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Summary. A Banach algebra homomorphism on the convolution algebra of integrable
functions is the essence of Kisyński’s equivalent formulation of the Hille–Yosida theorem
for analytic semigroups. For the study of implicit evolution equations the notion of em-
pathy happens to be more appropriate than that of semigroup. This approach is based
upon the intertwining of two families of evolution operators and two families of pseudo-
resolvents. In this paper we show that the Kisyński approach can be adapted to empathy
theory. The adaptation highlights the essential differences between semigroup theory and
the theory of empathy.

1. Background. The study of implicit evolution equations

(1.1)
d

dt
[Bu(t)] = Au(t),

motivated by constitutive expressions of continuum mechanics and other
applications, has been on-going for some time. In (1.1) the symbols A and B
denote unbounded linear operators with a common domain D in a Banach
spaceX and range in a Banach space Y . Among the first mathematical works
are [10] (in a Hilbert space setting) and [2]. In these papers the operators A
and B were assumed to be closed or closable, and the initial condition con-
sisted of the specification of either the initial state u(0) or B[u(0)]. A detailed
account can be found in [3].

There are, however, situations pertaining to dynamic boundary condi-
tions in which the operators A and B are not closable, precluding the in-
terchange of B with the time derivative in (1.1) or the limit in the initial
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condition

(1.2) lim
t→0+

[Bu(t)] = y ∈ Y.

This was pointed out in the early study [7] of the Cauchy problem (1.1),
(1.2), where it was also revealed that closedness of the operators A and B
was not crucial.

Empathy theory [9, 8] approaches the implicit Cauchy problem by con-
sidering two families 〈S(t), E(t)〉 of bounded evolution operators intertwined
by the empathy relation

(1.3) S(t+ s) = S(t)E(s), s, t > 0,

in which S(t) : Y → X and E(t) : Y → Y . The double family of linear
operators {〈S(t), E(t)〉 : t > 0} is called an empathy. In [9] it was assumed
that E(t) is a semigroup, a hypothesis abandoned in [8]. The basis for further
development was the assumption that for y ∈ Y the Laplace transforms

P (λ)y =

∞�

0

exp{−λt}S(t)y dt, R(λ)y =

∞�

0

exp{−λt}E(t)y dt

exist as Bochner integrals over (0,∞) for λ > 0. From this it followed that
E(t) is a semigroup, not necessarily of class C0, and that the entwined
pseudo-resolvent equations

R(λ)−R(µ) = (µ− λ)R(λ)R(µ),(1.4)

P (λ)− P (µ) = (µ− λ)P (λ)R(µ)(1.5)

hold. The pair 〈R,P 〉 is called an entwined pseudo-resolvent.

Under the invertibility assumption that for a single ξ > 0 the operator
P (ξ) is invertible, all R(λ) and P (λ) are invertible and the linear operators
B = R(λ)P−1(λ) and A = λB − P−1(λ) defined on the domain

∆X := P (λ)[Y ] ⊂ X
can be constructed. It turns out that P (λ) = (λB−A)−1. For y ∈ B[∆X ] =
∆Y := R(λ)[Y ] ⊂ Y , u(t) = S(t)y solves the implicit Cauchy problem
(1.1), (1.2). The operator pair 〈A,B 〉 is called the generator of the empathy
〈S(t), E(t)〉.

In [8] a Hille–Yosida theorem giving sufficient conditions for a given
operator pair 〈A,B 〉 to be the generator of an empathy is proved. If
A,B : D ⊂ X → Y are given linear operators such that for λ > 0,
P (λ) = (λB−A)−1 : Y → D exists and is bounded, letR(λ) = BP (λ). Then,
without any other invertibility assumptions, the pseudo-resolvent equations
(1.4), (1.5) are satisfied. Under suitable Widder growth conditions on R(λ)
and a boundedness condition on P (λ) an empathy defined on the closure
of ∆Y in Y can be constructed. Under the additional assumption that the
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space Y has the Radon–Nikodým property, it also follows that the constructed
empathy has an extension to the whole of Y , and that the pseudo-resolvents
P (λ) and R(λ) are the Laplace transforms of the constructed S(t) and E(t).

The results described above came at a price, particularly due to the
fact that the Widder inversion theorem [11] holds only in spaces with the
Radon–Nikodým property [1]. In this paper we adapt Kisyński’s approach [5]
to the Hille–Yosida theorem for C0-semigroups to cover a wider assortment
of cases. We also show that this approach can be followed to obtain results
pertaining to empathy theory and therefore implicit Cauchy problems.

2. A backdrop to the Kisyński construction. The Kisyński ap-
proach is based upon the space L1(R+) of integrable scalar-valued functions
defined on the real line with support in [0,∞) as a Banach algebra with
convolution defined by f ∗ g(x) =

	∞
0 f(x − y)g(y) dy as product. We shall

use the notation Z = 〈L1(R+), ∗〉 for the algebra. Every f ∈ L1(R+) (canon-
ically) defines a bounded linear operator F by Fg = f ∗ g. The identification
Id : f ∈ L1(R+) 7→ F ∈ L(L1(R+)) is a one-to-one Banach algebra represen-
tation; L(L1(R+)) is the space of bounded operators on L1(R+).

In particular, the family {rλ : λ > 0} of exponentials with rλ(x) =
exp{−λx} for x ≥ 0 in this space is important as it defines a canonical
pseudo-resolvent of the algebra Z in the sense that

(2.1) rλ − rµ = (µ− λ)rλ ∗ rµ.

It is important to note that {rλ : λ > 0} is a total subset of L1(R+) [1,
Chap. 2]. Also of importance is to note that if f ∈ L1(R+) is represented in
the form f = rλ ∗ φλ, then for µ > 0 there is φµ such that

(2.2) f = rλ ∗ φλ = rµ ∗ φµ,

as can be seen from (2.1).

Thus the family of bounded linear operators R(λ)f = rλ ∗ f , λ > 0,
satisfies the pseudo-resolvent equation

(2.3) R(λ)−R(µ) = (µ− λ)R(λ)R(µ).

3. The Kisyński construction. For an arbitrary Banach space Y ,
let R(λ) : Y → Y , λ > 0, be a pseudo-resolvent. When does the map
T : rλ 7→ R(λ) become a unique identification in some sense like Id?

The first step is to construct the regularity space

(3.1) ∆K :=
{
y ∈ Y : lim

λ→∞
‖λR(λ)y − y‖ = 0

}
.

Under the growth condition ‖λR(λ)‖ = O(1), namely, lim supλ→∞ λ‖R(λ)‖
< ∞, the space ∆K is a closed subspace of Y . Under the strong Widder
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condition [11]

(3.2) sup{‖[λR(λ)]k‖ : λ > 0, k ∈ N} <∞,
the following is obtained:

Proposition 3.1 (Kisyński [5]). If (3.2) holds, then the identification
T : r(λ) 7→ R(λ) uniquely extends to all of Z as a (bounded) Banach al-
gebra representation T : Z → L(Y ), the algebra of bounded linear operators.
Furthermore, T reconstructs the regularity space ∆K in this way:

(3.3) ∆K = ∆Y =
⋃
φ∈Z

T (φ)[Y ]

with ∆Y = R(λ)[Y ]. Moreover, convolution in Z is mapped to composition,
i.e. T (f ∗ g) = T (f)T (g).

We shall refer to ∆K as the T -regularity space.
In the final step a semigroup E(t) on ∆K is constructed by considering

the right-shift operation Etf(x) = f(x − t) defined for f ∈ Z (mindful of
the fact that f is supported on [0,∞)). The definition of E(t) then is, for
y = T (φ)yφ ∈ ∆K ,

(3.4) E(t)y := [T (Et(φ))]yφ.

The expression (3.4) should be interpreted in the light of Proposition 3.1.
By letting φ range over all of Z, all y ∈ ∆K are reproduced. This defines a
unique C0-semigroup {E(t)) : t ≥ 0} on ∆K [5].

Let AE denote the generator of E . The operator AE is constructed from R
in the following way: y ∈ D(AE) ⊂ ∆K if limλ→∞ ‖λ(λR(λ)y−y))−y′‖ = 0
exists, and then AEy := y′. Under the growth condition ‖λR(λ)‖ = O(1),
the pseudo-resolvent R restricted to the subspace ∆K becomes the resolvent
R(λ) = (λ−AE)−1 = R(λ,AE) on ∆K . Of course D(AE) is dense in ∆K .

4. The empathy construction. The problem at hand is: Given two
linear operators (not necessarily closed) A,B : D ⊂ X → Y , find sufficient
conditions under which they will be the generator of an empathy. In a pre-
liminary way we proceed, as in the introductory section, to assume that for
λ > 0 the linear operators P (λ) : Y → D , R(λ) : Y → Y defined by

P (λ) = (λB −A)−1,(4.1)

R(λ) = BP (λ)(4.2)

exist and are bounded. As mentioned before, the entwined pseudo-resolvent
equations (1.4), (1.5) are satisfied. In what follows we shall only use the
pseudo-resolvent equations without recourse to (4.1), (4.2), and return to
them afterwards. We do, however, assume that R(λ) satisfies all the require-
ments of Section 3, and will use the same notation.
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We begin by defining the subspaces ∆2
K ⊂ ∆K , ∆X ⊂ X and the oper-

ator C : ∆2
K → ∆X by

∆2
K = R(λ)[∆K ],(4.3)

∆X = P (λ)[∆K ],(4.4)

C = P (λ)R−1(λ).(4.5)

Proposition 4.1. The definitions (4.3)–(4.5) are independent of the
choice of λ. Moreover, ∆2

K is an invariant subspace of E(t) and is dense
in ∆K .

Proof. From (1.4) and (1.5) it is seen that the images defined by (4.3)
and (4.4) do not depend on the choice of λ. It also follows from (1.5) that
P (λ)R(µ) = P (µ)R(λ), from which it follows that the definition (4.5) is
independent of λ. Since ∆2

K = D(AE), it is clear that E(t)[∆2
K ] ⊂ ∆2

K and
∆2
K is dense in ∆K .

Next we define a representation T 2 : Z → L(∆2
K , X) by T 2(φ) = CT (φ);

φ has representation rλ ∗ φλ, and we immediately note that T 2 is not an
algebra representation and does not have to be continuous or even closed. It
does, however, represent the operators P (λ) restricted to ∆K in the sense
that T 2(rλ) = P (λ).

Now we are able to construct a family of operators {S(t) : t > 0} from
∆2
K to ∆X by

(4.6) S(t)[R(λ)T (φ)] = T 2(rλ ∗ Etφ).

In a more explicit way the definition (4.6) may be reformulated as follows:
Let y ∈ ∆2

K be of the form R(λ)T (φλ)y′ with φλ ∈ Z and y′ ∈ ∆K . Then

(4.7) S(t)y = P (λ)E(t)[T (φλ)y′].

We need to show that the definition (4.7) does not depend on the choice
of λ. By Proposition 3.1 and (2.2),

(4.8) y = R(λ)T (φλ)y′ = R(µ)T (φµ)y′.

Thus the representation of y does not depend on λ. What we need to
show is that the right of (4.7) does not depend on λ either. From (4.8)
and the commutation rules E(t)R(λ) = R(λ)E(t), R(λ)R(µ) = R(µ)R(λ),
P (λ)R(µ) = P (µ)R(λ), we obtain

P (λ)E(t)[T (φλ)y′] = P (λ)E(t)R−1(λ)R(λ)[T (φλ)y′]

= CR(λ)E(t)R−1(λ)R(µ)[T (φµ)y′]

= CE(t)R(µ)[T (φµ)y′]

= CR(µ)E(t)[T (φµ)y′]

= P (µ)E(t)[T (φµ)y′].
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Next we verify that 〈S(t), E(t)〉 satisfies the empathy relation (1.3). This
is a (subtle) adaptation of the proof that the family {E(t)} is a semigroup.
In the same vein, after retracing some of the steps in the calculations im-
mediately above we see that the limit

(4.9) Cy = lim
t→0+

S(t)y = P (λ)R−1(λ)y

exists for all y ∈ ∆2
K . In view of (4.9) we feel justified to refer to ∆2

K as the
T 2-regularity space.

Theorem 4.1. Let 〈R(λ), P (λ)〉 be an entwined pseudo-resolvent, and
suppose that R(λ) satisfies the strong Widder condition (3.2). Then there
exists an empathy 〈S(t), E(t)〉 defined on the T 2-regularity space ∆2

K for
which the limit Cy in (4.9) exists and the representation does not depend
on λ.

Corollary 4.1. If ‖λR(λ)‖ = O(1) then (1.5) follows from (1.4).

The discussion so far did not take the particular forms of P (λ) and R(λ)
as set out in (4.1) and (4.2) into account. Suppose y ∈ ∆2

K . By (4.2), the
domain D contains P (λ)[Y ] ⊃ ∆X . From (4.7) we see that

(4.10) BS(t)y = E(t)y, y ∈ ∆2
K .

This is a restricted form of the B-evolution property [7]. We may now
return to the implicit Cauchy problem (1.1), (1.2). Let u(t) = S(t)y. Then,
by (4.10), Bu(t) = E(t)y and

(4.11)


d

dt
[Bu(t)] = AEE(t)y = [AEB]u(t),

lim
t→0+

Bu(t) = y.

Without using the full power of the definition (4.1), the following has been
proved:

Theorem 4.2. Let 〈P (λ), R(λ)〉 be an entwined pseudo-resolvent and
B : D ⊂ X → Y be a linear operator such that R(λ) = BP (λ). If R(λ)
satisfies the strong Widder growth condition (3.2), then u(t)=S(t)y, y∈∆2

K ,
solves the implicit Cauchy problem (1.1), (1.2) with A = AEB. Here AE is
the infinitesimal generator of the C0-semigroup associated with R(λ).

Remark 4.1. If the operators P (λ) have the form (4.1), then a direct
calculation shows that B is invertible and C = B−1. This is at the core of
the theory of empathy as expounded in [8].

5. Essential differences. The presentation in the previous section is
based upon the assumption that the pseudo-resolvents R(λ) are associated
with a C0-semigroup and therefore invertible. This is in sharp contrast to [8]
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where the invertibility of at least one of the P (λ) took center stage. Also,
since the operator B does not have to be closed, it follows that, even in the
case where P (λ) is invertible, the limit operator C = B−1 does not have to
be closed.

The notion S(0) = C is tenable, but of little value. Thus empathy theory
differs essentially from semigroup theory in the sense that the “initial value”
of the family S(t) has no bearing on the initial condition (1.2).

The linear map T 2 which represents P (λ) on Z and is used to define the
family {S(t)} is not an algebra representation and is not necessarily closed.
In contrast, the bounded map T on Z represents a commutative Banach
algebra of bounded linear operators in which the semigroup E(t) on ∆K is
essentially the image under T of a translation semigroup.

One can identify 〈P (λ), S(t)〉 with T 2. Similarly, one can identify
〈R(λ), E(t)〉 with T . Therefore a pair 〈T, T 2 〉 is used to generate an em-
pathy 〈E(t), S(t)〉. One can identify the domains of the empathy 〈∆K , ∆

2
K 〉

with the pair 〈T, T 2 〉.
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