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Abstract. An alternative classification of the Pearson family of prob-
ability densities is related to the orthogonality of the corresponding Ro-
drigues polynomials. This leads to a subset of the ordinary Pearson system,
the so-called Integrated Pearson Family. Basic properties of this family are
discussed and reviewed, and some new results are presented. A detailed
comparison between the Integrated Pearson Family and the ordinary Pear-
son system is presented, including an algorithm that enables one to decide
whether a given Pearson density belongs, or not, to the integrated system.
Recurrences between the derivatives of the corresponding orthonormal poly-
nomials are also given.

1. Introduction. Karl Pearson (1895) introduced his famous family of
frequency curves by means of the differential equation

f ′(x)

f(x)
=
p1(x)

p2(x)
,

where f is the probability density and pi is a polynomial in x of degree
at most i, i = 1, 2. Since then, a vast bibliography has been developed
regarding the properties of the Pearson family distributions. The original
classification given by Pearson contains twelve types (I–XII), although this
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numbering system does not have a clear systematic basis (Johnson et al.,
1994, p. 16). Craig (1936) proposed a new exposition and chart for Pearson
curves. However, a more reasonable and convenient classification is included
in a review paper by Diaconis and Zabell (1991). Extensions to discrete
distributions have been introduced by Ord (1967) and an extensive review
can be found in Ord (1972, Chapter 1).

In this paper we present and review a number of properties satisfied
by the distributions of the Pearson family and the associated Rodrigues
polynomials, which are produced by a Rodrigues-type formula. Our main
focus is on a suitable subset of Pearson distributions, the Integrated Pear-
son Family, because this class subsumes all interesting properties related
to the associated orthogonal polynomial systems. For example, it will be
shown in Section 4 that orthogonality of Rodrigues polynomials with re-
spect to an ordinary Pearson density f results in an equivalent definition
of the integrated Pearson system. This consideration entails an alternative
classification of (integrated) Pearson distributions, which is essentially the
one given in Diaconis and Zabell (1991).

In the context of deriving variance bounds for functions of random vari-
ables, Afendras et al. (2007, 2011) and Afendras and Papadatos (2011) have
made use of the following definition, which provides the main framework of
the present article.

Definition 1.1 (Integrated Pearson Family). Let X be an absolutely
continuous random variable with density f and finite mean µ = EX. We say
that X (or its density) belongs to the Integrated Pearson Family of distribu-
tions (or integrated Pearson system) if there exists a quadratic polynomial
q(x) = δx2 + βx+ γ (with δ, β, γ ∈ R, |δ|+ |β|+ |γ| > 0) such that

(1.1)

x�

−∞
(µ− t)f(t) dt = q(x)f(x) for all x ∈ R.

This fact will be denoted by X ∼ IP(µ; q) or f ∼ IP(µ; q) or, more explicitly,
by X or f ∼ IP(µ; δ, β, γ).

Despite the fact that the Integrated Pearson Family is quite restricted,
compared to the usual Pearson system (see Proposition 2.1(iii) below), we
believe that the reader will find here some interesting observations worth
highlighting. The integrated Pearson system has many interesting proper-
ties, like recurrences on moments and on Rodrigues polynomials, covariance
identities, closedness of each type under particularly useful transformations
etc. Such properties are by far more complicated (if at all true) for dis-
tributions outside the Integrated Pearson Family of distributions. These
features should be combined with the fact that the Rodrigues polynomials
form an orthogonal system for the corresponding Pearson density if and only
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if the density belongs to the Integrated Pearson Family. Consequently, the
Rodrigues polynomials are useful only if they are considered in the frame-
work of the integrated Pearson system. To our knowledge, these facts have
not been written explicitly elsewhere.

The paper is organized as follows: In Section 2 we provide a detailed
classification of the Integrated Pearson Family. It turns out that, up to an
affine transformation, there are six different types of densities, included in
Table 2.1. We also provide conditions guaranteeing the existence of mo-
ments, and we give recurrences as long as these moments exist. In Section 3,
a detailed comparison between the Integrated Pearson Family and the ordi-
nary Pearson system is presented. Interestingly, there exists a simple algo-
rithm that enables one to decide whether a given ordinary Pearson density
belongs to the integrated system or not. In Section 4, exploiting a result
of Diaconis and Zabell (1991), we show that (under natural moment con-
ditions) the first three Rodrigues polynomials (of degree 0, 1 and 2) are
orthogonal with respect to an ordinary Pearson density if and only if this
density belongs to the integrated Pearson system. Finally, in Section 5 we
provide recurrences between the orthonormal polynomials and their deriva-
tives; in fact, the derivatives themselves are orthogonal polynomials with
respect to other integrating Pearson densities, having the same quadratic
polynomial, up to a scalar multiple. Although we do not include any spe-
cific applications of these results here, we notice that such recurrences are
particularly useful in obtaining Fourier expansions of the derivatives of a
function of a Pearson variate. The main result of Section 5 is Corollary
5.4. It provides an explicit relation (in terms of µ and q) between the mth
derivative of an orthonormal polynomial of degree k ≥ m and the corre-
sponding orthonormal polynomial of degree k − m. That is, it relates the
orthonormal polynomial system, associated with some f ∼ IP(µ; q), to the
corresponding orthonormal polynomial system associated with the ‘target’
density fm ∝ qmf .

Throughout, X ∼ IP(µ; δ, β, γ) means that X has finite mean µ, and
that X admits a density f (with respect to Lebesgue measure on R) such
that (1.1) is fulfilled. Define the open (bounded or unbounded) interval

J = J(X) := (ess inf(X), ess sup(X)).

If F is the distribution function of X then J = (αF , ωF ) = (α, ω), say, where
αF := inf{x : F (x) > 0}, ωF := sup{x : F (x) < 1}. It is clear that (1.1)
takes the form 0 = 0 whenever x = ρ is a zero of q that lies outside the
interval (α, ω); thus, f(ρ) may assume any value in this case. However, in
order to be specific, we redefine f(ρ) = 0 at such points without any loss of
generality. Therefore, we shall use this convention throughout without any
further reference.
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2. A complete classification of the Integrated Pearson Family.
We show in this section that the Integrated Pearson Family contains six
different types of distributions. These are classified in terms of the corre-
sponding quadratic polynomial q(x) = δx2 + βx + γ and its discriminant
∆ = β2 − 4δγ as follows:

• type 1 (Normal-type, δ = β = 0);
• type 2 (Gamma-type, δ = 0, β 6= 0);
• type 3 (Beta-type, δ < 0);
• type 4 (Student-type, δ > 0, ∆ < 0);
• type 5 (Reciprocal Gamma-type, δ > 0, ∆ = 0);
• type 6 (Snedecor-type, δ > 0, ∆ > 0).

The first three types (with δ ≤ 0) consist of the well-known Normal, Gamma
and Beta random variables and their linear transformations. The last three
types (with δ > 0) consist of some less familiar distributions (see Table 2.1
below); they have finite moments of order a for any a ∈ [0, 1 + 1/δ) while
E |X|1+1/δ =∞. The proposed classification is very similar to the one given
by Diaconis and Zabell (1991, Table 2 and pp. 294–296).

We start with an easily verified proposition.

Proposition 2.1. Let X ∼ IP(µ; q) and set J = (α, ω) =
(ess inf(X), ess sup(X)). Then:

(i) f(x) is strictly positive for x in J and zero otherwise, i.e., {x :
f(x) > 0} = J ;

(ii) f ∈ C∞(J), that is, f has derivatives of any order in J ;
(iii) X is a (usual) Pearson random variable supported in J ;
(iv) q(x) = δx2 + βx+ γ > 0 for all x ∈ J ;
(v) if α > −∞ then q(α) = 0 and, similarly, if ω <∞ then q(ω) = 0;

(vi) for any θ, c ∈ R with θ 6= 0, the random variable X̃ := θX + c ∼
IP(µ̃; q̃) with µ̃ = θµ+ c and q̃(x) = θ2q((x− c)/θ).

Proof. By (1.1), x 7→ q(x)f(x) is continuous. On the other hand, from
the definition of J = (αF , ωF ) = (α, ω) it follows that q(x)f(x) must vanish
for all x ≤ α (if any) and for all x ≥ ω (if any). Also, it must be strictly
positive for x ∈ J . Indeed, if x ∈ (µ, ω) then

q(x)f(x) =

∞�

x

(t− µ)f(t) dt ≥ (x− µ)(1− F (x)) > 0;

if x ∈ (α, µ) then

q(x)f(x) =

x�

−∞
(µ− t)f(t) dt ≥ (µ− x)F (x) > 0;
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finally, q(µ)f(µ) = 1
2 E |X − µ| > 0. Thus, q(x)f(x) > 0 for all x ∈ (α, ω).

Since q is continuous and has no roots in J it follows that both q(x) and f(x)
are strictly positive (and continuous) in J . The vanishing of qf outside J
shows that f(x) = 0 for all x /∈ J , with the possible exception at the points
x /∈ J which are real roots of q. Clearly, if ρ ∈ R r (α, ω) is a zero of q we
can redefine f(ρ) = 0, if necessary, so that (i) and (iv) follow.

On the other hand, the function f : (α, ω) → (0,∞) has derivatives of
any order. Indeed, writing p1(x) = µ − x − q′(x) (which is a polynomial of
degree at most one) we see from (1.1) that f : J → (0,∞) is continuous.
Thus,

(2.1) f ′(x) = f(x)
p1(x)

q(x)
or equivalently

f ′(x)

f(x)
=
µ− x− q′(x)

q(x)
, x ∈ J.

This proves (iii).

Moreover, (2.1) shows that f ′ is continuous in J and, inductively, that
f (n+1) : J → R is continuous, since for x ∈ J ,

f (n+1)(x) =
n∑
j=0

(
n

j

)
f (j)(x)

(
p1(x)

q(x)

)(n−j)
, n = 0, 1, 2, . . . .

Now (vi) is straightforward and it remains to show (v). To this end, assume
that ω < ∞. Since q(ω) = limx↗ω q(x) and q(x) > 0 for x in a lower
neighborhood of ω, it follows that q(ω) ≥ 0. Assume now that q(ω) > 0 and
define λ1 := infx∈[µ,ω] q(x) > 0 and λ2 := supx∈[µ,ω] |µ − x − q′(x)| < ∞.
Then, for all x ∈ [µ, ω),∣∣∣∣x�

µ

µ− t− q′(t)
q(t)

dt

∣∣∣∣ ≤ x�

µ

|µ− t− q′(t)|
q(t)

dt

≤
ω�

µ

|µ− t− q′(t)|
q(t)

dt ≤ (ω − µ)
λ2
λ1

<∞.

Setting λ := (ω − µ)λ2/λ1 <∞ and observing that

ln f(x) = ln f(µ) +

x�

µ

f ′(t)

f(t)
dt = ln f(µ) +

x�

µ

µ− t− q′(t)
q(t)

dt, x ∈ [µ, ω),

we have

|ln f(x)| ≤ |ln f(µ)|+ λ := c <∞, µ ≤ x < ω.

Therefore, there exist constants c1, c2 such that 0 < c1 ≤ f(x) ≤ c2 <∞ for
all x ∈ [µ, ω). Thus,

q(ω) = lim
x↗ω

q(x) = lim
x↗ω

1

f(x)

ω�

x

(t− µ)f(t) dt = 0,



236 G. Afendras and N. Papadatos

which contradicts the assumption q(ω) > 0. The case α > −∞ is reduced

to the case ω < ∞ if we consider the random variable X̃ = −X with
J(X̃) = (α̃, ω̃) = (−ω,−α). According to (vi), its density, f̃(x) = f(−x),
satisfies (1.1) with µ̃ = −µ, α̃ = −ω, ω̃ = −α and q̃(x) = q(−x). Thus, if
α > −∞ then ω̃ <∞ and q(α) = q̃(−α) = q̃(ω̃) = 0.

Corollary 2.1. Let X ∼ IP(µ; q) and assume that α = ess inf(X)
and ω = ess sup(X) are the lower and upper endpoints of the distribution
function of X. Then the support of X (or of its density f) S(f) = S(X) :=
{x : f(x) > 0} equals the open interval J = J(X) = (α, ω). This interval
support has the following two properties:

(i) J ⊆ S+(q) := {x : q(x) > 0} and
(ii) J is a maximal open interval contained in S+(q), i.e., for any open

interval J̃ ⊆ S+(q), either J̃ ⊆ J or J̃ ∩ J = ∅.

Thus, the support J of X is a connected component of the open set
{x : q(x) > 0}. Since q is a polynomial of degree at most two, it is clear
that the set {x : q(x) > 0} has at most two such components. For example,
if q(x) = x2 then either J = (−∞, 0) or J = (0,∞); if q(x) = x2 − 1 then
either J = (−∞,−1) or J = (1,∞); if q(x) = 1 − x2 then J = (−1, 1); if
q(x) = x then J = (0,∞); if q(x) = 1 + x2 or q(x) ≡ 1 then J = R. Since
EX = µ ∈ J , any particular choice of µ ∈ {x : q(x) > 0} characterizes the
support J of X.

We say that q(x) = δx2 + βx + γ is admissible if there exists µ ∈ R
such that µ ∈ {x : q(x) > 0}. We shall show that for any admissible choice
of q and any µ ∈ {x : q(x) > 0} there exists an absolutely continuous
random variable X with density f such that EX = µ and (1.1) is fulfilled.
Moreover, it will become clear that f is characterized by the pair (µ; q).
Therefore, the notation X ∼ IP(µ; q), or equivalently f ∼ IP(µ; q), has a
well-defined meaning.

The proposed classification distinguishes between the cases δ = 0, δ < 0
and δ > 0, as follows:

2.1. The case δ = 0. Here we consider the two subcases β = 0 and
β 6= 0.

2.1.1. The subcase δ = 0, β = 0. Since q(x) ≡ γ and q is admissible,
we must have γ > 0. Therefore, J(X) = R. Fixing µ ∈ R and solving the
differential equation (2.1) we obtain

f(x) =
1√
2πγ

e
− (x−µ)2

2γ , x ∈ R,

i.e., X ∼ N(µ, σ2) with σ2 = γ.
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2.1.2. The subcase δ = 0, β 6= 0. Assume that q(x) = βx+γ with β 6= 0
and fix µ ∈ {x : q(x) > 0}. According to Proposition 2.1(vi) we may further
assume that β > 0, γ = 0 and µ > 0. To se this, it suffices to consider the
random variable X̃ = β

|β|(X + γ
β ) which has q̃(x) = |β|x and

E X̃ = µ̃ =
β

|β|

(
µ+

γ

β

)
=
q(µ)

|β|
> 0

(since q(µ) > 0). Now, since q(x) = βx with β > 0 we have J(X) = (0,∞).
Fixing µ > 0 and solving the differential equation (2.1) we obtain

f(x) =
(1/β)µ/β

Γ (µ/β)
xµ/β−1e−x/β, x > 0,

i.e., X ∼ Γ (a, λ) with a = µ/β > 0 and λ = 1/β > 0. Hence, a linear
nonconstant q corresponds to a Gamma-type distribution, i.e., to a linear
transformation X̃ = θX + c, θ 6= 0, of a Gamma random variable X.

2.2. The case δ < 0. Since δ < 0 and {x : q(x) > 0} must contain an
interval, it follows that the discriminant β2 − 4δγ of q is strictly positive. If
ρ1 < ρ2 are the real roots of q we write q(x) = δ(x− ρ1)(x− ρ2) so that the
support of X is the finite interval J(X) = (ρ1, ρ2).

Now we show that for any choice of µ ∈ (ρ1, ρ2) there is a (unique)
random variable X with X ∼ IP(µ; q). To this end, it suffices to examine
the particular case q(x) = −δx(1 − x) and 0 < µ < 1. Indeed, the general

case reduces to the particular one if we consider the random variable X̃ =
(X − ρ1)/(ρ2 − ρ1). Fixing µ ∈ (0, 1), q(x) = −δx(1 − x) and solving the
differential equation (2.1) on J(X) = (0, 1) we obtain

f(x) =
1

B(−µ/δ,−(1− µ)/δ)
x−µ/δ−1(1− x)−(1−µ)/δ−1, 0 < x < 1,

i.e., X ∼ B(a, b) with a = µ/|δ| > 0, b = (1 − µ)/|δ| > 0. It follows
that the case δ < 0 corresponds to a Beta-type distribution, i.e., a linear
transformation of a Beta random variable.

2.3. The case δ > 0. Here we consider the subcases where the dis-
criminant ∆ = β2 − 4δγ is positive, zero or negative.

2.3.1. The subcase δ > 0, ∆ < 0. Since q has no real roots, J(X) = R.
Thus, µ ∈ R can take an arbitrary value. Also, q has the form q(x) =
δ(x − c)2 + θ with δ > 0, θ > 0 and c ∈ R. Without loss of generality we
further assume that c = 0. Indeed, the general case reduces to the particular
one if we consider the random variable X̃ = X − c. Fixing µ ∈ R, q(x) =
δx2 + θ, (2.1) yields

f(x) =
C

(δx2 + θ)1+1/(2δ)
exp

(
µ√
δθ

tan−1(x
√
δ/θ)

)
, x ∈ R.
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The normalizing constant C = Cµ(δ, θ) can be calculated explicitly:

C0(δ, θ) =
Γ (1 + 1/(2δ))

√
δθ1+1/δ

Γ (1/2 + 1/(2δ))
√
π

,

Cµ(δ, θ) =
21/δθ1/2+1/(2δ)

√
δ
∣∣Γ (1 + 1

2δ + i µ

2
√
δθ

)∣∣2
πΓ (1 + 1/δ)

.

The calculation is easy for µ = 0 but not for µ 6= 0, due to the complex
argument of the Gamma function (cf. Nagahara, 1999; Nielsen, 2005).

Hence, provided µ = c, the quadratic polynomial q(x) = δ(x − c)2 + θ
(with δ > 0 and θ > 0) corresponds to a Student-type distribution cen-
tered at c. When µ 6= c, it corresponds to some asymmetric Student-type
distribution.

2.3.2. The subcase δ > 0, ∆ = 0. Since q has a unique real root at
ρ = −β/(2δ), it follows that q(x) = δ(x−ρ)2, and therefore the support J(X)
is either (−∞, ρ) or (ρ,∞), according to whether µ < ρ or µ > ρ. Without
loss of generality we may assume that q(x) = δx2 with δ > 0 and µ > 0. To

see this, it suffices to consider the random variable X̃ = µ−ρ
|µ−ρ|(X − ρ). Now,

setting J(X) = (0,∞), q(x) = δx2 (δ > 0) and µ > 0 in (2.1) we find

f(x) =
λa

Γ (a)
x−a−1e−λ/x, x > 0,

where λ = µ/δ > 0 and a = 1 + 1/δ > 1. Observing that 1/X ∼ Γ (a, λ) it
follows that the case δ > 0, ∆ = 0 corresponds to a Reciprocal Gamma-type
distribution.

2.3.3. The subcase δ > 0, ∆ > 0. Assuming that ρ1 < ρ2 are the roots
of q we can write q(x) = δ(x − ρ1)(x − ρ2) and the support J(X) has to
be either (−∞, ρ1) or (ρ2,∞), according to whether µ < ρ1 or µ > ρ2.

By considering the random variable X̃ = −(X − ρ1) when µ < ρ1 and

X̃ = X − ρ2 when µ > ρ2 it is easily seen that both cases reduce to µ̃ > 0,
J(X̃) = (0,∞) and q̃(x) = δx(x+ θ) with δ, θ = ρ2 − ρ1 > 0. Thus, there is
no loss of generality in assuming µ > 0, J(X) = (0,∞) and q(x) = δx(x+θ)
with δ, θ > 0. Then (2.1) yields

f(x) =
1

B(a, b)
θaxb−1(x+ θ)−a−b, x > 0,

with a = 1 + 1/δ > 1 and b = µ/(δθ) > 0. Equivalently, θ/(X + θ) ∼
B(a, b). It follows that the case δ > 0, ∆ > 0 corresponds to a Snedecor-type
distribution.

All the above possibilities are summarized in Table 2.1 opposite; compare
with Diaconis and Zabell (1991, Table 2, p. 296).
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Remark 2.1. Since

(µ− x)
exp
( µ√

δγ
tan−1(x

√
δ/γ)

)
(δx2 + γ)1+1/(2δ)

=
d

dx

exp
( µ√

δγ
tan−1(x

√
δ/γ)

)
(δx2 + γ)1/(2δ)

,

it follows that EX = µ for the Student-type densities (type 4), while for all
other cases it is evident that the mean is as displayed in Table 2.1. Next, it is
easily verified that the densities of Table 2.1 satisfy the assumptions (B) of
Proposition 3.3, below, with µ = EX, p2(x) = q(x) and p1(x) = µ−x−q′(x),
where µ and q are as in the table. Hence, according to Proposition 3.3, all
these densities are, indeed, integrated Pearson.

Corollary 2.2. Assume that X ∼ IP(µ; δ, β, γ).

(a) If δ ≤ 0 then E |X|α <∞ for any α ∈ [0,∞).
(b) If δ > 0 then E |X|α <∞ for any α ∈ [0, 1 + 1/δ), while E |X|1+1/δ

=∞.

Proof. If X ∼ IP(µ; δ, β, γ) then we can find constants c1 6= 0 and c2 ∈ R
such that the density of X̃ = c1X + c2 is contained in Table 2.1. Then,
according to Proposition 2.1(vi), X̃ ∼ IP(µ̃; δ̃, β̃, γ̃) with δ̃ = δ. The assertion
follows from the fact that E |X|α <∞ if and only if E |c1X + c2|α <∞.

Next, we shall obtain a recurrence for the moments and the central mo-
ments of a random variable X ∼ IP(µ; q). To this end we first prove a simple
lemma.

Lemma 2.1. If X ∼ IP(µ; δ, β, γ) has support J(X) = (α, ω) and E |X|n
<∞ for some n ≥ 1 (that is, δ < 1/(n− 1)) then

lim
x↗ω

xkq(x)f(x) = lim
x↘α

xkq(x)f(x) = 0, k = 0, 1, . . . , n− 1,

and, in general, for any c ∈ R,

lim
x↗ω

(x− c)kq(x)f(x) = lim
x↘α

(x− c)kq(x)f(x) = 0, k = 0, 1, . . . , n− 1.

Proof. See arXiv:1205.2903v2, pp. 9–10.

Lemma 2.2. If X ∼ IP(µ; δ, β, γ) and E |X|n <∞ for some n ≥ 2 (that
is, δ < 1/(n− 1)) then for any c ∈ R, the central moments about c satisfy
the recurrence

E(X − c)k+1 =
(µ− c+ kq′(c))E(X − c)k + kq(c)E(X − c)k−1

1− kδ
,

k = 1, . . . , n− 1,

with initial conditions E(X − c)0 = 1, E(X − c)1 = µ − c, where q(c) =
δc2 + βc+ γ, q′(c) = 2δc+ β. In particular,

http://arxiv.org/abs/1205.2903v2
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(i) the usual moments (c = 0) satisfy the recurrence

EXk+1 =
(µ+ kβ)EXk + kγ EXk−1

1− kδ
, k = 1, . . . , n− 1,

with initial conditions EX0 = 1 and EX1 = µ;
(ii) the central moments (c = µ) satisfy the recurrence

E(X − µ)k+1 =
kq′(µ)E(X − µ)k + kq(µ)E(X − µ)k−1

1− kδ
,

k = 1, . . . , n− 1,

with initial conditions E(X − µ)0 = 1 and E(X − µ)1 = 0.

Proof. See arXiv:1205.2903v2, pp. 10–11.

3. Comparison with the ordinary Pearson system. The ordinary
Pearson family consists of absolutely continuous random variables X sup-
ported in some (open) interval (α, ω) such that their density f , which is as-
sumed to be strictly positive and differentiable in (α, ω), satisfies the Pearson
differential equation

(3.1)
f ′(x)

f(x)
=
p1(x)

p2(x)
, α < x < ω,

where p1 is a polynomial of degree at most one and p2 is a polynomial
of degree at most two. Since we can multiply the numerator and the de-
nominator of (3.1) by the same nonzero constant, it is usually assumed,
for convenience, that p1 is a monic linear polynomial of degree one, e.g.,
p1(x) = x+ a0. Although this restriction specifies both p1 and p2 whenever
p1 is nonconstant, it is not satisfactory for our purposes because it elimi-
nates all rectangular (uniform over some interval) distributions and several
B(a, b) densities (those with a + b = 2)—see Table 2.1. Therefore, when
we say that a function f satisfies the Pearson differential equation (3.1) it
will be assumed that p1 is any polynomial of degree at most one (the cases
p1 ≡ 0 and p1 ≡ c 6= 0 are allowed) and p2 6≡ 0 is any polynomial of degree
at most two. Note that common zeros of p1 and p2 are allowed inside the
interval (α, ω). Also, p1 and p2 may have common zeros outside the interval
(α, ω), which happens in the case of an exponential density.

Clearly, the ordinary Pearson family contains some random variables
whose expectation does not exist, e.g., Cauchy. Sometimes it is asserted
that, under finiteness of the first moment, (1.1) and (3.1) are equivalent—
see, e.g., Korwar (1991, pp. 292–293). However, this is true only in particular
cases, i.e., when we have made a ‘correct’ choice of p2 (that is, p2(x) = θq(x)
for some θ 6= 0) and provided that a solution f of (3.1) is considered in a
maximal subinterval of the support of p2, {x : p2(x) 6= 0}. The following
algorithmic procedure will always decide correctly if a given Pearson density

http://arxiv.org/abs/1205.2903v2
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belongs to the Integrated Pearson Family. The algorithm makes a correct
choice of p2, if it exists, as follows:

The Integrated Pearson Algorithm

Step 0. Assume that a Pearson density f with finite (unknown) mean and
(known) support S(f) = {x : f(x) > 0} = (α, ω) satisfies f ′/f =
p̃1/p̃2 for given (real) polynomials p̃1, p̃2 (with p̃2 6≡ 0), of degree
at most one and two, respectively.

Step 1. Cancel the common factors of p̃1 and p̃2, if any. Then the resulting

polynomials, say p̃
(1)
1 and p̃

(1)
2 , are irreducible—they do not have

any common zeros in C. In case p̃1 ≡ 0, it suffices to define p̃
(1)
1 ≡ 0,

p̃
(1)
2 ≡ 1.

Step 2. If α > −∞ and p̃
(1)
2 (α) 6= 0 then multiply both p̃

(1)
1 and p̃

(1)
2 by

x− α and name the resulting polynomials p̃
(2)
1 and p̃

(2)
2 ; otherwise

(i.e. if either α = −∞, or α > −∞ and p̃
(1)
2 (α) = 0) set p̃

(2)
1 = p̃

(1)
1

and p̃
(2)
2 = p̃

(1)
2 .

Step 3. If ω < ∞ and p̃
(2)
2 (ω) 6= 0 then multiply both p̃

(2)
1 and p̃

(2)
2 by

ω − x and name the resulting polynomials p1 and p2; otherwise

(i.e. if either ω =∞, or ω <∞ and p̃
(2)
2 (ω) = 0) set p1 = p̃

(2)
1 and

p2 = p̃
(2)
2 .

Step 4. If deg(p1) ≤ 1 and deg(p2) ≤ 2, then p2 is a correct choice and
f ∼ IP(µ; q) with q(x) = θp2(x) for some θ 6= 0; otherwise the
given density f does not belong to the Integrated Pearson Family.

It is clear that the above procedure starts with the equation f ′/f = p̃1/p̃2
and, at Step 3, it produces two new (real) polynomials p1, p2, of degree
at most three and four, respectively, such that f ′/f = p1/p2. Moreover,
p2(α) = 0 if α > −∞, p2(ω) = 0 if ω <∞ and p2(x) 6= 0 for all x ∈ (α, ω).
Furthermore, because of Step 1, the polynomials p1(z) and p2(z) cannot
have any common zeros in Cr {α, ω}.

The algorithm guarantees that a correct p2 is chosen when such a p2
exists. For example, the standard exponential density,

f(x) = e−x, x > 0,

satisfies (3.1) when (p1, p2) = (−1, 1), when (p1, p2) = (−x, x) and when
(p1, p2) = (−x − 1, x + 1), but the correct choice is the second one. The
standard uniform density,

f(x) = 1, 0 < x < 1,

satisfies (3.1) for p1 ≡ 0 and for any p2 (with no roots in (0, 1)), and the
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correct choice is p2 = x(1− x). The power density,

f(x) = 2x, 0 < x < 1,

satisfies (3.1) with (p1, p2) = (2− x, x(2− x)). A correct choice arises when
we multiply both polynomials by (1 − x)/(2 − x), that is, (p1, p2) = (1 −
x, x(1− x)). The Pareto density,

f(x) =
2

(x+ 1)3
, x > 0,

satisfies (3.1) when (p1, p2) = (−3, x + 1), when (p1, p2) = (−3x, x(x + 1))
and when (p1, p2) = (−3(x+1), (x+1)2), but the correct choice is the second
one. The half-Normal density,

f(x) =

√
2

π
e−x

2/2, x > 0,

satisfies (3.1) in its interval support (α, ω) = (0,∞), although it does not
satisfy (1.1). Here, there does not exist a correct choice for p2. A more
natural example is as follows: Consider the density

f(x) =
C√

1 + x2
, α < x < ω,

where C = C(α, ω) > 0 is the normalizing constant. This density satisfies
the Pearson differential equation (3.1) in any finite interval (α, ω), with
p1 = −x, p2 = 1 + x2, while its integral over unbounded intervals diverges.
This density does not fulfill (1.1) so that it does not belong to the Integrated
Pearson Family. Again there does not exist a correct choice for p2.

The algorithm is justified by the following propositions.

Proposition 3.1. Let X ∼ f and assume that the density f satisfies
the assumptions of Step 0. If X ∼ IP(µ; q) then the polynomials p1 and p2
of Step 3 are of degree at most one and two, respectively, and q(x) = θp2(x)
for some θ 6= 0.

Proof. Since X is integrated Pearson, so is Y = λX+ c for all λ 6= 0 and
c ∈ R; see Proposition 2.1(vi). Also, its density fY (x) = 1

|λ|f
(
x−c
λ

)
satisfies,

by assumption, the differential equation

f ′Y (x)

fY (x)
=
p̃Y1 (x)

p̃Y2 (x)
, x ∈ (α̃, ω̃),

with p̃Y1 (x) = λp̃1

(
x− c
λ

)
, p̃Y2 (x) = λ2p̃2

(
x− c
λ

)
,

where (α̃, ω̃) = (λα + c, λω + c) or (λω + c, λα + c), according to whether
λ > 0 or λ < 0. It is easily shown that the new polynomials p1, p2 (those
that the algorithm produces at Step 3 for f) are related to the corresponding
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polynomials pY1 , pY2 (those that the algorithm produces at Step 3 for fY ) by

pY1 (x) = λip1

(
x− c
λ

)
, pY2 (x) = λi+1p2

(
x− c
λ

)
,

for some i ∈ {1, 2, 3}. Therefore, it suffices to show that deg(pYi ) ≤ i,
i = 1, 2, and that the quadratic polynomial qY (x) = λ2q

(
x−c
λ

)
is related

to pY2 through qY (x) = θpY2 (x) for some θ 6= 0. Thus, without any loss of
generality we may assume that f is one of the densities given in Table 2.1.

Now observe that (p̃1, p̃2) is always irreducible for types 1, 4, 5 (Normal-
type, Student-type, Reciprocal Gamma-type) with deg(p̃1) = 1 for all types
1, 4, 5, while deg(p̃2) = 0 for type 1 and deg(p̃2) = 2 for types 4 and 5. Since
the corresponding supports are R, R and (0,∞), respectively, and since in
type 5, p̃2(x) = θx2 for some θ 6= 0, it follows that (p1, p2) = (p̃1, p̃2), q = θp2
for some θ 6= 0, and the assertion follows.

For types 2, 3 and 6 (Gamma-type, Beta-type and Snedecor-type) the
irreducibility of p̃1 and p̃2 depends on the parameters. Let us consider these
cases in detail.

If f ∼ Γ (a, λ) with a 6= 1 (a > 0, λ > 0) then p̃1 = θ(a − 1 − λx) and
p̃2 = θx for some θ 6= 0, so that p̃1, p̃2 are irreducible with degree one. It
follows that pi = p̃i, deg(pi) = 1 (i = 1, 2) and

q(x) =
x

λ
=
p2(x)

θλ
.

If f ∼ Γ (1, λ) (λ > 0) then all possible choices for (p̃1, p̃2) are given by
p̃1 = −λθ(x+ c) and p̃2 = θ(x+ c) for θ 6= 0, c ∈ R. Therefore, Step 3 yields
(p1, p2) = (−λθx, θx), and thus deg(pi) = 1 (i = 1, 2) with

q(x) =
x

λ
=
p2(x)

λθ
.

If f is of type 6 and b 6= 1 then

(p̃1(x), p̃2(x)) =
(
c((b− 1)− (a+ 1)x), cx(x+ θ)

)
for some c 6= 0.

Here the parameters are a > 1, b > 0 and θ > 0. It follows that (p1, p2) =
(p̃1, p̃2), deg(pi) = i (i = 1, 2) and

q(x) =
x(x+ θ)

a− 1
=

p2(x)

(a− 1)c
.

If f is of type 6 with b = 1 then all possible choices for (p̃1, p̃2) are given by

p̃1(x) = −c(a+ 1)(x+ γ), p̃2(x) = c(x+ θ)(x+ γ) for some c 6= 0, γ ∈ R.
Therefore, Step 3 yields (p1, p2) = (−c(a+1)x, cx(x+θ)). Thus, deg(pi) = i
(i = 1, 2) and

q(x) =
x(x+ θ)

a− 1
=

p2(x)

(a− 1)c
.
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Finally, let f be of type 3 (Beta-type), that is, f ∼ B(a, b) with a, b > 0.
If a 6= 1 and b 6= 1, it is easily shown that the polynomials

(p̃1(x), p̃2(x)) =
(
θ(a− 1− (a+ b− 2)x), θx(1− x)

)
(θ 6= 0)

are irreducible, so that (p1, p2) = (p̃1, p̃2), deg(pi) = i (i = 1, 2) and

q(x) =
x(1− x)

a+ b
=

p2(x)

(a+ b)θ
.

If a = 1, b 6= 1, the most general form of (p̃1, p̃2) is given by

(p̃1(x), p̃2(x)) =
(
−(b− 1)θ(x+ c), θ(1− x)(x+ c)

)
, where θ 6= 0, c ∈ R.

Therefore, Step 3 yields (p1, p2) = (−(b−1)θx, θx(1−x)). Thus, deg(pi) = i
(i = 1, 2) and

q(x) =
x(1− x)

b+ 1
=

p2(x)

(b+ 1)θ
.

If a 6= 1, b = 1, the most general form of (p̃1, p̃2) is given by

(p̃1(x), p̃2(x)) = ((a− 1)θ(x+ c), θx(x+ c)), where θ 6= 0, c ∈ R.
Therefore, Step 3 yields (p1, p2) = ((a − 1)θ(1 − x), θx(1 − x)), and thus
deg(pi) = i (i = 1, 2),

q(x) =
x(1− x)

a+ 1
=

p2(x)

(a+ 1)θ
.

Finally, if a = b = 1 (standard uniform density, U(0, 1) ≡ B(1, 1)) then
p̃1 ≡ 0 so that (p1, p2) = (0, x(1− x)), deg(p1) < 0, deg(p2) = 2 and

q(x) =
x(1− x)

2
=
p2(x)

2
.

This completes the proof.

Proposition 3.2. Assume that X ∼ f where the density f is differen-
tiable with derivative f ′ in its (known) interval support (α, ω) and has finite
(unknown) mean. Then the following statements are equivalent:

(A) f satisfies (3.1) for some (real) polynomials p1 (of degree at most
one) and p2 6≡ 0 (of degree at most two) with p2(α) = 0 if α > −∞,
p2(ω) = 0 if ω <∞ and p2(x) 6= 0 for all x ∈ (α, ω).

(B) X ∼ IP(µ; q) for some q(x) = δx2 + βx + γ with {x : q(x) > 0} =
(α, ω) and some µ ∈ (α, ω).

Moreover, if (A) and (B) hold, then there exists a constant θ 6= 0 such that
q(x) = θp2(x), x ∈ R.

Proof. See arXiv:1205.2903v2, pp. 15–17.

Eventually, Proposition 3.2 says that for a particular choice of p2 to be
correct it is necessary and sufficient that p2 remains nonzero in (α, ω) and
vanishes at every finite endpoint of (α, ω) (if any).

http://arxiv.org/abs/1205.2903v2
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If the mean µ is known, then another simple criterion for an ordinary
Pearson variate to belong to the Integrated Pearson Family is provided by
the following proposition.

Proposition 3.3. Let X be a random variable with density f and finite
mean µ. Assume that the set {x : f(x) > 0} is the (bounded or unbounded)
interval J(X) = (α, ω) and that f is differentiable in (α, ω), with derivative
f ′(x), α < x < ω. Then the following are equivalent:

(A) X ∼ IP(µ; q).
(B) The density f satisfies (3.1) and the polynomials p1 (p1 ≡ 0 is

allowed) and p2 can be chosen in such a way that:

(i) there exists a constant θ 6= 0 such that p1(x)+p′2(x) = (µ−x)/θ
for all x ∈ R,

(ii) either limx↘α p2(x)f(x) = 0 or limx↗ω p2(x)f(x) = 0.

If (i) and (ii) are true then the polynomials p2 and q are related through
q(x) = θp2(x) where θ 6= 0 is as in (i). Moreover, if (3.1) is satisfied in an
unbounded interval (α, ω) then (ii) is unnecessary since it is implied by (i).

Proof. If X ∼ IP(µ; q), then we see from (2.1) that (3.1) is satisfied for
the polynomials p1(x) = µ − x − q′(x) and p2(x) = q(x). With this choice
of p1, p2, Proposition 2.1 shows that (i) (with θ = 1) is valid. Also, (ii)
reduces to p2(x)f(x) = q(x)f(x)→ 0 as x↗ ω or x↘ α; this follows by an
obvious application of dominated convergence since the mean exists and, by
assumption, p2(x)f(x) = q(x)f(x) =

	x
α(µ− t)f(t) dt—see (1.1).

Conversely, (3.1) and (i) imply that [θp2(t)f(t)]′ = (µ−t)f(t), α < t < ω.
Integrating this equation over the interval [x, y] ⊂ (α, ω), we obtain

(3.2)

y�

x

(µ− t)f(t) dt = θp2(y)f(y)− θp2(x)f(x), α < x < y < ω.

Taking limits as x↘ α in (3.2), using the dominated convergence theorem
for the l.h.s. and the first assumption in (ii) for the r.h.s. we obtain

y�

α

(µ− t)f(t) dt = θp2(y)f(y), α < y < ω.

That is, X ∼ IP(µ; q) with q(x) = θp2(x). We arrive at the same conclusion
if we make use of the second assumption in (ii) and evaluate the limits as
y ↗ ω in (3.2). Indeed, in this case we obtain

ω�

x

(t− µ)f(t) dt = θp2(x)f(x) = q(x)f(x), α < x < ω,

which is equivalent to (1.1), since
	ω
α(µ− t)f(t) dt = 0.
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It is clear that, in the presence of (i), both assumptions in (ii) are
equivalent. In fact, (3.2) shows that both limits limy↗ω p2(y)f(y) and
limx↘α p2(x)f(x) exist (in R) and are equal. Indeed,

θp2(y)f(y) = θp2(x)f(x) +

y�

x

(µ− t)f(t) dt, α < x < y < ω,

and the existence of the first moment implies that, as y ↗ ω, the r.h.s. has
the well-defined finite limit C(x) = θp2(x)f(x) +

	ω
x (µ− t)f(t) dt. The l.h.s,

however, is independent of x and, certainly, the same is true for its limit, so
that C(x) ≡ C. Hence,

θp2(x)f(x) = C +

ω�

x

(t− µ)f(t) dt, α < x < ω.

Since limx↘α
	ω
x (t− µ)f(t) dt =

	ω
α(t− µ)f(t) dt = 0, we conclude that

lim
x↘α

p2(x)f(x) = lim
y↗ω

p2(y)f(y) =
C

θ
∈ R.

It remains to verify that if (3.1) holds in an unbounded interval (α, ω)
and X has a finite first moment then (i) implies (ii). To this end assume
that ω = ∞, so that J(X) = (α,∞) with α ∈ [−∞,∞). It follows that
f ′(x) = p1(x)f(x)/p2(x) does not change sign for large enough x, and thus
f ′(x) < 0 for x > x0. Therefore, for x > max{2x0, 0},

0 < x2f(x) =
8

3
f(x)

x�

x/2

t dt <
8

3

x�

x/2

tf(t) dt <
8

3

∞�

x/2

tf(t) dt→ 0

as x → ∞, i.e., f(x) = o(x−2) as x → ∞. Thus, p2(x)f(x) → 0 as x → ∞.
The case α = −∞ is similar and the proof is complete.

4. Are the Rodrigues-type polynomials orthogonal in the or-
dinary Pearson system? Associated with any Pearson density f is a
(unique) sequence of polynomials, defined by a Rodrigues-type formula. As
we shall see, these polynomials are given in terms of the pair (p1, p2) that
appears in the differential equation (3.1). That is, they do not depend at all
either on f or on the interval (α, ω).

These considerations will become clear if we slightly relax the form of
differential equation (3.1) and permit more solutions, as follows:

Definition 4.1. Let ∅ 6= (α, ω) ⊆ R, and consider a pair of real polyno-
mials (p1, p2) = (a0+a1x, b0+b1x+b2x

2) such that p2 6≡ 0 (i.e., |b0|+|b1|+|b2|
> 0). The pair (p1, p2) is called Pearson-compatible in (α, ω), or simply com-
patible, if there exists a differentiable function f : (α, ω)→ R, f 6≡ 0 (f is not
assumed to be nonnegative or integrable), such that the following generalized
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Pearson differential equation is fulfilled:

(4.1) p2(x)f ′(x) = p1(x)f(x), α < x < ω.

In other words, (p1, p2) is compatible if (4.1) has a nontrivial solution f .

It is easily seen that (p1, p2) is compatible whenever p2 has no roots in
(α, ω). In this case, the general solution f is C∞(α, ω) and can be chosen to
be strictly positive in (α, ω). The presence of a zero of p2 in (α, ω), however,
may result in incompatibility. For example, in the interval (α, ω) = (−2, 2)
the pair (p1, p2) = (4x, x2−1) is compatible, in contrast to the pair (p1, p2) =
(x, x2 − 1).

If (p1, p2) is compatible in (α, ω) then we can find the general solution as
follows: First we solve (4.1) separately in any open subinterval of (α, ω)∩{x :
p2(x) 6= 0}. Clearly, there are at most three subintervals and the general
solutions for the distinct intervals (J1, J2, J3) = ((α, ρ1), (ρ1, ρ2), (ρ2, ω)) will
be of the form fi = Cie

gi for some gi ∈ C∞(Ji), i = 1, 2, 3, with Ci being
arbitrary constants. Next, we match the solutions and their first derivatives
at the common endpoints of any two Ji; any such point is, necessarily, a
zero of p2. The compatibility of (p1, p2) guarantees that this procedure will
success in producing some solution f 6≡ 0 (in which case, |f | ≥ 0 will be
also a nontrivial solution), but it may happen that fi ≡ 0 in some Ji. The
following proposition describes all possible cases for the support of f .

Proposition 4.1. Assume that the function f : (α, ω)→ R, f 6≡ 0 (not
necessarily positive or integrable) is differentiable in (α, ω) and satisfies the
differentiable equation (4.1) for some real polynomials p1(x) = a0 +a1x and
p2(x) = b0 + b1x + b2x

2 with |b0| + |b1| + |b2| > 0. Then the support of f ,
S(f) := {x ∈ (α, ω) : f(x) 6= 0}, is either of the form (α̃, ω̃) ⊆ (α, ω) with
α ≤ α̃ < ω̃ ≤ ω, or of the form (α̃, ρ1) ∪ (ρ2, ω̃) ⊆ (α, ω) with α ≤ α̃ <
ρ1 ≤ ρ2 < ω̃ ≤ ω, or finally of the form (α, ρ1) ∪ (ρ1, ρ2) ∪ (ρ2, ω), with
α < ρ1 < ρ2 < ω. Moreover, the boundary of S(f) is contained in the set
{α, ω} ∪ {x ∈ (α, ω) : p2(x) = 0}, that is, ∂S(f) ⊆ {α, ω} ∪ {x ∈ (α, ω) :
p2(x) = 0}. Finally, for any solution f , f(ρ) = 0 (that is, ρ /∈ S(f)) for all
ρ that satisfy p2(ρ) = 0 and p1(ρ) 6= 0.

Corollary 4.1. The differential equation (4.1) has a nontrivial and
nonnegative solution if and only if the pair (p1, p2) is compatible in (α, ω).
Moreover, assuming that (p1, p2) is compatible in (α, ω), it follows that:

(a) any nonnegative solution is of the form |f | for some solution f ;
(b) the support S(f) = {x ∈ (α, ω) : f(x) 6= 0} of any nontrivial solu-

tion f of (4.1) is a union of one, two or three disjoint open intervals
of positive length, and the same is true for any nonnegative and non-
trivial solution;
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(c) the boundary points of S(f) = S(|f |) of any nontrivial solution f
of (4.1) are either roots of p2 or boundary points of (α, ω).

We now turn to the corresponding Rodrigues polynomials. It is well-
known that the (generalized) Pearson differential equation (4.1) produces
a sequence of polynomials {hk, k = 0, 1, 2, . . .}, defined by a Rodrigues-type
formula.

Theorem 4.1 (Hildebrandt, 1931, p. 401; Beale, 1941, pp. 99–100; Dia-
conis and Zabell, 1991, p. 295). Assume that a function f : (α, ω)→ R (not
necessarily positive or integrable) does not vanish identically in (α, ω) and
satisfies the differential equation (4.1) for some polynomials p1(x) = a0+a1x
and p2(x) = b0 + b1x + b2x

2, with |b0| + |b1| + |b2| > 0. Then the set
{x ∈ (α, ω) : f(x) 6= 0} contains some interval of positive length, and the
function

(4.2) hk(x) :=
1

f(x)

dk

dxk
[pk2(x)f(x)], x ∈ (α, ω) r {x : f(x) = 0},

k = 0, 1, 2, . . . ,

is a polynomial (more precisely, hk is the restriction to (α, ω)r{x : f(x)=0}
of a polynomial h̃k : R→ R) with

(4.3) deg(hk) ≤ k and lead(hk) =
2k∏

j=k+1

(a1 + jb2), k = 0, 1, 2, . . . ,

where lead(hk) := limx→∞ h̃k(x)/xk denotes the coefficient of xk in hk(x).

Hildebrandt (1931) actually showed that the relation p2f
′ = p1f im-

plies that Dk[pk2f ] = h̃kf , k = 0, 1, 2, . . . , where the polynomials h̃k (with

deg(h̃k) ≤ k) are defined inductively. Each polynomial h̃k can be viewed as
the value of a functional Rk that maps the (arbitrary) pair (p1, p2) to a real
polynomial of degree at most k. The form of this functional is

(p1, p2) 7→ Rk(p1, p2) := h̃k =
∑
r,i,j

Ca1,b2k;rij (p1)
r(p′2)

i(p2)
j ,

where the sum ranges over all integers r, i, j ≥ 0 with r + i + 2j ≤ k, and
the constant Ca1,b2k;rij depends only on k, r, i, j, p′1 = a1 and p′′2 = 2b2. Clearly,

given an arbitrary pair (p1, p2) with p2 6≡ 0, we can fix an interval (α, ω)
containing no roots of p2. With the help of a positive solution f of the
differential equation (4.1) one can determine hk(x), α < x < ω, using the

Rodrigues-type formula (4.2). Obviously, this hk extends uniquely to h̃k.

To give an idea about the nature of the polynomials in (4.2) we give the
first four:
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h0 = 1;

h1 = p1 + p′2 = (a1 + 2b2)x+ (a0 + b1);

h2 = p21 + 3p1p
′
2 + p′1p2 + 2p2p

′′
2 + 2(p′2)

2

= (a1 + 3b2)(a1 + 4b2)x
2 + 2(a0 + 2b1)(a1 + 3b2)x

+ (a0 + b1)(a0 + 2b1) + b0(a1 + 4b2);

h3 = p31 + 6p21p
′
2 + 3p1p

′
1p2 + 8p1p2p

′′
2 + 11p1(p

′
2)

2

+ 7p′1p2p
′
2 + 18p2p

′
2p
′′
2 + 6(p′2)

3

= (a1 + 4b2)(a1 + 5b2)(a1 + 6b2)x
3 + 3(a0 + 3b1)(a1 + 4b2)(a1 + 5b2)x

2

+ 3(a1 + 4b2)[(a0 + 2b1)(a0 + 3b1) + b0(a1 + 6b2)]x

+ a30 + 6a20b1 + a0[11b21 + b0(3a1 + 16b2)] + b1[6b
2
1 + b0(7a1 + 36b2)].

Provided that the solution f of (4.1) is a probability density in (α, ω),
the polynomials hk are candidates to form an orthogonal system for f .
Indeed, Hildebrandt (1931, pp. 404–405) showed that each hk satisfies a
specific second order differential equation in (α, ω). Using this differential
equation, Diaconis and Zabell (1991) proved that the hk are eigenfunctions
of a particular self-adjoint, second order Sturm–Liouville differential equa-
tion; thus, their orthogonality with respect to the density f is a conse-
quence of Sturm–Liouville theory. Specifically, it is shown in Diaconis and
Zabell (1991, Theorem 1, p. 295) that each polynomial hk satisfies the
equation

(4.4) [f(x)p2(x)h′k(x)]′ = k(a1 + (k + 1)b2)f(x)hk(x),

α < x < ω, k = 0, 1, 2, . . . .

An adaption of the Diaconis–Zabell approach to the present general case
reveals that the orthogonality is valid only when a number of regularity
conditions is satisfied. It will be proved here that these regularity conditions
give an equivalent definition of the integrated Pearson system. In fact, it
will be shown that the Rodrigues polynomials (4.2) are orthogonal with re-
spect to the corresponding density f if and only if it belongs to Integrated
Pearson Family, provided that we have chosen a correct p2 in the differen-
tial equation (4.1), i.e., provided that p2 = q/θ for some θ 6= 0. Note that
even for integrated Pearson densities, an incorrect choice of p2 results in
nonorthogonality of the Rodrigues polynomials; see, e.g., the polynomials
hk = P 2

k given in Diaconis and Zabell (1991, p. 297) for the Beta-type den-
sity f(x) = CxN , 0 < x < x0. In light of Proposition 3.2 (and Table 2.1),
a correct choice is p2 = x(x0 − x).

In order to discuss the orthogonality of hk we first show the following
lemma.
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Lemma 4.1. Let f be a density satisfying (4.1) and for fixed k,m ∈
{0, 1, . . .}, k 6= m, consider the polynomials hk and hm given by (4.2). As-
sume that

(a) f has a suitable number of moments so that
	ω
α |hk(t)hm(t)|f(t) dt

<∞;
(b) a1 + (k +m+ 1)b2 6= 0;
(c) limx↗ω{p2(x)f(x)[h′k(x)hm(x)− hk(x)h′m(x)]}

= limx↘α{p2(x)f(x)[h′k(x)hm(x)− hk(x)h′m(x)]}.
Then

ω�

α

hk(x)hm(x)f(x) dx = 0.

[We shall show that, under (a) and (b), both limits in (c) exist (in R),
but it is not guaranteed that they are equal. In fact, their difference is
(k −m)(a1 + (k +m+ 1)b2)×

	ω
α hk(t)hm(t)f(t) dt.]

Proof. Multiply (4.4) by hm, interchange the roles of k and m and sub-
tract the resulting equations to get

(4.5) λhk(t)hm(t)f(t)

= hm(t)[f(t)p2(t)h
′
k(t)]

′ − hk(t)[f(t)p2(t)h
′
m(t)]′, α < t < ω,

where λ = (k−m)(a1 + (k+m+ 1)b2) 6= 0, by (b). Now, it is easy to verify
the Lagrange identity

{[f(t)p2(t)h
′
k(t)]hm(t)− [f(t)p2(t)h

′
m(t)]hk(t)}′(4.6)

= hm(t)[f(t)p2(t)h
′
k(t)]

′ − hk(t)[f(t)p2(t)h
′
m(t)]′.

Integrating (4.5) over [x, y] ⊆ (α, ω), and in view of (4.6), we conclude that
y�

x

hk(t)hm(t)f(t) dt =
1

λ
p2(y)f(y)[h′k(y)hm(y)− hk(y)h′m(y)]

− 1

λ
p2(x)f(x)[h′k(x)hm(x)− hk(x)h′m(x)].

Taking limits as x↘ α and y ↗ ω and using (a) and (c) we obtain the de-
sired result. Working as in the proof of Proposition 3.3, it is easily seen that
both limits in (c) exist in R whenever (a) and (b) hold. In fact, under (a),

(4.7) (k −m)(a1 + (k +m+ 1)b2)

ω�

α

hk(t)hm(t)f(t) dt

= lim
y↗ω

p2(y)f(y)[h′k(y)hm(y)− hk(y)h′m(y)]

− lim
x↘α

p2(x)f(x)[h′k(x)hm(x)− hk(x)h′m(x)].
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The following result is an immediate consequence of Lemma 4.1.

Theorem 4.2. Let f be a density in (α, ω) which satisfies (4.1). For
some (fixed) n ∈ {1, 2, . . .} consider the set Hn := {h0, h1, . . . , hn}, formed
by the first n + 1 polynomials in (4.2). Then Hn is an orthogonal system
(containing only nonzero elements) with respect to f if and only if the fol-
lowing conditions are satisfied:

(i) The density f has 2n− 1 finite moments;
(ii)

∏2n
j=2(a1 + jb2) 6= 0;

(iii) limx↗ω x
jp2(x)f(x) = limx↘α x

jp2(x)f(x) for each j ∈ {0, 1, . . . ,
2n− 2}.

Proof. Let X ∼ f and assume first that (i)–(iii) are satisfied. Condition
(ii) shows, in view of (4.3), that deg(hk) = k for all k ∈ {0, 1, . . . , n}. Fix
k,m ∈ {0, 1, . . . , n} with m 6= k. Since E |X|2n−1 < ∞ by (i), it follows
that E |hk(X)hm(X)| < ∞, i.e. the integral

	ω
α hk(x)hm(x)f(x) dx is (well-

defined and) finite. Finally, since h′khm − hkh′m is a polynomial of degree
k+m−1 (observe that lead(h′khm−hkh′m) = (k−m) lead(hk) lead(hm) 6= 0),
(iii) ensures that assumption (c) of Lemma 4.1 is also fulfilled, and hence

ω�

α

hk(x)hm(x)f(x) dx = 0.

Conversely, assume that the set Hn = {h0, h1, . . . , hn} is orthogonal
with respect to f . That is, E |hk(X)hm(X)| =

	ω
α |hk(x)hm(x)|f(x) dx < ∞

for all k,m ∈ {0, 1, . . . , n} with m 6= k, and
	ω
α hk(x)hm(x)f(x) dx = 0.

It follows that deg(hk) = k for all k = 1, . . . , n. To see this, let k be the
smallest integer in {1, . . . , n} for which lead(hk) = 0. Then we can write

hk(x) =
∑k−1

j=0 cjhj(x) for some constants cj , and this implies that

h2k(x)f(x) =
∣∣∣k−1∑
j=0

cjhj(x)hk(x)
∣∣∣f(x) ≤

k−1∑
j=0

|cj | |hj(x)hk(x)|f(x).

Subsequently, the inequality

ω�

α

h2k(x)f(x) dx ≤
k−1∑
j=0

|cj |
ω�

α

|hk(x)hj(x)|f(x) dx <∞

shows that hk ∈ L2
f (α, ω), and finally

ω�

α

h2k(x)f(x) dx =

k−1∑
j=0

cj

ω�

α

hk(x)hj(x)f(x) dx = 0,

by the orthogonality assumption. Since hk is continuous (a polynomial) and
f is positive in a subinterval of (α, ω) of positive length, it follows that
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hk ≡ 0, which contradicts the assumption that Hn contains only nonzero
elements. Therefore,

∏n
k=0 lead(hk) 6= 0, and (4.3) yields (ii). Obviously,

E |hn(X)hn−1(X)| < ∞ is equivalent to E |X|2n−1 < ∞ and (i) follows.
Since gk,m = h′khm − hkh′m is a polynomial of degree exactly k +m− 1 (for
k 6= m), one can form a linearly independent set

{g0, g1, . . . , g2n−2} ⊆ {gk,m : k,m = 0, 1, . . . , n, k 6= m}
with deg(gj) = j for each j. Applying (4.7) inductively to g0, g1, . . . , g2n−2,
we get (iii).

Example 4.1. It may happen that hk ≡ 0 for all k ≥ 1. For instance
consider the density f(x) = C/x, 1 < x < 2. This density satisfies (4.1) with

(p1, p2) = (−1, x). Although
	2
1 hkhmf = 0 for m 6= k, the trivial system

Hn = {1, 0, . . . , 0} is not considered as orthogonal in this case. Condition
(ii) of Theorem 4.2 eliminates such trivial cases.

Example 4.2. The density f(x) = 3
2x

2, −1 < x < 1, satisfies (4.1)
in (α, ω) = (−1, 1). The choice (p1, p2) = (2, x) leads to constant poly-
nomials, hk ≡ (k + 2)!/2. A set {hk, hm} can never be orthogonal; this
shows that the condition (b) of Lemma 4.1 is necessary. On the other
hand, the choice (p1, p2) = (2x, x2) yields the polynomials hk = ckx

k with
ck = (2k + 2)!/(k + 2)!. The limits in Lemma 4.1(c) are 3

2ckcm(k − m)

and 3
2ckcm(k −m)(−1)k+m+1. They are equal if and only if k + m is odd,

in which case hk and hm are, obviously, orthogonal. Any set H containing
{hk, hm, hs} (k 6= m 6= s 6= k) cannot be an orthogonal set, because at least
one of k +m, k + s, m+ s is even.

Remark 4.1. While the density f of Example 4.2 satisfies the (gener-
alized) Pearson differential equation (4.1) and has finite moments of any
order, the system {h0, h1, h2} fails to be orthogonal. The same is true for
the Pearson density

f(x) =
C√

1 + x2
, −∞ < α < x < ω <∞.

Now (p1, p2) = (−x, 1 + x2) and {h0, h1, h2} = {1, x, 3 + 6x2}, so that
h0h2 ≥ 3 and the system {h0, h1, h2} cannot be orthogonal (with respect to
any measure). Does this happen because these f lie outside the Integrated
Pearson Family? Therefore, it is natural to pose the following question:

Suppose that a given density f has finite moments up to
order 2n− 1 (for some fixed n ≥ 2) and satisfies (4.1). If
the system {h0, h1, . . . , hn} of the first n + 1 Rodrigues
polynomials is orthogonal with respect to f , does this
imply that f belongs to the Integrated Pearson Family?

The answer is ‘yes’. In particular, the following (stronger) result holds.
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Theorem 4.3. Assume that a differentiable density f with S(f) = {x :
f(x) > 0} ⊆ (α, ω) has finite third moment and satisfies (4.1). Let h0 ≡ 1,
h1, h2 be the first three Rodrigues polynomials given by (4.2). Consider the
system H2 = {h0, h1, h2} and assume that H2 is nontrivial, i.e., h1 6≡ 0 and
h2 6≡ 0. If H2 is orthogonal with respect to f , then there exists a subinterval
(α′, ω′) ⊆ (α, ω), a quadratic polynomial

q(x) = δx2 + βx+ γ with {x : q(x) > 0} = (α′, ω′),

and µ ∈ (α′, ω′) such that f ∼ IP(µ; q) ≡ IP(µ; δ, β, γ). Moreover, there
exists a constant θ 6= 0 such that q(x) = θp2(x), x ∈ R.

Proof. In view of Theorem 4.2 and the fact that f has finite third mo-
ment, the orthogonality assumption is equivalent to

(4.8) (a1 + 2b2)(a1 + 3b2)(a1 + 4b2) 6= 0

and

(4.9) Lj(α) = Lj(ω), j = 0, 1, 2,

where

Lj(α) := lim
x↘α

xjp2(x)f(x), Lj(ω) := lim
x↗ω

xjp2(x)f(x).

To simplify, we can apply an affine transformation x 7→ λx+c (λ 6= 0, c ∈ R)

to f . By considering f̃(x) = 1
|λ|f

(
x−c
λ

)
in place of f it is easily seen that

(4.1) is satisfied in the translated interval (α̃, ω̃) for p̃1(x) = λp1
(
x−c
λ

)
and

p̃2(x) = λ2p2
(
x−c
λ

)
; since ã1 = a1 and b̃2 = b2, (4.8) remains unchanged.

Obviously f has finite third moment if and only if f̃ does. Moreover, it is
easily seen from (4.2) that the translated polynomials h̃k are related to hk
by h̃k(x) = λkhk

(
x−c
λ

)
; thus, lead(h̃k) = lead(hk), and in particular the

system H2 is nontrivial if and only if the same is true for H̃2 := {h̃0, h̃1, h̃2}.
The orthogonality of H̃2 with respect to f̃ is equivalent to the orthogonality
of H2 with respect to f . Indeed,

ω̃�

α̃

h̃k(x)h̃m(x)f̃(x) dx = λk+m
ω�

α

hk(x)hm(x)f(x) dx.

It remains to verify that (4.9) are equivalent to L̃j(α̃) = L̃j(ω̃) (j = 0, 1, 2),

where L̃j(α̃) := limx↘α̃ x
j p̃2(x)f̃(x) and L̃j(ω̃) := limx↗ω̃ x

j p̃2(x)f̃(x). To
this end, it suffices to observe the relations

j∑
i=0

(
j

i

)
λi+1cj−iLi(α) =

{
L̃j(α̃) if λ > 0,

−L̃j(ω̃) if λ < 0,
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j∑
i=0

(
j

i

)
λi+1cj−iLi(ω) =

{
L̃j(ω̃) if λ > 0,

−L̃j(α̃) if λ < 0.

Thus, it is easily seen that Lj(α) = Lj(ω) (j = 0, 1, 2) if and only if L̃j(α̃) =

L̃j(ω̃) (j = 0, 1, 2).
It is clear from the above considerations that, in view of Proposition

2.1(vi), we can apply any affine transformation, either to the polynomial p2
or to the density f and its support (α, ω). Under such transformations, the
conclusions, as well as the assumptions of our theorem, remain unchanged.

The rest of the proof is easy but tedious since we just have to ex-
amine all possible nonequivalent cases by solving the differential equation
(4.1) in each case. The details are given in the arXiv version of the paper,
arXiv:1205.2903v2, pp. 26–31.

5. Orthogonality of the Rodrigues-type polynomials and of
their derivatives within the Integrated Pearson Family. Assume
that f is the density of a random variable X ∼ IP(µ; q) ≡ IP(µ; δ, β, γ) with
support (α, ω). From Theorem 4.1 it follows that

(5.1) Pk(x) :=
(−1)k

f(x)

dk

dxk
[qk(x)f(x)], α < x < ω, k = 0, 1, 2, . . . ,

is a polynomial with

(5.2)

deg(Pk) ≤ k and lead(Pk) =
2k−2∏
j=k−1

(1− jδ) := ck(δ), k = 0, 1, 2, . . . .

Obviously c0(δ) := 1, i.e. an empty product equals one.
The polynomials Pk are special cases of the polynomials hk defined by

(4.2); in fact, Pk = (−1)khk. They are particularly important because under
natural moment conditions they are, indeed, orthogonal with respect to the
density f ; see, e.g., Diaconis and Zabell (1991, pp. 295–296); Johnson (1993);
Papathanasiou (1995); Afendras et al. (2011). Moreover, the polynomials
Pk and their derivatives satisfy a number of useful properties that will be
reviewed here. The first three are

P0(x) = 1,

P1(x) = x− µ,
P2(x) = (1− δ)(1− 2δ)x2 − 2(1− δ)(µ+ β)x+ µ2 + βµ− (1− 2δ)γ.

An alternative simple proof of the orthogonality of the polynomials de-
fined by (5.1) can be derived by means of the following covariance identity,
which extends Stein’s identity for the Normal distribution and has indepen-
dent interest in itself.

http://arxiv.org/abs/1205.2903v2
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Theorem 5.1 (Afendras et al., 2011, pp. 515–516). Let X∼ IP(µ; δ, β, γ)
≡ IP(µ; q) with density f and support (α, ω). Assume that X has 2k finite
moments for some fixed k ∈ {1, 2, . . .}. Let g : (α, ω) → R be any function
such that g ∈ Ck−1(α, ω), and assume that the function

g(k−1)(x) :=
dk−1

dxk−1
g(x)

is absolutely continuous in (α, ω) with a.s. derivative g(k). If E qk(X)|g(k)(X)|
<∞ then E |Pk(X)g(X)| <∞ and the following covariance identity holds:

(5.3) EPk(X)g(X) = E qk(X)g(k)(X).

Here, the claim that h : (α, ω)→ R is an absolutely continuous function
with a.s. derivative h′ means that there exists a Borel measurable function
h′ : (α, ω)→ R such that h′ is integrable in every finite subinterval [x, y] of
(α, ω) and

y�

x

h′(t) dt = h(y)− h(x) for all [x, y] ⊆ (α, ω).

Corollary 5.1 (Afendras et al., 2011, p. 516). Let X ∼ IP(µ; δ, β, γ) ≡
IP(µ; q). Assume that for some n ∈ {1, 2, . . .}, E |X|2n <∞, or equivalently
δ < 1/(2n− 1). Then

E[Pk(X)Pm(X)] = δk,mk!E qk(X)
2k−2∏
j=k−1

(1− jδ)(5.4)

= δk,mk!ck(δ)E qk(X), k,m ∈ {0, 1, . . . , n},
where δk,m is Kronecker’s delta.

It should be noted that the orthogonality of Pk and Pm, k 6= m, k,m ∈
{0, 1, . . . , n}, remains valid even if δ ∈

[
1

2n−1 ,
1

2n−2
)
; in this case, however,

Pn 6∈ L2(R, X) since lead(Pn) > 0 and E |X|2n = ∞. On the other hand,
in view of Corollary 2.2, the assumption E |X|2n < ∞ is equivalent to the
condition δ < 1/(2n− 1). Therefore, for each k ∈ {0, 1, . . . , n} and for all
j ∈ {k − 1, . . . , 2k − 2}, we have 1 − jδ > 0, since {k − 1, . . . , 2k − 2} ⊆
{0, 1, . . . , 2n − 2}. Thus, ck(δ) > 0. Since P[q(X) > 0] = 1, deg(q) ≤ 2 and
E |X|2n < ∞, we conclude that 0 < E qk(X) < ∞ for all k ∈ {0, 1, . . . , n}.
It follows that {φ0, φ1, . . . , φn} ⊂ L2(R, X), where

φk(x) :=
Pk(x)

(k!ck(δ)E qk(X))1/2
(5.5)

=

(−1)k
f(x)

dk

dxk
[qk(x)f(x)]

(k!E qk(X)
∏2k−2
j=k−1(1− jδ))1/2

, k = 0, 1, . . . , n,
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is an orthonormal basis of all polynomials with degree at most n. Moreover,
(5.2) shows that the leading coefficient is given by

lead(φk) := dk(µ; q) =

(∏2k−2
j=k−1(1− jδ)
k!E qk(X)

)1/2

(5.6)

=

(
ck(δ)

k!E qk(X)

)1/2

> 0, k = 0, 1, . . . , n.

Let X be any random variable with E |X|2n < ∞ and assume that the
support of X is not concentrated on a finite subset of R. It is well known
that we can always construct an orthonormal set of real polynomials up
to order n. This construction is based on the first 2n moments of X, and
is a by-product of the Gram–Schmidt orthonormalization process, applied
to the linearly independent system {1, x, x2, . . . , xn} ⊂ L2(R, X). The or-
thonormal polynomials are then uniquely defined, apart from the fact that
we can multiply each polynomial by ±1. It follows that the standardized
Rodrigues polynomials φk of (5.5) are the unique orthonormal polynomials
that can be defined for a density f ∼ IP(µ; δ, β, γ), provided lead(φk) > 0.
Therefore, it is useful to express the L2-norm of each Pk in terms of the
parameters δ, β, γ and µ and, in view of (5.4) and (5.5), it remains to ob-
tain an expression for E qk(X). To this end, we first recall a definition from
Papadatos and Papathanasiou (2001); cf. Goldstein and Reinert (1997).

Definition 5.1. Let X ∼ f and assume that X has support J(X) =
(α, ω) and belongs to the Integrated Pearson Family, that is, f ∼ IP(µ; q) ≡
IP(µ; δ, β, γ). Furthermore, assume that EX2 < ∞ (i.e. δ < 1). Then we
define X∗ to be the random variable with density f∗ given by

f∗(x) :=
q(x)f(x)

E q(X)
, α < x < ω.

Since P1 = x−µ, setting k = 1 in the covariance identity (5.3), we get (see
Cacoullos and Papathanasiou, 1989; Papadatos and Papathanasiou, 2001)

(5.7) E[(X − µ)g(X)] = Cov[X, g(X)] = E[q(X)g′(X)].

This identity is valid for all absolutely continuous functions g : (α, ω) → R
with a.s. derivative g′ such that E q(X)|g′(X)| <∞. Thus, applying (5.7) to
the identity function g(x) = x, it is easily seen that E q(X) = VarX = σ2,
so that (cf. Goldstein and Reinert, 1997)

X∗ ∼ f∗(x) =
1

σ2
q(x)f(x), α < x < ω.

The following lemma shows that X∗ is integrated Pearson whenever X is
integrated Pearson and has finite third moment.
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Lemma 5.1. If X ∼ IP(µ; δ, β, γ) ≡ IP(µ; q) with support J(X) = (α, ω)
and E |X|3 < ∞ then X∗ ∼ IP(µ∗; q∗) with the same support J(X∗) =
J(X) = (α, ω),

µ∗ =
µ+ β

1− 2δ
and q∗(x) =

q(x)

1− 2δ
, α < x < ω.

Proof. See arXiv:1205.2903v2, pp. 33–35.

Theorem 5.2. Let X be a random variable with density f ∼ IP(µ; q) ≡
IP(µ; δ, β, γ), supported in J(X) = (α, ω). Furthermore, assume that
E |X|2n+1 < ∞ (i.e. δ < 1/(2n)) for some fixed n ∈ {0, 1, . . .}. Define
the random variable Xk with density fk given by

(5.8) fk(x) :=
qk(x)f(x)

E qk(X)
, α < x < ω, k = 0, 1, . . . , n.

Then, fk ∼ IP(µk; qk) with (the same) support J(Xk) = J(X) = (α, ω),

µk =
µ+ kβ

1− 2kδ
and qk(x) =

q(x)

1− 2kδ
, α < x < ω, k = 0, 1, . . . , n.

Moreover, X0 = X, X1 = X∗0 = X∗, X2 = X∗1 and, in general, Xk = X∗k−1
for k ∈ {1, . . . , n}.

Proof. For k = 0 the assertion is obvious, while for k = 1 (and thus,
n ≥ 1) it follows from Lemma 5.1 since E |X|3 < ∞ and, by definition,
f1 = f∗, µ1 = µ∗ and q1 = q∗. Assume now that the assertion has been
proved for some k ∈ {1, . . . , n− 1}. Then

E |Xk|3 =
E qk(X)|X|3

E qk(X)
<∞,

because E |X|2k+3 < ∞ since k ≤ n − 1. Therefore, we can apply Lemma
5.1 to the random variable Xk ∼ IP(µk; qk) ≡ IP(µk; δk, βk, γk), obtaining
X∗k ∼ IP(µ∗k; q

∗
k) ≡ IP(µ∗k; δ

∗
k, β
∗
k, γ
∗
k) where

µ∗k =
µk + βk
1− 2δk

=

µ+kβ
1−2kδ + β

1−2kδ

1− 2 δ
1−2kδ

=
µ+ (k + 1)β

1− 2(k + 1)δ
= µk+1

and

q∗k(x) =
qk(x)

1− 2δk
=

q(x)
1−2kδ

1− 2 δ
1−2kδ

=
q(x)

1− 2(k + 1)δ
= qk+1(x), α < x < ω.

http://arxiv.org/abs/1205.2903v2
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On the other hand, since E q(Xk) = E qk+1(X)
E qk(X)

and X∗k ∼ f∗k we get

f∗k (x) =
qk(x)fk(x)

E qk(Xk)
=

q(x)
1−2kδ

qk(x)f(x)
E qk(X)

E q(Xk)
1−2kδ

=

qk+1(x)f(x)
E qk(X)

E qk+1(X)
E qk(X)

=
qk+1(x)f(x)

E qk+1(X)
= fk+1(x), α < x < ω,

that is, X∗k = Xk+1 ∼ fk+1 ∼ IP(µk+1; qk+1), and the proof is complete.

Corollary 5.2. If X ∼ IP(µ; q) and E |X|2n+2 < ∞ (equivalently, if
δ < 1/(2n+ 1)), then for each k ∈ {0, 1, . . . , n},

(5.9) σ2k := VarXk = E qk(Xk) =
q
( µ+kβ
1−2kδ

)
1− (2k + 1)δ

,

where qk(x) = δkx
2 +βkx+γk and Xk are as in Theorem 5.2. In particular,

if δ < 1, then

(5.10) σ2 := VarX = E q(X) =
q(µ)

1− δ
.

Proof. First observe that for any k ∈ {0, 1, . . . , n}, E |Xk|2 < ∞ (and
thus, E qk(Xk) < ∞) since δk = δ/(1− 2kδ) < 1 because δ < 1/(2n+ 1)
≤ 1/(2k + 1). Note that it suffices to show only (5.10). Indeed, since Xk ∼
IP(µk; qk) it follows from (5.7) (applied to the random variable Xk and to
the function g(x) = x) that σ2k = VarXk = E qk(Xk). On the other hand,
if it is shown that VarX = q(µ)/(1− δ) for any X ∼ IP(µ; q) with δ < 1
then, by (5.10) applied to Xk, we get

VarXk =
qk(µk)

1− δk
.

Since

µk =
µ+ kβ

1− 2kδ
, qk(x) =

q(x)

1− 2kδ
and δk =

δ

1− 2kδ
< 1,

(5.10) yields the identity (5.9) as follows:

E qk(Xk) = VarXk =
qk(µk)

1− δk
=

q(µk)
1−2kδ

1− δ
1−2kδ

=
q(µk)

1− (2k + 1)δ

=
q
( µ+kβ
1−2kδ

)
1− (2k + 1)δ

.

It remains to verify that VarX = σ2 = q(µ)/(1− δ) whenever X ∼ IP(µ; q)
and δ < 1. To this end, write

q(X) = q(µ) + q′(µ)(X − µ) + δ(X − µ)2

and take expectations to get σ2 = q(µ)+δσ2, which is equivalent to (5.10).
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Corollary 5.3. If X ∼ IP(µ; q) and E |X|2n <∞ for some n ≥ 1 (i.e.
δ < 1/(2n− 1)), then for each k ∈ {1, . . . , n},

(5.11) Ak = Ak(µ; q) := E qk(X) =

∏k−1
j=0(1− 2jδ)∏k−1

j=0(1− (2j+ 1)δ)

k−1∏
j=0

q

(
µ+ jβ

1− 2jδ

)
.

Proof. Observe that

(1− 2jδ)E qj(Xj) = E q(Xj) =
Aj+1

Aj
, j = 0, 1, . . . , n− 1,

where A0 := 1, q0 = q, X0 = X. Multiplying these relations for j =
0, 1, . . . , k − 1 and using (5.9) we get (5.11).

Remark 5.1. (a) It is important to note that the identity (5.3) en-
ables a convenient calculation of the Fourier coefficients of any smooth
enough function g with Var g(X) < ∞ (i.e., g ∈ L2(R, X)). Indeed, if
X ∼ IP(µ; δ, β, γ) ≡ IP(µ; q) and E |X|2n <∞, then the Fourier coefficients
αk = Eφk(X)g(X) are given by α0 = E g(X) and

αk =
E qk(X)g(k)(X)

(k!ck(δ)Ak(µ; q))1/2
, k = 1, . . . , n,

where ck(δ) and Ak(µ; q) are given by (5.2) and (5.11), respectively, provided
that g is smooth enough so that E qk(X)|g(k)(X)| <∞ for k ∈ {1, 2, . . . , n}.

(b) Obviously, if X ∼ IP(µ; δ, β, γ) and δ ≤ 0 (i.e. if X is of Normal,
Gamma or Beta-type) then E |X|n < ∞ for all n. Moreover, since there
exists an ε > 0 such that E etX < ∞ for |t| < ε, it follows that the corre-
sponding polynomials {φk}∞k=0, given by (5.5), form a complete orthonormal
system in L2(R;X); see, e.g., Riesz (1923); Berg and Christensen (1981);
Afendras et al. (2011). Therefore, for smooth enough g with Var g(X) <∞
and E qk(X)|g(k)(X)| < ∞ for all k ≥ 1, the Fourier coefficients are given
by

αk = Eφk(X)g(X) =
E qk(X)g(k)(X)

(k!ck(δ)Ak(µ; q))1/2
, k = 0, 1, 2, . . . ,

and the variance of g can be calculated by Parseval’s identity (see Afendras
et al., 2011, Theorem 5.1, pp. 522–523):

(5.12) Var g(X) =
∞∑
k=1

E2 qk(X)g(k)(X)

k!ck(δ)Ak(µ; q)
.

Furthermore, the completeness of the Rodrigues polynomials (when
X ∼ IP(µ; δ, β, γ) and δ ≤ 0) enables one to write (Afendras et al., 2011,



Integrated Pearson family and Rodrigues polynomials 261

Theorem 5.2, p. 523)

(5.13) Cov[g1(X), g2(X)] =

∞∑
k=1

E[qk(X)g
(k)
1 (X)]E[qk(X)g

(k)
2 (X)]

k!ck(δ)Ak(µ; q)
,

provided that for i = 1, 2, gi ∈ L2(R, X) and E qk(X)|g(k)i (X)| < ∞ for all
k ≥ 1. The important thing in (5.12) and (5.13) is that we do not need
explicit forms for the polynomials; in view of (5.2) and (5.11), everything is
calculated from the four numbers (µ; δ, β, γ) and the derivatives of g or gi
(i = 1, 2). In particular, for the first three types of Table 2.1, (5.12) yields
the formulae

Var g(X) =

∞∑
k=1

σ2k

k!
E2 g(k)(X) if X ∼ N(µ, σ2);

Var g(X) =

∞∑
k=1

Γ (a)

k!Γ (a+ k)
E2Xkg(k)(X) if X ∼ Γ (a, λ);

Var g(X)

=

∞∑
k=1

(a+ b+ 2k − 1)Γ (a)Γ (b)Γ (a+ b+ k − 1)

k!Γ (a+ b)Γ (a+ k)Γ (b+ k)
E2Xk(1−X)kg(k)(X)

if X ∼ B(a, b).

Turn now to the orthogonal polynomial system {Pk : k = 0, 1, . . . , n},
of (5.1), obtained for a random variable X ∼ IP(µ; δ, β, γ) with support
J(X) = (α, ω) and E |X|2n <∞ for some n ≥ 2, i.e. with δ < 1/(2n− 1). By
Lemma 5.1 the random variable X∗ = X1 ∼ IP(µ1; q1) ≡ IP(µ1; δ1, β1, γ1)
with

µ1 =
µ+ β

1− 2δ
and q1(x) =

q(x)

1− 2δ

is supported by (α, ω). Since δ < 1/(2n− 1) is equivalent to δ1 = δ/(1− 2δ)
< 1/(2n− 3), we conclude that E |X1|2n−2 <∞, in particular VarX1 <∞.
Therefore, we can define the orthogonal polynomial system {Pk,1 : k =
0, 1, . . . , n − 1} by applying (5.1) to the density f1 and to the quadratic
polynomial q1 of X1, that is (recall that f1(x) = q(x)f(x)/E q(X)),

(5.14) Pk,1(x) :=
(−1)k

f1(x)

dk

dxk
[qk1 (x)f1(x)]

=
(−1)k

(1− 2δ)kq(x)f(x)

dk

dxk
[qk+1(x)f(x)],

α < x < ω, k = 0, 1, . . . , n− 1.

Clearly the system {Pk,1 : k = 0, 1, . . . , n − 1} is orthogonal with respect
to X1, but the important observation is that we can also obtain it by differ-
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entiating the polynomials Pk (which are orthogonal with respect to X). In
fact, the following lemma holds.

Lemma 5.2. If X ∼ IP(µ; q) and E |X|2n <∞ for some n ≥ 1, then the
polynomials Pk of (5.1) and Pk,1 of (5.14) are related through

(5.15) P ′k+1(x) = Ck(δ)Pk,1(x), k = 0, 1, . . . , n− 1,

where Ck(δ) := (k + 1)(1− kδ)(1− 2δ)k.

Proof. First we show that the polynomials P ′k+1 are orthogonal with
respect to X1. Indeed, deg(P ′k+1) = k (for k = 0, 1, . . . , n − 1) and for
k,m ∈ {0, 1, . . . , n− 1} with k < m, we have

EP ′k+1(X1)P
′
m+1(X1) =

1

σ2

ω�

α

P ′m+1(x)P ′k+1(x)q(x)f(x) dx

=
1

σ2

{
Pm+1(x)P ′k+1(x)q(x)f(x)

∣∣ω
α
−
ω�

α

Pm+1(x)[P ′k+1(x)q(x)f(x)]′ dx
}
.

Now observe that, in view of Lemma 2.1,

Pm+1(x)P ′k+1(x)q(x)f(x)
∣∣ω
α

= 0,

because Pm+1P
′
k+1 is a polynomial of degree m + k + 1 ≤ 2n − 2 and

E |X|2n <∞. Moreover,

[P ′k+1(x)q(x)f(x)]′ = P ′′k+1(x)q(x)f(x)+P ′k+1(x)(µ−x)f(x) = Hk+1(x)f(x),

where Hk+1(x) = P ′′k+1(x)q(x) + (µ − x)P ′k+1(x) is a polynomial in x of
degree at most k + 1 < m+ 1. Therefore,

EP ′k+1(X1)P
′
m+1(X1) = − 1

σ2
EPm+1(X)Hk+1(X) = 0,

since Pm+1 is orthogonal (with respect to X) to any polynomial of degree
lower than m+1. Note that the same orthogonality conditions are also valid
for {Pk,1}n−1k=0 , that is,

EPk,1(X1)Pm,1(X1) = 0 for k,m ∈ {0, 1, . . . , n− 1} with k 6= m.

Since deg(P ′k+1) = deg(Pk,1) = k, k = 0, 1, . . . , n − 1, the uniqueness of
the orthogonal polynomial system implies that there exist constants Ck 6= 0
such that P ′k+1(x) = CkPk,1(x). Equating the leading coefficients, we obtain

Ck =
lead(P ′k+1)

lead(Pk,1)
=

(k + 1) lead(Pk+1)

lead(Pk,1)
=

(k + 1)ck+1(δ)

ck(δ1)

= (k + 1)(1− kδ)(1− 2δ)k.

Remark 5.2. We note that the recurrence (5.15) is contained in Beale
(1937, eq. (2), p. 207). Actually, Beale’s recurrence (which is stated in a much
different notation) is valid for the polynomials hk of (4.2) and for all k ≥ 0.
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Hence, orthogonality is not required. For more details see arXiv:1205.2903v2,
pp. 39–40.

Applying Lemma 5.2 inductively it is easy to verify the following result.

Theorem 5.3. If X ∼ IP(µ; δ, β, γ) with support J(X) = (α, ω) and
E |X|2n <∞ for some n ≥ 1 (i.e. δ < 1

2n−1) then

(5.16) P
(m)
k+m(x) = C

(m)
k (δ)Pk,m(x), m = 1, . . . , n, k = 0, 1, . . . , n−m,

where

C
(m)
k (δ) :=

(k +m)!

k!
(1− 2mδ)k

k+2m−2∏
j=k+m−1

(1− jδ).

Here, Pk are the polynomials given by (5.1) associated with f , and Pk,m
are the corresponding Rodrigues polynomials of (5.1), associated with the

density fm(x) = qm(x)f(x)
E qm(X) , α < x < ω, of the random variable Xm ∼

IP(µ; δ, β, γ)(µm; qm) of Theorem 5.2, i.e.,

Pk,m(x) :=
(−1)k

fm(x)

dk

dxk
[qkm(x)fm(x)]

=
(−1)k

(1− 2mδ)kqm(x)f(x)

dk

dxk
[qk+m(x)f(x)],

α < x < ω, k = 0, 1, . . . , n−m.

Remark 5.3. (a) An alternative calculation of the constantCk=C
(m)
k (δ)

can be given as follows. Lemma 5.2 guarantees that P
(m)
k+m(x) = CkPk,m(x)

for some Ck. Arguing as in the proof of Lemma 5.2 we see that Ck can be
derived from the corresponding leading coefficients.

(b) We note that the recurrence (5.16) is also contained in Beale (1937,
eq. (4), p. 207), although it is stated in a quite different notation there.
Specifically, it can be shown that (5.16) holds for all k ∈ {0, 1, . . .}; see
arXiv:1205.2903v2, pp. 40–42, for a more detailed discussion.

(c) Krall (1936, 1941) characterizes the Pearson system by the fact that
the derivatives of orthogonal polynomials are orthogonal polynomials.

We can now adapt the preceding results to the corresponding orthonor-
mal polynomial systems. Notice that the following corollary is our main
result regarding Fourier expansions within the Pearson family and, to our
knowledge, it is not stated elsewhere in the present simple, unified, explicit
form.

Corollary 5.4. Let X ∼ IP(µ; δ, β, γ) ≡ IP(µ; q) with support (α, ω),
and assume that E |X|2n < ∞ for some fixed n ≥ 1 (equivalently, δ <
1/(2n− 1)). Let {φk}nk=0 be the orthonormal polynomials associated with X

http://arxiv.org/abs/1205.2903v2
http://arxiv.org/abs/1205.2903v2
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(with lead(φk) > 0 for all k; see (5.5), (5.6)), fix m ∈ {0, 1, . . . , n},
and consider the corresponding orthonormal polynomials {φk,m}n−mk=0 , with
lead(φk,m) > 0, associated with

Xm ∼ fm(x) =
qm(x)f(x)

E qm(X)
, α < x < ω.

Then there exist constants ν
(m)
k = ν

(m)
k (µ; q) > 0 such that

φ
(m)
k+m(x) = ν

(m)
k φk,m(x), α < x < ω, k = 0, 1, . . . , n−m.

Specifically, the constants ν
(m)
k have the explicit form

ν
(m)
k = ν

(m)
k (µ; q) :=

{ (k+m)!
k!

∏k+2m−2
j=k+m−1(1− jδ)
Am(µ; q)

}1/2

,

where Am(µ; q) = E qm(X) is given by (5.11). In particular, setting σ2 =
VarX we have

φ′k+1(x) =

√
(k + 1)(1− kδ)

σ
φk,1(x)

=

√
(k + 1)(1− δ)(1− kδ)

q(µ)
φk,1(x), k = 0, 1, . . . , n− 1.

Proof. Observe that

φk+m(x) =
Pk+m(x)√

E |Pk+m(X)|2
and φk,m(x) =

Pk,m(x)√
E |Pk,m(Xm)|2

,

α < x < ω,

where Pk+m and Pk,m are as in Theorem 5.3. Since

P
(m)
k+m(x) = C

(m)
k (δ)Pk,m(x), α < x < ω,

we conclude that there exists a constant ν
(m)
k such that φ

(m)
k+m(x) =

ν
(m)
k φk,m(x). Hence,

ν
(m)
k =

lead(φ
(m)
k+m)

lead(φk,m)
=

(k+m)!
k! lead(φk+m)

lead(φk,m)
=

(k+m)!
k!

lead(Pk+m)√
E |Pk+m(X)|2

lead(Pk,m)√
E |Pk,m(Xm)|2

=
(k +m)! lead(Pk+m)

√
E |Pk,m(Xm)|2

k! lead(Pk,m)
√
E |Pk+m(X)|2

=
(k +m)!ck+m(δ)

√
E |Pk,m(Xm)|2

k!ck(δm)
√

E |Pk+m(X)|2
,
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where, by (5.2), ck+m(δ) =
∏2k+2m−2
j=k+m−1(1− jδ) and

ck(δm) =

2k−2∏
j=k−1

(1− jδm) =

2k−2∏
j=k−1

(
1− j δ

1− 2mδ

)

=

∏2k−2
j=k−1(1− (2m+ j)δ)

(1− 2mδ)k
=

∏2k+2m−2
j=k+2m−1(1− jδ)

(1− 2mδ)k
.

From (5.4) we see that E |Pk+m(X)|2 = (k +m)!ck+m(δ)E qk+m(X) and

E |Pk,m(Xm)|2 = k!ck(δm)E qkm(Xm)

= k!ck(δm)
E qkm(X)qm(X)

E qm(X)
=
k!ck(δm)E qk+m(X)

(1− 2mδ)k E qm(X)
.

Combining the preceding relations we obtain

ν
(m)
k =

(k +m)!ck+m(δ)
√
E |Pk,m(Xm)|2

k!ck(δm)
√

E |Pk+m(X)|2

=
(k +m)!ck+m(δ)

√
k!ck(δm)E qk+m(X)
(1−2mδ)k E qm(X)

k!ck(δm)
√

(k +m)!ck+m(δ)E qk+m(X)

=
(k +m)!ck+m(δ)

√
k!ck(δm)E qk+m(X)

k!ck(δm)
√

(k +m)!ck+m(δ)E qk+m(X)(1− 2mδ)k E qm(X)

=

√
(k +m)!ck+m(δ)√

k!ck(δm)(1− 2mδ)k E qm(X)

=

√
(k +m)!

k!E qm(X)

√
ck+m(δ)

ck(δm)(1− 2mδ)k

=

√
(k +m)!

k!E qm(X)

√√√√√ ∏2k+2m−2
j=k+m−1(1− jδ)∏2k+2m−2

j=k+2m−1(1−jδ)
(1−2mδ)k (1− 2mδ)k

=

√√√√ (k +m)!

k!E qm(X)

k+2m−2∏
j=k+m−1

(1− jδ),

and the proof is complete.
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