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The absolute continuity of the invariant measure of random
iterated function systems with overlaps
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Abstract. We consider iterated function systems on the interval with random per-
turbation. Let Yε be uniformly distributed in [1−ε, 1+ε] and let fi ∈ C1+α be contractions
with fixpoints ai. We consider the iterated function system {Yεfi + ai(1− Yε)}ni=1, where
each of the maps is chosen with probability pi. It is shown that the invariant density is in
L2 and its L2 norm does not grow faster than 1/

√
ε as ε vanishes.

The proof relies on defining a piecewise hyperbolic dynamical system on the cube with
an SRB-measure whose projection is the density of the iterated function system.

1. Introduction and statements of results. Let {f1, . . . , fl} be an
iterated function system (IFS) on the real line, where the maps are applied
according to the probabilities (p1, . . . , pl), with the choice of the map random
and independent at each step. We assume that for each i, fi maps [−1, 1)
into itself so that the image is bounded away from −1 and 1, and fi ∈
C1+α([−1, 1)). Let ν be the invariant measure of our IFS, i.e.

(1.1) ν =
l∑

i=1

piν ◦ f−1
i .

Let µ=(p1, . . . , pl)N be a Bernoulli measure on the space Σ={1, . . . , l}N.
Let h(p) = −

∑l
i=1 pi log pi be the entropy of the left-shift operator with

respect to the Bernoulli measure µ. It was proved in [7], for non-linear,
contracting on average, iterated function systems (and later extended in [3])
that

dimH(ν) ≤ h/|χ|,
where dimH(ν) is the Hausdorff dimension of the measure ν, and χ is the
Lyapunov exponent of the IFS associated to the Bernoulli measure µ.
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One can expect that, at least “typically”, the measure ν is absolutely
continuous when h/|χ| > 1. Essentially the only known approach to this
is transversality. For example, for the linear case with uniform contraction
ratios, see [8] and [10]. For the linear case and non-uniform contraction
ratios, see [5] and [6]. For the non-linear case, see for example [14] and [1].
We note that there is another direction in the study of iterated function
systems with overlaps, which is concerned with concrete, but non-typical
systems, often of arithmetic nature, for which there is a dimension drop (see
for example [4]).

Throughout this paper we are interested in studying absolute continuity
with density in L2. We will study a modification of the problem, namely we
consider a random perturbation of the functions. The linear case was studied
by Peres, Simon and Solomyak in [9]. They proved absolute continuity for
random linear IFS, with non-uniform contraction ratios and also L2 and
continuous density in the uniform case. We extend this result by proving L2

density with non-uniform contraction ratios and in the non-linear case.
We consider two cases. First let us suppose that for each i ∈ {1, . . . , l},

fi maps [−1, 1) into itself, fi([−1, 1)) is bounded away from −1 and 1,
fi ∈ C1+α([−1, 1)) and

(1.2) 0 < λi,min ≤ |f ′i(x)| ≤ λi,max < 1

for every x ∈ [−1, 1). Moreover suppose that for every i the fixed point of
fi is ai ∈ (−1, 1), and

(1.3) i 6= j ⇒ ai 6= aj .

Let Yε be uniformly distributed on [1− ε, 1 + ε]. Denote the probability
measure of Yε by ηε. Let

(1.4) fi,Yε(x) = Yεfi(x) + ai(1− Yε)
for every i ∈ {1, . . . , l}. Then fi,Yε(x) is in [−1, 1) for all values of x ∈ [−1, 1)
and Yε, provided ε is sufficiently small. The iterated maps are applied ran-
domly according to the stationary measure µ, with the sequence of inde-
pendent and identically distributed errors y1, y2, . . . distributed as Yε, inde-
pendent of the choice of the function. The Lyapunov exponent of the IFS is
defined by

χ(µ, ηε) = E(log(Yεf ′))

and it is easy to see that

χ(µ, ηε) <
l∑

i=1

pi log((1 + ε)λi,max) < 0

for sufficiently small ε > 0. Let Zε be the random variable

(1.5) Zε := lim
n→∞

fi1,y1,ε ◦ · · · ◦ fin,yn,ε(0),
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where the numbers ik are i.i.d., with distribution µ on {1, . . . , l}, and yk,ε
are pairwise independent with the distribution of Yε and also independent
of the choice of ik. Let νε be the distribution of Zε.

One can easily prove the following theorem.

Theorem 1.1. The measure νε converges weakly as ε→ 0 to the measure
ν satisfying (1.1).

Theorem 1.2. Let νε be the distribution of the limit (1.5). Assume that
(1.2) and (1.3) hold, and

(1.6)
l∑

i=1

p2
i

λi,max

λ2
i,min

< 1.

Then for every sufficiently small ε > 0, νε is absolutely continuous with
respect to Lebesgue measure, with density in L2, and there exists a constant
C such that the density of νε satisfies

‖νε‖2 ≤ C/
√
ε.

Remark 1. Let

C ′ε =

√√√√ 32(
1−

∑l
i=1 p

2
i

(1+ε)λi,max

((1−ε)λi,min)2

)
C ′′ε

,

C ′′ε = min
i 6=j

{
|ai − aj |+ ε(−|ai + aj | − 2)

1− ε2

}
.

The proof of Theorem 1.2 will show that ‖νε‖2 ≤ C ′ε/
√
ε. Hence we can

choose any C > limε→0C
′
ε.

Remark 2. Actually the proof of Theorem 1.2 shows that Zε condi-
tioned on the perturbations y1,ε, y2,ε, . . . has density in L2 for almost all
y1,ε, y2,ε, . . . .

We can state an easy corollary of the theorem.

Corollary 1.3. Let {λiYεx + ai(1 − λiYε)}li=1 be a random iterated
function system. Assume that (1.3) holds, and

(1.7)
l∑

i=1

p2
i

λi
< 1.

Then for every sufficiently small ε > 0, νε is absolutely continuous with
respect to Lebesgue measure with density in L2, and there exists a constant
C such that

‖νε‖2 ≤ C/
√
ε.

We study another case of random perturbation, namely let λ̃i,ε be uni-
formly distributed on [λi−ε, λi+ε]. Let {λ̃i,εx+ai(1−λ̃i,ε)}li=1 be our random
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iterated function system, where ai 6= aj for every i 6= j. Let λ = (λ1, . . . , λl),
and Xλ,ε be the random variable

(1.8) Xλ,ε =
∞∑
k=1

(aik(1− λ̃ik,ε))
k−1∏
j=1

λ̃ij ,ε

where the numbers ik are i.i.d. with distribution µ on {1, . . . , l}, and λ̃ik,ε
are pairwise independent. Let νλ,ε denote the distribution of Xλ,ε. More-
over let νλ be the invariant measure of the iterated function system {λix+
ai(1− λi)}li=1 according to µ.

Theorem 1.4. The measure νλ,ε converges weakly to νλ as ε→ 0.

To have a statement similar to Theorem 1.2 we need a technical assump-
tion

(1.9) min
i 6=j

∣∣∣∣ajλi − aiλjλi − λj

∣∣∣∣ > 1.

Theorem 1.5. Suppose that (1.9) and (1.3) hold, and moreover

(1.10)
l∑

i=1

p2
i

λi
< 1.

Then for every sufficiently small ε > 0, the measure νλ,ε is absolutely contin-
uous with respect to Lebesgue measure, with density in L2, and there exists
a constant C such that

‖νλ,ε‖2 ≤ C/
√
ε.

Remark 3. Let

C ′ε =
√

32(
1−

∑l
i=1 p

2
i

λi+ε
(λi−ε)2

)
C ′′ε

,

C ′′ε = σmin
i 6=j

|aiλj − ajλi| − |λi − λj |
λiλj

,

where 0 < σ < 1. As in Remark 1, the proof of Theorem 1.5 will show that
‖νλ,ε‖2 ≤ C ′ε/

√
ε for small ε.

The main difference between Theorem 1.5 and Corollary 1.3 is the ran-
dom perturbation. Namely, in Theorem 1.5 we choose the contraction ratio
uniformly in the ε-neighborhood of λi, while in Corollary 1.3 we choose the
contraction ratio uniformly in the λiε-neighborhood of λi.

Throughout this paper we will use the method of [11].
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2. Proof of Theorem 1.2. Let Q = [−1, 1)3 and m ∈ N. We partition
the cube Q into the rectangles {Q1,k, . . . , Ql,k}2

m−1
k=0 , where

Qi,k =
{

(x, y, z) ∈ Q : −1 + 2
i−1∑
j=1

pj ≤ y < −1 + 2
i∑

j=1

pj ,

−1 + k2−m+1 ≤ z < −1 + (k + 1)2−m+1
}
,

where we use the convention that an empty sum is 0. Hence we slice Q into
2m slices along the z-axis and l slices along the y-axis. We thereby get 2ml
pieces which we call Qi,k, according to the definition above.

Let

Qi =
2m−1⋃
k=0

Qi,k.

We define a map gε,m : Q → Q so that each slice Qi,k is expanded as
much as possible in the second and third coordinates. In the first coordinate
it is mapped according to a perturbation of fi, and hence contracted. Which
perturbation is chosen depends on the third coordinate. There is a picture
of this in Figure 1.

gε,m|Qi,kQi,k

x
z

y

Fig. 1. The action of gε,m restricted to Qi,k

More precisely, we define gε,m : Q→ Q by setting, for (x, y, z) ∈ Qi,k,

gε,m : (x, y, z) 7→
(
d(z)fi(x) + ai(1− d(z)),

1
pi
y + b(y), 2mz + c(z)

)
,

where

d(z) = 1 + 2mε(z − (−1 + (k + 1/2)2−m+1)) for (x, y, z) ∈ Qi,k,

b(y) = 1− 1
pi

(
−1 + 2

i∑
j=1

pj

)
for (x, y, z) ∈ Qi,k,

c(z) = 2m − 2k − 1 for (x, y, z) ∈ Qi,k.
Hence gε,m maps each of the pieces Qi,j so that it is contracted in the
x-direction and fully expanded in the y- and z-directions.
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Let L3 be the normalised Lebesgue measure on Q. The measures

γε,m,n =
1
n

n−1∑
k=0

L3 ◦ g−kε,m

converge weakly to an SRB-measure γε,m as n→∞ (see [12] and [13]). The
measure γε,m is ergodic by the Hopf argument, since gε,m is hyperbolic and
the stable and unstable manifolds are parallel to the coordinate axes and
have maximal extension in the box Q. Moreover, let νε,m be the projection of
γε,m onto the first coordinate. More precisely, if E ⊂ [−1, 1) is a measurable
set, then we define νε,m(E) = γε,m(E × [−1, 1)× [−1, 1)).

The measure νε,m is the distribution of the limit

lim
n→∞

fi1,y1,ε ◦ · · · ◦ fin,yn,ε(0),

where yi,ε are uniformly distributed on [1 − ε, 1 + ε], but not independent.
However, one can easily prove the following lemma.

Lemma 2.1. The measure νε,m converges weakly to νε as m→∞.

Let

Ai = {(i, 0), (i, 1), . . . , (i, 2m − 1)} and A =
l⋃

i=1

Ai.

If a = (i, k) ∈ A we will write Q̂a for Qi,k. With this notation we have

Q =
⋃
a∈A

Q̂a and Qi =
⋃
a∈Ai

Q̂a, i = 0, 1, . . . , l.

Let Θ0 = AN∪{0}. If p ∈ Q then there is a unique sequence ρ0(p) =
{ρ0(p)k}∞k=0 ∈ Θ0 such that

gkε,m(p) ∈ Qρ0(p)k , k = 0, 1, . . . .

The map ρ0 : Q → Θ0 is not injective. We have ρ0(x, y, z) = ρ0(x′, y′, z′) if
y = y′ and z = z′, but ρ0(x, y, z) 6= ρ0(x′, y′, z′) otherwise. Hence we can
(and will) use the notation ρ0(y, z) instead of ρ0(x, y, z).

We will denote elements in Θ0 by a, b and so on. We let σ denote the
left shift on Θ0, defined in the usual way.

We can transfer the measures γε,m to a measure γΘ0 by γΘ0 = γε,m ◦ρ−1
0 .

We let Θ denote the natural extension of Θ0. That is, Θ is the set
of all two-sided infinite sequences such that any one-sided infinite subse-
quence of a sequence in Θ is a sequence in Θ0. The measure γΘ0 defines
an ergodic measure γΘ on Θ in a natural way. If ξ : Θ → Θ0 is defined
by ξ({ik}k∈Z) = {ik}k∈N∪{0}, then we define γΘ(ξ−1E) = γΘ0(E). We can
define a map ρ−1 : Θ → Q such that ρ−1(σ(a)) = gε,m(ρ−1(a)) for any
sequence a ∈ Θ.
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We note that the L2 norm of the density νε,m is not larger than twice
that of the density of γε,m. If hνε,m(x) and hγε,m(x, y, z) denote the densities
of νε,m and γε,m respectively, then by Cauchy–Schwarz’s inequality

‖νε,m‖22 ≤
1�

−1

hνε,m(x)2 dx = 32
1�

−1

( 1�

−1

1�

−1

hγε,m(x, y, z)
dy

2
dz

2

)2 dx

2

≤ 32
1�

−1

1�

−1

1�

−1

hγε,m(x, y, z)2
dy

2
dz

2
dx

2
= 4‖γε,m‖22.

This proves that if γε,m has L2 density, then so has νε,m, and

(2.1) ‖νε,m‖2 ≤ 2‖γε,m‖2.
If p is a point in Q, then we let TpQ denote the tangent space at p. For

each p in Q we define the following cone in the tangent space TpQ:

Cp =
{

(u, v, w) ∈ TpQ :
∣∣∣∣ uw
∣∣∣∣, ∣∣∣∣ vw

∣∣∣∣ < 2m+1ε

2m − λmax,max(1 + ε)

}
,

where λmax,max =maxi λi,max =maxi supx∈[−1,1) |f ′i(x)|. The following lemma
states that the set of cones Cp defines a family of unstable cones, and that
images of certain curves intersect transversally. There is an illustration of
the transversality in Figure 2.

gε,m

x

z

y

Fig. 2. Any two different Qi,k and Qj,l on the same height (i = j) share the same image,
but in the case when i 6= j their images have transversal intersection if they intersect.

Lemma 2.2. The cones Cp make up a family of unstable cones, that is,
dpgε,m(Cp) ⊂ Cgε,m(p).

Moreover, for sufficiently large m and every 0 < ε < mini 6=j
|ai−aj |

2+|ai+aj | , if
ζ1 ⊂ Qξ1 and ζ2 ⊂ Qξ2 are two curve segments with tangents in Cp such that
ξ1 ∈ Ai and ξ2 ∈ Aj, i 6= j, then if gε,m(ζ1) and gε,m(ζ2) intersect, and if
(u1, v1, 1) and (u2, v2, 1) are tangents to gε,m(ζ1) and gε,m(ζ2) respectively,
it follows that |u1 − u2| > Cε,mε, where

Cε,m = min
i 6=j

{
|ai − aj |+ ε(−|ai + aj | − 2)

1− ε2
− 4(1 + ε)λmax,max

2m − λmax,max(1 + ε)

}
.
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Proof. The Jacobian of gε,m is

dpgε,m =

d(z)f ′i(x) 0 2mε(fi(x)− ai)
0 1/pi 0
0 0 2m


where p = (x, y, z) ∈ Qi,k. If (u, v, w) ∈ Cp, then

dpgε,m(u, v, w) =

d(z)f ′i(x)u+ 2mε(fi(x)− ai)w
(1/pi)v

2mw


We just need to check that this vector is in Cp, provided that m is

large. This is easily checked, using that |d(z)| ≤ 1 + ε, |f ′i(x)| ≤ λi,max and
|fi(x)− ai| ≤ 2. Indeed,

|d(z)f ′i(x)u+ 2mε(fi(x)− ai)w|
|2mw|

≤ (1 + ε)λi,max

2m
|u|
|w|

+ 2ε

≤ (1 + ε)λi,max

2m
2m+1ε

2m − (1 + ε)λmax,max
+ 2ε ≤ 2m+1ε

2m − (1 + ε)λmax,max

and

|(1/pi)v|
|2mw|

≤ 1
pi2m

2m+1ε

2m − (1 + ε)λmax,max
≤ 2m+1ε

2m − (1 + ε)λmax,max

proves that dpgε,m(Cp) ⊂ Cgε,m(p) if m is sufficiently large, so that 2m −
(1 + ε)λmax,max > 0 and pi2m > 1.

To prove the other statement of the lemma, assume that p = (xp, yp, zp)
∈ Qi and q = (xq, yq, zq) ∈ Qj , i 6= j, are such that gε,m(p) = gε,m(q) =
(x, y, z). Then, if p ∈ Qi,

dpgε,m : (u, v, 1) 7→ 2m
(
d(zp)f ′i(xp)

2m
u+ (fi(xp)− ai)ε,

v

pi
, 1
)
.

Then

fi(xp) =
x− ai(1− d(zp))

d(zp)
and fj(xq) =

x− aj(1− d(zq))
d(zq)

.

Without loss of generality, assume that ai > aj . For simplicity we study the
case x ≥ ai > aj . The proofs for ai ≥ x ≥ aj and ai > aj ≥ x are similar.
Then

dpgε,m(Cp) ⊂
{
w(u, v, 1) :

x− ai
1 + ε

ε−∆iε ≤ u ≤
x− ai
1− ε

ε+∆iε

}
,
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where ∆i = 2(1+ε)λi,max

2m−λmax,max(1+ε) . Therefore

|u2 − u1| ≥
x− aj
1 + ε

ε− x− ai
1− ε

ε− (∆i +∆j)ε

≥
(
ai − aj + ε(ai + aj − 2)

1− ε2
− 2 max

i
∆i

)
ε

for every x ≥ ai > aj . Let ∆max = maxi∆i. Since 0 < ε < mini 6=j
|ai−aj |

2+|ai+aj | ,
we have

ai − aj + ε(ai + aj − 2)
1− ε2

> 0.

Therefore
ai − aj + ε(ai + aj − 2)

1− ε2
− 2∆max > 0,

for sufficiently large m. By similar methods we have for ai ≥ x ≥ aj ,

|u2 − u1| ≥
(
ai − aj
1 + ε

− 2∆max

)
ε,

and for ai > aj ≥ x,

|u2 − u1| ≥
(
ai − aj − ε(ai + aj + 2)

1− ε2
− 2∆max

)
ε.

Therefore we can choose

Cε,m = min
i 6=j

{
|ai − aj |+ ε(−|ai + aj | − 2)

1− ε2
− 2∆max

}
.

The rest of the section follows Tsujii’s article [15].

Proof of Theorem 1.2. For any r > 0 we define the bilinear form (·, ·)r
of signed measures on R by

(ρ1, ρ2)r =
�

R
ρ1(Br(x))ρ2(Br(x)) dx

where Br(x) = [x− r, x+ r]. It is easy to see that if

lim inf
r→0

1
r2

(ρ, ρ)r <∞

then the measure ρ has density in L2 (see [15]). Moreover

‖ρ‖22 ≤ lim inf
r→0

1
r2

(ρ, ρ)r.

Let γz denote the conditional measure of γε,m on the setRz = {(u, v, w) ∈
Q : v = y, w = z}. Since the one-dimensional Lebesgue measure is invariant
under the action of gε,m projected to the second coordinate, we conclude
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that γz is independent of y almost everywhere. It follows that

(2.2) ‖γε,m‖22 =
1�

−1

‖γz‖22 dz.

Let

J(r) :=
1
r2

1�

−1

(γz, γz)r dz.

By the invariance of γε,m it follows that

(2.3) γz = 2−m
l∑

i=1

pi
∑
a∈Ai

γg−aε,m(z) ◦ g
−a
ε,m,

where g−aε,m denotes the inverse branch of gε,m with image in Q̂a. Recall that
a ∈ Ai means that a = (i, k) for some k, so that Q̂a = Qi,k for some k. We
denote the measure γg−aε,m(z) ◦ g

−a
ε,m by σa,z. Then by (2.3) and the definition

of J(r),

(2.4) J(r) =
1

22mr2

l∑
i=1

l∑
j=1

pipj
∑
a∈Ai

∑
b∈Aj

1�

−1

(σa,z, σb,z)r dz.

For fixed a, b ∈ Ai,

(2.5) (σa,z, σb,z)r ≤ (σa,z, σa,z)1/2r (σb,z, σb,z)1/2r

≤ (1 + ε)λi,max(γg−aε,m(z), γg−aε,m(z))
1/2

r
(1−ε)λi,min

× (γg−bε,m(z), γg−bε,m(z))
1/2

r
(1−ε)λi,min

≤ (1 + ε)λi,max

(γg−aε,m(z), γg−aε,m(z)) r
(1−ε)λi,min

+ (γg−bε,m(z), γg−bε,m(z)) r
(1−ε)λi,min

2
.

Moreover, if a ∈ Ai and b ∈ Aj , i 6= j, then

(σa,z, σb,z)r =
�
σa,z(Br(x))σb,z(Br(x)) dx

=
� � �

I{s : |s−x|<r}(s)I{t : |t−x|<r}(t) dσa,z(s) dσb,z(t) dx

≤
� �

2rI{(s,t) : |s−t|<2r}(s, t) dσa,z(s) dσb,z(t)

=
� �

I{(c,d) : |ρ−1(···c−2c−1aρ0(z))−ρ−1(···d−2d−1bρ0(z))|<2r}(c,d)

dγΘ(c) dγΘ(d).

Let us comment on the notation ρ0(z). Actually ρ0(z) is not defined,
but rather ρ0(x, y, z). Recall that ρ0(x, y, z) is independent of x and that we
therefore have introduced the notation ρ0(y, z). Moreover, as noticed above,
the measures γz, and therefore also σa,z, are independent of y. Hence we can
choose arbitrary x, y and let ρ0(z) denote ρ0(x, y, z) = ρ0(y, z). Since all
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the estimates below will be independent of this choice of y, we will use the
notation ρ0(z) instead of ρ0(x, y, z).

By a change of order of integration we get
1�

−1

(σa,z, σb,z)r dz ≤ 2r
� �
L1({z : |ρ−1(· · · c−2c−1aρ0(z))(2.6)

− ρ−1(· · · d−2d−1bρ0(z))| < 2r}) dγΘ(c) dγΘ(d).

We will now apply Lemma 2.2 to (2.6). Note that

z 7→ ρ−1(· · · c−2c−1aρ0(z)), and z 7→ ρ−1(· · · d−2d−1bρ0(z))

are two curves with tangents in the cones Cp. Lemma 2.2 states that these
curves have a transversal intersection, if they intersect, so that

L1({z : |ρ−1(· · · c−2c−1aρ0(z))− ρ−1(· · · d−2d−1bρ0(z))| < 2r}) ≤ 4r/Cε,m.
Hence

(2.7)
1�

−1

(σa,z, σb,z)r dz ≤
8r2

Cε,mε
.

By using (2.4) we have

J(r) =
1

22mr2

l∑
i=1

p2
i

∑
a,b∈Ai

1�

−1

(σa,z, σb,z)r dz(2.8)

+
1

22mr2

∑
i 6=j

pipj
∑
a∈Ai

∑
b∈Aj

1�

−1

(σa,z, σb,z)r dz.

We first give an upper bound for the first summand in (2.8), using (2.5)
and an integral transformation. By (2.5) we have∑

a,b∈Ai

1�

−1

(σa,z, σb,z)r dz

≤ (1 + ε)λi,max2m
∑
a∈Ai

1�

−1

(γg−aε,m(z), γg−aε,m(z)) r
(1−ε)λi,min

dz

= (1 + ε)λi,max2m
2m−1∑
k=0

2m
−1+(k+1)2−m+1�

−1+k2−m+1

(γz, γz) r
(1−ε)λi,min

dz.

Hence

(2.9)
1

22mr2

l∑
i=1

p2
i

∑
a,b∈Ai

1�

−1

(σa,z, σb,z)r dz

≤ 1
22mr2

l∑
i=1

p2
i (1 + ε)λi,max2m

2m−1∑
k=0

2m
−1+(k+1)2−m+1�

−1+k2−m+1

(γz, γz) r
(1−ε)λi,min

dz
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≤
l∑

i=1

p2
i

(1 + ε)λi,max

((1− ε)λi,min)2
1(
r

(1−ε)λi,min

)2 1�

−1

(γz, γz) r
(1−ε)λi,min

dz

≤ max
i
J

(
r

λi,min(1− ε)

) l∑
i=1

p2
i

(1 + ε)λi,max

((1− ε)λi,min)2
.

For the second summand in (2.8), we use (2.7) to prove that it is bounded
by

(2.10)
1

22mr2

∑
i 6=j

pipj
∑
a∈Ai

∑
b∈Aj

1�

−1

(σa,z, σb,z)r dz

≤ 1
22mr2

∑
i 6=j

pipj
∑
a∈Ai

∑
b∈Aj

8r2

Cε,mε
≤ 8
Cε,mε

.

By combining (2.9) and (2.10) we have

(2.11) J(r) ≤ 8
Cε,mε

+ βmax
i
J

(
r

λi,min(1− ε)

)
where β =

∑l
i=1 p

2
i

(1+ε)λi,max

((1−ε)λi,min)2
is less than 1 by (1.6).

We define recursively a strictly decreasing sequence rk. Let r0 < 1/2
be fixed. Assume that rk−1 has been defined. Then we define rk =
(1− ε)λik,minrk−1, where ik is chosen such that

max
i
J

(
rk

(1− ε)λi,min

)
= J

(
rk

(1− ε)λik,min

)
= J(rk−1).

Hence rk = r0(1− ε)k
∏k
n=1(λin,min).

We note that rk is a well defined sequence. By induction and (2.11), we
have

(2.12) J(rk) ≤
8

Cε,mε

1− βk

1− β
+ βkJ(r0)

for every k ≥ 1. Hence by (2.1), (2.2) and (2.12) we get

‖νε,m‖22 ≤ 4 lim inf
r→0

J(r) ≤ 4 lim inf
k→∞

J(rk)(2.13)

≤ 32
Cε,mε

1

1−
∑l

i=1 p
2
i

(1+ε)λi,max

((1−ε)λi,min)2

.

We now use the fact that a closed ball in the Hilbert space L2 is compact
in the weak topology. (See for instance Theorem V.2.1 in Yosida’s book [16].)
Hence, if hνε,m is the density of νε,m, then hνε,m is in L2, and from the above
we know that there is a constant C ′ε such that ‖hνε,m‖2 ≤ C ′ε/

√
ε.
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By the compactness statement above, there is an h with ‖h‖2 ≤ C ′ε/
√
ε

such that some subsequence of hνε,m converges weakly to h. Moreover h
defines a probability measure since 1 =

	
1 · hνε,m dL3 →

	
1 · h dL3.

Since νε,m converges weakly to νε it follows that νε has density in L2 and

(2.14) ‖νε‖2 ≤
1√
ε
C ′ε,

where

C ′ε =

√√√√ 32(
1−

∑l
i=1 p

2
i

(1+ε)λi,max

((1−ε)λi,min)2

)
C ′′ε

,

C ′′ε = lim
m→∞

Cε,m = min
i 6=j

{
|ai − aj |+ ε(−|ai + aj | − 2)

1− ε2

}
.

3. Proof of Theorem 1.5. We do not give the whole proof of Theo-
rem 1.5, because it is similar to the proof of Theorem 1.2. We only prove a
modification of Lemma 2.2, which is important as it proves transversality.

First we define a new dynamical system g̃ε,m : Q → Q, similar to the
dynamical system gε,m : Q → Q. Let Qi,k and Ai,k be as in Section 2. Let
g̃ε,m : Q→ Q be defined by

g̃ε,m : (x, y, z) 7→
(
d̃(z)x+ ai(1− d̃(z)),

1
pi
y + b(y), 2mz + c(z)

)
for (x, y, z) ∈ Qi, where

d̃(z) = λi + 2mε(z − (−1 + (k + 1/2)2−m+1)) for (x, y, z) ∈ Qi,k,

b(y) = 1− 1
pi

(
−1 + 2

i∑
j=1

pj

)
for (x, y, z) ∈ Qi,k,

c(z) = 2m − 2k − 1 for (x, y, z) ∈ Qi,k.
Hence the only difference between g̃ε,m and gε,m is in the first coordinate,
where the perturbation of fi is made. Figure 1 also serves to visualise the
action of g̃ε,m.

We define the cones

Cp =
{

(u, v, w) ∈ TpQ :
∣∣∣∣ uw
∣∣∣∣, ∣∣∣∣ vw

∣∣∣∣ < 2m+1ε

2m − λmax − ε

}
,

where p ∈ Q and λmax = maxi λi. Similar to Lemma 2.2, we show that these
cones define a family of unstable cones, and that a certain transversality
property holds.

Lemma 3.1. Suppose that (1.9) holds. The cones Cp form a family of
unstable cones, that is, dpg̃ε,m(Cp) ⊂ Cegε,m(p).
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Moreover, for sufficiently large m and every sufficiently small ε > 0, if
ζ1 ⊂ Qξ1 and ζ2 ⊂ Qξ2 are two line segments with tangents in Cp such that
ξ1 ∈ Ai and ξ2 ∈ Aj, i 6= j, then if g̃ε,m(ζ1) and g̃ε,m(ζ2) intersect, and if
(u1, v1, 1) and (u2, v2, 1) are tangents to g̃ε,m(ζ1) and g̃ε,m(ζ2) respectively,
there exists a constant Cε,m, depending on ε and m, but bounded away from 0
and infinity, such that |u1 − u2| > Cε,mε.

Proof. The Jacobian of g̃ε,m is

dpg̃ε,m =

d̃(z) 0 2mε(x− ai)
0 1/pi 0
0 0 2m

 ,

where p = (x, y, z) ∈ Qi,k. If (u, v, w) ∈ Cp, then

dpg̃ε,m(u, v, w) =

d̃(z)u+ 2mε(x− ai)w
(1/pi)v

2mw

 .

The estimate

|d̃(z)u+ 2mε(x− ai)w|
|2mw|

≤ d̃(z)|u|
2m|w|

+ 2ε

≤ λi + ε

2m
2m+1ε

2m − λmax − ε
+ 2ε ≤ 2m+1ε

2m − λmax − ε
shows that dpg̃ε,m(Cp) ⊂ Cegε,m(p). Now we prove the other statement of the
lemma. Assume that p = (xp, yp, zp) ∈ Qi and q = (xq, yq, zq) ∈ Qj , i 6= j,
are such that g̃ε,m(p) = g̃ε,m(q) = (x, y, z). Then

p ∈ Qi ⇒ dpg̃ε,m : (u, v, 1) 7→ 2m
(
d̃(zp)
2m

u+ (xp − ai)ε,
v

pi
, 1
)
,

and

xp =
x− ai(1− d̃(zp))

d̃(zp)
, xq =

x− aj(1− d̃(zq))

d̃(zq)
.

Let ∆̃i = 2(λi+ε)
2m−λmax−ε . Then

dpg̃ε,m(Cp) ⊂
{
w(u, v, 1) :

x− ai
d̃(zp)

ε− ∆̃iε ≤ u ≤
x− ai
d̃(zp)

ε+ ∆̃iε

}
.

Therefore

|u2 − u1| ≥
(∣∣∣∣x− ai

d̃(zp)
− x− aj

d̃(zq)

∣∣∣∣− (∆̃i + ∆̃j)
)
ε.
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The term ∣∣∣∣x− ai
d̃(zp)

− x− aj
d̃(zq)

∣∣∣∣
can be estimated by∣∣∣∣x− ai

d̃(zp)
− x− aj

d̃(zq)

∣∣∣∣ ≥ ∣∣∣∣ |d̃(zp)− d̃(zq)| |x| − |aj d̃(zp)− aid̃(zq)|
d̃(zp)d̃(zq)

∣∣∣∣.
Hence, this term is positive provided that

|aj d̃(zp)− aid̃(zq)| > |d̃(zp)− d̃(zq)|.

Since λi− ε ≤ d̃(zp) ≤ λi + ε and λj − ε ≤ d̃(zq) ≤ λj + ε, this is implied by
(1.9) if ε is sufficiently small.

If we let

Cε,m =
1
2

min
i 6=j

|aiλj − ajλi| − |λi − λj |
λiλj

,

then
|u2 − u1| ≥ Cε,mε,

provided that ε is small and m large.
In fact we can let

Cε,m = σmin
i 6=j

|aiλj − ajλi| − |λi − λj |
λiλj

for some 0 < σ < 1.
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[14] K. Simon, B. Solomyak and M. Urbański, Invariant measures for parabolic IFS
with overlaps and random continued fractions, Trans. Amer. Math. Soc. 353 (2001),
5145–5164.

[15] M. Tsujii, Fat solenoidal attractor, Nonlinearity 14 (2001), 1011–1027.
[16] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

Balázs Bárány
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