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MATHEMATICAL ANALYSIS OF A WITHIN-HOST MODEL

OF MALARIA WITH IMMUNE EFFECTORS AND

HOLLING TYPE II FUNCTIONAL RESPONSE

Abstract. In this paper, we consider a within-host model of malaria with
Holling type II functional response. The model describes the dynamics of the
blood-stage of parasites and their interaction with host cells, in particular
red blood cells and immune effectors. First, we obtain equilibrium points of
the system. The global stability of the disease-free equilibrium point is es-
tablished when the basic reproduction ratio of infection is R0 < 1. Then the
disease is controllable and dies out. In the absence of immune effectors, when
R0 > 1, there exists a unique endemic equilibrium point. Global analysis of
this point is given, which uses on the one hand Lyapunov functions and on
the other hand results of the theory of competitive systems and stability of
periodic orbits. Therefore, if R0 > 1, the malaria infection persists in the
host. Finally, in the presence of immune effectors, we find that the endemic
equilibrium is unstable for some parameter values using the Routh–Hurwitz
criterion; numerical simulations of the model also show the same results.

1. Introduction. Malaria is a mosquito-borne disease caused by any
one of four different blood parasites, called Plasmodia. The disease is trans-
mitted to people by the Anopheles mosquito. This disease is a leading cause
of debilitating illness, with over 300-500 million cases and 1 million deaths
each year around the world [4].

A female Anopheles mosquito carrying malaria-causing parasites feeds
on a human and injects the parasites in the form of sporozoites into the
bloodstream. The sporozoites travel to the liver and invade liver cells. Over
5-16 days, the sporozoites grow, divide, and produce tens of thousands of
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haploid forms, called merozoites, per liver cell. The merozoites exit the liver
cells and re-enter the bloodstream, beginning a cycle of invasion of red blood
cells, where they again multiply and burst the cells, each releasing 8-32
merozoites that invade more red blood cells and continue the cycle. Blood
stage infection engages a network of interacting cells, cytokines, antibodies
and other components of the immune system [16, 18].

Despite widespread efforts for malaria disease control in the world, there
are still many problems due to malaria infection, particularly in Sub-Saharan
Africa. Therefore, if we understand how the immune effectors react in a hu-
man body after malaria infection, we can take steps to develop new drugs
or a vaccine. Our contribution is to propose new mathematical models of
malaria infection and to analyze them. We use the original model of Ander-
son [1] with Holling type II functional response.

2. The model formulation. In Anderson’s model, the interaction of
malaria parasites, red blood cells and immune effectors is presented. The
state variables are denoted by X, Y , M and I. The variable X(t) denotes
the density of uninfected red blood cells at time t, Y (t) denotes the density of
infected red blood cells at time t, M(t) denotes the density of free merozoites
in the blood at time t and I(t) denotes the density of immune effectors at
time t. The dynamic variable I(t) represents the reaction of the immune
system.

This model is given by the following system of differential equations:

(1)

dX

dt
= Λ− µxX − ksXM,

dY

dt
= ksXM − µyY − µcY I,

dM

dt
= rµyY − µmM − µhMI,

dI

dt
= [λyY + λmM ]I − µiI.

Uninfected red blood cells are recruited from the red bone marrow at a con-
stant rate Λ. The parameters µx, µy, µm and µi are respectively the natural
death rates of uninfected red blood cells, infected red blood cells, free mero-
zoites and immune effectors. The death of infected red blood cells results
in the release of a number r of merozoites. The parameter ks denotes the
contact rate between uninfected red blood cells and free merozoites. The
parameters µc and µh are the immuno-sensitivities of infected red blood
cells and free merozoites, respectively. The immune effectors proliferate in
response to contact with infected red blood cells and free merozoites at rates
λy and λm, respectively. Usually the rate of infection in most malaria models
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is assumed to be bilinear in the free merozoites M and the uninfected red
blood cells X. However, the actual incidence rate is probably not linear over
the entire range of M and X. Thus, it is reasonable to model the infection
rate of malaria using Holling type II functional response, ksXM1+αX , where α > 0
is constant. Note that all the parameters of the model are assumed to be
positive real numbers. With these definitions and assumptions, the interac-
tion involving density of parasites, density of red blood cells and immune
effectors with Holling type II functional response is given by

(2)

dX

dt
= Λ− µxX −

ksXM

1 + αX
,

dY

dt
=

ksXM

1 + αX
− µyY − µcY I,

dM

dt
= rµyY − µmM − µhMI,

dI

dt
= [λyY + λmM ]I − µiI.

In this paper, we investigate stability of the equilibrium points of this system.
These results enable us to discuss the nature of the disease.

3. The equilibrium points of the model. In this section, we will
first find the equilibrium points of system (2). To compute them, we set the
derivatives with respect to time in system (2) equal to zero. Hence, we get
the following system of equations:

(3)

Λ− µxX −
ksXM

1 + αX
= 0,

ksXM

1 + αX
− µyY − µcY I = 0,

rµyY − µmM − µhMI = 0,

[λyY + λmM ]I − µiI = 0.

From the fourth equation of (3), we obtain I = 0 or λyY + λmM − µi = 0.

In the absence of immune effectors, I = 0, the model reduces to a model
with disease-free and endemic equilibrium points. For this model, we ob-
tain the disease-free equilibrium point E0 = (Λ/µx, 0, 0, 0) and the endemic
equilibrium point E1 = (X∗, Y ∗,M∗, 0), where

(4)

X∗ =
µm

ksr − αµm
,

Y ∗ =
1

µy

(
Λ− µxµm

ksr − αµm

)
,

M∗ = r

(
Λ

µm
− µx
ksr − αµm

)
.
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For the third equilibrium point E2 = (X̃, Ỹ , M̃ , Ĩ) with immune effectors
Ĩ 6= 0, we have

(5)

Λ− µxX̃ −
ksX̃M̃

1 + αX̃
= 0,

ksX̃M̃

1 + αX̃
− µyỸ − µcỸ Ĩ = 0,

rµyỸ − µmM̃ − µhM̃ Ĩ = 0,

λyỸ + λmM̃ − µi = 0.

For existence of this equilibrium point, we have the following theorem.

Theorem 1. For small positive values of α, there exists an endemic
equilibrium point E2 = (X̃, Ỹ , M̃ , Ĩ) ∈ R4

+.

Proof. For α = 0, existence of at least one endemic equilibrium point
(X̃, Ỹ , M̃ , Ĩ) ∈ R4

+ is proved in [18, Theorem 8]. By using this theorem and
the implicit function theorem, we deduce that for small positive values of α,
system (5) has a solution E2 = (X̃, Ỹ , M̃ , Ĩ) ∈ R4

+.

Notice that the equilibrium point E2 exists provided that the density of
immune effectors is not zero and the malaria infection persists within an
infected host.

Now for the stability analysis of the equilibrium points, we will define
the feasible region that is positively invariant. In order to do this, we use
the following lemma.

Lemma 1. The region Q = {X(t) ≥ 0, Y (t) ≥ 0,M(t) ≥ 0, I(t) ≥ 0} is
positively invariant for solutions of system (2).

Proof. For simplicity of writing, model (2) can be written in the form
Ṡ(t) = G(S(t)), where S(t) = (s1, s2, s3, s4)

T := (X,Y,M, I), S(0) =
(X(0), Y (0),M(0), I(0))T ∈ Q and

G(S) =


G1(S)

G2(S)

G3(S)

G4(S)

 =


Λ− µxX − ksXM

1+αX
ksXM
1+αX − µyY − µcY I
rµyY − µmM − µhMI

[λyY + λmM ]I − µiI

 .

For s1 = 0 in (2), we have G1(S) = Λ > 0. Thus, no trajectory can pass
through X = 0.

For s2 = 0 in (2), we have G2(S) = ksXM
1+αX ≥ 0 provided that X,M ≥ 0.

That is, no trajectory can pass through Y = 0.

For s3 = 0 in (2), we have G3(S) = rµyY ≥ 0 provided that Y ≥ 0.
Hence, no trajectory can pass through M = 0.
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For s4 = 0 in (2), we have G4(S) = 0. Thus, no trajectory can pass
through I = 0.

Due to the well known theorem by Nagumo [15], any solution of (2) with
initial point S(0) ∈ Q, say S(t) = S(t, S(0)), is such that S(t) ∈ Q for all
t > 0.

Remark 1. Notice that for biological reasons, the initial condition for
system (2) must be non-negative. Thus by the above lemma, X, Y , M and
I must be non-negative for t ≥ 0.

From the first equation of (2), we obtain X ′(t) ≤ Λ− µxX(t). Thus

lim sup
t→∞

X(t) ≤ Λ

µx
.

Adding the first two equations of (2), we get

(X(t) + Y (t))′ = Λ− µxX − µyY − µcY I ≤ Λ− µxX − µyY
≤ Λ−m1(X(t) + Y (t)),

where m1 = min{µx, µy}. Thus,

lim sup
t→∞

(X(t) + Y (t)) ≤M1, where M1 =
Λ

m1
.

From the third equation of (2), we obtain

M ′(t) ≤ rµyY − µmM ≤ rµyM1 − µmM.

Thus,

lim sup
t→∞

M(t) ≤M2, where M2 =
rµyM1

µm
.

Now, we set

V (t) = M(t) +
µh
λm

I(t) +
λy
µc

µh
λm

Y (t).

Calculating the derivative of V along the solutions of system (2), we have

V̇ (t) = Ṁ(t) +
µh
λm

İ(t) +
λy
µc

µh
λm

Ẏ (t)

= rµyY (t)− µmM(t)− µhM(t)I(t)

+
µh
λm

[λyY (t)I(t) + λmM(t)I(t)− µiI(t)]

+
λy
µc

µh
λm

[
ksX(t)M(t)

1 + αX(t)
− µyY (t)− µcY (t)I(t)

]
≤ rµyY (t)−µmM(t)− µh

λm
µiI(t)+

λy
µc

µh
λm

ksX(t)M(t)−λy
µc

µh
λm

µyY (t)
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≤ rµyM1 +
λy
µc

µh
λm

ks

(
Λ

µx

)
M2 −m2

(
M(t) +

µh
λm

I(t) +
λy
µc

µh
λm

Y (t)

)
= rµyM1 +

λy
µc

µh
λm

ks

(
Λ

µx

)
M2 −m2V (t),

where m2 = min{µm, µi, µy}. Thus

lim sup
t→+∞

V (t) ≤M3, where M3 =
rµyM1 +

λy
µc

µh
λm
ks
(
Λ
µx

)
M2

m2
.

Therefore, the dynamics of system (2) can be analyzed in the following
feasible region:

T =

{
(X,Y,M, I) ∈ R4

+ : X ≤ Λ

µx
, X + Y ≤M1, M ≤M2,

M +
µh
λm

I +
λy
µc
× µh
λm

Y ≤M3

}
.

Notice that the region T is positively invariant. In the next sections, we will
investigate the stability of the above equilibrium points by considering the
region T .

4. Local and global stability of the disease-free equilibrium
point E0. First of all, we discuss the local stability of the disease-free
equilibrium point by examining the linearized form of system (2) at the
equilibrium point E0. The Jacobian matrix of system (2) is given by

(6)

J =


−
(
µx + ksM

(1+αX)2

)
0 −ksX

1+αX 0
ksM

(1+αX)2
−(µy + µcI) ksX

1+αX −µcY
0 rµy −(µm + µhI) −µhM
0 λyI λmI λyY + λmM − µi

 .
The Jacobian matrix at the disease-free equilibrium point E0=(Λ/µx, 0, 0, 0)
is

(7) JE0 =


−µx 0

−ks Λµx
1+α Λ

µx

0

0 −µy
ks

Λ
µx

1+α Λ
µx

0

0 rµy −µm 0

0 0 0 −µi


.

From the first and fourth columns, we can see that JE0 has negative eigen-
values −µx and −µi. Removing the first and fourth rows and columns of
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matrix (7), we obtain the matrix

J ′E0
=

[
−µy ksΛ

µx+αΛ

rµy −µm

]
.

Since µx > 0 and µi > 0, the equilibrium point E0 is locally asymptotically
stable if

µyµm > rµy
ksΛ

µx + αΛ
, that is,

rksΛ

µm(µx + αΛ)
< 1.

Let us define the basic reproduction ratio of infection as

R0 =
rksΛ

µm(µx + αΛ)
.

Thus, we have the following lemma.

Lemma 2. The disease-free equilibrium E0 is locally asymptotically sta-
ble if R0 < 1, and it is unstable if R0 > 1.

The following theorem shows the global stability of the disease-free equi-
librium point E0.

Theorem 2. If R0 < 1, the disease-free equilibrium point E0 =
(Λ/µx, 0, 0, 0) of system (2) is globally asymptotically stable in the invariant
set T . If R0 > 1, all solutions of system (2) starting sufficiently close to E0

in T move away from E0 except those solutions starting on the invariant set
of the X-axis which approach E0 along this axis.

Proof. For simplicity, we set X0 = Λ/µx. Consider the continuously
differentiable function

L = A1

(
X −X0 −X0 ln

X

X0

)
+ rY +M +A2I,

where

A1 =
µxµm
ksΛ

and A2 < min

{
rµc
λy

,
µh
λm

}
.

Its derivative along the solutions of system (2) is

L̇ = A1

(
Ẋ − X0

X
Ẋ

)
+ rẎ + Ṁ +A2İ

= A1

(
Λ− µxX −

ksXM

1 + αX
− X0

X
Λ+ µxX0 +

ksX0M

1 + αX

)
+ r

(
ksXM

1 + αX
− µyY − µcY I

)
+ rµyY − µmM − µhMI

+A2([λyY + λmM ]I − µiI)
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= A1µxX0

(
2− X

X0
− X0

X

)
− A1ksXM

1 + αX
+
A1ksX0M

1 + αX
+
rksXM

1 + αX

− rµcY I − µmM − µhMI +A2([λyY + λmM ]I − µiI)

= A1µxX0

(
2− X

X0
− X0

X

)
+
rksXM − ksXMA1 − µmαXM

(1 + αX)

− rµcY I − µhMI +A2([λyY + λmM ]I − µiI)

= A1µxX0

(
2− X

X0
− X0

X

)
+

(R0−1)µm(µx+αΛ)
Λ XM

(1 + αX)

+ (A2λy − rµc)Y I + (A2λm − µh)MI −A2µiI.

Since

2− X

X0
− X0

X
< 0, X 6= X0,

2− X

X0
− X0

X
= 0, X = X0,

we have L̇ ≤ 0 if R0 < 1. Moreover L̇ = 0 when X = X0 and M = I = 0.
Let Σ0 be the maximum invariant set in the set

Σ = {(X,Y,M, I) : L̇(X,Y,M, I) = 0}
= {(X,Y,M, I) : X = X0, Y ≥ 0, M = I = 0}.

From the third equation of (2) we have
∑

0 = {E0}, since otherwise for
any orbit starting from a point with Y > 0 in Σ, the M -component of this
orbit must remain positive for t > 0. From LaSalle’s Theorem (see [6]), this
implies that all solutions in T approach E0 as t → ∞. It follows that the
disease-free equilibrium point E0 is globally asymptotically stable.

5. Local and global stability of the endemic equilibrium point E1.
In this section, we investigate the stability of the endemic equilibrium point
E1 = (X∗, Y ∗,M∗, 0). In terms of R0, its coordinates are

(8)

X∗ =
1

µx
Λ R0 + α(R0 − 1)

,

Y ∗ =
1

µy

(µx + αΛ)(R0 − 1)
µx
Λ R0 + α(R0 − 1)

,

M∗ =
r

µm

(µx + αΛ)(R0 − 1)
µx
Λ R0 + α(R0 − 1)

.

From the above formulae, the system has no positive endemic equilibrium
point if R0 < 1; such a point is obtained only when R0 > 1.
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Theorem 3. Suppose that R0 > 1. If λyY
∗ + λmM

∗ < µi, then the
endemic equilibrium point E1 = (X∗, Y ∗,M∗, 0) is locally asymptotically
stable. If λyY

∗ + λmM
∗ > µi, then E1 is unstable.

Proof. The Jacobian matrix at E1 = (X∗, Y ∗,M∗, 0) is

(9) JE1 =


−
(
µx + ksM∗

(1+αX∗)2

)
0 −ksX∗

1+αX∗ 0
ksM∗

(1+αX∗)2 −µy ksX∗

1+αX∗ −µcY ∗

0 rµy −µm −µhM∗

0 0 0 λyY
∗ + λmM

∗ − µi

 .
It can be seen from the last row that JE1 has eigenvalue λyY

∗+λmM
∗−µi

and the remaining eigenvalues can be derived from the 3× 3 matrix

(10) J ′E1
=


−
(
µx + ksM∗

(1+αX∗)2

)
0 −ksX∗

1+αX∗

ksM∗

(1+αX∗)2 −µy ksX∗

1+αX∗

0 rµy −µm

 .
The characteristic polynomial for the matrix (10) is

(11) λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = µx +
ksM

∗

(1 + αX∗)2
+ µy + µm,

a2 = (µy + µm)

(
µx +

ksM
∗

(1 + αX∗)2

)
,

a3 =
ksM

∗

(1 + αX∗)2
µyµm.

It is clear that the constants a1, a2 and a3 are positive. Now, we compute

a1a2 − a3 =

(
µx +

ksM
∗

(1 + αX∗)2
+ µy + µm

)
(µy + µm)

(
µx +

ksM
∗

(1 + αX∗)2

)
− ksM

∗

(1 + αX∗)2
µyµm

=

(
µx +

ksM
∗

(1 + αX∗)2
+ µy

)
(µy + µm)

(
µx +

ksM
∗

(1 + αX∗)2

)
+ µmµx(µy + µm) + µ2m

ksM
∗

(1 + αX∗)2
> 0.

Therefore, the Routh–Hurwitz conditions (a1 > 0, a2 > 0, a3 > 0, a1a2 > a3)
for a polynomial of degree three are satisfied. Hence E1 is locally asymptot-
ically stable if λyY

∗ + λmM
∗ < µi.
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The global stability of the endemic equilibrium point can be proved by
applying the theory of competitive systems (see [17] and [10]).

Note that in the absence of immune effectors, i.e. I(t) = 0, without loss
of generality, we can analyze system (2) without the last equation. Then
system (2) changes to

(12)

dX

dt
= Λ− µxX − ksXM,

dY

dt
= ksXM − µyY,

dM

dt
= rµyY − µmM.

We begin with the definition of a competitive system. Let D ⊂ Rn be
an open set and x 7→ f(x) ∈ Rn be a C1 function defined in D. We consider
the autonomous system in Rn given by

(13) x′ = f(x).

We recall the definition of competitive system from [17].

Definition 1. System (13) is competitive in D if, for some diagonal
matrix H = (ε1, . . . , εn), where each εi is either 1 or −1, H ·Df(x) ·H has
non-positive off-diagonal elements for x ∈ D, where Df(x) is the Jacobian
of (13).

It is shown in [17] that, if D is convex, the flow of such a system preserves
for t < 0 the partial order in Rn defined by orthant

K = {(x1, . . . , xn) ∈ Rn : εixi ≥ 0}.
By looking at the Jacobian matrix and choosing the matrix H as

H =

1 0 0

0 −1 0

0 0 1

 ,
it can be easily seen that our system is competitive in T with respect to the
partial order defined by the orthant

K = {(X,Y,M) ∈ R3 : X ≥ 0, Y ≤ 0, M ≥ 0}.
Hirsch [9] and Smith [17] proved that three-dimensional competitive systems
that live in convex sets have the Poincaré–Bendixson property [19]. That is,
any non-empty compact ω-limit set that contains no equilibrium point must
be a closed orbit.

For the definition of ω-limit set, the reader is referred to [6].
Here we recall additional definitions from [6] and [3], respectively, that

we will use later.
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Definition 2. Suppose system (13) has a periodic solution x = p(t)
with minimal period ω > 0 and orbit γ = {p(t) : 0 ≤ t ≤ ω}. This orbit
is orbitally stable if, for each ε > 0, there exists a δ > 0 such that any
solution x(t) for which the distance of x(0) from γ is less than δ, remains
at a distance less than ε from γ for all t ≥ 0. It is asymptotically orbitally
stable if the distance of x(t) from γ also tends to zero as t→∞.

Definition 3. System (13) is persistent if each solution x(t) starting in
int(D) has the property that lim inft→∞ x(t) is at a positive distance from
the boundary of D.

We also use the following definition in the next theorems.

Definition 4. System (13) has the property of stability of periodic or-
bits if the orbit of any periodic solution p(t), if it exists, is asymptotically
orbitally stable.

In the following theorem, we will use the concept of second additive
compound matrix. For the definition, the reader is referred to the Appendix
of this paper.

Theorem 4. A sufficient condition for a periodic orbit γ = {p(t) : 0 ≤
t ≤ ω} of (13) to be asymptotically orbitally stable is that the linear system

y′(t) = (Df [2](p(t)))y(t)

is asymptotically stable, where Df [2] is the second additive compound matrix
of the Jacobian Df of f .

For the proof of Theorem 4, the reader is referred to [14, Theorem 4.2].

The following theorem is the main tool to prove the global stability of
the endemic equilibrium E1.

Theorem 5. Assume that n = 3 and D is convex and bounded. More-
over suppose that (13) is competitive, persistent and has the property of
stability of periodic orbits. If x0 is the only equilibrium point in int(D), and
if it is locally asymptotically stable, then it is globally asymptotically stable
in int(D).

Proof. The proof is similar to the proofs of Theorems 2.1 and 4.2 in
[12].

The endemic equilibrium point E1 is globally asymptotically stable in
the interior of T0 := T ∩ {I = 0}. This is shown in Theorem 6 below.

Theorem 6. If R0 > 1 and λyY
∗+λmM

∗ < µi, then the endemic equi-
librium point E1 of system (12) is globally asymptotically stable in int(T0).
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Proof. The relevant vector field is transversal to the boundary of T0,
except in the invariant set of the X-axis. On the X-axis, we have

X ′ = Λ− µxX.

This equation implies that X(t)→ Λ/µx as t→∞. Therefore, E0 is the only
ω-limit point on the boundary of T0. Notice that for R0 > 1, E0 cannot be
the ω-limit point of any orbit in int(T0). Therefore, system (12) is persistent
when R0 > 1 (see [13, Proposition 5.8]).

Now, it is sufficient to show that E1 is globally asymptotically stable
in int(T0). Since system (12) is competitive, persistent for R0 > 1 and E1

is locally asymptotically stable, the result follows from Theorem 5 if we
can show that system (12) has the property of stability of periodic orbits.
This is derived from Theorem 4. It is enough to prove that the linear non-
autonomous system

(14) w′(t) = (Df [2](p(t)))w(t)

is asymptotically stable.

The Jacobian matrix of system (12) is given by

(15) Df(X,Y,M) =


−
(
µx + ksM

(1+αX)2

)
0 −ksX

1+αX
ksM

(1+αX)2
−µy ksX

1+αX

0 rµy −µm

 .
The second additive compound matrix of (15) is

(16) Df [2](X,Y,M)

=


−
(
µx + ksM

(1+αX)2
+ µy

)
ksX
1+αX

ksX
1+αX

rµy −
(
µx + ksM

(1+αX)2
+ µm

)
0

0 ksM
(1+αX)2

−(µy + µm)

 .
For the solution p(t) = (X(t), Y (t),M(t)), equation (14) becomes

(17)

w′1(t) = −
(
µx +

ksM

(1 + αX)2
+ µy

)
w1(t) +

ksX

1 + αX
w2(t)

+
ksX

1 + αX
w3(t),

w′2(t) = rµyw1(t)−
(
µx +

ksM

(1 + αX)2
+ µm

)
w2(t),

w′3(t) =
ksM

(1 + αX)2
w2(t)− (µy + µm)w3(t).

In order to demonstrate that (17) is asymptotically stable, we consider the
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Lyapunov function V (t) and the norm ‖ ‖ defined as follows:

‖(w1, w2, w3)‖ = sup{|w1|, |w2|+ |w3|},
V (t) = V (w1(t), w2(t), w3(t);X(t), Y (t),M(t))

=

∥∥∥∥∥∥∥∥


1 0 0

0 Y (t)
M(t) 0

0 0 Y (t)
M(t)


w1

w2

w3


∥∥∥∥∥∥∥∥ = sup

{
|w1|,

Y (t)

M(t)
(|w2|+ |w3|)

}
.

The function V (t) is positive, but not differentiable everywhere. Fortunately,
this lack of differentiability can be remedied by using the right derivative
of V (t), denoted as D+V (t).

Suppose that the solution p(t) = (X(t), Y (t),M(t)) is periodic of mini-
mal period ω. Since system (12) is persistent for R0 > 1, the orbit γ of p(t)
remains at a positive distance from the boundary of T0. Thus

Y (t) ≥ ε and M(t) ≥ ε with 0 < ε ≤ 1.

Hence the function V is well defined along p(t) and there exists a constant
c > 0 such that

(18) V (w1, w2, w3;X,Y,M) ≥ c ‖(w1, w2, w3)‖

for all (w1, w2, w3) ∈ R3 and (X,Y,M) ∈ γ.

We have the following inequalities:

D+|w1| ≤ −
(
µx +

ksM

(1 + αX)2
+ µy

)
|w1(t)|+

ksX

1 + αX
|w2(t)|(19)

+
ksX

1 + αX
|w3(t)|

≤ −
(
µx +

ksM

(1 + αX)2
+ µy

)
|w1(t)|

+
ksXM(t)

(1 + αX)Y (t)

(
Y (t)

M(t)
(|w2(t)|+ |w3(t)|)

)
,

D+|w2| ≤ rµy|w1(t)| −
(
µx +

ksM

(1 + αX)2
+ µm

)
|w2(t)|,(20)

D+|w3| ≤
ksM

(1 + αX)2
|w2(t)| − (µy + µm)|w3(t)|.(21)

From (20) and (21) we obtain

D+(|w2(t)|+|w3(t)|) ≤ rµy|w1(t)|−(µx+µm)|w2(t)|−(µy+µm)|w3(t)|(22)

≤ rµy|w1(t)|−φ[|w2(t)|+|w3(t)|]

where φ = min{µx + µm, µy + µm}.



150 F. Gazori and M. Hesaaraki

By using (22), we obtain

(23) D+
Y (t)

M(t)
(|w2(t)|+ |w3(t)|)

=

(
Y ′(t)

Y (t)
− M ′(t)

M(t)

)
Y (t)

M(t)
(|w2(t)|+ |w3(t)|) +

Y (t)

M(t)
D+(|w2(t)|+ |w3(t)|)

≤ Y (t)

M(t)
rµy|w1(t)|+

(
Y ′(t)

Y (t)
− M ′(t)

M(t)
− φ

)
Y (t)

M(t)
(|w2(t)|+ |w3(t)|).

We assert that (19) and (23) lead to

(24) D+V (t) ≤ sup{h1(t), h2(t)}V (t),

where

h1(t) = −
(
µx +

ksM

(1 + αX)2
+ µy

)
+

ksXM

(1 + αX)Y
,

h2(t) =
Y (t)

M(t)
rµy +

(
Y ′(t)

Y (t)
− M ′(t)

M(t)
− φ

)
.

Since µy > µx and the second and third equations of system (12) are re-
spectively

ksXM

(1 + αX)Y
=
Y ′

Y
+ µy and

M ′

M
=
rµyY

M
− µm,

we have

h1(t) =
Y ′

Y
−
(
µx +

ksM

(1 + αX)2

)
,

h2(t) =
Y ′

Y
− µx.

We obtain

sup{h1(t), h2(t)} = sup

{
Y ′

Y
−
(
µx +

ksM

(1 + αX)2

)
,
Y ′

Y
− µx

}
(25)

≤ Y ′

Y
− µx.

Thus

(26)

ω�

0

sup{h1(t), h2(t)} dt ≤ lnY (t)
∣∣ω
0
− µxω = −µxω < 0.

This fact together with (24) implies that V (t) → 0 as t → ∞. By (18) it
turns out that

(w1(t), w2(t), w3(t))→ 0 as t→∞.
As a result, the linear system (17) is asymptotically stable and the periodic
solution (X(t), Y (t),M(t)) is asymptotically orbitally stable.
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6. Local stability of the endemic equilibrium point E2. In this
section, we study the stability properties of the endemic equilibrium point
in the presence of immune effectors, i.e., E2. The Jacobian matrix of system
(2) at E2 = (X̃, Ỹ , M̃ , Ĩ) for Ĩ 6= 0 is given by

(27) JE2 =
−
(
µx + ksM̃

(1+αX̃)2

)
0 −ksX̃

1+αX̃
0

ksM̃
(1+αX̃)2

−(µy + µcĨ) ksX̃
1+αX̃

−µcỸ

0 rµy −(µm + µhĨ) −µhM̃
0 λy Ĩ λmĨ λyỸ + λmM̃ − µi

 .

In order to determine its determinant, the following simplified form of system
(3) evaluated at E2 = (X̃, Ỹ , M̃ , Ĩ) is used:

(28)

µy + µcĨ =
ksX̃M̃

(1 + αX̃)Ỹ
,

µm + µhĨ =
rµyỸ

M̃
,

λyỸ + λmM̃ − µi = 0 for Ĩ 6= 0.

By using (27) and (28), we have

(29) JE2 =


−
(
µx + ksM̃

(1+αX̃)2

)
0 −ksX̃

1+αX̃
0

ksM̃
(1+αX̃)2

−ksX̃M̃
(1+αX̃)Ỹ

ksX̃
1+αX̃

−µcỸ

0 rµy
−rµyỸ
M̃

−µhM̃

0 λy Ĩ λmĨ 0

 .

The characteristic polynomial of the linearized system is

(30) p(λ) =

det


−
(
µx + ksM̃

(1+αX̃)2
+ λ
)

0 −ksX̃
1+αX̃

0

ksM̃
(1+αX̃)2

−
(

ksX̃M̃
(1+αX̃)Ỹ

+ λ
)

ksX̃
1+αX̃

−µcỸ

0 rµy −
( rµyỸ

M̃
+ λ

)
−µhM̃

0 λy Ĩ λmĨ −λ

=0.

This can be written as

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0,



152 F. Gazori and M. Hesaaraki

where

a1 =

(
µx +

ksM̃

(1 + αX̃)2

)
+

ksX̃M̃

(1 + αX̃)Ỹ
+
rµyỸ

M̃
,

a2 =

(
µx +

ksM̃

(1 + αX̃)2

)
ksX̃M̃

(1 + αX̃)Ỹ
+

(
µx +

ksM̃

(1 + αX̃)2

)
rµyỸ

M̃

+ λmĨµhM̃ + µcỸ λy Ĩ ,

a3 =

(
µx +

ksM̃

(1 + αX̃)2

)
λmĨµhM̃ +

(
µx +

ksM̃

(1 + αX̃)2

)
µcỸ λy Ĩ

+
ksX̃M̃

(1 + αX̃)Ỹ
λmĨµhM̃ +

ksX̃

1 + αX̃
µhM̃λy Ĩ + µcỸ rµyλmĨ

+ µcỸ λy Ĩ
rµyỸ

M̃
+

ksX̃

1 + αX̃

ksM̃

(1 + αX̃)2
rµy,

a4 =

(
µx +

ksM̃

(1 + αX̃)2

)
ksX̃M̃

(1 + αX̃)Ỹ
λmĨµhM̃ + µx

ksX̃

1 + αX̃
µhM̃λy Ĩ

+

(
µx +

ksM̃

(1 + αX̃)2

)
µcỸ rµyλmĨ

+

(
µx +

ksM̃

(1 + αX̃)2

)
µcỸ λy Ĩ

rµyỸ

M̃
.

For convenience, we adopt the following notation:

A1 = µx +
ksM̃

(1 + αX̃)2
, A2 =

ksX̃M̃

(1 + αX̃)Ỹ
, A3 =

rµyỸ

M̃
, A4 = µhM̃,

A5 = λmĨ , A6 = µcỸ , A7 = λy Ĩ , A8 =
ksX̃

1 + αX̃
, A9 = rµy.

Then

a1 = A1 +A2 +A3,

a2 = A1(A2 +A3) + (A4A5 +A6A7),

a3 = A1(A4A5 +A6A7) +A5(A2A4 +A6A9) +A4A7A8

+A6A7A3 + (A1 − µx)A8A9,

a4 = A1A5(A2A4 +A6A9) + µxA4A7A8 +A1A6A7A3.

Notice that as A1 − µx > 0, all ai for 1 ≤ i ≤ 4 are positive. Therefore, we
get

H2 = A1(A1 +A2 +A3)(A2 +A3) +A7(A2A6 −A4A8)

+A5(A3A4 −A6A9)− (A1 − µx)A8A9,
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H3 = (A1 +A2 +A3)

×
{
A2

1A2A6A7 +A2
1A5(A3A4 −A6A9)

+ (A2 +A3)[A1A4A7A8 +A1A8A9(A1 − µx)]

− (A1 +A2 +A3)µxA4A7A8

}
+ [A7(A2A6 −A4A8) +A5(A3A4 −A6A9)− (A1 − µx)A8A9]

×
{
A1(A4A5 +A6A7) +A5(A2A4 +A6A9) +A4A7A8

+A6A7A3 + (A1 − µx)A8A9

}
.

It is obvious that all coefficients a1, a2, a3 and a4 are positive. Moreover,
for our characteristic polynomial, the Hurwitz determinants are H1 = a1,
H2 = a1a2− a3, H3 = (a1a2− a3)a3− a21a4 and H4 = a4H3. It can be easily
seen that the Hurwitz conditions depend on the parameter values. Thus, the
Hurwitz determinants H2, H3 and H4 may be positive or negative. Hence,
the Routh–Hurwitz criterion [11] for some parameters values gives local
asymptotic stability of E2. In fact, due to the positivity of ai, the only con-
dition of stability is H3 > 0. Therefore, the endemic equilibrium point E2

can be locally asymptotically stable or unstable, depending on the parame-
ter values. In the following we give some examples related to this point.

Examples. Let µx = 0.0083, ks = 2.5 × 10−10, µy = 0.025, µm = 48,
µi = 0.05, r = 16, µc = µh = 10−8, λy = 2 × 10−8 and λm = 3 × 10−8. We
have the following numerical results:

1. For Λ = 2.5× 108 and α = 5× 10−11, we have

H1 = 48.033376, H2 = 19.148383, H3 = 0.0000189, H4 = 1.412×10−11.

Thus in this case the real parts of all of the eigenvalues are negative, and
therefore the endemic equilibrium point E2 is locally asymptotically stable.

2. For Λ = 2.5× 1025 and α = 10−12, we have

H1 = 51.985224, H2 = 22.426866,

H3 = −1.421× 10−14, H4 = −6.057× 10−16.

Thus in this case at least one of the eigenvalues has a positive real part.
This means that the endemic equilibrium point E2 is unstable.

7. Numerical analysis. In this section, using the initial data for vari-
ables and parameter values given in Table 1, numerical simulations are
carried out to demonstrate the dynamics of system (2). First, we choose
α = 0.99 and take all other parameters as in Table 1. Then, we can verify
that R0 = 8.4175×10−11 < 1. Fig. 1 reveals that the disease-free equilibrium
point E0 is globally asymptotically stable when R0 < 1. In Figs. 2 and 3,
we choose α = 10−11 and take all other parameters as in Table 1. Then we
have R0 = 1.9290 > 1. Fig. 2 shows that if R0 > 1, the endemic equilibrium
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point E1 is globally asymptotically stable, whereas observing Fig. 3, we find
that E2 is unstable.

Table 1. Parameter estimates and initial data values for the model of malaria

Parameters and variables Value Ref.

Λ 2.5 × 108 cells/day/ml [8]

µx 0.0083/day [2]

ks 2.5 × 10−10/day [8]

µy 0.025/day [7]

µm 48/day [8]

µi 0.05/day [8]

r 16 [2, 5]

µc 10−8/day [8]

µh 10−8/day [8]

λy 2 × 10−8/day [8]

λm 3 × 10−8/day [8]

X(0) 3 × 1010 cells/ml/day [8]

Y (0) 0 cells/ml/day [8]

M(0) 2 × 105 cells/ml/day [8]

I(0) 0.0001 cells/ml/day [8]
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Fig. 1. The equilibrium point E0 is globally asymptotically stable when R0 < 1.
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Fig. 2. The equilibrium point E1 is globally asymptotically stable in the absence of im-
mune effectors when R0 > 1.
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Fig. 3. The equilibrium point E2 is not globally asymptotically stable in the presence of
immune effectors.
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8. Discussion. In this paper, we investigated a within-host model of
malaria with Holling type II functional response. Our model described the
dynamics of malaria infection within an infected host by a system of ordinary
differential equations.

We got three equilibrium points. The first and second equilibrium were
obtained in the absence of immune effectors, whereas the third one was
achieved in the presence of immune response. By constructing Jacobian ma-
trix at the first equilibrium point which corresponds to the disease-free or
uninfected state, we could define the basic reproduction ratio of infection,
R0. Then by applying the conditions of local asymptotic stability to this
matrix, we deduced that the disease-free equilibrium point is locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1. Global stability analysis
of this point was carried out based on an invariant set and LaSalle’s Theo-
rem. It was established that the infection disappears from an infected host
if R0 < 1. Numerical simulations reveal that the disease-free equilibrium is
always globally asymptotically stable as long as the condition R0 < 1 holds
(see Fig. 1).

The second equilibrium point reflects the state in which the infection
exists but there are no immune effectors. The components of this point
are expressed in terms of R0 and they are positive only when R0 > 1.
By considering one more condition and using the Routh–Hurwitz criterion,
we proved the local asymptotic stability of the second equilibrium point.
It is also demonstrated using the theory of competitive systems that the
equilibrium point is globally asymptotically stable (see Fig. 2). This implies
that without the presence of immune effectors, the body will be unable to
get rid of the malaria infection.

For the third equilibrium point, we found that the Hurwitz conditions
depend on the parameter values and thus they may not be satisfied. Since
the necessary and sufficient conditions for local asymptotic stability of an
equilibrium point are provided by the Routh–Hurwitz criterion, the third
equilibrium can be unstable for some parameter values. Also from Fig. 3 we
see that the third equilibrium point does not always converge to a steady
state and so is unstable. The reason may be that with the presence of im-
mune effectors, the body is able to tolerate the malaria infection and finally
the immune system can clear the infection.

Appendix. Compound matrices. In this appendix, we shall give the
definition of an additive compound matrix. A survey of properties of additive
matrices together with their connections to differential equations may be
found in [12, 14].

We start by recalling the definition of a kth exterior power or multiplica-
tive compound of a matrix.
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Definition 5. Let A be any n×m matrix of real of complex numbers,
and let ai1,...,ik,j1,...,jk be the minor of A determined by the rows (i1, . . . , ik)
and the columns (j1, . . . , jk), where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · <
jk ≤ m. The kth multiplicative compound matrix A(k) of A is the

(
n
k

)
×
(
m
k

)
matrix whose entries written in the lexicographic order are ai1,...,ik,j1,...,jk . In
particular, when A is an n × k matrix with columns a1, . . . , ak, A

(k) is the
exterior product a1 ∧ · · · ∧ ak.

In the case m = n, the additive compound matrices are defined in the
following way.

Definition 6. Let A be an n × n matrix. The kth additive compound
A[k] of A is the

(
n
k

)
×
(
n
k

)
matrix given by

A[k] = D(I + hA)(k)
∣∣
h=0

,

where D is differentiation with respect to h.
If B = A[k], then the following formula for bi,j can be deduced from

the above equation. For any i = 1, . . . ,
(
n
k

)
, let (i) = (i1, . . . , ik) be the ith

member in the lexicographic ordering of all k-tuples of integers such that
1 ≤ i1 < · · · < ik ≤ n . Then

bi,j =


ai1,j1 + · · ·+ aik,jk if (i) = (j),

(−1)r+sais,jr if exactly one entry is in (i) does not occur

in (j) and jr does not occur in (i),

0 if (i) differs from (j) in two or more entries.

In the special case k = 1, k = n, we find A[1] = A, A[n] = TrA. For
n = 3, the matrices A[k] are as follows:

A[1] = A,

A[2] =

a11 + a22 a23 −a13
a32 a11 + a33 a12

−a31 a21 a22 + a33

 ,
A[3] = a11 + a22 + a33.
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