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Summary. Consider the power series A(z) =
∑∞
n=1 α(n)zn, where α(n) is a completely

additive function satisfying the condition α(p) = o(ln p) for prime numbers p. Denote by
e(l/q) the root of unity e2πil/q. We give effective omega-estimates for A(e(l/pk)r) when
r → 1−. From them we deduce that if such a series has non-singular points on the unit
circle, then it is a zero function.

1. Introduction. In this paper we study power series with completely
additive coefficients. Power series with coefficients that have some arithmeti-
cal structure possess interesting properties. All known power series with non-
trivial arithmetical coefficients have no continuation beyond the unit circle.
Moreover they have interesting properties when z tends to the unit circle
along a radius.

In 1981 L. G. Lucht [L] proved that for an extensive set of multiplicative
α(n) the unit circle is the natural boundary of the series

∑∞
n=1 α(n)zn.

In [P1] we studied the power series M(z) =
∑∞

n=1 µ(n)zn where µ(n) is
the Möbius function and proved that for each β ∈ Q,

M(re(β)) = Ω((1− r)−a)
when r → 1− for some a > 0 depending on β.

In [P2] we obtained nontrivial estimates for M0(z) =
∑∞

n=1 µ
2(n)zn. The

behavior of this series when z = e(β)r with r → 1− depends on Diophantine
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approximation properties of β. We proved that if the irrationality exponent
of β equals 2 then

M0(z) = O((1− r)−1/2−ε).

An arithmetical function α(n) is completely additive if

α(mn) = α(m) + α(n)

for all m and n.

As usual for s ∈ C we denote σ = <s, t = =s.
We will prove that some conditions on the growth of the coefficients of

the power series with completely additive coefficients give us a class of power
series that have the unit circle as the natural boundary. Moreover we prove
that if α(n) is completely additive and α(p) = o(ln p) then α(n) = 0 for
each n. Moreover we give some omega-estimates of such series for z tending
to a root of unity.

Denote exp(2πiβ) by e(β). For any sequence α(n), real β and Dirichlet
character χ we define

F (s) =
∞∑
n=1

α(n)

ns
,

F [β](s) =

∞∑
n=1

α(n)e(βn)n−s,

F (s, χ) =
∞∑
n=1

α(n)χ(n)n−s,(1.1)

A(x, β) =
∑
n<x

α(n)e(βn).

Denote by A(z) where z ∈ C the power series

A(z) =
∞∑
n=1

α(n)zn.

For a Dirichlet character χ modulo q, χ̄ is the character conjugate to χ,
τ(χ, l) =

∑q
k=1 χ(k)e(lk/q), and L(s, χ) is a Dirichlet L-series.

We study the Dirichlet series F [β](s) and from its properties we deduce
the properties of the series A(z) =

∑∞
n=1 α(n)zn.

We will always denote by p prime numbers.

Theorem 1.1. Let α(n) be a completely additive function satisfying

(1.2) α(p) = o(ln p).
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Then for β = l/pk with (l, p) = 1 we have

lim
r→1−

|A(e(β)r)(1− r)| ≥ |α(p)|p1−k

p− 1
,(1.3)

lim
x→∞

∣∣∣∣A(x, β)

x

∣∣∣∣ ≥ |α(p)|p1−k

p− 1
.(1.4)

Moreover if A(z) has nonsingular points on the unit circumference then
α(n) ≡ 0.

Hence all series A(z) with completely additive coefficients that satisfy
(1.2) and do not equal 0 identically have the unit circle as the natural
boundary.

Theorem 1.1 is proved in Sections 2–4. In Section 5 we also note that the
growth condition (1.2) in Theorem 1.1 cannot be significantly weakened.

2. Preliminary results. From the definition (1.1) of F (s, χ) we easily
obtain the following properties.

Lemma 2.1. Let F and G be Dirichlet series absolutely convergent at a
point s. Then

(F +G)(s, χ) = F (s, χ) +G(s, χ),

(FG)(s, χ) = F (s, χ)G(s, χ).

Lemma 2.2. Let Gp(s) =
∑∞

k=1 cpkp
−ks. Let the double series

∑
pGp(s)

be absolutely convergent. Let F (s) be a Dirichlet series that is derived from∑
pGp(s) by regulating its summands. Then

F (s, χ) =
∑
p

Gp(s, χ).

The following lemma detects the structure of the Dirichlet series with
completely additive coefficients.

Lemma 2.3. Let α(n) be a completely additive function with α(n) =
O(lnn). Then

(2.1) F (s) = ζ(s)
∑
p

α(p)
p−s

1− p−s

for <s > 1.

Proof. If the series
∑

p α(p) p−s

1−p−s is considered as a double series, for

σ > 1 it converges absolutely. We have

(2.2)
∑
p

α(p)
p−s

1− p−s
=

∞∑
n=1

bn
ns
,
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where

bn =

{
α(p) if n = pk,

0 if n 6= pk.

For s with <s > 1,

ζ(s)
∑
p

Gp(s) =

∞∑
n=1

γ(n)

ns
,

where for n = pl11 . . . p
lr
r we have

γ(n) =
∑
d|n

bd =
∑
pk|n

α(p) =

r∑
i=1

α(pli) = α(pl11 . . . p
lr
r ) = α(n).

Let I(s) be a Dirichlet integral,

I(s) =

∞�

0

us−1f(u) du, s ∈ C,

where f ∈ L1[r,R] for any 0 < r < R <∞. Let

I1(s) =

1�

0

us−1f(u) du,

I2(s) =

∞�

1

us−1f(u) du.

The following lemma relates F [l/q](s) to A(e(l/q)r).

Lemma 2.4. Let α(n) be any sequence of complex numbers, and l ∈ Z.
Suppose the Dirichlet series F (s) =

∑∞
n=1 α(n)e(ln/q)n−s is convergent for

σ = <s > σ0 > 0. Then for each s with <s > σ0,

Γ (s)

∞∑
n=1

α(n)e(ln/q)n−s =

∞�

0

ts−1A(e(l/q)e−t) dt.

Proof. Follows from the results of [H].

The following lemma relates the behavior of A(e(l/q)r) as r → 1− to
the behavior of F [l/q](s) near 1.

Theorem 2.5. Let α(n) be any sequence of complex numbers, and let
q ∈ N, q > 1, (l, q) = 1. Let F (s) =

∑∞
n=1 α(n)n−s. Assume the series

F [l/q](s) is convergent in the domain {<s > 1}. Suppose that

(2.3) lim
x→0+

|F [l/q](1 + x)|
x−1

≥ c1.
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Then

lim
u→0+

|A(e(l/q)e−u)|
u−1

≥ c1,(2.4)

lim
x→∞

|A(x, e(l/q))|
x

≥ c1.(2.5)

Proof. By Lemma 2.4,

Γ (s)F [l/q](s) =

∞�

0

us−1A(e(l/q)e−u) du

where the integral is also convergent in the domain {<s > 1}. Assume that
there exists c0 < c1 such that for u→ 0+,

|A(e(l/q)e−u)|
u−1

< c0.

Then for 0 < u < u0 we have |A(e(l/q)e−u)| < c0u
−1. From this inequality

we obtain

|I(1 + x)| ≤ O(1) + c0

∣∣∣1�
0

ux−1 du
∣∣∣ ≤ O(1) + c0x

−1, x→ 0+.

This inequality contradicts (2.3). Thus we obtain (2.4). Using Abel trans-
form we deduce the inequality (2.5) of the theorem.

Let β = l/pk. Each n ∈ N has a unique representation n = mk where
k = pj and (m, p) = 1. For integer j ≥ 0 denote by Aj the set {n : n = mpj ,
(m, p) = 1}. From the above it follows that these sets are pairwise disjoint
and N =

⋃
j Aj . Let u(n) = e(ln/pk) if (n, p) = 1, and u(n) = 0 if (n, p) 6= 1.

From the orthogonal relations for Dirichlet characters we derive

(2.6) u(n) =
1

φ(pk)

∑
χ (mod pk)

τ(χ̄, l)χ(n).

Let α(n) be a completely additive function of integer argument with
α(p) = o(ln p). Let us represent F [β](s) in terms of F (s, χ). For j ≥ 0
consider

Sj =
∑
n∈Aj

α(n)n−se(βn) =
∑

(m,p)=1

α(mpj)(mpj)−se(mlpj/pk)

=
∑

(m,p)=1

α(m) + jα(p)

(mpj)s
e(mlpj/pk)

=
1

pjs

∑
(m,p)=1

α(m)e(mlpj/pk)m−s + j
α(p)

pjs

∑
(m,p)=1

e(mlpj/pk)m−s.
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From (2.6) we obtain

Sj =
1

φ(pk)

(
1

pjs

∑
χ (mod pk)

τ(χ̄, lpj)

∞∑
m=1

α(m)χ(m)

ms

+ j
α(p)

pjs

∑
χ (mod pk)

τ(χ̄, lpj)

∞∑
m=1

χ(m)

ms

)

=
1

φ(pk)

∑
χ (mod pk)

(
τ(χ̄, lpj)

pjs
F (s, χ) + jτ(χ̄, lpj)

α(p)

pjs
L(s, χ)

)
.

Summing Sj with respect to j ∈ N ∪ 0 we obtain

Lemma 2.6. Let α(n) be a completely additive function. Then

(2.7) F [β](s) =
1

φ(pk)

∑
χ (mod pk)

Cχ(s)F (s, χ) +Dχ(s)L(s, χ),

where

Cχ(s) =
∞∑
j=0

τ(χ̄, lpj)

pjs
,(2.8)

Dχ(s) = α(p)

∞∑
j=0

j
τ(χ̄, lpj)

pjs
.(2.9)

This lemma relates the behavior of F [β](s) to the behavior of F (s, χ)
and L(s, χ).

3. The behavior of some useful Dirichlet series. In this section,
for any function A and any positive function B, A� B means A = O(B).

Let us recall the properties of the Ramanujan sum. For prime p, integers
k, l, a with (l, p) = 1 and a principal character χ0 modulo pk,

τ(χ0, lp
k−1) = −pk−1,

τ(χ0, lp
a) = pk−1(p− 1), a ≥ k,

τ(χ0, lp
a) = 0, a < k − 1.

Let p0 be a fixed prime number. Let χ0 be a principal character modulo
q = pk0. Then from (2.8), (2.9),

Cχ0(s) = − pk−10

p
(k−1)s
0

+ pk−10 (p0 − 1)
∞∑
n=k

1

pns0

= − pk−10

p
(k−1)s
0

+ pk−10 (p0 − 1)
p−ks0

1− p−s0

,

(3.1)
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Dχ0(s) =

(
−(k − 1)

pk−10

p
(k−1)s
0

+ pk−10 (p0 − 1)

∞∑
n=k

n

pns0

)
α(p0).(3.2)

Note that τ(χ, lpa0) = 0 if a > k for a nonprincipal character χ modulo q.
Hence if χ 6= χ0 (mod q) the sums in (2.8) and (2.9) are finite. Thus Cχ(s)
� 1 and Dχ(s) � 1 when s → 1+ if χ 6= χ0 (mod q). Further we will use
the simple asymptotic equality

(3.3) L(1 + σ, χ0) ∼
p0 − 1

p0
σ−1, σ → 0+.

Consider the function F (s, χ). By Lemma 2.3 for s with <s > 1,

F (s) = ζ(s)
∑
p

α(p)
p−s

1− p−s
.

Hence by Lemmas 2.1 and 2.2,

(3.4) F (s, χ0) =
∑
p 6=p0

α(p)
p−s

1− p−s
.

Since for every c > 0 there exists a number P (c) such that |α(p)| ≤ c ln p
if p > P (c), we obtain

|F (1 + σ, χ0)| ≤ L(1 + σ, χ0)
(
O(1) + 2c

∑
p>P (c)

p−1−σ ln p
)

= L(1 + σ, χ0)
(
O(1) + 2c

∑
p

p−1−σ ln p
)

≤ L(1 + σ, χ0)

(
O(1) + 2c

ζ ′(1 + σ)

ζ(1 + σ)

)
∼ 2c

p0
p0 − 1

σ−2.

From (3.1), Cχ0(s) has a simple zero at s = 1. Hence

|Cχ0(1 + σ)F (1 + σ, χ0)| ≤ c1σ−1, σ → 0+,

where c1 > 0 is an arbitrarily small number. Hence

(3.5) Cχ0(1 + σ)F (1 + σ, χ0) = o(σ−1), σ → 0+.

From Lemmas 2.1 and 2.2,

F (s, χ) = L(s, χ)
∑
p

α(p)
p−sχ(p)

1− p−sχ(p)
.

Hence for each c > 0, as σ → 0+,

|F (s, χ)| ≤
∑
p

c ln p

∣∣∣∣ p−sχ(p)

1− p−sχ(p)

∣∣∣∣+O(1)

≤ H + c
∑
p

ln p
p−σ

1− p−σ
= H + c

ζ ′(1 + σ)

ζ(1 + σ)
.
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Hence if χ 6= χ0 (mod q) then

(3.6) Cχ(1 + σ)F (1 + σ, χ) = o(σ−1).

Thus from (3.5) and (3.6) we obtain

(3.7)
1

φ(q)

∑
χ (mod q)

Cχ(1 + σ)F (1 + σ, χ) = o(σ−1).

Let us estimate Dχ0(s).

From the series on the right-hand side of (3.2) we see that Dχ0(s) is an
analytic function in the half-plane {<s > 0}.

Since for nonprincipal χ the functions L(s, χ) are holomorphic at s = 1
and Dχ(s) are bounded when s→ 1, we have

(3.8)
∑

χ 6=χ0 (mod q)

Dχ(1 + σ)L(1 + σ, χ)� 1, σ → 0+.

From (3.2) we deduce

Dχ0(1) = α(p0)p
k−1
0

(
−(k − 1)p

−(k−1)
0 +

∞∑
j=k−1

j + 1

pj0
−
∞∑
j=k

j

pj0

)
(3.9)

= α(p0)p
k−1
0

(
−(k − 1)p

−(k−1)
0 + kp

−(k−1)
0 +

∞∑
j=k

p−j0

)
= α(p0)

p0
p0 − 1

when σ → 0+.

Thus if α(p0) 6= 0, from (3.3) and (3.9) we obtain

(3.10)
1

φ(q)
Dχ0(1 + σ)L(1 + σ, χ0) ∼

α(p0)p
1−k
0

p0 − 1
σ−1.

From (3.7), (3.8), (3.10) and Lemma 2.6 we deduce

(3.11) F [l/pk0](1 + σ) ∼ α(p0)p
1−k
0

p0 − 1
σ−1, σ → 0+.

4. Proof of Theorem 1.1. Applying Theorem 2.5 to α(n), F (s), l,
q = pk from (3.11) we obtain the inequalities (1.3) and (1.4) of the theorem.
Let α(p) 6= 0 for some p. Then singular points are dense on the unit circle.
Hence A(z) has the unit circle as its natural boundary. If A(z) is continuable
beyond the unit circle we have α(p) = 0 for each p. Hence A(z) = 0.
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5. Some examples. Let n = pl11 . . . p
lr
r be the canonical representation

of n, Ω(n) = l1 + · · ·+ lr and

W (x) =
∑
n<x

Ω(n), W(z) =

∞∑
n=1

Ω(n)zn, W (x, β) =
∑
n<x

Ω(n)e(βn).

Applying Theorem 1.1 to the classical function Ω(n) we obtain the following
estimates. For prime p and integer k ≥ 0, l,

lim
r→1−

|W(e(l/pk)r)(1− r)| ≥ p1−k

p− 1
,

lim
x→∞

|W (x, e(l/pk))|
x

≥ p1−k

p− 1
.

We note that the growth condition (1.2) cannot be strongly weakened.

Example 5.1. If α(n) = c lnn then A(z) has an analytic continuation
to the domain C \ [1,∞).

Proof. Note that
∑∞

n=1(lnn)zn is the s-derivative of the polylogarithm
function

∑∞
n=1 n

szn at s = 0 (see [LS]).
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