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Summary. For an operator in a possibly infinite-dimensional Hilbert space of a certain
class, we set down axioms of an abstract intersection theory, from which the Riemann
hypothesis regarding the spectrum of that operator follows. In our previous paper (2011)
we constructed a GNS (Gelfand–Naimark–Segal) model of abstract intersection theory.
In this paper we propose another model, which we call a standard model of abstract
intersection theory. We show that there is a standard model of abstract intersection theory
for a given operator if and only if the Riemann hypothesis and semisimplicity hold for
that operator. (For the definition of semisimplicity of an operator in Hilbert space, see the
Introduction.) We show this result under a condition for a given operator which is much
weaker than the condition in the previous paper. An operator satisfying this condition
can be constructed by using the method of automorphic scattering of Uetake (2009).

Combining this with a result from Uetake (2009), we can show that a Dirichlet L-
function, including the Riemann zeta-function, satisfies the Riemann hypothesis and its
all nontrivial zeros are simple if and only if there is a corresponding standard model of
abstract intersection theory. Similar results can be proven for GNS models since the same
technique of proof for standard models can be applied.

1. Introduction. In the 1940s Weil [W1] developed an intersection the-
ory on surfaces over finite fields to apply it to the proof of the Riemann
hypothesis for curves over finite fields.

In this paper we introduce axioms ((AIT1)–(AIT3) in §3) of abstract
intersection theory for an operator in a Hilbert space. These axioms are
analogous to the properties of Weil’s intersection theory on surfaces. We
consider a collection AIT that consists of a vector space, distinguished vec-
tors and corresponding maps, satisfying the axioms (AIT1)–(AIT3). From
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this collection we can derive the Riemann hypothesis regarding the spectrum
of that operator. Therefore we call AIT an abstract intersection theory.

Let H be a C-Hilbert space. Let A : H ⊃ dom(A)→ H be a C-linear op-
erator (possibly unbounded) where dom(A) is the domain of A. We assume
that the spectrum σ(A) of A consists only of the point spectrum σp(A).

Definition 1.1. We say that the operator A satisfies the Riemann hy-
pothesis (briefly, RH) if

Re(si) =
1

2
for all si ∈ σ(A) = σp(A).

We say that the operator A is semisimple if

ν(si) = 1 for all si ∈ σ(A) = σp(A).

Here ν(si) is the Riesz index of si. For its definition see the paragraph
preceding the conditions (OP1)–(OP5) in §2, which A is assumed to sat-
isfy. The conditions (OP1)–(OP5) are satisfied by the operator A obtained
from automorphic scattering theory [U], which gives a spectral interpreta-
tion of certain Dirichlet L-functions, including the Riemann zeta-function.
See Remark 2.1(4) in §2.

In our previous work [BU], we showed AIT⇒ RH. We also constructed
a model AITGNS of abstract intersection theory based on an analogue of
the GNS (Gelfand–Naimark–Segal) representation. We call AITGNS a GNS
model of abstract intersection theory. We showed that AITGNS ⇔ RH, as-
suming the semisimplicity of A [BU, Theorem 3.1].

We observe that there is some flexibility in constructing models of abstract
intersection theory to investigate the spectrum of operators in Hilbert space
and nontrivial zeros of corresponding Dirichlet L-functions. In this paper
we propose a new model AITm, which we call a standard model of abstract
intersection theory. This model is inspired by the Künneth formula for `-adic
cohomology. For this model we show AITm ⇔RH & semisimplicity (Theorem
5.2(2)). It is worth pointing out that the assumptions (OP1), (OP2), (OP3-a)
and (OP4) on the operator A imply the existence of a standard model of
abstract intersection theory which satisfies (AIT1-a)–(AIT1-f), (AIT2) and
(AIT3) (see Lemmas 4.1 and 4.2). To prove the RH and semisimplicity of
the operator A, we need to add (AIT1-g).

The techniques for proving our results concerning AITm can also be
applied to AITGNS from our previous paper [BU]. Namely, we can show
AITGNS ⇔ RH & semisimplicity (Theorem 5.3). Therefore we significantly
strengthen our previous results in [BU] for both GNS and standard models,
dropping the semisimplicity assumption (the condition (OP3-b) in [BU]).
The condition (OP3-b) in this paper is much weaker and is satisfied by
operators coming from scattering theory for Dirichlet L-functions [U].
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As a corollary of Theorems 5.2 and 5.3 combined with the results of [U]
on automorphic scattering, we observe that a Dirichlet L-function, including
the Riemann zeta-function, satisfies the RH and its nontrivial zeros are all
simple if and only if there is a corresponding standard model AITm (or GNS
model AITGNS) of abstract intersection theory (Theorem 5.4).

The plan of this paper is as follows.

In §2 we define an analogue of the classical Frobenius morphism for the
operator A. The spectrum of this analogue is similar to that of the classi-
cal Frobenius morphism if the operator A satisfies the Riemann hypothesis.
The introduction of this analogue is also inspired by Weil’s explicit formu-
las [W2].

In §3 we introduce a general notion of abstract intersection theory AIT
and set down its axioms ((AIT1), (AIT2) and (AIT3)).

In §4 we construct a specific example of abstract intersection theory,
which we call a standard model AITm, using the analogy with the classical
Künneth formula for `-adic cohomology.

In §5 we state our main theorems (Theorems 5.2, 5.3 and 5.4).

In §6 we show that there is a strong analogy between Weil’s approach
to zeta-functions for curves over finite fields and our approach to Dirich-
let L-functions. For Weil’s intersection theory, see also Grothendieck [Gro],
Monsky [Mon] and Serre [S].

We should note that there is a program by Connes and Marcolli (and
Consani) [CM] to adapt Weil’s proof of RH for function fields to the case of
number fields. See also Connes [C]. There is also a conjectural cohomological
approach by Deninger [D1, D2] toward the interpretation of Hasse–Weil
L-functions in analogy with the étale cohomology interpretation of L-func-
tions of varieties over finite fields.

2. An analogue of the Frobenius morphism for the operator A.
Let H be a possibly infinite-dimensional C-Hilbert space. If H is infinite-
dimensional we assume that H is separable. Let A : H ⊃ dom(A) → H be
a possibly unbounded operator on H.

If si ∈ σ(A) is an isolated spectrum point, one can take a small enough
bounded domain ∆ of C such that {si} b ∆ (i.e. {si} ⊂ ∆◦) and ∆ ∩
(σ(A) − {si}) = ∅. If A is a closed operator then one can define the Riesz
projection P{si} : H → H by

P{si} :=
1

2πi

�

∂∆

(sI −A)−1 ds.

Here I : H → H is the identity operator on H. Then P{si} is a bounded
operator on H.
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For si ∈ σp(A), the Riesz index ν(si) of si is defined as the smallest
positive number ≤ ∞ such that

Ker((siI −A)ν(si)) = Image(P{si}).

Let mult(si) := dimC Image(P{si}), which we call the (algebraic) multi-
plicity of si ∈ σp(A).

We assume the following properties of A:

(OP1) A is closed.
(OP2) The spectrum σ(A) consists only of the point spectrum (i.e. eigen-

values) σp(A) (i.e. σ(A) = σp(A)), which accumulates at most at
infinity.

(OP3) (a) Image(P{si}) is finite-dimensional (i.e. mult(si) <∞) for any
si ∈ σp(A).

(b) ν(si) = mult(si) for any si ∈ σp(A).
(OP4) σ(A) ⊂ Ω∞, where Ω∞ := {s ∈ C | 0 < Re(s) < 1}.
(OP5) Re(si) < 1/2 for some si ∈ σ(A) if and only if there is sj ∈ σ(A)

such that Re(sj) > 1/2.

Remark 2.1. (1) (OP1) is needed when one applies Lemma 2.1 of [BU]
on spectral decomposition. The lemma is taken from Gohberg, Goldberg
and Kaashoek [GoGK, XV.2, Theorem 2.1, p. 326].

(2) In [BU], the condition (OP3-b) was the semisimplicity ν(si) = 1
(si ∈ σ(A)). The above stated (OP3-b) is a much weaker condition: it says
that each eigenvalue of A has just one corresponding Jordan block. Actually
this is satisfied in the construction using automorphic scattering theory [U].
See Remark 2.1(4) below.

(3) The above (OP5) is (OP5-a) in [BU]. (OP5-b) of [BU], which is
necessary for the construction of GNS models of abstract intersection theory,
is not necessary for the construction of standard models in this paper. It is used
there to keep the space V an R-linear space in the GNS model. In the standard
model we apply the complexification VC of V instead (see §3). (OP5-b) in [BU]
is satisfied by an operator A constructed in [U] (see Remark 2.1(4) below).

(4) Let Γ (N) be the principal congruence subgroup of level N such that
the modular curve Γ (N)\H ' Γ (N)\SL2(R)/SO(2) is noncompact and has
one cusp at i∞. Here H denotes the upper half-plane. Then the scattering
matrix in the functional equation of the Eisenstein series essentially contains
the Dirichlet L-function L(s, χ) for a Dirichlet character χ : (Z/NZ)× → C×.
See Huxley [Hux]. In [U] the second author constructed a scattering theory
for automorphic forms on Γ (N)\H. Furthermore he constructed an operator
A satisfying (OP1)–(OP5) whose (point) spectrum coincides with the non-
trivial zeros of the Dirichlet L-function L(s, χ), counted with multiplicity.
That is, si ∈ σ(A) (= σp(A)) and ν(si) (= mult(si)) = mi if and only if si
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is a nontrivial zero of L(s, χ) of order mi. We call si ∈ C a nontrivial zero
of the Dirichlet L-function L(s, χ) if L(si, χ) = 0 and 0 < Re(si) < 1. In
automorphic scattering of [U], assumptions (OP1)–(OP5) are consequences
of Theorem 4.1 of [U, p. 455]. More specifically, (OP1)–(OP5) are deduced
as follows: (OP1) follows from Theorem 4.1(i); (OP2) follows from Theo-
rem 4.1(iii-a); (OP3) follows from Theorem 4.1(iii-b) and (iii-c); (OP4) and
(OP5) follow from Theorem 4.1(iv). (OP5-b) in [BU] also follows from The-
orem 4.1(iv).

The theory of automorphic scattering was initiated by Pavlov–Faddeev
[PavF] and then Lax–Phillips [LP], inspired by Gelfand [Ge].

Now for Y > 0 let

σY (A) := {s ∈ σ(A) | |Im(s)| < Y }.

Note that σY (A) is a finite set by (OP2) and (OP4). Let the parameter
space Y be defined by

Y := {Y > 0 | σY (A) 6= ∅} − {|Im(s)| | s ∈ σ(A)}.

Fix a function

q : Y → (0, 1) ∪ (1,∞).

Let B(X) denote the set of bounded operators on a C-Hilbert space X.
By definition T : X ⊃ dom(T ) → X is a bounded operator if dom(T ) = X
and the operator norm ‖T‖ is finite.

Let ΣH be the set of closed subspaces of H. We will construct maps

FA : Y → B(H) and H : Y → ΣH

such that FA(Y ) : H → H satisfies the following conditions for each Y ∈ Y:

(Frob-a) FA(Y )H(Y ) ⊂ H(Y )

(i.e. the subspace H(Y ) is invariant for FA(Y )), and

(Frob-b)


σ(FA(Y )|H(Y )) = σp(FA(Y )|H(Y )) = {q(Y )s | s ∈ σY (A)}

(counted with algebraic multplicities),

σ(FA(Y )) = σp(FA(Y )) = σ(FA(Y )|H(Y )) ∪ {0}.

Note that σ(FA(Y )|H(Y )) is a finite set counted with algebraic multiplicities
by (OP1), (OP2), (OP3-a) and (OP4).

The operator FA(Y ) (Y ∈ Y) is considered to be an analogue of the
classical Frobenius morphism, since the spectrum of this analogue is simi-
lar to that of the classical Frobenius morphism if the operator A satisfies
the Riemann hypothesis. It is also motivated by the spectral side of Weil’s
explicit formulas [W2] (see §6).
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Models FA,m and Hm of FA and H. Now we construct models FA,m:
Y → B(H) and Hm : Y → ΣH which satisfy (Frob-a) and (Frob-b). These
models will constitute parts of a standard model AITm constructed in §4.
Let

ΩY := {s ∈ C | 0 < Re(s) < 1, |Im(s)| < Y }
for Y ∈ Y. Note that ΩY ∩ σ(A) = σY (A) for Y ∈ Y by (OP4). Note also
that by (OP2), (OP4) and the definition of Y we have, for each Y ∈ Y,

σY (A) b ΩY (i.e. σY (A) = σY (A) ⊂ Ω◦Y = ΩY ),

ΩY ∩ (σ(A)− σY (A)) = ∅.
Therefore, since we have (OP1), the Riesz projection PσY (A) : H → H can
be well-defined for Y ∈ Y by

PσY (A) :=
1

2πi

�

∂ΩY

(sI −A)−1 ds.

PσY (A) is a bounded operator on H. Let Hm : Y → ΣH be defined by

Hm(Y ) := Image(PσY (A)).

By (OP2) and (OP3-a), Hm(Y ) is finite-dimensional for each Y ∈ Y.

Given Y ∈ Y, let

FA,m(Y ) : H ⊃ dom(FA,m(Y ))→ H

be defined by

FA,m(Y )x :=
1

2πi

( �

∂ΩY

q(Y )s(sI −A)−1 ds
)
x

for

x ∈ dom(FA,m(Y )) := {x ∈ H | FA,m(Y )x exists in H}.

Note that σY (A) is a bounded set. Thus, by (OP1) we can apply [BU,
Lemma 2.1] to haveHm(Y ) ⊂ dom(A) andAHm(Y ) ⊂ Hm(Y ). LetA|Hm(Y ) :
Hm(Y ) → Hm(Y ) ⊂ H be the restriction of A to Hm(Y ). Since Hm(Y ) is
finite-dimensional,A|Hm(Y ) is a bounded operator, i.e.A|Hm(Y ) ∈ B(Hm(Y )).

Similarly, let H(si) := Image(P{si}). By (OP2) and (OP3-a), H(si)
is finite-dimensional. Again by [BU, Lemma 2.1], H(si) ⊂ dom(A) and
AH(si) ⊂ H(si). Let A|H(si) : H(si) → H(si) ⊂ H be the restriction of A
to H(si). By the same argument for A|Hm(Y ), we have A|H(si) ∈ B(H(si)).

Lemma 2.1. Suppose that A satisfies (OP1), (OP2), (OP3-a) and (OP4).
Then:

(i) For each Y ∈ Y,

dom(FA,m(Y )) = H.
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Furthermore, FA,m(Y ) is a bounded operator on H, i.e. FA,m(Y ) ∈
B(H).

(ii) The subspace Hm(Y ) is FA,m(Y )-invariant :

FA,m(Y )Hm(Y ) ⊂ Hm(Y ).

That is, FA,m satisfies (Frob-a).
(iii) For each Y ∈ Y, we have

σ(FA,m(Y )|Hm(Y )) = σp(FA,m(Y )|Hm(Y )) = {q(Y )s | s ∈ σY (A)}

(counted with algebraic multplicities) and

σ(FA,m(Y )) = σp(FA,m(Y )) = σ(FA,m(Y )|Hm(Y )) ∪ {0}.

That is, FA,m satisfies (Frob-b).

(iv) Let t : Y → R−{0} be defined by t(Y ) := log q(Y ) (i.e. et(Y ) = q(Y ))
for Y ∈ Y. For each Y ∈ Y, we have

FA,m(Y ) = et(Y )A|Hm(Y )PσY (A)

=

∞∑
n=0

t(Y )n

n!
A|nHm(Y )PσY (A) =

∑
si∈σY (A)

et(Y )A|H(si)P{si}.

(v) Suppose further that A satisfies (OP3-b). Then, with respect to an

appropriate basis of H(si), e
t(Y )A|H(si) is written as

et(Y )A|H(si) = N(si)

with N(si) ∈Mmi(C) given by

t(Y )0et(Y )si

0!
t(Y )1et(Y )si

1! · · · · · · t(Y )mi−1et(Y )si

(mi−1)!
t(Y )0et(Y )si

0!
t(Y )1et(Y )si

1! · · · t(Y )mi−2et(Y )si

(mi−2)!

. . .
. . .

...
t(Y )0et(Y )si

0!
t(Y )1et(Y )si

1!

0 t(Y )0et(Y )si

0!


.

Here mi = ν(si) (= mult(si)).

Proof. Let K(Y ) = Ker(PσY (A)). Then by [BU, Lemma 2.1], K(Y ) is
A-invariant in the sense that A(K(Y ) ∩ dom(A)) ⊂ K(Y ). Thus one can
define A|K(Y ) : K(Y ) ⊃ dom(A|K(Y )) → K(Y ). Then we have σ(A|K(Y )) =
σ(A)− σY (A) [BU, Lemma 2.1]. We also have

A =

(
A|Hm(Y ) 0

0 A|K(Y )

)
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on H = Hm(Y ) ⊕K(Y ). Note that the direct sum ⊕ does not necessarily
mean an orthogonal sum.

By (OP2) and (OP3-a), (sI−A)−1 is meromorphic in the whole C-plane.
However, since (sI − A|K(Y ))

−1 is holomorphic in ΩY , by the functional
calculus for the bounded operator A|Hm(Y ) we have

FA,m(Y ) =
1

2πi

�

∂ΩY

q(Y )s(sI −A)−1 ds

=
1

2πi

�

∂ΩY

et(Y )s(sI −A)−1 ds

=
1

2πi

�

∂ΩY

et(Y )s

(
sI −

(
A|Hm(Y ) 0

0 A|K(Y )

))−1

ds

=
1

2πi

�

∂ΩY

et(Y )s

(
(sI −A|Hm(Y ))

−1 0

0 (sI −A|K(Y ))
−1

)
ds

=
1

2πi

�

∂ΩY

et(Y )s(sI −A|Hm(Y ))
−1PσY (A) ds

= et(Y )A|Hm(Y )PσY (A) =

(
et(Y )A|Hm(Y ) 0

0 0

)
,

which shows (i) and (ii). By [BU, Lemma 2.1] and (OP4), we have σ(A|Hm(Y ))
= σY (A). By applying the spectral mapping theorem to the bounded operator
A|Hm(Y ) (recall that dimCHm(Y ) <∞), this also shows (iii).

Note that

PσY (A) =
⊕

si∈σY (A)

P{si} and Hm(Y ) =
⊕

si∈σY (A)

H(si).

Here
⊕

denotes the (not necessarily orthogonal) direct sum. Therefore we
have

FA,m(Y ) =
1

2πi

∑
si∈σY (A)

�

∂ΩY

q(Y )s(sI −A|H(si))
−1P{si} ds

=
∑

si∈σY (A)

et(Y )A|H(si)P{si}.

From this (iv) follows.

Note that by [BU, Lemma 2.1] we have σ(A|H(si)) = {si}. Thus, by
(OP3-b), A|H(si) is written with respect to an appropriate basis of H(si) as
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A|H(si) = M(si) =



si 1 0
si 1

. . .
. . .

si 1

0 si


∈Mmi(C).

Here mi = ν(si).

Note that

(sI −M(si))
−1 =



1
s−si

1
(s−si)2 · · · · · · 1

(s−si)mi
1

s−si
1

(s−si)2 · · · 1
(s−si)mi−1

. . .
. . .

...
1

s−si
1

(s−si)2

0 1
s−si


.

Now,

q(Y )s = et(Y )s =
∞∑
n=0

t(Y )net(Y )si

n!
(s− si)n.

From this, (v) follows by using the residue theorem.

3. Abstract intersection theory and its axioms. Let V be an
R-linear space endowed with a symmetric R-bilinear form β : V × V → R.
Denote by VC the complexification of V given by VC = V ⊗R C. To simplify
the notation, we identify v ⊗ α with αv for v ∈ V and α ∈ C. Therefore we
have V ⊂ VC. Then one can define the complexification βC : VC × VC → C
of β by

βC(α1v1, α2v2) := α1α2β(v1, v2) (v1, v2 ∈ V, α1, α2 ∈ C).

It is easy to check that βC(αw1, w2) = α · βC(w1, w2) and βC(w2, w1) =
βC(w1, w2) for w1, w2 ∈ VC and α ∈ C.

Let EndC(VC) denote the set of C-linear operators T : VC ⊃ dom(T ) →
VC such that dom(T ) = VC. Suppose that there are nonzero vectors v01, v10

and ha in V and maps vδ : Y → VC and ΦA : Y → EndC(VC) which satisfy
the conditions listed below ((AIT1)–(AIT3)). We call a collection

AIT = (V, v01, v10, vδ, ha, β, ΦA, FA,H)

that satisfies these conditions an abstract intersection theory. The map ΦA
is associated with the operator A in §2. The map FA : Y → B(H) along with
H : Y → ΣH is an analogue of the Frobenius morphism defined in §2, which
satisfies (Frob-a) and (Frob-b); FA is related to ΦA via the axiom (AIT3).
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(AIT1) (a) β(y, x) = β(x, y) ∈ R for x, y ∈ V ; βC(y, x) = βC(x, y) ∈ C
for x, y∈VC.

(b) β(v01, v01) = 0.
(c) β(v10, v10) = 0.
(d) β(v01, v10) = 1.

For each Y ∈ Y and all n ≥ 0:

(e) βC(ΦA(Y )nvδ(Y ), v01) = 1.
(f) βC(ΦA(Y )nvδ(Y ), v10) = O(q(Y )n).
(g) βC(ΦA(Y )nvδ(Y ), ΦA(Y )nvδ(Y )) = O(q(Y )n).

(AIT2) For x ∈ V , if β(x, ha) = 0 then β(x, x) ≤ 0.

Note that (AIT1-e)–(AIT1-g) are assumed to hold for each Y ∈ Y. The
Bachmann–Landau notation O(q(Y )n) in (AIT1) is with respect to n � 0
for q(Y ) with Y ∈ Y fixed. We call (AIT2) the Hodge property, and ha a
Hodge vector.

Lemma 3.1. Under the assumptions (AIT1-a)–(AIT1-d) and (AIT2),

β(x, x) ≤ 2β(x, v01)β(x, v10) (x ∈ V ).

Proof. See [BU, proof of Lemma 3.1].

Let the R-bilinear form 〈·, ·〉V : V × V → R be defined by

(∗) 〈x, y〉V := β(x, v01)β(v10, y) + β(x, v10)β(v01, y)− β(x, y)

for x, y ∈ V . By Lemma 3.1, 〈·, ·〉V is positive semidefinite, i.e. 〈x, x〉V ≥ 0
for x ∈ V . Indeed, as we will see soon below ((IP-b), (IP-c)), this bilinear
form must be positive semidefinite, not positive definite.

The complexification 〈·, ·〉VC : VC×VC → C of 〈·, ·〉V : V×V →R is given by

〈α1v1, α2v2〉VC := α1α2〈v1, v2〉V
for v1, v2 ∈ V and α1, α2 ∈ C.

Lemma 3.2. 〈·, ·〉VC is positive semidefinite, i.e. 〈x, x〉VC ≥ 0 for all
x ∈ VC.

Proof. Since for x, y ∈ V and t ∈ R,

〈tx+ y, tx+ y〉V = 〈x, x〉V t2 + 2〈x, y〉V t+ 〈y, y〉V ≥ 0,

we have the Cauchy–Schwarz inequality for 〈·, ·〉V ,

|〈x, y〉V | ≤
√
〈x, x〉V 〈y, y〉V (x, y ∈ V ),

provided that 〈x, x〉V 6= 0. If 〈x, x〉V = 0 then 〈x, y〉V must also be zero.
Therefore we have the Cauchy–Schwarz inequality for 〈·, ·〉V for any x, y ∈ V .

Let V be a basis of V . Split V into two disjoint sets V = {ui}i∈I∪{vj}j∈J
so that 〈ui, ui〉V = 0 and 〈vj , vj〉V 6= 0. Note that V is also a basis of VC
with the same properties: 〈ui, ui〉VC = 0 and 〈vj , vj〉VC 6= 0. Therefore any
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x ∈ VC can be written as

x =
∑
i∈Ix

αx,iui +
∑
j∈Jx

αx,jvj

for some finite subsets Ix ⊂ I and Jx ⊂ J with αx,i, αx,j ∈ C.
Apply the Gram–Schmidt process to {vj}j∈Jx in V to obtain an or-

thonormal set {ej}j∈Jx in V . Then we have

x =
∑
i∈Ix

αx,iui +
∑
j∈Jx

α′x,jej

for some α′x,j ∈ C.
From the Cauchy–Schwarz inequality for 〈·, ·〉V , we have 〈ui1 , ui2〉V =

〈ui1 , ui2〉VC = 0 for i1, i2 ∈ Ix and 〈ui, ej〉V = 〈ui, ej〉VC = 0 for i ∈ Ix and
j ∈ Jx. Thus it is easy to see that 〈x, x〉VC ≥ 0.

Note that 〈·, ·〉VC is compatible with βC, i.e.

(∗∗) 〈x, y〉VC = βC(x, v01)βC(v10, y) + βC(x, v10)βC(v01, y)− βC(x, y).

It is easy to see that (AIT1), (∗) and (∗∗) imply the following conditions
for any Y ∈ Y:

(IP) (a) 〈y, x〉V = 〈x, y〉V ∈ R for x, y ∈ V ; 〈y, x〉VC = 〈x, y〉VC ∈ C for
x, y ∈ VC.

(b) 〈v01, v01〉V = 0.
(c) 〈v10, v10〉V = 0.
(d) 〈v01, v10〉V = 0.

For each Y ∈ Y and all n ≥ 0:

(e) 〈ΦA(Y )nvδ(Y ), v01〉VC = 0.
(f) 〈ΦA(Y )nvδ(Y ), v10〉VC = 0.
(g) 〈ΦA(Y )nvδ(Y ), ΦA(Y )nvδ(Y )〉VC = O(q(Y )n).

Lemma 3.3. For 〈·, ·〉VC, we have the Cauchy–Schwarz inequality

|〈x, y〉VC | ≤
√
〈x, x〉VC〈y, y〉VC (x, y ∈ VC).

Proof. Let λ = 〈x, x〉VC . By Lemma 3.2 we have λ ≥ 0. Note that (e.g.
MacCluer [Mac, Exercise 1.7, p. 24])

0 ≤ 〈λy − 〈y, x〉VCx, λy − 〈y, x〉VCx〉VC = λ{λ〈y, y〉VC − |〈x, y〉VC |
2}.

Therefore if λ > 0 we have the desired inequality. Suppose λ = 0. For the
basis V in the proof of Lemma 3.2, we have

x =
∑
i∈Ix

αx,iui +
∑
j∈Jx

αx,jvj

for some finite subsets Ix ⊂ I and Jx ⊂ J with αx,i, αx,j ∈ C. Applying
the Gram–Schmidt process to {vj}j∈Jx in V , we obtain an orthonormal set
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{ej}j∈Jx in V . Then as in the proof of Lemma 3.2 we have, for some α′x,j ,

x =
∑
i∈Ix

αx,iui +
∑
j∈Jx

α′x,jej .

Since λ = 0 we have α′x,j = 0. Therefore

x =
∑
i∈Ix

αx,iui.

Similarly, y can be expressed as

y =
∑
i∈Iy

αy,iui +
∑
j∈Jy

αy,jvj

for some finite subsets Iy ⊂ I and Jy ⊂ J with αy,i, αy,j ∈ C. Since
〈ui, ui〉V = 0 for i ∈ Ix, we have, by the Cauchy–Schwarz inequality for
〈·, ·〉V , 〈ui1 , ui2〉V = 〈ui1 , ui2〉VC = 0 for i1 ∈ Ix and i2 ∈ Iy and 〈ui, vj〉V =
〈ui, vj〉VC = 0 for i ∈ Ix and j ∈ Jy. Thus we have 〈x, y〉VC = 0.

Now we introduce axiom (AIT3), which we call the Lefschetz type for-
mula:

(AIT3) For each Y ∈ Y and all n ≥ 0,

tr(FA(Y )n) = 〈ΦA(Y )nvδ(Y ), vδ(Y )〉VC .
Here tr(FA(Y )n) denotes the trace of FA(Y )n.

4. Standard models of abstract intersection theory. In this sec-
tion we construct a model

AITm = (Vm, v01,m, v10,m, vδ,m, ha,m, βm, ΦA,m, FA,m,Hm)

of an abstract intersection theory AIT. We call AITm which satisfies (AIT1)–
(AIT3) a standard model of abstract intersection theory.

Recall that we have constructed the models FA,m and Hm of FA and H
in §2, using conditions (OP1), (OP2), (OP3-a) and (OP4) on the operator A.
We will construct the remaining elements of the model below.

Let {ei}Ni=1 (1 ≤ N := dimCH ≤ ∞) be an orthonormal basis of the
C-Hilbert space H. (Recall that we have assumed that H is separable if it
is infinite-dimensional.) Therefore

H =
{ N∑
i=1

αiei

∣∣∣ αi ∈ C,
N∑
i=1

|αi|2 <∞
}
.

Let H1 be the R-Hilbert space defined by

H1 :=
{ N∑
i=1

αiei

∣∣∣ αi ∈ R,
N∑
i=1

|αi|2 <∞
}
.
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Then we have H1
C (:= H1 ⊗R C) = H by identifying ei ⊗ α with αei for

α ∈ C. Define R-linear spaces H0 and H2 by

H0 := {αf | α ∈ R} and H2 := {αg | α ∈ R}
with

〈f, f〉H0 := 0 and 〈g, g〉H2 := 0.

Remark 4.1. The reason why f ∈ H0 and g ∈ H2 are defined so that
they satisfy the above conditions for degenerate inner product is that (IP-b)
and (IP-c) in §3 must be satisfied. See (IP-b) and (IP-c) in the proof of
Lemma 4.1 below.

Then the complexifications H0
C := H0 ⊗R C and H2

C := H2 ⊗R C are
regarded naturally as

H0
C = {αf | α ∈ C} and H2

C = {αg | α ∈ C}
by identifying f ⊗ α (resp. g ⊗ α) with αf (resp. αg) for α ∈ C. Let

H• := H0 ⊕H1 ⊕H2.

Here ⊕ means the orthogonal direct sum. That is, we assume that f and g
are linearly independent and that 〈f, x〉H• = 〈x, f〉H• = 0 for x ∈ H1 ⊕H2

and 〈g, x〉H• = 〈x, g〉H• = 0 for x ∈ H0 ⊕H1. The inner product 〈·, ·〉H• on
H• is inherited from 〈·, ·〉Hi (i = 0, 1, 2), that is, 〈xi, yi〉H• := 〈xi, yi〉Hi for
xi, yi ∈ H i.

Define an R-linear space Vm by

Vm := (H0 ⊗R H
2)⊕ (H1 ⊗R H

1)⊕ (H2 ⊗R H
0)

with
〈x1 ⊗ x2, y1 ⊗ y2〉Vm := 〈x1, y1〉H•〈x2, y2〉H• .

Since

H1 ⊗R H
1 =

{ N∑
i,j=1

αijei ⊗ ej
∣∣∣ αij ∈ R,

N∑
i,j=1

|αij |2 <∞
}
,

we have

(H1 ⊗R H
1)C =

{ N∑
i,j=1

αijei ⊗ ej
∣∣∣ αij ∈ C,

N∑
i,j=1

|αij |2 <∞
}

= H1
C ⊗C H

1
C

by identifying (ei⊗ ej)⊗α with αei⊗ ej for α ∈ C. Note that {ei⊗ ej}Ni,j=1

is an orthonormal basis of the tensor products H1 ⊗R H
1 and H1

C ⊗C H
1
C.

Similarly, by identifying (f ⊗ g)⊗ α (resp. (g ⊗ f)⊗ α) with αf ⊗ g (resp.
αg ⊗ f) for α ∈ C, we have

(H0 ⊗R H
2)C = {αf ⊗ g | α ∈ C} = H0

C ⊗C H
2
C

and

(H2 ⊗R H
0)C = {αg ⊗ f | α ∈ C} = H2

C ⊗C H
0
C.
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Note that generally we have (X ⊗R Y )C = XC ⊗C YC. Therefore

(Vm)C = Vm ⊗R C = (H0
C ⊗C H

2
C)⊕ (H1

C ⊗C H
1
C)⊕ (H2

C ⊗C H
0
C)

with

〈x1 ⊗ x2, y1 ⊗ y2〉(Vm)C = 〈x1, y1〉H•C〈x2, y2〉H•C ,
where

H•C = H0
C ⊕H1

C ⊕H2
C

as the orthogonal direct sum. Note that the complexification 〈·, ·〉H•C of
the inner product 〈·, ·〉H• is given by 〈α1x1, α2x2〉H•C := α1α1〈x1, x2〉H• for
x1, x2 ∈ H• and α1, α2 ∈ C.

Extend the operator A on H1
C (= H) to an operator A on H•C by

Af = A|H0
C
f := 0 and Ag = A|H2

C
g := g.

Accordingly, we extend the map FA,m : Y → B(H) to FA,m : Y →
EndC(H•C) so that

FA,m(Y )f := e
t(Y )A|

H0
Cf = f and FA,m(Y )g := e

t(Y )A|
H2
Cg = q(Y )g

for Y ∈ Y. Here EndC(H•C) denotes the set of C-linear operators T : H•C ⊃
dom(T )→ H•C with dom(T ) = H•C.

Let

v01,m := f ⊗ g ∈ H0 ⊗R H
2 ⊂ H0

C ⊗C H
2
C,

v10,m := g ⊗ f ∈ H2 ⊗R H
0 ⊂ H2

C ⊗C H
0
C.

Recall that Hm(Y ) := Image(PσY (A)) ⊂ H1
C, and also FA,m(Y )Hm(Y ) ⊂

Hm(Y ) (i.e. (Frob-a)) by Lemma 2.1(ii). Recall that, by (OP2) and (OP3-a),

Hm(Y ) is finite-dimensional. Let g(Y ) := 1
2 dimCHm(Y ). Let {eYi }

2g(Y )
i=1 be

an orthonormal basis of Hm(Y ).

Recall that by (OP4), (Frob-b) also holds.

For each Y ∈ Y let

vδ,m(Y ) :=
(2g(Y )∑
i=1

eYi ⊗ eYi
)

+ v01,m + v10,m ∈ (Vm)C.

Let ΦA,m(Y ) := I ⊗ FA,m(Y ), where I denotes the identity operator on
H•C = H0

C ⊕H1
C ⊕H2

C.

Lemma 4.1. Suppose that A : H ⊃ dom(A) → H is an operator that
satisfies (OP1), (OP2), (OP3-a) and (OP4). Then the above construction
satisfies:

(i) The conditions (IP-a)–(IP-f).
(ii) The Lefschetz type formula (AIT3).
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Proof. (i) (IP-a) is obvious from the definition.

(IP-b): 〈v01,m, v01,m〉Vm = 〈f ⊗ g, f ⊗ g〉Vm = 〈f, f〉H•〈g, g〉H• = 0.

(IP-c): 〈v10,m, v10,m〉Vm = 〈g ⊗ f, g ⊗ f〉Vm = 〈g, g〉H•〈f, f〉H• = 0.

(IP-d): 〈v01,m, v10,m〉Vm = 〈f ⊗ g, g ⊗ f〉Vm = 〈f, g〉H•〈g, f〉H• = 0.

Since FA,m(Y )nf = f , FA,m(Y )ng = q(Y )ng and Hm(Y ) is FA,m(Y )-
invariant, we have

ΦA,m(Y )nvδ,m(Y ) = I ⊗ FA,m(Y )n
{2g(Y )∑

i=1

eYi ⊗ eYi + f ⊗ g + g ⊗ f
}

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + f ⊗ FA,m(Y )ng + g ⊗ FA,m(Y )nf

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + f ⊗ q(Y )ng + g ⊗ f

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + q(Y )nf ⊗ g + g ⊗ f.

(IP-e) and (IP-f) follow from this since H0 ⊥ H1 ⊥ H2 and 〈f, f〉H0 =
〈g, g〉H2 = 0.

(ii) To show (AIT3) note that

〈ΦA,m(Y )nvδ,m(Y ), vδ,m(Y )〉(Vm)C

=
〈 2g(Y )∑

i=1

eYi ⊗ FA,m(Y )neYi + q(Y )nf ⊗ g + g ⊗ f,

2g(Y )∑
j=1

eYj ⊗ eYj + f ⊗ g + g ⊗ f
〉

(Vm)C

=
〈2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi ,

2g(Y )∑
j=1

eYj ⊗ eYj
〉
H1

C⊗CH1
C

=

2g(Y )∑
i=1

2g(Y )∑
j=1

〈eYi , eYj 〉H1
C
〈FA,m(Y )neYi , e

Y
j 〉H1

C

=

2g(Y )∑
i=1

〈FA,m(Y )neYi , e
Y
i 〉H1

C
= tr(FA,m(Y )n).

Note that by Lemma 2.1(iii), σ(FA,m(Y )|Hm(Y )) = σp(FA,m(Y )|Hm(Y )) is a
finite set counted with algebraic multiplicities. Thus tr(FA,m(Y )n) is well
defined. This completes the proof of (AIT3).
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Lemma 4.2. In the same situation as in Lemma 4.1 and in its proof,
there is a bilinear form βm : Vm × Vm → R and a Hodge vector ha,m ∈ V
which satisfy (AIT1-a)–(AIT1-f), (AIT2), (∗) and (∗∗).

Proof. First we prove (AIT1-a)–(AIT1-f), (∗) and (∗∗). Recall that

Vm = (H0 ⊗R H
2)⊕ (H1 ⊗R H

1)⊕ (H2 ⊗R H
0),

v01,m = f ⊗ g ∈ H0 ⊗R H
2, v10,m = g ⊗ f ∈ H2 ⊗R H

0.

Therefore we can set

βm(v01,m, v01,m) := 0, βm(v10,m, v10,m) := 0,

βm(v01,m, v10,m) = βm(v10,m, v01,m) := 1,

which are (AIT1-b), (AIT1-c) and (AIT1-d), respectively. Furthermore we
can set

βm(x, v01,m) = βm(v01,m, x) := 0,

βm(x, v10,m) = βm(v10,m, x) := 0

for all x ∈ H1 ⊗R H
1. Then

(βm)C(x, v01,m) = (βm)C(v01,m, x) = 0,

(βm)C(x, v10,m) = (βm)C(v10,m, x) = 0

for all x ∈ (H1 ⊗R H
1)C = H1

C ⊗C H
1
C.

Now for each Y ∈ Y let

vδ1,m(Y ) :=

2g(Y )∑
i=1

eYi ⊗ eYi ∈ (H1 ⊗R H
1)C = H1

C ⊗C H
1
C.

Note that vδ,m(Y ) = vδ1,m(Y ) + v01,m + v10,m. Recall from the proof of
Lemma 4.1 that

ΦA,m(Y )nvδ,m(Y ) =

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + q(Y )nf ⊗ g + g ⊗ f

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + q(Y )nv01,m + v10,m

= ΦA,m(Y )nvδ1,m(Y ) + q(Y )nv01,m + v10,m.

Thus, since ΦA,m(Y )nvδ1,m(Y ) ∈ (H1 ⊗R H
1)C, we have

(βm)C(ΦA,m(Y )nvδ,m(Y ), v01,m) = 1,

(βm)C(ΦA,m(Y )nvδ,m(Y ), v10,m) = q(Y )n = O(q(Y )n),

which are (AIT1-e) and (AIT1-f), respectively. Now that we are given
βm(x, v01,m), βm(x, v10,m), βm(v10,m, y) and βm(v01,m, y), and 〈x, y〉Vm , we
can define βm(x, y) for x, y ∈ Vm by
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βm(x, y) := βm(x, v01,m)βm(v10,m, y) + βm(x, v10,m)βm(v01,m, y)− 〈x, y〉Vm .
Then we see that (AIT1-a), (∗) and (∗∗) are satisfied.

Finally, we prove (AIT2). Let ha,m := v01,m + v10,m. If βm(x, ha,m) = 0,
then βm(x, v10,m) = −βm(x, v01,m). Hence

βm(x, x) = 2βm(x, v01,m)βm(x, v10,m)− 〈x, x〉Vm
= −2βm(x, v01,m)2 − 〈x, x〉Vm ≤ 0.

Therefore ha,m is a Hodge vector.

Lemma 4.3. In the same situation as in Lemmas 4.1 and 4.2 and in their
proofs, suppose that (IP-g) further holds. Then (AIT1-g) is also satisfied.

Proof. We have

(βm)C(ΦA,m(Y )nvδ,m(Y ), ΦA,m(Y )nvδ,m(Y ))

= (βm)C(ΦA,m(Y )nvδ,m(Y ), v01,m) · (βm)C(v10,m, ΦA,m(Y )nvδ,m(Y ))

+ (βm)C(ΦA,m(Y )nvδ,m(Y ), v10,m) · (βm)C(v01,m, ΦA,m(Y )nvδ,m(Y ))

− 〈ΦA,m(Y )nvδ,m(Y ), ΦA,m(Y )nvδ,m(Y )〉(Vm)C .

(AIT1-g) follows from this and (IP-g).

Remark 4.2. Note that, given an inner product 〈·, ·〉H1
C

for H1
C = H,

the choice of βm is not unique in our construction of standard models.

5. Main theorems. We use the following lemma (see e.g. [Mon, Lemma
2.2, p. 20]) in the proof of Theorem 5.2 below.

Lemma 5.1. Let λi (1 ≤ i ≤ N < ∞) be complex numbers. Then there

exist infinitely many integers n ≥ 1 such that |λ1|n ≤ |
∑N

i=1 λ
n
i |.

Theorem 5.2. Let A : H ⊃ dom(A) → H be an operator satisfying
(OP1), (OP2), (OP3-a), (OP4) and (OP5).

(1) If there exists an abstract intersection theory AIT (in the sense
of §3) for A, then the Riemann hypothesis holds for A.

(2) Suppose further that A satisfies (OP3-b). Then there exists a stan-
dard model AITm for A if and only if the Riemann hypothesis holds
for A and A is semisimple.

Proof. (1) Suppose that the RH for A does not hold. Then by (OP5) one
can find Y ∈ Y such that σY (A) contains sα, sβ ∈ σ(A) with Re(sα) < 1/2,

Re(sβ) > 1/2. Therefore σY (A) contains s1 such that q(Y )Re(s1) > q(Y )1/2.
Indeed, if 0 < q(Y ) < 1 set s1 = sα, while if q(Y ) > 1 set s1 = sβ.

Recall that σY (A) is a finite set. Let si (2 ≤ i ≤ 2g(Y ) := dimCH(Y )) be
all the other eigenvalues of A in σY (A), counted with algebraic multiplicities.

Let λi = q(Y )si (1 ≤ i ≤ 2g(Y )). Then by Lemma 5.1, νn :=
∑2g(Y )

i=1 λni
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is not O(q(Y )n/2), since we could choose s1 so that |λ1|n = |q(Y )s1 |n =
q(Y )n/2(1 + ε)n for some ε > 0.

By (Frob-b), we have

σ(FA(Y )n) = σp(FA(Y )n) = {q(Y )ns | s ∈ σY (A)} ∪ {0}
= {λni | 1 ≤ i ≤ 2g(Y )} ∪ {0}

(counted with algebraic multplicities). By (AIT3) and Lemma 3.3 (the
Cauchy–Schwarz inequality), we have

|νn| = |tr(FA(Y )n)| = |〈ΦA(Y )nvδ(Y ), vδ(Y )〉VC |

≤
√
|〈vδ(Y ), vδ(Y )〉VC | · |〈ΦA(Y )nvδ(Y ), ΦA(Y )nvδ(Y )〉VC |.

Therefore, by (IP-g), we see that νn is O(q(Y )n/2). However, this is a con-
tradiction.

Now, we prove the “if” part of (2). By Lemma 4.1, we have (IP-a)–(IP-f)
and (AIT3) for Vm and ΦA,m(Y ). By Lemma 4.2, we have (AIT1-a)–(AIT1-f)
and (AIT2). Therefore all we have to do is to verify (IP-g) in order to apply
Lemma 4.3 to obtain (AIT1-g). Since the RH for the operatorA is assumed to
hold, each eigenvalue λ` (1 ≤ ` ≤ 2g(Y )), counted with algebraic multiplicity,
of FA,m(Y ) can be written as λ` = q(Y )1/2eiθ` (θ` ∈ R). By the semisimplicity
assumption on A, one can choose eigenvectors w` associated with λ` so that

FA,m(Y )w` = λ`w`. Recall that {eYi }
2g(Y )
i=1 (g(Y ) := 1

2 dimCHm(Y )) is an

orthonormal basis of Hm(Y ) (see §4). Now one can write eYi =
∑2g(Y )

`=1 αi`w`
for some αi` ∈ C. Then

〈ΦA,m(Y )nvδ,m(Y ), ΦA,m(Y )nvδ,m(Y )〉(Vm)C

=
〈2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + q(Y )nf ⊗ g + g ⊗ f,
2g(Y )∑
j=1

eYj ⊗ FA,m(Y )neYj + q(Y )nf ⊗ g + g ⊗ f
〉

(Vm)C

=
〈2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi ,

2g(Y )∑
j=1

eYj ⊗ FA,m(Y )neYj

〉
H1

C⊗CH1
C

=

2g(Y )∑
i=1

2g(Y )∑
j=1

〈eYi , eYj 〉H1
C
〈FA,m(Y )neYi , FA,m(Y )neYj 〉H1

C

=

2g(Y )∑
i=1

〈FA,m(Y )neYi , FA,m(Y )neYi 〉H1
C

=

2g(Y )∑
i=1

〈2g(Y )∑
`=1

αi`FA,m(Y )nw`,

2g(Y )∑
m=1

αimFA,m(Y )nwm

〉
H1

C

.



Standard Models of Abstract Intersection Theory 167

Since FA,m(Y )nw` = λn`w`, we have (IP-g). Therefore by Lemma 4.3, we
have (AIT1-g).

We now prove the “only if” part of (2). By Lemma 2.1(i)–(iii), FA,m and
Hm satisfy (Frob-a) and (Frob-b). Therefore AITm ⇒ RH can be proved as
in the proof of (1).

Let us now show AITm ⇒ semisimplicity. Suppose that on the contrary
we have AITm but A is not semisimple. Then one can find Y ∈ Y such that

σY (A) = {s1, . . . , sN}

with

|Im(s1)| < · · · < |Im(sN )|

and

ν(s1) = · · · = ν(sN−1) = 1 and ν(sN ) > 1.

We want to calculate

〈ΦA,m(Y )nvδ,m(Y ), ΦA,m(Y )nvδ,m(Y )〉(Vm)C

and show that it is not of order O(q(Y )n), which contradicts (IP-g).

We use the notation in Lemma 2.1 and its proof. Thenmi = dimCH(si) =
ν(si) = mult(si) (1 ≤ i ≤ N) by (OP3-b). We regard H(si) as Cmi . Then
we can take a basis wi,` ∈ Cmi (1 ≤ ` ≤ mi = dimCH(si)) of the form

wi,` =



0
...

0

1

0
...

0


`

so that et(Y )A|H(si) can be written in the matrix form N(si) as in Lemma
2.1(v). In other words, wi,` (1 ≤ ` ≤ mi) are generalized eigenvectors of
M(si) = A|H(si). Let

Ji :=



0 1 0
0 1

. . .
. . .

0 1

0 0


∈Mmi(C).
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Since Jmi = 0 for m ≥ mi, N(si) in Lemma 2.1(v) can be written as

N(si) = et(Y )si



t(Y )0

0!
t(Y )1

1! · · · · · · t(Y )mi−1

(mi−1)!
t(Y )0

0!
t(Y )1

1! · · · t(Y )mi−2

(mi−2)!

. . .
. . .

...
t(Y )0

0!
t(Y )1

1!

0 t(Y )0

0!


(5.1)

= et(Y )si

mi−1∑
k=0

(t(Y )Ji)
k

k!
= et(Y )si

∞∑
k=0

(t(Y )Ji)
k

k!
= et(Y )siet(Y )Ji.

Note that

(5.2) ent(Y )Jiwi,` =



(nt(Y ))`−1

(`−1)!
(nt(Y ))`−2

(`−2)!
...

(nt(Y ))0

0!

0
...

0


=
∑̀
k=1

(nt(Y ))k−1

(k − 1)!
wi,`−k+1

for 1 ≤ i ≤ N and 1 ≤ ` ≤ mi.

Recall that {eYµ }
2g(Y )
µ=1 is an orthonormal basis of Hm(Y ). Thus

eYµ =

N∑
i=1

mi∑
`=1

αµi,`wi,`

for some αµi,` ∈ C. Then by Lemma 2.1(iv)–(v) we have

FA,m(Y )neYµ =

N∑
i=1

FA,m(Y )n
mi∑
`=1

αµi,`wi,` =
N∑
i=1

N(si)
n
mi∑
`=1

αµi,`wi,`

=

N∑
i=1

mi∑
`=1

αµi,`N(si)
nwi,`.

Recall from the proof of the “if” part of (2) that

〈ΦA,m(Y )nvδ,m(Y ), ΦA,m(Y )nvδ,m(Y )〉(Vm)C

=

2g(Y )∑
µ=1

〈FA,m(Y )neYµ , FA,m(Y )neYµ 〉H1
C
.
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Now using (5.1) and (5.2) we have

〈FA,m(Y )neYµ , FA,m(Y )neYµ 〉H1
C

=
〈 N∑
i=1

mi∑
`=1

αµi,`N(si)
nwi,`,

N∑
j=1

mi∑
m=1

αµj,mN(sj)
nwj,m

〉
H1

C

=
N∑
i=1

N∑
j=1

mi∑
`=1

mi∑
m=1

αµi,`α
µ
j,m〈N(si)

nwi,`, N(sj)
nwj,m〉H1

C

=

N∑
i=1

N∑
j=1

mi∑
`=1

mi∑
m=1

αµi,`α
µ
j,m〈e

nt(Y )sient(Y )Jiwi,`, e
nt(Y )sjent(Y )Jjwj,m〉H1

C

=
N∑
i=1

N∑
j=1

mi∑
`=1

mi∑
m=1

αµi,`α
µ
j,me

nt(Y )(si+sj)〈ent(Y )Jiwi,`, e
nt(Y )Jjwj,m〉H1

C

=

N∑
i=1

N∑
j=1

mi∑
`=1

mi∑
m=1

αµi,`α
µ
j,me

nt(Y )(si+sj)

×
〈∑̀
a=1

(nt(Y ))a−1

(a− 1)!
wi,`−a+1,

m∑
b=1

(nt(Y ))b−1

(b− 1)!
wj,m−b+1

〉
H1

C

.

Let Mµ := max{` | αµN,` 6= 0}. Then αµN,`α
µ
N,m = 0 if ` > Mµ or m > Mµ.

Note that Re(si) = 1/2 (for all i) since the RH holds by AITm ⇒ RH. Recall
that q(Y ) = et(Y ). Therefore

〈FA,m(Y )neYµ , FA,m(Y )neYµ 〉H1
C

= αµN,Mµ
αµN,Mµ

e2Re(sN )nt(Y ) (nt(Y ))2(Mµ−1)

{(Mµ − 1)!}2
〈wN,1, wN,1〉H1

C

+O(ent(Y )(nt(Y ))2Mµ−3)

= |αµN,Mµ
|2q(Y )n

(n log q(Y ))2(Mµ−1)

{(Mµ − 1)!}2
‖wN,1‖2H1

C
+O(q(Y )n(nt(Y ))2Mµ−3)

= Cµq(Y )nn2(Mµ−1) +O(q(Y )nn2Mµ−3),

where

Cµ = |αµN,Mµ
|2 (log q(Y ))2(Mµ−1)

{(Mµ − 1)!}2
‖wN,1‖2H1

C
> 0.

Let M := max{Mµ | 1 ≤ µ ≤ 2g(Y )}. Since eYµ (1 ≤ µ ≤ 2g(Y )) form a
basis of Hm(Y ), αµN,mN 6= 0 for at least one µ. Hence M = mN > 1. Now
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we have

2g(Y )∑
µ=1

〈FA,m(Y )neYµ , FA,m(Y )neYµ 〉H1
C

=
( ∑
Mµ=mN

Cµ

)
q(Y )nn2(mN−1) +O(q(Y )nn2mN−3) 6= O(q(Y )n),

which contradicts (IP-g). This completes the proof.

In our previous paper [BU] we constructed a model of abstract inter-
section theory based on an analogue of the GNS (Gelfand–Naimark–Segal)
representation. Let us call this model which satisfies (INT1)–(INT3) in [BU]
a GNS model and denote it as AITGNS. The method of the proof of the above
theorem also applies to this model. Therefore we have the following theorem.

Theorem 5.3. Let A : H ⊃ dom(A) → H be an operator satisfying
(OP1)–(OP5). Suppose further that A satisfies (OP5-b) of [BU]. Then there
exists a GNS model AITGNS for A if and only if the Riemann hypothesis
holds for A and A is semisimple.

We say that L(s, χ) satisfies the Riemann hypothesis if any nontrivial
zero si of L(s, χ) satisfies Re(si) = 1/2. We say that a nontrivial zero si of
L(s, χ) is simple if it is a zero of order one.

Combining Theorems 5.2 and 5.3 with [U, Theorem 4.1(iv)] (see Remark
2.1(4)) we obtain the following theorem.

Theorem 5.4. Let A : H ⊃ dom(A) → H be an operator constructed
in [U] for the principal congruence subgroup Γ (N). Let L(s, χ) be the Dirich-
let L-function for a Dirichlet character χ : (Z/NZ)× → C×. Then

(1) L(s, χ) satisfies the Riemann hypothesis and its nontrivial zeros are
all simple if and only if there exists a standard model AITm for A.

(2) L(s, χ) satisfies the Riemann hypothesis and its nontrivial zeros are
all simple if and only if there exists a GNS model AITGNS for A.

Remark 5.1. In the above theorem, if N = 1 (i.e. Γ (1) = SL2(Z))
then the Dirichlet L-function L(s, χ) reduces to the Riemann zeta-function
ζ(s).

6. Analogy with the classical theory. Recall that Weil’s explicit
formula (according to Patterson [Pat]) reads

φ(0) + φ(1)−
∑
ρ

φ(ρ)︸ ︷︷ ︸
spectral term

= W∞(f) +
∑

p: prime

log p
∞∑
n=1

{f(pn) + f(p−n)}p−n/2︸ ︷︷ ︸
geometric term

.
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Here f is a fast decreasing function on R+, φ is the Mellin transform of f ,
W∞ is an appropriate functional of f , and ρ runs over the nontrivial zeros
of the Riemann zeta-function (or the L-function), counted with multiplicity.
For the original work of Weil, see [1952b] and [1972] of [W2]. See also [C]
and [CM, p. 344].

The idea of introducing the model FA,m(Y ) of an analogue of the Frobe-
nius morphism in this paper is suggested by the spectral side of the above
formula. By [BU, p. 702, Lemma 2.2] there is a function φY (s) (Y ∈ Y)
which is analytic in an open set c Ω∞ such that

(i) φY (0) = 1,
(ii) φY (1) = q(Y ),

(iii) φY (si) = q(Y )si if si ∈ σY (A),
(iv) lims→si φY (s)/(s− si)mi = cY,i ∈ C for some cY,i 6= 0 if si ∈ σ(A)−

σY (A) with ν(si) = mi.

For this φY (s), let φY (A) : H ⊃ dom(φY (A))→ H be defined by

φY (A)x := lim
T→∞
T∈Y

1

2πi

( �

∂ΩT

φY (s)(sI −A)−1 ds
)
x

for

x ∈ dom(φY (A)) := {x ∈ H | the limit φY (A)x exists in H}.
Then it is easy to prove that dom(φY (A)) = H and

φY (A) = FA,m(Y ).

For the proof use (sI −M(si))
−1 from the proof of Lemma 2.1. It is also

easy to see that

tr(φY (A)) =
∑

si∈σY (A)

mult(si)φY (si).

Let C be a smooth projective curve (one-dimensional scheme) over a
finite field Fq. Let Frob be the Frobenius morphism on C. Then FA(Y ) in
§2 is an analogue of Frob.

For the surface S = C×C over Fq, let Pic(S) be its Picard group, which
we regard as a Z-module, so as to preserve the analogy with Weil divisors.
The R-linear space V in §3 is modeled on Pic(S) ⊗Z R. The R-bilinear
form β(·, ·) in §3 is modeled on the R-tensored intersection pairing i(·, ·) on
Pic(S)⊗Z R.

The operator ΦA(Y ) in (AIT1) is an analogue of the linear map on
Pic(S)⊗ZR induced by the morphism id×Frob on S. Then one may regard
v01, v10, vδ(Y ) and ΦA(Y )nvδ(Y ) in (AIT1) as analogues of the cycles pt×C,
C × pt, ∆ and ΓFrobn in Pic(S), respectively. Here ∆ is the diagonal, and
ΓFrobn is the graph of Frobn. So here is the dictionary:
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Pic(S) ⊗Z R V

pt × C v01

C × pt v10

∆ vδ(Y )

ΓFrobn ΦA(Y )nvδ(Y )

The cycles pt× C, C × pt, ∆ and ΓFrobn have the following properties:

(i) i(pt× C,pt× C) = 0,
(ii) i(C × pt, C × pt) = 0,

(iii) i(pt× C,C × pt) = 1,
(iv) i(ΓFrobn ,pt× C) = 1,
(v) i(ΓFrobn , C × pt) = qn,

(vi) i(ΓFrobn , ΓFrobn) = qn.

The axioms of (AIT1) are analogues of these properties.

The Hodge property in (AIT2) comes from the classical Hodge index the-
orem. A Hodge vector ha corresponds to an ample hyperplane section of S,
thereby β(·, ha) gives an analogue of the degree function deg⊗Z1: Pic(S)⊗Z
R→ R. Lemma 3.1 is an analogue of the inequality of Castelnuovo–Severi.

The construction of Vm of a standard model in §4 is suggested by the
Künneth formula for the étale cohomology. The Tate conjecture for S = C×C
and codimension one is equivalent to the map PicS ⊗ Q` → H2

ét(S,Q`(1))
being bijective (Tate [T2, Proposition (4.3)]). Note that H2

ét(S,Q`(1)) =

H2
ét(S̄,Q`(1))Gal(Fq/Fq), where S̄ = S×Fq Fq (see [T2]). Tate [T1] himself has

proven his conjecture for abelian varieties over finite fields for the case of codi-
mension one. From this the Tate conjecture follows also for S = C×C in the
codimension one case. By the Künneth formula for `-adic cohomology we have

H2
ét(S̄,Q`) '

(
H0

ét(C̄,Q`)⊗H2
ét(C̄,Q`)

)
⊕
(
H1

ét(C̄,Q`)⊗H1
ét(C̄,Q`)

)
⊕
(
H2

ét(C̄,Q`)⊗H0
ét(C̄,Q`)

)
.

Here C̄ = C×FqFq. The definition of the R-linear space Vm is modeled on this.
For the Künneth formula for `-adic cohomology see Milne [Mil, Chap. 6, §8].

For a morphism ϕ : C → C, the Lefschetz fixed-point formula for the
`-adic étale cohomology group H i

ét = H i
ét(C̄,Q`) is

tr(ϕ∗n|H0
ét

)− tr(ϕ∗n|H1
ét

) + tr(ϕ∗n|H2
ét

) = i(Γϕn , ∆),

where Γϕn is the graph of ϕn. If ϕ = Frob, then it turns out that

tr(ϕ∗n|H0
ét

) = 1 = i(Γϕn , pt× C)i(∆,C × pt),

tr(ϕ∗n|H2
ét

) = qn = i(Γϕn , C × pt)i(∆,pt× C).
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So the Lefschetz fixed-point formula for ϕn = Frobn reads

tr(ϕ∗n|H1
ét

) = i(Γϕn ,pt× C)i(∆,C × pt)

+ i(Γϕn , C × pt)i(∆, pt× C)− i(Γϕn , ∆)

=: 〈Γϕn , ∆〉Pic(S)⊗ZR.

(AIT3) is modeled on this. Consider the operators A and FA,m(Y ) (Y ∈ Y)
which are extended to H•C = H0

C ⊕H1
C ⊕H2

C as in §4. Then we have

φY (A)f = FA,m(Y )f = f = φY (0)f,

φY (A)g = FA,m(Y )g = q(Y )g = φY (1)g,

for f ∈ H0
C and g ∈ H2

C. The operator φY (A) acting on H i
C is an analogue

of Frob∗ acting on H i
ét (i = 0, 1, 2). Since

ΦA,m(Y )nvδ,m(Y )

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + f ⊗ FA,m(Y )ng + g ⊗ FA,m(Y )nf

=

2g(Y )∑
i=1

eYi ⊗ FA,m(Y )neYi + φY (1)nv01,m + φY (0)nv10,m

(see the proof of Lemma 4.2), by the proof of Lemma 4.2 we have

tr(φY (A)n|H0
C
) = φY (0)n

= (βm)C(ΦA,m(Y )nvδ,m(Y ), v01,m) · (βm)C(v10,m, vδ,m(Y )),

tr(φY (A)n|H2
C
) = φY (1)n

= (βm)C(ΦA,m(Y )nvδ,m(Y ), v10,m) · (βm)C(v01,m, vδ,m(Y )).

Therefore (∗∗) yields

tr(φY (A)n|H0
C
)− tr(φY (A)n|H1

C
) + tr(φY (A)n|H2

C
)

= (βm)C(ΦA,m(Y )nvδ,m(Y ), vδ,m(Y )),

which is equivalent to (AIT3).
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E-mail: banaszak@amu.edu.pl

uetake@amu.edu.pl

Received September 10, 2014 (8037)




	1 Introduction
	2 An analogue of the Frobenius morphism for the operator A
	3 Abstract intersection theory and its axioms
	4 Standard models of abstract intersection theory
	5 Main theorems
	6 Analogy with the classical theory
	References

