
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 63, No. 3, 2015

MATHEMATICAL LOGIC AND FOUNDATIONS

Indestructible Strong Compactness and Level by Level
Equivalence with No Large Cardinal Restrictions

by

Arthur W. APTER

Presented by Czesław BESSAGA

Summary. We construct a model for the level by level equivalence between strong com-
pactness and supercompactness with an arbitrary large cardinal structure in which the
least supercompact cardinal κ has its strong compactness indestructible under κ-directed
closed forcing. This is in analogy to and generalizes the author’s result in Arch. Math.
Logic 46 (2007), but without the restriction that no cardinal is supercompact up to an
inaccessible cardinal.

1. Introduction and preliminaries. In [4], the following theorem was
proven.

Theorem 1. Suppose V � “ZFC + There is a supercompact cardinal”.
There is then a model V � “ZFC + There is a supercompact cardinal κ +
Level by level equivalence between strong compactness and supercompactness
holds” in which the strong compactness of κ is indestructible under κ-directed
closed forcing.

In V , it is the case that no cardinal is supercompact up to an inacces-
sible cardinal. Consequently, κ of necessity must be the only supercompact
cardinal in V , and V does not contain a measurable cardinal above κ. Thus,
V has a rather restricted large cardinal structure. This raises the follow-
ing
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Question. Is it possible to prove an analogue to Theorem 1, but in a
universe with no restrictions on its large cardinal structure?

The purpose of this paper is to answer the above Question in the affir-
mative. Specifically, we will prove the following theorem, which also extends
and generalizes [1, Theorem 1] as well as Theorem 1 mentioned above.

Theorem 2. Suppose V � “ZFC + K 6= ∅ is the (possibly proper) class
of supercompact cardinals + κ is the least supercompact cardinal”. There
is then a partial ordering P ⊆ V such that V P � “ZFC + K is the class
of supercompact cardinals”. In V P, level by level equivalence between strong
compactness and supercompactness holds, and the strong compactness of κ
is indestructible under κ-directed closed forcing.

We observe that since V � “κ is the least supercompact cardinal + K is
the class of supercompact cardinals” and V P � “K is the class of supercom-
pact cardinals”, it automatically follows in Theorem 2 that V P � “κ is the
least supercompact cardinal”.

Note that [9, Theorem 5] shows that if κ is indestructibly supercompact
and level by level equivalence between strong compactness and supercom-
pactness holds, then no cardinal λ > κ is 2λ supercompact. Thus, in any
universe in which level by level equivalence between strong compactness and
supercompactness holds and there is an indestructibly supercompact cardi-
nal, there must of necessity be a restricted number of large cardinals. This is
in sharp contrast to our Theorem 2, where we have level by level equivalence
between strong compactness and supercompactness holding in a universe
with an arbitrary large cardinal structure, together with the least super-
compact cardinal κ having its strong compactness indestructible under any
κ-directed closed forcing notion.

We now very briefly give some preliminary information concerning no-
tation and terminology. For anything left unexplained, readers are urged
to consult [4]. When forcing, q ≥ p means that q is stronger than p. For
α ≤ β ordinals, [α, β] and (α, β] are as in standard interval notation. For κ
a cardinal, the partial ordering P is κ-directed closed if every directed set of
conditions of size less than κ has an upper bound. If κ is a regular cardinal,
Add(κ, 1) is the standard partial ordering for adding a single Cohen subset
of κ. If G is V -generic over P, we will abuse notation slightly and use both
V [G] and V P to indicate the universe obtained by forcing with P. We will,
from time to time, confuse terms with the sets they denote and write x when
we actually mean ẋ or x̌. For p ∈ P and ϕ a formula in the forcing language
with respect to P, p ‖ ϕ means that p decides ϕ.

We recall for the benefit of readers the definition given by Hamkins [12,
Section 3] of the lottery sum of a collection of partial orderings. If A is a
collection of partial orderings, then the lottery sum is the partial ordering
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⊕A = {〈P, p〉 | P ∈ A and p ∈ P} ∪ {0}, ordered with 0 below everything
and 〈P, p〉 ≤ 〈P′, p′〉 iff P = P′ and p ≤ p′. Intuitively, if G is V -generic over
⊕A, then G first selects an element of A (or as Hamkins says in [12], “holds
a lottery among the posets in A”) and then forces with it (1).

Suppose V is a model of ZFC in which for all regular cardinals κ < λ,
κ is λ strongly compact iff κ is λ supercompact, except possibly if κ is a
measurable limit of cardinals δ which are λ supercompact. Such a model will
be said to witness level by level equivalence between strong compactness and
supercompactness. The exception is provided by a theorem of Menas [18],
who showed that if κ is a measurable limit of cardinals δ which are λ su-
percompact, then κ is λ strongly compact but need not be λ supercompact.
Models in which level by level equivalence between strong compactness and
supercompactness holds nontrivially were first constructed in [10].

The partial ordering P which will be used in the proof of Theorem 2
is a Gitik iteration. By this we will mean an Easton support iteration as
first given by Gitik [11], to which we refer readers for a discussion of the
basic properties of and terminology associated with such an iteration. For
the purposes of this paper, each component Q̇δ of the iteration used at a
nontrivial stage δ has the form Q̇0

δ ∗ Q̇1
δ , where Q̇0

δ is a term for a δ-directed
closed partial ordering and Q̇1

δ is a term for either trivial forcing or a Magidor
iteration [17] of Prikry forcing (although other types of partial orderings may
be used in the general case—see [11] for additional details).

We assume familiarity with the large cardinal notions of measurability,
strongness, strong compactness, and supercompactness. Readers are urged to
consult [13] for further details. We do wish to point out explicitly, however,
that an indestructibly supercompact cardinal κ is one as in [15], i.e., a su-
percompact cardinal which remains supercompact after κ-directed closed
forcing. Also, we say that κ is supercompact (strong) up to an inaccessible
cardinal λ if κ is δ supercompact (δ strong) for every δ < λ. For any cardi-
nal δ, we adopt as our notation that δ′ is the least strong cardinal greater
than δ in our ground model V . A measurable cardinal κ is said to have
trivial Mitchell rank if there is no normal measure U over κ with associated
elementary embedding j : V →M such that M � “κ is measurable”.

2. The proof of Theorem 2. Suppose V � “ZFC + K 6= ∅ is the (pos-
sibly proper) class of supercompact cardinals + κ is the least supercompact
cardinal”. Without loss of generality, by first forcing GCH and then doing

(1) The terminology “lottery sum” is due to Hamkins, although the concept of the
lottery sum of partial orderings has been around for quite some time and has been referred
to at different junctures via the names “disjoint sum of partial orderings,” “side-by-side
forcing,” and “choosing which partial ordering to force with generically”.
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the forcing of [10], we assume in addition that V � “GCH + Level by level
equivalence between strong compactness and supercompactness holds”.

The partial ordering P used in the proof of Theorem 2 is defined as
P = 〈〈Pδ, Q̇δ〉 | δ < κ〉, the Gitik iteration of length κ which possibly
does nontrivial forcing only at those stages δ < κ which are in V mea-
surable limits of strong cardinals. At such a δ, we let Q̇δ = Q̇0

δ ∗ Q̇1
δ , where

Q̇0
δ is a term for the lottery sum of all partial orderings in V Pδ which are

δ-directed closed and have rank below δ′. If trivial forcing is selected in the
stage δ lottery, we do nothing, i.e., 
Pδ∗Q̇0

δ
“If V Pδ∗Q̇0

δ = V Pδ , then Q̇1
δ is

trivial forcing”. If this is not the case, then let Rδ be the partial ordering
selected by the stage δ lottery. Let γ = max(δ, |Rδ|). Q̇1

δ is now a term for the
Magidor iteration of Prikry forcing defined in V Pδ∗Q̇0

δ = V Pδ∗Ṙδ which adds
a Prikry sequence to each measurable cardinal in the closed interval [δ, γ],
i.e., 
Pδ∗Q̇0

δ
“If V Pδ∗Q̇0

δ 6= V Pδ , then Q̇1
δ is the Magidor iteration of Prikry

forcing adding a Prikry sequence to each measurable cardinal in the closed
interval [δ̌, γ̇], where Ṙδ is the partial ordering selected in the stage δ lottery
and γ̇ = max(δ̌, |Ṙδ|)”.

Lemma 2.1. V P � “κ is supercompact”.

Proof. We follow the proof of [3, Lemma 2.1] and [8, Lemma 2.1],
quoting verbatim when appropriate. Let λ ≥ κ+ be an arbitrary regu-
lar cardinal, and let j : V → M be an elementary embedding witnessing
the λ supercompactness of κ generated by a supercompact ultrafilter over
Pκ(λ) such that M � “κ is not λ supercompact”. It is the case that M �
“No cardinal δ ∈ (κ, λ] is strong”. This is since otherwise, κ is supercompact
up to a strong cardinal in M , and thus, by the proof of [6, Lemma 2.4], M �
“κ is supercompact”, a contradiction. Further, because λ ≥ κ+ = 2κ, by [6,
Lemma 2.1], M � “κ is a measurable limit of strong cardinals”. Thus, κ is a
stage in M at which either trivial or nontrivial forcing might possibly occur.
This means that by forcing above a condition opting for trivial forcing in
the stage κ lottery held in M in the definition of j(P), we may assume that
j(P) is forcing equivalent to P ∗ Q̇, where the first nontrivial stage in Q̇ takes
place well above λ.

We now show that V P � “κ is λ supercompact” as in the proof of
[3, Lemma 2.1]. Specifically, we apply the argument of [11, Lemma 1.5].
In particular, let G be V -generic over P. Since 2λ = λ+ in both V and V [G],
we may let 〈ẋα | α < λ+〉 be an enumeration in V of all of the canonical
P-names of subsets of Pκ(λ). Because P is a Gitik iteration of length κ, P is
κ-c.c. Consequently,M [G] remains λ closed with respect to V [G]. Therefore,
by [11, Lemmas 1.4 and 1.2] and the fact M [G]λ ⊆M [G], we may define in
V [G] an increasing sequence 〈pα | α < λ+〉 of elements of j(P)/G such that if
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α < β < λ+, pβ is an Easton extension of pα (2), every initial segment of the
sequence is in M [G], and for every α < λ+, pα+1 ‖ “〈j(β) | β < λ〉 ∈ j(ẋα)”.
The remainder of the argument of [11, Lemma 1.5] remains valid and shows
that a supercompact ultrafilter U over (Pκ(λ))V [G] may be defined in V [G]

by x ∈ U iff x ⊆ (Pκ(λ))V [G] and for some α < λ+ and some P-name ẋ of x,
inM [G], pα 
j(P)/G “〈j(β) | β < λ〉 ∈ j(ẋ)”. (The fact that j′′G = G tells us
U is well-defined.) Thus, V P � “κ is λ supercompact”. Since λ was arbitrary,
this completes the proof of Lemma 2.1.

Lemma 2.2. Suppose Q ∈ V P is a partial ordering which is κ-directed
closed. Then V P∗Q̇ � “κ is strongly compact”.

Proof. We follow the proof of [8, Lemma 2.2], again quoting verba-
tim when appropriate. Suppose Q ∈ V P is κ-directed closed. Let λ >
max(κ, |TC(Q̇)|) be an arbitrary regular cardinal large enough so that
(2[λ]

<κ
)V = ρ = (2[λ]

<κ
)V

P∗Q̇ and ρ is regular in both V and V P∗Q̇, and
let σ = ρ+ = 2ρ. Take j : V → M as an elementary embedding witnessing
the σ supercompactness of κ such that M � “κ is not σ supercompact”. As
in Lemma 2.1, by [6, Lemma 2.1] and the fact σ > 2κ, κ is a measurable
limit of strong cardinals in M . Consequently, by the choice of σ, it is possi-
ble to opt for Q in the stage κ lottery held in M in the definition of j(P).
Further, as in Lemma 2.1, since M � “No cardinal δ ∈ (κ, σ] is strong”, the
next nontrivial forcing in the definition of j(P) takes place well above σ.
Thus, in M , above the appropriate condition, j(P ∗ Q̇) is forcing equivalent
to P ∗ Q̇ ∗ Ṡκ ∗ Ṙ ∗ j(Q̇), where 
P∗Q̇ “Ṡκ is a term for either trivial forcing
or a Magidor iteration of Prikry forcing”.

The remainder of the proof of Lemma 2.2 is as in the proof of [7, Lemma 2].
As in the proof of Lemma 2.1, we outline the argument, and refer readers to [7]
for anymissing details. By the last two sentences of the preceding paragraph, as
in [7, Lemma 2], there is a term τ ∈M in the language of forcingwith respect to
j(P) such that ifG∗H is either V -generic orM -generic over P∗Q̇,
j(P) “τ ex-
tends every j(q̇) for q̇ ∈ Ḣ”. In other words, τ is a term for a “master condition”
for Q̇. Thus, if 〈Ȧα | α < ρ < σ〉 enumerates in V the canonical P ∗ Q̇ names
of subsets of (Pκ(λ))V [G∗H], we can define inM a sequence of P∗Q̇∗ Ṡκ names
of elements of Ṙ∗j(Q̇), 〈ṗα | α ≤ ρ〉, such that ṗ0 is a term for 〈0, τ〉 (where 0
represents the trivial condition with respect toR),
P∗Q̇∗Ṡκ “ṗα+1 is a term for
an Easton extension of ṗα deciding ‘〈j(β) | β < λ〉 ∈ j(Ȧα)’ ”, and for η ≤ ρ a
limit ordinal, 
P∗Q̇∗Ṡκ “ṗη is a term for an Easton extension of each member of

(2) Roughly speaking, this means that pβ extends pα as in a usual Easton support
iteration, except that no stems of any components of pα which are conditions in a Magidor
iteration of Prikry forcing are extended. For a more precise definition, readers are urged
to consult either [11] or [7].
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the sequence 〈ṗβ | β < η〉”. Define now in V [G∗H] a set U ⊆ 2[λ]
<κ by X ∈ U

iff X ⊆ Pκ(λ) and for some 〈r, q〉 ∈ G ∗H and some q′ ∈ Sκ either the trivial
condition (if Sκ is trivial forcing) or of the form 〈〈∅, Ḃδ〉 | δ ∈ [κ,max(κ, |Q|)] is
measurable〉 (ifSκ is aMagidor iteration of Prikry forcing), inM , 〈r, q̇, q̇′, ṗρ〉 

“〈j(β) | β < λ〉 ∈ Ẋ” for some name Ẋ of X. As in [7, Lemma 2], U is a
κ-additive, fine ultrafilter over (Pκ(λ))V [G∗H], i.e., V [G∗H] � “κ is λ strongly
compact”. Since λ was arbitrary, this completes the proof of Lemma 2.2.

Lemma 2.3. V P � “Level by level equivalence between strong compactness
and supercompactness holds”.

Proof. Because V � “Level by level equivalence between strong compact-
ness and supercompactness holds” and |P| = κ, by the Lévy–Solovay results
[16], V P � “Level by level equivalence between strong compactness and su-
percompactness holds above κ”. By Lemma 2.1, V P � “κ is supercompact”,
which means that V P � “Level by level equivalence between strong com-
pactness and supercompactness holds at κ”. Thus, to complete the proof of
Lemma 2.3, it suffices to show that V P � “Level by level equivalence between
strong compactness and supercompactness holds below κ”.

To do this, let δ < κ and λ > δ be regular such that V P � “δ is λ strongly
compact”. Consider now the following two cases.

Case 1: δ is a stage in the definition of P at which only trivial forcing
can take place, i.e., δ is not in V a measurable limit of strong cardinals.
Let γ = sup({σ < δ | σ is a stage of forcing in the definition of P at which
nontrivial forcing might occur (so σ is in V a measurable limit of strong
cardinals)}). Write P = Pγ+1 ∗ Q̇. By the fact that only trivial forcing occurs
at stage δ in the definition of P, we have γ < δ. If γ is non-measurable,
then γ must be either singular or inaccessible. Therefore, by the definition
of P, |Pγ | < δ and only trivial forcing is possible at stage γ. This means
that Pγ+1 is forcing equivalent to Pγ and |Pγ+1| < δ. However, if γ is mea-
surable, i.e., if γ is a stage at which nontrivial forcing could occur, then
note that inductively, it is the case that |Pγ | ≤ γ. In particular, |Pγ | < δ.
It consequently follows that Pγ+1 is forcing equivalent to a partial ordering
having cardinality less than δ. This is since otherwise, nontrivial forcing
must be selected in the stage γ lottery held in the definition of P (because
if not, i.e., if trivial forcing is selected in the stage γ lottery held in the
definition of P, then Pγ+1 is forcing equivalent to Pγ , a partial ordering
having cardinality less than δ). Under these circumstances, we must have

Pγ “Q̇γ is forcing equivalent to a partial ordering of the form Ṙγ ∗ Q̇1

γ

where Ṙγ is nontrivial” and 
Pγ∗Ṙγ “Q̇1
γ is the Magidor iteration of Prikry

forcing which adds a Prikry sequence to every measurable cardinal in the
closed interval [γ,max(γ, Ṙγ)]”. Since by hypothesis, 
Pγ “|Ṙγ ∗ Q̇1

γ | ≥ δ”,
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we must have 
Pγ “|Ṙγ | ≥ δ” (because if p 
Pγ “|Ṙγ | < δ”, then by the
definition of the Magidor iteration of Prikry forcing, p 
Pγ “|Ṙγ ∗ Q̇1

γ | < δ”
as well). It then follows that V Pγ∗Ṙγ∗Q̇1

γ = V Pγ∗Q̇γ � “δ is non-measurable
(because it either contains a Prikry sequence or is non-measurable in V Pγ∗Ṙγ

and hence, by the work of [17], remains non-measurable in V Pγ∗Ṙγ∗Q̇1
γ )”.

Since 
Pγ+1 “Forcing with Q̇ adds no new subsets of 2δ”, V Pγ+1∗Q̇ = V P �
“δ is non-measurable”, a contradiction. Note that the argument given in the
preceding two sentences actually shows that if nontrivial forcing is selected
at stage γ in the definition of P, then V P � “γ is non-measurable”. This
is since any nontrivial γ-directed closed forcing selected at stage γ must
have cardinality at least γ, which has as a consequence that each occurrence
of δ can be replaced by an occurrence of γ to obtain the same contradic-
tion.

We now know that Pγ+1 is forcing equivalent to a partial ordering having
cardinality less than δ. We may also infer that λ < δ′. This is since otherwise,
if λ ≥ δ′, then V P � “δ is δ′ strongly compact”. Because 
Pγ+1 “Forcing with
Q̇ adds no new subsets of 2[δ

′]<δ ”, it must be the case that 
Pγ+1 “δ is δ′
strongly compact”. However, by the results of [16], V � “δ is δ′ strongly
compact”. As V � “δ′ is strong”, again by the proof of [6, Lemma 2.4],
V � “δ < κ is strongly compact”. This contradicts the fact that V � “κ
is the least supercompact cardinal and level by level equivalence between
strong compactness and supercompactness holds (so in particular, there are
no strongly compact cardinals less than κ)”.

Note that the argument just given showing that if V P � “δ is δ′ strongly
compact”, then V � “δ is δ′ strongly compact” remains valid for any λ < δ′.
Therefore, we may infer that V � “δ is λ strongly compact”. Hence, because
level by level equivalence between strong compactness and supercompact-
ness holds in V , V � “Either δ is λ supercompact, or δ is a measurable
limit of cardinals which are λ supercompact”. The preceding analysis tells
us both that Pγ+1 is forcing equivalent to a partial ordering having cardi-
nality less than δ and 
Pγ+1 “Forcing with Q̇ adds no new subsets of 2[λ]

<δ ”.
This, together with the results of [16], then allows us to infer that in each of
V Pγ+1 and V Pγ+1∗Q̇ = V P, either δ is λ supercompact, or δ is a measurable
limit of cardinals which are λ supercompact. Thus, in V P, δ cannot wit-
ness a failure of level by level equivalence between strong compactness and
supercompactness.

Case 2: δ is a stage in the definition of P at which nontrivial forcing
can take place, i.e., δ is in V a measurable limit of strong cardinals. As we
observed in the proof given in Case 1 above, if nontrivial forcing is selected
at stage δ, then V P � “δ is non-measurable”. Since by hypothesis, V P � “δ is
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λ strongly compact”, it must therefore be true that trivial forcing is selected
in the stage δ lottery held in the definition of P.

We show that as in Case 1, λ < δ′. To see this, we note that if λ ≥ δ′, then
the same reasoning as earlier tells us that 
Pδ+1

“δ is δ′ strongly compact”.
However, because trivial forcing is selected at stage δ in the definition of P,
meaning that Pδ+1 and Pδ are forcing equivalent, it is actually the case that

Pδ “δ is δ′ strongly compact”. Arguing now as in the proof of [4, Lemma 2.1]
(and quoting verbatim when appropriate), note that because δ is measurable
in V , Pδ is the direct limit of 〈Pα | α < δ〉. Further, Pδ satisfies δ-c.c. in V Pδ ,
since δ is measurable and hence Mahlo in V Pδ and Pδ is a subordering of
the direct limit of 〈Pα | α < δ〉 as calculated in V Pδ . Hence, by the proofs
of [5, Lemma 3] or [2, Lemma 8], every δ-additive uniform ultrafilter over a
regular cardinal γ ≥ δ present in V Pδ must be an extension of a δ-additive
uniform ultrafilter over γ in V . Therefore, since the δ′ strong compactness
of δ in V Pδ implies that every V Pδ -regular cardinal γ ∈ [δ, δ′] carries a
δ-additive uniform ultrafilter in V Pδ , and since the fact Pδ is the direct
limit of 〈Pα | α < δ〉 tells us the regular cardinals at or above δ in V Pδ are
the same as those in V , the preceding sentence implies that every V -regular
cardinal γ ∈ [δ, δ′] carries a δ-additive uniform ultrafilter in V . Ketonen’s
theorem of [14] then implies that δ is δ′ strongly compact in V , which gives
the same contradiction as in Case 1.

We now know that λ < δ′. Further, by the argument just given, V � “δ
is λ strongly compact”. Therefore, by the fact that level by level equivalence
between strong compactness and supercompactness holds in V , V � “Either
δ is λ supercompact, or δ is a measurable limit of cardinals which are
λ supercompact”. However, the latter cannot occur, since if it did, some
cardinal γ < δ < κ would have to be γ′ supercompact. Once more, the
proof of [6, Lemma 2.4] yields V � “γ is supercompact”, contradicting the
fact that κ is the least supercompact cardinal in V . This means that V �
“δ is λ supercompact”, so we may apply the argument found in the proof of
Lemma 2.1 to show that in V Pδ = V Pδ+1 , δ is λ supercompact. Once again,
write P = Pδ+1 ∗ Q̇. Because 
Pδ+1

“Forcing with Q̇ adds no new subsets of
2[λ]

<δ ”, V Pδ+1∗Q̇ = V P � “δ is λ supercompact”. Consequently, level by level
equivalence between strong compactness and supercompactness holds at δ
in V P. This completes the proof of Lemma 2.3.

Lemma 2.4. V P � “K is the class of supercompact cardinals”.

Proof. By Lemma 2.1, V P � “κ is supercompact”. If δ < κ is such that
V P � “δ is supercompact”, then in particular, V P � “δ is δ′ supercompact”.
Since V P � “δ is δ′ strongly compact” as well, by the proof of Lemma 2.3,
V � “δ is δ′ strongly compact”. This gives the same contradiction as in
Lemma 2.3, so V P � “κ is the least supercompact cardinal”. Because by
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its definition, |P| = κ, by the results of [16], V P � “K − {κ} is the class of
supercompact cardinals above κ”. Thus, V P � “K is the class of supercompact
cardinals”. This completes the proof of Lemma 2.4.

Lemmas 2.1–2.4 complete the proof of Theorem 2.

As mentioned in Section 1, [9, Theorem 5] tells us that if there are suffi-
ciently large cardinals present in the universe, then level by level equivalence
between strong compactness and supercompactness is incompatible with an
indestructibly supercompact cardinal. Thus, if the universe V P witnessing
the conclusions of Theorem 2 has a rich enough large cardinal structure, we
automatically know that κ’s supercompactness is not indestructible by some
κ-directed closed forcing R. By the proof of [9, Theorem 5], R’s rank is fairly
large. In fact, [8, Lemma 2.4] tells us that no matter the nature of the large
cardinals present, after forcing with Add(κ, 1), not only is κ not supercom-
pact, but it has trivial Mitchell rank. Thus, we conclude by reiterating a
question first asked in [9] and still open, namely whether it is possible to
have a universe where there is an indestructibly supercompact cardinal but
containing relatively few large cardinals in which level by level equivalence
between strong compactness and supercompactness holds.
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