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1. Introduction. Boolean functions play an important role in stream
ciphers, block ciphers and hash functions. Over the years, many researchers
have dealt with cryptography criteria for Boolean functions.

Let F2 be the binary field; then Fn
2 can be visualized as an n-dimensional

vector space over F2. A Boolean function B(x1, . . . , xn) of n variables is a
mapping from Fn

2 into F2. Let x = (x1, . . . , xn), a = (a1, . . . , an) ∈ Fn
2 and

let 〈a,x〉 = a1x1 + · · · + anxn denote the usual inner product. The Fourier

coefficients B̂(a) of B(x1, . . . , xn) are defined as

B̂(a) =
∑
x∈Fn

2

(−1)B(x)+〈a,x〉.

The nonlinearity of B(x1, . . . , xn) is defined by

nl(B) = 2n−1 − 1
2 max
a∈Fn

2

|B̂(a)|.

A Boolean function has a unique representation as a multivariate poly-
nomial over F2, named the algebraic normal form:

B(x1, . . . , xn) =
∑

I⊆{1,...,n}

aI
∏
i∈I

xi.

The algebraic degree deg(B) is the number of variables in the highest order
term with non-zero coefficient, and the sparsity spr(B) is the number of non-
zero coefficients of B. The average sensitivity σav(B) is a measure of how
the value of B(x1, . . . , xn) changes on average if the ith bit of the argument
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is flipped, i.e.

σav(B) = 2−n
∑
a∈Fn

2

n∑
i=1

|B(a)−B(a(i))|,

where a(i) is the vector obtained from a by flipping its ith coordinate.

In recent years many Boolean functions with good cryptographic proper-
ties have been constructed by using number-theoretic methods. For example,
D. Coppersmith and I. E. Shparlinski [2] constructed a Boolean function by
using quadratic residues modulo an odd prime.

Proposition 1.1. Let p > 2 be a prime, and let s = blog2 pc, where bxc
denotes the maximum integer not greater than x. Define

B(u1, . . . , us) =


0 if u1 + u2 · 2 + · · ·+ us · 2s−1

is a quadratic residue in Fp,

1 if u1 + u2 · 2 + · · ·+ us · 2s−1

is a quadratic non-residue in Fp,

(1.1)

where uj ∈ {0, 1} for 1 ≤ j ≤ s. Then

spr(B) ≥ 2−3/2p1/4(log2 p)
−1/2 − 1,

σav(B) ≥ 0.5s+ o(s).

H. Aly and A. Winterhof [1] studied Boolean functions derived from
Fermat quotients modulo p by using the Legendre symbol.

Proposition 1.2. Let p > 2 be a prime. For an integer u with (u, p) = 1,
the Fermat quotient qp(u) is defined as the unique integer with

qp(u) ≡ up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1.

Also define qp(kp) = 0 for k ∈ Z. Write s = b2 log pc. Set

B(u1, . . . , us) =

{
0 if

( qp(u1+u2·2+···+us·2s−1)
p

)
= 1,

1 if
( qp(u1+u2·2+···+us·2s−1)

p

)
6= 1,

(1.2)

where uj ∈ {0, 1} for 1 ≤ j ≤ s, and
( ·
p

)
denotes the Legendre symbol. Then

max
a∈Fs

2

|B̂(a)| � p15/8(log p)1/4,

spr(B)� p1/4(log p)−1/2,

σav(B) ≥ 0.5s+ o(s).

T. Lange and A. Winterhof [4] extended the construction in Proposi-
tion 1.1.
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Proposition 1.3. Let p > 2 be a prime and r ≥ 1 be an integer. Let Fq

denote the finite field of order q = pr, and let β0, . . . , βr−1 be a basis of Fq

over Fp. Define s = blog2 pc. Let uij ∈ {0, 1} for 1 ≤ j ≤ s and 1 ≤ i ≤ r.
Write ki−1 = ui1 + ui2 · 2 + · · ·+ uis · 2s−1 for 1 ≤ i ≤ r. Define

(1.3) B(u11, . . . , u1s, . . . , ur1, . . . , urs)

=

{
0 if k0β0 + · · ·+ kr−1βr−1 is a square in Fq,

1 if k0β0 + · · ·+ kr−1βr−1 is a non-square in Fq.

Then

spr(B) ≥
(
2−3/2(31/r + r)−1/2p1/4

)r − 1.

T. Lange and A. Winterhof [5] further studied the properties of the
Boolean function (1.3).

Proposition 1.4. Let p, r, s, B be as in Proposition 1.3. Then

max
a∈Frs

2

|B̂(a)| ≤ 2(2r+3)/4q7/8 (ln p+ 1)r/4 + 1,

σav(B) ≥ 0.5rs+ o(rs).

Noting that the above constructions produce only a “few” good Boolean
functions while in some applications one needs “large” families of Boolean
functions, in this paper we construct a large family of Boolean functions by
using polynomials over finite fields, and study their cryptographic properties.

Theorem 1.1. Let Fq be the finite field of order q= prwith p an odd prime
and an integer r ≥ 1, and let β0, . . . , βr−1 be linearly independent elements
of Fq over Fp. Define s = blog2 pc. Write ki−1 = ui1 +ui2 ·2+ · · ·+uis ·2s−1
with uij ∈ {0, 1} for 1 ≤ j ≤ s and 1 ≤ i ≤ r. Assume that f(x) ∈ Fq[x] has
no multiple zero in Fq and 0 < deg(f) < p. Define

(1.4) B(u11, . . . , u1s, . . . , ur1, . . . , urs)

=

{
0 if f(k0β0 + · · ·+ kr−1βr−1) is a square in Fq,

1 if f(k0β0 + · · ·+ kr−1βr−1) is a non-square in Fq.

Then

max
a∈Frs

2

|B̂(a)| ≤ 23/4(deg(f))1/4q7/8(1 + log p)r/4 + deg(f),(1.5)

nl(B) ≥ q

2r+1
− 2−1/4(deg(f))1/4q7/8(1 + log p)r/4 − 1

2 deg(f).(1.6)

Furthermore, assume that

r
(
deg(f) + r(2(log2 p)

1/2 + 1)
)
< log4 p.

Then also

σav(B) ≥ 0.5rs+ o(rs).(1.7)
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Theorem 1.2. Let p > 2 be a prime, and let s = blog2 pc. Suppose that
f(x) ∈ Fp[x] has no multiple zero in Fp and 0 < deg(f) < p. Define

(1.8) B(u1, . . . , us) =


0 if f(u1 + u2 · 2 + · · ·+ us · 2s−1)

is a square in Fp,

1 if f(u1 + u2 · 2 + · · ·+ us · 2s−1)
is not a square in Fp.

If 2 is a primitive root modulo p, then

σav(B) ≥ 0.5s+ o(s),(1.9)

spr(B) ≥ 1
4(deg(f))−1/2p1/4(log p)−1/2.(1.10)

We further study the properties of our family of Boolean functions. Col-
lision and avalanche effect are important notions in cryptography (see [8]),
and can be adapted in the following way.

Assume that T is a given set (e.g., a set of polynomials) and for each
t ∈ T we have a unique Boolean function

B(x1, . . . , xn) = B(t)(x1, . . . , xn) ∈ {0, 1}2n ;

let F = F(T ) be the family of all these functions:

F = F(T ) = {B(t) : t ∈ T }.(1.11)

Definition 1.1. If t1, t2 ∈ T , t1 6= t2 and

B(t1) = B(t2),(1.12)

then (1.12) is said to be a collision in F = F(T ). If there is no collision in
F = F(T ), then F is said to be collision free.

Definition 1.2. If for any t ∈ T , changing any value of t changes
“many” elements of B(t) (i.e. for t1 6= t2 many values of B(t1) and B(t2)

are different), then we speak about the avalanche effect, and we say that
F = F(T ) has the avalanche property. If for any t1, t2 ∈ T , t1 6= t2, at least
(1/2 − o(1))2n values of B(t1) and Bt2 are different, then F is said to have
the strict avalanche property.

To study the collision and avalanche effect, we introduce the following
measure (see [9]).

Definition 1.3. If n ∈ N, B(x) ∈ {0, 1}2n and B′(x) ∈ {0, 1}2n , then
the distance d(B,B′) between B and B′ is defined by

d(B,B′) = |{x ∈ Fn
2 : B(x) 6= B′(x)}|.

If F = F(T ) is a family of the form (1.11), then the minimum distance
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m(F) of F is defined by

m(F) = min
t1,t2∈T
t1 6=t2

d(B(t1), B(t2)).

It is easy to show that the family F is collision free if and only if
m(F) > 0, and F has the strict avalanche property if

m(F) ≥ (1/2− o(1))2n.

In Section 6 we will study the collision and avalanche effect of our family
of Boolean functions, and prove the following results.

Theorem 1.3. Let Fq be the finite field of order q = pr with p an odd
prime and an integer r ≥ 1, and let β0, . . . , βr−1 be linearly independent
elements of Fq over Fp. Define s = blog2 pc. Write ki−1 = ui1 +ui2 ·2+ · · ·+
uis · 2s−1 with uij ∈ {0, 1} for 1 ≤ j ≤ s and 1 ≤ i ≤ r. Let T be the set of
polynomials f(x) ∈ Fq[x] with 1 ≤ deg(x) ≤ D which do not have multiple
zeros. Define

B(f) = B(u11, . . . , u1s, . . . , ur1, . . . , urs)

=

{
0 if f(k0β0 + · · ·+ kr−1βr−1) is a square in Fq,

1 if f(k0β0 + · · ·+ kr−1βr−1) is a non-square in Fq,

and F = F(T ) = {B(f) : f ∈ T }. Then

m(F) ≥ 1
2

(
2rs − 2Dq1/2 (1 + log p)r − 2D

)
.

Corollary 1.1. If T and F are as in Theorem 1.3 and

D <
1

2r+2
q1/2(1 + log p)−r,

then F is collision free.

Corollary 1.2. If T and F are as in Theorem 1.3 and

D = o
(
q1/2(1 + log p)−r

)
,

then F has the strict avalanche property.

2. The maximum Fourier coefficient and nonlinearity. First we
list the following lemmas.

Lemma 2.1 ([10, Theorem 2]). Suppose that q = pn, χ is a multiplicative
character on Fq of order d > 1, v1, . . . , vn ∈ Fq are linearly independent over
the prime field of Fq, f ∈ Fq is a non-constant polynomial which is not a
dth power and which has m distinct zeros in its splitting field over Fq, and
t1, . . . , tn are non-negative integers with t1 < p, . . . , tn < p. Define

B =
{ n∑

i=1

jivi : 0 ≤ ji ≤ ti for i = 1, . . . , n
}
.
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Then ∣∣∣∑
z∈B

χ(f(z))
∣∣∣ < mq1/2(1 + log p)n.

Lemma 2.2 ([7, Lemma 2 and Theorem 2]). Let q = pn, z1, . . . , zk be
distinct elements of Fq, h(x) ∈ Fq[x] with h(x) = ah1(x), where a ∈ Fq and
h1(x) is a monic polynomial. Define H(x) = h1(x+z1) · · ·h1(x+zk). If h(x)
has no multiple zero in Fq, 0 < deg(h) < p, and k = 2 or 4n(deg(h)+k) < p,
then H(x) has at least one zero in Fq whose multiplicity is odd.

Now we study the maximum Fourier coefficient of our Boolean functions.
Write ki−1 = ui1 + ui2 · 2 + · · · + uis · 2s−1 with uij ∈ {0, 1} for 1 ≤ j ≤ s
and 1 ≤ i ≤ r. Let χ be the quadratic character of Fq. It is obvious that

(−1)B(u11,...,u1s,...,ur1,...,urs) = χ(f(k0β0 + · · ·+ kr−1βr−1)) for f(k0β0 + · · ·+
kr−1βr−1) 6= 0.

Define

H2s = {k0β0 + · · ·+ kr−1βr−1 : 0 ≤ ki−1 ≤ 2s − 1 for i = 1, . . . , r}.

For any a ∈ Frs
2 , we have

B̂(a) =
∑
x∈Frs

2

(−1)B(x)+〈a,x〉 =
∑

z∈H2s

f(z)6=0

χ(f(z))(−1)〈z,a〉 +
∑

z∈H2s

f(z)=0

(−1)〈z,a〉,

where z = k0β0 + · · · + kr−1βr−1, ki−1 = ui1 + ui2 · 2 + · · · + uis · 2s−1,
1 ≤ i ≤ r, and

〈z,a〉 = 〈(u11, . . . , u1s, . . . , ur1, . . . , urs),a〉.

Denote

S(a) =
∑

z∈H2s

χ(f(z))(−1)〈z,a〉.

We get

|B̂(a)| ≤
∣∣∣ ∑
z∈H2s

χ(f(z))(−1)〈z,a〉
∣∣∣+ deg(f)(2.1)

= |S(a)|+ deg(f).

Let x be an integer with 1 < x < s. Then

ki−1 = ui1 + ui2 · 2 + · · ·+ uis · 2s−1

= ui1 + ui2 · 2 + · · ·+ uix · 2x−1

+ ui(x+1) · 2x + ui(x+2) · 2x+1 + · · ·+ uis · 2s−1

= ui1 + ui2 · 2 + · · ·+ uix · 2x−1

+ 2x(ui(x+1) + ui(x+2) · 2 + · · ·+ uis · 2s−x−1).
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So any z ∈ H2s can be uniquely written as z = y + w, where y ∈ H2x , and

w ∈ 2xH2s−x = {2x(k0β0 + · · ·+ kr−1βr−1) : 0 ≤ ki−1 ≤ 2s−x − 1

for i = 1, . . . , r}.

Suppose that

a = (a11, . . . , a1s, . . . , ar1, . . . , ars),

b = (a11, . . . , a1x, . . . , ar1, . . . , arx),

c = (a1(x+1), . . . , a1s, . . . , ar(x+1), . . . , ars).

It is obvious that 〈z,a〉 = 〈y,b〉+ 〈w, c〉. By the Cauchy–Schwarz inequality
we have

|S(a)|2 =
∣∣∣ ∑
y∈H2x

∑
w∈2xH2s−x

χ(f(y + w))(−1)〈y,b〉+〈w,c〉
∣∣∣2

≤
( ∑
y∈H2x

∣∣∣ ∑
w∈2xH2s−x

χ(f(y + w))(−1)〈w,c〉
∣∣∣)2

≤ 2rx
∑

y∈H2x

∣∣∣ ∑
w∈2xH2s−x

χ(f(y + w))(−1)〈w,c〉
∣∣∣2

= 2rx
∑

y∈H2x

∑
w1∈2xH2s−x

∑
w2∈2xH2s−x

χ(f(y + w1)f(y + w2))

× (−1)〈w1,c〉+〈w2,c〉

≤ 2rx
∑

w1∈2xH2s−x

∑
w2∈2xH2s−x

∣∣∣ ∑
y∈H2x

χ(f(y + w1)f(y + w2))
∣∣∣

≤ 2rx+rs + 2rx
∑

w1∈2xH2s−x

∑
w2∈2xH2s−x

w1 6=w2

∣∣∣ ∑
y∈H2x

χ(f(y + w1)f(y + w2))
∣∣∣.

Then from Lemmas 2.1 and 2.2 we get

|S(a)|2 < 2rx+rs + 2rx · 22r(s−x) · 2 deg(f)q1/2(1 + log p)r.

Taking x such that

22rx = 2rs · 2 deg(f)q1/2(1 + log p)r,

we have

|S(a)|2 < 2 · 2rs ·
(
2rs · 2 deg(f)q1/2(1 + log p)r

)1/2
(2.2)

< 23/2(deg(f))1/2q7/4(1 + log p)r/2.

Combining (2.1) and (2.2) we immediately get

|B̂(a)| ≤ 23/4(deg(f))1/4q7/8(1 + log p)r/4 + deg(f).
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This proves (1.5). Note that s = blog2 pc > log p− 1. Thus we have

nl(B) = 2rs−1 − 1
2 max
a∈Frs

2

|B̂(a)|

> 2r log p−r−1 − 2−1/4(deg(f))1/4q7/8(1 + log p)r/4 − 1
2 deg(f)

=
q

2r+1
− 2−1/4(deg(f))1/4q7/8(1 + log p)r/4 − 1

2 deg(f).

This proves (1.6).

3. The average sensitivity: Case Fq. The ideas in the proof of (1.7)
come from [5, proof of Theorem 1], thus we will omit the details. Write

M = bs1/2c, H = 2M + 1, J = bs− s1/2c, K = 2s −H2J .

Write B′(k) = B(u11, . . . , u1s, . . . , ur1, . . . , urs) if

k = k1 + k2p+ · · ·+ krp
r−1, 0 ≤ ki ≤ p− 1, 1 ≤ i ≤ r,

and

ki = ui1 + ui2 · 2 + · · ·+ uis · 2s−1 with uij ∈ {0, 1}

for 1 ≤ j ≤ s, 1 ≤ i ≤ r. Define

H′K = {k1 + k2p+ · · ·+ krp
r−1 : 0 ≤ ki−1 ≤ K − 1 for i = 1, . . . , r}.

Note that

r
(
deg(f) + r(2(log2 p)

1/2 + 1)
)
< log4 p.

Thus from Lemmas 2.1, 2.2 and the methods of [5, Theorem 1] we have

σav(B) = 2−rs
r∑

i=1

s∑
j=1

∑
k∈H′2s

B′(k)6=B′(k(ij))

1 ≥ 2−rs
r∑

i=1

J∑
j=1

∑
k∈H′2s

B′(k)6=B′(k(ij))

1

= 2−rsM−1
( r∑
i=1

J∑
j=1

M∑
h=1

∣∣∣ ∑
k∈H′K

B′(k+h2jpi−1)6=B′((k+h2jpi−1)(ij))

1−
∑

k∈H′2s
B′(k)6=B′(k(ij))

1
∣∣∣

+
r∑

i=1

J∑
j=1

∑
k∈H′K

M∑
h=1

B′(k+h2jpi−1) 6=B′((k+h2jpi−1)(ij))

1
)

≥ 2−rsM−1(o(rJM2rs) + 0.5JKrrM + o(JKrrM)) ≥ 0.5rs+ o(rs).

This completes the proof of (1.7).



A large family of Boolean functions 259

4. The average sensitivity: Case Fp. We will need the following
lemmas.

Lemma 4.1 ([6, Theorem 2]). Suppose that p is a prime number, χ is a
non-principal character modulo p of order d, and f(x) ∈ Fp[x] has degree k
and a factorization f(x) = b(x−x1)d1 · · · (x−xs)ds (where xi 6= xj for i 6= j)
in Fp with (d, d1, . . . , ds) = 1. Let X and Y be real numbers with 0 < Y ≤ p.
Then ∣∣∣ ∑

X<n≤X+Y

χ(f(n))
∣∣∣ < 9kp1/2 log p.

Lemma 4.2 ([3]). Assume that p is a prime, and f(x) ∈ Fp[x] has degree
k (> 0) and no multiple zero in Fp. Suppose that for l ∈ N one of the
following assumptions holds:

(i) l = 2; (ii) l < p, and 2 is a primitive root modulo p; (iii) (4k)l < p.

Let d1, . . . , dl be distinct elements of Fp. Then

H(x) = f(x+ d1) · · · f(x+ dl)

has at least one zero in Fp whose multiplicity is odd.

Now we use the methods of [2, Theorem 6] to prove (1.9). Set

m = bs1/2c, k = 2m+ 1, l = bs− s1/2c, R = 2s − k2l.

Write B(x) = B(u1, . . . , us) if x = u1 + u2 · 2 + · · · + us · 2s−1. Thus from
Lemmas 4.1, 4.2 and the methods of [2, Theorem 6] we have

σav(B) = 2−s
s∑

i=1

2s−1∑
x=0

B(x)6=B(x(i))

1 ≥ 2−s
l∑

i=1

2s−1∑
x=0

B(x) 6=B(x(i))

1

= 2−sm−1
( l∑
i=1

m∑
j=1

∣∣∣ R−1∑
x=0

B(x+j2i+1)6=B((x+j2i+1)(i))

1−
2s−1∑
x=0

B(x)6=B(x(i))

1
∣∣∣

+

l∑
i=1

m∑
j=1

R−1∑
x=0

B(x+j2i+1)6=B((x+j2i+1)(i))

1
)

≥ 2−sm−1(o(lm2s) + 0.5Rlm+ o(Rlm)) ≥ 0.5s+ o(s).

This proves (1.9).

5. The sparsity: Case Fp. Define the integer a by 2a > spr(B) ≥ 2a−1.
For each m ∈ {0, 1, . . . , 2a − 1} with

m = m1 +m2 · 2 + · · ·+ma · 2a−1,
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we consider the function

Bm(u1, . . . , us−a) = B(u1, . . . , us−a,m1, . . . ,ma).

It is obvious that the number of distinct monomials in u1, . . . , us−a occurring
in all the Bm does not exceed spr(B). Note that 2a > spr(B). Thus one can
find a non-trivial linear combination

2a−1∑
m=0

cmBm(u1, . . . , us−a), c1, . . . , c2a−1 ∈ F2,

which vanishes identically.

Let χ be the quadratic character of Fq. Note that

(−1)B(u1,...,us) = χ
(
f(u1 + u2 · 2 + · · ·+ us · 2s−1)

)
for f(u1 + u2 · 2 + · · · + us · 2s−1) 6= 0. Thus from Lemmas 4.1 and 4.2 we
have

2s−a =

2s−a−1∑
y=0

(−1)
∑2a−1

m=0 cmBm(y)

=
2s−a−1∑
y=0

2a−1∏
m=0

f(y+2am) 6=0

χ (f(y + 2am))cm +
2s−a−1∑
y=0

2a−1∏
m=0

f(y+2am)=0

1

≤
∣∣∣2s−a−1∑

y=0

χ
(2a−1∏
m=0

f(y + 2am)cm
)∣∣∣+ deg(f)

≤ 2a deg(f)p1/2 log p+ deg(f) ≤ 2 deg(f)2ap1/2 log p.

Noting that 2s = 2blog2 pc ≥ 2log2 p−1 = p/2, we have

2a ≥ (4 deg(f) log p)−1/2p1/4.

Therefore

spr(B) ≥ 2a−1 ≥ 1
4(deg(f))−1/2p1/4(log p)−1/2.

This completes the proof of (1.10).

6. Collision and avalanche effect. Assume that f, g ∈ T and f 6= g.
For x ∈ Frs

2 , it is easy to show that

1
2

(
1− (−1)B

(f)(x)+B(g)(x)
)

=

{
0 if B(f)(x) = B(g)(x),

1 if B(f)(x) 6= B(g)(x).

Define

H2s = {k0β0 + · · ·+ kr−1βr−1 : 0 ≤ ki−1 ≤ 2s − 1 for i = 1, . . . , r},
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and let χ be the quadratic character of Fq. It follows that

d(B(f), B(g)) =
∑
x∈Frs

2

1
2

(
1− (−1)B

(f)(x)+B(g)(x)
)

=
1

2

(
2rs −

∑
x∈Frs

2

(−1)B
(f)(x)+B(g)(x)

)
≥ 1

2

(
2rs −

∑
z∈H2s

f(z)g(z)6=0

χ
(
f(z)g(z)

)
− 2D

)

=
1

2

(
2rs −

∑
z∈H2s

χ
(
f(z)g(z)

)
− 2D

)
.

Note that f 6= g, and f, g have no multiple zeros. Thus fg is not the
constant multiple of the square of a polynomial over Fq. By Lemma 2.1 we
immediately get

d(B(f), B(g)) ≥ 1
2

(
2rs − 2Dq1/2(1 + log p)r − 2D

)
.

Therefore

m(F) = min
f,g∈T
f 6=g

d(B(f), B(g)) ≥ 1
2

(
2rs − 2Dq1/2(1 + log p)r − 2D

)
.

This proves Theorem 1.3.

If D < 2−r−2q1/2 (1 + log p)−r, then

m(F) ≥ 1
2

(
2rs − 2Dq1/2(1 + log p)r − 2D

)
> 0,

and thus F is collision free. Furthermore, if D = o(q1/2(1 + log p)−r), then
Theorem 1.3 gives

m(F) ≥ (1− o(1)) 2rs,

which means that F has the strict avalanche property. This completes the
proof of Corollaries 1.1 and 1.2.
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