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Abstract

We study the solvability and Fredholmness of binomial boundary value problems for analytic
functions represented by integrals of Cauchy type with density on abstract nonstandard Banach
function spaces, assuming continuous, piecewise continuous and essentially bounded factorizable
functions as coefficients. The representation of the solutions of those problems allows us to
describe the explicit form of the solutions of the associated singular integral equations in each
case. The solvability and explicit representation of the solutions of a class of singular integral
equations with Carleman shifts is also considered.
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1. Introduction

The first formulation of linear boundary value problems (also called Riemann problems
or two-term boundary value problems) for analytic functions was due to Riemann [44]
in 1853, while the theory of singular integral equations with principal value integrals
was originated almost directly after the development of the classical theory of inte-
gral equations by E. Fredholm in 1903. Singular integral equations were investigated
by D. Hilbert [I8] and H. Poincaré [43] while studying two different problems: Hilbert
investigated some boundary value problems for analytic functions and Poincaré studied
the theory of tides. J. Plemelj [42] applied further the Cauchy singular integral as a
mathematical device for solving boundary value problems.

The complete solution of the Riemann problem was first given by F. D. Gakhov [13][14]
and N. I. Muskhelishvili [39] [40]. Subsequently, several authors have extensively studied
boundary value problems and singular integral equations on classical spaces of integrable
functions. Much of this groundwork is collected in [9] [15] 16} 24, [36] 37, B8], 47, [49] and
the references therein.

In the last two decades, several studies have been devoted to singular integral equa-
tions and boundary value problems in the general setting of variable exponent Lebesgue
spaces LP()| which is one of the prototypical examples of nonstandard Banach function
spaces. The basic properties as boundedness, invertibility and the Fredholm property of
singular integral operators over diverse domains and curves in LP(") (including weighted
versions) as well as the solvability theory of singular integral equations were established by
various authors: we refer to A. Yu. Karlovich [21], A. Yu. Karlovich and A. K. Lerner [22],
A. Yu. Karlovich and I. M. Spitkovsky [23], V. Kokilashvili, N. Samko and S. Samko [31]
and V. Kokilashvili and S. Samko [32], [33] and their references.

The Riemann boundary value problem for analytic functions within the framework
of LP() spaces was first explored by V. Kokilashvili, V. Paatashvili and S. Samko [30];
the Haseman problem, the Riemann—Hilbert problem and the Dirichlet problem were
considered by V. Kokilashvili and V. Paatashvili [25H28| 4T]. The recent monograph [29)
synthesizes numerous developments in this direction.

In the more abstract scheme of Banach function spaces, singular integral operators and
their corresponding equations, with coefficients belonging to different classes of functions,
have been studied by A. Yu. Karlovich [20] (in the case of reflexive rearragement-invariant
spaces), A. Yu. Karlovich and A. K. Lerner [22] and V. Kokilashvili and S. Samko [32, [33].
However, the solvability theory of singular integral equations is far from being complete
in this general framework.

5]



6 E. M. Rojas

The aim of this paper is to extend the study of solvability and Fredholmness of two-
term boundary value problems for analytic functions represented by integrals of Cauchy
type on Lebesgue spaces to the case of density on Banach function spaces over Lyapunov
curves assuming some conditions (see 7 below). We will consider continuous,
piecewise continuous and essentially bounded functions as coefficients. Since singular in-
tegral equations are related to boundary value problems, we will use the representation
of their solutions to describe the explicit form of solutions of the associate equations in
each case. For the case of essentially bounded functions we are going to introduce the no-
tion of Wiener—Hopf factorization, and we will establish Simonenko’s Fredholm criterion
for singular integral operators with factorizable functions in this context. Moreover, the
solvability and explicit representation of solutions of a class of singular integral equations
with shift will be considered.

The paper is organized as follows. Chapter [2| contains the definitions and basic facts
about Banach function spaces; here we introduce the notion of factorization in X(T).
Chapter [3|is devoted to the study of solvability and representations of solutions of Rie-
mann problems with continuous, piecewise continuous and essentially bounded factoriz-
able coefficients.

In Chapter [ we prove Simonenko’s Fredholm criterion for singular integral equations
with essentially bounded factorizable coefficients. As a consequence, we establish the
effective solution of the corresponding singular integral equations through the lateral
inverses of the operator.

In Chapter |5, by using the Fredholmness criteria for singular integral equations with
continuous and piecewise continuous functions proved by V. Kokilashvili and S. Sam-
ko [32], Simonenko’s Fredholmness criterion proved in Chapter [4|and the representations
of solutions of boundary value problems considered in Chapter [3] we prove the Fredholm
property for the above mentioned boundary value problems, and we will describe the
form of solutions of equation for each class of essentially bounded functions under
study.

Chapter [0] deals with a class of singular integral equations with Carleman shift. For
the shift function we assume both behaviors: preserving or reversing the orientation of
the curve I'. The existence and uniqueness of solutions will be established by projection
methods, so that we will be able to transform the initial equation into a system of
equations which can be solved by means of a Riemann boundary value problem technique.
Thus, using the results of Chapter [3] and the Sokhotski-Plemelj formulas we will give an
explicit form of the solutions. Furthermore, with the Fredholmness criteria mentioned
above and the projection methods, which in this case take the form of a nonexplicit
equivalence relation between operators, the Fredholm property for the associated singular
integral operator with shift is proved.

In Chapter [7] we show that all the assumptions imposed on the abstract Banach
function space X(I') are, in fact, well-known results in variable exponent Lebesgue spaces,
therefore our results are valid in those spaces.



2. Definitions and preliminary statements

Let I' = {t e C: t = t(s), 0 < s < £} be an oriented rectifiable closed simple Lyapunov
curve in the complex plane C with arc-length s. We denote by DT and D~ the bounded
and unbounded components of C \ T' respectively. We will assume that 0 € Dt and, as
usual, I has the natural counterclockwise orientation.

Recall that a simple oriented curve I' in the complex plane is called a Lyapunov curve
if the tangent to I" at each point ¢ exists and forms an angle 0(¢) with the real axis which
satisfies the Holder condition:

0(t1) — 0(t2)| < Alt1 —t2]",  A>0,0<p <1

We denote by R(T") the Banach algebra of rational functions without poles on I which,
as is well-known, can be decomposed as R(I') = R (T') + R_(T'), where R.(T") denote
the sets of all functions on R(T') with poles outside of D*. The continuous functions, the
smooth functions and the essentially bounded measurable functions on I'; endowed with
the essential supremum norm ||-||o0, are denoted by C'(T"), C>°(T") and L (T") respectively.
For p € [1,00), LP(T') denotes the usual Banach space of all Lebesque measurable complex-
valued functions on I' with absolutely integrable pth power.

The Cauchy singular mtegml operator along the curve I of finite length ¢ is defined by

(SH)(®) /f dr, t=1i(s),0<s <L,

where the integral is understood in the sense of principal value.

Let (€, 1) be a nonatomic o-finite measure space, i.e., a measure space with nonatomic
o-finite measure p given on a g-algebra of subsets of €2. The set of all Lebesgue measurable
complex-valued functions on €2 is denoted by M. Let M™ be the subset of functions in
M whose values lie in [0, 00]. The characteristic function of a measurable set E C  is
denoted by x g, and the Lebesgue measure of F is denoted by |E|.

DEFINITION 2.1 ([I, Ch. 1, Definition 1.1]). A mapping p : M — [0,00] is called a
Banach function norm if, for all functions f, g, f, (n € N) in M, for all constants a > 0,
and for all measurable subsets E of €2, the following properties hold:

Al) p(f) =0« f=0ae plaf) =ap(f), p(f +9) < p(f) + p(9),
A2) 0< g < fae = p(g) <p(f) (the lattice property),
)
)

(
(
(A3) 0< fr 1 f ae. = p(fn) T p(f) (the Fatou property),
(A4) |E| < 00 = p(xr) < o0,

(A5) |E| < oo = [, fdu< Crp(f)

with Cg € (0,00) which may depend on E and p but is independent of f.
[7]



8 E. M. Rojas

Here, functions differing only on a set of measure zero are identified. The set X(Q2) of
all functions f € M for which p(|f]) < oo is called a Banach function space. For each
f € X(Q), the norm of f is defined by

Ilfllxcc) == p(If])-

The set X(2) under the natural linear space operations and with this norm becomes a
Banach space (see [I, Ch. 1, Theorems 1.4 and 1.6]).
If p is a Banach function norm, its associate norm p’ is defined on M™ by

#g) = sup{ [ s@lata)dus £ € o) < 1}, ge M.

It is a Banach function norm itself [I, Ch. 1, Theorem 2.2]. The Banach function space
X'(2) determined by the Banach function norm p’ is called the associate space (Kothe
dual) of X(Q).

LEMMA 2.1 (Holder’s inequality, see [I, Ch. 1, Theorem 2.4]). Let X(92) be a Banach
function space with associate space X'(Q). If f € X(Q) and g € X'(), then fg is
summable and

/Q Faldn < 1l 9. (2.1)

Let ¥ denote the collection of all subsets of 2 of finite measure, where any two such
subsets which differ by a set of p-measure zero are identified. With the distance

A(EF)i= [ e~ xelds. EFes,
Q

(X, d) is a complete metric space. A measure p is said to be separable if the corresponding
metric space (X, d) is separable.

LEMMA 2.2 ([I, Ch. 1, Corollaries 4.3-4.5]). Let p be a separable measure.

(a) A Banach function space X(Q) is separable if and only if its associate space X'(Q) is
canonically isometrically isomorphic to the dual space X*(Q2) of X(£2).

(b) A Banach function space X(Q) is reflexive if and only if both X(Q) and its associate
space X'(Q) are separable.

In this paper we will consider X(I") to be a Banach function space over a closed simple
Lyapunov curve I' satisfying the following conditions:

C(I) c X(I') ¢ LY(D), (2.
laf(lxm < Sup la@®)] - [ fllxry  for a € L=(T), (2.
the operator S is bounded in X(I"), (2.
X(T) is reflexive, (2.
C°°(T') is dense in X(T"). (2.

S O s W N

)
)
)
)
)

The boundedness of the adjoint operator S* in the dual space X*(T') is given in the
following result.
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LEMMA 2.3. Suppose the operator S is bounded in the space X(T"). Then its adjoint S*
is connected with the operator S in the dual space X*(T') via the equality

S*=—-HSH

where H is the operator defined in X*(T') by (Hy)(t) := h(t)@(t), where h(t) = exp(iO(t))
and O(t) is the angle of inclination of T att to the positive direction of the real azis.

Proof. Since X(T') is reflexive, Lemma shows that X(I') and X'(T") are separable.
Furthermore, X*(T") can be identified with the associate space X'(T") (see also [20, Lem-
ma 1.2]). That is, the general form of a linear functional on X(T") is given by

flu) = (u,v) = / u(t)v(t) |dt|, where u € X(T), v € X'(T).
r
Let ¢,9 € R(T). Then from Cauchy’s Theorem it follows that

[eosawa=- [ swsooa.
Hence,

(6,5%) = (S, ) = / (56)(t)D(E) |at| = / (S6)(tyD(Oh(E) dt

= [ ot O de =~ [ o TS | = ~(o. HSHY). (27
Since X(I') is reflexive, X(I') and X'(T") = X*(I') are separable and by (2.6), R(I') is dense
in X(T") and X'(T"), from and we conclude that S* = —HSH. n

On the other hand, from [38, Ch. I, Corollary 1.2] we have (S%r)(t) = r(t) for all
r € R(T'). Since R(T") is dense in C*°(T") and, by assumption (2.6), C>°(T') is dense
in X(I'), we conclude that S? = I in X(T'). Hence, from (2.4) and (2.6)), the operators

Py:=L(1+5)

define bounded complementary projections in the space X(I"). Thus, we define the sub-
spaces
Xy(T)i= PAX(T), K (T) = PX(T),

X_(T) :=X_() +C.
Set

LL(T): {feL1 ):/f(T)TndTZOfor'rL>0}7

LY(T): = {]"GL1 /f "dTOforn>1}
L' :=L'[T) +C.
LEMMA 2.4. Let T' be a Lyapunov curve and let X(T') be a BFS satisfying ([2-2)-(2.6).
Then:
(a) X4(T) = L(T) N (), T_(T) = £ () N X(T), X_(T) = L1 (1) N (T).
(b) If feXye(T), g € XL(I'), then fg € LY (T). Moreover, if f € X_(T'), g€ DC/_F) or
feX_(I), ge X (T), then fg € L (I).
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Proof. (a) follows from [38, Ch. II, Theorem 1.1] and assumptions and (2.4), tak-
ing into consideration the decomposition R(I'") = R4 (T') + R_(T"). The proof of (b) is
analogous to the proof of [2 Lemma 6.11], from the denseness of R(T") in C(T"), assump-
tion and the Holder inequality. m

Now, we can introduce a factorization of an invertible essentially bounded measurable
function @ in I' (¢ € G(L*(I"))), where a € G(L>*(I")) if essinf,cr |a(t)] > 0. Let T be
a Lyapunov curve and X(I') be a BFS satisfying (2.2)—(2.6). We say that a function
a € G(L>=(I")) admits a factorization in X(T) if it can be written in the form

a(t) =a_(t)t%a,(t), ae. onT, (2.8)
where R € Z,
(i) a— € X_(I), aZt € X (1), ay € X' (T), a7 € Xy (1),
(i) the operator a}'SayI is bounded in X(T').
The integer X will be called the indez of the function a and denoted by ind a. We can
prove that R is uniquely determined.



3. Binomial boundary value problems on X(I')

In this chapter we study the Riemann problem

U (t) = GO)W(t) + (1), 3.1)
or equivalently, the associated problem
U (1) + G() T (t) = g(t) (3.2)

for analytic functions represented by integrals of Cauchy type with density on the
space X(I'), assuming the function G is continuous, piecewise continuous or G € L*>°(T")
admitting a factorization .

The problem is stated in the following way: find functions ¥ (¢) and ¥~ (¢) analytic
in DT and D~ respectively, vanishing at infinity, satisfying condition or on
their boundary values on the contour T'.

The pair {¥U~, U1} is referred to as a solution of problem (or (3.2)). The space of
all solutions of the homogeneous problem is called its kernel, and the space of functions g
for which the inhomogeneous problem is solvable is said to be its image. The dimension «
of the first of them and the codimension (in X(T")) 8 of the closure of the second are called
the defect numbers of the boundary value problem. If at least one of the numbers o and
[ is finite, the difference o — 3 is referred to as the index of the problem. Problem ,
or , is said to be normally solvable if its image is closed; it is called Fredholm if it is
normally solvable and has finite index.

Let U be an analytic function of Cauchy integral type with nontangential limit

e X(T),
p € X(I') L e
W(z):%émdr, z¢T,

with boundary values U (¢) (resp. ¥~ (¢)) as 2 = t,t €, z€ DT (resp. t €', z € D7).
According to the Sokhotski-Plemelj formulas, these boundary values are expressed by

() = 5[Te)(t) + (Sp)®)], (1) = 3[(—Lp)(t) + (Se)(t)].
Thus,
TH(t) U (1) = (), () + T (1) = (Sp)(t).

For a simply connected domain D, bounded by a rectifiable curve I', we denote by
E°(D), 6 > 0, the Smirnov class of functions ¥(z) in D for which

sup W) |d2] < o
r Jr,

(11]



12 E. M. Rojas

where T'. is the image of 7. = {z : |z|] = r} under the conformal mapping of U =
{2z : |z] < 1} onto D. When D is an infinite domain, the conformal mapping means the
one which transforms 0 into infinity. A function ¥ € E?(D) has angular boundary values
almost everywhere on I' and the boundary function belongs to L°(I).

On the other hand, let us introduce the notation

&(D) = {\I/(z) L U(2) = (K)(2) = — / ‘P(T)Z dr, 2 ¢ T, with ¢ € x(r)}.

C2r JpT—

As is known, E'(D) coincides with the class of analytic functions represented by Cauchy
integrals. So, for the function ¥(z) which is analytic on the plane cut along the closed
curve I and belongs to E'(D¥), we have

U(z) = K(T+ —07)(2).

This, together with the inclusion X(I') C L!(T"), given by assumption (2.2, allows us to
define the following subsets of £(D):

EYD*) = {p € EY(DF) : ¢ has definite limiting values on X(I')}.

Denote by &1 (D) the set of analytic functions on DV with definite limiting on X4 (T).
éE(D_) is referred to as the set of analytic functions on D~ wvanishing at infinity with
boundary value on X_(T'). Finally, we set £1(T) := L)+ L (T).

Since the boundary value problem is posed in X(T'), we are looking for solutions
{p™", "} represented by integrals of Cauchy type, i.e.,

ot (z) = i./ 70 g pe,
o Jr (— 2

with nontangential limits a.e. on X(T'). Then, the solutions are such that ¢t € &(D™)
and ¢~ € &1(D™) for the boundary value problem with continuous coefficient G. In the
case of G essentially bounded and admitting a factorization , the solutions T rep-
resented by integrals of Cauchy type have nontangential limits a.c. on X4 (T') and X_(T)
respectively; in this case the solutions are such that ¢t € €L(DT) and ¢~ € EL(D™).

3.1. The two-term boundary value problem with continuous coefficients. In
this section we study the solvability of problem for G a nonvanishing continuous
function on T', with index X = 5L [arg G(¢)]r and with g € X(T).

We first establish the following auxiliary result:

PROPOSITION 3.1.1. Let T' be a closed curve and X(I') a BFS satisfying (2.2))—(2.4)
and (2.6). Assume that zg € DV. Then there erists an integer k > 0 such that
X(z)—1
(z — 20)*
Proof. Let § > 0 and T, be the image of v, = {z : |z| = r}, r < 1, under the conformal
mapping of U = {z : |z| < 1} onto DT. We have

J 3 1 2)|"™ |dz|, where z € m T
[oxerie s [ 30 Jaeer i, whee v = [ X @3

T or T—2Z
™ n=0

exp{(K¢)(2)} =: X(2) € EX(DT) and € &Y(D).



BVP & SIE on Banach function spaces 13
Since ¥(z) € EY(DT), it is known that
[ 1w < [ e a
r, r
From ([3.3)) we obtain

S n — 1 []dp(t) 6 "
L i< 32 [ s oo <§m/r‘2+ 2 (59)(0)| ]
<= [ peorria+ Y- 5 [ e
n=0 70 n=0 /T

0o 1 .
<tV + 30 [ s
n=0

where M = sup,cp |¢(t)]. It remains to show that the series Yo" o L [ [6(Sp)(t)[™ |dt]
converges. Since S is an involution, we have

n (Se)(t), n odd,
(Sp)"(t) = {
(t), n even.
For n odd, from the Hélder inequality, we have
N — 1, o "
> o / (SOl < 3 1" ISl ke = Sl 3 -

n odd
The last series converges if § < 1. The case of n even was shown above. This proves that
X (z) € E°(D*) when 6 < 1.

In the case of D™ it is necessary to consider two cases: 0 < r < rg and rg < r < 1 for
some fixed ro. The needed inequalities are obtained by choosing k > [1/4] and proceeding
as before.

Now, notice that

— 1 [|s
+ _ +5p(¢)/211.,8/2 < SM/2 L[]0
JL e nia = [0 el < S0 5 [ 5690

As before, we can prove that this series converges if § < 2.

Finally, we apply the following Smirnov Theorem: If ¥ € EV (D) and ¥+ € L7(T)
where o > 1, then ¥ € E72(D). In our case, X(z) € E°(DT), 0 < § < 1, and assump-
tion gives ¥+ € LY(T'), so X(2) € FY(D*) and éfgo_)i € E'(D7). Even more,
we are considering analytic functions with nontangential limits in X(I"), more precisely,
U+ € X(T); then we conclude that X (z) € €1(DF) and X1 c e1(D™). =

(z—z0)
THEOREM 3.1.2. Let T be a Lyapunov curve and X(T') be a BFS satisfying (2.2))—(2.4)
and (2.6)). Assume G € C(T') and G(t) #0 for t € T'. Then:

\dt].

(a) For X > 0, problem (3.1) is unconditionally solvable in the class E(D), and all its
solutions are given by

U(z) = );(;) /F )ﬁ?ﬂ Td_TZ +X(2)p(2) (3.4)
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with
X(2) = exp h(z), z € DT,
(z — 20)Nexph(z), z€ D™, 2 € DV,
where
h(z) = K(InG(t)(t — ZO)N)(Z)
and p is an arbitmry polynomz'al of degree N — 1.

(b) For R < 0, problem (3.1)) is solvable in this class if and only if

X+ 0, rk=0,...,]N—1, (3.5)

and under these conditions the unique solution is given by (3.4) with p = 0.
Proof. Consider first the case X = 0. We choose a rational function é(t) such that

G _

G(t)

Clearly, ind G = 0 and therefore X(z) = exp(K(InG))(z) is continuous in DE. Since
U(z) = (K(¥*T —T7))(z), we have

U\ G U\
X G\X X+
Notice that U/X € &(D). In fact, because ¥ € E'(D¥) and 1/X is bounded, we have
U/X € EY(D?*) and therefore
U/X =KWt/ Xt —w/X).
From the Sokhotski-Plemelj formulas it follows that ¥+ € X(I'), and hence ¥/X € &(D).
Let

sup
tel

S+ IS ry) ™"

U(2)/X(2) = (K¢)(2), € X(T);
then equality (3.6) yields
G(t) 1 1 g(t)
0=(Za 0+ 5600 + £ (37)
That means the function v is a solution of the equation ¢» = K in the space X(T'), where
K is a contractive operator. Therefore, equation (3.7) and consequently problem (3.1
has a unique solution in &(D). Now, we are going to construct that solution.
Let
X (z) = exp(K(In G)(2)).

Since X = 0,

InG(t) = In|G()| +iarg G(t)
is a continuous function, and from Proposition

1/X(2) — 1€ eY(D*).

If W is a solution of problem (3.1)), then ¥ € &(D) and therefore ¥ € E*(D¥), even more
V/X € E(D). Also,

(T/X)" = (T/X)” =g/X".
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Since this problem has a unique solution in €(D), the function
U(z) = X(2)K(9/XT)(2)

is the solution of (3.1)) in the class €(D).
Let now X > 0. We choose zg € DT and rewrite problem (3.1 as

TH(t) = G (1)t — 20 (1) + g()
where G (t) = (t — 20) "NG(t) is a continuous function with index zero. Let
Fle) = {Z'(i)’zo)&\?(z), i i gfi 38)
There exists a polynomial p(z) of degree R — 1 such that
=() = F(z) - pl(z) € B'(D"): (39)
then Z(z) = K(2+ — 5-)(2). But
= (1)~ = (1) = F(1) — F(1) = U(t) — (t — )"0 (1) € X(T),
thus = € &(D) and moreover
=4 (1) = G (DE (1) + a(1)
where g1(t) = g(t) — p(t) + G1(t)p(t). Since ind G; = 0, from the previous part
=) = Xi(K (/XD Xa(2) = exp(K(n Gr)(:).
On the other hand,

Klon/XP)() = Klo/X0)() ~ 5 [ p(t)
I

2mi Jr X{(t) t 2m X
But
) p(2)/X1(2), ze€ DT,
2mi X1 t—z_ 0, z€ D,
and
1 4 dt 1 t dt 1 t
7/ pE) _ b {pf) p(t)} L L Pt 5
2mi Jp X7 () t—2z  2mi Jp [ X (t) t—z 2m Jpt—=z
_ p(z), FAS D+7
—p(2)/X1() + p(z), 2 €D
Thus,

E(Z) = X1(2)K (91/X7)(2) = X1(2) K (9/X7)(2) + X1(2)p(2) — p(2).
From ) and . we arrive at .

It can verlﬁed that in the solution provided for problem ([3.1]) the arbitrary polynomial
p does not depend on the choice of the point zy. Finally, for X < 0, the function given
by (3.8) belongs to &(D). Moreover, F* = G1 F~ + g. Hence,

F(z) = X1(2)K (/X7 )(2),
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and since the Cauchy formula [I7, Ch. X, §4, Th. 1] states that for any analytic function
¢ with nontangential limit a.e. on I' to be representable by an integral of Cauchy type
in D it is necessary and sufficient that

\/I‘QS(C)CndC:Oa n:(]ala"'a

the condition W(2) = (2 — 2z9) N F(z) € E1(D™) is fulfilled if and only if conditions (3.5))
are satisfied. m

3.2. The boundary value problem for piecewise continuous coefficients.
In this section we will study the solvability of the two-term boundary value problem
with piecewise continuous functions as coeflicients. To do so, we first introduce two nec-
essary axioms on X(T") as well as some auxiliary results proved in [32].

AXIOM 1. For the space X(T') there exist two functions o and  with 0 < «(t), 5(t) < 1
such that

[t —to[ 7SIt — to| YOI ty €T,
is bounded in the space X(T') for all ¥(to) such that

—a(ty) < y(to) < 1 —B(to),
and is unbounded in X(I') if v(to) ¢ (—a(to), 1 — B(to)).
The functions a and 3 are called the index functions of the space X(I').
AxXIOM 2. For any v < 1 — B(ty) the embedding X(T,|t — to|?) € LY(T') is valid and
C>=(I') is dense in X(T', |t —to|7), for any to €T
From Axiom [1] the following result holds.
LEMMA 3.2.1. Suppose X(I') satisfies conditions [2.2)-(2.3), and t1,...,t, € . Then

H|t—tk|'y’“€f)C(F) for all v > —ag, k=1,...,n.

k=1
LEMMA 3.2.2. Let X(T") be a Banach function space satisfying conditions f and
Azioms . Then the space X(T, 0) for o(t) = [1i_y |t — t&|?*, t1,...,tx € T, satisfies
conditions f as well if

—a(ty) <y < 1-—p(t), k=1,...,n. (3.10)
Let G be a piecewise continuous function on I' (written G € PC(T")) with inf;cr |G(8)]
> 0, and let t1,...,t, be the points of discontinuity of G. As usual, we set
1 G(t—0)
t)y=—In| ———= 3.11
1) =5 n(G(t+0)>’ (8-11)
w(t) = H(t — 29)70),
k=1

where zg € DT, the t; are the discontinuity points of G and the functions wy(z) =
(z — 29)"(*%) are univalent analytic functions in the complex plane with cut from zy to
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infinity through t; € I'. The function
G1(t) = G(t)/w(?) (3.12)
is continuous on I' independently of the choice of
1 G(t—0)
=Ry (tg) = — — ).
ar = Ry(ti) = 3.5 arg(G(t+O)>

Consider now the function

m (z—tp)Y®) 2 € Dt

w(z) = H wr(z) with @r(2) = q (z — #,)7 )
i) ——, z€ D7,
(Z — ZO)'Y(tk)

where the branch of the function (%)W(m
z € D™ so that wy, is analytic in D*.
Assuming that the curve I' has at least one-sided tangents at all ¢;. For Sy := Svy(tg),

with 7, chosen as in (3.10]), and taking into account Lemmas and from the
equality

is chosen so that it tends to 1 as z — oo,

rove) (Z) — ™ In|z—ty|—Bk arg(zftk)ei(ﬁk In |z—tg|+ay arg(z—ty))

we conclude that
w(z),1/w(z) € EY(D*). (3.13)
Let X(z) = w(2)X1(z), where
Xi1(2) = exp(K(In(G1(1)))),
and introduce a new function
Uy(z) = ¥(2)/w(z). (3.14)
If U € 1(D*) and (3.13) holds, according to Smirnov’s Theorem we have ¥; € £!(D¥).
Since ¥y = K (U] — ¥7), we get ¥; € &(D).
Now, for the function G; given in (3.12)) and ¥y in (3.14), consider the problem
UT(t) = Gi(t)¥7 (t) + w(t)g(t). (3.15)

If we resolve (3.15]), we find that all solutions of problem in the case N=ind G1(t) >0
are given by
U(2) = w(2) X1 (2) K <+9+> (2) + @(2) X (2)p(2) (3.16)
wt X]
where p is an arbitrary polynomial of degree N.

Notice that from Lemma the function ¥ in is such that ¥+ € X(T).
Therefore, with an arbitrary polynomial p provides solutions of in &(T"). The
case of negative index is considered in the standard way.

Thus, we arrive at the following result.

THEOREM 3.2.3. Let I' be a Lyapunov curve and X(I') be a BFS satisfying (2.2)-(2.4),
and Azioms [IH2| Let G € PC(T) be such that infier |G(t)| > 0 with points of
discontinuity t1,...,t,, and suppose that the curve I' has at least one-sided tangents at
the points ty. Let X = ind Gy, where Gy is given by . For ~v(tx) given in
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satisfying (3.10), the statement of Theorem holds for problem (3.1) if X(z) is
replaced by X1(z) and formula (3.4) is replaced by formula (3.16]).

3.3. The Riemann problem (3.2) with factorizable essentially measurable coef-
ficients. Now, we are going to consider the boundary value problem (3.2 with essentially
measurable coefficients admitting a factorization in the space X(T).

THEOREM 3.3.1. Let T be a Lyapunov curve and let X(T') be a BFS satisfying (2.2)—(2.6]).
Suppose that the function G admits a factorization G(t) = G_ ()G, (t) in X(T). Then

(a) Problem (3.2)) is solvable if and only if
G-lge LYT), ¢y =G_P.G-lge X (D), (3.17)
ot =GP G g € Xy (D).
(b) If conditions (3.17) are fulfilled, then the general solution of problem (3.2)) is
et =l +GTNp, o =9y —Gop, (3.18)
where p is a polynomial of degree < — VN —1 if R <0, and is equal to zero if X > 0.
Proof. Let {¢™, ¢~} be a solution of problem (3.2]). Substituting the representation ([2.8)
of G into the boundary condition ([3.2)) we obtain
¢ (1) + GG ()™ (1) = g(t),
o+ () = GZH(0)g(1), (3.19)
where f~ = G~'¢~ and f* = G ot. Since G=' € X' (') and ¢~ € DOC_(F), from
the Holder inequality we see that f~ € LL(T). Analogously, f* € L% (I'). Thus,
equation (3.3) means that G='g € L1(T), thus PyG~'g € LY (T') and P_-GZ'g € L1 (T)
are well-defined.
Rewriting equation (3.3]), we get
1 (6) = PG (t)g(t) =~ 1 (8) + PG (0)g(1).
Since f~ and P_G~'g vanish at infinity, and we have Lt (F) N LY (T) = Const. and

LL(T) N LL(T) = {0}, it follows that p(t) = ¢} f+(t) — “1(t)g(t) is identically zero
for X > 0 and a polynomial of order < — X — 1 for R < O.
Set

F7(4) = P-GZH()g(t) — p(t),  [T(t) =t "PLGZH()g(t) + 7 p(t);
returning to the functions p* we have formulas (3.18)). By the assumptions, {p*, ¢~}
is a solution of problem (3.2)), so pT € X (T') and ¢~ € X_(T). Since p € L>®(T') and
t™Rp € LE(T), the conditions G_p € X_(I') and Gt Np € X, (I) are satisfied, and
therefore

of eX (), ¢y €X_(I),
which proves the necessity of ((3.17) for the solvability of problem (3.2)) as well as the fact
that every solution is of the form ([3.18]).
To prove that conditions ([3.17) imply that every pair {¢™, ™} defined by (3.18]) is
a solution of problem (3.2) is direct by inserting the functions (3.18) into (3.2]) taking
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into consideration the boundedness of the functions on the corresponding spaces, which
is given by (3.17). m

From the Cauchy formula [I7, Ch. X, §4, Th. 1] for any analytic function representable
by an integral of Cauchy type on a domain D, we immediately obtain:

COROLLARY 3.3.2. For the solvabiliy of problem (3.2)) it is necessary that, for X > 0,
/G:l(T)g(T)T*”dT:O7 k=1,... X
r

REMARK 3.3.3. (1) Notice that to establish Theorem only condition (i) in the
definition of factorization of an essentially bounded function in X(I') was necessary. Thus,
in this sense, the factorization used in Theorem [3.3.1] is weaker than that defined on
page [I0]

(2) Similar conclusions to those in Theorem can be given for problem by
considering the associate space X'(T") of X(T"). In this case we define the factorization in
X(T) for a € G(L>(T")) as

a(t) = ap (H)tha_(t)
with R € N, ay € X (T), afrl € X' (T), a_ € X'_(I), a”' € X_(I'). The proof is similar
to the proof of Theorem [3.3.1] with obvious changes.



4. Solvability of singular integral equations with
factorizable coefficients

Now, we will give conditions guaranteeing the existence of solutions for a class of singular
integral equations with essentially bounded functions as coefficients, admitting a factor-
ization in X(I") as in (2.8)). To do so, the Fredholmness of the associated singular integral
operator is studied.

4.1. Simonenko’s criterion for the Fredholm property for SIO’s with essentially
bounded coefficients. We are going to establish a Fredholm criterion for the operator
A = aP; +bP_ on X(I') with a,b € G(L*(I')), by adapting the classical Simonenko
scheme for singular integral operators with generalized factorizable functions on LP(T").
First, recall that for a bounded linear operator A € B(X,Y), the set ker A of all

solutions of the homogeneous equation

Az =0 (4.1)
is the kernel of A. Its dimension is called the nullity of A and denoted by «(A). A bounded
operator A is called normally solvable (in the sense of Hausdorfl) if the equation

Ar =y

is soluble only for those elements y which are orthogonal to the solution space of the
equation A*u = 0, where A* is the conjugate operator A* : Y* — X* defined by

(A*u)z = u(Az).

That is, A*u = 0 if and only if u(y) = 0 for all y € Im A, where ImA = {Az : x € X}.
This is equivalent to saying that Im A is a closed set.
For a normally solvable operator A the cokernel of A, Coker A, is defined as

Coker A =Y/ImA.
Its dimension (called the deficiency of A) is denoted by
B(A) := dim Coker A.

a(A) and B(A) are frequently called the deficiency numbers of A.
An operator A is called a Fredholm operator, or a ®-operator, if a(A) and S(A) are
finite. In this case, the Fredholm index is

Ind A := a(A) — B(A).
The operator A is called semi-Fredholm if at least one of a(A) or S(A) is finite.

(20]
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Let us first consider the singular integral operator A, := aPy + P_ on X(I') with
a € L>(T).

PROPOSITION 4.1.1. If a € L*(T") and Aq is semi-Fredholm, then a € G(L>(T")).
PROPOSITION 4.1.2. If a € G(L>(T)), then min(a(A,), B(Az)) = 0.

Propositions and can be proved as the classical case of LP(T") with minor
modifications, by using the well-known Lusin—Privalov Theorem which can be applied in
this framework in view of assumption and Lemma

The following is a Fredholmness criterion for the operator A, on the space X(T"). This
result was established on the spaces LP(T") by I. B. Simonenko [45] [46] (see also e.g. [38])
and by A. Yu. Karlovich in the case of reflexive rearrangement-invariant spaces [20]. The
proof that we are going to give is analogous to those cases.

THEOREM 4.1.3. Let T’ be a Lyapunov curve. A function a € L*(T") admits a factor-
ization in X(T) if and only if A, = aPy + P_ is a ®-operator on X(T'). In that case
Ind A, = —inda.

Proof. Necessity. Let 0 € DT. First we assume that a admits a factorization a = a_a,

in X(T"). Let » € R(T"). From Lemma [2.4| and the definition of factorization we know that
a;'Pya”'r € X (T) and a_P_a”'r € X_(T'). Consider the bounded linear operator

B:=(a;'Py +a_P_)a"'I=T1+ (1-a)a;'Prara 'l
Then
ABr = (aPy + P_)(a;'Py +a_P_)a~'Ir =aa;'Pya”'r +a_P_a”'r =r.

Analogously, BA,r = r. Since B is bounded in X(T") due to assumptions and
and because R(T") is dense in X(T'), we conclude that A, is invertible with inverse
A;! = B. Hence, Ind A, = 0.

Now, let a(t) = a_(t)t"a,(t) be a factorization in X(T). Then the function at—
admits the factorization at™ = a_ay, in X(T). Thus, the operator at NP, + P_ is
invertible in X(T"). If & > 0 then A, can be represented in the form

Ao = (at ™8Py + P_)(t"Py + P_).
From the 3rd step in the proof of Theorem B in [32] (see Theorem [5.1.1)) we see that
P, + P_ = tY(Py +t™RP_) is a ®-operator with index —X; then from the Atkinson
Theorem for Fredholm operators we conclude that A, is a ®-operator with index —N.
In the case X < 0 we have

at Py + P_ = A, (t XP_+P_)

with t 8P, + P_ =t X(P, +t"P_) a ®-operator with index X, thus A, is a ®-operator
with index —N.

Sufficiency. Suppose that A, is a Fredholm operator with index —X. By Proposition[£.1.1]
a € G(L>(T)). Consider the operator A,, where ¢(t) = a(t)t~™. By the compactness of
the commutator aS + Sal for a € C(T") given by the 1st step of the proof of Theorem B
n [32], Ay = AgAi—» + K where K is a compact operator. Hence A, is Fredholm, and
Ind A4 = 0. From the Atkinson Theorem and the fact that the Fredholm index is invariant
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under compact perturbations, by Propositionit follows that A, is invertible in X(T").
Taking into account that the operator S* in the dual space X*(T") is given by S* = —HSH,
applying Lemma we can show that in this case the operator A -1 is invertible in the
associate space X'(I).

Let po € X(I') and 99 € X'(T') be the solutions of the equations A, = 1 and
Ag-11 = 1 respectively. Applying Lemma@ one can show that a4 := P11y and a_ :=
1 — P_1)g are the factors of the factorization a(t) = a_(¢)t¥a(t), that is, a_ € X_(T),
ar € X' ([),a-" € X' (I'), a;" € X1 (T). To prove the boundedness of a; ' Sa I in X(T),
assume without loss of generality that ||¢|lcc < 1 and consider the operator

B:=(a;'Py +a_P_)aZ'I =1+ (1—-q)a;PiaZ'Il

As above, B = A;l is bounded and therefore a;1P+a:1I is bounded too, which is
equivalent to a;'Sa”'I being bounded in X(I').

4.2. Effective solution of singular integral equations with essentially bounded
factorizable coefficients. The solvability theory in the space X(T") of the equation

Ap(t) == u(t)o(t) + @ p.v./ @) dr = f(t), teTl,uve ™), (4.2)
e r7—t
or alternatively

A=aP; +bP_, a:=u+v,b:=u—uv,
is given in the following results.

THEOREM 4.2.1. Let T' be a Lyapunov curve, a,b € L®(T') and let X(T') be a BFS
satisfying 7. Then, for the operator A = aP. +bP_ to be a &4 - or ®_-operator
on X(T') it is necessary that a,b € G(L>®(T")). Let a,b invertible functions on L>=(T).
Then A is a ®-operator if and only if the function ab™! admits a factorization .
Let A be a ®-operator and X = ind(a/b). Then Ind A = —R and the operator A is left-
inwvertible, right-invertible, or two-sided invertible if X > 0, X < 0 or X = 0 respectively.
The corresponding (one- or two-sided) inverse is of the form

A = (NP + PO) (' Py e Po)eT'p7
where ab~ = c_tXcy is the factorization in X(I') of the function ab™!.
Proof. Let 0 € DT and assume a,b € G(L*(T")). Then A can be written as
A=0blab™ P, +P_),

where the multiplicator operator bl is bounded in X(T") by assumption , and invert-
ible with inverse b=1I. Thus it is a ®-operator.

Since ab~! € G(L>°(T")), from Proposition the operator ab~ 1P, + P_ is semi-
Fredholm. Therefore, by the Atkinson Theorem, A is a semi-Fredholm operator.

On the other hand, Theorem guarantees that ab='P, + P_ is a ®-operator
if and only if ab=! admits a factorization. Then reasoning as before we conclude that
A =b(ab='Py + P_) is a ®-operator iff ab~! admits a factorization in X(T").
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Now, suppose A is a ®-operator and X = indab~!. Since b is invertible, we have
Ind bl = 0, and from the Atkinson Theorem,

Ind A = Ind b + Ind(ab™ ' Py + P_) = Ind(ab™ ' P} + P_).
Then Theorem asserts that Ind(ab™'P, + P_) = —indab™! = —N.
To prove the (one- or two-sided) invertibility of A notice that for ab=! = c_t%c,,
A=bc_(t%c Py + ¢ 'P_) =bc_(t"Py + P_)(c Py + ¢ 'P.) (4.3)
with be_T and ¢, Py + ¢Z' P_ invertible operators with inverses
(be_I)' =b'e'T and (c;Py+cZ'Po)t=c'Pp+c P

From the 3rd step of the proof of Theorem B in [32], the operator t®P, + P_ is left-,

right- or two-sided invertible (so, by (4.3)), so is A) if X > 0, X < 0 or X = 0 respectively.

Direct computations show that the inverses of A are in fact (t P +P_)(c;' Py +c_P-)
—1 —1

Xc_ b7 m

The following result gives the dimension of ker A and Coker A4, as well as the solvability

conditions for (4.2)).

THEOREM 4.2.2. Let T' be a Lyapunov curve, let X(T') be a BFS satisfying (2.2])—(2.6]
and let a,b € G(L*(T')). Moreover, assume that the function ab=—' admits a factorization
ab~! =:c=c_tcy in the space X(T). Then if R =indc < 0,

ker(aP, + bP_) = span{g, gt, ..., gt/NI=1} (4.4)
where g = cjrl — c_tR. In the case X > 0,
Coker(aPy +bP_) = span{bc_,bc_t, ..., be_t"1} (4.5)

and the equation aPyp + bP_p = f has a solution if and only if
/ fObV )Mt dt =0, j=1,...,X (4.6)
r

Proof. Let A = aP, +bP_ and assume 0 € D*. From (4.3) we see that A and t" P, + P_
are equivalent operators, therefore

dimker A = dimker(t* Py + P_) = dimker(P; + ¢t XP_).
The 3rd step of the proof of Theorem B in [32] shows that if X < 0 then dimker A = |R],
and if X > 0 then dim Coker A = N.

Now, suppose R < 0. We are going to find the set ker(P, + t~NP_), that is,
{peX(T): P+t NP_p=0}. Since dimker(Py + ¢t "P_) = [¥|, there is a poly-
nomial pyy—1(t) = ap—1t™7! + -+ + a1t + ao of degree at most [X| — 1 such that
tNP_ + piyj—1 € P_(X(I)). From the above we have

Pio=pyr-1, P-p= —p|N\71/t|N|-
Thus,
Pyo(t) + Pop(t) = p(t) = ppy 1 (8)[1 = 1/¢M],
and therefore

ker(Py +t™NP_) = span{t™=t — 1/6,¢™N=2 — 142 1 —1/t}.
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On the other hand, by (4.3) we obtain
ker A = (c;1P+ +c_P_ )ker(t*P, 4+ P_) = span{gi, . .. NN

with g; = (c{' Py + e P_)(t™=7 —¢77), j = 1,...,|R|. Here

g; = (c;' Py + c_P_)(N=I —¢77) = (ci'Py + c_P_)tNI=i (ci'Py +c P )t/

=c Pt e p oI = N e 7

proving ().

Now, assume X > 0. From (4.3) we have Im.A = bc_ Im(T®P, + P_), which gives
(4.5) because Im(T™ P, + P_) consists of all functions ¢ € X(T') such that P, has a zero
of order at most X at ¢ = 0. On the other hand, from (4.3]) and the 3rd step of Theorem B

in [32], A is a ®-operator, left-invertible and therefore normally solvable, so the equation
Ap = f has a solution if and only if

/Ff(t)muﬂ:o, j=1,...,m, (4.7)

where y1,...,ym is a basis of solutions of the adjoint homogeneous equation A*y = 0
in X(T). From Lemma [2.3] the adjoint operator of A is defined by A* = H(Pyb+P_a)H,
because P} = HP_H and P* = HP, H. Therefore

HA*zj = (Pyb+ P_a)cZ' b7t = PeZ't™9 + P_c t" 77 =0,
so z; € ker A*, j =1,...,X. But the functions z; are linearly independent, and since
dim ker A* = dim Coker A = N,

we conclude that 8 = m and z; = y; for all j.
Moreover, y;(t)|dt| = h(t)c= ()b~ ()t7I|dt] = ' (t)b~'(t)t~7dt, and so (4.6)
and (4.7) coincide, which completes the proof. m



5. Fredholmness of boundary value problems and
explicit representation of solutions of (4.2)

Let ¥ be an analytic function of Cauchy integral type with nontangential limit ¢ € X(T").
According to the Sokhotski-—Plemelj formulas, the boundary values ¥ (¢) (resp. ¥~ (t))
with z - ¢, t €T, 2 € DT (resp. t € T, 2 € D7) are expressed by

UH(t) = 5[(To)(t) + (S) ()], T~ (1) = 3[(~Tp)(t) + (Sp)(1)].
Therefore, U () — U~ (t) = ¢(t) and U () + ¥~ (¢) = (S¢)(t), which allows us to reduce
the equation
(a(®) Py +0(t)P)p(t) = g(t),  beG(L™(T)),

or equivalently

(@b~ ()P + P_)p(t) = b~ (t)g(1), (5.1)
to the Riemann boundary value problem
U (1) + (—a()b™ ($) U (t) = —b~ ' (t)g(t). (5.2)

Analogously, the equation
(a(t)Py +b(t)P-)p(t) = g(t), a€G(L™()),
(Ps +b(t)a~ ()P )p(t) = a~ (D)g (t) (5.3)
reduces to the Riemann boundary value problem
UH(t) = (b(H)a™ ()T () +a” ' ()g(t), (5.4)

for a piecewise analytic function {¥*(2), ¥~ (z)} vanishing at z = co. That is, equa-

tion (5.1) and problem (5.2)), as well as equation (5.3) and problem (5.4) with the addi-

tional condition ¥~ (00) = 0, are equivalent. This means that there exists a one-to-one
correspondence between the solutions of problem (5.2)) (resp. (5.4))) and the solutions of

equation (51) (resp. (53))-

5.1. The case of continuous coefficients. We can characterize the Fredholmness of
the boundary value problem with an invertible continuous coefficient ba~! through
the Fredholmness of the operator A = aP; + bP_ given in the following criterion [32]
Theorem B|:

THEOREM 5.1.1. Let X(T') be any BFS satisfying assumptions (2.2)—(2.4) and (2.6)). The
operator A = aPy + bP_ with a,b € C(T') is Fredholm in the space X(T') if and only if
a(t) # 0 and b(t) # 0 for all t € T. In this case, Ind A = ind(b/a) = .

(25]
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Thus, we have the following result:

PROPOSITION 5.1.2. Let T' be a Lyapunov curve and let X(T') be any BFS satisfying

assumptions (2.2)—(2.4) and (2.6). The boundary value problem (5.4) with continuous co-
efficient ba=* is Fredholm with index X if and only if ba=t € G(C(T')) with indba=t = N,

On the other hand, using the equivalence mentioned above, we can give an explicit
representation of solutions of (4.2)) with continuous coefficients a and b, satisfying the
assumptions of Theorem through the two-term boundary value problem ([5.4)).

THEOREM 5.1.3. Let T' be a Lyapunov curve and let X(T') be any BFS satisfying as-

sumptions (2.2)—(2.4)) and (2.6). Equation (4.2) with continuous coefficients a and b has
solutions if and only if a(t) # 0 and b(t) # 0 for all t € T'. The solutions are described,

according to the case, by:
(R >0)
(1= (t—20)™e"D [ f(r) dr

olt) = = [0 7o T U =00 (55)

where h(t) = K (In ZE:)) (7 — 20)%)(t) and p is an arbitrary polynomial of degree
N—1.
(X < 0) The unique solution in this case is as in (5.5) with p(t) = 0. In addition, it is
necessary that
flo)"

r eh(T)

dr=0, k=0,...,|N—1. (5.6)

Here, X :=ind ba~".

Proof. From Theorem the conditions a(t) # 0 and b(¢t) # 0 for all t € T are equiv-
alent to the Fredholmness of the associated operator A = aPy + bP_. Therefore equa-
tion is solvable. From Theorem the solutions of the boundary problem
are given by . The solvability conditions are necessary for the solvability of
as stated in Theorem Finally, from the Sokhotski—Plemelj formulas we have . L]

5.2. The case of piecewise continuous coefficients. The Fredholmness of prob-
lem with piecewise continuous coefficients is characterized by using the Fredholm-
ness of the operator A = aPy + bP_ with coefficients in the same class. To establish this
we will use the so-called Khvedelidze-Gohberg—Krupnik investigation scheme, so first we
are going to recall the reformulations of the notions of p-no singularity and p-index in
the framework of Banach function spaces introduced in [32].

For a BFS X(T') satisfying Axiom [} a function G € PC(T) is called X(T')-nonsingular
if infyer |G(t)] > 0 and

% arg gg’; - 8; ¢ [a(tr), B(te)] + 7

where [ -] + Z stands for the set Jgc..({§, € £1,{£2,...} and a and J are the index
functions of the space X(I"). For an X(I')-nonsingular function, the integer

n

inda = Z[a(tk) — Ry (tr)],

k=1
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where 0(t);) are the increments

1 tk+170
o) =5 [ dargGl)
2 tr+0
is referred to as the X(T')-index of the function G.
The Fredholmness criterion for the operator A = aPy + bP_ reads as follows [32]

Theorem CJ:

THEOREM 5.2.1. Let X(T') be any BFS satisfying (2.2)—(2.4), (2.6) and Aa:ioms. The
operator A = aPy + bP_ with a,b € PC(T') is Fredholm in the space X(T') if

inf Ja(t) £ 0, inf b(1)] £ 0 (5.7)
and the function
a/b is X(T')-nonsingular. (5.8)
In this case,
Ind A = —ind(a/b).

Condition (5.7) is also necessary for the operator A to be Fredholm in X(T'). If the index
functions o and B of the space X(I') coincide at the points t of discontinuity of the
coefficients a, b:

aty) =B(tk), k=1,...,n,
then condition (5.8) is necessary as well.

The Fredholm property of problem (5.4) with a piecewise continuous coefficient is
established in the following result.

PROPOSITION 5.2.2. Let T' be a Lyapunov curve and let X(I') be any BFS satisfying

12.2)—(2.4), (2.6) and Azioms . The boundary value problem (5.4) with piecewise con-

tinuous coefficient ab™' is Fredholm with index N if

infla(t)] #0,  inf[b(t)] # 0 (5.9)
and the function

a/b is X(T')-nonsingular (5.10)

with index X = —ind(a/b). Condition (5.9) is also necessary for the Fredholmness of
problem (b.4). If at the points ty, of discontinuity of the coefficients a,b,

a(tk)zﬂ(tk)7 k:1,...,n,
then condition (5.10) is necessary as well.

The representation of the solutions of (4.2]) with piecewise continuous coefficients a
and b satisfying the assumptions of Theorem is given in the following result.

THEOREM 5.2.3. Let T' be a Lyapunov curve and let X(T') be any BFS satisfying
7, and Axioms . FEquation with piecewise continuous coefficients
a and b has solutions if a and b satisfy , and ab=! is X(T')-nonsingular with disconti-
nuity points ty, ..., t,, at which the curve I' has at least one-sided tangents. The solutions
are described, according to the case, by:



+ (W)X (1) —w™ ()X (1)) (1) (5.11)

where

b~ (t)
X, (1) = K (InGa(t) G () = a(
1( ) e 3 1( ) ngl(t _ tk)’y(tk)
with zg € DT, and p is an arbitrary polynomial of degree X — 1.
N < 0) The unique solution in this case is as in (5.11) with p(t) = 0. In addition, it is
p
necessary that
fo)r™
r Xi(7)

dr=0, £=0,...,|8 -1 (5.12)

Here, X :=ind G;.
Proof. From Theorem the assumptions of the theorem are sufficient for the Fred-

holmness of the associated operator A, and thus equation (4.2)) is solvable. From Theo-

rem the solutions of the boundary problem (5.4)) are given by (3.16)). The solvability
conditions (5.12]) are necessary for the solvability of problem ([5.4) as is stated in Theo-

rem Finally, from the Sokhotski-Plemelj formulas we have (5.11)). »

5.3. The case of essentially bounded factorizable coefficients. The Fredholmness
of problem (5.2)), for an essentially measurable function admitting a factorization in X(T")
as in (2.8), can be characterized through Theorem [4.1.3}

PROPOSITION 5.3.1. Let T be a Lyapunov curve and let X(T') be any BFS satisfying

[2.2)-(2.6). Then problem (5.2)) is Fredholm iff its coefficient function ab™' admits a
factorization in X(T') given in (2.8)).

Notice that from Theorem the invertibility of the coefficient in problem (3.2) is
necessary for its normal solvability.

THEOREM 5.3.2. Let I' be a Lyapunov curve and let X(T') be any BES satisfying as-
sumptions (2.2)—(2.6). Equation (4.2) with essentially bounded coefficients a and b has
solutions if and only if a,b € G(L**(T')) and ab~' admits a factorization (2.8)). The
solutions are described, according to the case, by:
N<0)
e)=(c' Ot NP+ (O)P_) ' 0b Ogt) + (e Ot N +c_ (1) pt)  (5.13)
where p is an arbitrary polynomial of degree |R| — 1.
(X >0) The unique solution in this case is as in (5.13|) with p(t) = 0. In addition, it is
necessary that

/ M) f(r)T7"dr =0, k=1,..., (5.14)
r
Here, X :=indab~!.
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Proof. From Theorem equation is solvable. Notice that condition holds
for the factorizable function ab=t € G(L®(T")). Therefore, from Theorem m the so-
lutions of problem have the form . In this last case, from Corollary
for the solvability of the boundary value problem it is necessary that holds,
therefore, from the Sokhotski—Plemelj formulas, the general solutions of equation
have the representation with an arbitrary polynomial function p if X < 0, and
p(t) = 0 if X > 0, in which case condition should be satisfied. See Theorem

equality (4.6]). =



6. Singular integral equations with Carleman shift

Let «(t) be a homeomorphism of T' onto itself which may preserve or change the orien-
tation of ', and suppose that at every point ¢ the derivative o/(t) exists and satisfies
o/ (t) # 0 and the Holder condition. In addition, we will assume that a(t) satisfies the
so-called Carleman condition:

?(t) = (aoa)(t) =t. (6.1)
Moreover, we will assume that
a(t) induces a bounded shift operator (W¢)(t) = ¢(a(t)) on X(T). (6.2)

Notice that implies that W satisfy the Carleman condition W? = I (see e.g. [19,[35]).
Among all kinds of Carleman shift operators, here we are going to consider those satisfying
WS =~SW, where v = £1. When v = 1 (« preserves the orientation of T'), W is called
a commutative Carleman shift operator, and for v = —1 (« reverses the orientation of T')
an anti-commutative Carleman shift operator.

In the present chapter, the solvability of the following class of integral equations will be

studied in the space X(T") over a Lyapunov curve I satisfying (2.2)—(2.4)), (2.6) and (6.2):

FOe() + g(t)% Py, / o)y g(t)% pv. /F 0wy, (63)

r7T—t T — at)

where f(t) and g(t) are essentially bounded functions with f(t) # 0 on I', and «(¢) is a
Carleman shift function.
Consider the following complementary projection operators on X(T'):

Pi=3I-W) and Pp:=3i(I+W).
Note that W* =322 (=1)¥ P}, k = 1,2, and

j=1
2

P _1)rA=D i+t _
Py = z;( DRIyl =12, (6.4)
j:

The following lemma will be useful.

LEMMA 6.0.1. Let T’ be a Lyapunov curve and let X(T") be a BFS satisfying (2.2)—(2.4)),
(2.6) and (6.2). Let ¢ € X(T'). Then, for z € C,
(SPe)(2) if W is a commutative shift operator,

6.5
(SPs_x)(2) if W is an anti-commutative shift operator. (6:5)

(PrSY)(z) = {

(30]
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Proof. We have directly
(PeS¥)(2) = 3{(S¥)(2) + (=) W (S9)(2)} = 5{(S¥)(2) + (=1)* v(WS¥)(2)}

where v = £1 depending on whether W is a commutative or anti-commutative Carleman
shift operator. From this, (6.5) follows. m

6.1. An auxiliary system of equations and solvability of . We are going
to discuss the existence and uniqueness of solutions of . Moreover, we will provide
explicit representations of such solutions. To this end, in particular, we will use projection
methods as in [3] [, 5], 8, [7] [48] so that we will be able to transform the initial equation
into a system of equations which can be solved by means of a Riemann boundary value
problem technique.

Let us introduce the following functions: for k =1, 2,

fa(t) = f(t) f((t)), (6.6

[fali(t) == F(a(t)g(t) + (=1)"f(t)g(a(t)), (6.7)

[fRle(t) = 5 (F(a(®)h(t) + (- )kf(t)h(a( )))- (6.8)

Notice that with the complementary projections Py (k = 1,2), given in , the func-

tions in and can be rewritten as [fg]i(t) = 2P [f( (t)g(t)] and [fh] (t) =
Pulf(a(t))h(1).

Now, we will replace (6.3]) with a simpler and equivalent system of equations. First of
all, notice that using Py, (k = 1,2), we can rewrite (6.3]) as

F®)e(t) +29(8)(P2Sep)(t) = h(t). (6.9)
PROPOSITION 6.1.1. Let ¢ € X(T'). Then ¢ is a solution of if and only if {pr:=Pryp,
k =1,2} is a solution of
{fa(t)cpk(t) + [fal@®)[(Sp2)(®)] = [fhlk(t) if a preserves orientation, or
fa(O)@r(t) + [fglk(t)(Se) ()] = [fhle(t)  otherwise.
Here fo(t), [fglk(t) and [fh]k(t) (k= 1,2) are defined in 6.8]) respectively.
Proof. Suppose that ¢ € X(I') is a solution of (6.9). Multiplying by f(a(t)) we have
Fle®))f(#)e(t) +2f( (0)g(6)(P2Se)(t) = fa))h(t).
Applying the projections Py (k = 1,2), we get
Prlf(a(®) f()el(t) + 2P [f (a(t)g(t) (P2S)](t) = Pilf(a(t)h(t)]. (6.11)
By using and the fact that WP, = P», we can verify that
Pulf (@) f@)e)(t) = fa(t))f (1) (Pep)(t),
Prlf(a(t))g(t) (P2S@)I(t) = Prlf(a(t))g(t)] (P2Se)(?).
Therefore, we can rewrite as

F(a(®)f(6)(Pep)(t) + 2P (f((t)g(t)) (P2Se) (t) = Pilf(a(t))h(t)]. (6.12)

(6.10)
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Now, by Lemma [6.0.1] we see that P,S = SP, for W a commutative Carleman shift
operator, and P».S = SP; for W an anti-commutative shift. In this way, we conclude that

(P, Pyy) is a solution of ([6.10]).
Conversely, suppose that there exists ¢ such that (Pyp, Pap) is a solution of (6.10)).

Then Lemma guarantees that system (6.10) is equivalent to (6.12]), thus summing
k from 1 to 2 we directly see using (6.12)) that

2

D [fa()(@r)() + 2P [f () g (1)) (P2Sp) (1)] =

k=1

Bl f(a(t))n(t)]

e
I &
-

is equivalent to
fla@) f(t)e(t) + 2f (alt))g(t)(P2Se)(t) = f(a(t))h(t)
due to the fact that f(¢) # 0 for ¢ € T'. Then
F®)e(t) + 29(t)(P2Sre)(t) = h(?),
which completes the proof. m
PROPOSITION 6.1.2. If (¢1,¢2) is a solution of system (6.10), then so is (Pi¢1, Pag).
Proof. Let (¢1, ¢2) be a solution of . Applying the projections Py to we have
Pr(fa(®or(t) + [fgl(t)(S¢:) (1) = Pulfhlu(t),  k,i=1,2.
Notice that Py[fa(t)¢r](t) = fa(t)Pedr(t) and
Pe([(f)Ik()(S¢0)) (8) = 3{[F gl (£)(Shi) () + (=1)*[Fgli ()W (St i) (£)}
= [fale(t)5{(Sei)(t) + W(S¢:)(1)}, (6.13)
because [fg]x(t) = (=1)*[fglu(a(?)).
Since Py[f9glk = [fg]k, the right-hand side of can be rewritten as Py ([fg]x(¢))
X Py(S¢;)(t). From 7 the value of ¢ depends on whether W is commutative or
anti-commutative, therefore
Py[[falk(t)(Sei)](t) = Pu([f k(1)) (SPigi)(t).
Finally, note that Py([fh])(t) = [fh]x(t). Thus, (Pi¢1, Pa¢2) is a solution of (6.10). m

THEOREM 6.1.3. Equation (6.9) has solutions in X(T'") if and only if the equation
fa@®)p2(t) + [fg]2(t)(Sp2)(t) = [fh]2(t) if W is commutative, or (6.14)
fa@)p1(®) + [fal1(®)(Se1)(t) = [fh]1(t) if W is anti-commutative,

has solutions. Moreover, if pr(t) (k = 1,2) is a solution of (6.14)), then equation
has a solution given by

f(t) ’
h(t) —29(t)[(Se1)(®)] _
o if WS = —SW.

Proof. Suppose that ¢ € X(I') is a solution of (6.9). By Proposition we know that
(P1, Pyy) is a solution of ([6.10). Hence, for W preserving the orientation of T', Py is a
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solution of , and P is the corresponding solution for W reversing the orientation
of I'.

Conversely, suppose that ¢s is a solution of . Without loss of generality, we
assume that we are in the orientation preserving case (since the other case is dealt with
similarly). In this case, has a solution (¢1, ¢2) determined by

hl1(t) — HI[(S t
901(75) _ [f ]1( ) [fg]l( )[( L)02)< )] (616)
fa(t)
From Proposition [6.1.2] P;¢; is also a solution of (6.14)), so (P11, Pa2) is also a solution

of (6.10). Set

2
¢ = Pupr. (6.17)

It is clear that Pkgo = Pipg. This means that (Pyp, Payp) is a solution of - From
Proposition ¢ is a solution of (6.10). Moreover, from (6.16)) and (6.17), we obtain

o Zpk{[fhw g 01). 6.15)

As before, we can see that

2
ZPk[fh}k(t) = f(a(®))h(?),

ZPk [Falk®)[(Se2)()]) = 2/ (a(t))g()[(Sp2)(1)]-
Substituting these in , we have

p(t) =

h(t) —29(0)[(Se2)(®)]
ft) '

6.2. Closed form of solutions. At this point we know that formula gives a
representation for solutions of . In order to obtain a closed form of solutions, we
must compute (Se¢y)(t), k = 1,2, from formula (6.15]). We can use the Riemann problems
associated to to describe the form of that solution in the cases where the coefficients
of the equation are continuous, piecewise continuous and essentially bounded factorizable
functions.

For continuous coefficients, assume that f, £ [fg]x € G(C(T)) (k = 1,2) and set

M if W commutes
) O+ [fal(0) ’
cw= fa(t) — [fgh (1) if W anti-commutes o
Fa(t) + [fgh (1) ’
L/7]2(t) if W commutes
H(t) = fa(t) + [fgla(t) (6.20)
[fR]1(2) if W anti-commutes
Fa(t) + [Fal (1) '
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Equation can now be rewritten as
Pron(t) + G(t)P_pr(t) = H(1),
which is then reduced to
Ur(t) =G, () + H(t), GegC)).

Moreover, from the Sokhotski-Plemelj formulas, we have (Spy)(t) = U (t) + ¥, (), thus
the representations of the solutions of equations (6.14]) for commuting or anti-commuting
shift with continuous coefficients are given in the following result.

THEOREM 6.2.1. Let T be a Lyapunov curve and let X(T') be a BFS satisfying
2:2)-@2.4), and (6.2). Let G(t) and H(t) be as in and respectively.
Then equation has solutions in X(T') and they are given by
_ h(t) — 29(t)(Ser) (2)

p(t) = ;
f(t)
where k = 1 if W is a commutative Carleman shift operator, and k = 2 if W is anti-
commutative. In addition, for (Spk)(t) = U (t) + U} (t), we have the following different
situations:

k=1,2,

(X >0) In this case

e H(r) dr
U(t) = " p(t 21
k( ) 27i - eh("') —t +e p( )v (6 )

— (t ZO)Neh(t) H (7 ) d R _h(t)
v = + p .22
k (t) 2 - eh(r) t (t ZO) e (t)a (6 )

where
1 1 — )X
h(t) = —/ nGn)(r = 20)" dr, zo€ DT,
r

27 T—1
and p(t) = ax_ 11+ an_otN "2 + -+ ag.
(R < 0) For this case the solution is unique and Wi are as in (6:21) and (6.22) with
p(t) =0, and in addition it is necessary that

H(r)r"

r eh(T)

Proof. From Theorem we know that has solutions if and only if does.
Furthermore, the solutions of are given by . Thus, we will compute the solu-
tions of . We will use the associated Riemann boundary value problem. Namely, by
the Sokhotski-Plemelj formulas, reduces to the following boundary problem: Find
a sectionally analytic function Wy (2) (VUy(z) = ¥} (2) for z € DT and Uy (z) = ¥, (2)
for z € D7) vanishing at infinity and satisfying

Ur(t) = G)¥, (t) + H(t) (6.23)

on I', where G(t) and H(t) are defined in (6.19) and (6.20) respectively.
From Theorem the solutions of problem (6.23)) read as follows:

=0, k=0,...,|N-1.
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(1) Case X > 0. In this case the solutions are given by (cf. (3.4))
XE() H(r) dr
Ui(t) = XE(t)p(t 6.24
0= 552 [ s 7 X000 (6.24)
where X T (t) = exph(t), X (t) = (t — 20)Y exp h(t) (20 € DT), and

h(t) = K(InG(1)(1 — 20)%) (t)

and p is an arbitrary polynomial of degree X — 1. The second term on the right-hand
side of (6.24) is the general solution of the homogeneous (H(t) = 0) Riemann problem
(6.23), and the first term is a particular solution of the corresponding inhomogeneous

problem ([6.23]).

(2) Case X < 0. For this case, \Ilf are as in (6.24) and p(z) = 0. In addition, it is necessary
that

H K
(hT)T dr=0, k=0,...,]¥—-1.
r e(T)

This completes the proof. m

When (6.3) has essentially bounded coefficients, assume f, £ [fg]r € G(L>(I))
(k=1,2) and define

G(t) = 1/G(t) (6.25)
for the function G given in (6.19)), and
M if W commutes
= ) Ja(t) = [fgl2(t) ’
H(t) = R @) (6.26)

if W anti-commutes.

fa(t) = [fgh(t)

These functions allow us to rewrite (6.14]) as
G(t) Py (t) + P_gp(t) = H(2). (6.27)

THEOREM 6.2.2. Let T' be a Lyapunov curve and let X(T") be a BES satisfying (2.2))—(2.6)

and (6.2). Let é(t) and ﬁ(t) be as in (6.25) and (6.26]) respectively; moreover, suppose
that G admits a factorization G_(t)t8G. (t) in X(T'). Then equation (6.3) has solutions

in X(T') and they are given by

h(t) — 2g(t)(Ser)(t)
ft) ’

where k = 1 if W is a commutative Carleman shift operator, and k = 2 if W is anti-

commutative. In addition, for (Sey)(t) = Ul (t) + ¥, (), we have:

p(t) = k=12,

(X < 0) In this case
) =GOt PG H(t) + G (1), (6.28)
R (1) =G_()P-GZ () H(t) + G- ()p(t), (6.29)

where p(t) = a_x_1t" "1+ a_n_ot TN+ + ao.

L\
v
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(X >0) For this case, ¥ are as in and (| with p(t) =0, and in addition it
s mecessary that

/G ) R =0, k=1, k=1,2.

Proof. From Theorem [6.1.3] m we know that (6.3]) has solutions if and only if (6.14) does.
Furthermore, the solutions of (6.3]) are given by (6.15)). Thus, we will compute the solu-
tions of (6.14]). We will use the Riemann boundary value problem associated to (6.27)):
Find a sectionally analytic function vanishing at infinity and satisfying

Uy (8) - GOW(t) = —H(?) (6.30)

on T, where G(t) and H(t) are defined in (6.25) and (6.26)) respectively. Since G(¢) admits
a factorization in X(T'), we are able, as in Chapter [5, to use Theorem Thus, the
solutions of problem ([6.30) read as follows:

(1) Case X < 0. In this case the solutions are given by
TH(t) =GR PLGT ) H () + G ()t p(t), (6.31)
U, (1) =G_()P-GZ* () H(t) + G_(t)p(t), (6.32)
where p(t) = a_x_ 1t +a_n_2t7""2 + ... + ay. The second term on the right-hand

side of (6.31) and (6.32)) is the general solution of the homogeneous (H(t) = 0) Rie-
mann problem ([6.30), and the first term is a particular solution of the corresponding

inhomogeneous problem (|6

(2) Case R > 0. For this case, ¥ are as in and (6.32), and p(z) = 0. In addition,
it is necessary that

/FGzl(T)(fa(T) — [fg]k(r))[fh}k(T)Tfk” =0, k=1,....,8 k=1,2.

If X = 0, then problem (6.30) has a unique solution. This completes the proof. =

6.3. The Fredholmness of the singular integral operator with shift associated
to (6.3). Notice that in the operator theory approach, to equation (6.3 is associated the
singular integral operator

S:=fI4+gS+gWs:X({T) — X().
The projection method used before will allow us to establish a Fredholmness criterion for

the operator S on X(I') by means of a nonexplicit equivalence operator relation.

THEOREM 6.3.1. Let T' be a Lyapunov curve and let X(I') be a BFS satisfying
f, and . Then the operator S := fI + gS + gW S is a ®-operator
on X(T) if and only if (fa — [f9)k)(fa + [folk)™" € G(C(T)). The functions f, and
[fglk are given in and respectively, with k = 1 if W anti-commutes and
k=2 if W commutes. Moreover, under the presence of the Fredholm property, Ind S =
ind(fo = [fgle)(fa + [fglr) " =t X.

Proof. From Theorem we know that equation is solvable if and only if the
equation

fa@)er () + [fali(®)(Ser)(t) = [fhle(t)  (k=1,2) (6.33)
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is solvable, where fo, [fg]i(t) and [fh]x(t) are given in (6.6)—(6.8) respectively, and k = 1

or k = 2 depending on the commutative nature of the shift operator W. Even more,
from , the dimensions of the sets of solutions of and of coincide.

On the other hand, by using the functions G and H defined in and ,
equation can be rewritten as

Pyop(t) + G(t) P (t) = H(t).
Therefore, the regularity properties of the operators Py + GP_ and S coincide.

Finally, from Theorem the operator P, + GP_ is a ®-operator with Fredholm
index X = ind G if and only if G € G(C(T")), and so this is transferred to the operator S;
i.e.,, we conclude that f, £ [fglx € G(C(T)) (with ind G = X) if and only if S is a
®-operator with IndS = N. =

In a similar way, the Fredholmness of the operator S with piecewise continuous and
factorizable essentially bounded functions as coefficients can be proved by using Theo-
rems [5.2.1{ and respectively.

THEOREM 6.3.2. Let T' be a Lyapunov curve and let X(T') be a BFS satisfying
22)-@2.4), (.6), (6-2) and Azioms[1}2] Then S := fI + gS + gWS is a ®-operator
on X(T) if fo % [fgle € GIPC(T)) and the function (fo + [fgl)(fa — Lfglk)™" is
X(T)-nonsingular with discontinuity points ty,...,t,, at which the curve T' has at least

one-sided tangents. The functions fo and [fgli are given in and (6.7) respectively,
and k=1 if W anti-commutes and k = 2 if W commutes. In this case,

d S = ind(fo + [f9]1) (fa = [fols) "
The condition fo £ [fglr € G(PC(T)) is also necessary for the Fredholmness of S. On the
other hand, if the index functions a and B of the space X(T') coincide at the points ty of
discontinuity of the coefficients (fo + [f9lk)(fo — [fg]k) ™%, then the X(T')-nonsingularity
of (fa +1f9)k)(fa — [fglk)™! is necessary as well.

THEOREM 6.3.3. Let T' be a Lyapunov curve and let X(I') be a BFS satisfying
f and . Then S := fI+gS+gWS§ is a ®-operator on X(T) if and only if
fa £ [falk € G(L®(T)) and G = (fo + [f9lk)(fo — [fglk) ™" admits a factorization
in X(T') with ind G = N. The functions f, and [fg]x are given in and respec-
tively, and k =1 if W anti-commutes and k = 2 if W commutes. Moreover, under the
presence of the Fredholm property, Ind S = —NR.



7. The variable exponent Lebesgue spaces case

The variable exponent Lebesgue spaces are one of the most well-known Banach function
spaces. Their fundamental study have been growing rapidly during the last two decades,
apart from mathematical interest, due to possible applications to image restoration and
to models with the so-called nonstandard local growth in fluid mechanics and elasticity
theory; see for instance [6] [12] and the references therein.

In this chapter we are going to show that all the results given in the previous chapters
are valid in variable exponent Lebesgue spaces. To do so we will show that conditions
7, and Axioms imposed on X(T") are, in fact, well-known results on
variable exponent Lebesgue spaces.

The space LP()(T') over a Jordan curve T' of finite length £ is defined as the set
of all measurable complex-valued functions f on I' such that I,(Af) < oo for some
A= A(f) > 0, where

¢
I,(f) = / |F()[P® |dt| = / |F(t())|PEE) ds.
r 0
This set becomes a Banach space with respect to the (Luxemburg) norm

[ fllpcy :==1inf{A > 0: I,(f/A) < 1}.
For the fundamental properties of these spaces we refer to [10} [I].
Assume p : T' — [1,00) is a measurable function with

1< p_=essinfp(t) < p(t) < py =esssupp(t) < oo, tel. (7.1)
We will need the following condition on p(t):
A
lp(t1) —pt2)] € ————, [l —t[ <1/2, t1,t2 €T, (7.2)
—In |t1 — t2|
where A > 0 does not depend on t; and to, or on the function p.(s) = p(t(s)):
A
(51) = pulsy)] < — 2 — 5| < 1/2, 51, 0,4]. 7.3
Ip«(s1) — ps(s2)] < iy ey p— 51— 52| <1/2, 51,52 € [0, 4] (7.3)

Since |t(s1) — t(s2)| < |s1 — $2, condition always implies . Conversely, (|7.3)
implies if there exists A > 0 such that |s; — sa| < c|t(s1) — t(s2)|* with some ¢ > 0.
Therefore, conditions and are equivalent on Jordan curves. Moreover, this is
valid on general curves satisfying the so-called chord condition.

On the suitability of LP()(T") for our results. In order to establish the validity of

assumptions (2.2)-(2.6) and (6.2), as well as of Axioms 1| and [2| on the spaces LP()(I),

(38]
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we will assume that properties (7.1)—(7.3]) of the exponent p(t) hold.

. C(T') ¢ LPO)(T) ¢ LY(T). This follows from (7.1).

) llafllzee) @y < super la(®)] - [[fllLeo) ) for a € L(T). Evident.
The operator S is bounded in LP()(T"). This is proved in [33, Theorem 2].

LPC)(T) is reflexive. Proved in [34) Corollary 2.7].

C*(T) is dense in LP()(T). Given in [33] Theorem 4.1].

a(t) induces a bounded shift operator (We)(t) = ¢(a(t)) on LPO(T). In fact,
for a shift function a as on p. and an exponent function p satisfying
(71)—(7.3), in [41, Lemma 2] it was proved that the functions pa(t) := p(a(t))
and P, (t) := max(p(t), pa(t)) satisfy (7.I)—(7.3) as well. Also, in [41] it is shown
that LPC)(I') N LP=()(I") = LP=()(T), therefore the operators W and S are bounded
on LP()(T).

Axiom [1| in LPO)(T) is proved in [33, Theorem 2]. For Axiom [2| the embedding
LPO(T, |t — to|Y) € LY(T) if v < 1/q(to) follows from the Hélder inequality on LPC)(T),
and the denseness of C°°(T) in LPC)(T, |t — to|7) for to € T is a particular case from
[33, Theorem 4.1].

On the other hand, the dual space of LPC)(T) is LP' ()(T') [34, Corollary 2.7], where
p'(t) = p(';()tll. [34, Corollary 2.12] asserts that LP()(T') is separable, so the adjoint oper-
ator of S is well-defined in L ()(T"). The denseness of the rational functions in variable
exponent Lebesgue spaces is given in [33] Theorem 4.1], so the complementary projections
P, are well-defined; hence so are the subspaces

2O = POy, POT) = PrrOT),  LPOr) = 1POr) f .

EEE
lslles

B
o

Now, we can introduce a factorization for an invertible function a € L (T) in LP()(T).
A function a € G(L>®(T)) admits a factorization in LP)(T) if it can be written in the
form
a(t) =a_(t)t%as(t), ae. onT,

where X € Z and

i) a_ e LPOI), =t e PO, ay € LE (D), a7t € L2O(D),
+ + +
(ii) the operator a_T_lSaJrI is bounded in LPC)(T).

The integer N is referred to as the index of the function a and is denoted by inda. We
can prove that the number R is uniquely determined.

We point out that for this case we can use the Smirnov class EP(D) instead of
E'(D), because [30, Theorem 3.3] ensures that if S is bounded from LP()(T) to LP(T)
(1 < p < o0), then for every ¢ € LP()(T), the corresponding analytic function of Cauchy
integral type whose nontangential limit is ¢ belongs to E?(D).

Using this factorization and due to the fact that LP()(I") satisfies all the assumptions
imposed on X(T'), all the results given in the previous chapters are valid, with obvious
modifications, in this case.
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