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On the Hausdorff dimension of
piecewise hyperbolic attractors

by

Tomas Persson (Warszawa)

Abstract. We study non-invertible piecewise hyperbolic maps in the plane. The
Hausdorff dimension of the attractor is calculated in terms of the Lyapunov exponents,
provided that the map satisfies a transversality condition. Explicit examples of maps for
which this condition holds are given.

1. Introduction. A general class of piecewise hyperbolic maps was stud-
ied by Pesin in [10]. Pesin proved the existence of srb-measures and inves-
tigated their ergodic properties. Results from Pesin’s article and Sataev’s
article [11] are described in Section 3. The assumptions in [10] and [11] did
not allow overlaps of the images. Schmeling and Troubetzkoy extended in
[12] the theory in [10] to allow maps with overlapping images.

Using the results of Pesin and techniques from Solomyak’s paper [14], the
author of this paper proved in [8] and [9] that for two classes of piecewise
affine hyperbolic maps, there exists, for almost all parameters, an invariant
measure that is absolutely continuous with respect to Lebesgue measure, pro-
vided that the map expands area. This result had previously been obtained
for fat baker’s transformations by Alexander and Yorke in [1]. The main diffi-
culty that arises for the class of maps in [9] is that the symbolic space associ-
ated to the systems changes with the parameters, and also the srb-measure
changes in a way that is hard to control. By embedding all symbolic spaces
into a larger space it was possible get sufficient control to prove the result.

Solomyak’s proof in [14] uses a transversality property of power series.
The proofs in [8] and [9] use the fact that iterates of points can be written
as power series with such a transversality property. For the iterates to be
expressible as power series, it is important that the directions of contraction
are mapped onto each other throughout the manifold. The method in [8] and
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[9] is therefore not good for proving similar results for more general maps. It
should also be noted that this method only gives results that hold for almost
every map, with respect to some parameter.

Tsujii studied in [15] a class of area-expanding solenoidal attractors and
proved that generically these systems have an invariant measure that is ab-
solutely continuous with respect to Lebesgue measure. Tsujii also used a
transversality condition, but in a different way. Instead of transversality of
power series, Tsujii used transversality of intersections of iterates of curves.
This technique makes it possible to show the existence of an absolutely con-
tinuous invariant measure for a fixed system, provided that an appropriate
transversality condition is satisfied. Tsujii proved that this condition is gener-
ically satisfied.

In this paper we will use the idea from Tsujii’s article [15] to prove a
formula for the dimension of the attractor for some piecewise hyperbolic
maps in the plane, provided that a transversality condition is satisfied. This
is done by estimating the dimension from below. The estimate coincides with
the previously known estimate from above (see [5] and [12]) and thereby
provides the following formula for the dimension:

dimH Λ = 1− χu

χs
,

where Λ denotes the attractor and χu and χs denote the positive and the
negative Lyapunov exponents. This formula has previously been proved by
Falconer in [5] and by Simon in [13], but for a much smaller class of systems.
Both Falconer and Simon considered maps that are skew-products with the
underlying shift being a full shift on n symbols. These restrictions are not
assumed in this paper. Hence, this paper generalises the results of Falconer
and Simon.

For technical reasons in the proof, we will also need the assumption that
the multiplicity entropy is zero, which is also assumed in Falconer’s and
Simon’s results. This seems often to be the case, and we provide a condition
which guarantees that the multiplicity entropy is zero. The author of this
paper suspects that the condition of zero multiplicity entropy is not needed,
but have not been able to prove the result without this condition. Instead
we give conditions (see Lemma 2) that imply zero multiplicity entropy.

2. Outline of the paper. In Section 3 we describe the class of piecewise
hyperbolic maps that is studied in this paper. In Section 4 we introduce
a transversality condition. Under the assumption that this transversality
condition holds and that the multiplicity entropy is zero, a theorem that
estimates the dimension from below is stated in Section 5. This estimate
gives the dimension formula. The theorem is proved in Section 8.
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Section 6 contains a condition that guarantees zero multiplicity entropy,
and Section 7 contains explicit examples of maps that satisfy the assumptions
of this paper. There are also examples that the dimension formula may fail
if the transversality condition does not hold.

3. Piecewise hyperbolic maps. In this paper we study maps on open
and bounded subsets of the plane that are piecewise continuous and hyper-
bolic. Under certain conditions, stated later in this section, we will provide
a dimension formula for the attractor of the map. This dimension formula
is already known in the case where the map is injective, so in this paper the
case of non-injective maps is considered.

The underlying theory of this paper is based on [10] and [12]. In the first
of these papers, Pesin studied a class of piecewise hyperbolic and injective
maps on some manifold. This theory was extended to non-injective maps by
Schmeling and Troubetzkoy in [12].

The conclusions of the papers [10] and [12] are that there is an attractor
that can be decomposed into ergodic components such that on each compo-
nent there is an ergodic measure, called an srb-measure, with the property
that the set of typical points has positive Lebesgue measure and the condi-
tional measures on unstable manifolds are absolutely continuous with respect
to the one-dimensional Lebesgue measure. Sataev showed in [11] that there
are only finitely many ergodic components.

Let us now state the assumptions of this paper. The following assump-
tions (A1)–(A4) are similar to the assumptions in [12], but in some cases
more restrictive. In particular we only consider two-dimensional maps. For
the more general setting we refer to [12] and [10].

Consider the plane R2 with the usual metric d. Let K ⊂ R2 be an open,
bounded and connected set and let N ⊂ K be a closed set in K. The set N
is called the discontinuity set. Let f : K \N → K.

Put

K+ = {x ∈ K : fn(x) 6∈ N ∪ ∂K, n = 0, 1, 2, . . .},

D =
⋂
n∈N

fn(K+).

The attractor of f is the set Λ = D.
The first condition is

(A1) the set K \ N can be decomposed into finitely many open sets Ki

such that f : Ki → f(Ki) can be extended to a C2-diffeomorphism
from Ki to f(Ki).

Note that we only assume that f restricted to Ki is a diffeomorphism,
so that the images f(Ki) may intersect.
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For the next assumption we need some more notations. Let

N+ = N ∪ ∂K,
N− = {y ∈ K : ∃zn ∈ K \N+, z ∈ N+ such that zn → z, f(zn)→ y}.

One might want to think of N− as the image of N+ although f is not defined
on N+. For ε > 0 and l = 1, 2, . . . , let

D+
ε,l = {x ∈ K+ : d(fn(x), N+) ≥ l−1e−εn, n ∈ N ∪ {0}},

D−ε,l = {x ∈ Λ : ∃(xn)0n=−∞, f(xn) = xn+1, x0 = x,

d(x−n, N−) ≥ l−1e−εn, n ∈ N ∪ {0}},

D0
ε,l = D+

ε,l ∩D
−
ε,l,

D0
ε =

⋃
l≥1

(D+
ε,l ∩D

−
ε,l).

The hyperbolicity of the map f is described in the next assumption:

(A2) There exists C > 0 and 0 < λ < 1 such that for every x ∈ K \N+

there exist cones Cs(x), Cu(x) ⊂ TxM such that the angle between
Cs(x) and Cu(x) is uniformly bounded away from zero. For every i,

dxf(Cu(x)) ⊂ Cu(f(x)), ∀x ∈ K \N,
dx(f−1

i )(Cs(x)) ⊂ Cs(f−1
i (x)), ∀x ∈ f(Ki),

where fi denotes the restriction of f to Ki, and for any n > 0,
‖dxfn(v)‖ ≥ Cλ−n‖v‖, ∀x ∈ K+, ∀v ∈ Cu(x),

‖(dxfn)−1(v)‖ ≥ Cλ−n‖v‖, ∀x ∈ K+, ∀v ∈ Cs(fn(x)).

The cone families Cu(x) and Cs(x) depend continuously on x ∈ Ki

and they can be extended continuously to the boundary.
This assumption makes it possible to define stable and unstable manifolds,
W s(x) and W u(x), as well as local ones for any x ∈ D0

ε . It is then of course
natural to ask whether D0

ε is empty or not. Under the assumptions of this
paper it is shown in [10] that the set D0

ε is not empty for sufficiently small
ε > 0. (Here sufficiently small means so small that there are local unstable
manifolds.)

We will also need the following assumption on the regularity of the bound-
ary of Ki.

(A3) The sets ∂K and N are unions of finitely many C2 curves such that
the angle between these curves and the unstable cones are bounded
away from zero, at any point of the closure of f(K \N).

Note that we do not assume anything about the union of the curves in (A3);
the curves are allowed to intersect.
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3.1. Multiplicity entropy. Let K = {K1, . . . ,Kp} be the partition
of K into sets on which f is continuous, and let Kn be the corresponding
partition for the map fn. Let kn be the maximal numbers of elements of Kn
that meet in one point. The multiplicity entropy hmult(f) is defined as

hmult(f) = lim sup
n→∞

1
n

log kn.

Note that if f satisfies assumptions (A1)–(A3), then fn need not satisfy
(A3). For kn to be finite, it is however only necessary that f satisfies (A3).
See [12] for details.

We can now give our next assumption:

(A4) hmult(f) = 0.

This condition is stronger than the corresponding conditions in [10] and [12].
The assumptions used in these papers are essentially that the mulitiplicity
entropy is smaller than the positive Lyapunov exponent. We will need this
stronger version due to technical reasons in the proof.

One might wonder how general the condition (A4) is. The author of this
paper believes that this condition is, in some sense, easily satisfied. However
there are examples of maps satisfying (A1)–(A3) such that the multiplicity
entropy is larger than the positive Lyapunov exponent. In Section 6 we give
sufficient conditions for a map to satisfy (A4). These conditions are for in-
stance satisfied by Belykh maps (see [12]). Hence Belykh maps have zero
multiplicity entropy.

We note that, in case f is piecewise affine, condition (A4) implies that the
topological entropy is equal to the entropy of the srb-measure. This follows
from the fact that the entropy of the srb-measure is equal to the positive
Lyapunov exponent (see [10]), and the result of Kruglikov and Rypdal in [7]
that htop ≤ χu +hmult for piecewise affine maps (in the case of a map on the
plane with one positive and one negative Lyapunov exponent; the statement
in [7] is for any dimension).

4. A transversality condition. Let ε > 0 and 0 < δ < 1. We will say
that an intersection of two smooth curves γ1 and γ2 is (ε, δ)-transversal if for
any ball Bε of radius ε intersecting both γ1 and γ2, there exist x1 ∈ Bε ∩ γ1

and x2 ∈ Bε ∩ γ2 such that the following holds true. If d1 and d2 are the
induced metrics on γ1 and γ2 respectively, then the intersection of the open
sets

(1)
⋃

y∈γi∩Bε

B(y, δdi(xi, y)), i = 1, 2,

is empty. The symbol B(x, r) denotes the open ball of radius r around x.
Note that if γ1 and γ2 intersect (ε, δ)-transversally then γ1∩γ2 can be empty.
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Definition 1. We will say that a piecewise hyperbolic system f : K \N
→ K satisfies condition (T) if

(T) there exist ε, δ > 0 such that if γ1 and γ2 are two smooth curves
such that every tangent lies in the unstable cone, and γ1 and γ2

are in different Ki, then the curves f(γ1) and f(γ2) intersect (ε, δ)-
transversally.

5. Dimension of the attractor. Consider a map f : K \N → K ⊂ R2

that satisfies conditions (A1)–(A4). We denote by χs(x) < 0 < χu(x) the
two Lyapunov exponents at the point x if they exist. If Λ1 is an ergodic com-
ponent of the attractor, then the Lyapunov exponents are constant almost
everywhere with respect to the srb-measure on Λ1, and we write χs(x) = χs

and χu(x) = χu for almost every x. With these notations we have the fol-
lowing theorem.

Theorem 1. Suppose that f : K \ N → K ⊂ R2 is a piecewise hyper-
bolic map that satisfies conditions (T) and (A1)–(A4). Let Λ1 be an ergodic
component of the attractor, with one positive and one negative Lyapunov
exponent, χu and χs. Then the Hausdorff dimension of Λ1 satisfies

dimH Λ1 ≥ min{2, 1− χu/χs}.
Theorem 1 is proved in Section 8.
Note that in [12] it is proved that dimH Λ1 ≤ 1 − χu/χs with equality

if and only if f restricted to Λ1 is almost everywhere invertible, meaning
that f is invertible on a set of full srb-measure. Hence we get the following
corollary.

Corollary 1. If the assumptions of Theorem 1 are satisfied then

dimH Λ1 = min{2, 1− χu/χs},
and f is invertible almost everywhere on Λ1 if and only if χu + χs ≤ 0.

Remark 1. In case the transversality condition (T) is not satisfied we
can only give the trivial estimate dimH Λ1 ≥ 1. Indeed, the map f : [0, 1]2 →
[0, 1]2 defined by f : (x1, x2) 7→ (x1/2, 2x2 mod1) has the attractor Λ1 =
{(x1, x2) : x1 = 0, 0 ≤ x1 ≤ 1}, and so dimH Λ1 = 1. Moreover, any
map satisfying (A1)–(A4) has an attractor Λ1 that contains curves of un-
stable manifolds. This implies that dimH Λ1 ≥ 1. So, unless one imposes
an additional condition, such as (T), one cannot get a better estimate than
dimH Λ1 ≥ 1. It should be noted that there are no obvious reasons why (A4)
should be needed. It is here because of technical reasons in the proof.

6. Vanishing multiplicity entropy. In this section we give a condition
which guarantees that the multiplicity entropy is zero.
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Theorem 2. Let K,N ⊂ R2 where N is a union of smooth curves,
and let f : K \ N → K satisfy conditions (A1)–(A3). Assume that there is
a family of cones Cd(p, γ) ⊂ TpR2, where p is a point on a smooth curve
γ ⊂ N , such that Cd(p, γ) contains the tangents of γ at p,

(2) Cd(p, γ) ∩ Cu(p) = {0} and df(Cd) ⊂ Cu.

Then the multiplicity entropy of f is zero.

Remark 2. The condition Cd(p, γ) ∩ Cu(p) = {0} in Theorem 2 is for-
mally nonsense since Cu(p) is not defined for p ∈ N . But Cu(p) depends
continuously on p ∈ Ki so the condition should be be understood as con-
cerning an appropriate limit for each Ki that meets p. This can be done
by (A2).

Remark 3. It should be noted that if f satisfies the conditions in The-
orem 2, then so does any sufficiently small smooth perturbation of f .

Proof. For simplicity, let us start with the case that the curves of N do
not intersect. Let p ∈ N . We will iterate p and see into how many pieces a
small neighbourhood U of p is cut by a curve in N that goes through fn(p).
Of course, fn(p) is not defined but we will use this notation, for simplicity,
for the collection of accumulation points of fn(q) as q → p.

In the first iterate U is cut through p into at most two pieces, which we
denote by U1 and U2 (or just U1 if U is not cut). In the next iterate, each

U

U1

U2

U1,1

U1,2

U2,1

U2,2

Cu
Cd(p, γ) is one of these,
depending on p and γ.

Illustration of cones

Fig. 1. Illustration to the proof of Theorem 2. Note that U1,2 and U2,1 cannot be cut
through f2(p) since the slopes of the discontinuities are too small. In this example Cd(p, γ)
takes two different forms, depending on p and γ, as is shown in the figure.
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of the pieces U1 and U2 is cut through f(p) into at most two pieces. Denote
by U1,1 and U1,2 the pieces of U1 and similarly for U2.

By the property (2), one of U1,1 and U1,2 lies in the cone Cu(f2(p)) and no
iterate of this piece will be cut through fn(p) for any n. The same argument
holds for the pieces U2,1 and U2,2. So we now have at most four pieces of
which at most two can be cut in future iterations. There is a picture of this
in Figure 1.

By induction we find that after n iterates fn(U) consists of at most 2n
pieces. This shows that the multiplicity entropy is zero.

The case of N containing curves that cut each other is similar. If at most
L curves meet in one point, we deduce that after n iterates, U consists of at
most 2(L+ 1)n pieces of which at most two can be cut through fn(p).

7. An example. In this section we give an example of maps satisfying
the assumptions of Theorem 1.

Let K = (−1, 1) × (−1, 1) be a square. Take −1 < k < 1 and let N =
{(x1, x2) ∈ K : x2 = kx1} be the singularity set. Take ρ 6= 0 and let ψ1 and
ψ2 be two C2 functions such that |ψ′1|, |ψ′2| < ρψ < |ρ|/2. We take parameters
1/2 < λ < 1, 1 < γ < 2, a1, a2, b1 and b2 such that the map f defined by

(3) f(x1, x2) =

{
(λx1 + a1 + ρx2 + ψ1(x2), γx2 + b1) if x2 > kx1,

(λx1 + a2 + ψ2(x2), γx2 + b2) if x2 > kx1,

maps K \N into K. There is a picture of f in Figure 2.

-

6

-

6

Fig. 2. A picture of f with ρ = 0.1, ψ1 = ψ2 = 0, γ = 1.8, λ = 0.3, k = 0.1, a1 = a2 = 0
and −b1 = b2 = 0.8

The case ρ 6= 0, k = ψ1 = ψ2 = 0 and γ = 2 is treated by Falconer in [5].
He proved that for almost all parameters γ and λ, the dimension satisfies
dimH Λ = 1− log γ/log λ.

The case k = 0 and γ = 2 is covered by Simon’s paper [13]. He proved
equality for all parameters. We prove that we have equality for all parame-
ters, also when k, ψ1 and ψ2 are not nessesarily zero. More precisely, we use
Theorem 1 to prove the following theorem.
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Theorem 3. If a1, a2, −b1 = b2 = γ − 1 and

(γ, λ, k, ρ) ∈ {(γ, λ, k, ρ) : γ > 2λ, ρ 6= 0}

are numbers such that f : K \ N → K, then f : K \ N → K defined by (3)
has an attractor Λ with dimension

(4) dimH Λ = min{2, 1− log γ/log λ}.

Let ψ1 = ψ2 = 0, 1 < γ < 2, 0 < λ < 1, a1 = a2 = 0 and b1 = −b2 =
1− γ. Then if ρ = 0, the attractor is Λ = {(x1, x2) : x1 = 0, |x2| ≤ γ − 1},
and so dimH Λ = 1. If ρ 6= 0 and γ > 2λ then the dimension dimH Λ is given
by (4). The dimension can be made arbitrarily close to 2 by choosing λ close
to 1. Then the dimension is bounded away from 1 for any ρ 6= 0, but it is 1
for ρ = 0.

Proof of Theorem 3. It is clear from Theorem 2 that f has zero multi-
plicity entropy if k 6= 0. If k = 0 then the multiplicity entropy is trivially
zero.

We claim that if γ > 2λ and ρ 6= 0 then f satisfies condition (T). Let us
prove this claim. It is clear that the cone spanned by the vectors(

−ρψ
γ − λ

, 1
)

and
(
ρ+ ρψ
γ − λ

, 1
)

defines an unstable cone family at any point of K \ N . Denote this cone
by Cu.

Let σ1 ⊂ K ∩ {x2 > kx1} and σ2 ⊂ K ∩ {x2 < kx1} be two curves such
that if v1 and v2 are two tangent vectors of the curves, then v1, v2 ∈ Cu. The
vectors v1 and v2 are mapped by dxf to

u1 =

[
λ ρ+ ψ1(x2)
0 γ

]
v1 and u2 =

[
λ ψ2(x2)
0 γ

]
v2

respectively. One checks that u1 is contained in the cone spanned by(
−ρψ

λ

γ(γ − λ)
+
ρ− ρψ
γ

, 1
)

and
(

(ρ+ ρψ)
λ

γ(γ − λ)
+
ρ+ ρψ
γ

, 1
)

and u2 is contained in the cone spanned by(
−ρψ

λ

γ(γ − λ)
+
−ρψ
γ

, 1
)

and
(

(ρ+ ρψ)
λ

γ(γ − λ)
+
ρψ
γ
, 1
)

The intersection of these two cones is trivial if

−ρψ
λ

γ(γ − λ)
+
ρ− ρψ
γ

> (ρ+ ρψ)
λ

γ(γ − λ)
+
ρψ
γ
,

or equivalently, if γ > 2λ. This proves the claim.
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By Corollary 1 it now follows that

dimH Λ = 1− log γ
log λ

,

unless log γ + log λ > 0, in which case dimH Λ = 2.

Let us end this section by considering the attractor of the map in Figure 2.
The dimension of the attractor is

dimH Λ = 1.488 . . .

There is a picture of the attractor Λ in Figure 3.
We may also consider the dimension of Λ when γ = 1.8, λ = 0.5 and

k = 0.1. Then
dimH Λ = 1.848 . . .

A picture of this attractor is in Figure 4. Both pictures were drawn by
calculating the iterates of a small curve with tangents in the unstable cones.

Fig. 3. Attractor of the map in Fig. 2. Fig. 4. Attractor of the map in Fig. 2, but
with λ = 0.5.

8. Proof of Theorem 1. Assume that f satisfies the conditions (A1)–
(A4) and condition (T) with (ε0, δ)-intersections. Let ε > 0.

8.1. Coding of the system. We introduce a coding of the system
f : Λ → Λ. If x ∈ Λ then there is a sequence s(x) = {ik}k∈N∪{0} such that
fk(x) ∈ Kik for every k ∈ N ∪ {0}. We let Σ = Σ(Λ) be the set of all such
sequences, that is, Σ(Λ) = s(D).

Given a sequence a = {ai}i∈N∪{0}, we define the cylinder k[a]l by

k[a]l := {b = {bi}i ∈ Σ : bi = ai, ∀i = k, k + 1, . . . , l}.
For any cylinder k[a]l, there is a corresponding set

{x ∈ D : {in}n∈N∪{0} = s(x), in = an, ∀n = k, k + 1, . . . , l}.
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We denote this set by ρ(k[a]l). The sets ρ(k[a]l) will also be called cylinders.
A set of the form 0[a]n−1 or ρ(0[a]n−1) will be called an n-cylinder.

8.2. Images of curves. In this section we make use of condition (A4),
that the multiplicity entropy is zero, to get some estimates.

For r ∈ N, we let Dr(ε) be the set of r-cylinders ρ(0[a]r−1) such that
there exists a point p ∈ ρ(0[a]r−1) with

e(χu−ε)r‖v‖ ≤ ‖dp(f r)(v)‖ ≤ e(χu+ε)r‖v‖, ∀v ∈ Cu(p),

e(χs−ε)r‖v‖ ≤ ‖(dpf r)−1(v)‖ ≤ e(χs+ε)r‖v‖, ∀v ∈ Cs(f r(p)).

Let q, r ∈ N, l > 0 and let γ be a curve of length l with tangents in
the unstable cones. Let W0 = {γ}. We define Wn inductively. If Wn−1 is a
collection of curves, then we let Wn be the set of curves that are connected
pieces of length between l and 2l, contained in the union of Dr(ε) and in
some f q(σ), σ ∈ Wn−1.

Since we require that the lengths of the curves inWn are between l and 2l,
the set Wn might not be uniquely defined, since there are several ways to
divide a curve of length larger than 2l into pieces of length between l and 2l.
It is however not important how this is done, so we will not give a precise
definition of Wn. For instance, one way of doing this is to begin at one end
of the curve, and cut off pieces of length l and put them in Wn. As long as
the remaining part is longer than 2l we cut off another piece of length l. This
process will stop when we have a remaining piece of length between l and 2l.
Putting this remaining piece into Wn, we will have achieved what we want.

Lemma 1. Let f : K \ N → K satisfy conditions (A1)–(A4). For any
ε > 0, there exist constants C, q, r, l > 0, and a curve γ with tangents in the
unstable cones, such that if N(n) denotes the number of curves in Wn, then

C−1e(χu−ε)q(n−k) ≤ N(n)
N(k)

≤ Ce(χu+ε)q(n−k),

for all n ≥ k ≥ 1, and the derivatives of f qk, k ∈ N, at a point p ∈W ∈ Wn

satisfy

C−1e(χu−ε)qk‖u‖ ≤ ‖dp(f qk)(u)‖ ≤ Ce(χu+ε)qk‖u‖,(5)

C−1e−(χs+ε)qk‖v‖ ≤ ‖(dpf qk)−1(v)‖ ≤ Ce−(χs−ε)qk‖v‖,(6)

for all u ∈ Cu(p) and v ∈ Cs(f qk(p)).

Proof. Since the multiplicity entropy is zero, we can take q so large and
l > 0 so small that any curve of length l with tangents in the unstable cone
is cut into at most eεq pieces when mapped by f q.

Since the Lebesgue measure of the complement of the union of Dr(ε)
vanishes as r → ∞, we can choose r so large that the Lebesgue measure of
the union of Dr(ε) is as close to that of K as we like. Using (A3) and (A4),
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we see that it is even possible to choose r so large that the intersection of
the complement of the union of Dr(ε) with any curve of length at least l
with tangents in the unstable cone has one-dimensional Lebesgue measure
as small as we like.

Hence by first choosing q and l, and then r depending on l, it is possible
to achieve that the sum of the lengths of the curves in Wn satisfies

C0e
(χu−ε)qn ≤

∑
σ∈Wn

length(σ) ≤ C0e
(χu+ε)qn,

where C0 is a constant depending on f , q, l and r. This implies that the
number of curves in Wn satisfies the statement in the lemma.

8.3. Frostman’s lemma. We define a probability measure µn with sup-
port on

⋃
Wn by

µn =
1

N(n)

∑
W∈Wn

νW ,

where νW denotes the normalised Lebesgue measure on the curve W , and
N(n) denotes the number of elements in Wn as in Lemma 1.

By taking a subsequence we can achieve that µn converges weakly to a
probability measure µ with support in Λ. This measure will not be invariant,
but its conditional measures on the unstable manifold will be absolutely
continuous with respect to the corresponding conditional measures of the
srb-measure, almost surely.

We will use the following method, originating from Frostman [6], to es-
timate the dimension of Λ. If

� � dµ(x) dµ(y)
|x− y|s

<∞,

then dimH Λ ≥ dimH suppµ ≥ s. For a proof of this, see Falconer’s book [4].
Let M be a number. Then
� �

min
{
M,

1
|x− y|s

}
dµn(x) dµn(y)

→
� �

min
{
M,

1
|x− y|s

}
dµ(x) dµ(y) as n→∞,

and� �
min

{
M,

1
|x− y|s

}
dµ(x) dµ(y)

→
� � 1
|x− y|s

dµ(x) dµ(y) as M →∞.

We will therefore estimate

Es(n,M) =
� �

min
{
M,

1
|x− y|s

}
dµn(x) dµn(y).
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It is clear that Es(n,M) ≤ M . By the definition of the measure µn we
immediately get

(7) Es(n,M) =
∑

W,V ∈Wn

1
N(n)2

� �
min

{
M,

1
|x− y|s

}
dνV (x) dνW (y).

We rewrite (7) as
Es(n,M) = J1 + J2

with

J1 =
∑

W∈Wn

1
N(n)2

� �
min

{
M,

1
|x− y|s

}
dνW (x) dνW (y),

J2 =
∑

W,V ∈Wn
V 6=W

1
N(n)2

� �
min

{
M,

1
|x− y|s

}
dνV (x) dνW (y).

To estimate J1 we note that
� �

min
{
M,

1
|x− y|s

}
dνW (x) dνW (y) ≤M.

Hence
J1 ≤

∑
W∈Wn

M

N(n)2
=

M

N(n)
,

and so J1 → 0 as n→∞.
We will now estimate J2 and show that J2 is bounded as n→∞, provided

that s is sufficiently small.
Let m < n and W ∈ Wn. Then there is a unique α ∈ Wn−m such that

W ⊂ f qm(α). Consider the set W−m ⊂ α such that W = f qm(W−m).
Fix m < n and take two different α and β in Wn−m such that α−1 and

β−1 are in different cylinders. By condition (T) this implies that α and β
intersect (ε0, δ)-transversally. We will consider all manifolds W and V in
Wn such that W−m ⊂ α, V−m ⊂ β, and W−m and V−m are in the same
qm-cylinder, denoted by Sm(W−m). There is a picture of this in Figure 5.

Note thatW and V intersect if and only ifW−m and V−m intersect, since
W−m and V−m are in the same qm-cylinder. If W−m ⊂ α intersects β, then

(8)
∑
V ∈Wn

V−m⊂β∩Sm(W−m)

� � 1
|x− y|s

dνV (x) dνW (y) ≤ C1e
(χu−χs+2ε)(s−1)qm,

where C1 does not depend onW , α and β. Indeed, if m is large, then we may
assume thatW−m and V−m ⊂ β∩Sm(W−m) are contained in a ball of radius
ε0, and so the manifolds f qm(β) and W intersect (ε0, C−2e(−χu+χs−2ε)qmδ)-
transversally, so that∑

V ∈Wn
V−m⊂β∩Sm(W−m)

� � 1
|x− y|s

dνV (x) dνW (y) ≤ C0

�

γ1

�

γ2

1
|x− y|s

dx dy,
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α

β

V−m

W−m

Bε0

Fig. 5. A picture of intersections of unstable manifolds. The pre-images W−m and V−m
are the thicker segments.

where γ1 and γ2 are the curves

γ1 = {(x1, x2) : x1 = 0, |x2| < diamK},
γ2 = {(x1, x2) : |x2| < l, x2 = C2e(χu−χs+2ε)qmδ−1x1},

and C0 is a constant that depends only on the second derivative of the map
and the constants diamK and l. To prove (8), one easily checks that there
exists a constant C1 such that

C0

�

γ1

�

γ2

1
|x− y|s

dx dy ≤ C1e
(χu−χs+2ε)(s−1)qm.

We now consider those manifolds W such that W−m ⊂ α does not
intersect β. First, we consider those V such that W−m and V−m lie in
some ball Bε0 in the spirit of (T). If the distance between W−m and β
is d(W−m, β), then the distance between W and V ⊂ f qm(β) is larger than
C−1e(χs−ε)md(W−m, β) by (6). If we choose the length l in the construction
of Wn sufficiently small, then we can approximate the integral by∑

V ∈Wn
V−m⊂β∩Sm(W−m)

� � 1
|x− y|s

dνV (x) dνW (y) ≤ l−2
�

γ1

�

γ2

1
|x− y|s

dx dy,

where γ1 and γ2 are two parallel line segments of lengths l and diamK, and
with distance d(W−m, β)/2. The last integral is estimated by

�

γ1

�

γ2

1
|x− y|s

dx dy ≤
∞�

−∞

1(√
x2 + (d(W−m, β)/2)2

)s dx
= 2se(χs−ε)(1−s)qmd(W−m, β)1−s

∞�

0

dx
(1 + x2)s/2

,
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and so

(9)
∑
V ∈Wn

V−m⊂β∩Sm(W−m)

� � 1
|x− y|s

dνV (x) dνW (y)

≤ C2e
(χs−ε)(1−s)qmd(W−m, β)1−s

for some constant C2, provided that s > 1.
We cover the intersections of α and β by balls Bε0 . (Actually we cover

the parts α and β where α and β are within distance ε0 of each other.)
Since K is a bounded set, the number of such balls will always be less
than some number NB. A manifold W−m ⊂ α either intersects one of
these balls or lies a distance at least ε0 from each of the intersections of
α and β.

If W−m lies in Bε0 , with distance dW−m from the centre of the ball, then
by property (T), the distance betweenW−m and V−m ⊂ β is at least δdW−m .
The manifolds W−m and V−m are subsets of the two larger manifolds α and
β (see Figure 5). On each side of the intersection of these larger manifolds
(or, in case they do not intersect, on each side of a point on each curve that
are closest to the other curve) we can enumerate the pairs W−m and V−m,
such that the distance from the centre of the ball Bε0 to the ith manifold
W−m is increasing.

Since two different W−m do not intersect, the distance from the centre of
Bε0 to the ith manifold W−m is at least il/(Ce(χu+ε)qm), since the length of
each W−m is at least l/(Ce(χu+ε)qm) by (5). (We measure the distance along
the large manifold containing all the W−m.) Hence the distance between
the ith W−m and V−m ⊂ β is at least δil/(Ce(χu+ε)qm) and so the distance
between the corresponding W and V is at least C−2e(χs−ε)qmδil/e(χu+ε)qm.

Since the length of W−m is at least l/(Ce(χu+ε)qm), there can be at most
C3e

(χu+ε)qm different W−m in Bε0 , where C3 is a constant that depends on
l and ε0. By (8) and (9),

(10)
∑

W−m⊂α∩Bε0
V−m⊂β∩Sm(W−m)∩Bε0

� � 1
|x− y|s

dνV (x) dνW (y)

< C1e
(χu−χs+2ε)(s−1)qm + 2

C3e(χu+ε)qm∑
i=1

C2

(
C−2e(χs−ε)qmδi

l0

e(χu+ε)qm

)1−s

< C4e
(χu−χs+2ε)(s−1)qm(e(χu+ε)qm)2−s.

If we sum over the balls Bε0 needed to cover the intersection of α and β, we
get
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(11)
∑
Bε0

∑
W−m⊂α∩Bε0

V−m⊂β∩Sm(W−m)∩Bε0

� � 1
|x− y|s

dνV (x) dνW (y)

< C5e
(χu−χs+2ε)(s−1)qm(e(χu+ε)qm)2−s.

For those W and V such that W−m and V−m are not inside a ball Bε0
we have d(W,V ) > C−1e(χs−ε)qmε0, and by (9),

(12)
� � 1
|x− y|s

dνV (x) dνW (y)

≤ C2e
(χs−ε)(1−s)qmCs−1ε1−s0 = C6e

(χs−ε)(1−s)qm.

Since the length of each W−m and V−m is at least l/(Ce(χu+ε)qm) by (5),
and W ⊂ α and V ⊂ β, where α and β are fixed, there is a constant C7,
independent of m, n, α and β, such that the number of such pairs W and V
satisfying (12) is at most C7e

(χu+ε)qm.
By (11) and (12) we get

(13)
∑

W,V ∈Wn
W−m⊂α
V−m⊂β

� � 1
|x− y|s

dνV (x) dνW (y)

< C5e
(χu−χs+2ε)(s−1)m(e(χu+ε)qm)2−s + C6C7e

(−χs+ε)(s−1)qme(χu+ε)qm.

We will now sum over all m, α and β, and write J2 as J2 = J3 + J4 with

J3 =
n−1∑
m=0

∑
α,β∈Wn−m

α 6=β

∑
W,V ∈Wn
W−m⊂α
V−m⊂β

	 	
min{M, 1/|x− y|s} dνV (x) dνW (y)

N(n)2
,

J4 =
n−1∑
m=0

∑
α∈Wn−m

∑
W,V ∈Wn

W−m,V−m⊂α
W−m 6=V−m

	 	
min{M, 1/|x− y|s} dνV (x) dνW (y)

N(n)2
.

As for J1, we obtain J4 → 0 as n→∞. It remains to estimate J3.
Using that there are N(n − m) different α and β, we get, by (10) and

(13),

J3 ≤
n−1∑
m=0

N(n−m)2
C5e

(χu−χs+2ε)(s−1)qm(e(χu+ε)qm)2−s

N(n)2

+
n−1∑
m=0

N(n−m)2
C6C7e

(−χs(s−1)+ε(s−1))qme(χu+ε)qm

N(n)2
.
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Letting C8 = C5 + C6C7 yields

J3 ≤ C8

n−1∑
m=0

N(n−m)2e(χu−χs(s−1)+sε)qm

N(n)2
,

and C8 does not depend on n. By Lemma 1 we have N(n − m)/N(n) ≤
Ce−(χu−ε)qm, so

J3 ≤ C8

n−1∑
m=0

e(−χu−χs(s−1)+ε(s+2))qm.

We conclude that J3 is bounded as a function of n provided that −χu −
(s− 1)χs + (s+ 2)ε < 0 and s < 2, or equivalently

(14) s < 1− χu − 3ε
χs − ε

and s < 2.

We have thus proved that if s satisfies (14), then J1 and J2 = J3 + J4

are bounded, and so the integral
� �

min
{
M,

1
|x− y|s

}
dµ(x) dµ(y)

is uniformly bounded and hence converges as M →∞. This proves that
� � 1
|x− y|s

dµ(x) dµ(y) <∞,

provided that (14) holds. Hence

dimH Λ ≥ min
{

2, 1− χu − 3ε
χs − ε

}
.

Now let ε→ 0.
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