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of Continued Fractions
by
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Presented by Andrzej SCHINZEL

Summary. We present a g-analogue for the fact that the nth Stern polynomial B, (¢) in
the sense of Klavzar, Milutinovi¢ and Petr [Adv. Appl. Math. 39 (2007)] is the numerator
of a continued fraction of n terms. Moreover, we give a combinatorial interpretation for
our g-analogue.

1. Introduction. The diatomic sequence b, defined by the recurrence
relation

b1 =1, ba=bn, bopy1=by+ by, n =1,
has received a lot of attention in recent years (for example, see |2, [8H10] and

references therein). In particular, Graham, Knuth and Patashnik [5, Exer.
6.50] have proved that if n has binary representation

(1) n=1410%..-1%  (ay,...,a > 0),
then b,, is the numerator of the continued fraction
. 1
a
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Qo+ -

2 ' 1

.. + _

ag

The sequence b, has been generalized to polynomials in a few different
ways (see [4, |6]). For example, Klavzar, Milutinovi¢ and Petr [6] defined
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the polynomials

Bon(t) =tBn(t),  Bon+1(t) = Bn(t) + Bata(t)
with By(t) = 0 and By (t) = 1. Recently, Schinzel [8] showed that if (1) holds
then the polynomial By (t) is the numerator of the continued fraction

o 1
h = :
, where [d] T

[a1] +

a2

[as] +

tak—l

[ax]
Dilcher and Stolarsky [4] (also, see [2]) defined the polynomials

F2n(Q) = Fn(Q)» F2n+1(‘]) = an(Q) + FnJrl(Q)

with Fy(q) = Fi(¢) = 1. Bates and Mansour [2| used these polynomials to
define the g-analogue of the Calkin—Wilf [3] tree and the g-analogue of the
hyperbinary expansion.

In this paper, we define a g-analogue of the polynomials B,,(t) by

(2) B2n(Q7 t) = tBn(Q7 t)) BZn+1 ((L t) = an(Qa t) + Bn+1(CI> t)
with Bo(g,t) = 0 and Bj(q,t) = 1. For example, By = q + t, By = t2,
Bs = q+(q+1)t, Bs = qt+t?, By = ¢*+qt+t*, By = t°, By = q+(q+1)t+qt?,
Big = qt + (¢ + 1)t2, By = ¢* + q(q + 2)t + 12, Bis = qt> + 13, Bz =
¢ +q(1+q)t+(¢+1t?, Bia = ¢*t +qt> +°, Bis = ¢° + ¢*t + qt* +- > and
Big = t*.
We shall prove the following generalization of the result of Schinzel [8].
THEOREM 1.1. If holds then the polynomial By(q,t) is the numerator
of the continued fraction

ta a _ ta

g
R ,  where [a]g; = p—el

tas

[al]q,t +

Q[@h,t +

[as]q + ¢°5 104

qlaa)i e +

[ak]q
Note that by and [8 Theorem 2] we can compute the degree of
B, (q,t) as a polynomial in ¢, and by the main theorem of [2] we can also

compute the degree of By,(q,t) as a polynomial in ¢ (see also [9, Corollary
3.8]).

2. Proofs. We start with the following lemma.

LeEMMA 2.1. For allm > 0, Bam(q,t) =t™ and Bam_1(q,t) = [m]q:.

)
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Proof. We proceed by induction on m > 0. Clearly, Bi(¢,t) = t and
Bo(q,t) = 0 = [0]g+. Assume that Bom(g,t) = t" and Bam_1(q,t) = [m]q.
Then by we have Bom+1(q,t) = tBam(q,t) = t™"1 and

Bom+1_1(q,t) = Bygm_1)41(¢,t) = q¢Bam_1(q,t) + Bam = q[m]g¢ + "
= [m+1]44,
which completes the induction. =
The next result generalizes Lemma 2.1 and [9, Theorem 2.5].
PROPOSITION 2.2. For alld >0 and 2™ >r > 0,
Bymasr(q;t) = ¢" Bam—r(1/q,t/q)Ba(q, t) + Br(q,t) Bat1(q; t)-
Proof. We proceed by induction on m > 0. Since
Ba(q,t) = ¢" By _o(1/4,t/q) Ba(a:t) + Bo(q,t) Bat1(a, ),
Bat1(q,t) = ¢°Byo_1(1/4,t/q) Ba(a, ) + Bi(q, ) Bata(q, 1),

we find that the claim holds for m = 0. Assume that it holds for m and let
us prove it for m = m’ 4+ 1 by induction on r. By Lemma

BQm’+1d+O(q7 t) = tmq_le(q? t)
= ¢"" " Byuri1_o(1/¢.t/9)Ba(q,t) + Bo(q,t) Bas1 (g, 1),

which proves the claim for m = m/ + 1 and r = 0. Assume that the claim
holds for m = m/ + 1 and r > 1, and let us prove it for m = m’ + 1 and
either r = 2r’ or r = 21’ + 1. By and the induction hypothesis,

Bymayr(q,t) = Boymr+1440,(0:1) = tBymr gy, (¢, 1)
= " tBy _,/(1/¢,t/q)Ba(q,t) + tBy(q,)Bat1 (g, t)
= ¢ By g0 (1/0,t/0)Ba(q, 1) + Baw(q,t) Baga (g, 1)
= q"Bom_y(1/q,t/q)Ba(q,t) + By(q,t)Bat1(g; 1)
and
Bomair(q:1) = Boymrs1449041(05t) = aBom g0 (0:1) + Bt 11041 (a: 1)

= q(¢"™ By _,/(1/4,t/0) Ba(a,t) + Brr(q, ) Bar1(q,t))
+¢" By _v_(1/¢,t/@) Ba(a,t) + Br41(a,t) Baya (a,1)

= ¢" (aByw s (1/0,1/q) + Bywr _,i_1(1/4,t/9)) Ba(g, 1)
+ (¢By(q,t) + Bpry1(q,t))Bay1(g; t)

m’ 1
=q +1 (BQm/_,,,/(l/qa t/Q) + gBQm’—r’—l(l/(L t/q)>Bd(q’ t)

+ B27"+1(Q7 t)Bd+1 (q7 t)
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= qm +IBQ(2m'_r/_1)+1(1/Q7 t/Q)Bd(Q7 t) + BQT’+1<Q7 t)Bd-‘rl((L t)
= qu2m—T‘(1/Q7 t/Q)Bd(Qa t) + BT(Q: t)Bd+1(Q7 t)a
which completes the induction on r and m. =
COROLLARY 2.3. For allm >m' >0,
B2m_2m/+1(q, t) = gq[m'l1fm — m/]q,t +em
Proof. Proposition 2.2 gives
BQm_Qm’+1(Q7 t)
= qm BQm’—l(l/Qa t/q)B2m—m'_1(Q7 t) + Bl (q7 t)BQm—m/—1+1(Q7 t)

Hence, by Lemma [2.I] we complete the proof. =

Let x1, ...,z be positive integers. We define Ky(z1,...,xg,;q,t) recur-
sively by
Kop+1(21,5 -+ Xok+13 4, 1) = [Pop1] g Kok (21, o, T2p3 ¢, 1)
3) + @ T Ko 1 (21, ., Tap-13 5 1),
Kop(w1, ..., wor5 ¢, 1) = qlwor]1,eKop—1(21, - - -, Top—15 ¢, 1)

+ t72 1 Kog_o(@1, . . ., Tok—25 G, 1)
with Ko =1 and Ki(z1;q,t) = [1]qs-
LEMMA 2.4. Let k > 2 and x1,...,x,_1 be positive integers. Then
Kp(z1, ... op_o,x5—1 — 1,1;q,t) = K_q1(x1, ..., 2x_1;¢,1).

Proof. We proceed by induction on k. For k = 1, we have K;(1;¢,t) =
1= Ko. For k =2,

Ko(x1 —1,1;q,t) = qlz1 — g + 1t = [z1]q: = K1(215 ¢, 1).
Assume that the claim holds for 2k — 2,2k — 1, and let us prove it for 2k
and 2k + 1. By induction hypothesis and , we have
Kop(21, .-+, Tog—2, 021 — 1,15, 1)
= qKop—1(w1, ... wop—1 — 15, 8) + 725 Ko g (w1, ..., Top—2; ¢, t)
= (qlwak—1 = Ugu + ™" Kop_o(z1, . .., k25 ¢, 1)

gt T I R K g (@, k33 g, )
= [zok—1]gt Kok—2(21, - . -, Top—2; ¢, 1) +q 12 Kop_3(21,. .., Tog-3; ¢, 1)
= Ko 1(21, .-, Tok—1;¢, 1)
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Similarly,

Kopr1(w1, -+, Top—1, T2 — 1,159, 1)
= Kop(a1, ..., w0k — 11q,t) + @™ ' Kop_1 (21, . ., T2p—15 . 1)
= q([zor — Voo + 1" ) Kop_1 (21, .-, 213 ¢, )
+ t* 1 Kok _o(x1, ..., Tok—2; ¢, 1)
= qloop)1, 1 Kop—1(21, ..., Top—13q, 1) + "1 Kop_o(21, ..., Top—2;¢,1)
= Kop(z1,. .., 22150, 1),
which completes the induction. =
Proof Theorem [1.1. We prove the following general result:
(4) B,(q,t) = Ki(a1,...,ax;q,t),

where n satisfies with k£ odd, ai,...,ar_9,ar > 0 and ap_1 > 0. We
proceed by induction on k (odd). For k = 1, we have

Bn(gq,t) = Ki(a1) = [a1]qq,
SO holds. Assume k > 3 is odd, holds and is true for k — 2. Then
n =201tk 4L 2% 1 with d=1%0%...]1%"2
(binary representation). By Proposition we have
B(q,t) = qak71+ak32%71+ak72%+1(1/(1,t/Q)Bd((bt)
+ B2ak—1 (qa t)Bd-‘rl(q’ t)a
which, by Lemma and Corollary is equivalent to
B(g:t) = (qlaklqtlar—1]1t+ g™t 1) Ba(q, t) + [akq,tt" 2 B(g11) j2on-2 (¢: 1)
Now, by the induction hypothesis, we have
Bai(g,t) = Kg—a(ay, ..., ax-2;4,1),
and by Lemma [2.4
Bgy1)j20-2 = Kg-a(an, ..., ag—a,ar-3 — 1,1)
= Ky—3(a1,...,ak-3;,1).
Hence,
Bn(q,t) = (qlar]gelar—1]1e + ¢t ) Ki2(ar, ..., ar-2;4,1)
+ [a]g it 2 Ky-3(a1, . .., ar-3;q,t),
while by the definition (with & odd)

Ky(ay, ..., ax;q,1)
= qakil[ak]l,t/qufl(ala sy 13, t) + @R UK_o(an, ... ap—2;q,t)
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= ¢ Marli/q (dlar-1]1,:Ke—2(a1, ..., ag—2; q, 1)
+ =2 Ky g(aq,...,ak-3;q,t))
+ ¢ t* 1Ky _o(a1, ..., ax—2;q,t)
= (qlaklgtlap—1l1e + "t 1)Ky —2(a1, . .., ak—2;9,t)
+ lag]gt™ 2 Ki-3(a1, ..., ar-3;¢,1).
Therefore, holds for k, which completes the induction.
Hence, Theorem follows in view of |7, Section 5]. m

3. Combinatorial issues. The hyperbinary expansion of a number n
is an expansion of n as a sum of powers of 2, each power being used at most
twice. We denote the set of all hyperbinary expansions of n by H,, and
the total number of powers that are used exactly twice (resp. once) in the
hyperbinary expansion z € H,, by b, (x) (resp. £,,(z)). The (g, t)-hyperbinary
expansion of z is defined as ¢"(*)t/n(#)_ See [2] in the case t = 1. Let f,(q,t)
be the polynomial of the sum of (g,t)-hyperbinary expansions of n with
fo(g,t) = 1 and f_1(g,t) = 0. For example, the hyperbinary expansions of
6are4d+2 4+ 1+1and 2+ 241+ 1. Thus (g, t)-hyperbinary expansions
of 6 are t2, gt and ¢°. Accordingly, fs(q,t) =t + qt + ¢* = [3]4.1-

THEOREM 3.1. For alln >0, B,(q,t) = fn—1(g,1).

Proof. We proceed by induction on n. The conclusion is true for n = 0, 1.
Assume that it holds for 0,1, ...,2n and let us prove it for 2n+1 and 2n+2.

The case 2n + 1: By using the proof of the case fan4+1(1,1) = fr(1,1)
with ¢ = ¢ = 1 in [1, Theorem 2|, there exists a bijection « : Ha, 11 — H,
such that o, +1(2) = hp(a(x)) and lo,41(x) = €p(a(x)) + 1. This leads to

fons1(q,t) = Z qh2n+1(w)t€2n+1(x) —¢ Z qbn(y)tén(y) = tfu(q,t).
x€H2pn 41 y€H,

By our induction hypothesis and , font1(q,t) = tBny1(q,t) = Banta(g,t).

The case 2n + 2: From the proof of [1, Theorem 2], it follows that each
hyperbinary expansion x in Hy, s can be mapped to either the hyperbinary
expansion x’ of n or the hyperbinary expansion z” of n+1 such that b, (z) =

hn+1(l")+1,€n(l‘) = £n+1(1")’ hn(x) — anrl(l'”) and En(ZE) _ £n+1(aj”). Thus’
f2n+2 (q, t) = Z qh2n+2(x)t£2n+2 (z)

z€Hopn 42
=q Z qbn(y)ten(y) + Z qhn+1(y)t€n+l(y)
yeHn yGHn+1

= qfn(Q7t) + fn+1(Q7t)'
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By our induction hypothesis and ,
font2(4,1) = afnlq, 1) + fat1(q,t) = ¢Bn11(q,t) + Bny2(q,t) = Banis(gq, ).
The result follows. =
We denote the generating function for the (g, t)-hyperbinary sequence
{Bn(q,t)}n>0
by B(z;q,t), that is, B(2;¢,t) = 3,50 By(q,t)2" L.
THEOREM 3.2. The generating function B(z;q,t) is given by
H(l +t2% + qz2j+1).
j=>0
Proof. Let B(Z‘ q,t) = Bodd(Z; q,t) + Beven(2; q,t) where

2 : 2 2 2 : 2 +1
Bodd zZ3 Q> B2n+1 Q> e ) Bevon Z Q7 BQn Q> e
n>0 n>0

By , we have
Boad(z¢,t) = qz*B(2%; ¢, t) + B(2% ¢, 1),
Beven(z;q )_tZB( , 4, )

Hence

B(z;q,t) = (1 +tz + ¢2*)B(% ¢, 1)
— (1 4tz +¢z2)(1 + 122 + ¢z B(z%; ¢, 1)

[0+ 6 4022,
Jj=0

as required. m
Note that the above result generalizes Theorem 3.1 of [9].

Acknowledgments. The author thanks the anonymous referee for point-
ing out the reference [9].
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