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Amenability, extreme amenability, model-theoretic stability,
and dependence property in integral logic
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Karim Khanaki (Arak and Tehran)

Abstract. This paper has three parts. First, we study and characterize amenable and
extremely amenable topological semigroups in terms of invariant measures using integral
logic. We prove definability of some properties of a topological semigroup such as amenabil-
ity and the fixed point on compacta property. Second, we define types and develop local
stability in the framework of integral logic. For a stable formula φ, we prove definability of
all complete φ-types over models and deduce from this the fundamental theorem of stabil-
ity. Third, we study an important property in measure theory, Talagrand’s stability. We
point out the connection between Talagrand’s stability and dependence property (NIP),
and prove a measure-theoretic version of definability of types for NIP formulas.

1. Introduction. Probability logics are logics of probabilistic reasoning.
A model-theoretic approach aiming to study probability structures by logi-
cal tools was started by Hoover and Keisler (see [H, K] for a survey). Among
several variants of this logic, they introduced integral logic L	 as an equiva-
lent ‘Daniell integral’ presentation for Lω1P . Integral logic uses the language
of measure theory, i.e., that of measurable functions and integration. The
resulting framework is close to the usual language of probability theory and
allows the formalization of much of probability. Bagheri and Pourmahdian
[BP] developed a finitary version of integration logic, and proved appro-
priate versions of the compactness theorem and elementary JEP/AP. The
intended models are graded probability structures introduced by Hoover [H],
and in addition to random variables over probability spaces, they include
dynamical systems and other interesting structures from real analysis. In
[KB] the authors showed that many interesting notions such as probabil-
ity independence, martingale property, and some special cases of the notion
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of conditional expectation (as in martingales) are expressible. Also, Kol-
mogorov’s extension theorem was deduced from the compactness property
of model theory. In [KA] the authors further used the logical tools to study
invariant measures on compact Hausdorff spaces. Consequently, they gave
two proofs of the existence of Haar measure on compact groups. One might
therefore hope to obtain other applications of the compactness theorem.

Historically one of the great successes of model theory has been Shelah’s
stability theory. Essentially the success of the program is largely due to
the fact that certain (local) combinatorial properties of formulas determine
the corresponding global properties. On the other hand, a general trend
in model theory is to generalize these model-theoretic notions and tools to
frameworks that go beyond that of first order logic and elementary classes.

In the present paper, on the one hand, we study some analytic concepts,
namely amenability and extreme amenability, using integral logic. On the
other hand, we study types and local stability in this logic. This approach has
two advantages. First, we underline the strengths of application of logical
methods to other fields of mathematics. Second, the results obtained by
these methods provide a new view on the related subjects in analysis and
logic, and open some fruitful areas of research on similar questions.

To summarize the results of this paper, in the first part (Section 4), we
consider an arbitrary topological semigroup S and any compact Hausdorff
space X such that S acts continuously on X from the left. Let InvX(S) be
the set of all Radon probability measures on X which are left invariant under
elements of S. It is shown that the nonemptiness of InvX(S) is expressible
by a theory TS,X in integral logic. We then present a characterization of
amenable topological semigroups in terms of invariant measures (Fact 4.5).
Using the compactness theorem, we give a proof of the fundamental result
that goes back to N. N. Bogolyubov and N. M. Krylov (Theorem 4.11). The
interesting fact is that for a topological semigroup S the amenability of S is
expressible by a theory TS in the framework of integral logic. Some other new
results and different proofs of some known results are given for extremely
amenable topological semigroups (Fact 4.20 and Proposition 4.22).

Although most of the results in the first part of the paper are standard,
the study of amenable and extremely amenable semigroups is necessary
because it leads us to the “true and correct” notion of type in integral logic.
In fact, types are known mathematical objects, Riesz homomorphisms. Thus,
for a complete theory T , the space of complete types S(T ) can be represented
by the spectrum of T . Thereby, in the second part of the paper (Section 5),
we define types and develop local stability. For a stable formula φ, we prove
that all complete φ-types over models are definable, and we deduce from
this the fundamental theorem of stability (Corollary 5.13). We show that a
formula φ is stable if and only if its Cantor–Bendixson rank is finite.
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In the third part of the paper (Section 6), we study a form of the de-
pendence property, which is an important measure-theoretic property, Ta-
lagrand’s stability. Then we prove that for an almost dependent formula φ,
all φ-types are almost definable (Theorem 6.5). We then study the Cantor–
Bendixson rank in almost dependent theories.

It is worth recalling another line of research arisen from ideas of Chang
and Keisler [CK], namely continuous logic. The idea was recently refined
and developed in [BBHU] and [BU] by Ben Yaacov, Berenstein, Henson,
and Usvyatsov for the class of metric structures which include such impor-
tant classes of structures as Banach spaces and measure algebras. Although
some results in the present paper (cf. Section 5) are similar to those in [BU],
in some senses they are different: (i) Our approach can be used to gener-
alize the results in [BU] and [Mo] (see Remark 5.16). (ii) In [B3] and [B2],
Ben Yaacov proved that the theory ARV and the category of probability
algebras are ℵ0-stable. Note that in this paper we do not study probabil-
ity measure algebras or L1-spaces, but we study measurable functions. In
contrast to [B3] and [B2], the theory of a probability structure is not nec-
essarily stable. This leads us to the dichotomy between stable probability
structures and unstable probability structures. (iii) Some analytic proper-
ties such as probability independence, amenability, extreme amenability and
the existence of invariant measures on compact spaces are expressible in the
framework of integral logic.

After the submission of the present paper we came to know that, inde-
pendently, similar ideas were used by P. Simon [S] in classical logic. We note
that the argument for almost definability in the case of a dependent formula
is truly measure-theoretic and can be used to prove some new results in
classical logic. We will study this in a future work.

The organization of the paper is as follows. In the next section we re-
view some basic notions from measure theory. In Section 3 a summary of
results on integral logic from [BP] is given. In Section 4, we study amenable
and extremely amenable topological semigroups, and give a characteriza-
tion of [extreme] amenability in terms of [multiplicative] invariant measures.
A proof of the Bogolyubov–Krylov theorem is given in Section 4. It is shown
that the [extreme] amenability of a topological semigroup S is expressible
by a theory TS [TS ] within integral logic. In Section 5, we conclude with
the development of local stability, and we prove the fundamental theory of
stability. In Section 6, we study NIP theories and give some results.

2. Preliminaries from topological measure theory. In this section
we review some basic notions from measure theory. Further details can be
found in [F, Fr1, Fr3]. Let X be a compact Hausdorff space. The space
C(X,R) of continuous real-valued functions on X is denoted by C(X). Since
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X is a compact space, every f ∈ C(X) is bounded and C(X) is a normed
vector space with the uniform norm.

The class of Baire sets is defined to be the smallest σ-algebra B of subsets
of X such that each function in C(X) is measurable with respect to B. The
smallest σ-algebra containing the open sets is called the class of Borel sets.
Clearly, every Baire set is a Borel set, but there are compact spaces where
the class of Borel sets is larger than the class of Baire sets. By a Baire [Borel ]
measure on X we mean a finite measure defined for all Baire [Borel] sets.
A Radon measure on X is a Borel measure which is regular. It is known
that every Baire measure on a compact space is regular and has a unique
extension to a Radon measure.

A topological semigroup is a semigroup S endowed with a Hausdorff
topology such that the operation (x, y) 7→ xy is continuous from S × S
to S. By a topological group we mean a group G endowed with a Hausdorff
topology such that the group operations (x, y) 7→ xy and x 7→ x−1 are con-
tinuous from G × G and G to G. A topological group whose topology is
[locally] compact and Hausdorff is called a [locally ] compact group.

A topological semigroup S is said to act on a topological space X from
the left if there is a map S × X → X (denoted by (s, x) 7→ s · x for each
(s, x) ∈ S×X) such that (a) the map x 7→ s ·x is continuous for each s ∈ S,
(b) for s, s′ ∈ S, (ss′) · x = s · (s′ · x) for each x ∈ X, and (c) if S has
the identity e, then e · x = x for each x ∈ X. In addition, the left action
is said to be continuous if (s, x) 7→ s · x is a continuous map from S × X
to X. Similarly one can define a right (continuous) action. If S acts on a
topological space X from the left [right] and E ⊆ X and s ∈ S, we define

s · E = {s · x : x ∈ E} [E · s = {x · s : x ∈ E}].
If f is a continuous real-valued function on a topological space X and

s ∈ S, we define the left [right ] translate of f by s as follows:

(f · s)(x) = f(s · x) [(s · f)(x) = f(x · s)].
The point of the above definition is to make f · (ss′) = (f · s) · s′ [(ss′) · f =
s · (s′ · f)].

If a topological semigroup S acts on a space X from the left [right], then
a measure µ on X is left [right ] S-invariant if µ(s·E) (µ(E ·s)) is defined and
equal to µ(E) whenever s ∈ S and E is µ-measurable. If X is a compact
Hausdorff space, then a linear functional I on C(X) is called left [right ]
S-invariant if I(f · s) = I(f) [I(s · f) = I(f)] for all s in S and f in C(X).

A left [right ] Haar measure on a compact group G is a nonzero left (right)
G-invariant Radon measure µ on G.

Proposition 2.1 ([Fr3, Proposition 441L]). Let X be a Hausdorff com-
pact space and S a topological semigroup which acts on X. A nonzero Radon
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measure µ on X is a left [right ] S-invariant measure iff
	
f dµ =

	
(f · s) dµ

[
	
f dµ =

	
(s · f) dµ] for all f ∈ C(X) and s ∈ S.

If G is a compact group, then a left Haar measure on G is also a right
Haar measure. Moreover, the Haar measure is unique up to a positive scalar
multiple, i.e. if µ and ν are Haar measures on a compact group G, there
exists c > 0 such that µ = cν.

The Riesz representation theorem. Let X be a locally compact
Hausdorff space and Cc(X) the space of continuous real-valued functions on
X with compact support.

(a) ([F, p. 212]) If I is a positive linear functional on Cc(X), there is
a unique Radon measure µ on X such that I(f) =

	
f dµ for all

f ∈ Cc(X).
(b) ([R, p. 358]) If X is compact, then the dual of C(X) is (isometrically

isomorphic to) the space of all finite signed Baire measures on X with
norm defined by ‖µ‖ = |µ|(X).

The Hahn–Banach theorem ([F, p. 159]). Let N be a normed vec-
tor space. If M is a closed subspace of N and x ∈ N \ M, then there
exists a bounded linear functional I on N such that I|M = 0, ‖I‖ = 1 and
I(x) = infy∈M ‖x− y‖.

Let (M,B, µ) be a measure space and µ∗ its associated outer measure
defined by

µ∗(X) = inf{µ(A) : X ⊆ A ∈ B}.

If N ⊆ M , then BN = {A ∩ N : A ∈ B} is a σ-algebra and µN = µ∗�BN
is a measure on N . We call µN the subspace measure on N . Furthermore,
a measurable envelope for N is a measurable set E ∈ B such that N ⊆ E and
µ(E ∩A) = µ∗(N ∩A) for any A ∈ B. Every N ⊆M of finite outer measure
has an envelope (e.g. take E ∈ B containing N with µ(E) = µ∗(N)). If
f : M → R is measurable,

	
N f abbreviates

	
N (f�N) dµN .

Proposition 2.2 ([Fr1, p. 38]). Let (M,B, µ) be a measure space,N⊆M ,
and f be an integrable function defined on M .

(a) If f is nonnegative then f�N is µN -integrable and
	
N f ≤

	
f .

(b) If either N is of full outer measure in M or f is zero almost every-
where on M −N , then

	
N f =

	
M f .

3. Integral logic. In this section we give a brief review of integral logic
from [BP, KA]. Results from those papers are stated without proof. All
languages are assumed to contain a unary relation and constant symbols.
Let L be a language. To each relation symbol R ∈ L we assign a nonnegative
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real number [R ≥ 0 called the universal bound of R. The terms are just the
constant symbols and the variables.

Definition 3.1. The family of L-formulas and their universal bounds is
defined as follows:

(1) If R is a relation symbol and t is a term, then R(t) is an atomic
formula with bound [R.

(2) If φ and ψ are formulas and r, s ∈ R, then rφ + sψ and φ × ψ are
formulas with bounds |r|[φ + |s|[ψ and [φ[ψ, respectively.

(3) If φ is a formula, then |φ| is a formula with bound [φ.
(4) If φ is a formula and x is a variable, then

	
φdx is a formula with

bound [φ.

Note that φ+ = 1
2(φ+ |φ|) and max(φ, ψ) = (φ−ψ)+ +ψ, and similarly

φ− and min(φ, ψ), are formulas.

Definition 3.2. An L-structure is a probability measure space M =
(M,B, µ) equipped with:

• for each constant symbol c ∈ L, an element cM ∈M ;
• for each relation symbol R ∈ L, a measurable map RM : M →

[−[R, [R].

L-structures are denoted by M,N etc. The notion of free variable is de-
fined as usual, and one writes φ(x̄) (or φ(x1, . . . , xn)) to display them. If
M is an L-structure, for each formula φ(x1, . . . , xn) and ā ∈ Mn, φM(ā) is
defined inductively starting from atomic formulas. In particular,( �

φ(x̄, y) dy
)M

(ā) =
�
φM(ā, y) dy.

An easy induction shows that every φM(x̄) is a well-defined measurable
function from Mn to [−[φ, [φ]. Indeed, for every φ(x̄, ȳ) and ā, φM(ā, ȳ) is
measurable. Moreover, we have

	 	
φdx dy =

	 	
φdy dx.

A formula is closed if no free variable occurs in it. A statement is an
expression of the form φ(x̄) ≥ r or φ(x̄) = r. Closed statements are defined
similarly. Any set of closed statements is called a theory. The theory of a
structure M is the collection of closed statements satisfied in it. Such theories
are called complete. We call M,N elementarily equivalent (written M ≡ N)
if they have the same theory. The notion M � Γ is defined in the obvious
way. If T is an L-theory, two formulas φ(x̄), ψ(x̄) are said to be T -equivalent
if the statement φ = ψ a.e. is satisfied in every model of T . We say T has
quantifier elimination if every formula is T -equivalent to a quantifier-free
formula (i.e. without

	
).

The ultaproduct of a family Mi, i ∈ I, of structures over an ultrafilter D
is an L-structure and is denoted by M =

∏
DMi (cf. [BP, KA]).
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Theorem 3.3 (Fundamental theorem). For each φ(x̄) and [a1i ], . . . , [a
n
i ]

in M we have

φM([a1i ], . . . , [a
n
i ]) = lim

D
φMi(a1i , . . . , a

n
i ).

An immediate consequence of the fundamental theorem is the following;
the proof is just a modification of its analog in the usual first order logic.

Theorem 3.4 (Compactness theorem). Any finitely satisfiable set of
closed statements is satisfiable.

Definition 3.5. (i) If M ⊆ N , then M is a substructure of N, written
M ⊆ N, if M has the subspace measure and for each R ∈ L and ā ∈ M ,
RM(ā) = RN(a). If these equalities hold for almost all ā, then M is called an
almost substructure of N, written M ⊆a N.

(ii) An injection f : M → N is called an elementary embedding if for
each φ and ā ∈M , φM(ā) = φN(f(ā)). It is an almost elementary embedding
if for each φ this holds almost surely for ā ∈ M . If f is the inclusion,
these are respectively denoted by M � N and M �a N. We say f is almost
surjective if its range has full measure. One also defines isomorphism (resp.
almost isomorphism) as a surjective (resp. almost surjective) elementary
(resp. almost elementary) embedding.

The fact that � (resp. �a) is stronger than ⊆ (resp. ⊆a) is a consequence
of the Tarski–Vaught test (see below). Of the two notions of isomorphism,
almost isomorphism is more useful for us, although exact isomorphism ap-
pears naturally in some cases. In ergodic theory, a map which is an (ex-
act) isomorphism after removing some negligible sets from its domain and
codomain is called an isomorphism. This notion is equivalent to our notion
of almost isomorphism.

A structure is called minimal if it has no redundant measurable sets,
i.e., for any substructure M′ = (M,A, µ�A) where A ⊆ B, one has A = B.
In fact, every structure is isomorphic to a minimal structure, which can be
explicitly described.

Proposition 3.6. Let M = (M,B, µ) be an L-structure, and A be the
σ-algebra generated by the sets of the form {x ∈M : φM(x) > 0} where φ is
any formula with parameters in M . Then M′ = (M,A, µ�A) is a minimal
measure L-structure isomorphic to M.

Proposition 3.7 (Tarski–Vaught test for �). Let M,N be minimal. If
M ⊆ N then M � N if and only if for each φ(ā, x), where ā ∈ M , the
intersection of the set {x ∈ N : φN(ā, x) > 0} with M is µM-measurable
and has the same measure. A similar statement holds for M �a N with “for
almost all ā” in place of “for each ā”. In both cases, µM = µN�M .
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Next we are going to prove a key result, which plays an important role in
the rest of this paper. Assume that X is a compact Hausdorff space. Let LX
be the language consisting of a unary relation symbol Rf for each f ∈ C(X)
and a constant symbol ca for each a ∈ X. Let M be an LX -structure with
the following properties:

• X ⊆M ;
• the restriction of RM

f to X is f , in particular RM
1 = 1;

• RM
f+g = RM

f + RM
g and RM

r×f = r · RM
f for all f, g ∈ C(X) and real

numbers r;
• RM

f×g = RM
f ×RM

g for all f, g ∈ C(X);

• RM
max(f,g) = max(RM

f , R
M
g ) for all f, g ∈ C(X).

The next proposition shows that the subspace measure µX on X behaves
like the measure µ on M. In fact, (X,BX , µX) with the natural interpretation
of relation and constant symbols is an elementary substructure of M.

Proposition 3.8. Assume that X and M are as above.

(a) The subspace measure µX on X is a regular Baire measure such that	
f dµX =

	
RM
f dµ for each f ∈ C(X).

(b) There exists a Radon measure µ̄X on X such that
	
f dµ̄X =

	
RM
f dµ

for each f ∈ C(X).

Proof. (a) By Proposition 2.2, it suffices to show that X is of full outer
measure in M . We assume that M is minimal. By Proposition 3.6,

µX(X) = inf
{ ∞∑
k=1

µ(Ak) : X ⊆
∞⋃
k=1

Ak

}
where Ak = (RM

fk
)−1(0,∞) for an fk ∈ C(X) because every formula φ

is equal to a relation symbol Rf . We show that µ(
⋃
k Ak) = 1 for every

sequence 〈Ak〉k∈N such that X ⊆
⋃∞
k=1Ak. If X ⊆

⋃
k f
−1
k (0,∞), then

there exist f1, . . . , fn such that X =
⋃n
k=1 f

−1
k (0,∞) because X is compact.

If f = max(f1, . . . , fn), then X = f−1(0,∞). Thus, X ⊆ (RM
f )−1(0,∞)

because RM
f = max(RM

f1
, . . . , RM

fn
). Since X is compact and f is continuous,

there exist real numbers s ≥ r > 0 such that X = f−1[r, s]. Also, we can
easily check that M = (RM

f )−1(0,∞) since RM
f ≥ r. Thus, µ(

⋃
k Ak) ≥

µ((RM
f )−1(0,∞)) = 1, i.e. µX(X) = 1. We may assume that µX is a Baire

measure. Also, we know that every Baire measure on a compact space is
regular.

(b) It is known that every Baire regular measure on a compact space
has a unique extension to a Radon measure (cf. [R, p. 341]). Let µ̄X be the
unique extension of µX to a Radon measure on X. Since only the values
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of µ̄X on Baire sets matter for
	
f dµ̄X , we have

	
f dµ̄X =

	
f dµX for each

f ∈ C(X).

4. Amenability and extreme amenability. In this section we study
and characterize amenable and extremely amenable topological semigroups
in terms of invariant measures using integral logic. First, we give two con-
ditions equivalent to the existence of measures on a compact Hausdorff
space X invariant under a semigroup S which acts on X from the left.
We then characterize [extremely] amenable topological semigroups in terms
of [multiplicative] invariant measures. It is shown that all compact groups,
all abelian topological semigroups, and all locally finite topological groups
are amenable. An interesting fact is that for a topological semigroup S
the [extreme] amenability of S is expressible by a theory TS [TS ] in the
framework of integral logic. Therefore, it is shown that a locally compact
group G has no Borel paradoxical decomposition iff the theory TG is satis-
fiable.

Let X be a compact Hausdorff space and S be a semigroup which acts
on X from the left. Let LX be the language consisting of a unary relation
symbol Rf for each f ∈ C(X) and a constant symbol ca for each a ∈ X,
and let TS,X be the theory with the following axioms:

(1) R1 = 1,
(2)

	
R1 dx = 1,

(3) Rf (ca) = f(a) for all Rf , ca ∈ LX ,
(4) Rf+g = Rf +Rg for all Rf , Rg ∈ LX ,
(5) Rr×f = r ×Rf for all Rf ∈ LX and r ∈ R,
(6) Rf×g = Rf ×Rg for all Rf , Rg ∈ LX ,
(7) Rmax(f,g) = max(Rf , Rg) for all Rf , Rg ∈ LX ,
(8)

	
Rf (x) dx =

	
R(f ·s)(x) dx for all Rf ∈ LX and s ∈ S, where (f ·s)(x)

= f(s · x).

Note that (1) says that the interpretation of R1 is the constant function 1,
(2) means that we have a probability measure, (3) says that f is a subset
of the interpretation of Rf , (4)–(7) that the family of the interpretations of
relation symbols is a vector lattice, and (8) means that the measure is left
S-invariant. We call TS,X the theory of left S-invariant measures on X.

As a consequence of the compactness theorem we give conditions equiv-
alent to the existence of a left S-invariant Radon measure on X. Later, we
give results based on these conditions. Recall InvX(S) is the set of all regular
Borel probability measures on X which are left S-invariant.

Proposition 4.1. Assume that S,X and TS,X are as above. Then the
following are equivalent:
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(i) InvX(S) 6= ∅.
(ii) TS,X is satisfiable.

Proof. (i)⇒(ii) is obvious. For the converse, let M be a model of TS,X . By
Urysohn’s lemma, one can easily verify that X ⊆M . By Proposition 3.8(b),
there exists a Radon measure µ̄X on X such that

	
f dµ̄X =

	
RM
f dµ for

each f ∈ C(X). Therefore, µ̄X is a nonzero regular Borel left S-invariant
measure on X.

The following classical result gives a condition equivalent to the existence
of a left S-invariant Radon measure on X (see [HR, Theorem 17.15]).

Fact 4.2. Let S be a semigroup with identity. If S acts from the left on
a compact Hausdorff space X, then the following are equivalent:

(i) InvX(S) 6= ∅.
(ii) For all s1, . . . , sn ∈ S and f1, . . . , fn ∈ C(X) we have∥∥∥1− n∑

i=1

(fi · si − fi)
∥∥∥ ≥ 1.

Proof. (i)⇒(ii). Let h =
∑n

i=1(fi · si − fi). If supx∈X |1− h(x)| = 1− ε
where ε is a positive real number, then ε < h(x) < 2 for all x ∈ X, so	
h dµ > ε for every probability measure µ on X, i.e., InvX(S) = ∅.

(ii)⇒(i). Let LX and TS,X be as above. By Proposition 4.1, it suffices
to show that the theory TS,X is finitely satisfiable. Assume that Γ is a fi-
nite subset of TS,X such that for each i ≤ n and j ≤ m the statement	
Rfi dx =

	
Rfi·sj dx is in Γ . Thus, f1, . . . , fn are in C(X) and s1, . . . , sm

are in S. Let M be the closure of the subspace generated by fi − fi · sj for
each i ≤ n and j ≤ m. Since S has an identity, clearly infh∈M ‖1− h‖ = 1.
Let K be a subspace of C(X) such that M+K = C(X) and M ∩K = 0. By
the Hahn–Banach theorem, define I to be 0 on M and a nonzero bounded
linear functional on K such that I(1) = ‖I‖ = 1. By the Riesz repre-
sentation theorem, there exists a signed Baire measure µ on X such that	

(fi − fi · sj) dµ = 0 for each i ≤ n and j ≤ m. Also, µ is a nonzero posi-
tive measure because µ(X) =

	
1 dµ = I(1) = ‖I‖ = |µ|(X). Hence (X,µ)

with the natural interpretation of relation and constant symbols is a model
of Γ .

4.1. Amenability. In this subsection we define amenable topological
semigroups and characterize them in terms of invariant measures. Also,
we show that all compact groups and locally finite topological groups are
amenable. Let S be a topological semigroup, and Cb(S) the Banach space of
all bounded real-valued continuous functions on S with the usual supremum
norm. For s ∈ S and f ∈ Cb(S), let f · s and s · f be the elements in Cb(S)
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defined by

(f · s)(t) = f(st) and (s · f)(t) = f(ts), t ∈ S,

respectively. A subspace E of Cb(S) is left [right ] invariant if f · s ∈ E
[s · f ∈ E] for all s ∈ S and f ∈ E. If E is both left and right invariant, then
E is called invariant.

Let E be a left invariant closed subspace of Cb(S) that contains 1, the
constant 1 function on S. A mean on E is a linear functional I on E such
that

(1) I(1) = 1,
(2) I(f) ≥ 0 if f ≥ 0.

A mean I on a left [right] invariant closed subspace E of Cb(S) that contains
1 is said to be left [right ] invariant if I(f · s) = I(f) [I(s · f) = I(f)] for all
f ∈ E and s ∈ S.

We define the subspace LUC(S) of all left uniformly continuous functions
in Cb(S), which plays an important role in the rest of this paper. For a
topological semigroup S set

LUC(S) = {f ∈ Cb(S) : the map s 7→ f · s is (norm) continuous

from S to Cb(S)}.

Similarly one can define the subspace RUC(S) of all right uniformly contin-
uous functions in Cb(S). It is known that LUC(S) and RUC(S) are closed
and invariant subalgebras of Cb(S). They are also closed under the lattice
operations (cf. [N, Lemmas 1.1 and 1.2]). Therefore, LUC(S) and RUC(S)
are M -spaces with the unit 1.

Definition 4.3. A topological semigroup S is said to be left [right ]
amenable if LUC(S) [RUC(S)] admits a left [right] invariant mean. A topo-
logical semigroup S is called amenable if it is both left and right amenable.

We now characterize amenable topological semigroups in terms of invari-
ant measures, for which we need the following lemma.

Lemma 4.4. Let S be a topological semigroup.

(i) If X is a closed and invariant subset of {I ∈ LUC(S)∗ : ‖I‖ = 1},
then the natural action of S on X is continuous.

(ii) If X is a compact Hausdorff space and · is a continuous action of
S on X (from the left), then for each f ∈ C(X) the map s 7→ f · s
from S to C(X) is (norm) continuous.

Proof. (i) Assume that s, s′ ∈ S and I, I ′ ∈ X. Then for each f in
LUC(S) we have
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|(s′ · I ′)(f)− (s · I)(f)| = |I ′(f · s′)− I(f · s)|
≤ |I ′(f · s′)− I ′(f · s)|+ |I ′(f · s)− I(f · s)|
= |I ′(f · s′ − f · s)|+ |I ′(f · s)− I(f · s)|
≤ ‖I ′‖ × ‖f · s′ − f · s‖+ |I ′(s · f)− I(s · f)|
= ‖f · s′ − f · s‖+ |I ′(f · s)− I(f · s)|.

Therefore the continuity of (s, I) 7→ I · s follows from that of s 7→ f · s.
(ii) Let f ∈ C(X), s0 ∈ S and ε > 0, and let U be the subset of S ×X

given by U = {(s, x) : |f(s0 · x) − f(s · x)| < ε}. Then U is open and
{s0}×X ⊆ U . Hence there is a neighborhood V of s0 such that V ×X ⊆ U ,
and it follows that ‖f · s0 − f · s‖ < ε whenever s ∈ V .

We now give a classical result.

Fact 4.5. Let S be a topological semigroup with identity. Then the fol-
lowing are equivalent:

(i) S is left amenable.
(ii) Whenever X is a nonempty compact Hausdorff space and · is a con-

tinuous action of S on X (from the left), then InvX(S) 6= ∅.
Proof. (i)⇒(ii). By Fact 4.2 it suffices to show that supx∈X |1−h(x)| ≥ 1

for h of the form
∑n

i=1(fi · si − fi) where s1, . . . , sn ∈ S and f1, . . . , fn ∈
C(X). If not, then supx∈X h(x) < 0. Let I be a left invariant mean on

LUC(S). Fix a positive linear functional Λ on C(X). Define f̃ : S → R
by f̃(s) = Λ(f · s) for each f ∈ C(X). We claim that f̃ ∈ LUC(S). By
Lemma 4.4(ii), the map s 7→ f · s is norm continuous from S to C(X). It is

easy to verify that the continuity of s 7→ f̃ · s follows from that of s 7→ f · s.
Define J : C(X)→ R by J(f) = I(f̃). Obviously J is a left invariant positive
functional on C(X). Therefore, J(h) = 0 since J is invariant. But J(h) < 0
since J is positive and h < 0.

(ii)⇒(i). It is easy to check that the set MU (S) of all means on LUC(S)
is a weak∗ compact subset of LUC(S)∗. Note that by Lemma 4.4(i), the
natural action of S from the left on MU (S) is continuous. Let µ be a left
S-invariant Radon probability measure on MU (S). Define Iµ : LUC(S)→ R
by Iµ(g) =

	
ĝ dµ, where ĝ : MU (S) → R is given by ĝ(J) = J(g). Clearly,

Iµ is a left invariant mean on LUC(S).

Remark 4.6. If S = G is a locally compact group, then an invariant
mean on LUC(G) extends to an invariant mean on the space Cb(G) of all
bounded real-valued continuous functions on G (cf. [Ru, Theorem 1.1.9,
p. 21]).

A topological semigroup can be left, but not right, amenable (e.g., con-
sider the semigroup S = {a, b} with the following operation: a ·a = b ·a = a,
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a · b = b · b = b). Of course, if S is a topological group, then S is amenable if
and only if it is left (or right) amenable. Basically this depends on the fact
that the operation g 7→ g−1 transposes the order of products, and therefore
interchanges left and right. Also, we will show that any abelian topological
semigroup is (both left and right) amenable (Corollary 4.12).

Thanks to compactness of integral logic we have the following fact.

Proposition 4.7. Let S be a topological semigroup with identity. Sup-
pose that there is a family {Sα}α∈I of subsemigroups of S such that

(i)
⋃
α∈I Sα is dense in S;

(ii) Sα is an amenable subsemigroup with identity for all α ∈ I;
(iii) for any α1, α2 ∈ I, there exists α3 ∈ I such that Sα1 ∪ Sα2 ⊆ Sα3.

Then S is also amenable.

Proof. Let S′ =
⋃
α∈I Sα and X be a compact Hausdorff space and · a

left continuous action of S′ on X. By assumption, the theory TS′,X of left
S′-invariant measures on X is finitely satisfiable. By Proposition 4.1, as X
and · are arbitrary, S′ is amenable. Assume that I is an S′-invariant mean on
LUC(S′). Define J : LUC(S)→ R by J(f) = I(f�S′) for each f ∈ LUC(S).
We can easily check that J is a left invariant mean on LUC(S) because S′

is dense. Similarly, one can show that S is right amenable.

Corollary 4.8. If every finitely generated subsemigroup (with identity)
of a topological semigroup S is amenable, then S is also amenable.

Note that the converse may fail. As an example let S′ be any finitely
generated nonamenable semigroup (e.g., the free group on two generators),
and let S be a semigroup containing S′ and one new element s0 such that
s0s = ss0 = s0s0 = s0 for all s ∈ S′. Then S has an invariant mean
I(f) = f(s0), but the subsemigroup S′ does not.

It is known that every locally compact group has a Haar measure (cf. [F]),
but not every locally compact group is amenable. The free group on two
generators, with the discrete topology, is a nonamenable locally compact
group (cf. [Fr3, Example 449G, p. 399]). Of course, every compact group
is amenable. Indeed, assume that G acts continuously from the left on a
compact Hausdorff space X. Fix x0 ∈ X and set φ(a) = a · x0 for a ∈ G;
then φ is continuous. Let µ be the Haar probability measure on G, and ν
the Radon probability measure µφ−1 on X. Clearly ν is G-invariant. As X
and · are arbitrary, we have the following fact.

Fact 4.9. Every compact group is amenable.

A group G is called locally finite if every finite subset of G generates a
finite subgroup of G. An immediate consequence of the above results is the
following.
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Corollary 4.10. Let G be a topological group such that the union of
the finite subsets of G that generate a compact subgroup is dense. Then G is
amenable. In particular, every locally finite topological group is amenable.

4.2. Commutativity. The usual proof of the Bogolyubov–Krylov the-
orem uses the Markov–Kakutani fixed point theorem. Now, we give a proof
of this theorem by using the compactness theorem and induction.

Theorem 4.11 (Bogolyubov–Krylov). Assume that S is an abelian
semigroup which acts from the left on a compact Hausdorff space X. Then
InvX(S) 6= ∅.

Proof. By Proposition 4.1, it suffices to consider the case where S is
finite. We prove the theorem by induction on the number of elements of S.
Let D be a nonprincipal ultrafilter on N and x0 any point of X. If S = {s},
then define µ1 by

�
f dµ1 = lim

n→D

1

n+ 1

n∑
k=0

(f · sk)(x0) for f ∈ C(X).

It is easy to check that µ1 is invariant with respect to s. By induction
hypothesis, there exists a measure ν on X which is invariant with respect
to s1, . . . , sn−1. By the Riesz representation theorem, define the measure µ
by

�
f dµ = lim

n→D

1

n+ 1

n∑
k=0

�
(f · skn) dν for f ∈ C(X).

We can easily check that µ is invariant with respect to s1, . . . , sn. Indeed, it
is easy to verify that µ is sn-invariant. Also, for each i ≤ n− 1, we have

�
(f · si) dµ = lim

n→D

1

n+ 1

n∑
k=0

�
(f · si) · skn dν

= lim
n→D

1

n+ 1

n∑
k=0

�
(f · skn) · si dν (commutativity)

= lim
n→D

1

n+ 1

n∑
k=0

�
(f · skn) dν (ν is si-invariant)

=
�
f dµ.

Therefore, µ is the desired measure, so the theorem follows.

An immediate consequence of the Bogolyubov–Krylov theorem is the
following.

Corollary 4.12. Any abelian topological semigroup is amenable.
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Theorem 4.11 gives another proof of the existence of Haar measure on
abelian compact groups. By the same method one can also give a functional-
analytic proof of the existence of Haar measures on abelian locally compact
groups. We will present a proof of this theorem using the same method
elsewhere.

Corollary 4.13 (Mazur–Orlicz). Let F be a family of commuting map-
pings of a set X onto itself. Then there exists a mean on B(X), the space of
all bounded real-valued functions on X, which is F-invariant. In particular,
every closed linear subspace E of B(X) such that f ◦h ∈ E whenever f ∈ E
and h ∈ F has an F-invariant mean.

Proof. Use Theorem 4.11.

4.3. Paradoxical decompositions. The problematics of amenability
has grown out of the famous Banach–Tarski paradox (which essentially
amounts to the nonamenability of the free group on two generators). We
continue this paper by looking at the connection between satisfiability and
paradoxical decompositions. Let G be a discrete group acting on a nonempty
set X. Then E ⊆ X is called G-paradoxical if there are pairwise disjoint sub-
sets A1, . . . , Am, B1, . . . , Bn of E along with g1, . . . , gm, h1, . . . , hn ∈ G such
that E =

⋃m
i=1 gi · Ai =

⋃n
i=1 hi · Bi. We say X is G-paradoxical if it has a

G-paradoxical subset. A group G is called paradoxical if it is G-paradoxical.
Clearly an amenable group is nonparadoxical. A remarkable fact is that the
converse is also true, which follows from the following result of Tarski.

Theorem 4.14 ([Ru, p. 7]). Assume that G and X are as above. Then
there exists a finitely additive, G-invariant measure on X defined for all
subsets of X if and only if X is not G-paradoxical.

A locally compact group G admits a Borel paradoxical decomposition if it
has a paradoxical decomposition such that the sets A1, . . . , Am, B1, . . . , Bn
in the above definition are Borel sets. Paterson [P] proved that a locally
compact group G is not amenable if and only if G admits a Borel paradoxical
decomposition. The question of whether the nonexistence of such suitable
paradoxical decompositions characterizes the amenable topological groups
seems to be open (cf. [W]).

Now, we show that the amenability of a topological semigroup is ex-
pressible by a theory in integral logic. Note that for a semigroup S the
dual of the space B(S) of all bounded real-valued functions on S is the
space of all signed charges on all subsets of S (cf. [AB, p. 496]). Therefore,
a mean I on B(S) is represented by a (positive) charge νI . If νI is a charge
which is not countably additive, then (S, νI) is not a structure in integral
logic. Nevertheless, thanks to the representation theorem for M -spaces, the
amenability of a topological semigroup is expressible. Indeed, consider a
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topological semigroup S, and let σ(S) (= σ(LUC(S))) be the set of Riesz
homomorphisms h : LUC(S) → R such that h(1) = 1 (cf. [Fr2, p. 222]).
The set σ(S) is sometimes called the spectrum of LUC(S). We will see that
σ(S) is the space of complete types of a theory (see Proposition 5.6 below).
Note that, by [Fr2, Proposition 353P(d), p. 243], σ(S) is the set MU (S) of
all multiplicative means on LUC(S). First, we remark that σ(S) is a weak∗

compact subset of LUC(S)∗ and ‖h‖ = 1 for every h ∈ σ(S), and hence
by Lemma 4.4(i), the natural action of S on σ(S) is continuous. The space
LUC(S) can be identified, as a normed Riesz space, with C(σ(S)), because
LUC(S) is an M -space with standard order unit 1 and σ(S) is a compact
Hausdorff space (cf. [Fr2, Corollary 354L]). The identification is the map

f 7→ f̂ where f̂(h) = h(f) for f ∈ LUC(S) and h ∈ σ(S).
By the Riesz representation theorem, the identification of LUC(S) with

C(σ(S)) means that we have a one-to-one correspondence µ ↔ Iµ between
Radon probability measures µ on σ(S) and positive linear functionals Iµ
on LUC(S) such that Iµ(1) = 1, given by the formula Iµ(f) =

	
f̂ dµ for

f ∈ LUC(S). Now

Iµ is invariant ⇔ Iµ(f · s) = Iµ(f) for all f ∈ LUC(S) and s ∈ S

⇔
�
f̂ · s dµ =

�
f̂ dµ for all f ∈ LUC(S) and s ∈ S

⇔
�
(f̂ · s) dµ =

�
f̂ dµ for all f ∈ LUC(S) and s ∈ S

⇔ µ is invariant.

So there is a one-to-one correspondence between Radon probability left S-
invariant measures on σ(S) and left S-invariant means on LUC(S). Let TS =
TS,σ(S) be the theory of left S-invariant measures on σ(S). Summarizing, we
have the following.

Proposition 4.15. Assume that S and TS are as above. Then the fol-
lowing are equivalent:

(i) S is amenable.
(ii) TS is satisfiable.

If S is a locally compact group, then (i) and (ii) are equivalent to

(iii) S is not Borel paradoxical.

In fact we can say more: if S and TS are as above, then the cardinality
of the set of all left S-invariant means on LUC(S) is equal to the num-
ber of models of TS up to almost isomorphism. Indeed, if µ 6= ν are (left)
S-invariant measures on σ(S), then (σ(S),B, µ) and (σ(S),B, ν) with the
natural interpretation of relation and constant symbols are different models
of TS . Conversely, assume that M = (M,B, µM) is a model of TS . By Propo-
sition 3.8, the substructure M′ = (σ(S),Bσ(S), µM�σ(S)) is also a model
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of TS , and the inclusion map σ(S)→M covers a full measure subset of M .
Therefore, M′ 'a M. Clearly, the unique extension of µM�σ(S) to a Radon
measure on σ(S) is left S-invariant. To summarize:

Proposition 4.16. Assume that S and TS are as above. Then there is a
bijection between the set of all models of TS and the set of all left S-invariant
means on LUC(S).

4.4. Extreme amenability. In this subsection we present some other
results for extremely amenable topological semigroups. Most of the proofs
are straightforward and we omit some unnecessary details. First, we char-
acterize extremely amenable topological semigroups in terms of multiplica-
tive invariant measures (Fact 4.20). Secondly, we prove that the extreme
amenability of a topological semigroup is expressible by a theory in integral
logic (Proposition 4.22).

A Radon probability measure µ on a compact Hausdorff space X is
multiplicative if

	
f dµ×

	
g dµ =

	
(f × g) dµ (the pointwise product) for all

f, g ∈ C(X).

Let S be a topological semigroup which acts on a compact hausdorff
space X from the left. Let TS,X be the theory of left S-invariant measures
on X with the additional axiom schema

(9)
	
Rf×g(x) dx =

	
Rf (x) dx ×

	
Rg(x) dx for all Rf , Rg, Rf×g ∈ LX ,

where (f × g)(x) = f(x)× g(x).

Note that (9) says that the measure is multiplicative. We call TS,X the theory
of multiplicative left S-invariant measures on X.

Let MInvX(S) be the set of all multiplicative, Radon probability mea-
sures on X which are left S-invariant. A consequence of the compactness
theorem is the following.

Proposition 4.17. Assume that S, X and TS,X are as above. Then the
following are equivalent:

(i) MInvX(S) 6= ∅.
(ii) TS,X is satisfiable.

Let S be a topological semigroup. A mean I on LUC(S) is multiplicative
if I(f)× I(g) = I(f × g) (the pointwise product) for all f, g ∈ LUC(S). We
remark that LUC(S) is a closed and invariant subalgebra of Cb(S) (cf. [N,
Lemmas 1.1 and 1.2]).

Definition 4.18. A topological semigroup S is said to be extremely left
(right) amenable if LUC(S) (RUC(S)) admits a multiplicative left (right)
invariant mean. A topological semigroup S is called extremely amenable if
it is both left and right amenable.
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Remark 4.19. A topological semigroup S has the left [right ] fixed point
on compacta property if every continuous action of S on a compact Hausdorff
space from the left [right] has a fixed point. In [M], Mitchell showed that a
topological semigroup S has a multiplicative left invariant mean on LUC(S)
iff S has the left fixed point on compacta property. Also, he asked: Is there
a nontrivial extremely amenable group at all? Historically the first example
of an extremely amenable group was found in [HC]. Many further examples
are found in [Pe1, Pe2, Fr3].

The following fact presents a proof of Mitchell’s theorem [M, Theorem 1],
and it also characterizes extremely amenable topological semigroups in terms
of multiplicative invariant measures.

Fact 4.20. Let S be a topological semigroup with identity. Then the
following are equivalent:

(i) S is extremely left amenable.
(ii) S has the left fixed point on compacta property.

(iii) Whenever X is a nonempty compact Hausdorff space and · is a
continuous action of S on X from the left, then MInvX(S) 6= ∅.

Proof. (i)⇔(iii). The set MU (S) (= σ(S)) of all multiplicative means on
LUC(S) is a weak∗ compact subset of LUC(S)∗. By Lemma 4.4(i), the natu-
ral action of S on MU (S) (from the left) is continuous. Also, it is easy to ver-
ify that MInvX(S) 6= ∅ iff for any s1, . . . , sn ∈ S and f1, . . . , fn, g1, . . . , gn ∈
C(X) we have ‖1−

∑n
i=1 gi × (fi · si − fi)‖ ≥ 1. (Compare Fact 4.2.) Now,

the proof is a simple adaptation of the proof of Fact 4.5.

(ii)⇒(iii). Assume that x0 ∈ X is a fixed point, i.e., s ·x0 = x0 for every
s ∈ S. Define the measure µ by

	
f dµ = f(x0) for every f ∈ C(X). Clearly,

µ is a multiplicative Radon left S-invariant measure on X.

(iii)⇒(ii). Assume that X is a nonempty compact Hausdorff space and ·
is a continuous action of S on X from the left. Let µ be a multiplicative left
S-invariant Radon probability measure on X. Then the linear functional I
defined by I(f) =

	
f dµ is multiplicative and invariant. Therefore, by [DS,

Lemma 25, p. 278], there is a point x0 in X such that I(f) = f(x0) for every
f ∈ C(X). Since C(X) separates points and I is invariant, x0 is the desired
fixed point.

Using the compactness theorem of integral logic, one can prove the fol-
lowing fact.

Proposition 4.21. If S is a topological semigroup with a dense subset⋃
α∈I Sα where Sα are extremely amenable semigroups and for any α1, α2

∈ I, Sα1 ∪ Sα2 ⊆ Sα3 for some α3 ∈ I, then S is extremely amenable.
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To end this section, we show that the extreme amenability of a topo-
logical semigroup is expressible by a theory in integral logic. Let S be a
topological semigroup and TS = TS,σ(S) be the theory of multiplicative
left S-invariant measures on σ(S). In fact, we show that the cardinal of
MInvX(S) is equal to the number of models of TS . By Propositions 4.15
and 4.16, it suffices to show that there is a one-to-one correspondence be-
tween multiplicative Radon probability measures on σ(S) and multiplicative
means on LUC(S). Note that the identification of LUC(S) and C(σ(S)) is

algebraic, i.e., f̂ × g = f̂ × ĝ for all f, g ∈ LUC(S) (cf. [Fr2, Prop. 353P(d),
p. 243]). Now

Iµ is multiplicative

⇔ Iµ(f × g) = Iµ(f)× Iµ(g) for all f, g ∈ LUC(S)

⇔
�
f̂ × g dµ =

�
f̂ dµ×

�
ĝ dµ for all f, g ∈ LUC(S)

⇔
�
(f̂ × ĝ) dµ =

�
f̂ dµ×

�
ĝ dµ for all f, g ∈ LUC(S)

⇔ µ is multiplicative.

To summarize:

Proposition 4.22. Assume that S and TS are as above. Then there is
a bijection between the set of all models of TS and the set of all multiplica-
tive left S-invariant means on LUC(S). In particular, S is extremely left
amenable iff TS is satisfiable.

5. Types and stability. In classical model theory, a complete type
determines a finitely additive 0-1-valued measure on the formulas. Actually,
one can say more, i.e., a complete type is a 0-1-valued Riesz homomorphism
on the formulas. Indeed, let L be a first order language, M an L-structure,
a an element of M , and tpM(a) the complete type of a in M. For each
L-formula φ(x), define fφ : M → {0, 1} by fφ(b) = 1 if M � φ(b), and
fφ(b) = 0 otherwise. Let V = {fφ : φ ∈ L}. One can easily check that V is
an (Archimedean) Riesz space (see Definitions 5.1 and 5.2 below). For this
we define fφ + fψ := fφ∨ψ, −fφ := f¬φ, and for each r ∈ R, r · fφ := fφ
if r > 0, r · fφ := f¬φ if r < 0, and r · fφ := 0 if r = 0. Also, fφ ≤ fψ if
fφ(b) ≤ fψ(b) for each b ∈M . Clearly, V with this structure is a Riesz space,
i.e., a partially ordered linear space which is a lattice. Now, for a ∈M , define
the Riesz homomorphism Ia : V → {0, 1} by Ia(fφ) = 1 if fφ(a) = 1, and
Ia(fφ) = 0 otherwise, i.e., Ia(fφ) = 1 iff φ ∈ tpM(a). In other words, Ia can
be interpreted as playing the role of tpM(a).

More generally, we consider real-valued Riesz homomorphisms. Indeed,
consider an arbitrary partially ordered set L = {fφ : M → R | φ ∈ L} such
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that

∀b ∈M : fφ(b) ≤ fψ(b) ⇔ � φ(b)→ ψ(b),

∀b ∈M : fφ(b) < fψ(b) ⇔ � ¬φ(b) ∧ ψ(b).

Let V be the linear space generated by L. Again, V is an Archimedean
Riesz space. Define the Riesz homomorphism Ia : V → R by Ia(f) = f(a).
It is easy to verify that φ ∈ tpM(a) iff Ia(fφ∨¬φ) ≤ Ia(fφ). Therefore it is
natural to conjecture that real-valued Riesz homomorphisms on measurable
functions should play the role of complete types in the framework of integral
logic. Our next goal is to convince the reader that this is indeed the case.

5.1. Types. Let us now return to integral logic. Suppose that L is an
arbitrary language, possibly with n-ary relation symbols and n-ary function
symbols. Let M be a graded L-structure as discussed in [BP], A ⊆ M and
TA = Th(M, a)a∈A. Let p(x) be a set of L(A)-statements in a free variable x.
We shall say that p(x) is a type over A if p(x)∪TA is satisfiable. A complete
type over A is a maximal type over A. We let SM(A) be the set of all complete
types over A. The type of a in M over A, denoted by tpM(a/A), is the set
of all L(A)-statements satisfied in M by a. For φ(x) an L(A)-formula, we let

[φ > 0] = {p ∈ SM(A) : for some ε > 0 the statement (φ ≥ ε) is in p}.
The logic topology (or the Stone topology) on SM(A) is the topology gener-
ated by taking the sets [φ > 0] as basic open sets. We will give a character-
ization of the complete types. First, we need some notions from functional
analysis.

Definition 5.1 (Riesz space). A Riesz space or vector lattice is a par-
tially ordered linear space which is a lattice. A Riesz space L is called
Archimedean if infδ>0 δf = 0 for each f ≥ 0 in L. An element 1 ≥ 0 of
L is an order unit in L if for every f ∈ L there is an n ∈ N such that
|f | ≤ n1.

The following notion will play a fundamental role in what follows.

Definition 5.2 (Riesz homomorphism). Let L,L′ be partially ordered
linear spaces. A Riesz homomorphism from L to L′ is a linear operator
T : L → L′ such that whenever A ⊂ L is a finite nonempty set and inf A = 0
in L, then inf T [A] = 0 in L′.

Any Riesz homomorphism is a positive linear operator, i.e. T (f) ≥ 0 for
all f ≥ 0 (see [Fr2, 351H(b)]).

Fact 5.3 ([Fr2, 354K]). Let L be an Archimedean Riesz space with order
unit 1. Then it can be embedded as an order-dense and norm-dense Riesz
subspace of C(X), where X is a compact Hausdorff space, in such a way
that 1 corresponds to χX ; moreover, this embedding is essentially unique.
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The compact space X in Fact 5.3 is the set of Riesz homomorphisms I
from L to R such that I(1) = 1, and the embedding is the map T : L → RX
defined by setting (Tf)(I) = I(f) for any I ∈ X and f ∈ L (see the proof
of [Fr2, Theorem 353M]).

Let M be an L-structure and A a subset of M . We define LA to be
the family of all measurable functions φM where φ is an L(A)-formula with
a free variable x (see the paragraph after Definition 3.2). Then LA has a
natural Riesz space structure given by (φM + ψM)(a) = φM(a) + ψM(a),
(rφM)(a) = rφM(a) for all a ∈ M , and φM ≥ ψM iff φM(a) ≥ ψM(a) for all
a ∈ M . Also, |φM|(a) = |φM(a)| for all a ∈ M , min(φM, ψM), max(φM, ψM)
are in LA, and ‖φM‖ = supa∈M |φM(a)|. Clearly, LA is Archimedean. The
constant function 1 is an order unit, and the uniform norm is its order-unit
norm (see [Fr2, 354G(a)]).

Let σA(M) be the set of Riesz homomorphisms I : LA → R such that
I(1) = 1. This set is called the spectrum of TA. Since LA is a normed linear
space (with the uniform norm), the unit ball B∗ = {I ∈ L∗A : ‖I‖ ≤ 1} in
L∗A is compact in the weak∗ topology by Alaoglu’s theorem. Also, we know
that σA(M) is the set of positive extreme points of the unit ball B∗, i.e.
σA(M) = {I ∈ B∗ : ‖I‖ = 1 and I is positive} (see [Fr2, 354Y(j)]). Since
σA(M) ⊆ B∗ is weak∗ closed, it is weak∗ compact. (We remark that the
weak∗ topology on σA(M) is simply the topology of pointwise convergence:
Iα → I in the weak∗ topology iff Iα(φM) → I(φM) for all φM ∈ LA; see [F,
p. 169] for details.)

The next propositions show that a complete type can be coded by a Riesz
homomorphism and give a characterization of complete types. The key idea
behind these propositions is a construction which allows us to consider M
as an elementary submodel of the type space SM(M) with the appropriate
structure.

Definition 5.4 (σM (M) as an elementary extension). Assume that M
is an L-structure and µ is the measure on M . By Fact 5.3, the space
LM can be embedded as an order-dense and norm-dense Riesz subspace
of C(σM (M)). The embedding is the map T : LM → RσM (M) defined by
setting (TφM)(I) = I(φM) for all I ∈ σM (M) and φM ∈ LM . We define the
elementary extension N = (σM (M), ν, TφM)φM∈LM of M with the natural
interpretations of symbols and measure as follows:

First, we can easily see that M ⊆ σM (M). Indeed, for each a ∈M , define
Ia : LM → R by Ia(φ

M) = φM(a) for φM ∈ LM . Now, one can assume that
the language has a 2-ary relation symbol e with the interpretation e(a, b) = 1
if a = b, and e(a, b) = 0 otherwise (cf. [BP, p. 469]). Therefore, Ia 6= Ib if
a 6= b ∈M . More generally, if LM separates M , i.e. for all a 6= b ∈M there
is φM ∈ LM such that φM(a) 6= φM(b), then Ia 6= Ib. To summarize, the map
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M ↪→ σM (M) defined by a 7→ Ia is injective, and so we can assume that
a = Ia and M ⊆ σM (M).

Second, define ν{TφM > 0} := µ{φM > 0} for all φM ∈ LM . (Recall
that {TφM > 0} is the set {I ∈ σM (M) : TφM(I) > 0}.) Then ν is a pre-
measure on the algebra A = {{TφM > 0} : φM ∈ LM}. By Carathéodory’s
theorem, ν has a unique extension to a measure on the σ-algebra generated
by A, still denoted by ν. Also, we can assume that M is ν-measurable and
ν(N \M) = 0, i.e. M has full measure.

Third, for each formula φ(x, y1, . . . , yn) and any a1, . . . , an ∈ M , define
φN(x, Ia1 , . . . , Ian) : σM (M)→ R by φN(x, Ia1 , . . . , Ian)=TφM(x, a1, . . . , an).
Then for each b ∈M we have

φN(Ib, Ia1 , . . . , Ian) = TφM(x, a1, . . . , an)(Ib) = Ib(φ
M(x, a1, . . . , an))

= φM(b, a1, . . . , an).

Also, for a formula φ(x1, x2), define φN(x1, x2) : (σM (M))2 → R by φN(Ia, I)
= TφM(a, y)(I) and φN(I, Ib) = TφM(x, b)(I), where a, b ∈ M and I ∈ N ,
and φN(I, I ′) = 0 if I, I ′ ∈ N \M . Similarly we can define φN(x1, . . . , xn).
For a 2-ary function symbol f , define fN(Ia, Ib) := fM(a, b) for all a, b ∈M ,
and for some I ′′ ∈ N \M , fN(I, I ′) := I ′′ if at least one of I, I ′ belongs to
N \M . Similarly we can define fN(x1, . . . , xn). Moreover, we can assume
that the n-ary relations and functions on N are νn-measurable. In fact, our
definitions are not important on the set Nn \Mn, because νn(Nn \Mn) = 0
and we can take an appropriate σ-algebra on Nn.

Proposition 5.5. Assume that M and N are as above. Then M � N.

Proof. Since M ⊆ σM (M) and φN(b̄) = φM(b̄) for all b̄ ∈ M and formu-
las φ(x̄), we see that M is a substructure of N. Now by the Tarski–Vaught
test (Proposition 3.7 above), N is an elementary extension of M. Indeed,
we note that ν{φN > 0} = µ{φM > 0} for all φM ∈ LM . (See also [BP,
Proposition 5.10].)

We will also see that N realizes every type in SM(M); in fact SM(M) =
σM (M).

Proposition 5.6. Assume that M is an L-structure and A ⊆M .

(i) There is a bijection from SM(M) onto σM (M).
(ii) q ∈ SM(A) if and only if there is an elementary extension N of M

and x0 ∈ N such that q = tpN(x0/A).

Proof. (i) Assume that p(x) is a complete type over M. Define Ip :
LM → R by Ip(φ

M) = r if the statement φ(x) = r is in p(x). Clearly, Ip is
a Riesz homomorphism on LM and Ip(1) = 1. The map p 7→ Ip is injective,
and we may reasonably assume that p = Ip ∈ σM (M). In particular, for any
a ∈M , tpM(a/M) = {φ(x) = φM(a) : φ ∈ LM} and ItpM(a/M)(φ

M) = φM(a).
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(Earlier we showed that the map M ↪→ σM (M) defined by a 7→ ItpM(a/M) is
injective.)

Now, we prove that the map p 7→ Ip is surjective. Assume I ∈ σM (M). Let
N = (σM (M), ν, TφM)φM∈LM be the elementary extension of M constructed

in Definition 5.4 and p = tpN(I/M). Then it is easy to check that Ip = I.
(Indeed, recall that φN(I) = TφM(I) = I(φM) for all φM ∈ LM .) Therefore,
the map p 7→ Ip is also surjective.

(ii) Let q ∈ SM(A) and N be the elementary extension of M constructed
in Definition 5.4. Assume that p ∈ SN(M) = SM(M) is an extension of q.
Then there is a point x0 ∈ N such that p = tpN(x0/M) (see (i) above).
Clearly, q = tpN(x0/A).

Recall that σM (M) is weak∗ compact. Since SM(M) = σM (M), we can
also equip SM(M) with the weak∗ topology. It is easy to check that the
weak∗ topology and the logic topology on SM(M) are the same. Indeed,
for each φM ∈ LM , define φ : SM(M) → [−[φ, [φ] by p 7→ Ip(φ

M). Then
obviously the logic topology on SM(M) is the weakest topology in which all
the functions p 7→ φ(p) are continuous. Therefore, for all pα, p ∈ SM(M) we
have

Ipα → Ip in the weak∗ topology ⇔ Ipα(φM)→ Ip(φ
M) for all φM ∈ LM

⇔ φ(pα)→ φ(p) for all φM ∈ LM
⇔ φ is continuous for all φM ∈ LM
⇔ pα → p in the logic topology.

Remark 5.7. By Proposition 5.6, the elementary extension N=(σM (M),
ν, φN), as constructed in Definition 5.4, realizes every type over M . Also, it
is easy to verify that M is a dense subset of N = σM (M). Indeed, if M is
not dense in N , there is a nonzero h ∈ C(N) such that h(Ia) = 0 for every
a ∈ M ; but as the uniform completion LM of LM is identified with C(N)
(because LM is dense in C(N)), there is an f ∈ LM such that I(f) = h(I)
for every I ∈ N . Assume that fn → f uniformly, where fn ∈ LM . Therefore,
there are hn ∈ C(N) such that I(fn) = hn(I) for every I ∈ N . Clearly,
hn → h uniformly. In this case, f cannot be the zero function, but f(a) =
limn fn(a) = limn Ia(fn) = limn hn(Ia) = h(Ia) = 0 for every a ∈ M . Thus
the image of M is dense, as claimed.

On the other hand, since φN’s are continuous, the natural measure ν
on N is Baire and it has a unique extension to a Radon measure, which we
again denote by µ. From now on we assume that N = (S(M), µ) with the
appropriate structure, where µ is this Radon measure.

Corollary 5.8. Let G be an amenable topological group and TG the
theory of left G-invariant measures on σ(G). Then G is extremely amenable
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iff there is a complete type p ∈ S(σ(G)) such that g · p = p for each
g ∈ G.

5.2. Definable relations

Definition 5.9. A relation ξ : M → [−[, [] is ∅-definable if there is a
sequence φk(x̄) of formulas such that [φk ≤ [ and φk → ξ pointwise. A subset
is definable if its characteristic function is definable.

This may also be defined on the basis of other notions of convergence
such as almost uniform convergence, convergence in measure, convergence
in the mean etc. However, the corresponding definitions are equivalent. For
example if φk converges in measure to ξ, then it has a subsequence which
converges to f almost everywhere. So, if R is definable using the first notion
of convergence, it is also definable using the second one. In particular, since
the measure is finite and |φk| ≤ [, φk → ξ in measure iff φk → ξ in the
mean iff φk → ξ pointwise (see [F]). On the other hand, if M � N and ξ is
definable in M, then there is a corresponding definable relation ξ′ in N, and
it is not hard to see that M �a N. The set of definable relations is a Ba-
nach algebra with the norm defined by ‖φ‖ = supx |φ(x)|, and this algebra
depends only on T . It can be described as the completion of the algebra of
formulas with the uniform norm. We denote this completion by L(T ). A re-
lation is M-definable if it is definable in Th(M, a)a∈M . So, L(M) is defined
in the natural way.

5.3. Local stability. Here and in Section 6 we give two different no-
tions of “stability” of a formula inside a model: a measure-theoretic one
and a model-theoretic one. In fact, the measure-theoretic notion (Defini-
tion 6.1) is a suitable form of the dependence property in classical model
theory.

Let M be a structure and φ(x, y) a formula. Assume that N � M and
a ∈ N . Let p = tpM

φ (a/M) be the complete φ-type of a over M , i.e., a func-
tion which associates to each instance φ(x, b), b ∈ M , the value φ(a, b),
which will then be denoted by φ(p, b). Note that the complete φ-type p
uniquely determines a Riesz homomorphism Ip : Lφ → R where Lφ is the
Riesz space generated by {φ(x, b) : b ∈M}, and Ip(φ(x, b)) = φ(p, b) for each
b ∈ M . We equip Sφ(M) with the weakest topology in which all functions
p 7→ φ(p, b), b ∈ M , are continuous. Equivalently, if σφ(M) is the spectrum
of Tφ = {φ ≥ r : φ ≥ r is in T (M, a)a∈M} (i.e., the set of Riesz homomor-
phisms I : Lφ → R such that I(1) = 1), then Sφ(M) = σφ(M) is equipped
with the topology induced by the weak∗ topology on L∗φ. Clearly, Sφ(M) is

compact Hausdorff. If ψ is a continuous function on Sφ(M) such that ψ can
be expressed as the pointwise limit of a sequence of algebraic combinations
of functions of the form p 7→ φ(p, b), b ∈ M , then ψ is called a φ-definable
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relation over M . A definable relation ψ(y) over M defines p ∈ Sφ(M) if
φ(p, b) = ψ(b) for all b ∈M .

The next notion is more natural and less technically involved than the
measure-theoretic one in Definition 6.1 below (see [B1, Definition 7.1]).

Definition 5.10. A formula φ(x, y) is called stable in a structure M if
there are no r > s and infinite sequences an, bn ∈M such that, for all i > j,
φ(ai, bj) ≥ r and φ(aj , bi) ≤ s. A formula φ is stable in a theory T if it is
stable in every model of T .

It is easy to verify that φ(x, y) is stable in M if whenever an, bn ∈ M
form two sequences, then

lim
n

lim
m
φ(an, bm) = lim

m
lim
n
φ(an, bm),

provided both limits exist.

Fact 5.11 (Grothendieck’s criterion, [G]). Let X be an arbitrary topo-
logical space, and X0 ⊆ X a dense subset. Then the following are equivalent
for a subset A ⊆ Cb(X):

(i) The set A is relatively weakly compact in Cb(X).
(ii) The set A is bounded, and if fn ∈ A and xn ∈ X0 form two sequences

then
lim
n

lim
m
fn(xm) = lim

m
lim
n
fn(xm),

whenever both limits exist.

5.4. Fundamental theorem of stability. In [BU], Ben Yaacov and
Usvyatsov proved a continuous version of the definability of types in a stable
theory, which is a generalization of the classical one. Roughly speaking, in
continuous logic, for a stable formula φ, the number of φ-types is controlled
by the number of continuous functions on the space of φ-types. A similar
result holds for a stable formula in integral logic. Another result shows that
for an almost dependent formula φ (see Definition 6.1 below), the number
of φ-types (up to an equivalence relation) is controlled by the number of
measurable functions on the space of φ-types.

On the other hand, in [B3] and [B2], Ben Yaacov studied probability
algebras and L1-random variables in the frameworks of compact abstract
theories (cats) and of continuous logic. Note that in this paper we shall not
identify measurable functions with their classes in L1. Thus, in contrast to
[B3] and [B2], the theory of a probability structure is not necessarily stable.

Now, we come quickly to the following theorem. The proof is essentially
similar to that in [B1], but it works for measure structures.

Theorem 5.12 (Definability of types). Let φ(x, y) be a formula stable
in a structure M. Then every p ∈ Sφ(M) is definable by a unique φ̃-definable

relation ψ(y) over M , where φ̃(y, x) = φ(x, y).
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Proof. Let X = Sφ(M), and let X0 ⊆ X be the collection of those types
realized in M , which is dense in X. Since X is compact, the weak topology
on C(X) coincides with the topology of pointwise convergence. Since every
formula is bounded, the set A = {φa : p 7→ φ(a, p) | a ∈ M} ⊆ C(X)
is bounded. By Fact 5.11, since φ is stable in M , we see that A is rel-
atively poinwise compact in C(X). Let p(x) ∈ Sφ(M), and let ai ∈ M
be any net such that limi tpφ(ai/M) = p. Since A is relatively pointwise
compact, there is a ψ ∈ C(X) such that limi φ

ai(y) = ψ(y). By [KN,
Theorem 8.20], ψ is the closure point of a sequence φan(y) of the family
{φai(y)}i, and there is a subsequence φank (y) such that limk φ

ank (y) = ψ(y).
Clearly, ψ(y) is a φ̃-definable relation over M , and for b ∈ M we have
φ(p, b) = limk φ(ank , b) = ψ(b). Therefore, p is definable by a φ̃-definable
relation ψ over M . If p is definable by ψ1, ψ2, then ψ1(b) = ψ2(b) for all
b ∈M . Since X0 ⊆ X is dense, ψ1 = ψ2.

We are now ready to prove the main theorem of this section.

Corollary 5.13 (Fundamental theorem of stability). Let φ(x, y) be a
formula and T a theory. Then the following are equivalent:

(i) The formula φ is stable in T.
(ii) For every model M � T , every φ-type over M is definable by a φ̃-

predicate over M .
(iii) For each cardinal λ = κℵ0 ≥ |T |, and each model M � T with

|M | ≤ λ, we have |Sφ(M)| ≤ λ.
(iv) There exists a cardinal λ = κℵ0 ≥ |T | such that for every model

M � T , if |M | ≤ λ then |Sφ(M)| ≤ λ.

Proof. We proved (i)⇒(ii) in Theorem 5.12. The implications (ii)⇒(iii)
⇒(iv) are clear. For (iv)⇒(i), use a many-type argument and the downward
Löwenheim–Skolem theorem [BP, Proposition 5.13].

5.5. Cantor–Bendixson rank. Let M be a structure. By Remark 5.7,
N = (S(M), µ) is an elementary extension of M, and a very unlikely one
from the point of view of classical model theory. Moreover, N is a topological
measure space, N is compact, and µ is a Radon measure. Similarly, for a
formula φ(x, y), the structure Nφ = (Sφ(M), µφ) also has these properties.
In fact, Nφ has further structures:

Definition 5.14 ([BU]). A (compact) topometric space is a triplet
(X, τ, d), where τ is a (compact) Hausdorff topology and d a metric on X,
satisfying:

(i) the metric topology refines the topology;
(ii) for every closed F ⊆ X and ε > 0, the closed ε-neighbourhood of F

is closed in X as well.
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Fact 5.15. Nφ is a compact topometric space.

Proof. For p, q ∈ Sφ(M), define d(p, q) = sup{|φ(p, a)−φ(q, a)| : a ∈M}.
Clearly, d is a metric on Sφ(M); the topology generated by d is sometimes
called the uniform topology. On the other hand, we know that pα → p in the
logic topology τ iff φpα → φp in the topology of pointwise convergence, or
equivalently, φpα → φp in the weak topology. Now, it is easy to verify that
(Sφ(M), τ, d) is a compact topometric space.

Remark 5.16. Let U be an Archimedean Riesz space with order unit e.
Then it can be embedded as an order-dense and norm-dense Riesz subspace
of C(X), where X is a compact Hausdorff space (see Fact 5.3). For a, b ∈ X,
define d(a, b) = sup{|f(a)− f(b)| : f ∈ C(X)}. Clearly, (X, d) is a compact
topometric space. Therefore, all results in this paper can be extended to
Archimedean Riesz spaces with order unit, and our approach is appropriate
for continuous logics as well as operator logics (cf. [Mo]).

We have the following continuous version of the Cantor–Bendixson rank.

Definition 5.17 ([BU]). Let X be a compact topometric space. For
a fixed ε > 0, we define a decreasing sequence of closed subsets Xε,α by
induction:

Xε,0 = X,

Xε,α =
⋂
β<α

Xε,β for α a limit ordinal,

Xε,α+1 =
⋂
{F ⊆ Xε,α : F is closed and diam(Xε,α \ F ) ≤ ε},

Xε,∞ =
⋂
α

Xε,α,

where the diameter of a subset U ⊆ X is defined by

diam(U) = sup{d(x, y) : x, y ∈ U}.
For any nonempty subset U ⊆ X we define its ε-Cantor–Bendixson rank in
X as

CBX,ε(U) = sup{α : U ∩Xε,α 6= ∅} ⊆ Ord ∪ {∞}.
The next result characterizes stability in terms of CB-ranks. We remark

that a structure M is ω-saturated if every 1-type over a finite tuple in M is
realized in M.

Proposition 5.18 (cf. [BU]). φ is stable iff for any ω-saturated model
M � T where |M | = (|T |+ κ)ℵ0 we have

CBSφ(M),ε(Sφ(M)) <∞ for all ε.

Proof. Let κ > |T | be any cardinal such that κ = κℵ0 . Let λ be the
least cardinal such that 2λ > κ. Assume that Y = Sφ(M)ε,∞ is nonempty.
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Then Y is compact, and if U ⊆ Y is relatively open and nonempty then
diam(U) > ε. We can therefore find nonempty open sets U0, U1 such that
Ū0, Ū1 ⊆ U and d(U0, U1) > ε. Now, if p ∈ U0, q ∈ U1 then d(p, q) > ε.
Proceed by induction. If M is 2<λ-saturated and (2<λ)ℵ0 = 2<λ then we can
find a model M0 � M of cardinality 2<λ and types {pα}α<2λ ⊆ Sφ(M0) such
that d(pα, pα′) > ε for all α 6= α′. Therefore, ‖Sφ(M0)‖ > |M0|, i.e., the
density character of Sφ(M0) is greater than the cardinality of M0.

The converse is standard.

5.6. Stability and amenability. Now we return to analytic concepts.
A topological group is called precompact if it is isomorphic to a subgroup of a
compact group. Assume that G acts on a set X. Then a bounded function f
on X is called weakly almost periodic if the G-orbit of f is weakly relatively
compact in the Banach space l∞(X) of all bounded real-valued functions on
X equipped with the supremum norm. For a topological group G, denote by
WAP(G) the space of all continuous weakly almost periodic functions on G.

Fact 5.19. Assume that G is a topological group, and its theory, TG, is
satisfiable. Then the following are equivalent:

(i) TG is stable.
(ii) G is precompact.

Proof. We know that TG is stable (i.e., LUC(G) is weakly compact) if and
only if LUC(G) = WAP(G). By [MPU, Theorem 4.5], LUC(G) = WAP(G)
if and only if G is precompact.

Corollary 5.20. Assume that G and TG are as above. If TG is stable,
then G is uniquely amenable.

Proof. It is known that for every precompact group G, the algebras

LUC(G) and LUC(Ĝ) are canonically isomorphic, where Ĝ denotes the com-
pact completion of G. Also, every compact group provides an obvious ex-
ample of a uniquely amenable group for which the unique invariant mean
comes from the Haar measure. So G is uniquely amenable since Ĝ is.

6. NIP. Talagrand [T] gave the first explicit definition of a stable set
of functions. In fact, the notion of a stable set of functions [Fr3, 465B] is
a measure-theoretic version of a well-known model-theoretic property, the
dependence property. The definition is not obvious, but the basic properties
of stable sets listed in [Fr3, 465C] are natural and easy to check, and we come
quickly to the fact that (for complete locally determined spaces) pointwise
bounded stable sets are relatively pointwise compact sets of measurable
functions (Fact 6.3). We are now ready for the main definition, which is an
adapted version of [Fr3, Definition 465B].
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6.1. Almost dependence property

Definition 6.1. A formula φ(x, y) has the almost dependence property,
or is almost dependent, in a structure M if the set A = {φ(x, b), φ(a, y) :
a, b ∈ M} is a stable set of functions in the sense of [Fr3, Definition 465B],
that is, whenever E ⊆ M is measurable, µ(E) > 0 and s < r in R, then
there is some k ≥ 1 such that (µ2k)∗Dk(A,E, s, r) < (µE)2k where

Dk(A,E, s, r) =
⋃
f∈A
{w ∈ E2k : f(w2i) ≤ s, f(w2i+1) ≥ r for i < k}.

A formula φ has the almost dependence property in a theory T if it has the
almost dependence property in every model of T .

Note 6.2. Assume that for each s < r and k ∈ N the set Dk(A,E, s, r)
is measurable in M. Then it is easy to verify that φ(x, y) fails to be almost
dependent in M if and only if there exist E ⊆ M with µ(E) > 0 and s < r
in R such that for each k ≥ 1, almost each w ∈ Ek, and each I ⊆ {1, . . . , k},
there is f ∈ A with f(wi) ≤ s for i ∈ I and f(wi) ≥ r for i /∈ I (see [T,
Proposition 4]).

In the above definition, if µ(E) ≥ ε > 0 then we say that φ fails to be
almost ε-dependent, or that it has the ε-FD property. It is an easy exercise
to show that the ε-FD property is a first order property (in integral logic), or
equivalently, it is expressible. Clearly, φ has the almost dependence property
if it fails to have the ε-FD property for all ε > 0.

Note that the sets A1 = {φ(a, y) : a ∈ M} and A2 = {φ(x, b) : b ∈ M}
are dependent if and only if A = A1 ∪ A2 is dependent (cf. [Fr3, Propo-
sition 465C(a), (d)]). On the other hand, one can easily define the (exact)
dependence property. For this, we say φ fails to be dependent, or is inde-
pendent, in M if there exist s < r in R such that for each k ≥ 1 there
are w1, . . . , wk ∈ M such that for each I ⊆ {1, . . . , k} there is f ∈ A with
f(wi) ≤ s for i ∈ I and f(wi) ≥ r for i /∈ I. Clearly, a dependent formula
(or theory) is necessarily almost dependent.

We immediately arrive at the following fact, which is an adapted version
of [Fr3, Proposition 465D].

Fact 6.3. Let M = (M,Σ, µ) be a structure such that µ is a complete
locally determined measure space, and φ(x, y) an almost dependent formula.
Since every formula is bounded, so is φ. Therefore, A = {φ(x, b), φ(a, y) :
a, b ∈M} is relatively compact in the space of measurable functions for the
topology of pointwise convergence.

We compare our notions:

Proposition 6.4. Let φ(x, y) be a stable formula in a theory T . Then
φ is almost dependent in T .
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Proof. Assume that φ fails to be almost dependent. Therefore, there
is a model M � T , E ⊆ M , with µ(E) > 0, and r > s in R such that
(µ2k)∗Dk(A,E, s, r) = (µE)2k for each k. Then it is easy to verify that for
each k there are finite sequences an, bn ∈ E, n ≤ k, such that for all j < i ≤ k
we have φ(ai, bj) ≥ r and φ(aj , bi) ≤ s. Now, by the compactness theorem
of model theory, there is an elementary extension N � M such that φ is not
stable in N. Thus, φ is not stable in T .

To summarize:

φ is stable ⇒ φ is dependent ⇒ φ is almost dependent.

By a result of Bourgain, Fremlin and Talagrand [BFT, Theorem 2F], one
can easily check that a formula φ is (exactly) dependent if and only if it is
almost dependent for each Radon measure. We will study this connection
in a future work.

6.2. Almost definability of types. Here, a result similar to the stable
case can be proved for the almost dependence property. For this, we need
some definitions. Let ψ be a measurable function on (Sφ(M), µφ) where µφ
is the unique Radon measure induced by φM(x, b) for all b ∈ M . Then ψ
is called an almost φ-definable relation over M if there is a sequence gn :
Sφ(M)→ R, |gn| ≤ |φ|, of continuous functions such that limn gn(b) = ψ(b)
for almost all b ∈ Sφ(M). (We note that by the Stone–Weierstrass theorem
every continuous function gn : Sφ(M) → R can be expressed as a uniform
limit of a sequence of algebraic combinations of functions of the form p 7→
φ(p, b), b ∈M .) An almost definable relation ψ(y) over M defines p ∈ Sφ(M)
if φ(p, b) = ψ(b) for almost all b ∈ M , and in this case we say that p is
almost definable. Assume that every type p in Sφ(M) is almost definable by
a measurable function ψp. We say that p is almost equal to q, written p ≡ q,
if ψp(b) = ψq(b) for almost all b ∈M . Define [p] = {q ∈ Sφ(M) : p ≡ q} and
[Sφ](M) = {[p] : p ∈ Sφ(M)}.

Theorem 6.5 (Almost definability of types). Let φ(x, y) be a formula
almost dependent in a structure M. Then every p ∈ Sφ(M) is almost defin-

able by a (unique up to measure) almost φ̃-definable relation ψ(y) over M ,
where φ̃(y, x) = φ(x, y).

Proof. We know that (M, µMφ ) � (Sφ(M), µφ). First, assume (Sφ(M), µφ)
is minimal, i.e., µφ is Baire and it is not nesessarily Radon. (One can easily
verify that the subspace measure µφ�M is µMφ . Therefore, by [Fr3, Proposition

465C(n)], since the set {φ(a, y)�M : a ∈M} ⊆ RM is also almost dependent
with respect to µφ�M , the set A = {φ(a, y) : a ∈ M} ⊆ RSφ(M) is almost
dependent with respect to µφ.) By [Fr3, Proposition 465C(i)], the set A is
moreover almost dependent with respect to the completion µ̂φ of µφ.
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Now, let p(x) ∈ Sφ(M), and let ai∈M be any net such that limi tpφ(ai/M)
= p. Since µ̂φ is complete, by Fact 6.3, there is a µ̂φ-measurable function
ψ such that limi φ

ai(y) = ψ(y). Let µ̄φ be the unique extension of µφ to a
Radon measure. Thereby it is also an extension of µ̂φ. Since µ̄φ is Radon, by
[F, Proposition 7.9] there is a sequence gn of continuous functions on Sφ(M)
such that gn → ψ in L1(µ̄φ), and hence by [F, Corollary 2.32] a subsequence
(still denoted by gn) that converges µ̄φ-a.e. to ψ. Clearly, ψ is unique up to
the measure µ̄φ.

Corollary 6.6. Let φ(x, y) be a formula and T a theory. Then (i)⇒(ii)
⇒(iii), where:

(i) The formula φ is almost dependent in T.
(ii) For every model M � T , every φ-type over M is almost definable by

a φ̃-predicate over M .
(iii) For each cardinal λ = κℵ0 ≥ |T |, and each model M � T with

|M | ≤ λ, we have |[Sφ](M)| ≤ λ.

Proof. Clear.

6.3. Almost Cantor–Bendixson rank. A result similar to the Cantor–
Bendixson rank for stable formulas holds for the almost dependence prop-
erty. For this we need some definitions. For a µφ-measurable function ξ :
Sφ(M)→ [−[φ, [φ] where [φ is the universal bound of φ, let

[ξ] = {χ : Sφ(M)→ [−[φ, [φ] | χ is µφ-measurable and χ = ξ a.e.}.

Let L1
φ = {[ξ] | ξ : Sφ(M) → [−[φ, [φ] is µφ-measurable}. We show that

L1
φ has a natural compact topometric structure. Indeed, let d([ξ], [ξ′]) =	
|ξ− ξ′| dµφ, and [ξα]

T→ [ξ] iff I([ξα])→ I([ξ]) for all I ∈ (L1)∗. In fact, the
topology generated by the metric d is the norm topology on L1, and T is the
weak topology generated by (L1)∗. Now, it is easy to verify that (L1

φ, d,T) is a

compact topometric space. Indeed, since L1
φ is uniformly integrable, by [Fr1,

Theorem 247C], L1
φ is relatively weakly compact. Also, L1

φ is closed in the

norm topology. It is well-known that for a convex subset of a locally convex
space, the weak closure is equal to the norm closure. Therefore, L1

φ is weakly
closed, and hence it is weakly compact. On the other hand, it is well-known
that the norm L1 is weakly lower semicontinuous (cf. [AB, Lemma 6.22]).
So L1

φ is a compact topometric space, as claimed.

We remark that if the types p, q are definable by measurable functions
ψp, ψq, then p ≡ q iff ψp(b) = ψq(b) for almost all b ∈ M , or equivalently,
[ψp] = [ψq]. (Note that since M � (Sφ(M), µφ), we have ψp(b) = ψq(b)
for almost all b ∈ M iff ψp = ψq µφ-almost everywhere.) Therefore, if
|M | = κℵ0 and φ is a formula almost dependent in the structure M, then
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|L1
φ| = |[Sφ](M)| = κℵ0 . (See Theorem 6.5 and the definitions before it.)

This yields

Proposition 6.7. If φ is almost dependent, then for any ω-saturated
model M � T where |M | = (|T |+ κ)ℵ0 we have CBL1

φ,ε
(L1

φ) <∞ for all ε.

The almost dependence property is linked with a notion from another
area. Historically, this property arose naturally when Talagrand and Fremlin
were studying pointwise compact sets of measurable functions; they found
that in many cases a set of functions was relatively pointwise compact be-
cause it was almost dependent. Later it appeared that the concept was con-
nected with Glivenko–Cantelli classes in the theory of empirical measures,
as explained in [T]. Also, a version of Vapnik–Chervonenkis dimension which
is suitable for measure structures can be defined, and will be studied in a
future work.

7. Conclusion. In the first part of this paper we studied some concrete
analytic structures. This study led us to the natural and correct notion of
types. The perspective on types in this paper can be used in other logics. For
example, this approach seems to be appropriate for continuous logic [BU] as
well as operator logics [Mo]. Note that by Remark 5.16, every Archimedean
Riesz space with order unit admits a natural compact topometric structure.
Therefore, most of the results in this paper can be extended to Archimedean
Riesz spaces. Also, the notion of forking and independence, and their con-
nections with measure theory can be studied. On the other hand, one can
do much more classifications, e.g. the strict order property and other prop-
erties. We will study them elsewhere. Finally, all these results suggest that
many interesting analytic concepts may be studied by model-theoretic meth-
ods. Moreover, these methods provide a new view on the related subjects in
analysis, and open some fruitful areas of research on similar questions.
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