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Summary. Let a € [0,1] be a fixed parameter. We show that for any nonnegative sub-
martingale X and any semimartingale Y which is a-subordinate to X, we have the sharp
estimate

1Y]lw < M

X|[pe.
= 2a+1||HL

Here W is the weak-L° space introduced by Bennett, DeVore and Sharpley. The inequality
is already sharp in the context of a-subordinate It6 processes.

1. Introduction. Our goal is to provide a sharp weak-type estimate for
a certain class of It6 processes and, more generally, for the class of semi-
martingales satisfying the so-called a-subordination relation. Let (£2, F,P)
be a complete probability space, filtered by a nondecreasing right-continuous
family (F)i>0 of sub-o-fields of F. As usual, we assume that the filtration is
also complete, i.e., Fyp contains all the sets A satisfying P(A) = 0. Suppose
that B = (B¢)>0 is an adapted Brownian motion starting from 0, and let
X = (Xt)t>0, Y = (Y2)i>0 be Ito6 processes with respect to B (cf. Ikeda and
Watanabe [9]): for ¢ > 0,

t t t t
(11 Xo=Xo+ | ¢dBs+ | vouds, Yi=Yo+ | ¢dB,+ | &ds.
0+ 0+ 0+ 0+

2010 Mathematics Subject Classification: Primary 60G44; Secondary 60G42.
Key words and phrases: 1t6 process, semimartingale, differential subordination, best con-
stant.

DOI: 10.4064/ba63-1-9 [73] © Instytut Matematyczny PAN, 2015



74 A. Osgkowski

Here (¢1)1>0, (¥1)t>0, (Gt)e>0, (&)e>0 are predictable processes such that
t t
]P( [ 16s2ds < 00 and | [i|ds < oo for all £ > 0) ~1,

0+ 0+
t

t
]P’( [ 16,2 ds < 00 and | |&,| ds < oo for all ¢ > 0) ~ 1
0+ 0+

The problem of comparing the sizes of X and Y under some structural
assumptions on ¢, ¥, ¢ and £ has been investigated quite intensively in the
literature; e.g. the whole class of so-called comparison theorems falls within
the scope of this subject: see Yamada [15], Ikeda and Watanabe [§], [9], Le
Gall [10] and references therein. Our result is closely related to the problem
which was studied for the first time in Burkholder’s paper [3]. He showed that
if X is a nonnegative submartingale and we have the domination Xy > |Yp|,
|ps| > |¢s| and 15 > |&s]| for all s, then

)\]P’(sup Y| > A) <3|X[h, A>0,
t>0

and
1Y [l, <max{(p—1)"",2p — 1}|| X, 1<p<oco.

Here we have used the notation || X||, = sup, ||X¢||, for the pth moment
of X, p > 1. Furthermore, Burkholder proved that both inequalities above
are sharp. These results were generalized by C. S. Choi [5], [6], who showed
that if « € [0,1] is a fixed number, X is a nonnegative submartingale and,
in addition,

(1.2) Xo > Yol and s > [Cs,  arhs > |€s]  for all s,

then we have the weak-type bound

(1.3) )\IP’(Sup Y| 2A> <(a+2) X, A>0,
>0

and the moment estimate
(14 Y], <max{(p— 1)\ (a+ p—1}[X]p 1<p<oo.

Again, the constants a + 2 and max{(p — 1)~%, (a + 1)p — 1} are optimal.
In fact, one can study the above results in a much wider setting. For
any real-valued semimartingales X and Y, we say that Y is differentially
subordinate to X if the process ([X, X]; — [Y,Y]¢)t>0 is nondecreasing and
nonnegative as a function of ¢ (see Baniuelos and Wang [I] or Wang [14]). Here
[X, X] denotes the quadratic variance process of X (see e.g. Dellacherie and
Meyer [7]). This type of domination implies many interesting inequalities if X
and Y are martingales or local martingales (see [14]). In the semimartingale
setting, one strengthens the domination and imposes some control on the
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finite variation parts. In what follows, we will work under the assumption
of a-strong differential subordination (a-subordination for short), which was
introduced by Wang [14] in the case av = 1, and generalized by the author
[11] to other values of cv. Let us recall the definition.

Suppose that X is an adapted submartingale, ¥ is an adapted semi-
martingale and write Doob—Meyer decompositions

(1.5) X=Xo+M+A, Y=Yy+N+B,

where M, N are local martingale parts, and A, B are finite variation pro-
cesses (M, N, A and B are assumed to vanish at 0). In general, the decom-
positions may not be unique; however, we assume that A is predictable and
this determines the first of them. Let « be a fixed nonnegative number. We
say that Y is a-subordinate to X if Y is differentially subordinate to X and
there is a decomposition for Y such that the process (aA: — |Blt)t>0
is nondecreasing as a function of ¢. Here |B|; denotes the total variation of
B on the interval [0,t]. In the setting of It6 processes described in , if
|ps| > |¢s| and arps > €| for all s, then obviously Y is a-subordinate to X,
so the setup introduced above is indeed more general.

Let us turn our attention to the results studied in this paper. The inequal-
ity can be regarded as an endpoint version of as p — 1. There is
a natural question about the weak-type substitute for for p — oo, and
our purpose is to provide an appropriate counterpart. To state the result, we
need more notation. For a given random variable £ defined on a nonatomic
probability space, we define £*, the decreasing rearrangement of &, by

E(t) =inf{\ > 0:P(|¢] > \) < t}.
Then & : (0,1] — [0, 00), the mazimal function of £*, is given by

| =

¢ty =& (s)ds, te(0,1].
0

One easily verifies that £** can alternatively be defined by the formula

1
£ (t) = ;sup{s €| dP : E € F, P(E) = t}.
E
Now, following Bennett, DeVore and Sharpley [2], we let
[€llw () = sup (£7(t) — (1))
te(0,1]
and define
W(82) = {& : [|€llw () < oo}

To describe the motivation behind this definition, note that for each

1 < p < 00, the usual weak space LP**° properly contains LP; on the contrary,
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for p = 0o, the two spaces coincide. Thus, there is no Marcinkiewicz inter-
polation theorem between L' and L> for operators which are unbounded
on L. The space W was invented to fill this gap. It contains L*°, can be
understood as an appropriate limit of LP*° as p — oo, and has the appro-
priate interpolation property: if an operator T is bounded from L! to L%
and from L* to W, then it can be extended to a bounded operator on all
LP spaces, 1 < p < co. See [2] for details.

In analogy to the previous notation, the weak-L* norm of a process
X is given by [ X|w(2) = supsq | Xellw (). We will prove the follow-
ing.

THEOREM 1.1. Let a € [0,1] be fized. Suppose that X is a nonnegative
submartingale and Y is a-subordinate to X. Then
2(a+ 1)?
20+ 1

and the constant 2(ac+1)?/(2ac+ 1) is the best possible. It is already the best
in the context of Ito processes (1.1).

(1.6) Y w < [RFAS

A few words about the organization of the paper are in order. In the
next section we provide the proof of the inequality . We will rewrite the
estimate in a slightly different form and study it with the use of Burkholder’s
technique: the inequality will be extracted from the existence of a certain
special function. Section 3 is devoted to the sharpness of : we will con-
struct appropriate examples.

2. Proof of Theorem The bound (/1.6)) will be deduced from the
following auxiliary fact.

THEOREM 2.1. Let o € [0,1]. Suppose that X is a nonnegative sub-
martingale satisfying || X ||oo < 1, and let Y be a semimartingale which is

a-subordinate to X. Then for any A > 0 and t > 0,

2(a+1)2

2.1 El|Y:]—X—
(2.) (-2 - 2ot

NI <0
The proof of this inequality will use Burkholder’s method. Let .S denote
the strip [0,1] x R, and consider the following four subsets:
Dy ={(z,y) € S:aw+yl <1},
Dy={(z,y)€S:2+R2a+1)"' >y > —z+1},
Ds={(z,y) € S:a+lyl <1z <ala+1)7"},
Dy =S\ (D1 UDsyU Ds).
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Introduce the function U : S — R by the following formulas. If (z,y) € Dy,
set U(z,y) = 0. If (z,y) € Dy, let

2(04—1—1)2‘ z+yl—1

Ulz,y) =+ |yl —1-— .
(z,9) g 2a+1  —z+ |yl +1

On the sets D3 and Dy, the definition is a little more complicated. For
(z,y) € D3, we let U(x,y) be

3o+ 2
20+ 1

20+ 1
9l — az - +<a+1>exp[

] (m+|y!1)} (er

2a+1>'

Finally, on Dy, U(x,y) is given by

200+ 1 1
1 - - - 1- ).
+ (a+ )exp[ a—l—l( x + |yl 2a+1)}( x)

3a+ 2
20+ 1

lyl — azx

It is not difficult to check that U is continuous on S\ {(1,0)}; it is even of
class C! in the interior of S\ {(x,%) : z + |y| = 1}. The key property of U
is studied in the following lemma.

LEMMA 2.2. The function U is concave along any line segment of slope
k € [-1,1], contained in S.

Proof. For any fixed z € [0,1] and y € R, consider the function G =
Gyt U(z+t,y+tk), defined on [—z,1 — z]. We need to show that G
is concave. To accomplish this, we will first check that G”(t) < 0 for those ¢
for which (z+t, y+tk) belongs to the interior of Dy, Dg, D3 or D4. Note that

vy k() =Gy £(0), so we may assume ¢ = 0 in this desired inequality.
If (x,y) belongs to DY, the interior of Dy, then G”(0) = 0. If (x,y) € D3,
then
8(a+1)%(1 — k)

which is nonpositive. This follows from the fact that |k| <1 and |y| > 1—|z|.
If (z,y) € D3, a little calculation shows that

G"(0) = (2a+1)exp [— 2;):11 (x+y|— 1)]

20+ 1 1 20+ 1 1
1+k —2 kL
x(1+ ){[a—l—l <x+2a—i—1> ]Jr a+1 <x+2a+1> }

This expression is again nonpositive, because

20+ 1 1 2 + 1 1
k<1, 22 <:c+ )—2g—1, ot <m+ >g1.

a+1 200+ 1 a+1 200+ 1
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Finally, if (x,y) belongs to the interior of Dy, then we derive that

+1 200+ 1
200+ 1 20+ 1
1—-k 1— - 2| — 1—-2)k <0
<a-nf 25 a0 -] - 250 -l <o,
since
2 1 2 1
k<1, 2T ln_a-2<-1, 2T lu_a<1

a+1 a+1

Recall that U is of class C! in the interior of S\ {(x,y) : = + |y| = 1}. So,
if the segment I = {(x + ¢,y + tk) : t € [—x,1 — x|} is entirely contained in
Do U D3 U Dy or entirely contained in Dy, then G is concave. Suppose that
this segment has nonempty intersection with both sets D; and Do UD3UDy.
Then there is ty such that

IND = {(x+t,y+tk) 1t e [—x,to]},
Iﬂ(DQUDgUD4) = {(m+t,y+tk) 1t e (to,l—x]},
so x + tg + |y + tok| = 1; by symmetry, we may assume that y + tok > 0.
The function U vanishes on I N D; and is concave on I N (Dy U D3 U Dy).

Thus, we will be done if we show that G'(tp+) < 0. We derive directly
that

—(14+k)(2a+1)(x +to) if v +t) < a2a+1)71
G (to+) = 1+k o? . _1

and this is clearly nonpositive. m

The next property we will need is the monotonicity along line segments
of slope +a. It is convenient to formulate it in the language of the functions

G,y defined above.
LEMMA 2.3. For any y € R, the functions Goy +o are nonincreasing.

Proof. It suffices to focus on the function Gy q, since Goy,—o = Go,—y,a
for all y and «a. Since a € [0, 1], the function G is concave, as we have
shown above, and hence it is enough to check that the right-hand derivative

0.y.0(0+) is nonpositive. A direct calculation shows that

0 if y>—1,

’ _ 2 1
G07y,a(0+) - —2a |:1 — exp (— ;:_1 (—y — 1)):| ify <—1

is nonpositive. This yields the assertion. m
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In our considerations below, we will actually need to work with “stretched”
versions of U. Define a family (UM),>¢ of functions on S by

— o >
o gy = { VM=) b=
0 otherwise.

It is easy to see that for each A > 0, the function U inherits the properties
studied in the above two lemmas: it is concave along line segments of slope
belonging to [—1, 1], and nonincreasing along the line segments of slope +a.
We will require the following majorizations.

LEMMA 2.4. Let A > 0 be a fized parameter.
(i) For any (z,y) € S satisfying |y| < x we have
(2.2) UM (z,y) <0.
(ii) For any (z,y) € S we have

« 2
(23 O = (1= A= 2t o

(iii) There is a constant C' depending only on o and \ such that
(24) UM (@,y)| <yl +C  for all (z,y) € S.

Proof. (i) We know from the proof of Lemma [2.2| that the function ¢ —
U (tx, ty) is concave. It remains to note that this function vanishes for
small values of ¢.

(ii) The dependence of both sides on y is through |y| — A, so we may
assume that A = 0 (and hence UM = U). For any y € R, the function
x +— U(x,y) is concave. Therefore, it is enough to check the majorization
for x = 0 and = = 1 only. Furthermore, since U(x,y) = U(x, —y), we may
assume that y > 0. If z = 0 and y < 1, then U(z,y) = 0, while the right-
hand side of is nonpositive. If z = 0 and y € (1,2(a + 1)?/(2a + 1)),
then U(x,y) > 0 and the right-hand side of is negative. If z = 0 and
y > 2(a +1)%/(2a + 1), then the majorization is equivalent to

a+1 200 + 1
p[— (y—lﬂzo,

ex
20041 a+1
which is obvious. If z =1 and y > 0, then (2.3)) is an equality.
(iii) This is evident. m
Recall the following well-known fact (cf. [7]). For any semimartingale X
there is a unique continuous local martingale part X°¢ satisfying

(X, X]p = [ Xo|* + [X°, X + Y |AX,[?

0<s<t
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for all ¢t > 0 (here AXy = X; — X,_ is the jump of X at time s > 0).
Moreover, [X¢, X¢| = [X, X]¢ is the pathwise continuous part of [X, X]. We
will also need Lemma 1 from [I4], which is as follows.

LEMMA 2.5. If X and Y are semimartingales, then Y 1is differentially
subordinate to X if and only if Y€ is differentially subordinate to X¢ and
for any s > 0 we have

AV < [AX.
Proof of Theorem [2.1. We split the reasoning into three separate parts.

STEP 1: A mollification argument. Let € € (0,1/2) and 6 € (0, ] be fixed
numbers, and suppose that g : R? — [0, 00) is a C°° function, supported on
the unit ball of R? and satisfying gz g = 1. We introduce the function
U% : S — R by the convolution

UMz, y) = S U™ (e 4+ 0u+ (1 —2¢e)z, (1 - 2)y + 6v)g(u, v) dudv.
[_171]2

Of course, this function is of class C* and inherits the properties of UMW it
is nonincreasing along the lines of slope +a:

(2.5) UMz, y) + Uz, y)| <0, (z,y) € S°,
and concave along the lines of slope k € [—1, 1]:

5 5 5\ 2 0
(2.6) Upi (m,y) £ 2057 (2, 9)k + Uy (z,9)k” <0, (z,y) € 5%

STEP 2: An application of It6’s formula. Let M, N, A, B be the local
martingale and finite variation parts of X and Y, coming from the Doob—
Meyer decompositions ([1.5)). It follows from the general theory of stochastic
integration that the process

t ¢
S S
(§ U Yooy addy+ § UPMX- YooY an,)
0+ 0+ -
is a local martingale. Let (0,,)n,>0 denote the corresponding localizing se-
quence of stopping times. Since the function U%?* is of class C°, we are
allowed to apply Itd’s formula to (U (X, as Yo, Aat))e>0:

(2.7) UM Xy pts Yount) = UMNa,y) + 11 + Lo + I3 /2 + Iy,
where
on N\t on N\t
L= | UMX. Yoo )dMo+ | UPMX.-,Yeo)dNs,
0+ 0+
on N\t on N\t

L= | UNX, Y. )dA,+ | UPMNX.- Y, )dB,,
0+ 0+
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on/A\t
L= | UXNXe-,Yeo)d[X, XS
0+
on/\t on N\t
+ 2 S Ug;j\(XS—v }/S—) d[X’ Y]g + S Ug{g)\(XS—7 YS—) d[Y’ Y]gu
0+ 0+
L= Y [UMX,Ys) - UM (X, Ye)
0<s<onpAt

— (VUM X, Ysn), (AX,, AY))].

The term I; is a martingale (as a function of ¢), so EI; = 0. By the
a-subordination of ¥ to X and ([2.5)), we have

on /Nt on N\t
L< | UMNX Yo )dAc+ | [UPNX.-, Ve )] d| Bl
0+ 0+
on/\t
< | UMK, Yeo) 4+ aUPN (X, Ve )] dAs <0
0+

The term I3 is also nonpositive, which is due to (2.6) and the Kunita—
Watanabe inequality (cf. [9]). Indeed, for 0 < s¢p < s; < ¢ we have

[X07Yc]0n/\81 < ([Xc7Xc]an/\s1)1/2([yc,Yc]an/\s1)1/2

on/\So on\So onASo
and, by the differential subordination of Y to X¢ (see Lemma , we get
[Ye,yegnast < [X¢, X€)gnast. Combining these two observations with (2-6)
gives
Upid (Xsg—s Yoo ) [X X0R% + 2005 (X, Yao o) [XE, Y ITIAS

+ UZ%)‘(XSO_, Y;O_)[ch YC]Un/\Sl < 07

on/\So

which implies I3 < 0, by the approximation of integrals by Riemann sums.
Finally, I, < 0 because of the concavity of the function U%* along the lines
of slope k € [—1, 1] and the fact that |AY;| < |AX|, in virtue of differential
subordination. Consequently, combining all the above facts with and
taking the expectation of both sides yields

EUM Xy nts Yourt) < BU (2,y) = U, ).

STEP 3: Limiting arguments. Let § — 0 and n — co. The function U%*
is continuous, so U (x,y) — UM (e + (1 — 2¢)x, (1 — 2¢)y) and

UM Xgonts Yoont) = UM (e 4+ (1 — 26)X,, (1 — 22)Y;)
almost surely. Next, note that (2.4]) yields

UM ( Xty Youne)| < (1= 26)[Yonel +6+C < sup [Yi|+C + 1.
0<s<t
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The random variable supy< < |Ys| is integrable (cf. [12]), so by Lebesgue’s
dominated convergence theorem, we obtain

EUW (e + (1 — 26) Xy, (1 — 26)Y;) < UN (e 4 (1 — 26)z, (1 — 2¢)y).
This, by , gives

2
(10— 2% - A= 22 ) (@ - 22

<UW(e+ (1 —20)z, (1 —2e)y).
Now we let ¢ — 0 and apply Lebesgue’s dominated convergence theorem
again to get

2(a+1)2

A
(i -2 = 20 Y vy () < UV ) <0

where the last inequality is due to (2.2)). This is precisely the claim. =

Now we will show how to deduce the inequality (1.6). Fix o, X, Y as in
the statement of Theorem and let t > 0, s € (0, 1]. We have

1

Y, (s) = Sup{s S Y| dP: Ae F,P(A) = s}.
A

Let A > 0 be the smallest number such that P(|Y;| > ) < s < P(|Y;| > A).

Clearly, the above supremum is attained for A satisfying {|Y;| > \} C A C

{|Yy] > A} and the required condition P(A) = s. By the definition of a

nonincreasing rearrangement, we get Y;*(s) = A. So,

Y7 (s) — ¥ () = - [ (il — \) P

A
! 2(a+1)2
< ——E(Y:] - vy < 2t 1)”
= [P(’YH > )\) (’ t’ )\)X()\,oo)(‘ t‘) = a1

where the latter inequality is due to (2.1)). Since s was arbitrary, the estimate

(1.6]) follows.

3. Sharpness. Now we will show that the constant 2(a+1)2?/(2a+1) is
the best possible even for the class of Ité processes . It will be convenient
for us to work with discrete-time processes. Suppose that the probability
space (£2,F,P) is equipped with a filtration (Fy,)n=0.1,... Let f = (fn)n>0
be an adapted, nonnegative submartingale with the corresponding difference
sequence df = (dfy)n>0 defined by dfy = fo and df, = fr—fn—1,n=1,2,....
Let g = (gn)n>0 be an adapted sequence of integrable random variables. If we
treat f and g as continuous-time processes (via f; = Tt 9t = 9pe)s t > 0),
then it is easy to check that g is a-subordinate to f if and only if for any
n > 0 we have

|dgn| < |dfn|7 E(‘dgn+1| |]:n) < aE(dfn+l|]:n)

9
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We will show that the constant 2(a + 1)?/(2a + 1) is optimal even for pro-
cesses induced by the discrete-time setting. Then the passage to Itd pro-
cesses is done by appropriate embedding into Brownian motion (see [13] for
details).

Let a € (0,1], 6 € (0,/(2a+ 1)) be fixed. Consider the two-dimensional
Markov family (f,g) with the transition function uniquely determined by
the following conditions:

(i) The state (1/2,1/2) leads to (1,0) or to (0, 1) with probabilities 1/2.

(ii) The state (a/(2a+ 1), (a4 1)/(2a + 1)) leads to (1,0) or to (0,1)
with probabilities a/(2ac+ 1) and (a + 1)/(2a + 1), respectively.

(iii) For any y > (a+1)/(2ac+ 1) + 26, the state (a/(2a+1),y) leads to

(o/(2a04+1)=0d,y—0) or to (1,y+(a+1)/(2c+1)) with probabilities

a+1 (20 +1)6
an :
a+1+ (2a+1)8 a+1+ (2a+1)6

respectively.

(iv) For any y > (a+1)/(2a + 1) 4 29, the state (o/(2a+1) —d,y —0)
leads to (0,y + a/(2a + 1) — 26) or to (a/(2a + 1),y — 26) with
probabilities (2a 4+ 1)d/av and 1 — (2ae + 1)J/«, respectively.

(v) For any y > 1, the state (0,y) leads to (20/(a+1),y+2ad/(a+1)).

(vi) For any y > 1, the state (20/(a+ 1),y + 2ad/(a + 1)) leads to
(0,y+429) or to (a/(2a+1),y+ 25 — a/(2a + 1)) with probabilities
25/a and 1 — 26/, respectively.

(vii) All the remaining states are absorbing.

It is easy to check that if the process (f,g) starts from (1/2,1/2), then f
and g are nonnegative submartingales such that g is a-subordinate to f.
By the escape bounds of Burkholder [4], g converges almost surely to
a limit goo; it is easy to see that this random variable takes values in
{0} U[(2a+2)/(2a 4+ 1),00). The further analysis splits into three parts.

STEP 1. We will first derive the probability that (f,g) ever visits the
point (1,0). To use the above Markov description, we extend this problem
to an arbitrary starting point: for any (z,y) € R2, define

P(x,y) = P((f, 9) ever visits (1,0) | (fo,90) = (#,9))-

For notational convenience, introduce the functions A(y) = P(a/(2a+1),y)
and B(y) = P(0,y + o/(2a+ 1)). By (iii), we derive that

a+1 o
1 Aly) = P —0,y—946
(3:-1) ) a+1+2a+1)0 <2a+1 Y >
(2ac+1)6 a+1
Pl1 .
atlt(2ati) (1 +2a+1)
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But the state (1,y + (o +1)/(2a + 1)) is absorbing, so the second term on
the right is equal to zero. To handle the first term, we exploit the condi-
tion (iv):
19(20[0_‘F 5y - 5) - (2‘)‘;1)53(;/ —26) + <1 - (2a2:1)5>/1(y —26).
This, combined with the preceding equality, yields
(a+1)(a—902a+1))
ala+1+ (2o +1)6)
(a+1)(2a+1)d

ala+1+ (2o +1)6)

Next, we use (v) and (vi) to obtain
26 @ 200
(3:3) B(y):P<a—|—1’y+2a—|—1+a+1>
20(2a+1) ala+1) —26(2a+ 1)
- ala+1) ala+1)
Now, multiply the equation by
(a+1)(2a+3) + (a+1)y/2a+1)2 —82a + 1)5
4+ 14 (200 +1)9)

and add it to . After some calculations, one obtains the identity

(3.4) Y1A(Y — 20) — 72 B(y — 20) = r(m1A(y) — 72B(v))
with

(3.2) Aly) =

Ay — 20)

B(y — 29).

Aly) + B(y).

A=

(a+1)(a—d2a+1)) 5\ (a+1)2a+ 1)

M= e+ 1+2a+1)d) P77 alatl+ 2at1)d)

and
(a(a+1) =20 2a+ DA)(a+ 1+ (2a + 1)0)
(a+1)2(a—0(2a 4 1))
§(2a + 1)(=2X + 20+ 1) + O(6?)
(a+1)(a—562a+1) '
The reason for the above complicated choice for A is that it guarantees that
on both sides of we have the same coefficients of the function A and

the same coeflicients of B. This fact enables the use of induction: we deduce
that for IV,

MA(y —26) — 2By — 20) = N [11 A(y + 25(N — 1)) — 32 B(y + 25(N — 1))].

However, when 6 — 0, then A — « + 1; hence r is smaller than 1 if §
is sufficiently close to 0. Furthermore, directly from the definition it can
be seen that the functions A and B take values in [0,1]. Thus, letting

T =

=1+
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N — oo yields 71 A(y — 20) — v2B(y — 26) = 0 and hence, in particu-

lar,
a—+1 a+1
A — B .
m (2a—|—1) 72 <2a—|—1>

On the other hand, condition (ii) implies

1 1 1
A o+ __ @ P(170)+a+ B o+
20+ 1 20+1 20+ 1 20+1
o a+1 a+1
= B .
2a+1+2a+1 <2a+1)

Combining the latter two equations gives

B a+l) « Y2 a+l -1
2a+1) 2a+1\y1 2a+1
and hence, by (i),

11 1 1 (a+1
: P(=,-) =P °B
(3:5) <2’2> L0 +35 <2a—|—1)
_1+L Y2 a+l -1
2 2Qa+D)\m 2a+1)

STEP 2. The second part of the analysis concerns the first norm of the
sequence ¢, i.e., the value of Eg.,, where g is the pointwise limit of g. As
previously, we consider the more general setting in which the process (f, g)
starts from an arbitrary point (z,%) in R? and define

E(z,y) = Elgeo | (fo, 90) = (2, y)]-

With a slight abuse of notation (but, hopefully, for the convenience of the
reader), set A(y) = E(a/(2a+1),y) and B(y) = E(0,y + a/(2a + 1)), in
analogy to the above considerations. Then all the above calculations remain

valid, with a small change: the term P (1,y + 20&111) vanished in (3.1]), now

the value of E(l, Y+ 20;111) is equal to y + 2%‘:11. So, the analogue of (3.2) is

(a+1)(a—9d2a+1))
ala+1+ (2o +1)0)
(a+1)(2a+ 1)

ala+1+ (20 +1)0)

(3.6) Aly) = Ay — 29)

B(y — 26)

(2a+1)6 N
atl+atno\V T 2ar1)
and the equality (3.3) holds true. Multiply (3.3)) by A (the same as above)
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and add it to (3.6]). After some computations, one obtains
N1 A(y — 26) — 2 B(y — 26)

=r(mA(y) —72B(y)) -

(20 +1)0 <y a+1>

a+1+(2a+1)0 200 + 1
where 1, 79, r are as above. Hence, by induction,
MA(y — 26) — 72 B(y — 20)
=V (mAly +2(N - 1)5) —2B(y +2(N - 1)d))

(2a+1)8 a+1
2ko )
a1+ 204—1—1(5 y+ +204—1—1

Now, if ¢ is sufficiently close to zero, then r is smaller than 1. Since A and
B have linear growth at infinity, letting N — oo above yields

1Ay —20) — 72 B(y — 20)

- ks
Ta+l+(a+1)se’ Yt o

(2a+1)4 a+1 1 20
y+ + 50>
Ca+1+(2a+1)8 2a+1)1—7r (1—r)
and hence in particular
a+1 a+1
A — v B
n <2a+1) 72 <2a+1>

(2ac+1)6 20+2) 1 20
— 20 .
a+1+ (2a+1)0 +2o¢+1 1—7"+(1—7“)2

On the other hand, condition (ii) gives

1 1 1
A o+ __« E(l,O)—l—CH_ B o+
20+ 1 20+ 1 20+ 1 20+ 1

_a+1l B a+1
S 2a+1 \2a+1)°
which combined with the preceding identity yields
a+1 (2a+1)0 a+1 !
B == 1= Y2
200 + 1 at+1+2a+1)0\2a+1

200+2)\ 1 20
. [(26+2a+1>1—r+ (1—7")2]'
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Hence by (i),

11\ 1 1 _[a+1
. E(=,Z) =B _B
(37) <2’2> B0+ (m1+1>

(200 +1)8 a+1 -1
= - 71— 72
20a+14+ (2a+1)0) \2a0+1

" 25+2o¢+2 1 . 26
2+1)1—7r (1—7r)2]

STEP 3. Now we carry out the final limiting procedure: we let § — 0. It
is not difficult to check that then the expressions on the right of (3.5) and
(3.7) simplify considerably: we obtain

11\ 1 1 11\ a+1
Pl :)=s-v—— ' E(:- .
<T2>%2+4m+n’ (2’2>_> 2

So, if § is sufficiently small and n is sufficiently large, then Eg,, can be made
arbitrarily close to (o + 1)/2, and the probability that g, is positive can be
made arbitrarily close to 1 —(1/24+1/(4(a+1))) = (2a+1)/(4a+4). Now
take t > (2a + 1)/(4a + 4) and € > 0. By the very definition of g}, the
preceding analysis gives g (t) < e provided 0 is sufficiently small. On the
other hand,

1
g (t) = sup{t S gndP:Ac F,P(A) = t},
A

But if  is small and n is large, then g, vanishes on a set of probability
larger than 1 — ¢, so g**(t) = t'Eg,. Thus, the norm ||g,|w can be made
arbitrarily close to

da+4 a+1  2a+1)?
20+1 2 2a+1°
This proves the desired optimality of the constant.
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