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Summary. We present an example of a separable metrizable topological group G having
the property that no remainder of it is (topologically) homogeneous.

1. Introduction. All topological spaces under discussion are Tychonoff.
A space X is homogeneous if for any two points x, y ∈ X there is a

homeomorphism h from X onto itself such that h(x) = y. If bX is a com-
pactification of a space X, then bX \X is called its remainder.

In 1956, Walter Rudin [13] proved that the Čech–Stone remainder βω\ω,
where ω is the discrete space of non-negative integers, is not homogeneous
under CH. This result was later generalized considerably by Frolík [9] who
showed in ZFC that βX \X is not homogeneous, for any nonpseudocompact
space X. For other results in the same spirit, see e.g. [6], [7], [10].

Hence the study of (non)homogeneity of Čech–Stone remainders has a
long history. In this note we continue our study begun in [4] concerning
the (non)homogeneity of arbitrary remainders of topological spaces. Special
attention is given to remainders of non-locally compact topological groups.
For some recent facts on such remainders, see Arhangel’skii [1] and [2]. One
of them, established in [1], is: every remainder of a topological group is either
Lindelöf or pseudocompact.

The aim of this note is to present an example of a separable metrizable
topological group G no remainder of which is homogeneous. The first ex-
amples of topological groups that share this property can be found in [4];
these examples have various interesting properties but are not metrizable.
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2. The example. For a space X, we let H (X) denote its group of hom-
eomorphisms. We will make good use of the Alexandroff–Hausdorff Theorem
that every uncountable Borel subset of a Polish space contains a Cantor set
[11, p. 447].

A group G is called Boolean if each of its elements has order at most 2.
Clearly, every Boolean group is Abelian. We use additive notation for Abelian
groups.

Our example is the example from van Mill [12] of a separable metrizable
topological group G having no homeomorphisms other than translations.
Such a group is easily seen to be Boolean. We will state the properties of G
that we will need in the verification that it has no homogeneous remainder.

(P1) G is a subgroup of a Boolean topological group H which is home-
omorphic to Hilbert space `2.

(P2) Every homeomorphism of G is a translation.
(P3) G intersects every Cantor set in H.
(P4) G is locally connected.
(P5) G has index c, i.e., |H/G| = c.

Properties (P1)–(P4) are stated explicitly in [12]. It is not clear whether
Property (P5) follows from the construction there. However, the variations
of G in Arhangel’skii and van Mill [3] all have index c. This follows from the
definition of Gκ and the proof of Lemma 6.8, both on page 922 of [3].

It is clear that G is not locally compact, being a dense subgroup of H.

Lemma 2.1. If K ⊆ H is a Cantor set, then K \G 6= ∅.
Proof. Indeed, pick an arbitrary x ∈ H \G. Such a point exists by (P5).

Hence (x+K) ∩G 6= ∅ by (P3), or, equivalently, K ∩ (x+G) 6= ∅.
Lemma 2.2. Let U be a nonempty open and connected subset of G. If

A ⊆ H is countable, then U \A is connected.

Proof. Striving for a contradiction, assume that there exist disjoint and
relatively open subsets E and F of U\A such that E∪F = U\A. Pick disjoint
open subsets E′ and F ′ of U such that E′∩(U \A) = E and F ′∩(U \A) = F
[8, 2.1.7]. Let U ′ be an open subset of H such that U ′ ∩ G = U . By (P3),
G is dense in H, and hence there are disjoint open subsets E′′ and F ′′

of U ′ such that E′′ ∩ G = E′ and F ′′ ∩ G = F ′. Consequently, the set
S = U ′ \ (E′′ ∪ F ′′) separates the connected open subset U ′ of H. Hence
S is uncountable, H being homeomorphic to `2. Then S contains a Cantor
set K. By (P3), G ∩K has size c. But G ∩K is contained in the countable
set A, which is a contradiction.

Now assume that aG is an arbitrary compactification of G. We will show
that aG \G is not homogeneous.
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Let bG be a metrizable compactification of G such that bG ≤ aG in the
usual order of compactifications [8, 3.5.F]. Let f : aG→ bG be a continuous
function which restricts to the identity on G. Since both bG and H are
Polish, by the Lavrentieff Theorem [8, 4.3.21] there are Gδ-subsets S of bG
and T of H both containing G such that the identity function G→ G can be
extended to a homeomorphism h : S → T . We claim that H \T is countable.
It is an Fσ-subset of H and hence if it were uncountable, it would contain a
Cantor set which would intersect G by (P3), and this is absurd.

Since |H/G| = c by (P5), there exist p, q ∈ H such that

(†) (p+G) ∩ (q +G) = ∅, (p+G) ∪ (q +G) ⊆ T \G.
By abuse of notation, we will identify S and T so that we can think of the
cosets p+G and q +G as subsets of the remainder bG \G. Let A ⊆ G be a
discrete sequence converging to p in bG, and take a limit point a of A in aG.
Moreover, take b ∈ bG \ G such that f(b) 6∈ p + G. We will show that no
homeomorphism of aG \G takes a to b. Striving for a contradiction, assume
that ξ ∈H (aG \G) is such that ξ(a) = b.

Lemma 2.3. If U is a nonempty connected open subset of G, and V is
an open subset of aG such that V ∩ G = U , then V \ G is connected (and
nonempty).

Proof. That V \G is nonempty is clear.
Assume that E and F are disjoint nonempty open subsets of aG\G such

that E ∪ F = V \ G. Since aG \ G is dense in aG, there are disjoint open
subsets E′ and F ′ of V such that E′ ∩ (aG \G) = E and F ′ ∩ (aG \G) = F .
Observe that K = V \ (E′ ∪ F ′) separates V and hence U . Clearly, S is
locally compact, being closed in the locally compact open subset V of aG.
But S is also contained in G, hence it is σ-compact (being separable and
metrizable). Hence from Lemma 2.1, we conclude that K is countable. But
this contradicts Lemma 2.2.

Lemma 2.4. ξ can be extended to a homeomorphism ξ̄ : aG→ aG.

Proof. Here we apply an idea of Curtis and van Mill [5, 4.1]. Fix x ∈ G.
By (P4), G is locally connected at x. Hence we may fix a decreasing neigh-
borhood base (Un)n at x consisting of connected open subsets of G. For every
n, let Vn in aG be open such that Vn ∩ G = Un. By Lemma 2.3, Vn \ G is
connected and nonempty, hence ξ(Vn \G) is connected, from which it follows
that

Tx =
⋂
n<ω

ξ(Vn \G),

being the intersection of a decreasing sequence of nonempty continua, is a
nonempty continuum in aG.
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We first claim that Tx is contained in G. Indeed, if p ∈ aG\G, then there
exists n < ω such that ξ−1(p) 6∈ Un (here the closure is taken in aG). This
implies that p 6∈ ξ(Vn \G) (simply observe that Vn ⊆ Un).

We next claim that Tx is a degenerate continuum. Indeed, if Tx were
nondegenerate, it would contain a Cantor set, which would violate Lemma 2.1.
So we conclude that Tx is a single point, say {gx}.

Now define ξ̄ : aG→ aG by

ξ̄(x) =

{
ξ(x) (x ∈ aG \G),
gx (x ∈ G).

It is easy to see that ξ̄ is continuous and has a continuous inverse, hence is
a homeomorphism.

By (P2), η = ξ̄�G is a translation. Hence there exists g ∈ G such that
η(x) = x+ g for every x ∈ G. Since a is a limit point of the discrete set A,
ξ̄(a) is a limit point of g +A. But g +A converges in bG to g + p, hence

f(ξ̄(a)) = f(ξ(a)) = g + p ∈ p+G.

As a consequence, ξ(a) 6= b, since f(b) 6∈ p+G.
It is clear that G, being a Bernstein set, is very bad from the descriptive

point of view.

Question 2.5. Let G be a Polish (Borel, analytic) separable metrizable
topological group. Is there a compactification bG of G such that bG \ G is
homogeneous?
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