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NUMBER THEORY

Reciprocal Stern Polynomials
by
A. SCHINZEL

Summary. A partial answer is given to a problem of Ulas (2011), asking when the nth
Stern polynomial is reciprocal.

Let B, (t) be defined by the formulae
Bi(t) =1, Ban(t) = tBu(t), Bant1(t) = Ba(t) + Bnya ().

Klavzar, Milutinovi¢ and Petr [2] have called B,,(t) the nth Stern polynomial
and Ulas [4] asked when B, (t) is reciprocal, i.e.

(1) Bi(t) = t%8 BB (171) = B, (t).

n

As a partial answer we shall prove

THEOREM 1. If n has binary expansion

ai a2 ag
(2) n=10...1 (k odd, a; > 1 for all 1 <i<k),
and ly,...,l; are the lengths of blocks of 1 occurring in the sequence
as,...,ag, then holds if and only if, identically in t,
Lk/2] 7 ; B ag o q—2
1 Ty Ty 1% a7t
@ Ly () -0
= To, -+ Tay, fu Tas, 11 bl Toiy 1
where Y' is taken over all integer vectors [iy, ..., i, such that
(4) I1<ip < <ip<k, ixpr>ix+2(1<A<p),
and where
@1 Lh+1 Li+1
T, = d= J .
S e R
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COROLLARY. If n has binary expansion (2)) and
(5) Qiv1 = a; + 2 (1§i<k),
then holds.

THEOREM 2. If n has binary expansion and for all pairs 1 < i <
J<k,

(6) a; + a; > max{ai,...,ar} +2,
then s equivalent to .

The assumption @ in Theorem [2[is not superfluous, as the two infinite
sequences of odd n satisfying discovered by M. Gawron [I] show, as also
does the following

THEOREM 3. For k < 3, holds if and only if either k =1, or k=3
and holds, or a; = a — 1, ag = 2a, a3 = a+ 1 (a an integer > 1), or
ay=1,a3=2, ora; =az—1 (aa > 1), a3 = 1.

Proof of Theorem [1]. It follows from [3, Theorem 1 and Lemma 5] that
if holds, then

Lk/2]

M Bu)=T,-- ak<1+zz e )

11 alp‘ A=1 aik+l
On the other hand, by [3, Theorem 2] and ( .,
deg B, =a1+ - +ap —k+d=degTy, ---Tg, +d.

Also
Tt = t179T, (1),

hence by ,
[k/2] Iz

8)  Bi(t) =T, .- ak<1+z - L Htaw?).

7,1 azu A=1 Tai>\+1

Theorem (1| follows from and . n

Proof of Corollary. If aj4+1 —a; = 2 (1 < i < k), then d = 0 and the
Corollary follows from Theorem [1} m

For the proof of Theorem [2] we need two lemmas.

LEMMA 1. If k > 2, a; (1 < i < k) is a sequence of positive integers
and

k—1 1 1
) > (@~ gmer) =0

1=
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identically in t, then

(10) {a, . ara} = {ar + 2. +2(k — 2)},
(11) ar = ai + 2(k — 1).
Proof. Differentiating @ and substituting afterwards ¢t = 1 we obtain
k—1
Z(ai — a1 +2) =0,
i=1

thus holds. Substituting in @D we obtain

k—1

—-1 11
Z tait1 Z tai  paiv1 ) gar gak

=1

t2(k 1) _ 1 (t o 1)(t2(k;—2) + t2(k‘—3) et 1)

= jat2(k-1) rar+2(k—1) ’

and on dividing both sides by 2 -1,

1
1041 = Z ta1+2l :
Substituting ¢ = w~! we obtain an identity for polynomials which im-
plies . "

LEMMA 2. If (6) holds, then for any 2 < p < k integers iy (1 <X < p)
satisfying we have

Mw

1

.
Il

(12) a¢1+~-+aiuzg(max{al,...,ak}+3).
Proof. By @ for any positive integers A < v < p we have
a;, + a;, > max{ai,...,ap} + 3.

Summing over all pairs A, v in question we obtain
(0 —1)(aiy + - +a;,) > <g> (max{ai,...,ar} +3),

which implies . "
Proof of Theorem @ Let us write the sum S occurring in in the form
[k/2]

S=> S
n=0

If @ holds, we have a; > 2 for all i« < k, thus d = 0, Sgp = 0 and by
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Theorem [T and Lemma [2], for all u > 2,

b 1
deg(t—l)k_2SM <ai+---+ap—2+2pu—min* min(—2,u +Z @iy 41, Z ah)
A=1 A=1

<max<a1—|—---+ak—2—|—2,u—g(max{al,...,ak}—ZS),

a1+...+ak—2—max{a1,...,ak}—3>

<ai+---+ap —max{ay,...,ar},
where min* is taken over all integer vectors [i1,...,14,] satisfying (4).
On the other hand, by (6]), the sum of all terms of (t —1)*725; of degree
>a;+ -+ ap — max{ay,...,ar} equals
k—1 k—1
Z tattag—aipr Z tarttag—2-a;

i=1 =1
a;+2<max{ai,...,ar}

Substituting ¢ = 1 leads by Theorem [1| to the conclusion that for all i < k
we have a; + 2 < max{ai,...,ar}, and that

k—1 1 1 B
Z tai+1 B tai+2 = 0.
i=1
By Lemmal [I] we obtain
ap = a1 —I-Q(k - 1),
{ag,...,ak_l} = {a1 +2,...,a1 +2(k$— 2)},

k

s:Zaizk(a1+k—1).
i=1
Therefore, we have

(t_1k2S Z Z $5Git1—an
=1

h;ﬁfzﬂ
+Z Z 5 2— alfah_i_O(ts 3a1— 6)

1 —

= h;ﬁz,z—i—l

R S I (D DI
1<i+1<h<k
o Z tS—4—ah—ak> +O(ts—3a1+4)’
1<i+1<h<k

(t— 125, = Ot 31 %) (1> 3).
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We shall show by induction on i < k that
(13) ai+1 = aj + 2¢.
Suppose that

aj=a;+2, j>2.
Then (¢t — 1)¥728; contains the term —t572%1~2 (for i = 1, h = i — 1) which
does not cancel with any other term of (t— 1)k_251 since 24a; +ap, < 2a;+2
is impossible for ¢ # h. Thus

as = ap + 2.
Assume now that a;41 = a; +2i fori <1 <k —3,1> 1. Then
k—1 k
(t—1F28 =- %" $s—air1—an
i=l+1 h=1
hi i1
k—1 k
+ Z Z ts—2—ai—ah + O(ts—Sal—G)’
i=l+1 h=1
i i+1
(125 = -1 Y e
1<i+1<h<k
h>1

- Z tsf4faifah> + O(t573a1+4).

1<i4+-1<h<k
h>1

Suppose that

aj=a1+2, j>I+1
Then (t — 1)¥725, contains the term —2¢5~(a1+2+1) (for j =1, h = j — 1),
which does not cancel any other term of (¢ — 1)¥=2S. Indeed, we have
2a1 + 21 + 1 < 3a; + 2 and the terms of (t—1)¥725 of degree > s—(3a1+42)
are of the form #*~2™ m integer. So are also the terms of (t — 1)¥=29, of
degree > s — (3a; + 2) except the terms of

—2t( Z $5T i1 —Ahy1 _ Z t5747a,~7ah) .

1<i+1<h<k 1<i+1<h<k
h>1 h>l1

However, for h > [ we have
34 a; +ap > 2a1 + 20+ 1.
This proves , and follows. =
For the proof of Theorem |3| we need

LEMMA 3. If T,T3 = T,T5, where o, 3,7,0 € N\ {0}, a < 5, v <6,

then
a =17, B =9.
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Proof. Assume that 3 > 0. Then Ts((g) = 0, where 3 is a positive Sth
root of unity, but T, (¢s) # 0, T5(¢g) # 0, a contradiction. Thus 8 < ¢ and
by symmetry 8 = 4. Hence T, =T, and a = . m

Proof of Theorem @ holds obviously for £ = 1. For k = 3 we shall
consider successively the following cases:

A. CLQZQ, (1322,

B. CLQZl,CLgZQ,

C. a2:2, a3:1,

D. as = az = 1.

A. Here we have d = 0. By Theorem |[1| the identity is equivalent to
the identity

Ty (89 — 19272) 4 T, (%2 — t%372) = 0,
thus to
€tmin{a1’a2_2}Ta3T|a1—a2+2| + ntmin{a%as_2}T611T|a2—a3+2| = O’

where
(14) e =sgn(ay —az +2), 1n=sgn(az —az+2).
Hence, there are the following possibilities: either

1. e=n=0,s0a2 =a; + 2, az3 = az + 2, and holds; or

2. min{a,as — 2} = min{ag, az — 2},
(15) e=-n#0,
and by Lemma [3] either
(16) as = aj, |a1—a2+2| :‘CL3—CL2+2‘,
or
(17) a3 =lag —as+2|, a;=la; —az+2|

The formulae give a1 = az = as, contrary to and . We
cannot have ag = ag — ag — 2, thus from we obtain a3 = az — a3 + 2,

from n =1, from ¢ = —1 and from a1 = ag — a; — 2. Taking

as = 2a, we obtain a; = a — 1, a3 = a + 1 (with integer a > 1).

B.

Here we have d = 1. By Theorem |1| the identity is equivalent to

the identity

hence

Ty Tos (1 — 1) + Ty (1% — 1) 4 Ty, (t — t371) = 0,

To (t—t="H =0, a3=2.
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C. Here we have d = 1. By Theorem [1| the identity is equivalent to
the identity

T Top(1 — ) + % — 271 4 T, (172 — 1) = 0,

hence
t9m — 27l =0, g =ay— 1.

D. Here we have d = 1. By Theorem [1| the identity is equivalent to
the identity
To, (1 —t)+t" — 14T, (t—1) =0,

hence
t* =1, impossible. m
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