l), n — oo.

O e 3

Proof. Applying first Lemma 2.3, and then Lemma 2.1, yields

A, A“J D;(

(x)|dz =0,((n+1)A,) =0(1), n— oo.

O e

THEOREM 2.10 ([56]) Let {ar} € Sp(9) for some 1 < p < 2. Then (C) is the Fourier
series of some f € LY(0,7) and ||S, — f|| = o(1), n — oo if and only if a,logn = o(1),
n— oo.

Proof. By summation by parts, and by Holder’s inequality, we have
n B n |Aak|
pOIETE) PR
k=1 k=1
n—1 k p 1/p
<> (k+1) |AAk|( Z ,Z > +(n+1)A (

k=1 7=0 ]

Sl
n—1

=0 Y0+ DIAA + (n+ 1)4,].

k=1

Application of Lemmas 2.1 and 2.2 yields > | |Aa,| < oo, i.e. S, (z) converges to f(z)
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for  # 0. Using the Abel transformation, we obtain
[e.e]
= Z Aay Dy (z)
k=0

since lim,, ,ooan Dy, (z) = 0 if © # 0. Then
S0 = fll = llgn — f + any1Dnll,

where g, is the Rees—Stanojevi¢ sum. Using the Abel transformation, we have
gn(x) = Sp(2) — any1Dn( Z Aay Dy (x

Since Y07, |Aay| < oo, the series Y7 ) Aay Dy (z) converges. Hence lim,, . g, () exists
for x # 0. Then

(oo} ™ (o]
1
1 =gal = 3 Aani] == §| 3 AwDi@)|do
k=n+1 0 k=n+l
Application of the Abel transformation and of Lemmas 2.4, 2.3 and 2.2 yields

H 3 Ak%Dk( )‘d:c< \AAkS
0 k=ntl k k=n+1 0

Aa]D ()

dx+o(l)=0(1), n— oo.

Hence, || — ga| = o(1), n — oo.
“If”: Assume ||S,, — f|| = o(1), n — oco. Since ||D,|| = O(logn), by the estimate
lant+1Dnll = 180 = gull < S0 = fIl + 1 = gnll = o(1) +0(1), n — oo,
we have a,, logn = o(1), n — oo.
“Only if”: Assume a, logn = o(1), n — oco. Then
150 = fII < llgn = fll + lant1 Dn(@)[| = o(1) + an410(logn) = o(1),  n — oo.
COROLLARY 2.1 ([57]). Let {a,} € Sp(8) for some 1 < p < 2. Then

é i Aay sin[(k + 1/2)x] = h(@)

x
k=1
converges for x € (0,7] and h(z)/x € L(0,n].

Proof. Since

2sin(x/2) f(x) = agsin(x/2) + Z ay(2sin(xz/2) cos kx)
k=1

= agsin(z/2) + Y apsin[(k + 1/2)]z — (k — 1/2)a]
k=1
= (ag — a1) sin(z/2) + (a1 — az) sin(3z/2) + (ag — a3) sin(5x/2) +

= Z Aay, sin[(2k + 1)x /2] = h(z),
k=1
by Theorem 2.10, the proof is obvious.
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2.3. On the equivalence of classes of Fourier coefficients. In [6] Bor considered
the following class S?(d). A sequence {ax} belongs to S%(6) if ax — 0 as k — oo, and
there exists a sequence {Ay} of numbers which is d-quasi-monotone, > - kdj < oo,
Yoo k|AAg] < 0o and |Aay| < Ay, for all k. Also, he proved Theorems 2.2 and 2.9 with
S2(8) in place of S” and S(0).

Recently, Telyakovskii [47] and Leindler [25] proved that these classes and the Sidon—
Telyakovskii class S are all equivalent. Now, we shall present the proof of S. A. Telyakov-
skil.

THEOREM 2.11. The classes S, S, S(8) and S?(8) are all equivalent.

Proof. First we prove that S(§) and S?(§) are equivalent.

Let {a,} € S(8). It suffices to show that Y~ | n|AA,| < oo, but this holds by Lemma
2.2.

If {a,} € S%(6), then

nAn:nZAAkg Zk|AAk|:0(1), n — oo.

k=n k=n
But
n—1 n—1
ZAk =Y kAA,+nA, <Y K|AA+nA,,
k=1 k=1 k=1

and this implies that >~ | A, < oo, L.e. {a,} € S(9).
Next we prove that S and S(d) are equivalent. It is obvious that S C S(0). If {a,} €
S(6), we define

m=k

Then Bj, — Bk+1 AAp + 6, > 0,ie. By | 0as k — oco. On the other hand,

;Bk ZAk+ZZ5m—ZAk+ZZ5m_ZAk+Zm5m<oo

k=1m=k m=1 k=1
and |Aa,| < An < B, for all n, i.e. {an} € S. Now we have

Scs cS@)cs.
Consequently, S = S’ = S(§) = S2(9).
Applying this result, the inequality

Z ‘Aak|p Z |Aak‘p )’

and also Theorem 2.4, we obtam the followmg corollary.

COROLLARY 2.2 ([62]). For all p > 1, the classes Sy, S, (case a =1 = 0) and Sy(d) are
equivalent.

REMARK 2.2. If ¢, = a, is a real even sequence (¢, = ¢, = ap, n = 0,1,2,...)

then Theorem 1.8 of C. V. Stanojevi¢ and V. B. Stanojevi¢, the Sheng theorem (see
Chapter III, 3.3, Theorem 3.17) and Theorem 2.10 are equivalent.
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2.4. Trigonometric series with regularly quasi-monotone coefficients. A positive
measurable function L(u) is said to be slowly varying in the sense of Karamata [20] if
limy, 0o L(Au)/L(u) = 1 for every A > 0. A basic property of slowly varying functions is
the asymptotic relation [20]:

u® max s “L(s)~ L(u), wu—o0, forany «>0.
u<s<o0o

Slowly varying sequences are defined analogously: a positive sequence {l,} is said to
be slowly varying if lim, oolpn)/ln = 1 for every A > 0. The class of slowly varying
sequences is denoted by SV (N).
A nondecreasing sequence {r,} of positive numbers is reqularly varying, i.e. {r,} €
(RV)(N) in the sense of J. Karamata [21], if for some a > 0,
lim ZA ey s

n—oo T,

Regularly varying sequences are characterized [20] as follows: {r, } € (RV)(N) if and only
if r,, = n®l,, for some o > 0 and some {l,,} € (SV)(N). On the other hand, a sequence
{an} is called regularly quasi-monotone, written {a,} € RQM, if a,/r, | 0 for some
{rn} € (RV)(N). It is obvious that the class of quasi-monotone sequences is a subclass
of RQM. The next theorem is a generalization of the de la Vallée Poussin theorem (see
Chapter II, 2.1).

THEOREM 2.12 ([65]). If {a,} € RQM and ., a, < oo then na, = o(1), n — .
Proof. We have

l2n

2n—1 a 2n—1 a —(2n—v)
2n

But

implies that

Thus
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The asymptotic relation

(2.2) Iy ~ k% supn=Pl,, k— o,
n>k

gives for large n,

2n—1 2n—1 2n—1
ZlszU sup m’~ Bl > sup miﬁlmEZvﬁ
v—n m>v m>2n—1 v—n
2n—1
> nﬂ[ sup m_ﬁlm} Z 1
m>2n—1 o—n

- (2 62 1)8 -5 LI
=\an—t) G V7L s e g b

for some 8 > 0. Consequently,

oo
nasy, fon—1 < 28 Z Qy.
lQn v=n

Letting n — oo, we obtain na,, = o(1), n — co.

Sheng proved the following results on L'-approximation of trigonometric series with
regularly quasi-monotone coefficients.

THEOREM 2.13 ([33]). Let (CS) be a Fourier series with {an},{b,} € RQM. Then there
exist positive constants C1 and Co such that

2n—1
ay + by
L _
Ch Z v—n 7||Sn ull,
v=n+1
2n—1 I
15, = mll < Caf 3 (o) (o )

v=n-+1

2n—1
1
— 1 — 1
+— D (av+by)log(v —n + )}

v=n-+1
where T, (x) =n~! Zi”nl Sk(z) and e, = lyp1/l, — 1.

The next theorem generalizes Theorem 1.25.

THEOREM 2.14 ([65]). Let (C) be a Fourier series with {a,} € RQM. Then (C) is mean
convergent iff a, logn = o(1), n — oc.

Proof. For the necessity we apply Theorem 2.5, i.e. >.}'_ anir/k = 0(1), n — oo. Since
{an} € RQM we obtain the inequalities

Z Atk (n+ k)l
(n+k)*lyk k

k=1 k=1

Z (05798 Z (’I'L + k)aln+k
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Applying the asymptotic relation (2.2) for large n, we have

Zn: ln_;’_k _ 22” lk " i k/’ﬁ supmzk m_ﬂlm
k k—n k—n
k=1 k=n+1 k=n+1
> Pl
2 ) 2
= k=n-+1
"1
>(n+1 B( su m_ﬁlm -
(n+1)°(sup. >k§:j )
n+1 3[ (2n)° z”: 1 -
= n)” sup m~ — nlogn.
2n ngn =1 k Qﬁ 2 &

Letting n — oo in the inequality

(e} n a k
1 2[-} n-4
Qop logn < (n—|—1> 2 A

completes the proof of the necessity.

For the sufficiency, we apply Theorem 2.6. From the monotonicity of the sequence
ap[Tn, We get

my—1 n+m,—1

k=1 i=n+1
n+m,—1 @ a

Z mA(—Z> + = (ry = rip1)|log(i —n 4 1)
: T Tit+1
1=n+1
n+my,—1 a n+m,—1 a
7 i+1 .
< Tngm,—110gmy, Z A(Z) + Z Tirt (ri+1 — ;) log(i+ 1)
i=n-+1 i=n+1

anJrl _ anernl)

= Tntm, —110g My, (
Tn+4+1 Tn4+m,—1

n+my,—1
max (ajt1log(i + 1)) Z (1 i >

1<i< n—1 ;
n+1<i<n+4+m i1 Ti+1

Since

n+m,—1 n+m,—1 ’I" 7" r

O R B |
1=n+1 Ti+1 i=n+1 Tnt1 "n
we obtain
Tnd+my,—1 log mpy T'n+m,, .
A, < Tl (ans1log(n + 1) + ™ max  [agy log(i + 1)].
Ty logn Ty  ntl<i<ntmp,—1

The hypothesis a, logn = o(1), n — oo and {r,} € (RV)(N) imply that the first and
second terms on the right side are o(1), n — oo. Finally, A, = o(1), n — oo, i.e. the
series (C) is mean convergent.
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REMARK 2.3. The proof of the necessity of this theorem can be simplified by using the
monotonicity of the sequence {r,} and the fact that {a,/r,} |. We have

n n

n
Aptk Qpik Tnik ag T
2: n-+ _2: n-+ n+ > n Z:E ainogn) n.
k=1

=1 rn-i—k T27L Ton

—_

Taking n — oo in the inequality

S

A2n

completes the proof.

ITI. Estimates of trigonometric series, useful in problems of
approximation theory

3.1. Some L'-estimates for trigonometric series with the Fomin coefficient
condition. Let f(x) and g(z) be the sums of the series (C) and (S) respectively. It is
well known (see [2], [22], [73]) that if {a,} is a quasi-convex null sequence of real numbers,
then the series (C) is the Fourier series of some f € L' and

™

(3.1) V1) do < ngm?ak_l\.

0 k=1

The following two theorems were proved by Telyakovskii [42], [43].
THEOREM 3.1 ([42]). Let {a,} € BV, a, — 0 and

oo | 1/2]
2

Z Aa;_j — Aaiqp
1=2

& < 00.

k=1
Then

< ]Aaz k— ACLH—k

S\f |dx<C(ZAak|+

where C is some absolute constant.

)

=2 ' k=1

THEOREM 3.2 ([43]). Let {a,} € BV, a, — 0, ag =0, and

oo | [i/2]
>

Aai_ — Aaiqy
i—2 Z k -

k=1

Then the following estimate holds uniformly with respect to s € N:

<C(Z|Aak|+z

=2

™

el Z'“’“'

w/(2s+1)

Z Aaz k= Aai-{-k

)

k=1

where C is some absolute constant.
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Also, Telyakovskif [42], [44] proved the following inequality:

oo /2]
(3.2) >

Z M < CZMA%IC_”.
=2

k=1

REMARK 3.1. If {a)} is a quasi-convex null sequence then Y p-  [Aax| < 372, k|A%ak].
Thus the estimate (3.1) follows from Theorem 3.1 and the estimate (3.2) with some
absolute constant C' instead of 7/2.

THEOREM 3.3. If {ax} is a quasi-convex null sequence with ag = 0, then (S) is a Fourier
series iff Yo, |an|/n < 00. Moreover, if >0° | |an|/n < 0o, then

S Zaksmkx dx<2‘ | +CZI€|A2% 1]

0! k=1
REMARK 3.2. If {a,} is a quasi-convex null sequence then the estimate of Theorem 3.3
is a consequence of Theorem 3.2 and of the estimate (3.2).

Also, Telyakovskil [41] gave a direct proof of Theorem 3.3, by proving the following

estimate:
T

S

1/(s+1)
In [45] the indicated results on series with quasi-convex coefficients were extended to

dx—z |C;:|

k=1

o0
g ag sin kx

k=1

< C’Zk\AZak i, C>o.

the more general case when the coefficients {ay} satisfy the Sidon—Telyakovskil class S.
Namely, Telyakovskii proved the following theorems.

THEOREM 3.4 ([45]). Let the coefficients of the series (C) belong to the class S. Then
(C) is the Fourier series of some f € L(0,7) and

[f@)lde <MY A, M >0

0 n=0
THEOREM 3.5 ([45]). Let the coefficients of the series (S) belong to the class S. Then

T

p 00
| lo@lar=3" 101030 4,).
/(o) n=1 n=1
for p € N. In particular g(z) is a Fourier series iff Y .- |an|/n < oco.

COROLLARY 3.1 ([66]). Let the coefficients of the series (C) belong to the class S(9).
Then (C) is the Fourier series of some f € L*(0,7) and

Slf |dw<M(ZA +Zn5) M > 0.

Proof. Applying Theorems 2.11 and 3.4, we obtain

V@l < M3 B, = M (ZA,LJrZ S 6)

n=0 n=0m=n

:M(iAn+Zn5n), M > 0.
n=0 n=1
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Analogously, applying Theorems 2.11 and 3.5, we obtain
COROLLARY 3.2 ([66]). Let the coefficients of the series (S) belong to the class S(6). Then

T

| lolde =320 o( 3 a,) +o(in5n)

m/(p+1)
forp e N.

On the other hand, Fomin [13] proved the following estimate:

oo | /2 Aa k Aa k
(3.3) Z Zl—” <G, ZQ AP
=2 'k=1 s=0

for any 1 <p <2, Where the positive constant C), depends only on p.
LEMMA 3.1 (Elliot [18]). If 0< ¢ <1, b, >0 and > .- bl < co then

() R p ()

n=1

unless all the b,, are zero.

THEOREM 3.6 ([59], [60]). Let {a,} € F), for some 1 < p < 2. Then the series (C) is the
Fourier series of some f € L'(0,7) and

( - o 1/p
r@lde<c, S (M)
0 el

Proof. Putting b, = |Aa,|P in Lemma 3.1, where ¢ = 1/p, we get

1 \"?P& > (| Aan P + |Aania|P + ..\ P
(71) Rae< 3 (Befrites)

n=1 n=1

i.e.

0o 0o ZZO_ |Aak‘p 1/p
> 14, < (p -1y (= S0 )
n=1 n=1 "

On the other hand, since Uy = s71 >°72 | Aag|P is a decreasing sequence,

28

225 (p) < 22 |: s—1)(p—1) Z |Aak|p:| 1/p
k=2s-141
n 1 0 1/p gt
< 2225—1(28 .S |Aak|f’) —o( S wa).
s=1 k=92s—1 s=1

Letting n — oo, we have

R )

s=1

Then applying Theorem 3.1 and inequality (3.3) completes the proof.
Similarly, applying Theorem 3.2, we can get
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THEOREM 3.7 ([59], [60]). Let 1 < p < 2, {an} € F, and ag = 0. Then (S) is a Fourier
series iff > |an|/n < co. Moreover if > 7 |an|/n < oo, then

ol o N (Sila |darP\
Olgaksmkx‘dx<z —|—C’I,Z:1 %

3.2. Some results on L'-approximation of the rth derivative of Fourier se-
ries. In this section we obtain L!-inequalities for rth derivatives of the series (C) and (S).

Generalizations of the Telyakovskil inequalities [52], [53], [55] are obtained by consid-
ering the condition S, 7 € NU {0}, and Spar, 1 <p <2, >0, r € {0,1,...,[a]},
instead of S. An equivalent form of the condition ., r € NU {0}, and an extension of
Sidon’s Theorem 1.3 are given.

THEOREM 3.8 ([52]). Let r € NU {0} and let the coefficients of the series (C) belong to
the class 3. Then the rth derivative of (C) is the Fourier series of some f") € L'(0, )

and
T

S|f(r)(x)|d:c§MZ”TAn, where 0 < M = M(r) < oo.
0 n=1

Proof 1. We have

n

S IAK ar) <D |k + 1) args — Kagaa |+ > [K akp1 — K ax]
= k=1

k=1

= S IR ari ] + 3K Aa
k=1 k=1
= OT ( Z kT71|ak+1|) + O(Z kTAk) .
k=1 k=1

Applying the Abel transformation, we have

n n—1 k n
Sk Margal =Y Alagga ] 57+ langa > 57!
k=1 k=1 j=1 j=1

n—1
< Z |Aagy1|k" + |an1|n”
k=1
n—1 0
<Y |Aapga b+ D KT Aay
k=1 k=n-+1
n—1
< Z k" Ay + Z k" Ag.

k=n-+1
Letting n — oo, we get > po |A(k"ar)| < o0, i.e. lim,, .S (z) = f)(x).

Since |D7(f) (z)] = O(n"/z) (see [32]), the series > -, AakD,(:)(x) is uniformly conver-
gent on any compact subset of (0,7). Thus the representation f(z) = > ro, Aar Dy ()
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implies that
) (x) Z Aayp D"

From Lemmas 1.6 and 1.10, we obtain

Z Aa] D(7

7=0

(3.4) Ay | ) dz = O((N + 1) Ay) = o(1), N — oo.

0

Again applying the Abel transformation, (3.4) and Lemma 1.6, we get

T N—1 T
S |F")(2)] dz < Nlim AAk S
0 k=0 0

k
Aa

S0 @)

dxr

7=0

NHoo

N—-1
O(1) lim Z (AA)(k+ 1)+
k=0

N
lim { ; [(k+ 1)+ — k14, — (N + 1)"+1AN}

— 00

=or(ikﬂ4k),

k=0
where O, depends on r.
Proof 2 ([63]). First we prove that if {a,} € S, then {n"a,} € S. We define the sequence
{Bg} as follows:

B =k Ar+ Y [i"—(i—1)"A.
i=k+1
We have

By — B4l = k" Ay — (]f + 1)TAk+1 + (k + 1)TAk+1 - kTAk;Jrl =k"AA, > 0.
Then

k=11i=k
- Z A S S+ 1) A
=1 k=1

= Z k" Ag + Z i+ 1)" =i Ay
k=1 i=1

< Z k" A + Z[(i + 1) = A

Ay +0T(imi) <o
=1

I
i i
=
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Then A(k"ar) = k"ar — (K + 1)"ar41 = k"Aar — ((k+ 1)" — k")ak41. The function
h(z) = (z + 1)" — 2" is increasing on [0, 00), since h/(z) = r[(x + 1)~ — 2"~1] > 0 for
x > 0. This implies that

|AK"ar)| < k" |Aag| + ((k+1)" — /c’")|ak+1|

<K A+ ((k+1)" — k") Z | A
i=k+1

<K A+ Y (i — (i —1)")]Aal
i=k+1

<EAc+ Y ("= (i—1)")A; =B
i=k+1
Thus {n"a,} € S. Now, applying Theorem 3.4, we obtain

™

V1F0 (@) da < MiBn < M[ikmk +0r(ii%—)}
0 n=0 k=1 i=1
- or(ikmk)
k=1

where O,. depends on 7.

THEOREM 3.9 ([55]). Let r € NU {0}. A null sequence {a,} belongs to the class 3, if
and only if it can be represented as

Zkaal, n €N,

k=n l=n
where {a, }22, and {pn}22, are sequences such that |a,| <1 for all n and
oo
(3.5) an|pn| < 0.
n=1

Proof. Let (3.5) hold. Then

and we define

Since |ag| < 1, we get

oo
| Aag] < Jon] Y Pl < 4, for all k.
m

=k
However, "
ZkTAk:Zk Z%:Z%ZkT§Zmr|pm|<oo,
k=1 = m=k m=1 k=1 m=1

and A | 0, i.e. {ar} € S
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Conversely, if {a;} € S, we put a, = (Aag)/Ar and pp = k(Ar — Ags1). Hence
|| <1, and by Lemma 1.10 we get

Z kr|pk| = Z kr+1(Ak — Ak+1 (Z kTAk) .

k=1
Finally,
ak—ZAaz Za -:E Z_‘AAng Z_Em Zk%ngai,

i.e. (3.5) holds.

COROLLARY 3.3 ([55]). Let r € NU{0} and let {a,}2, and {p,}52 be sequences such
that |ay,| < 1 for every n and let 00 n"|p,| < oo. If

Zpkz:oq, n €N,

k=n l=n

then the rth derivative of the series (C) is the Fourier series of some f(") € L',
Proof. This follows from Theorems 3.8 and 3.9.

LEMMA 3.2 ([52]). Let {o;}¥_, be a sequence of real numbers. Then

™

B (j+1/2)sin[(j +1/2)z + (v + 3)7/2] .
U, = ﬂ/(1§+1) jZO 3 (sin(z/2)) +1-v ‘
k 1/2
= O((k + 1)T—v+1/2(2 CHORS 1)2”) )

=0
forve{0,1,...,r} and r € NU{0}.

Proof. Applying first the Cauchy—Bunyakovskii inequality yields

Ui s [ | <sm<x/z?§i<r+w}m

w/(k+1)

s

x { | [iaj(j +1/2)"sin[(j + 1/2)z + (v + 3)7r/2]} ’ dx}

7/(k+1) =0

1/2

Since

S dx A2(r+1-v) S dx
(r4+1— ’U) — 2(r+1—v)
) (sin(z/2))2( ) x
7T(k+ 1)2(r+1—v)—1

<
2r+1—-v)—1 —

7T(k’ + 1)2(7“-1—1—1})—17
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we have

U < Va[(k + 1)20F1-v)—1j1/2
{11
0

Tk 2 y1/2
< V2r|(k + 1)2<T+1*v>*1]1/2{ | [ a;(j +1/2) sin[(2] + 1)t + (v + 3)7r/2]} dt} /
0 j=0

k 2 1/2
a;(j +1/2) sin[(j + 1/2)z + (v + 3)7r/2]} dx}
=0

J

Then applying the Parseval equality, we get

k
Ui < Vr((k + 1072 [ 37 02 4 1)

=0

]1/2'

Finally,
Up = O((k 4 l)T“H/Q(Zk:a]Q-(j n 1)21,)1/2).

=0

LEMMA 3.3 ([55]). Let r € NU{0} and let {ax} be a sequence of real numbers such that
|ak| <1 for all k. Then there exists a finite constant M = M(r) > 0 such that

‘ Zaka ’da: < M(n+1)"H
n/(n+1) k=0

for any n > 0.
Proof. Since — cos[(n + 1/2)z] = sin[(n + 1/2)x + 37/2], by Lemma 1.13, we get

—(r 2 (n+1/2)Fsin[(n + 1/2)z + (k + 3)7/2

n (n+1/2)"sin[(n + 1/2)x + (r + 3)7/2]
2sin(x/2) ’

where the @ are analytic functions of z, independent of n. Then

T

S ‘ Z akﬁ,(:) (x)‘ dx
w/(n+1) k=0

™

n r (j+1/2)sin[(j +1/2)z + (v + 3)7/2]
<
< (Gt )|
w/(nt1) | 3=0 2sin(z/2)
Since ¢, are bounded functions, we have
: <
S Za] (sin(z/2))r+1-v Yol dr < KUy,

w/(n+1) ' J=0
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where U, is the integral as in Lemma 3.2 and K is a positive constant. Applying Lemma

3.2 to the last integral, we get

¢ +1/2)?sin[(j + 1/2)x + (v + 3)7/2]
S Z & g S(smj(;v/Z))T+1 v Pu(2)

w/(n+1)  J=0
n 1/2
_ O((n + 1)T7v+1/2(za]2_(j + 1)21}) )
3=0
= O(n+ 1)~ + 1)) = Of(n + 1)),

Since r is a finite value, we have X\, = O((n + 1)"™!). Similarly, u,, = O((n + 1)"1).
Thus, the inequality is proved.

dx

REMARK 3.3. For r =0, we get the Telyakovskil inequality, proved in [45].

THEOREM 3.10 ([55]). Let r € NU {0} and let the coefficients of the series g(x) belong
to the class .. Then the rth derivative of the series (S) converges to a function and

(%) i |g(r)(g;)\dx§M(§:|an|nrfl+in7«An>’
7 /(m+1) n=1 n=1

for m € N, where 0 < M = M(r) < oco. Moreover, if > oo n" *a,| < oo, then the rth
derivative of (S) is the Fourier series of some g™ € L*(0,7) and

X |g(r)(m)| dr < M( i lan|n™ ! 4 i nTAn).
n=1 n=1

0

Proof. We suppose that ag = 0 and Ag = max(|a1|, A1). Applying the Abel transforma-
tion, we have

(3.6) g(x) = Z AapDy(x), € (0,7

Applying the inequality of Lemma 4.3(iii), we see that the series Y ;- Aakﬁ,(;)(x) is
uniformly convergent on any compact subset of [, 7], where € > 0. Thus representation
(3.6) implies that

(T) ZAaka x), x€ (0,7
Then
T ™ oo
| 9@lde= § |3 AaDy@)|d
w/(m+1) n/(m+1) k=0
m /i
S

i=1n)(j+1) k=0

™

Lo(3 ];zAaka () a).

j= 17r/(]+1 k=j
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Let
m /3 j—1 ) m 7T/J
L :Z S ZAaka (a:)‘da:, I, = ‘ZAaka
J=lr/(j4+1) k=0 J= 1vr/(J+1) k=j

Applying the well known expansion
T 2 = 4x
t — = — -
cg<2) x+;x2—4n27r2

it is not difficult to prove the following estimate:

(C‘Cg(%))m = % +0(1), e (0,7).

Thus
=(r) ( 1)T+1r' r
D, (@) = ~— 57—+ O0((n+1)""), @€ (0]
Hence
m  j—1 m/j du m _j—1 m/j
11:7"!2’ Aak’ X W—FO(Z{X}A%\ (k + )TH] S dx)
j=1 k=0 7/ (5+1) i=1 m/(j+1)
m m j—1 1
. (k+ 1) Aay|
=0, Z|%‘|JT ! +O(Z — 0 |
(j=1 ) j=1k=0 3G +1)
where O,. depends on r. But
m j—1 m 7j—1
(k+1)"tHA
Z + 1‘ ak| Z k-i—l T+1|Aak‘
j=1k=0 ‘7 + Jj= 1 k=0
[e.e]
r+1
<Zk+ | Aag| Z g+1 = (k+1)"|Adl
S d k=0
= |Aay| +Z(k+ 1)"| Aay| < |ay] +2TZkT|Aak|
k=1 k=1
<Y |Aak| +27 Y KA < (1427) > K Ay
k=1 k=1 k=1
Thus,
m j—1 r+1
\Aak| k‘ + 1 + (
Al 0 ().

where O, depends on r. Therefore,

—0,(Yla ) + 0, ( KAL),
j=1 k=1
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where O, depends on r. Applying the Abel transformation yields

Z Aa. Dy Z A4y Z 20i 50

=0 Z
Let us estimate the second 1ntegral:

s k

I < Z_; [;(AAI@> X > ia D

n/G+1) =0

Applying Lemma 3.3, we have

T

(3.7) Je= |
w/G+1) ! =0

where O,. depends on 7. Then by Lemma 4.3(iii),

m/i  j-1

(3.8) 1> i‘“ D\ (z)| dz
m/(+1) =0
7/
_ O( S (Z |Aa2|
/(+1) =0

=0@") +0:(") =0:(3"),

where O, depends on 7.
However, by (3.7), (3.8), Lemma 1.10, we have

I < i(AAk) T + Or(ijTAj)

- iAAk k1 T+1+O(ZJTA)

k=1 j=1

<.

)|+ 4;

~ |Aa
S @) dw = On((k+ 1)),

45

COROLLARY 3.4. Let r € NU {0} and let the coefficients of the series g(x) satisfy the

condition .. Then

T

{le" @) dz=0 (Zn ")

0
where O, depends on r.

Proof. By the inequalities

Z|an|nr 1<an 1Z|Aak|<ZnT IZAk
k
Z r— ISZkTAka

k=1

n=1

oo
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and by Theorem 3.10, we obtain

T

[ 1y @daz=0 (Zn ")

7/(m+1)

Letting m — oo completes the proof.

LEMMA 3.4. Let {Oéj}?:o be a sequence of real numbers. Then

T

(j+1/2)?sin[(j + 1/2)x + v /2]
= d
V= | Z & (sin(z/2)) 1 v
w/(k+1)
k 1/p
= Oy (1)1 (k4 1771 3 | )
§=0
forve{0,1,....r},a>0andr € {0,1,...,[a]}, where O, depends only on p.
Proof. Applying Lemma 1.12, we get
+1 1 k 1/p
il 1/p
=0, ((k + 1)1+a [(k + 1)p(r7a)*1 Z |aj‘P} )’
§=0
where O, depends only on p.
LEMMA 3.5. Let 1 <p <2, a>0,7re€{0,1,...,[a]}, and let the sequence {a,} of real
numbers belong to the class Spm. Then
™ A .
| Z T D @) de = 0yl 4 1)),
0'5=0
where O, depends only on
Proof. We have
Tk Aa w/(k+1) m
1D e L IR N R
0'j=0 " 0 x/(k+1)

Applying the inequality D(T)( ) = O(n"*1), we obtain

k 1/p
T E | +1 1 E |Aa’j|p

k
Aa:lP
_ ,Y(k__|_ 1)1+a |:(k'+ I)P(r—a)—l Z ‘ Z}JJ :| — O((k+ 1)a+1).
j=0
For the second integral we apply Lemmas 1.13 and 3.4 to get
Jr = Op((k + 1)),

Thus, the inequality is satisfied.
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LEMMA 3.6. Let 1 <p <2, a>0,re€{0,1,...,[a]} and {an} € Spar. Then

ZAa]D

Proof. Applying first Lemma 3.5, then Lemma 1.10, we obtain

AN dxr =0(1), N — oo.

O e 3

T N
Aaj
Av | ZA—D( o) dr = O, (An(N + 1)) = o(1), N — oc.
0'j=0 "
THEOREM 3.11 ([53]). Let 1 <p <2, a >0, r € {0,1,...,[ca]}, and let the coefficients

of the series (C) belong to the class Spar. Then the rth derivative of (C) is the Fourier
series of some f(") € L(0,7) and

7Sr|f |dx<MpaZn Ay,
0

n=0

where My o s a positive constant depending on p and o.

Proof. Since

n—1 k

(D) D k| Aak| = ) (AA) Z
k=1 k=1

j=1 J

n—1 1
Z(AA )kl—i-a |:kp(7 a)— IZ|A0,]|I’:| /p

<
k=1 j=1 J
+ n1+aA |: p(r—a)—1 Z ‘ACLJ| :|
n—1 n
—0(1) [Z(AAk)kHa + n1+aAn} - O(Z kaAk).
k=1 k=1

Applying the same estimates of the proof of Theorem 3.8, we obtain

2": k"ar)] < O, (Zk 1|ak+1)+O(Zkr|Aak|)

But

Zkr 1\ak+1\<Z|Aak+1|kr+ Z k"| Aay|

k=n+1
implies that

3 1AK @) <0 (nfmakﬂw) o.( ¥ kT\Aak|)+0(Zk’"|Aak|)
k=1 k=1 k=n+1

= Or<§kaAk) +o(l), n— oo
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Thus
Zm ap)| < Or (ZkaAk) <o, ie lim SO(@) = fO(x).

n— o0
k=1

Since f(’“)(ac) =0 AakD,(:) (x), applying the Abel transformation and Lemmas 3.6
and 3.5 we obtain

T T oo N—-1 ™ k Aa
S|f( x)| dx = HZ akD() ‘daz< lim ZAAkS ZA— j(r) dx
0 0 k=0 k=0 o!j=0 "
N—1
= 0p(1) lim Y (AA)(k + 1)
k=0
N
= lim {Z [(k + 1)°+! — ko4, — (N + 1)a+1An}
T koo
[e.e]
op,a(ZkaAk).
k=0
Finally,
V17 @) de < M, Zn Ay,
0
where M, , depends on p and a.
THEOREM 3.12 ([53]). Let 1 <p <2, a >0, r € {0,1,...,[a]}, and let the coefficients

of the series (S) belong to the class Spar. Then the rth derivative of (S) converges to a
Sfunction and

s

(%) S 19 (z)] dz < MZ a7t + Op,a,r(z koéAk)7

w/(m+1) Jj=1 k=1

for allm € N, where 0 < M = M(r) < oo and Op o, depends on p, v and . Moreover,
if 3200 n" Y a,| < oo, then the rth derivative of (S) is the Fourier series of some g\") €
LY(0,7) and

(%) I @)l do =0 (me 1)+op,m(zgm)
0

Proof. We suppose that ag = 0 and Ay = max(|a1|, A1). Applying Lemma 4.3(iii) and
the inequality (A) (proved in Th. 3.11):

zn: k7| Aay| = o<zn: KAL),
k=1 k=1

we see that the series Zzio Aakﬁ,(f) (2) is uniformly convergent on any compact subset
of [, 7], where e > 0. Thus representation (3.6) implies that

g(r Z AakDm
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Then
T m T/
(3.9) | wr@lar<> | ‘ZAakD(T) ‘
m/(m+1) i=ln/(j+1) k=0

™

co 1[5 annliou).

j=1 7/(5+1) k=j
Applying the same technique as in the proof of Theorem 3.10, we obtain

m /i

T= Z S ’ Ji Aakﬁ,(;) (:1:)’ dx

J=lx/(j+1) k=0

=0 (3 laly) + 0 30+ 1710

j=1
Then
> (k+ 1) Adgl <\a1\+27"2k7mak|
k=0 k=1
< (1+2) Y KA = 0, (3o k4L,
k=1 k=1
i.e.
(3.10) T= 0,.(2 la; |j’”’1) + O,.(Z k"‘Ak).
j=1 k=1
Let
m /3

v=3 | |3 2]
J=lrw/(j+1) k=Jj
Applying the Abel transformation, we have

U<Z[Z (AAL) Jk+AJ}

=1 k=j

where
™ k ) m/j -1 Aa ®
Ji= | Z LD (@) de, L= | Z == D" (x)| da.
w/(j+1) As m/(§+1) As

Applying the Holder-Hausdorfl-Young technique (see the proof of Lemma 3.5), we obtain
Ji = Op((k +1)*T1), where O, ,. depends on r and p. Then by Lemma 4(iii),

-1 7/J
1 Z |Aai| Z |Aas| dz
i :O<j ln( 3)( A >) ( A; X xr—"—l)
=0 7/ (5+1)

i1
o( (p(r a)- 12 |Aaz| ) >+Or<jrlz ia>
i=0 v
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-1

:O(ja)—i—OT( (pwa Z AW’) )

=0@") +0:(%) = 0r(3%).

Thus

o0

(3.11) U< 0pr(1) Y (k+ 1) (A4L) + 0.(1 Z
k:l

= Opar(l Z k*Ag + O,(1) ZjaAj

k=1
= Opasr( ; KAL),

since n®*1A,, = o(1), n — oo.

Combining the inequalities (3.9), (3.10) and (3.11) yields the inequality (x).

If Y>> n""!a,| < oo, then by letting m — oo in inequality (*), we find that the rth
derivative of the series (S) is the Fourier series of some ¢(") € L'(0,7) and the inequality
(#) is satisfied.

Now we consider the case r = a = 0. Since S, and S, (), p > 1, are identical classes
of Fourier coefficients we obtain the following corollaries.

COROLLARY 3.5 ([49], [62]). Let 1 < p < 2 and let the coefficients of the series (C) belong
to the class S,(8). Then (C) is the Fourier series of some f € L*(0,m) and

V(@) de < Mp(iAn + inan)
0 n=0 n=1

where M, is a positive constant depending only on p.

COROLLARY 3.6 ([57]). Let 1 < p < 2 and let the coefficients of the series (S) belong to
the class Sp(0). Then the series converges to a function g(x) and

™

| \dx<z|”|+op(iAn+in5n)
n=1 n=1

w/(m+1) n=1
for m € N, where O, depends only on p.

3.3. Necessary and sufficient conditions for L'-convergence of the rth deriva-
tive of Fourier series. Van and Telyakovskii [70] considered the following class of
sequences. A null sequence {ar} belongs to the class (BV)?, r € NU {0}, 0 > 0, if
> ne i k"|A%ak| < oo. In the same paper, they proved the following theorem.

THEOREM 3.13 ([70]). Let g,0 > 0. Then for all v > o we have the embedding
(BV)g C (BV)3.
For r =0 and 0 = m € NU {0} we have the well known class (BV)™.

COROLLARY 3.7. Let {a,} € (BV)? for some o > 0 and ay,logn = o(1), n — oo. Then
1S = fll = o(1), n — oo iff {an} € C.
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Proof. Let m be an integer such that m > o. Then by Theorem 3.13 (case ¢ = 0), we
have {a,} € (BV)™. Applying Theorem 1.16 completes the proof.

If o = 1, we define (BV),. = (BV)J.

Van and Telyakovskil [70] by considering the complex form of trigonometric series

oo
% + Z age?
k=1
proved the following theorem.

THEOREM 3.14 ([70]). If r e NU{0}, 0 > 0 and {a,} € (BV)Z, then the series (C) and
(S) have continuous derivatives of order r on (0, 7].

LemMa 3.7 ([32)). D)1 = (4/7)n" logn + O(n") for all r € NU {0}.

Next we shall give necessary and sufficient conditions for L!-convergence of the rth
derivative of the series (C).
THEOREM 3.15 ([54]). Let r € NU {0}, {an} € (BV),, and a,n"logn = o(1), n — .
Then ||SS) — f®|| = o(1), n — 00 iff {an} € Cy.
Proof. Since {a,} € (BV),, the series > ;- AakD,(:) (x) is uniformly convergent on any
segment [, ] where £ > 0. Thus, f)(z) =377, AakD,(:)(ac).

For the “if” part let € > 0. Then there exists § > 0 such that

) [oe) c
S ’ Z Aay D" (x)’ < = for all n.

0 k=n 3
Then

\iAakD(”( ) = an1 DY ()| da
|
(S+

Aa D" ’d £
< = +5’,€ZH a () x+3

V1 @) = 80 ()| da
0

=
Il

IN

Ot 3 ova:;

A0 D (@)|do + [asia | § 1DV (@) do
0

ﬁMg

) Z Aay DY (@)| o -+ fansa 1D

Ot 3

Applying the estimate for the rth derivative of the Dirichlet kernel (see [32]), we obtain

Sr’iAakD,g ‘dasf (ZkﬂAak)

5 k=n
Hence,

E‘];Aa +D (@ ‘da:<3

Thus for sufficiently large n, ||S,(f) —f) <e.
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For the “only if” part let € > 0. Then there exists an integer N such that
{170 =50 de < Z if n> N.

That is,

o =
o 3
=
-
&
=
g
o
w
~J
-+
=
o
=
@
@
a3
w0
-+
92}
o
=
=4
@
09
@
=
w0
e
(@)
=
—+
=3
o
-+

Since a,n" logn

Now if Zéw:o k"|Aag| = 0, then for n < M,

§| > a0pl@)|de=§| > AaD(@)|de < 3 <.
0 k=n 0 k=M+1
It S0 k7| Aag| # 0, let
3

2M 3Ly k| Aay|
For n > M, we have

Aa D(T) ‘ ‘ Aa D ‘dx< <e.
5 qoolisfan <] 3% an 2
For 0 <n < M, we get
s M s
S ’ Z Aay, D! ’ dx S ‘ Z AakD,(:)(a:)‘ dx + S ‘ Z AakD,(;)(x)‘ dx
0 k=n+1 0 k=n+1 0 k=M+1
5 M ™ oS
<§( 3w Aw) de+ H 3 Aa D,g”(x)‘dx
0 k=n+1 0 k=M+1
S KA =S4t
< ;) | ak‘+§—§+§—8

Finally, {a,} € C,.
This is an extension theorem of the Garrett—Stanojevi¢ Theorem 1.12. Applying The-
orem 1.29 and this theorem we obtain

COROLLARY 3.8. Let r € NU{0} and {a,} € .. Then ||ST(LT) — f =o(1), n — oo iff
apn”logn = o(1), n — oo.

On the other hand by Theorem 1.31, we get Sy, C (BV), NC, for any 1 < p <2 and
r € NU{0}. Again, applying the Theorem 3.15, we obtain:

COROLLARY 3.9. Let 1 < p <2 andr € NU{0}. If {an} € Spr, then ||S5) — F@)|| = o(1),
n — oo iff apn”logn = o(1), n — oo.
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Now using Lemmas 3.5, 3.6 and applying the same technique as in the proof of The-
orem 1.31, we obtain

THEOREM 3.16 ([64]). For any 1 < p < 2, « > 0 and r € {0,1,...,[a]} we have the
embeddings

Spar C (BV), NC, C BV NC,.
Combining this with Theorem 3.15 we obtain
THEOREM 3.17. Let 1 < p < 2, « > 0 and r € {0,1,...,[e}. If {an} € Spar, then
||ST(LT) — f@ =0(1), n — 00 iff apn”logn = o(1), n — oco.
REMARK 3.4. This theorem was obtained by Sheng [32], but we have given a new proof.

Denote by I, the dyadic interval [2™~1,2™) for m > 1. A null sequence {a,, } belongs
to the class Fp,, p > 1, r € NU{0}, if

oo

1/p 1 1
Z Qm(l/q”)( Z |Aak\p) < oo, where —+4-—=1.
m=1 kel,, p q
It is obvious that for r = 0, we obtain the Fomin class F},.
THEOREM 3.18. For any p > 1, « > 0 and r € {0,1,...,[a]} we have the embedding

Spar C Fpr.

Proof. From the condition

\Aak|p
np(a r)+1 Z 1)

and the monotonicity of {Ax}, we obtam

1/
O R e S )

kel kel,, k
< K -omipgmle=r) A,y

where K is an absolute constant. Hence,

Z 2m(1/Q+T)( Z |Aak|17) 1/p <K Z 2m(1/10+1/q)2mozAgwk1
m=1 k€ln m=1
00

= K Z 2m(1+a)A27n—1
m=1

m=1

THEOREM 3.19. Let 1 < p <2 andr € NU{0}. If {an} € Fyr, then S — f®)|| = o(1)
iff apn”logn = o(1), n — oco.

Proof. Using the Abel transformation we obtain

S(r) ZAakD(T) +an+1D( )( ).
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Since
M n
Z|Aa D(T) ) < lim — ) k"|Aag]
n—oo I 1
m 291
— lim —Z( 3 kT\Aak|) (for n=2" — 1 and M > 0)
n—oo I ]:1 k:2j71
M . 1/p
< lim —ZQJ“/W“)( 3 \Aakv’) < 00
n—oo I = rel,
and
n’ M &
|an+1D§LT)(x)\ < M|ap41| . < e k;rl k"|Aag| — 0, n — oo,
we get

lim SO (z) = ) (z Z Aap D (x
This implies that

15O =gl = 3 AwDP@)|
k=n-+1
By Lemma 1.9, we obtain

15 — g < 4, ZQm“/q“(Zmakw)””:o(l), n— oo,

m=j kel;

by the hypothesis of the theorem; here j = j(n) denotes the integer for which 277! <
n < 2. Since g is a polynomial, it follows that f() € L.

Since

FT = ST = Nlansa DO < 17 = g0 = o(1), 1 — oc,

by Lemma 3.7, we obtain ”57(:«) — f| =0(1), n — oo iff a0 logn = o(1), n — oo.

Similarly, we can get an analogous theorem for sine series (S).
THEOREM 3.20. Let 1 < p < 2, 7 € NU{0} and {an} € Fyr. If Yoo 0" a,| < oo
then the rth derivative of the series (S) is the Fourier series of some g e L' and
1507 = g = 0(1), n — 00 iff ans 17" logn = o(1), n— ox.

IV. Convergence and integrability of the rth derivative of
complex trigonometric series

4.1. On a theorem of Bhatia and Ram. Let {c; : k = 0,+1,+2,...} be a sequence
of complex numbers and denote the partial sums of the complex trigonometric series

) ikt
Y ohe oo CrE by

(4.1) Su(e,t)= > e, teT =R/2rL.
k=—n
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~

If the trigonometric series is the Fourier series of some f € L1, we shall write ¢, = f(n)
for all n and S, (c,t) = Sp(f,t) = Sn(f)-
Bhatia and Ram [3] introduced the following class R* of complex sequences: a null
sequence {c,} of complex numbers belongs to R* if
(%) ‘ < o0.

Z ( )‘klogk<oo ikQAQ
k=1
i zkt.

=1
k=1

Let

l\D|>—‘

é _

DY )(t) can be written as

l\Dl»—l

Then the rth derivatives D )( t) and D
2D()(t) = B (1) + B (1),
(t

’I’L

2iD{(t) = EX(t) — BU)(t),

’I’L

(4.2)

where Eff)(t) denotes the rth derivative of E,,(t).
Bhatia and Ram [3] introduced the following modified sums:

i
gn(c,t) = Sp(e,t) + 1 [cni1EL(t) — c,(nH)El,n(t)]

+1
and proved the following result.

THEOREM 4.1 ([3]). Let {c,} € R*. Then there exists f(t) such that
(1) limy,—oogn(c,t) = f(t) for all 0 < |t| < 7.

(i) f(t) € LY(T) and ||gn(c,t) — J@®)l = o(1), n — oo.

(i) S (£,1) — F(t) | = o(1) iff F(n)log|n] = o(1), [n] — oo.

Now we define a new class ®*(r), r € NU {0}, of complex sequences as follows: a null
sequence {ci} of complex numbers belongs to the class $o*(r) if
2 |a(=r) ()]
k=1
We write R*(0) = R*.

C. V. Stanojevi¢ and V. B. Stanojevi¢ [38] introduced the following modified complex
trigonometric sums:

Etllogh < oo, Y K
=1

Un(c,t) = Sn(e,t) — (enEn(t) + c_n E_p(t)).
The complex form of the rth derivative of these sums, obtained by Sheng [32], is
U (e t) = 8 (ent) = (en B (1) + con BV, (1)):
Ram and Kumari [30] introduced another set of modified cosine and sine sums

+ZZA< >k:cosk:x

k=1 j=k

ZZA( )ksmkx

k=1 j=k
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The complex form of the rth derivative of these modified sums is

(e t) = ST (et !
G (e t) = S0 (e, t) + -

a1 BSH () — ¢y BT (1)

REMARK 4.1. If |n|"¢,, — 0, |n| — oo, then ||G£f') - U,(LT)H — 0. Observe that by partial
summation, we have

Er+1( ZZE(T) ) +i(n+1)EX(t)

().

and similarly for E Then by the formulae

U (ent) = SO (e,t) = et ED(t) — e iy EO)(2)
we obtain

. . I & I &
Unta(e) = G (e t) = e =g DB () = eouiny 7y D BV
k=1 k=1

Then by the well known properties of Fejér kernels, it follows that
1GC) — UM =0, n— oo

Using the modified complex sums G%T) we shall prove the following theorem:

THEOREM 4.2. Let r € NU {0} and {c,,} € R*(r). Then
(i) limy o G (e, t) = FO(#) for all 0 < |t] < .

(i) £ € LYT) and |G (c,t) — FO(#)]l1 = o(1), n — oo.

(i) (157 (£.8) = FO (B = 0(1), n — oo iff [n]" F(n)log |n| = o(1), |n| — co.
LemMa 4.1. || DY, = O(n" logn) for all v € N U {0}.

LEMMA 4.2 ([BQJ) For each monnegative integer n and each complex sequence {cp},
lew R + - EE) |l = 0(1), [n| — o0 iff [n]"en log n] = o(1), |n] — oo.

We note that for » = 0 this lemma was obtained by Bray and Stanojevi¢ in [9].
LEMMA 4.3 ([55]). Let r be a nonnegative integer. Then for all 0 < |t| < and allm > 1
the following estimates hold:

(i) |E ( )| < dn"m/[t].
(ii) |D (t)| <Adn"w/lt].
(iil) D} (8)] < 4n"r/|t] + O(L/t™),

Proof. (i) The case r = 0 is trivial. Indeed, since E,(t) = D, (t) + iD,(t), we have

~ s s 3 47
E,.0) <|D,®)|+ D)< =—4+—=— < —,
Ea(0)] < IDu(t)] +1Du(0)] < g + 1 = 50 < 70
47
B-n(8)] = 1Ea(-1)] < 7.

Let r > 1. Applying the Abel transformation, we have

EM @) =i Zk ikt — [:2; A(kW(Ek(t) - ;) +n" (En(t) — ;)}
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and so

(4.3) 1B (1) ; [(k+1) —/f’“](%HEk(t)l)+n’"(|En(t)+%)

n—1 r

(27|;|+§|;){Zl[(k+1)rkr]+nr} _ ‘*TTT

Since E) () = B (—t), we obtain |[E")(#)] < 4mn” /|¢].
(ii) Applying (i) and (4.2) we obtain

IN

- - 1 1 An”
DY ] = DY) < SISO+ 51BL 0] < =5
(iii) We note that |(ctg(t/2))"| = (1/|t\r+1) Applying (ii), we obtain

=(r) r
D, ()] < D (2)

4n7r 1
@)
B (m“ﬂ)

l\’)\r—t

+3(ew3)
LEMMA 44 ([3)). | K/,(D)]1 = O(n).
LEMMA 4.5. ||K ||1 O(n") for all r € NU{0}.

Proof. Since

. n 1 _ k
K,(z) = Z n:;T sin kx,

we see that

~ n 1—
To(z) = K/ (z) = Z k(n;—i—i_lk) coskx
k=1

is a cosine trigonometric polynomial of order n. Applying first the Bernstein inequality,
and then Lemma 4.4, yields

1K [0 = [TV < " Talls = O(").
Proof of Theorem 4.2. Applying the Abel transformation, we have

ens1 B () — e upny BVID (1))

s T ?
G%)(Cvt) = Sv(z)(cvt) + n+1

_ i a(%)Be e +2A(”k—%) i)

*(3))

By Lemma 4.3, we get

()m

EOastIC | BT w alas

@(ZW)\N(%)\}

_oft wwafﬁﬂ)<m
(It ;] J

k=
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and
> A [ & C_p —C
A E(f’-i-l) < 2" kr+l A k k
2 (=)o) < k
=3 k=3
1 & —k —Ck
= Etllogk|lA| ———= .
O<t|kz_3 8 ’ ( k )D“O
Consequently,
r . (r > C_ — C . r
fO =23 A ( ) +1)(t)+2A<%)1E<;1>(O
k=1 k=1

exists and thus (i) follows.
Now, for t # 0, we have

FO@) = GM (e t) =2 Z A<Ck> (r+1) (1) 4 4 Z A( c’“)E(T“)()

k=n-+1 k=n-+1
r Cn —(r
—9 Z (k+1)A ( ) K () - 2(n+1)A(n—+“1)K§L;1>(t>
k=n-+1
= Cok =k L(ri1
+i Y A<T>E(k (1)
k=n-+1

Then

1790 - el <2 Y (e n|a2(2)| §IRE Y 0a

k=n-+1 —7

S KSRV ®)ldt+ Y [ 1B @) d.

> C_L — Ck t
Al ——
—7 k=n-+1 -7

Applying Lemmas 4.5, 3,7 and 4.1, we have

Cn+1
2 nia| /4=
+2(n+ )‘ <n+1)

1F0(®) = G (el = O(ki e ()
S

k" log k) .

r2[p [ Cnt1 o |af=Eme
+O<(n+1) A<n+1)‘>+0<z A( - )
k=n-+1
But
Cna1 > of Ck e
nTl — -k < e
() 2 2 (0l 2 =2 (%))
k=n+1 k=n+1

1 r42 Ck o 1
STy > A(ﬂ“"((ml)r%)’ "o

k=n-+1
Hence, || f7)(t) — G,(f)(c, t)][1 = o(1), n — oo by the hypothesis of the theorem. Since
G (c,t) is a polynomial, it follows that () € L1(T).
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The proof of (iii) follows from the estimate

£ =S5 ()l -

~

o T+ DES = f=(n 4+ 1)BL)

1
< =GP (et =o(1), n— oo,

and from Lemma 4.2.

Considering the sums Ug) instead of Ggf) and in view of Remark 4.1, statement (ii)
in Theorem 4.2 can be replaced by:

(ii") £ e LY(T) and U (c,t) — FO(#)]l1 = o(1), n — oo.
Thus we have the following result:

THEOREM 4.3. Under the hypothesis of Theorem 4.2, statements (i), (ii’) and (iii) hold.

4.2. On a theorem of P. L. Ul’yanov. The function ¢(x) is called A-integrable on
[a, b] if

) mE{o(w)] > n} = o(1/n)
b) the limit lim,, o Sa [p(x)]n dx = I exists, where

n if p(z) >n
[p(2)]n = § w(x) if [p(z)| <n,
-n  if p(z) < —n.
The number I is called the A-integral of ¢ on [a, b].
As an application of A-integrals, P. L. Ul'vanov [68] obtained an interesting result
concerning the integrability of |f|? and |g|?, for any 0 < p < 1, where

o0 o0
x) = Zak coskx, g(x)= Zak sin kx,
k=1 k=1

and {a,} is a null sequence of bounded variation:

THEOREM 4.4 ([68]). Let {a,} € BV. Then for any 0 < p < 1,

(4.4) lim | [f(2) = Su(@)Pdw =0, lim | |g(2) = Sn(a)|" do = 0.
n—oo n—oo
It is obvious that the assertion of this theorem holds when the coefficients {a,, } belong
to the classes S, Fy, Sq, Sqa (case r = 0) for some ¢ > 1, a > 0.
Next, we shall define a new LP-integrability class (0 < p < 1) as follows. A null
sequence {a, } belongs to the class Hyo, 0 < ¢ < 1, a > 0, if there exists a decreasing
sequence {Ag} such that

o0

Sk A< oo, Z ‘A“”q (1),

k=1
THEOREM 4.5. For any 0 < g <1 and any o 2 0 the class Hyo 1s a subclass of BV .

Proof. Applying the Abel transformation and the well known inequality

(4.5) (Zbi)qubg for b; >0and 0 < ¢ <1,
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we obtain
n—1 k n
1 |Aayl 1 |Aayl
_ a+1 J a+1 J
Zlﬂak\ 2 KA g 2 T ) et e
j=1 j=1 "7
n—1 1/q n 1/q
1 |Aa;|? 1 |Aa;|?
a+1 J a+1 J
<>k (AAk)< et 2 AT ) +n An<nqa+q >
k=1 j=1 J j=1 J
n—1
= 0,(1) {Z kL (AAR) + n““An} .
k=1

Now, letting n — oo and applying Lemmas 1.10 and 1.11, we obtain {a,} € BV.
Combining this theorem and Theorem 4.5, we obtain

COROLLARY 4.1. Let {a,} € Hyqo for some0 < g <1 and a > 0. Then for any0 < p < 1,
the limits (4.4) hold.

In this section, I shall prove a version of Ul’yanov’s theorem and extend it to the rth
derivative of the complex series
Z cpe™, teT,

n|<oo
where {c,} is a null sequence of complex numbers such that for some r € N U {0},
(4.6) > K Ack| < o0,

|k|<oco

The class of null sequences of complex numbers such that (4.6) holds is denoted by
(BV)%. For r = 0, we have (BV)* = (BV)}
complex numbers of bounded variation.

THEOREM 4.6. Let r € NU {0} and {c,} € (BV):. Then the pointwise limit f") of the
rth derivative of the sums (4.1) exists in T \ {0} and for any 0 < p < 1,

*, i.e. it is the class of null sequences of

(4.7) lim | [£0() = SO @) dt = 0.

n—oo

Proof. 1f t # 0, we obtain

n n—1

S aule )0 = 3 A0 + B0

k=0
Applying (4.3) and

enn” < Z k"|Ack| — 0, n — oo,
k=n
we see that > o c(e™*)(") exists a.e. Similarly Z,::lioo cr (e (") converges a.e. and
hence limy,_,s0 S (t) = f)(t) exists in T\ {0}. It is obvious that for ¢ # 0,

FO) =Sty =Y AcE;(t)

[71>n+1
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By (4.3) the series 31>, 1y chE§T)(t) is uniformly convergent on any compact subset
of T'\ {0}. Consequently,

FOt) — St Z Ac]E(”

|71>n+1

Finally, we obtain

glf(”(t)—Sff( D dt = H > AcE )| at

-7 -7 |j|>n+1
dt
Z j\ch))SWeO, n — 0o.
l7[=n+1
Let us replace the conditions ., Sy, Fpr, Spar by the conditions & S;T, pr, Spar
when the coefficients are sequences of complex numbers. It is obvious that C (BV)z,
Sy C (BV)y, Fy. C (BV)), Spar C (BV);. Applying these inclusions we obtain the

following corollaries of Theorem 4.6.

COROLLARY 4.2. Let r € NU {0} and {c,} € . Then the pointwise limit f) of the
rth derivative of the sums (4.1) ewxists in T \ {0} and for any 0 < p < 1, the limit (4.7)
holds.

COROLLARY 4.3. Let ¢ > 1, r € NU{0} and {cn} € S;,. Then the pointwise limit fm
of the rth derivative of the sums (4.1) exists in T \ {0} and for any 0 < p < 1, the limit
(4.7) holds.

COROLLARY 4.4. Let ¢ > 1, r € NU{0} and {c,} € Fy,.. Then the pointwise limit o)
of the rth derivative of the sums (4.1) exists in T \ {0} and for any 0 < p < 1, the limit
(4.7) holds.

COROLLARY 4.5. Let ¢ > 1, a > 0, r € {0,1,...,[a]} and {c,} € S}, Then the

qar

pointwise limit f) of the rth derivative of the sums (4.1) exists in T \ {0} and for any
0 < p <1, the limit (4.7) holds.

Now, we shall define a new subclass of (BV)¥. Namely, a null sequence {cj} of complex
numbers belongs to the class H 0<g¢g<1l,a>0,re{0,1,...,[a]}, if there exists a

*
qar?

decreasing sequence {Ay} such that Y 7 | k%A < oo and

P
THEOREM 4.7. For any 0 < ¢ <1, a >0 and r € {0,1,...,[a]} we have the embedding
H;,, C (BV):.

Proof. Let {c,} € H},,.. Applying the Abel transformation and (4.5), we obtain

q

n

T — @ 1 AC a 1 T AC'
Zk | Acy| —Zk +1 AAk)(kaH Zy |Aj|> “An<na+1 ¥ |A7|>
- -

k=1 j=1 J

n—1 n

1 |Acj] 1 | Ac]

a+1 J a+1 J

< Senan (i  Bl) vena (e X
j=1

k=1
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n—1 k 1/q
1 |Ac;|?
a+1 J
< Z E“TH(AAg) (kq(ar)+q z; AT )
j=

k=1

1 "L | Ac|? 1/
a+1 J
+n*TA, (nq(a’r‘)Jrq Z A;f )

=1

n—1

—0,(1) [Z KoL (AAL) + na+1An} .

k=1

Letting n — oo, and applying Lemmas 1.10 and 1.11, we obtain {c,} € (BV):.

COROLLARY 4.6. Let 0 < ¢ <1, a>0,r€{0,1,...,[a]} and {c,} € H

Then the

ar*®

pointwise limit f") of the rth derivative of the sums (4.1) exists in T \ {0} and for any
0 < p <1, the limit (4.7) holds.
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