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NUMBER THEORY

On Ternary Integral Recurrences
by
A. SCHINZEL

Summary. We prove that if a, b, ¢, d, e, m are integers, m > 0 and (m, ac) = 1, then there
exist infinitely many positive integers n such that m | (an 4 b)c™ — de™. Hence we derive
a similar conclusion for ternary integral recurrences.

An integral recurrence of order k is given by the formula
Up = ClUp—1 + C2Up—2 + *++ + CUp—k,

where ¢; and u; (1 < i < k) are integers.
The aim of this paper is to prove

THEOREM. For every essentially ternary integral recurrence sequence
the companion polynomial of which has a double zero, there exists an integer
D > 0 such that for all integers m prime to D infinitely many terms u,, are
divisible by m.

For simple integral recurrence sequences u,, of any order, there is a con-
jecture of Skolem [3] (see also Skolem [4, p. 56] and Schinzel [1]) that if
for every integer m > 0 there is u, divisible by m, then there is n with
uy, = 0. It follows from the above theorem that a similar assertion is false
for non-simple integral recurrences, e.g. for u, = n + 2".

The proof of the Theorem is based on four lemmas. In the course of the
proofs p denotes a prime, Z;, and Q,, the ring of p-adic integers and the field
of p-adic numbers, respectively, e, = max{1,4—p}, and if z € Q,\ {0}, then
ordy, z =max{a € Z : p~ %z € Zp}.

LEMMA 1. If z,w € Qp, min{ordy(z — 1),ord,(w — 1)} > e, and log, =
is the p-adic logarithm of z, then

(1) ord,(z — w) = ordy(log, z — log, w).
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Proof. From the power series expansion we have

z z
ordy(log, z — log, w) = ord, <logp w) = ord, (w - 1) = ordy(z — w),
hence follows. m

LEMMA 2. If z € Zy, ord, z > e, — 1 and

then

ord, (log, (1 + pz) — F(pz)) > (n+1) (1 _ i__elp).

Proof. We have

[e.9]

i
log, (1 +p2) = Fu(pz) + > (1)1 22,
i=n+1 g
and the lemma follows from the estimate, valid for ¢ > n + 1,

plat { 2—e,
ord, — > - > 11— .
rdp, — iep p—l_(n+ )< b1 .
LEMMA 3. For all integers a,b,c,d, e, f,p such that ptac and every non-
negative integer «, there exists an integer g such that if n > « and

n=f (mod (p—1)), n=g (modp®),
then
(2) (an +b)c" — de" =0 (mod p®).
Proof. 1If p|e, we take g such that ag +b = 0 (mod p®). If pte, let

d =p'dy, where dy € Z, ptdy. If p =2 and a = 1, we take g = d — b, thus
for p = 2 we assume a > 2. Set

d—b ifp=2 2¢te,
fp = .
f otherwise,

and let h be an integer such that (ah + b)c/? = defr (mod p®). We have
h = fo (mod 2) if p = 2, 2fe. Taking n = h+ p'*°rz, z € Z,,, by Lemma
we obtain

(3)  ordy((an + b)elr eI — defpe”_fp)

n—fp
> y—l—min{a—'y,ordp(l + praclrd e Iy — (e) >}
c

_ . B ad. (1 1 ep fpdfl —fp _pr
7+m1n{a 7, or p<ogp( + pPac’rd; e rz) pep—l(p—l)ﬁ )
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where
PP (p=1)
g = log, o) ord, 8 > 2e, — 1.

By Lemma 2]

L h+prtery — f
4 1 1 €p P 1,—fp _ p
(4) ordp< og, (1 +p*ac?d;"e /rz) P T B

h Ytep ,
> min{a,ordp <F&1(pepacfpdl_16fpz) A rE g ﬁ) }7

prtHp—1)
B o
a1 = 71 " 2=ep |

p—1

where

We now apply Hensel’s lemma to the polynomial

1 e —-1_— h+p7+epz_fp
G(z) = e F., (praclrdteIrz) — P B.
We have
' fo -1 —f P’ p fo =1 —f
G'(2) =adrd; e l? — —— — = ac’?d; e 7 £ 0 (mod p).

p—1 po

There exists zy € Zj, such that G(0) — 20G’(0) = 0. Then G(z9) = 0 (mod p).
Thus there exists 21 € Zj, such that

h+ p'y-i-ep 21—

prt(p—1)

and taking for g the residue of h + p’*°rz; (mod p®) we obtain

from and . Note that for pfce, depends only on the residue of
n mod p®(p — 1).

Fal(pepacfpdflef?’zl) - I 58 =0,

LEMMA 4. Ifa,b,c,d,e,m are integers with m > 0 and (m,ac) = 1, then
there exist infinitely many positive integers n such that m | (an+ b)c™ — de™.

Proof. We proceed by induction on w(m), the number of distinct prime
factors of m. If w(m) = 1, Lemma [ is contained in Lemma [3]

Suppose now that the lemma is true for w(m) = k—1 > 1, that w(m) = k
and that p is the greatest prime factor of m. Thus p > 2. Let ord, m = «,
mp~® = myg. Since w(mgy) = k — 1, by the inductive assumption there exist
infinitely many positive integers n such that mg | (an +b)c"™ — de™. Let ng >
max{mg, a} be one of these. By Lemma there exists an integer g such that
if n =ng (mod p—1), n =g (mod p®), n > «, then p*| (an + b)c" — de™.
However, if n = ng (mod [mg, ¢(my)]) and n > myg, then mg | (an+b)c™—de™.
The congruences n = ng (mod [mg, p(mo),p — 1]) and n = ¢g (mod p%)
are compatible, since pfmop(mg)(p — 1), thus there exist infinitely many
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positive integers n satisfying both of them. For these n > max{mg, a} we
have m | (an + b)c™ — de". =

COROLLARY 1. For every positive integer m there exist infinitely many
positive integers n such that m|n + 2™.

Proof. Tt suffices to take in Lemma[@t a = 1,6 =0,¢c=1,d = -1,
e=2.m

COROLLARY 2. For every prime p there exist infinitely many positive
integers n such that p|n + 272",

Proof. It suffices to take for p = 2, arbitrary even n, and for p > 2,

n = —1 (mod p), and if p — 1|ng + 2™, ng > orda(p — 1) (ng exists by
Corollary , then we take n = ng (mod [p — 1, 90(2“52;(;_1))]). .

COROLLARY 3. For every odd m and every e € {1,—1} there exist in-
finitely many integers n such that m|2"n + €.
Proof. 1t suffices to take in Lemma 4: a = 1, b =0, ¢ = 2, d = —¢,
e=1.m
Proof of the Theorem. A ternary integral recurrence sequence with the
companion polynomial (z — c)?(z —e) (c # e) is
fi(n)c" — fa(n)e”,
where f; are polynomials of degree at most 2 —i (i = 1,2), f; € Q(a,c)|z]
(see [2], p. 33, Theorem C.1}). Since the companion polynomial is monic with
integral coefficients, ¢ and e are integers and f; € Q[z] (i = 1,2). Since the
recurrence sequence is not binary, deg f; =2 — i (i = 1,2) and ace # 0. Let
az +b d
fl - DO ) f2 - FO’
It is enough to take D = |ac|Dy and apply Lemma (4] =

where a,b,d, Dy € Z, Dy > 0.

Acknowledgments. A. Paszkiewicz has verified using a computer that
for m < 20000 there exist positive integers n satisfying the condition in
Corollary [I} and found for each m the least n. W. Bednarek asked in a
letter about the truth of Corollary [2]
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