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The Kadec–Pełczyński–Rosenthal subsequence splitting
lemma for JBW∗-triple preduals

by

Antonio M. Peralta (Granada and Riyadh)
and Hermann Pfitzner (Orléans)

Abstract. Any bounded sequence in an L1-space admits a subsequence which can
be written as the sum of a sequence of pairwise disjoint elements and a sequence which
forms a uniformly integrable or equiintegrable (equivalently, a relatively weakly compact)
set. This is known as the Kadec–Pełczyński–Rosenthal subsequence splitting lemma and
has been generalized to preduals of von Neuman algebras and of JBW∗-algebras. In this
note we generalize it to JBW∗-triple preduals.

1. Introduction. Up to a subsequence any bounded sequence in an
L1-space splits into (i.e. can be written as) the sum of two sequences of
opposite nature: one which is pairwise disjointly supported, and another one
which converges weakly or, equivalently, is uniformly integrable. The paper
of Kadec–Pełczyński [33] contains a forerunner of this subsequence splitting
lemma, its explicit formulation appears in [7, p. 68] (with a reference to
Rosenthal’s [47]), whereas the authors of [2, p. 250] call it folklore and refer
to [12]. Note in passing that the splitting lemma also holds for Lp-spaces
with 0 < p <∞ [43, 45], but in this note we concentrate on p = 1. For some
generalizations and applications see [51, 43, 25, 14, 44, 45, 32].

In this note we generalize the splitting lemma to preduals of JBW∗-
triples as stated in our main result (Thm. 6.1). The main result gives a
positive answer to [41, Question 3] and a proof to [21, Conjecture 4.4]. On
the way from the classical result for L1-spaces to JBW∗-triple preduals we
find the following stages: Randrianantoanina [43] has shown the splitting
lemma for von Neumann preduals. In [21], Fernández-Polo, Ramírez and
the first author of this note adopted Randrianantoanina’s approach in order
to prove the splitting lemma for preduals of JBW∗-algebras. In the present
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note we follow Raynaud and Xu [45] who, shortly after Randrianantoanina,
recovered his result by means of ultraproduct techniques.

Although this note is intended to be self-contained, it can be considered,
in some sense, a continuation of [39] in that it uses a main result of [39]
(see the proof of Thm. 6.1) which allows us to obtain a disjointly supported
sequence from one being only almost isometric to `1.

As it is possible to define a topology on arbitrary L-embedded Banach
spaces X which on bounded sets equals the usual measure topology when X
is L1[0, 1] [41], it makes sense to conjecture a splitting lemma for L-embedded
spaces; see [41, §6] for a precise wording. However, examples show that in
general, L-embedded spaces fail such a splitting lemma [41, Ex. 6.2]. So
JBW∗-triple preduals seem to be the biggest class of L-embedded Banach
spaces known to admit a splitting property for bounded sequences. It remains
an open problem to find (reasonable) conditions on L-embedded spaces to
ensure the possibility of splitting.

2. Notation. Basic notions and properties not explained here (or al-
luded to too succinctly) can be found for Banach spaces in [13, 20, 31] and
for JBW∗-triples in [11, 10], but also in the introductory sections of [39].
Throughout this article we will use the following notation. The unit ball of
a Banach space X is written BX , and the dual X∗. Given an ultrafilter U
on an index set I, and a family (Xi)i∈I of Banach spaces, we denote by
(Xi)U the corresponding ultraproduct of the Xi, and if Xi = X for all i, we
write (X)U (or simply XU ) for the ultrapower of X. We refer to [28] for basic
facts and definitions concerning ultraproducts. Elements of (Xi)U are written
x̃ = [xi]U , in which case (xi) is called a representing family or a represen-
tative of x̃. We have ‖x̃‖ = limU ‖xi‖ independently of the representative.
We recall that there is a canonical isometric embedding ̂ : X ↪→ (X)U ,
x 7→ [x]U , and shall write X̂ and x̂ for the image of X and x, respectively,
under this embedding. A normalized sequence (xk) in a Banach space is said
to span `1 asymptotically if there exists a sequence (δn) such that 0 ≤ δn → 0
and ∑

k≥1
|αk| ≥

∥∥∥∑
k≥1

αkxk

∥∥∥ ≥∑
k≥1

(1− δk)|αk|, ∀αk ∈ C.

Moreover, throughout this article,W will denote a JBW∗-triple with predual
W∗ and triple product {·, .·, ·}. The Peirce projections associated with a
tripotent e are denoted by Pk(e) :W →W , k = 0, 1, 2, the ranges of Pk(e) by
Wk(e), whence we have the Peirce decompositionW =W2(e)⊕W1(e)⊕W0(e)
[11, p. 32]. The Peirce rules are

{E2(u), E0(u), E} = {E0(u), E2(u), E} = {0}
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and
{Ei(u), Ej(u), Ek(u)} ⊆ Ei−j+k(u),

where Ei−j+k(u) = {0} whenever i − j + k /∈ {0, 1, 2} ([22] or [11, Thm.
1.2.44]).

When X = W∗ is the predual of the JBW∗-triple W , the conventions
explained above hold accordingly, for example we write φ̃ = [φi]U ∈ (W∗)U
and Ŵ∗ ⊂ (W∗)U .

The orthogonality of two elements a, b ∈ W is written a ⊥ b, which by
definition means {a, b,W} = 0 (see [9, Lem. 1] for equivalent characteriza-
tions).

Two elements ϕ,ψ ∈ W∗ are called orthogonal, in symbols ϕ ⊥ ψ, if
s(ϕ) ⊥ s(ψ) where s(ϕ) is the support tripotent of ϕ, uniquely determined by
the fact that ϕ|W2(s(ϕ)) is a faithful normal positive functional on the JBW∗-
algebra W2(s(ϕ)) such that ϕ = ϕP2(s(ϕ)) [22, Prop. 2]. For any tripotent
e ∈ W such that ϕ(e) = ‖ϕ‖, in particular for s(ϕ), we have ϕ = ϕP2(e)
[22, Prop. 1]. Recall that ϕ ⊥ ψ if and only if they are L-orthogonal, that
is, ‖αϕ+ βψ‖ = |α|‖ϕ‖+ |β|‖ψ‖ for all scalars α, β (cf. [24, 19]; see [39] for
quantified versions).

According to the notation in [45], we shall say that a functional ϕ̃ =

[ϕi]U ∈ (W∗)U is disjoint from W∗ ≡ Ŵ∗ whenever ϕ̃ ⊥ φ̂ for every φ ∈ W∗.
We recall the Jordan identity

(2.1) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}},

which by definition of triple systems is valid for all a, b, x, y, z in a JB∗-
triple E. We also recall from [23, Cor. 3] that

‖{x, y, z}‖ ≤ ‖x‖‖y‖‖z‖.(2.2)

It follows from the so-called Gelfand–Naimark axiom for JB∗-triples
(‖{a, a, a}‖ = ‖a‖3 for all a ∈ E) that the quadratic operator Q(a) : E → E,
x 7→ {a, x, a}, has norm ‖a‖2. We finally recall that P2(e) = Q(e)2 for every
tripotent e ∈ E [11, p. 32].

3. Preliminary results

3.1. Banach spaces. The following way of constructing asymptotically
isometric `1-copies is reminiscent of a construction of Godefroy ([27, IV.2.5]
or [42, Thm. 2]).

Lemma 3.1. Let X be a Banach space, and let U be an ultrafilter on an
index set I. We denote X̃ = (X)U and write X̂ for the image of X under
the canonical embedding ̂ : X ↪→ (X)U , x̂ = [x]U . Suppose that a bounded
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family (xi) in X is such that [xi]U is non-zero and is L-orthogonal to X̂ in
the sense that

‖ŷ + [xi]U‖ = ‖ŷ‖+ ‖[xi]U‖, ∀y ∈ X.(3.1)

Then there is a sequence (xin)n∈N such that (xik/‖xik‖) spans `1 asymptoti-
cally.

Proof. By hypothesis we have

lim
U
‖y + αxi‖ = ‖ŷ‖+ |α| ‖[xi]U‖, ∀α ∈ C, y ∈ X.(3.2)

Let (δn) be a sequence of strictly positive numbers converging to 0. Set
η1 = 1

3δ1 and ηn+1 = 1
3 min(ηn, δn+1) for n ∈ N. By induction on n ∈ N we

will construct in ∈ I such that
n∑
k=1

(1− δk)|αk|+ ηn

n∑
k=1

|αk| ≤
∥∥∥∥ n∑
k=1

αk
xik
‖xik‖

∥∥∥∥(3.3)

for all n ∈ N and αk ∈ C.
Suppose without loss of generality that all xi are of norm one. For the

first induction step we choose any i1 ∈ I. For the induction step n 7→ n+1 we
suppose that xi1 , . . . , xin are constructed so that (3.3) holds. Fix α = (αk)

n+1
k=1

in the unit sphere of `n+1
1 such that αn+1 6= 0. Then (3.2) yields

lim
U

∥∥∥ n∑
k=1

αkxik + αn+1xi

∥∥∥ =
∥∥∥ n∑
k=1

αkx̂ik

∥∥∥+ |αn+1| ‖[xi]U‖

(3.3)
≥

n∑
k=1

(1− δk)|αk|+ ηn

n∑
k=1

|αk|+ |αn+1|

=

n+1∑
k=1

(1− δk)|αk|+ ηn

n+1∑
k=1

|αk| − (ηn − δn+1)|αn+1|

≥
n+1∑
k=1

(1− δk)|αk|+min(ηn, δn+1) >

n+1∑
k=1

(1− δk)|αk|+ 2ηn+1,

because ‖α‖ = 1 and |αn+1| ≤ 1. Thus, there exists U ∈ U such that∥∥∥ n∑
k=1

αkxik + αn+1xi

∥∥∥ > n+1∑
k=1

(1− δk)|αk|+ 2ηn+1, ∀i ∈ U.

Choose a finite ηn+1/2-net (αl)
Ln+1

l=1 , with αln+1 6= 0 for l ≤ L, in the
unit sphere of `n+1

1 in the sense that for each α in that unit sphere there
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is l ≤ Ln+1 such that ‖α − αl‖ =
∑n+1

k=1 |αk − αlk| < ηn+1/2. Then we
may repeat the reasoning above finitely many times for l = 1, . . . , Ln+1 to
get xin+1 such that∥∥∥n+1∑

k=1

αlkxik

∥∥∥ > n+1∑
k=1

(1− δk)|αlk|+ 2ηn+1, ∀l ≤ Ln+1.

For each α in the unit sphere of `n+1
1 choose l ≤ Ln+1 with ‖α−αl‖ < ηn+1.

Then ∥∥∥n+1∑
k=1

αkxik

∥∥∥ ≥ ∥∥∥n+1∑
k=1

αlkxik

∥∥∥− ∥∥∥n+1∑
k=1

(αk − αlk)xik
∥∥∥

≥
n+1∑
k=1

(1− δk)|αlk|+ 2ηn+1 − ‖α− αl‖

≥
n+1∑
k=1

(1− δk)|αk| −
ηn+1

2
+ 2ηn+1 −

ηn+1

2

=
n+1∑
k=1

(1− δk)|αk|+ ηn+1

n+1∑
k=1

|αk|.

This extends to all α ∈ `n+1
1 , and thus ends the induction and the proof.

An ultrafilter U on a set I is called countably incomplete if it contains a
sequence (Un) such that

⋂
n Un = ∅. Ultrafilters on N are countably incom-

plete. The following lemma is essentially contained in [45, end of the proof
of Thm. 4.6]. For the sake of completeness we give a detailed proof.

Lemma 3.2. Let U be a countably incomplete ultrafilter on a set I, and
let X be a Banach space. Consider a sequence (x̃(n)) and an element x̃ in
the ultrapower XU such that ‖x̃(n)− x̃‖ → 0 and for each n ∈ N, x̃(n) admits
a representative x̃(n) = [x

(n)
i ]U with {x(n)i : i ∈ I} relatively weakly compact

in X. Then x̃ also admits a representative x̃ = [xi]U with {xi : i ∈ I}
relatively weakly compact in X.

Proof. We use the notation of the hypothesis and may further assume
that ‖x̃(n)− x̃‖ < 1/n. Let x̃ = [x′i]U . Let (Un) in U be such that

⋂
n Un = ∅.

We may further assume that U1 ⊃ U2 ⊃ · · · and ‖x(n)i − x′i‖ < 1/n for all
i ∈ Un.

Set xi = 0 for i 6∈ U1 and xi = x
(ni)
i for i ∈ U1, where ni is defined

by i ∈ Uni \ Uni+1. By construction, ‖xi − x′i‖ < 1/n for i ∈ Un. Hence
[xi]U = [x′i]U = x̃.



82 A. M. Peralta and H. Pfitzner

Fix n ≥ 1 and i ∈ U1. If n > ni then

min
j≤n
‖xi − x(j)i ‖ ≤ ‖xi − x

(ni)
i ‖ = 0,

and if n ≤ ni then

‖xi − x(n)i ‖ = ‖x
(ni)
i − x(n)i ‖ ≤ ‖x

(ni)
i − x′i‖+ ‖x′i − x

(n)
i ‖ <

1

ni
+

1

n
≤ 2

n
.

From both cases we see that minj≤n ‖xi − x(j)i ‖ < 2/n for all i ∈ U1 and
n ≥ 1. This means that given n there is a family (yi) in the relatively weakly
compact union {0}∪

⋃n
j=1{x

(j)
i : i ∈ I} which is at most 2/n away from (xi).

Now let x∗∗ ∈ X∗∗ be a weak∗-limit of the xi along an ultrafilter V
on I. Denote by α the distance from x∗∗ to X and suppose α > 0. Take a
natural number n such that 2/n < α/2, ‖yi − xi‖ ≤ 2/n for every i, and set
y = weak-limV yi. Let x∗ ∈ BX∗ be such that |(x∗∗−y)(x∗)| > ‖x∗∗−y‖−α/2.
The contradiction

α ≤ ‖x∗∗ − y‖ < lim
V
|x∗(xi − yi)|+

α

2
≤ lim
V
‖xi − yi‖+

α

2
≤ 2

n
+
α

2
< α

shows that α = 0. Hence x∗∗ ∈ X, and {xi : i ∈ I} is relatively weakly
compact in X.

3.2. JBW∗-triples. Using the first half of [28, Cor. 7.6], Becerra and
Martín [6, Prop. 5.5] have shown the stability of the class of JBW∗-triple
preduals under ultraproducts. By using also the second half, the following
improvement can be obtained.

Theorem 3.3. Let (Wi)i∈I be a family of JBW ∗-triples, U an ultrafilter
on I, and let W = X∗, where X = ((Wi)∗)U . Then W is a JBW ∗-triple
and the canonical embedding J : (Wi)U →W (defined by J ([xi]U )([ϕi]U ) =
limU ϕi(xi)) is an isometric triple homomorphism with weak∗-dense image.

Proof. Let E = (Wi)U . As a consequence of [28, Cor. 7.6], there are an
ultrafilter B on an index set I ′, a contractive projection P on (E)B, and a
surjective linear isometry T :W → V where V = P ((E)B).

Let Ẽ = (E)B and let jE : E → Ẽ be the canonical embedding of E
into its ultrapower. Still according to [28, Cor. 7.6], the restriction of T to
J (E) is E’s canonical embedding into (E)B, that is, T (J (x)) = jE(x) for
all x ∈ E. In particular, P acts as the identity on jE(E). By the contractive
projection theorem (cf. [50], [35], [11, Thm. 3.3.1]), V = P (Ẽ) is a JB∗-
triple via {P (a), P (b), P (c)}V = P ({a, b, c}

Ẽ
). Since T is a surjective linear

isometry, the product {a, b, c}W = T−1{T (a), T (b), T (c)}V defines a JB∗-
triple structure on W. The mapping T : (W, {·, ·, ·}W) → (V, {·, ·, }V ) is a
triple isomorphism by construction.
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Let x, y, z ∈ E. Then

{J (x),J (y),J (z)}W = T−1({TJ (x), TJ (y), TJ (z)}V )
= T−1(P{TJ (x), TJ (y), TJ (z)}

Ẽ
)

= T−1(P{jE(x), jE(y), jE(z)}Ẽ)
= T−1(P{[x]B, [y]B, [z]B}Ẽ)
= T−1(P [{x, y, z}E ]B) = T−1(PjE{x, y, z}E)
= T−1(jE({x, y, z}E)) = J ({x, y, z}E),

which shows that J preserves the triple product. By [28, Prop. 7.3] (or [49,
Sec. 11, Cor. p. 78]), the image of J is weak∗-dense in W.

We isolate here a technical result which will be needed later.

Lemma 3.4. Let W be a JBW ∗-triple, let z ∈ W , φ ∈ W∗ and denote
by s(φ) the support tripotent of φ. If z ⊥ s(φ), then φ{x, y, z} = 0 for all
x, y ∈W .

Proof. We write s = s(φ) for short. Since z ⊥ s, and hence z ∈W0(s), it
follows from the Peirce rules that {x, y, z} = a+ b, where

a = {P1(s)(x), P0(s)(y), z}+ {P2(s)(x), P1(s)(y), z} ⊆W1(s),

b = {P0(s)(x), P0(s)(y), z}+ {P1(s)(x), P1(s)(y), z} ⊆W0(s).

Therefore, φ{x, y, z} = φ(a+ b) = φP2(s(φ))(a+ b) = 0.

4. Using the strong∗-topology. In [4, Prop. 1.2], Barton and Fried-
man showed that for a JBW∗-triple W , the mapping x 7→ ‖x‖ϕ :=
(ϕ{x, x, s(ϕ)})1/2, where s(ϕ) is the support tripotent of ϕ ∈ W∗, defines a
pre-Hilbertian seminorm on W . Moreover, ϕ{x, x, s(ϕ)} = ϕ{x, x, z} when-
ever ϕ(z) = ‖ϕ‖ = ‖z‖ = 1.

It is known that the identity

‖x‖2ϕ = ‖P1(e)(x)‖2ϕ + ‖P2(e)(x)‖2ϕ(4.1)

holds for all x ∈ W , ϕ ∈ W∗, and tripotents e such that ‖ϕ‖ = 1 = ϕ(e).
Indeed, although the proof of (4.1) in [36, Lem. 4.2] does not cover the
general case, it is very close. For the general case, let x = x0 + x1 + x2 be
the Peirce decomposition associated with e (i.e. xk = Pk(e)(x), k = 0, 1, 2).
By the Peirce rules,

‖x‖2ϕ = ϕ{x, x, e} = ϕ{x1, x1, e}+ ϕ{x2, x2, e}+ ϕ{x0, x1, e}+ ϕ{x1, x2, e},

hence (4.1) because |ϕ{x0, x1, e}| ≤ ϕ{x0, x0, e}ϕ{x1, x1, e} = 0 ([4, Prop.
1.2] and x0 ⊥ e) and ϕ{x1, x2, e} = ϕ{x2, x1, e} = 0 (Peirce rules and [4,
Prop. 1.2]).
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In [5] the strong∗-topology s∗(W,W∗) on a JBW∗-triple W is defined
as the locally convex topology generated by the family {‖ · ‖ϕ : ϕ ∈ W∗,
‖ϕ‖ = 1}. On a von Neumann algebra the strong∗ topology in the von Neu-
mann sense [48, 1.8.7] and the strong∗-topology in the triple sense coincide
[5, pp. 258–259].

The following proposition resembles [21, Cor. 2.6]. It says that a bounded
net (aλ) is strong∗-null if and only if the net {aλ, x, y} is weak∗-null uniformly
in x, y ∈ BW .

Proposition 4.1. Let (aλ) be a bounded net in a JBW ∗-triple W .

(a) The net (aλ) is strong∗-null if and only if for each ϕ ∈W∗,

sup{|ϕ{aλ, x, y}| : x, y ∈ BW }
λ→ 0.(4.2)

(b) If (aλ) is strong∗-null then, for each b ∈W and each ϕ ∈W∗,

sup{|ϕ{b, aλ, y}| : y ∈ BW }
λ→ 0.(4.3)

Proof. Without loss of generality, we suppose that (aλ) ⊂ BW . First we
notice that the “if” part of (a) follows from

‖aλ‖2ϕ = ϕ{aλ, aλ, s(ϕ)} ≤ sup{|ϕ{aλ, x, y}| : x, y ∈ BW }.

For the “only if” part of (a) and for (b) we first consider the case when
W is a von Neumann algebra considered as a JBW∗-triple via {a, b, c} =
(ab∗c + cb∗a)/2. In this case it is enough to consider a positive ϕ ∈ W∗.
We may assume ‖ϕ‖ = 1. By the Cauchy–Schwarz inequality, |ϕ(aλx∗y)|2 ≤
ϕ(aλa

∗
λ)ϕ(y

∗xx∗y) ≤ ϕ(aλa∗λ) and similarly |ϕ(yx∗aλ)|2 ≤ ϕ(a∗λaλ). Thus

2|ϕ{aλ, x, y}| = |ϕ(aλx∗y) + ϕ(yx∗aλ)| ≤ (ϕ(a∗λaλ))
1/2 + (ϕ(aλa

∗
λ))

1/2,

and similarly, for b ∈W ,

2|ϕ{b, aλ, y}| ≤ (ϕb(a
∗
λaλ))

1/2 + (ϕb∗(aλa
∗
λ))

1/2

where ϕb and ϕb∗ are positive normal functionals on W defined by c 7→
ϕ(bcb∗) and c 7→ ϕ(b∗cb), respectively. This shows (4.2) and (4.3) for von
Neumann algebras W .

To pass to general JBW∗-triples W we first make three observations.

Observation 1. The property expressed in the proposition is stable under
`∞ sums. More precisely, let (Wj)j∈J be a family of JBW∗-triples such that
each Wj satisfies the proposition accordingly. Set W =

⊕`∞
j∈JWj , which is

a JBW∗-triple in a canonical way ([34, p. 523] or [11, Ex. 3.1.4]). Then W
satisfies the proposition, too. Indeed, let (aλ)λ = ((aλ,j)j∈J)λ be a strong∗-
null net in BW . Given ϕ = (ϕj) ∈ W∗ =

⊕`1
j∈JWj,∗ we have ϕ{aλ, x, y} =∑

J ϕj{aλ,j , xj , yj}. For any ε > 0 there is a finite subset F ⊂ J such that
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(by (2.2)) ∑
j∈J\F

|ϕj{aλ,j , xj , yj}| ≤
∑
j∈J\F

‖ϕj‖ < ε/2

uniformly in x = (xj), y = (yj) ∈ BW . Since (aλ,j)λ is strong∗-null in Wj for
each j we have

∑
j∈F ϕj{aλ,j , xj , yj}

λ→ 0 uniformly in xj , yj ∈ BWj . This
proves (4.2). The argument for (4.3) is similar.

Observation 2. By [3, Cor. 9] (see also [23, Cor. 1, 2]), every JBW∗-triple
W can be identified with (i.e. is JBW∗-triple isometrically isomorphic to)
a weak∗-closed JB∗-subtriple of a JBW∗-algebra M . (Recall that a JBW∗-
algebra with product a ◦ b is a JBW∗-triple with the triple product

{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗,(4.4)

cf. [11, Lem. 3.1.6]). In turn, every JBW∗-algebra M can be (uniquely) de-
composed as a direct `∞-sum M = M1 ⊕∞M2 where M1 is a weak∗-closed
subtriple of a von Neumann algebra and M2 is a purely exceptional JBW∗-
algebra (cf. [26, Thm. 7.2.7]). Moreover, M2 embeds as a JBW∗-subalgebra
into an `∞-sum of finite-dimensional exceptional JBW∗-algebras ([26, Lem.
7.2.2 and Thm. 7.2.7]).

Observation 3. For each JBW∗-subtriple F of a JBW∗-triple W , the
strong∗-topology of F coincides with the restriction to F of the strong∗-
topology of W , that is, s∗(F, F∗) = s∗(W,W∗)|F (cf. [8, Cor.]). Hence the
property expressed in the proposition passes from JBW∗-triples to weak∗-
closed subtriples.

For an arbitrary JBW∗-tripleW , the proposition can now be reduced, via
the previous three observations, to the von Neumann case, which has been
proved above, and to the fact that finite-dimensional JBW∗-triples satisfy
the proposition trivially.

Analogously to [43, 45] and to [21], we define uniform integrability in
JBW∗-triple preduals:

Definition 4.2. Let W be a JBW∗-triple. A bounded subset K of W∗
is said to be uniformly integrable if

lim
n→∞

sup{‖ϕQ(xn)‖ : ϕ ∈ K} = 0

for each strong∗-null sequence (xn) in W .

This definition turns out to be equivalent to relative weak compactness
and is therefore equivalent to the corresponding definitions of [43, Def. 2.2],
[45, Def. 4.1] (to be read only for the case p = 1) and [21, Def. 2.1]. As in
[21], this will be a consequence of some characterizations of relative weak
compactness in JBW∗-triple preduals taken from [37].
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For the reader’s convenience we first recall some more results concerning
the strong∗-topology. Let u, v be two tripotents in a JBW∗-triple W . We
write u ≤ v if v − u ⊥ u, which is equivalent to {v, u, v} = u [11, 1.2.43].
The Peirce space W2(v) becomes a unital JB∗-algebra with product a ◦ b =
{a, v, b} and involution a∗ = {v, a, v}; further, from this product the original
triple product can be recovered by (4.4) [11, p. 20]. Now it is not difficult
to see that u is a symmetric projection in W2(v). On a JBW∗-algebra M a
strong∗-topology in the algebraic sense is defined by the family of seminorms
of the form x 7→ ‖x‖φ = φ{x, x, 1}1/2 = (φ(x∗ ◦ x))1/2, where φ ∈ M∗ is
positive and of norm one [26, 4.1.3]. Rodríguez-Palacios [46, Prop. 3] has
shown that this topology coincides with s∗(M,M∗) when M is considered as
a JBW∗-triple.

Let now (qn) be a decreasing weak∗-null sequence of tripotents in W .
Then (qn) is a weak∗-null sequence of projections in M = W2(q1). For any
positive φ ∈ (W2(q1))∗ we have ‖qn‖2φ = φ(q∗n◦qn) = φ(qn)→ 0, which shows
that (qn) is strong∗-null in the algebraic and in the triple sense in W2(q1),
hence it is also strong∗-null in W (cf. [8, Cor.]). To sum up, a decreasing
weak∗-null sequence of tripotents in W is also strong∗-null.

Similarly, we can show that a sequence (en) of pairwise orthogonal tripo-
tents in W is strong∗-null in W . It is known that (en) is summable with
respect to the weak∗-topology ofW . Moreover, the element e := σ(W,W∗)−∑

n en is a tripotent in W and en ≤ e for every n ∈ N, that is, the se-
quence (en) lies in the JBW∗-algebra W2(e) (cf. [30, Cor. 3.13]) and we
have en ◦ e∗n = en for all n. Further, en → 0 with respect to the weak∗-
topology (of W and) of W2(e). As in the preceding paragraph, we deduce
from ‖en‖2φ = φ(e∗n ◦ en) = φ(en)→ 0 that (en) is strong∗-null in W2(e) and
finally in W .

We can now show the connections between uniform integrability and
relative weak compactness. The main aspect of the following proposition is
the equivalence of (i) and (ii); other equivalences are standard or, like (vii),
at least implicitly known but perhaps not stated in the literature.

Proposition 4.3. Let K be a bounded subset in the predual of a JBW ∗-
triple W . The following statements are equivalent:

(i) K is relatively weakly compact.
(ii) K is uniformly integrable.
(iii) For each strong∗-null sequence (en) of tripotents we have

lim
n→∞

sup{‖ϕP2(en)‖ : ϕ ∈ K} = 0.(4.5)

(iv) For each decreasing strong∗-null sequence (en) of tripotents we have
(4.5).



Subsequence splitting lemma 87

(v) For each sequence (en) of pairwise orthogonal tripotents we have
(4.5).

(vi) For each decreasing weak∗-null (equivalently decreasing strong∗-null)
sequence (en) of tripotents we have

lim
n→∞

sup{|ϕ(en)| : ϕ ∈ K} = 0.(4.6)

(vii) For each sequence (en) of pairwise orthogonal tripotents we have
(4.6).

Proof. We use the notation ‖x‖2ϕ1,ϕ2
= ‖x‖2ϕ1

+ ‖x‖2ϕ2
. From [37, Thm.

1.1, Cor. 1.4] we infer that (i) is equivalent to (vi) and also to the following
statement.

(1) There exist norm-one elements ψ1, ψ2 ∈ W∗ with the following pro-
perty: Given ε > 0, there exists δ > 0 such that for every x ∈ W
with ‖x‖ ≤ 1 and ‖x‖ψ1,ψ2 < δ, we have |ϕ(x)| < ε for each ϕ ∈ K.

We have (vi)⇒(i)⇒(1) and show (1)⇒(ii): Let (xn) be strong∗-null in W , in
fact in BW , and take ψ ∈ {ψ1, ψ2} where ψ1, ψ2 are from (1). Given ε > 0
choose δ > 0 according to (1). Let y ∈ BW , and set z = Q(xn)(y). From the
Jordan identity (2.1) we get

{z, z, s(ψ)} = {{xn, y, xn}, z, s(ψ)}
= {xn, y, {xn, z, s(ψ)}}+ {xn, {y, xn, z}, s(ψ)} − {xn, z, {xn, y, s(ψ)}}.

Hence
‖Q(xn)(y)‖2ψ ≤ 3 sup{|ψ{xn, a, b}| : a, b ∈ BW }

n→ 0

uniformly in y ∈ BW by Proposition 4.1(a). Thus, there is n0 such that
‖Q(xn)(y)‖ψ1,ψ2 < δ for all n ≥ n0 and all y ∈ BW . Now ‖ϕQ(xn)‖ =
supy∈BW

|ϕ(Q(xn)(y))| ≤ ε by (1), which shows (ii).
The implication (ii)⇒(iii) follows from ‖ϕP2(en)‖ = ‖ϕQ(en)

2‖ ≤
‖ϕQ(en)‖. The implication (iii)⇒(iv) is trivial, and so is (iii)⇒(v) if we
take into account that, as seen above, a sequence of pairwise orthogonal
tripotents is strong∗-null.

(iv)⇒(vi): We have commented that a decreasing weak∗-null sequence of
tripotents is strong∗-null. Thus the desired implication follows from |ϕ(en)| =
|ϕ(P2(en)(en))| ≤ ‖ϕP2(en)‖.

From the same inequality we also deduce (v)⇒(vii).
(vii)⇒(i): In order to show that K is relatively weakly compact, it is

enough to show that the restriction K|C is so for each maximal abelian sub-
triple C ofW (cf. [37, Thm. 1.1]). But such C’s are isometric to von Neumann
algebras (see, for example, [29, Cor. 6.4]), thus the desired implication follows
from Akemann’s criterion (see, for example, [1], [45, 4.14(ii)]).
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We will use the following definitions of functionals on W . For a, b, x ∈W
and ϕ ∈W∗, the maps {a, b, ϕ}, {ϕ, b, a} and {a, ϕ, b} defined by

(4.7) {a, b, ϕ}(x) = {ϕ, b, a}(x) := ϕ{b, a, x}
and

{a, ϕ, b}(x) := ϕ{a, x, b}
are well-defined elements of W∗ (by the separate weak∗-continuity of the
triple product). Further, {a, b, ϕ} and {ϕ, b, a} are linear in b and ϕ and
conjugate linear in a, whereas {a, ϕ, b} is conjugate linear in a, b, ϕ. Although
these properties are more than enough for what we need, it is worth pointing
out that (4.7) defines natural actions ofW onW∗ and allows one to consider
W∗ as a Banach triple module over W . The notion of Banach triple module
has been introduced in the recent paper [40] by Russo and the first author
of this note. A bit more concretely in our context, compare, for example,
{W,W, Ŵ∗} in Proposition 5.3 with AL1(a) + L1(a)A in the proof of [45,
Thm. 4.6b].

Corollary 4.4. Let φ be a normal functional in the predual of a JBW ∗-
triple W . Let (ai)i∈I , (bi)i∈I be two bounded families of elements in W . Then
the set {{ai, bi, φ} : i ∈ I} is relatively weakly compact in W∗.

Proof. We may assume that ai, bi ∈ BW for every i ∈ I. Let (en) be
a decreasing strong∗-null sequence of tripotents in W . Proposition 4.1(a)
implies that

sup{|{ai, bi, φ}(en)| : i ∈ I} ≤ sup{|φ{b, a, en}| : a, b ∈ BW }
n→ 0.

The desired statement follows from [37, Thm. 1.1, Cor. 1.4] (cited here as
(vi)⇒(i) in Theorem 4.3).

Proposition 4.5. Let E be a weak∗-dense JB∗-subtriple of a JBW ∗-
triple W . Then for all φ ∈ W∗ and y, z ∈ W , the functional {z, y, φ} ∈ W∗
is in the norm-closure of the set {{a, b, φ} : a, b ∈ ρBE}, where ρ =
max{‖y‖, ‖z‖}.

Proof. We can assume that max{‖y‖, ‖z‖} = 1. By the Kaplansky den-
sity theorem [5, Cor. 3.3] it follows that

BW = BE
s∗(W,W∗)

.

Let (yλ) and (zµ) be two nets in BE converging in the strong∗-topology of
W to y and z, respectively. By Proposition 4.1, we have

‖{zµ, y − yλ, φ}‖ ≤ sup{|φ{y − yλ, z, x}| : z, x ∈ BW }
λ→ 0

uniformly in µ, and

‖{z − zµ, y, φ}‖ ≤ sup{|φ{y, z − zµ, x}| : x ∈ BW }
µ→ 0.
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Finally, the identity {z, y, φ} − {zµ, yλ, φ} = {z − zµ, y, φ} + {zµ, y − yλ, φ}
gives the desired statement.

5. Using structural projections. A linear subspace J of a JBW∗-
triple W is an inner ideal in W if {J,W, J} ⊆ J . Clearly, inner ideals are
subtriples. Edwards and Rüttimann [17, Lem. 2.3] established the following
characterization: A weak∗-closed subtriple J of W is an inner ideal of W if
and only if

J =
⋃

e∈Trip(J)

W2(e)(5.1)

where Trip(J) is the set of tripotents contained in J . Note in passing that
in von Neumann algebras (viewed as JBW∗-triples) left and right ideals and
sets of the form aWb (a, b,∈W ) are inner ideals, whereas weak∗-closed inner
ideals are of the form pWq with projections p, q ∈W [16, Thm. 3.16].

Examples of inner ideals can be given as follows. Let M ⊂W. Then M⊥,
the (orthogonal) annihilator of M , defined by

M⊥ := {y ∈W : y ⊥ x, ∀x ∈M},

is a weak∗-closed (by the separate weak∗-continuity of the triple product)
inner ideal of W (cf. [18, Lem. 3.2]).

A linear projection P on W is said to be structural when

{P (a), b, P (c)} = P{a, P (b), c}, ∀a, b, c ∈W.

Such a projection is contractive and weak∗-continuous and its pre-adjoint
P∗ :W∗ →W∗ has range

P∗(W∗) = P (W )] := {ϕ ∈W∗ : ‖ϕ‖ = ‖ϕ|P (W )‖},

where, of course, ‖ϕ|P (W )‖ = sup‖P (x)‖≤1 |ϕ(P (x))| (see [15, Thm. 5.3]).
Note in passing that structural projections on a von Neumann algebra M
are of the form x 7→ pxq where p, q are centrally equivalent projections in M
[15, Thm. 6.1].

This circle of ideas culminates in the result of [15, Thm. 5.4], where
Edwards, McCrimmon and Rüttimann proved that every weak∗-closed inner
ideal J in a JBW∗-triple W is the range of a unique structural projection P
on W . It is also known (cf. [15, Lem. 5.2]) that

P∗(W∗) = J∗ =
⋃

e∈Trip(J)

W∗,2(e).

Given a subset Z ⊂W∗ we henceforth write

Z⊥ := {ϕ ∈W∗ : ϕ ⊥ φ, ∀φ ∈ Z}.
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Lemma 5.1. Let Z be a subset in the predual of a JBW∗-triple W . Let
S(Z) := {s(φ) : φ ∈ Z} in W and write J = S(Z)⊥ ⊆ W . Suppose P :
W →W is the unique structural projection on W whose image is the weak∗-
closed inner ideal J . Then P∗(W∗) = Z⊥.

Proof. Let ϕ be a functional in P∗(W∗) = P (W )]. Then there exists a
tripotent e ∈ P (W ) = J such that ϕ(e) = ‖ϕ‖, and hence ϕ = ϕP2(e). It
follows that s(ϕ) ∈ W2(e) (cf. [22, proof of Prop. 2]), and thus s(ϕ) ∈ J =
S(Z)⊥ by (5.1). We deduce that s(ϕ) ⊥ s(φ) for every φ ∈ Z, or equivalently,
ϕ ∈ Z⊥. This shows that J∗ ⊆ Z⊥.

Take now ϕ ∈ Z⊥. In this case, s(ϕ) ⊥ s(φ) for every φ ∈ Z. Therefore,
s(ϕ) ∈ S(Z)⊥ = J, and hence ϕ ∈ P (W )] = P∗(W∗) = J∗.

We now describe the situation in which the theory above will be used.
Let W be a JBW∗-triple and let U be an ultrafilter on a set I. Henceforth,
we write W = ((W∗)U )

∗, S(Ŵ∗) = {s(φ̂) ∈ W : φ ∈W∗} and

J = (S(Ŵ∗))
⊥ = {y ∈ W : y ⊥ s(φ̂), ∀s(φ̂) ∈ S(Ŵ∗)}.

Then J is a weak∗-closed inner ideal in W. Further, we denote by PU :
W →W the unique structural projection on W whose image is J .

The following corollary is immediate from Lemma 5.1.

Corollary 5.2. In the situation just described, a functional ϕ̃ = [ϕi]U
in (W∗)U =W∗ is disjoint from W∗ ≡ Ŵ∗ if and only if (PU )∗(ϕ̃) = ϕ̃.

Proposition 5.3. In the situation described before Corollary 5.2 we have

(5.2) ker((PU )∗) = span‖·‖{W,W, Ŵ∗} = span‖·‖{WU ,WU , Ŵ∗}.

Proof. Take x, y ∈ W, and φ̂ ∈ Ŵ∗. Since each element of J is orthogonal
to the support tripotent s(φ̂) of φ̂, we have φ̂{x, y,J } = 0 by Lemma 3.4,
that is, {y, x, φ̂}(J ) = 0. Equivalently,

(PU )∗{y, x, φ̂} = {y, x, φ̂}PU = 0.

This shows that ker((PU )∗) ⊇ span‖·‖{W,W, Ŵ∗}.
In order to show that equality holds suppose that z ∈ W vanishes on

{W,W, Ŵ∗}. Then 0 = {y, x, φ̂}(z) = φ̂{x, y, z} for all x, y ∈ W and all
φ̂ ∈ Ŵ∗. Taking x = s(φ̂) ∈ W and y = z we get

‖z‖2
φ̂
= φ̂{z, z, s(φ̂)} = 0.

By (4.1),

0 = ‖z‖2
φ̂
= ‖P2(s(φ̂))(z)‖2φ̂ + ‖P1(s(φ̂))(z)‖2φ̂

= φ̂{P2(s(φ̂))(z), P2(s(φ̂))(z), s(φ̂)}+ φ̂{P1(s(φ̂))(z), P1(s(φ̂))(z), s(φ̂)}.
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By [22, Lem. 1.5] (see also [38]), the triples {P2(s(φ̂))(z), P2(s(φ̂))(z), s(φ̂)}
and {P1(s(φ̂))(z), P1(s(φ̂))(z), s(φ̂)} are positive elements in the JBW∗-al-
gebra W2(s(φ̂)), and it follows from the faithfulness of φ̂ on W2(s(φ̂)) that
both are zero. Another application of [22, Lem. 1.5] (see also [38]) shows
that P2(s(φ̂))(z) = P1(s(φ̂))(z) = 0. We have shown that z ∈ W0(s(φ̂)),
equivalently, z ⊥ s(φ̂) for every φ̂ ∈ Ŵ∗, that is, z ∈ J = PU (W). Hence z
vanishes on the annihilator of PU (W) in W∗, that is, on ker((PU )∗). By the
Hahn–Banach theorem we get the first equality of (5.2).

If we keep in mind that WU is a weak∗-dense JB∗-subtriple of W (cf.
Theorem 3.3), then the second equality of (5.2) is a consequence of Propo-
sition 4.5.

The main result of this section shows how, in the case of a countably
incomplete ultrafilter U , the projection (PU )∗ determines when an element
ϕ̃ ∈ (W∗)U admits a representative which, as a set, is relatively weakly
compact in W∗.

Theorem 5.4. Consider the situation described before Corollary 5.2.
Suppose the ultrafilter U is countably incomplete. Then (PU )∗(ϕ̃) = 0 if
and only if we can write ϕ̃ = [ϕi]U for some relatively weakly compact set
{ϕi : i ∈ I} in W∗.

Proof. “Only if”: Every ϕ̃ ∈ {WU ,WU , Ŵ∗} can be written in the form

ϕ̃ = {[ai]U , [bi]U , φ̂} = [{ai, bi, φ}]U
where [ai]U , [bi]U ∈ WU and φ ∈ W∗. Corollary 4.4 proves that the set
{{ai, bi, φ} : i ∈ I} is relatively weakly compact in W∗. Thus, every ϕ̃ ∈
{WU ,WU , Ŵ∗}, and in fact every ϕ̃ ∈ span{WU ,WU , Ŵ∗}, admits a repre-
sentative ϕ̃ = [ϕi]U where {ϕi : i ∈ I} is relatively weakly compact inW∗. By
Lemma 3.2, the same statement still holds for all ϕ̃ ∈ span‖·‖{WU ,WU , Ŵ∗},
and hence for all ϕ̃ ∈ ker((PU )∗) by Proposition 5.3.

“If”: Suppose that ϕ̃ = [ϕi]U where {ϕi : i ∈ I} is relatively weakly
compact in W∗. Write

ϕ̃ = ψ̃ + ξ̃

where ψ̃ is in (PU )∗’s range and ξ̃ ∈ ker((PU )∗). By the “only if” implication,
we can find a representative ξ̃ = [ξi]U for some relatively weakly compact set
{ξi : i ∈ I} inW∗. If we set ψi = ϕi−ξi, it follows from the above that the ψi’s
form a relatively weakly compact representative of ψ̃. Since ψ̃ is in the image
of (PU )∗, we infer from Corollary 5.2 that ψ̃ is disjoint from (Ŵ∗)

⊥, hence
‖ψ̃+ φ̂‖ = ‖ψ̃‖+‖φ̂‖ for all φ ∈W∗. If we had ψ̃ = [ψi]U 6= 0 then by Lemma
3.1 the set {ψi : i ∈ I} would contain an `1-sequence, which, however, is not
possible for a relatively weakly compact set. Hence (PU )∗(ϕ̃) = ψ̃ = 0.
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6. Main result. Finally, we are in a position to prove the main result,
a generalization of the Kadec–Pełczyński–Rosenthal subsequence splitting
lemma to preduals of JBW∗-triples. As already mentioned in the introduc-
tion, JBW∗-triple preduals seem to constitute the largest known class of
L-embedded Banach spaces fulfilling a splitting property for bounded se-
quences.

Theorem 6.1. Let W be a JBW ∗-triple, and let (ϕn) be a bounded
sequence in W∗. Then there is a subsequence (ϕnk

) which can be written
ϕnk

= ψk + ξk where the ψk’s are pairwise orthogonal and (ξk) converges
weakly to some ξ ∈W∗.

Proof. We apply Theorem 5.4 with I = N and U a free ultrafilter over N.
Consider ϕ̃ = [ϕn]U and τ̃ = ϕ̃− (PU )∗(ϕ̃) in (W∗)U . Then (PU )∗(τ̃) = 0. By
Theorem 5.4 we can write τ̃ = [τn]U where the set {τn : n ∈ N} is relatively
weakly compact in W∗.

Set ωn = ϕn − τn and ω̃ = [ωn]U . Then ω̃ = (PU )∗(ϕ̃) and ω̃ ⊥ Ŵ∗ (cf.
Corollary 5.2). If ω̃ = 0, then limU ‖ϕn − τn‖ = 0, and hence

lim
k→∞

‖ϕnk
− τnk

‖ = 0

for appropriate subsequences; we can further assume, by the theorem of
Eberlein–Šmulyan, that (τnk

) converges weakly to some ξ. Setting ψk = 0
and ξk = (ϕnk

− τnk
) + τnk

, we get the conclusion in the case ω̃ = 0.
If ω̃ 6= 0, then by Lemma 3.1 there is a seminormalized (= bounded

and uniformly away from 0) subsequence (ωnl
) such that (ωnl

/‖ωnl
‖) spans

`1 asymptotically, hence almost isometrically. It follows from [39, Thm. 4.1]
that there are a further subsequence of (ωnl

) (which we still denote by (ωnl
))

and a sequence (ψ′l) of pairwise orthogonal norm-one functionals in W∗ such
that ‖ωnl

/‖ωnl
‖ − ψ′l‖ → 0. Moreover, there is a subsequence (τnlk

) which
converges weakly to some ξ (Eberlein–Šmulyan theorem). It remains to set

ψlk = ‖ωnlk
‖ψ′nlk

and ξlk = τnlk
+ (ωnlk

− ψlk),

and to replace lk by k.
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