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ESTIMATING THE SHAPE PARAMETER OF
THE TOPP–LEONE DISTRIBUTION BASED ON TYPE I

CENSORED SAMPLES

Abstract. The shape parameter of the Topp–Leone distribution is esti-
mated from classical and Bayesian points of view based on Type I censored
samples. The maximum likelihood and the approximate maximum likelihood
estimates are derived. The Bayes estimate and the associated credible inter-
val are approximated by using Lindley’s approximation and Markov Chain
Monte Carlo using the importance sampling technique. Monte Carlo simula-
tions are performed to compare the performances of the proposed methods.
Real and simulated data sets have been analyzed for illustrative purposes.

1. Introduction. Topp and Leone [16] introduced a family of distri-
butions with finite support whose cumulative distribution function (cdf) is
given by

(1.1) F (x|θ, β) =


0, x < 0,(
x

β

(
2− x

β

))θ
, 0 ≤ x < β,

1, x ≥ β,

θ > 0,

and the probability density function (pdf) is given by

(1.2) f(x | θ, β) = 2θ

β

(
1− x

β

)(
x

β

(
2− x

β

))θ−1
, 0 < x ≤ β, θ > 0.

For simplicity, we denote this distribution by TL(θ, β). The Topp–Leone
(T-L) distribution is a continuous unimodal distribution with bounded sup-
port; this makes it appropriate for modeling lifetime of distributions with
finite support. Topp and Leone [16] did not provide any motivation for this
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family of distributions apart from saying that it could be used to model
failure data. Nadarajah and Kotz [12] showed that this distribution exhibits
bathtub failure rate functions with widespread applications in reliability.
Moreover, Ghitany et al. [8] showed that the T-L distribution possesses some
attractive reliability properties such as the bathtub-shape hazard rate, de-
creasing reversed hazard rate, upside-down mean residual life, and increasing
expected inactivity time. Moments for the T-L distribution were derived by
Nadarajah and Kotz [12]. Zghoul [19] provided expressions for moments of
ordered statistics from the T-L distribution. Bayoud [3] derived admissible
minimax estimates for the shape parameter of the T-L distribution under
the assumption of non-informative and conjugate priors based on squared
and linear-exponential loss functions. Recently, Bayoud [4] studied infer-
ences about the shape parameter of the T-L distribution based on progres-
sive Type II censored samples. A reflected version of the generalized T-L
distribution was used by Van Dorp and Kotz [17] to fit the U.S. income data
for the year 2001 for Caucasian, Hispanic and Afro-American populations.

Classical and Bayesian inferences about the parameters of the T-L distri-
bution have not yet been studied in the presence of Type I censored samples.
In this paper, the shape parameter of the T-L distribution is estimated from
classical and Bayesian viewpoints based on the Type I censoring scheme
assuming known β.

The Type I censoring scheme can be described as follows. Consider an
experiment in which n units are subjected to a life testing experiment. The
experiment will terminate at a preselected time T . The Type I censored
sample is the set of all times before or equal to this T .

In this paper, we propose the maximum likelihood estimation (MLE), ap-
proximate maximum likelihood estimate (AMLE), Bayesian estimates (BE)
and empirical Bayes estimates (EBE), and approximate Bayes estimates by
using Lindley’s approximation and Markov Chain Monte Carlo using the
importance sampling technique. Bayes estimates are derived under the as-
sumption of squared error loss function (SELF).

The rest of this paper is organized as follows. Statistical models are pre-
sented in Section 2 based on Type I censoring. The MLE and AMLE are
derived in Sections 3 and 4, respectively. In Section 5, Bayes inferences in-
cluding point estimates, approximate Bayes estimates and credible intervals
are derived assuming SELF. Simulations and data analysis are presented in
Section 6 to investigate the performance of the proposed estimation methods.
Finally, Section 7 contains some concluding remarks.

2. Model assumptions. Assume that n identical units X1, . . . , Xn are
put to the test and each of them has TL(θ, β) lifetime distribution with
known β. Based on a Type I censoring scheme at time T , we have the data
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D = {(yi, δi) : i = 1, . . . , n}, where yi = min(xi, T ) and

(2.1) δi =

{
1, xi ≤ T ,
0, xi > T .

The likelihood function of θ and β based on the Type I censored data D
is given by

(2.2) L(D | θ, β) =
(
2θ

β

)k n∏
i=1

(
1− yi

β

)δi
u
(θ−1)δi
i [1− uθi ]1−δi ,

where ui = yi
β (2−

yi
β ), 0 < max yi ≤ β and θ > 0.

Throughout this article it is assumed that n and T are fixed in advance.

3. Maximum likelihood estimate. Based on the Type I censored
sample D, the MLE of θ is θ̂MLE that satisfies the equation

(3.1)
k

θ̂MLE
+

n∑
i=1

δi lnui − (1− δi)
uθ̂MLE
i

1− uθ̂MLE
i

lnui = 0.

Unfortunately, (3.1) does not have an explicit solution, and so the MLE
cannot be obtained in explicit form. Note that (3.1) can be represented as

(3.2) θ̂MLE = h(θ̂MLE),

where

h(θ̂MLE) =
k∑n

i=1(lnui)
u
θ̂MLE
i −δi
1−uθ̂MLE

i

.

A simple iterative scheme is proposed in this paper as follows: Start with
an initial guess of θ̂MLE, say θ̂

(0)
MLE, then obtain θ̂(1)MLE = h(θ̂

(0)
MLE) and proceed

iteratively to obtain the MLE θ̂(m+1)
MLE =h(θ̂

(m)
MLE) such that |θ̂(m+1)

MLE −θ̂
(m)
MLE|<ε,

some predetermined tolerance limit.
It should be mentioned here that if β is unknown, then one could easily

replace it by its MLE, the maximum ordered observation xk.

4. Approximate maximum likelihood estimate. The likelihood
equation (3.1), as mentioned in the previous section, does not provide an
explicit estimator for the shape parameter. Hence, it may be desirable to
develop an approximation to the likelihood equation which provides us with
an explicit estimator for the unknown parameter. This explicit estimator
may also provide us with an excellent starting value for the iterative solu-
tion of (3.2). An approximate MLE (AMLE) is derived by expanding the
function gi(θ) =

uθi
1−uθi

in (3.1) using first-order Taylor expansion around
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vi =
ln pi
lnui

, where pi = i
n+1 for i = 1, . . . , n. A similar procedure was used by

Banerjee and Kundu [2] and Balakrishnan and Varadan [1].
Note that for i = 1, . . . , n,

(4.1) gi(θ) ≈
uvii

1− uvii
+ (θ − vi)

uvii
(1− uvii )2

lnui.

Using the approximation (4.1), the likelihood equation (3.1) is approximated
by

(4.2)
k

θ
+

n∑
i=1

δi lnui−
n∑
i=1

(1−δi) lnui
[

uvii
1− uvii

]
+(θ−vi)

uvii
(1− uvii )2

lnui = 0.

From (4.2), the AMLE is the positive solution of the quadratic equation
for θ:

Aθ2 +Bθ + k = 0,

where

A = −
n∑
i=1

(1− δi)
uvii

(1− uvii )2
[lnui]

2

and

B =
n∑
i=1

δi lnui −
n∑
i=1

(1− δi) lnui
[
vi

uvii
(1− uvii )2

lnui −
uvii

1− uvii

]
.

Threfore, the AMLE, say θ̂AMLE, is obtained as

(4.3) θ̂AMLE =
−B −

√
B2 − 4Ak

2A
,

which is the only positive root.
It is worth mentioning that if k = n, then δi = 1 for all i = 1, . . . , n,

which implies that A = 0. In this case θ̂AMLE = − n∑n
i=1 lnui

, which equals
the MLE of θ based on the complete sample (see [3]).

5. Bayesian inference. In this section, we discuss the Bayes estimate
and the associated credible interval for the shape parameter. The squared
error loss function (SELF) is considered, which is defined as

L(θ̂) = (θ − θ̂)2,

where θ̂ is the estimator of θ.

5.1. Prior and posterior analysis. Suppose that θ has a proper ex-
ponential prior with pdf

(5.1) g(θ) = ae−aθ,

where θ > 0 and a > 0.
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Hence, by using the likelihood function defined in (2.2), the posterior pdf
of θ given the Type I censored sample D is given by

(5.2) π(θ |D,β) = L(D | θ, β)g(θ)	∞
0 L(D | θ, β)g(θ) dθ

=
θke−aθ

∏n
i=1 u

δiθ
i [1− uθi ]1−δi
C

,

where

C =

∞�

0

θke−aθ
n∏
i=1

uδiθi [1− uθi ]1−δi dθ,

the normalizing constant.
Under the SELF, the Bayes estimate of θ based on Type I censoring

scheme, say θ̂B(a), is the posterior mean, which is given by

(5.3) θ̂B(a) = Eπ(θ |D,β) =
1

C

∞�

0

θk+1e−aθ
n∏
i=1

uδiθi [1− uθi ]1−δidθ.

It is worth mentioning that the BE (5.3) is admissible, because it is the
posterior mean that arises from a proper prior (see [18]). The empirical
Bayes estimate (EBE) is also proposed in this section. The marginal pdf of
the variable x is given by

(5.4) k(x) =

∞�

0

f(x | θ)g(θ) dθ,

where f(x | θ) is defined in (1.2) and g(θ) is the prior pdf of θ given in (5.1).
Therefore, the marginal pdf in (5.4) is given by

(5.5) k(x) =
2a
(
1− x

β

)
x
(
2− x

β

)[
−a+ ln x

β

(
2− x

β

)]2 ,
where 0 < x < β and a > 0.

The EBE of θ is equal to θ̂B(âMME) where âMME is the method of moment
estimate (MME) of a based on the Type I censored sample, which satisfies
the following integral equation:

Ex(X) =

∞�

0

2âMME
(
1− x

β

)(
2− x

β

)[
−âMME + ln x

β

(
2− x

β

)]2 dx =

∑n
i yiδi
k

.

Two approaches are introduced in the next section to approximate the BE
in (5.3): Lindley’s approximation and Markov Chain Monte Carlo (MCMC)
using the importance sampling technique.

5.2. Lindley’s approximation. Lindley [11] proposed an approxima-
tion procedure to evaluate the ratio of two integrals, such that the Bayes
estimate in (5.3) takes a form containing no integrals. This procedure has
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been used by several authors to obtain the Bayes estimates for various dis-
tributions; see, for instance, Press [15]. Based on Lindley’s method, the ap-
proximate BE of θ under the SELF and based on the prior pdf (5.1) is given
by

(5.6) θ̂B,L(a) ≈ θ̂MLE +
a

l̂θθ
+

1

2

l̂θθθ

l̂2θθ
,

where θ̂MLE is the MLE of θ, l = lnL(D | θ, β), where L(D | θ, β) is the
likelihood function defined in (2.2),

l̂θθ =
∂2l

∂θ2

∣∣∣∣
θ=θ̂MLE

= − k

θ̂2MLE

−
n∑
i=1

(1− δi)[lnui]2
uθ̂MLE
i

(1− uθ̂MLE
i )2

,

and

l̂θθθ =
∂3l

∂θ3

∣∣∣∣
θ=θ̂MLE

=
2k

θ̂3MLE

−
n∑
i=1

(1− δi)[lnui]3
uθ̂MLE
i [1 + uθ̂MLE

i ]

(1− uθ̂MLE
i )3

.

5.3. MCMC method. It is well known that Lindley’s method is not
helpful for constructing credible intervals. Therefore, we propose to use the
importance sampling technique to generate MCMC samples from the poste-
rior pdf to compute the desired Bayes estimate of θ, and also to construct
the associated credible interval. A similar procedure was used, for example,
by Chen et al. [5] and Kundu and Pradhan [10], [13], [14]. To implement the
importance sampling technique, we rewrite the posterior pdf (5.2) as follows:

π(θ |D,β) ∝ f1(θ |D)f2(θ),

where

f1(θ |D) =
[a−

∑n
i=1 δi lnui]

k

Γ (k + 1)
θke−θ[a−

∑n
i=1 δi lnui],

which is clearly a gamma density function with shape parameter k + 1 and
scale parameter [a−

∑n
i=1 δi lnui]

−1, and

f2(θ) =
n∏
i=1

[1− uθi ]1−δi .

Therefore, (5.3) can be written as

(5.7) θ̂B(a) =

	∞
0 θf1(θ |D)f2(θ) dθ	∞
0 f1(θ |D)f2(θ) dθ

.

Assume that n, the censoring time T and the Type I censored sample D are
given in advance. The following algorithms are proposed along the lines of
Kundu and Pradhan [10] to compute the BE of θ and also to construct the
associated credible interval.
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5.3.1. Algorithm 1 (BE).

Step 1. Generate a random sample of size M from f1(θ |D), a gamma
density function with shape parameter k+1 and scale parameter
[a−

∑n
i=1 δi lnui]

−1, say θ1, . . . , θM .
Step 2. Compute f2(θj), for j = 1, . . . ,M .
Step 3. Under the assumption of SELF, a simulation consistent estimate

of θ can be obtained using the importance sampling technique as

θ̂B,IS(a) =

∑M
j=1 θjf2(θj)∑M
j=1 f2(θj)

.

Moreover, we can compute a simulation consistent estimate of any function
H(θ) as

Ĥ(θ) =

∑M
j=1H(θj)f2(θj)∑M

j=1 f2(θj)
,

provided that Ĥ(θ) is defined at all j = 1, . . . ,M.

Now, to compute the credible interval of θ let, for 0 < p < 1, θp be
such that P (θ ≤ θp |D,β) =

	θp
0 π(θ |D,β) dθ = p, where π(θ |D,β) is the

posterior pdf defined in (5.2).

5.3.2. Algorithm 2 (credible interval). We use the sample θ1, . . . , θM
obtained from Algorithm 1.

Step 1. Compute wj = f2(θj)/
∑M

j=1 f2(θj) for j = 1, . . . ,M .
Step 2. Arrange the set {(θ1, w1), (θ2, w2), . . . , (θM , wM )} as {(θ(1), w[1]),

(θ(2), w[2]), . . . , (θ(M), w[M ])}, where θ(1) ≤ . . . ≤ θ(M).
Step 3. The 100(1− α)% credible interval for θ is given by

(θ̂α/2, θ̂1−α/2),

where θ̂p is a simulation consistent Bayes estimate for θp, which
is given by θ(Mp) such that Mp is the integer satisfying

Mp∑
j=1

w[j] ≤ p <
Mp+1∑
j=1

w[j].

Theorem 5.1. The posterior pdf π(θ |D,β) in (5.2) is log-concave.

Proof. Since ui = yi
β

(
2− yi

β

)
> 0, it is easy to see that

∂2 lnπ(θ|D,β)
∂θ2

= −
[
k

θ2
+

n∑
i=1

(1− δi)[lnui]2
uθi

[1− uθi ]2

]
< 0

for any θ; this proves the result.
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Since the posterior distribution (5.2) is log-concave, one can apply De-
vroye’s algorithm [6] to generate a sample from the posterior distribution,
say θ1, . . . , θM . Based on this sample and under the SELF, the approximate
Bayes estimate of θ is given by

θ̂MCMC = Ê(θ |D) =
1

M

M∑
j=1

θj .

The 100(1−α)% credible interval of θ can be computed by ordering θ1, . . . , θM
as θ(1) ≤ · · · ≤ θ(M) and taking the interval

(θ(M(α/2)), θ(M(1−α/2))).

6. Simulation study and data analysis

6.1. Simulations. In this section, various simulation studies are pre-
sented mainly to observe how the different estimation methods behave for
different sample sizes, and for different Type I censoring schemes. The un-
known parameter is estimated using the MLE, AMLE, BE and EBE obtained
by using Lindley’s approximation and by MCMC using the importance sam-
pling technique. Performances of the different estimators are compared with
respect to their means and mean squared errors (MSE).

In all cases, the parameter β is assumed without loss of generality to
equal 1. Simulations are performed for two values of the shape parameter,
namely, θ = 0.5 and θ = 1.

BE is approximated assuming that θ has an exponential prior with a
hyper parameter a with pdf given in (5.1). Bayes estimates are computed
based on two priors: Prior 0, a non-informative prior with a ≈ 0, and Prior 1,
an informative prior with a predetermined value of a that is assumed based
on our information about θ. A good assumption for a is a ≈ 1/θ, since
E(θ) = 1/a. In the case of a = 0 the prior is improper; a small value for
the hyper parameter a may be used to make the prior proper. Both values
a = 0 and a = 0.0001 are tried in simulation studies; it was observed that the
results are not significantly different based on these values. Accordingly, the
results based on a = 0 are only reported and the results based on a = 0.0001
are omitted.

Different values for the combination (n, T ) are considered in order to
study their effect on the estimators. The sample sizes n = 10, 20 and 30 are
considered. Two Type I censored schemes are considered: with T equal to
E(X) and 2E(X), where E(X) = β(1− 4θ)Γ

2(1+θ)
Γ (2+2θ) . The expected values of

the corresponding MSE of the proposed estimates are computed over 1000
replications. The results are reported in Tables 1 and 2 assuming the real
parameter θ = 0.5 and θ = 1, respectively.
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Table 1. Expected value of the proposed estimators and the corresponding MSE when
θ = 0.5

BE assuming a = 10−4 BE assuming a = 2 Empirical BE
n T θ̂MLE θ̂AMLE Exact Lindley’s MCMC Exact Lindley’s MCMC Exact Lindley’s MCMC

10

0.215 0.591 0.525 0.658 0.627 0.648 0.578 0.544 0.570 0.442 0.312 0.446
0.065 0.041 0.100 0.077 0.094 0.046 0.029 0.043 0.032 0.285 0.036

0.430 0.559 0.524 0.620 0.604 0.615 0.552 0.534 0.547 0.517 0.489 0.513
0.042 0.033 0.066 0.054 0.060 0.032 0.025 0.030 0.035 0.035 0.033

20

0.215 0.553 0.505 0.579 0.570 0.581 0.547 0.536 0.548 0.477 0.446 0.477
0.027 0.020 0.028 0.030 0.039 0.019 0.020 0.029 0.015 0.017 0.027

0.430 0.528 0.498 0.554 0.550 0.554 0.525 0.520 0.524 0.508 0.501 0.507
0.019 0.016 0.020 0.022 0.024 0.014 0.016 0.017 0.014 0.016 0.017

30

0.215 0.543 0.506 0.568 0.554 0.560 0.547 0.533 0.558 0.498 0.475 0.501
0.016 0.013 0.020 0.017 0.097 0.015 0.013 0.086 0.011 0.011 0.053

0.430 0.520 0.495 0.544 0.534 0.537 0.525 0.516 0.518 0.514 0.503 0.508
0.011 0.010 0.014 0.012 0.013 0.010 0.010 0.011 0.011 0.010 0.011

Table 2. Expected value of the proposed estimators and the corresponding MSE when
θ = 1.0

BE assuming a = 10−4 BE assuming a = 1 Empirical BE
n T θ̂MLE θ̂AMLE Exact Lindley’s MCMC Exact Lindley’s MCMC Exact Lindley’s MCMC

10

0.333 1.230 1.069 1.296 1.296 1.345 1.058 0.922 1.046 0.994 0.861 1.009
0.360 0.195 0.414 0.414 0.449 0.119 0.216 0.109 0.145 0.199 0.165

0.666 1.118 1.064 1.216 1.216 1.229 0.986 0.935 0.988 1.129 1.093 1.108
0.167 0.134 0.223 0.223 0.236 0.075 0.049 0.070 0.210 0.154 0.164

20

0.333 1.132 1.025 1.197 1.164 1.206 1.065 1.024 1.060 1.041 0.993 1.052
0.120 0.081 0.150 0.132 0.359 0.067 0.056 0.136 0.076 0.067 0.170

0.666 1.050 1.009 1.108 1.097 1.103 0.997 0.980 0.992 1.045 1.042 1.048
0.068 0.058 0.082 0.080 0.083 0.043 0.042 0.046 0.067 0.066 0.068

30

0.333 1.117 1.031 1.151 1.138 1.213 1.076 1.050 1.151 1.049 1.030 1.130
0.073 0.051 0.086 0.079 1.164 0.055 0.044 1.86 0.050 0.047 0.597

0.666 1.041 1.003 1.072 1.072 1.076 1.007 0.997 1.003 1.037 1.037 1.039
0.041 0.035 0.046 0.046 0.048 0.033 0.030 0.030 0.040 0.040 0.041

From Tables 1 and 2 one can see and expect that the MSE decreases,
approaching 0, and the average values of the underlying estimates approach
the real value as the sample size increases for all estimators under all the
censoring schemes. This may prove the consistency of these estimates. For
fixed sample size, fixed θ and for any censoring scheme, the informative and
empirical Bayes estimates, using Lindley’s or (and) MCMC approximations,
almost perform, in terms of the MSE, better than the other estimates. It is
also clear from these tables that the AMLE performs, in terms of the MSE,
better than the MLE. In general, the informative BE, Empirical BE and the
AMLEs are quite similar and satisfactory.

6.2. Data analysis. For illustrative purposes, data analysis is presented
in this section for real and simulated data sets by using the proposed esti-
mation methods.

6.2.1. Real data. In order to discuss the practical applicability of the re-
sults obtained in this paper, the following real life data presented by Grubbs
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[9] give the failure time (in miles) of eighteen military carriers:
162, 200, 271, 302, 393, 508, 539, 629, 706, 777,

884, 1101, 1182, 1463, 1603, 1984, 2355, 2880.

First, it was checked whether the T-L distribution can be used to analyze
this data set. The MLE of β is 2880, the maximum order statistic, and the
MLE of θ is 1.133 . The Bayes estimate of θ, under the SELF, is 1.125 when
a = 1 (see [3]). It is obvious that the MLE and the Bayes estimate are almost
the same.

The Kolmogorov–Smirnov (KS) distance between the empirical distribu-
tion function and the fitted distribution function, using the MLEs, has been
used to check the goodness of fit. The KS statistic value is 0.135, and the
KS critical value is 0.309 at n = 18 and α = 0.05. Accordingly, one cannot
reject the hypothesis that the data come from the T-L distribution.

Table 3 shows the proposed estimators based on two Type I censoring
schemes with T = 800 and T = 1600. The parameter β is assumed to equal
the maximum observed value 2880.

Table 3. Real life data analysis based on two Type I censoring schemes

BE assuming a = 10−4 BE assuming a = 1 Empirical BE
T θ̂MLE θ̂AMLE Exact Lindley’s MCMC Exact Lindley’s MCMC Exact Lindley’s MCMC
800 1.225 1.105 1.294 1.264 1.280 1.211 1.180 1.184 1.104 1.052 1.091

1600 1.146 1.043 1.210 1.196 1.207 1.137 1.123 1.136 1.110 1.093 1.108

6.2.2. Simulated data. We analyze the following simulated data set pre-
sented by Genc [7] assuming θ = 0.3 and β = 1:
0.1425, 0.2707, 0.2783, 0.0718, 0.4537, 0.0615, 0.0047, 0.3454, 0.4428, 0.1909,

0.1028, 0.0013, 0.0592, 0.5413, 0.2442, 0.0001, 0.0002, 0.0178, 0.0114, 0.5388.

Table 4 shows the proposed estimators based on two Type I censoring
schemes assuming T = 0.30 and T = 0.50.

One can see from Table 4 that all estimates are quite similar. The infor-
mative and empirical Bayes estimate, and the AMLE, dominate the other
when the hyper parameter a is assumed to equal 6.

Table 4. Simulated data analysis based on two Type I censoring schemes

BE assuming a = 10−4 BE assuming a = 6 Empirical BE
T θ̂MLE θ̂AMLE Exact Lindley’s MCMC Exact Lindley’s MCMC Exact Lindley’s MCMC

0.30 0.441 0.417 0.462 0.457 0.434 0.411 0.402 0.391 0.417 0.409 0.396
0.50 0.415 0.397 0.435 0.433 0.436 0.381 0.382 0.388 0.413 0.410 0.413

The sensitivity of the proposed Bayes estimates of the hyper parameter
a is studied for this data and the results are reported in Table 5.

It is clear from Table 5 that the exact Bayes estimate, Lindley’s and
MCMC approximations have almost the same rate of change with respect
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Table 5. Sensitivity of the proposed Bayes estimates of the hyper parameter

T = 0.30 T = 0.30

a Exact Lindley’s MCMC 95% CI Exact Lindley’s MCMC 95% Cl
0.1 0.461 0.456 0.440 (0.269,0.659) 0.434 0.432 0.432 (0.276,0.629)
1.0 0.453 0.448 0.427 (0.263,0.595) 0.426 0.425 0.427 (0.263,0.616)
1.5 0.448 0.443 0.427 (0.265,0.596) 0.422 0.420 0.421 (0.267,0.621)
2.0 0.443 0.439 0.426 (0.263,0.633) 0.418 0.416 0.419 (0.266,0.628)
3.5 0.431 0.425 0.408 (0.250,0.575) 0.406 0.403 0.405 (0.252,0.561)
4.0 0.427 0.420 0.403 (0.249,0.572) 0.402 0.399 0.401 (0.251,0.590)
6.0 0.411 0.402 0.391 (0.242,0.574) 0.387 0.382 0.388 (0.242,0.561)
10.0 0.382 0.365 0.364 (0.226,0.528) 0.361 0.347 0.361 (0.221,0.532)

to the change in the hyper parameter a, with smaller rate for the estimate
obtained by using the MCMC method.

7. Conclusions. In this article, the shape parameter of the T-L distri-
bution was estimated from classical and Bayesian viewpoints based on Type I
censored data. It was observed that MLE cannot be derived in explicit form,
but it can be obtained numerically. Hence, an approximate MLE was derived
in explicit form. The Bayes estimate was considered based on the squared
error loss function, and it was observed that it cannot be obtained in ex-
plicit form. Lindley’s approximation and Markov Chain Monte Carlo using
the importance sampling technique were proposed to approximate the Bayes
estimate and to construct the associated credible interval. The performance
of the proposed estimates was compared by Monte Carlo simulations. It was
noticed that the informative and empirical Bayes estimates, using Lindley’s
or/and MCMC approximations, almost perform, in terms of the MSE, better
than the other estimates. It was also observed that the AMLE performs, in
terms of the MSE, better than the MLE. Moreover, it was observed from
real and simulated data sets analysis that the credible intervals associated
with the proposed MCMC Bayes estimates are satisfactory. The sensitivity
of the proposed Bayes estimates to the hyper parameter assumption was
also studied; it was found that the MCMC method has the smallest rate of
change with respect to the hyper parameter change.
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