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Reciprocal Stern Polynomials
by

A. SCHINZEL

Summary. A partial answer is given to a problem of Ulas (2011), asking when the nth
Stern polynomial is reciprocal.

Let Bn(t) be defined by the formulae

B1(t) = 1, B2n(t) = tBn(t), B2n+1(t) = Bn(t) +Bn+1(t).

Klavžar, Milutinović and Petr [2] have called Bn(t) the nth Stern polynomial
and Ulas [4] asked when Bn(t) is reciprocal, i.e.

(1) B∗n(t) = tdegBnBn(t−1) = Bn(t).

As a partial answer we shall prove

Theorem 1. If n has binary expansion

(2) n =
a1

1
a2

0 . . .
ak
1 (k odd, ai ≥ 1 for all 1 ≤ i ≤ k),

and l1, . . . , lj are the lengths of blocks of 1 occurring in the sequence
a2, . . . , ak, then (1) holds if and only if, identically in t,

(3)

bk/2c∑
µ=0

∑′ Ta1 · · ·Tak
Tai1 · · ·Taiµ

( µ∏
λ=1

taiλ

Taiλ+1

− td
µ∏
λ=1

taiλ+1−2

Taiλ+1

)
= 0,

where
∑′ is taken over all integer vectors [i1, . . . , iµ] such that

(4) 1 ≤ i1 < · · · < iµ < k, iλ+1 ≥ iλ + 2 (1 ≤ λ < µ),

and where

Ta =
ta − 1

t− 1
, d =

⌊
l1 + 1

2

⌋
+ · · ·+

⌊
lj + 1

2

⌋
.
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Corollary. If n has binary expansion (2) and

(5) ai+1 = ai + 2 (1 ≤ i < k),

then (1) holds.

Theorem 2. If n has binary expansion (2) and for all pairs 1 ≤ i <
j ≤ k,
(6) ai + aj > max{a1, . . . , ak}+ 2,

then (1) is equivalent to (4).

The assumption (6) in Theorem 2 is not superfluous, as the two infinite
sequences of odd n satisfying (1) discovered by M. Gawron [1] show, as also
does the following

Theorem 3. For k ≤ 3, (1) holds if and only if either k = 1, or k = 3
and (4) holds, or a1 = a − 1, a2 = 2a, a3 = a + 1 (a an integer > 1), or
a2 = 1, a3 = 2, or a1 = a2 − 1 (a2 > 1), a3 = 1.

Proof of Theorem 1. It follows from [3, Theorem 1 and Lemma 5] that
if (2) holds, then

(7) Bn(t) = Ta1 · · ·Tak
(

1 +

bk/2c∑
µ=1

∑′ 1

Tai1· · ·Taıµ

µ∏
λ=1

taiλ

Taiλ+1

)
.

On the other hand, by [3, Theorem 2] and (2),

degBn = a1 + · · ·+ ak − k + d = deg Ta1 · · ·Tak + d.

Also

Ta(t
−1) = t1−aTa(t),

hence by (1),

(8) B∗n(t) = tdTa1 · · ·Tak
(

1 +

bk/2c∑
µ=1

1

Tai1· · ·Taiµ

µ∏
λ=1

taiλ+1
−2

Taiλ+1

)
.

Theorem 1 follows from (7) and (8).

Proof of Corollary. If ai+1 − ai = 2 (1 ≤ i < k), then d = 0 and the
Corollary follows from Theorem 1.

For the proof of Theorem 2 we need two lemmas.

Lemma 1. If k ≥ 2, ai (1 ≤ i ≤ k) is a sequence of positive integers
and

(9)

k−1∑
i=1

(
1

tai
− 1

tai+1−2

)
= 0,
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identically in t, then

{a2, . . . , ak−1} = {a1 + 2, . . . , a1 + 2(k − 2)},(10)

ak = a1 + 2(k − 1).(11)

Proof. Differentiating (9) and substituting afterwards t = 1 we obtain

k−1∑
i=1

(ai − ai+1 + 2) = 0,

thus (11) holds. Substituting in (9) we obtain

k−1∑
i=1

t2 − 1

tai+1
=

k−1∑
i=1

(
1

tai
− 1

tai+1

)
=

1

ta1
− 1

tak

=
t2(k−1) − 1

ta1+2(k−1) =
(t2 − 1)(t2(k−2) + t2(k−3) + · · ·+ 1)

ta1+2(k−1) ,

and on dividing both sides by t2 − 1,

k−1∑
i=1

1

tai+1
=

k−1∑
i=1

1

ta1+2i
.

Substituting t = u−1 we obtain an identity for polynomials which im-
plies (10).

Lemma 2. If (6) holds, then for any 2 ≤ µ < k integers iλ (1 ≤ λ ≤ µ)
satisfying (4) we have

(12) ai1 + · · ·+ aiµ ≥
µ

2

(
max{a1, . . . , ak}+ 3

)
.

Proof. By (6) for any positive integers λ < ν ≤ µ we have

aiλ + aiν ≥ max{a1, . . . , ak}+ 3.

Summing over all pairs λ, ν in question we obtain

(µ− 1)(ai1 + · · ·+ aiµ) ≥
(
µ

2

)
(max{a1, . . . , ak}+ 3),

which implies (12).

Proof of Theorem 2. Let us write the sum S occurring in (3) in the form

S =

bk/2c∑
µ=0

Sµ.

If (6) holds, we have ai > 2 for all i ≤ k, thus d = 0, S0 = 0 and by
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Theorem 1 and Lemma 2, for all µ ≥ 2,

deg(t−1)k−2Sµ≤ a1+ · · ·+ak−2+2µ−min∗min
(
−2µ+

µ∑
λ=1

aiλ+1,

µ∑
λ=1

aiλ

)
≤ max

(
a1 + · · ·+ ak − 2 + 2µ− µ

2
(max{a1, . . . , ak} − 3),

a1 + · · ·+ ak − 2−max{a1, . . . , ak} − 3

)
< a1 + · · ·+ ak −max{a1, . . . , ak},

where min∗ is taken over all integer vectors [i1, . . . , iµ] satisfying (4).
On the other hand, by (6), the sum of all terms of (t−1)k−2S1 of degree

≥ a1 + · · ·+ ak −max{a1, . . . , ak} equals
k−1∑
i=1

ta1+···+ak−ai+1 −
k−1∑
i=1

ai+2≤max{a1,...,ak}

ta1+···+ak−2−ai .

Substituting t = 1 leads by Theorem 1 to the conclusion that for all i < k
we have ai + 2 ≤ max{a1, . . . , ak}, and that

k−1∑
i=1

(
1

tai+1
− 1

tai+2

)
= 0.

By Lemma 1 we obtain

ak = a1 + 2(k − 1),

{a2, . . . , ak−1} = {a1 + 2, . . . , a1 + 2(k − 2)},

s =

k∑
i=1

ai = k(a1 + k − 1).

Therefore, we have

(t− 1)k−2S1 = −
k−1∑
i=1

k∑
h=1

h6=i,i+1

ts−ai+1−ah

+

k−1∑
i=1

k∑
h=1

h6=i,i+1

ts−2−ai−ah +O(ts−3a1−6),

(t− 1)k−2S2 = (t− 1)2
( ∑
1<i+1<h<k

ts−ai+1−ah+1

−
∑

1<i+1<h<k

ts−4−ah−ak
)

+O(ts−3a1+4),

(t− 1)k−2Sµ = O(ts−3a1−8) (µ ≥ 3).
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We shall show by induction on i < k that

(13) ai+1 = a1 + 2i.

Suppose that
aj = ai + 2, j > 2.

Then (t− 1)k−2S1 contains the term −ts−2a1−2 (for i = 1, h = i− 1) which
does not cancel with any other term of (t−1)k−2S1 since 2+ai+ah ≤ 2ai+2
is impossible for i 6= h. Thus

a2 = a1 + 2.

Assume now that ai+1 = ai + 2i for i ≤ l ≤ k − 3, l ≥ 1. Then

(t− 1)k−2S1 = −
k−1∑
i=l+1

k∑
h=1

h6=i,i+1

ts−ai+1−ah

+

k−1∑
i=l+1

k∑
h=1

h6=i,i+1

ts−2−ai−ah +O(ts−3a1−6),

(t− 1)k−2S2 = (t− 1)2
( ∑
1<i+1<h<k

h>l

ts−ai+1−ah+1

−
∑

1<i+1<h<k
h>l

ts−4−ai−ah
)

+O(ts−3a1+4).

Suppose that
aj = a1 + 2l, j > l + 1.

Then (t− 1)k−2S2 contains the term −2ts−(2a1+2l+1) (for i = 1, h = j − 1),
which does not cancel any other term of (t − 1)k−2S. Indeed, we have
2a1 + 2l + 1 < 3a1 + 2 and the terms of (t−1)k−2S1 of degree ≥ s−(3a1+2)
are of the form ts−2m, m integer. So are also the terms of (t − 1)k−2S2 of
degree ≥ s− (3a1 + 2) except the terms of

−2t
( ∑
1<i+1<h<k

h>l

ts−ai+1−ah+1 −
∑

1<i+1<h<k
h>l

ts−4−ai−ah
)
.

However, for h > l we have

3 + ai + ah > 2a1 + 2l + 1.

This proves (13), and (4) follows.

For the proof of Theorem 3 we need

Lemma 3. If TαTβ = TγTδ, where α, β, γ, δ ∈ N \ {0}, α ≤ β, γ ≤ δ,
then

α = γ, β = δ.
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Proof. Assume that β > δ. Then Tβ(ζβ) = 0, where β is a positive βth
root of unity, but Tγ(ζβ) 6= 0, Tδ(ζβ) 6= 0, a contradiction. Thus β ≤ δ and
by symmetry β = δ. Hence Tα = Tγ and α = γ.

Proof of Theorem 3. (1) holds obviously for k = 1. For k = 3 we shall
consider successively the following cases:

A. a2 ≥ 2, a3 ≥ 2,
B. a2 = 1, a3 ≥ 2,
C. a2 = 2, a3 = 1,
D. a2 = a3 = 1.

A. Here we have d = 0. By Theorem 1 the identity (1) is equivalent to
the identity

Ta3(ta1 − ta2−2) + Ta1(ta2 − ta3−2) = 0,

thus to

εtmin{a1,a2−2}Ta3T|a1−a2+2| + ηtmin{a2,a3−2}Ta1T|a2−a3+2| = 0,

where

(14) ε = sgn(a1 − a2 + 2), η = sgn(a2 − a3 + 2).

Hence, there are the following possibilities: either

1. ε = η = 0, so a2 = a1 + 2, a3 = a2 + 2, and (4) holds; or
2. min{a1, a2 − 2} = min{a2, a3 − 2},

(15) ε = −η 6= 0,

and by Lemma 3 either

(16) a3 = a1, |a1 − a2 + 2| = |a3 − a2 + 2|,

or

(17) a3 = |a2 − a3 + 2|, a1 = |a1 − a2 + 2|.

The formulae (16) give a1 = a2 = a3, contrary to (14) and (15). We
cannot have a3 = a3 − a2 − 2, thus from (17) we obtain a3 = a2 − a3 + 2,
from (14) η = 1, from (15) ε = −1 and from (17) a1 = a2 − a1 − 2. Taking
a2 = 2a, we obtain a1 = a− 1, a3 = a+ 1 (with integer a > 1).

B. Here we have d = 1. By Theorem 1 the identity (1) is equivalent to
the identity

Ta1Ta3(1− t) + Ta3(ta1 − 1) + Ta1(t− ta3−1) = 0,

hence

Ta1(t− ta3−1) = 0, a3 = 2.



Reciprocal Stern Polynomials 147

C. Here we have d = 1. By Theorem 1 the identity (1) is equivalent to
the identity

Ta1Ta2(1− t) + ta1 − ta2−1 + Ta1(ta2 − 1) = 0,

hence
ta1 − ta2−1 = 0, a1 = a2 − 1.

D. Here we have d = 1. By Theorem 1 the identity (1) is equivalent to
the identity

Ta1(1− t) + ta1 − 1 + Ta1(t− 1) = 0,

hence
ta1 = 1, impossible.
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