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Summary. We present a q-analogue for the fact that the nth Stern polynomial Bn(t) in
the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator
of a continued fraction of n terms. Moreover, we give a combinatorial interpretation for
our q-analogue.

1. Introduction. The diatomic sequence bn defined by the recurrence
relation

b1 = 1, b2n = bn, b2n+1 = bn + bn+1, n ≥ 1,

has received a lot of attention in recent years (for example, see [2, 8–10] and
references therein). In particular, Graham, Knuth and Patashnik [5, Exer.
6.50] have proved that if n has binary representation

(1) n = 1a10a2 · · · 1ak (a1, . . . , ak > 0),

then bn is the numerator of the continued fraction

a1 +
1

a2 +
1

. . . +
1

ak

.

The sequence bn has been generalized to polynomials in a few different
ways (see [4, 6]). For example, Klavžar, Milutinović and Petr [6] defined
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the polynomials

B2n(t) = tBn(t), B2n+1(t) = Bn(t) +Bn+1(t)

with B0(t) = 0 and B1(t) = 1. Recently, Schinzel [8] showed that if (1) holds
then the polynomial Bn(t) is the numerator of the continued fraction

[a1] +
ta1

[a2] +
ta2

. . . +
tak−1

[ak]

, where [a] =
1− ta

1− t
.

Dilcher and Stolarsky [4] (also, see [2]) defined the polynomials

F2n(q) = Fn(q), F2n+1(q) = qFn(q) + Fn+1(q)

with F0(q) = F1(q) = 1. Bates and Mansour [2] used these polynomials to
define the q-analogue of the Calkin–Wilf [3] tree and the q-analogue of the
hyperbinary expansion.

In this paper, we define a q-analogue of the polynomials Bn(t) by

B2n(q, t) = tBn(q, t), B2n+1(q, t) = qBn(q, t) +Bn+1(q, t)(2)

with B0(q, t) = 0 and B1(q, t) = 1. For example, B3 = q + t, B4 = t2,
B5 = q+(q+1)t, B6 = qt+t2, B7 = q2+qt+t2, B8 = t3, B9 = q+(q+1)t+qt2,
B10 = qt + (q + 1)t2, B11 = q2 + q(q + 2)t + t2, B12 = qt2 + t3, B13 =
q2 + q(1 + q)t+ (q+ 1)t2, B14 = q2t+ qt2 + t3, B15 = q3 + q2t+ qt2 + t3 and
B16 = t4.

We shall prove the following generalization of the result of Schinzel [8].

Theorem 1.1. If (1) holds then the polynomial Bn(q, t) is the numerator
of the continued fraction

[a1]q,t +
ta1

q[a2]1,t +
qa3ta2

[a3]q,t +
ta3

q[a4]1,t +
qa5ta4

. . .

[ak]q,t

, where [a]q,t =
qa − ta

q − t
.

Note that by (2) and [8, Theorem 2] we can compute the degree of
Bn(q, t) as a polynomial in t, and by the main theorem of [2] we can also
compute the degree of Bn(q, t) as a polynomial in q (see also [9, Corollary
3.8]).

2. Proofs. We start with the following lemma.

Lemma 2.1. For all m ≥ 0, B2m(q, t) = tm and B2m−1(q, t) = [m]q,t.
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Proof. We proceed by induction on m ≥ 0. Clearly, B1(q, t) = t and
B0(q, t) = 0 = [0]q,t. Assume that B2m(q, t) = tm and B2m−1(q, t) = [m]q,t.
Then by (2) we have B2m+1(q, t) = tB2m(q, t) = tm+1 and

B2m+1−1(q, t) = B2(2m−1)+1(q, t) = qB2m−1(q, t) +B2m = q[m]q,t + tm

= [m+ 1]q,t,

which completes the induction.

The next result generalizes Lemma 2.1 and [9, Theorem 2.5].

Proposition 2.2. For all d ≥ 0 and 2m ≥ r ≥ 0,

B2md+r(q, t) = qmB2m−r(1/q, t/q)Bd(q, t) +Br(q, t)Bd+1(q, t).

Proof. We proceed by induction on m ≥ 0. Since

Bd(q, t) = q0B20−0(1/q, t/q)Bd(q, t) +B0(q, t)Bd+1(q, t),

Bd+1(q, t) = q0B20−1(1/q, t/q)Bd(q, t) +B1(q, t)Bd+1(q, t),

we find that the claim holds for m = 0. Assume that it holds for m and let
us prove it for m = m′ + 1 by induction on r. By Lemma 2.1,

B2m′+1d+0(q, t) = tm
′+1Bd(q, t)

= qm
′+1B2m′+1−0(1/q, t/q)Bd(q, t) +B0(q, t)Bd+1(q, t),

which proves the claim for m = m′ + 1 and r = 0. Assume that the claim
holds for m = m′ + 1 and r ≥ 1, and let us prove it for m = m′ + 1 and
either r = 2r′ or r = 2r′ + 1. By (2) and the induction hypothesis,

B2md+r(q, t) = B2m′+1d+2r′(q, t) = tB2m′d+r′(q, t)

= qm
′
tB2m′−r′(1/q, t/q)Bd(q, t) + tBr′(q, t)Bd+1(q, t)

= qm
′+1B2m′+1−2r′(1/q, t/q)Bd(q, t) +B2r′(q, t)Bd+1(q, t)

= qmB2m−r(1/q, t/q)Bd(q, t) +Br(q, t)Bd+1(q, t)

and

B2md+r(q, t) = B2m′+1d+2r′+1(q, t) = qB2m′d+r′(q, t) +B2m′d+r′+1(q, t)

= q
(
qm
′
B2m′−r′(1/q, t/q)Bd(q, t) +Br′(q, t)Bd+1(q, t)

)
+ qm

′
B2m′−r′−1(1/q, t/q)Bd(q, t) +Br′+1(q, t)Bd+1(q, t)

= qm
′(
qB2m′−r′(1/q, t/q) +B2m′−r′−1(1/q, t/q)

)
Bd(q, t)

+ (qBr′(q, t) +Br′+1(q, t))Bd+1(q, t)

= qm
′+1

(
B2m′−r′(1/q, t/q) +

1

q
B2m′−r′−1(1/q, t/q)

)
Bd(q, t)

+B2r′+1(q, t)Bd+1(q, t)
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= qm
′+1B2(2m′−r′−1)+1(1/q, t/q)Bd(q, t) +B2r′+1(q, t)Bd+1(q, t)

= qmB2m−r(1/q, t/q)Bd(q, t) +Br(q, t)Bd+1(q, t),

which completes the induction on r and m.

Corollary 2.3. For all m ≥ m′ ≥ 0,

B2m−2m′+1(q, t) = q[m′]1,t[m−m′]q,t + tm−m
′
.

Proof. Proposition 2.2 gives

B2m−2m′+1(q, t)

= qm
′
B2m′−1(1/q, t/q)B2m−m′−1(q, t) +B1(q, t)B2m−m′−1+1(q, t).

Hence, by Lemma 2.1, we complete the proof.

Let x1, . . . , xk be positive integers. We define Kk(x1, . . . , xk, ; q, t) recur-
sively by

(3)

K2k+1(x1, . . . , x2k+1; q, t) = [x2k+1]q,tK2k(x1, . . . , x2k; q, t)

+ qx2k+1tx2kK2k−1(x1, . . . , x2k−1; q, t),

K2k(x1, . . . , x2k; q, t) = q[x2k]1,tK2k−1(x1, . . . , x2k−1; q, t)

+ tx2k−1K2k−2(x1, . . . , x2k−2; q, t)

with K0 = 1 and K1(x1; q, t) = [x1]q,t.

Lemma 2.4. Let k ≥ 2 and x1, . . . , xk−1 be positive integers. Then

Kk(x1, . . . , xk−2, xk−1 − 1, 1; q, t) = Kk−1(x1, . . . , xk−1; q, t).

Proof. We proceed by induction on k. For k = 1, we have K1(1; q, t) =
1 = K0. For k = 2,

K2(x1 − 1, 1; q, t) = q[x1 − 1]q,t + tx1−1 = [x1]q,t = K1(x1; q, t).

Assume that the claim holds for 2k − 2, 2k − 1, and let us prove it for 2k
and 2k + 1. By induction hypothesis and (3), we have

K2k(x1, . . . , x2k−2, x2k−1 − 1, 1; q, t)

= qK2k−1(x1, . . . , x2k−1 − 1; q, t) + tx2k−1−1K2k−2(x1, . . . , x2k−2; q, t)

= (q[x2k−1 − 1]q,t + tx2k−1−1)K2k−2(x1, . . . , x2k−2; q, t)

+ qx2k−1−1+1tx2k−2K2k−3(x1, . . . , x2k−3; q, t)

= [x2k−1]q,tK2k−2(x1, . . . , x2k−2; q, t)+qx2k−1tx2k−2K2k−3(x1, . . . , x2k−3; q, t)

= K2k−1(x1, . . . , x2k−1; q, t).
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Similarly,

K2k+1(x1, . . . , x2k−1, x2k − 1, 1; q, t)

= K2k(x1, . . . , x2k − 1; q, t) + qtx2k−1K2k−1(x1, . . . , x2k−1; q, t)

= q([x2k − 1]1,t + tx2k−1)K2k−1(x1, . . . , x2k−1; q, t)

+ tx2k−1K2k−2(x1, . . . , x2k−2; q, t)

= q[x2k]1,tK2k−1(x1, . . . , x2k−1; q, t) + tx2k−1K2k−2(x1, . . . , x2k−2; q, t)

= K2k(x1, . . . , x2k; q, t),

which completes the induction.

Proof Theorem 1.1. We prove the following general result:

(4) Bn(q, t) = Kk(a1, . . . , ak; q, t),

where n satisfies (1) with k odd, a1, . . . , ak−2, ak > 0 and ak−1 ≥ 0. We
proceed by induction on k (odd). For k = 1, we have

Bn(q, t) = K1(a1) = [a1]q,t,

so (4) holds. Assume k ≥ 3 is odd, (1) holds and (4) is true for k − 2. Then

n = 2ak−1+akd+ 2ak − 1 with d = 1a10a2 · · · 1ak−2

(binary representation). By Proposition 2.2, we have

Bn(q, t) = qak−1+akB2ak−1+ak−2ak+1(1/q, t/q)Bd(q, t)

+B2ak−1(q, t)Bd+1(q, t),

which, by Lemma 2.1 and Corollary 2.3, is equivalent to

Bn(q, t) = (q[ak]q,t[ak−1]1,t +qaktak−1)Bd(q, t)+[ak]q,tt
ak−2B(d+1)/2ak−2 (q, t).

Now, by the induction hypothesis, we have

Bd(q, t) = Kk−2(a1, . . . , ak−2; q, t),

and by Lemma 2.4,

B(d+1)/2ak−2 = Kk−2(a1, . . . , ak−4, ak−3 − 1, 1)

= Kk−3(a1, . . . , ak−3; q, t).

Hence,

Bn(q, t) = (q[ak]q,t[ak−1]1,t + qaktak−1)Kk−2(a1, . . . , ak−2; q, t)

+ [ak]q,tt
ak−2Kk−3(a1, . . . , ak−3; q, t),

while by the definition (with k odd)

Kk(a1, . . . , ak; q, t)

= qak−1[ak]1,t/qKk−1(a1, . . . , ak−1; q, t) + qaktak−1Kk−2(a1, . . . , ak−2; q, t)
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= qak−1[ak]1,t/q
(
q[ak−1]1,tKk−2(a1, . . . , ak−2; q, t)

+ tak−2Kk−3(a1, . . . , ak−3; q, t)
)

+ qaktak−1Kk−2(a1, . . . , ak−2; q, t)

= (q[ak]q,t[ak−1]1,t + qaktak−1)Kk−2(a1, . . . , ak−2; q, t)

+ [ak]q,tt
ak−2Kk−3(a1, . . . , ak−3; q, t).

Therefore, (4) holds for k, which completes the induction.

Hence, Theorem 1.1 follows in view of [7, Section 5].

3. Combinatorial issues. The hyperbinary expansion of a number n
is an expansion of n as a sum of powers of 2, each power being used at most
twice. We denote the set of all hyperbinary expansions of n by Hn, and
the total number of powers that are used exactly twice (resp. once) in the
hyperbinary expansion x ∈ Hn by hn(x) (resp. `n(x)). The (q, t)-hyperbinary
expansion of x is defined as qhn(x)t`n(x). See [2] in the case t = 1. Let fn(q, t)
be the polynomial of the sum of (q, t)-hyperbinary expansions of n with
f0(q, t) = 1 and f−1(q, t) = 0. For example, the hyperbinary expansions of
6 are 4 + 2, 4 + 1 + 1 and 2 + 2 + 1 + 1. Thus (q, t)-hyperbinary expansions
of 6 are t2, qt and q2. Accordingly, f6(q, t) = t2 + qt+ q2 = [3]q,t.

Theorem 3.1. For all n ≥ 0, Bn(q, t) = fn−1(q, t).

Proof. We proceed by induction on n. The conclusion is true for n = 0, 1.
Assume that it holds for 0, 1, . . . , 2n and let us prove it for 2n+1 and 2n+2.

The case 2n + 1: By using the proof of the case f2n+1(1, 1) = fn(1, 1)
with q = t = 1 in [1, Theorem 2], there exists a bijection α : H2n+1 → Hn

such that h2n+1(x) = hn(α(x)) and `2n+1(x) = `n(α(x)) + 1. This leads to

f2n+1(q, t) =
∑

x∈H2n+1

qh2n+1(x)t`2n+1(x) = t
∑
y∈Hn

qhn(y)t`n(y) = tfn(q, t).

By our induction hypothesis and (2), f2n+1(q, t) = tBn+1(q, t) = B2n+2(q, t).

The case 2n+ 2: From the proof of [1, Theorem 2], it follows that each
hyperbinary expansion x in H2n+2 can be mapped to either the hyperbinary
expansion x′ of n or the hyperbinary expansion x′′ of n+1 such that hn(x) =
hn+1(x

′)+1, `n(x) = `n+1(x
′), hn(x) = hn+1(x

′′) and `n(x) = `n+1(x
′′). Thus,

f2n+2(q, t) =
∑

x∈H2n+2

qh2n+2(x)t`2n+2(x)

= q
∑
y∈Hn

qhn(y)t`n(y) +
∑

y∈Hn+1

qhn+1(y)t`n+1(y)

= qfn(q, t) + fn+1(q, t).
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By our induction hypothesis and (2),

f2n+2(q, t) = qfn(q, t) + fn+1(q, t) = qBn+1(q, t) +Bn+2(q, t) = B2n+3(q, t).

The result follows.

We denote the generating function for the (q, t)-hyperbinary sequence

{Bn(q, t)}n≥0
by B(z; q, t), that is, B(z; q, t) =

∑
n≥0Bn(q, t)zn+1.

Theorem 3.2. The generating function B(z; q, t) is given by∏
j≥0

(1 + tz2
j

+ qz2
j+1

).

Proof. Let B(z; q, t) = Bodd(z; q, t) +Beven(z; q, t), where

Bodd(z; q, t) =
∑
n≥0

B2n+1(q, t)z
2n+2, Beven(z; q, t) =

∑
n≥0

B2n(q, t)z2n+1.

By (2), we have

Bodd(z; q, t) = qz2B(z2; q, t) +B(z2; q, t),

Beven(z; q, t) = tzB(z2; q, t).

Hence

B(z; q, t) = (1 + tz + qz2)B(z2; q, t)

= (1 + tz + qz2)(1 + tz2 + qz4)B(z4; q, t)

= · · ·

=
∏
j≥0

(1 + tz2
j

+ qz2
j+1

),

as required.

Note that the above result generalizes Theorem 3.1 of [9].

Acknowledgments. The author thanks the anonymous referee for point-
ing out the reference [9].
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