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Abstract. We answer several questions of D. Monk by showing that every maximal
family of pairwise incomparable elements of P(ω)/fin has size continuum, while it is
consistent with the negation of the Continuum Hypothesis that there are maximal subtrees
of both P(ω) and P(ω)/fin of size ω1.

1. Introduction. A chain in a partially ordered set (P,≤) is a subset of
P which is linearly ordered by ≤. On the other hand, the term antichain in
P has two, quite different yet commonly used, meanings: in forcing terminol-
ogy, an antichain is a set of elements of P any two of which are mutually in-
compatible (i.e. have no common lower bound); the other refers to families of
pairwise incomparable elements. We shall call the former antichains and the
latter incomparable families. We shall always assume that an incomparable
family does not contain the maximal element of P, which we require to exist.

Similarly, there are two distinct notions of a subtree of a partially ordered
set P (for their connection with forcing “growing downward”). We call a
partially ordered set (T,≤) a tree if it has a largest element 1 and for every
t ∈ T the set predT(t) = {s ∈ T : s ≥ t} is well-ordered by the reverse order
of ≤, i.e. predT(t) is linearly ordered by ≤ with every strictly increasing
chain being finite. Accordingly, T ⊆ P is a subtree of a partially ordered
set (P,≤) with a maximal element 1 if 1 ∈ T and (T,≤�(T × T)) is a tree.
Note that we do not require that incomparable (equivalently, incompatible)
elements of T are incompatible in the partial order P (1).
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(1) Our notation for Boolean algebras differs from that of Monk [14] in that our trees
are exactly images of trees according to Monk by the map which sends each element of
the Boolean algebra to its complement.
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Incomparable families are naturally ordered by inclusion, and trees by
end-extension: A tree T is an end-extension of a tree S if S ⊆ T and
predT(s) = predS(s) for every s ∈ S. Both orders obviously satisfy the
hypothesis of the Kuratowski–Zorn lemma, hence (following [14]) we can
talk about maximal incomparable families and maximal trees in P. It is easy
to see that a tree T ⊆ P is maximal [14, Proposition 17.11] if and only if for
every p ∈ P one of the following holds:

• there is a q ∈ T such that q ≤ p, or
• there are incomparable elements q0, q1 of T such that p ≤ q0 and
p ≤ q1.

We shall mostly consider the case when the underlying partial order is
the set of positive (non-zero) elements of the Boolean algebra P(ω) or the
quotient Boolean algebra P(ω)/fin. Monk [14, Problems 157 and 158] asked
what are the minimal sizes of maximal incomparable families and maximal
trees in P(ω)/fin, whether these cardinal numbers are consistently below the
size of the continuum, and whether they are consistently different. He also
asked [14, Problem 156] whether ω and 2ω are the only possible cardinalities
of maximal trees in P(ω).

We answer these questions here by proving that every maximal family of
pairwise incomparable elements of P(ω)/fin has size continuum (Proposition
2.3), and that it is consistent with the negation of the Continuum Hypothesis
that there are maximal subtrees of size ω1 of both P(ω)/fin (Theorem 3.3)
and P(ω) (Theorem 4.1).

We conclude this introduction by fixing some notation. Given f, g ∈ ωω,
we write f ≤∗ g if the set {n ∈ ω : f(n) > g(n)} is finite. Similarly, given
subsets A and B of ω we write A ⊆∗ B to denote that A \ B is finite. We
say that A and B are almost disjoint if A∩B is finite, written A∩B =∗ ∅.
A family A ⊆ [ω]ω is almost disjoint (AD) if any two of its elements are
almost disjoint. It is maximal almost disjoint (MAD) if for every infinite
X ⊆ ω there is an A ∈ A such that |A ∩ X| = ω. Given an AD fam-
ily A, I(A) denotes the ideal generated by A, that is, the family of all
subsets of ω which can be almost covered by finitely many elements of A,
while I+(A) = P(ω) \ I(A) denotes the collection of I(A)-positive sets.
A family I ⊆ [ω]ω is independent if given any two finite disjoint sets F0, F1

⊆ I, ∣∣∣⋂F0 \
⋃
F1

∣∣∣ = ω.

It is maximal independent if it cannot be extended to a larger independent
family.

A family R ⊆ [ω]ω is reaping if for every A ⊆ ω there is an R ∈ R such
that R ⊆∗ A or R ∩A =∗ ∅.
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We say that a set R ∈ [ω]ω σ-reaps a sequence 〈Xn : n ∈ ω〉 of elements
of [ω]ω if for every n ∈ ω, R ⊆∗ Xn or R ⊆∗ ω \Xn. A family R ⊆ [ω]ω is
σ-reaping if for every sequence 〈Xn : n ∈ ω〉 of elements of [ω]ω there is an
R ∈ R such that R ∈ [ω]ω σ-reaps 〈Xn : n ∈ ω〉.

Given a tree T, we shall call its elements nodes. A branch through a tree T
is a maximal linearly ordered set, and the set of all branches of T is denoted
by [T]. The height of T is defined as ht(T) = sup{o.t.(B) : B ⊆ T is a
branch}, where o.t.(B) is the order type of B. For an ordinal α ≤ ht(T), Tα,
the αth level of T, is defined as the set of nodes t ∈ T such that predT(t)
has order type α.

Finally, we shall be mentioning some standard cardinal invariants of
the continuum (see [3] for more information). In particular, d denotes the
minimal size of a dominating family in ωω, i.e. a family F ⊆ ωω such that
for every g ∈ ωω there is an f ∈ F such that g ≤∗ f ; i denotes the minimal
size of a maximal independent family; non(M) denotes the minimal size of
a set of reals which is not meager. The most relevant in our context is the
reaping number r defined as the minimal size of a reaping family, and its
close relative rσ, the minimal size of a σ-reaping family. Whether r = rσ is
an open question (see [6]).

2. Incomparable families. Incomparable families in partial orders
have been studied for a long time. One of the first applications of Ram-
sey’s Theorem was to show that every infinite partial order contains an infi-
nite chain or an infinite incomparable family. The analogous question with
infinite replaced by uncountable turns out to be independent of the usual
axioms of set theory (ZFC): On the one hand, R. Bonnet and S. Shelah [4],
and independently S. Todorčević [18], showed that assuming CH there is
an uncountable Boolean algebra without an uncountable chain and an un-
countable incomparable family, while, on the other hand, J. Baumgartner
[2] showed that it follows from the Proper Forcing Axiom (PFA) that every
uncountable Boolean algebra contains an uncountable incomparable family.
It was later shown by M. Losada and S. Todorčević [13] that Martin’s Axiom
MAω1 suffices.

We will refer to (maximal) incomparable families in P(ω)/fin simply as
(maximal) incomparable families. We will also treat them as subfamilies of
the partially (pre-)ordered set ([ω]ω,⊆∗) rather than the Boolean algebra
itself.

Special incomparable families have been studied extensively: every al-
most disjoint family and every independent family are incomparable. Note
that neither a maximal almost disjoint family nor a maximal independent
family can ever be maximal incomparable.
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Every incomparable family (formally augmented by {ω}) is a tree. As a
warm up exercise, we show that there are maximal incomparable families C
and B such that C is a maximal tree, while B is not.

Proposition 2.1. There is a maximal incomparable family B which is
not a maximal tree.

Proof. Let A,B ⊆ ω be infinite sets such that B ⊆ A and |ω \ A| =
|A \ B| = ω. Now, let A ⊆ [B]ω be an almost disjoint family of size c.
For any D ∈ [ω \ A]ω, choose AD ∈ A so that the assignment D 7→ AD
is one-to-one. Let B0 = {A} ∪ {D ∪ AD : D ∈ [ω \ A]ω}. It is clear that
B0 is an incomparable family. Let B be a maximal incomparable family
containing B0.

Claim. If E ∈ B \ {A}, then B 6⊆∗ E.

Indeed, let D = E \A. There are two cases: if E = D ∪AD, then clearly
B 6⊆∗ E. On the other hand, E 6= D ∪ AD yields |AD \ E| = ω and, as
D ⊆ E, B 6⊆∗ E follows.

It is clear that B /∈ B and the above claim shows that B ∪ {B} is a tree,
thus B is not a maximal tree.

A simple proof that there is a maximal incomparable family which is also
a maximal tree uses the notion of a completely separable MAD family (see
[9, 8]). A MAD family A is completely separable if for every X ∈ I+(A),
there are c-many A ∈ A such that A ⊆∗ X. Unfortunately it is not known
whether completely separable MAD families exist. They do exist in all known
models of ZFC, and in particular they exist if 2ω < ℵω [17].

Proposition 2.2. Assuming the existence of a completely separable MAD
family, there is a maximal incomparable family which is also a maximal tree.

Proof. Let A be a completely separable MAD family, and let {Cα :
α < c} be an enumeration of [ω]ω.

We recursively construct an increasing chain {Aα : α < c} of subfamilies
of A such that |Aα| ≤ |ω · α|, and an increasing chain {Bα : α < c} of
incomparable families such that Bα ⊆ I(A) and |Bα| ≤ |ω · α|, so that the
following hold for any α < c:

(1) for every B ∈ Bα, there exists F ⊆ [Aα]<ω such that B ⊆∗
⋃
F ,

(2) either there is B ∈ Bα+1 with B ⊆∗ Cα, or there are B0, B1 ∈ Bα+1

such that B0 6= B1 and Cα ⊆∗ B0 ∩B1.

At step α, let A =
⋃
β<αAβ and B =

⋃
β<α Bβ. If α is a limit ordinal, set

Aα = A and Bα = B. In the successor step, we consider two cases:

• If Cα ∈ I+(A), then there is A ∈ A \ A contained in Cα. We then
define Aα+1 = A ∪ {A} and Bα+1 = B ∪ {A}.
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• If Cα ∈ I(A) and there is X ∈ B with X ⊆∗ Cα, then we set Aα+1 = A
and Bα+1 = B. If for every X ∈ B, X 6⊆∗ Cα, we choose A0, A1 ∈
A \ (A ∪ F ), where F ∈ [A]<ω is such that Cα ⊆∗

⋃
F , and define

Aα+1 = A ∪ F ∪ {A0, A1} and Bα+1 = B ∪ {A0 ∪ Cα, A1 ∪ Cα}.

Let B =
⋃
α<c Bα. From the recursive definition above it is straightforward

that B is maximal incomparable. Moreover, for each C ⊆ ω one of the
following conditions holds:

• there is B ∈ B such that B ⊆∗ C; or
• there are B0, B1 ∈ B such that B0 6= B1 and C ⊆∗ B0 ∩B1.

Therefore, B is also a maximal tree.

We have not been able to prove this proposition without the extra as-
sumption. There should be a ZFC construction (2).

Finally, we state the main result of this section in a more general setting.
Let B be a Boolean algebra. Denote by B+ the set of all non-zero elements
of B. Recall that the density of B is defined as

d(B) = min{|D| : D ⊆ B, D is dense in B+},

and the factor algebra of B below b is

B�b = {x ∈ B : x ≤ b}.

Proposition 2.3. Every maximal incomparable family in a Boolean al-
gebra B has size at least min{d(B�b) : b ∈ B+}.

Proof. Let A ⊆ B+ be an infinite incomparable family in a Boolean
algebra B, and let µ = min{d(B�b) : b ∈ B+}. Assume that |A| < µ, and
let C be the Boolean algebra generated by A. Since A is infinite, |C| = |A|.
Let a ∈ A be arbitrary. As |C| < µ, C is dense neither in B�a nor in B�−a,
so there exist c0, c1 ∈ B+ with c0 ≤ −a, c1 ≤ a and such that no b ∈ C+ is
below either c0 or c1.

Let d = (a − c1) ∨ c0. Clearly d /∈ A, for otherwise d ∧ −a = c0 ∈ C+,
contradicting the fact that no element of C+ is below c0. Let us see that d is
incomparable with every x ∈ A. If d ≤ x, then −x∧ a ≤ c1, which is absurd
for −x ∧ a ∈ C+. On the other hand, x ≤ d yields x ∧ −a ≤ c0, but this is
not possible as then x ∧ −a ∈ C+. Therefore, A ∪ {d} is an incomparable
family, thus A is not maximal.

Corollary 2.4. Every maximal incomparable family in P(ω)/fin has
size c.

(2) Added in proof: There is. The proof will appear elsewhere.
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3. Maximal trees in P(ω)/fin. In this section we consider maximal
subtrees of the Boolean algebra P(ω)/fin or rather maximal subtrees of the
partially (pre-)ordered set ([ω]ω,⊆∗). In this context T ⊆ [ω]ω is a maximal
tree if ω ∈ T , for every t ∈ T the set predT (t) = {s ∈ T : t ⊆∗ s} is
well-ordered by ⊇∗, and for every C ⊆ ω either

• there is a t ∈ T such that t ⊆∗ C, or
• there are incomparable t0, t1 ∈ T such that C ⊆∗ t0 ∩ t1.

Again, we shall refer to maximal trees in ([ω]ω,⊆∗) simply as maximal trees.
The main theorem of this section will show that it is consistent with ¬CH

that there is a maximal tree of size ω1. We shall in fact show that this hap-
pens in the Sacks model. This could probably be done directly by using CH
or ♦ to construct a maximal tree whose maximality is indestructible by any
countable support iteration of Sacks forcing. We choose to take advantage
of the so called parametrized ♦-principles as introduced in [15]. Following
Vojtáš [19], we shall call a triple (A,B,→) an invariant if

(1) → ⊆ A×B,
(2) for every a ∈ A, there is b ∈ B such that a→ b, and
(3) there is no b ∈ B such that a→ b for all a ∈ A.
We say that D ⊆ B is dominating if for every a ∈ A, there is a d ∈ D

such that a→ d. Given an invariant (A,B,→) we define its evaluation by

〈A,B,→〉 = min{|D| : D ⊆ B and D is dominating}.
An invariant (A,B,→) is Borel if A,B and → are Borel subsets of Polish
spaces. Most (but not all) of the usual cardinal invariants of the continuum
can be represented as evaluations of Borel invariants.

It is shown in [15] that to any Borel invariant (A,B,→) one can naturally
associate a guessing principle ♦(A,B,→), which in turn implies that the
evaluation 〈A,B,→〉 is ≤ ω1. It is also shown there that ♦(A,B,→) holds
in most of the natural models where this inequality holds. For our purposes,
we need to work in a slightly more general framework than the one in [15].

Definition 3.1. We say that an invariant (A,B,→) is anL(R)-invariant
if A,B and → are subsets of Polish spaces and all three belong to L(R) (3).

Following [15], given an L(R)-invariant (A,B,→), ♦L(R)(A,B,→) de-
notes the following principle:

For every F : 2<ω1 → A such that F �2α ∈ L(R) for all α < ω1, there is
a g : ω1 → B such that for every f ∈ 2ω1 the set {α : F (f�α) → g(α)} is
stationary.

(3) Informally, this means that each of the sets A, B, and→ has a definition involving
only a subset of ω as a parameter.
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The witness g will be called a guessing sequence for F . Also, when
F (f�α)→ g(α), we say that g guesses f (via F ) at α.

A secondary purpose of this paper is to provide further evidence that
parametrized ♦ principles are useful instruments to have in one’s mathe-
matical toolbox.

Following the notation of [3], given twoL(R)-invariants A=(A−, A+,A→)
and B =(B−, B+,B→) we define the sequential composition

A;B = (A− × Borel(B
A+
− ), A+ ×B+,→),

where Borel(B
A+
− ) denotes the set of all Borel functions from A+ to B−,

and (a−, f)→ (a+, b+) if a−A → a+ and f(a−)B → b+.
It is easy to see that A;B is an L(R)-invariant, and in [3] it is proved that

〈A;B〉 = max{〈A〉, 〈B〉}. As usual, we will identify an invariant with its eval-
uation. In particular, we shall denote by d both the invariant (ωω, ωω, <) and
its evaluation (4), and by rσ both the invariant (([ω]ω)ω, [ω]ω, is σ-reaped)
and its evaluation.

Now we are ready to state and prove the main result of the paper.

Theorem 3.2. ♦L(R)(rσ; d) implies that there is a maximal tree of size ω1.

Proof. First, for every infinite α ∈ ω1, fix a bijection eα : ω → α, and
for a set A ∈ [ω]ω and a countable ⊆∗-decreasing sequence ~X of subsets of

ω such that X0 ⊆∗ A, denote by P (A, ~X) ⊆ A a pseudo-intersection found
in a Borel way (5).

By a suitable coding, we may assume that the domain of the function F
is
⋃
α∈ω1

(([ω]ω)α)α × [ω]ω. We shall define F by recursion on α. For β < α,

let ~Xβ = 〈Xβ,γ : γ < α〉. For (〈 ~Xβ : β < α〉, Y ) ∈ (([ω]ω)α)α × [ω]ω, we

define F (〈 ~Xβ : β < α〉, Y ) as follows:

(1) If 〈Xβ,0 : β < α〉 is not an AD family or does not cover ω, or if one

of the sequences ~Xβ is not a ⊆∗-decreasing, let

F (〈 ~Xβ : β < α〉, Y ) = 〈ω̄, Id〉.
Here ω̄ denotes the sequence which takes constant value ω, and Id the func-
tion from [ω]ω to ωω which takes every set to the identity function. In other
words, this is the irrelevant case.

(2) If 〈Xβ,0 : β < α〉 is an AD family and covers ω, and every ~Xβ is a
⊆∗-decreasing sequence, define A0=Xeα(0),0 and An=Xeα(n),0\

⋃
i<nXeα(i),0

(4) It is customary to denote by d the invariant (ωω, ωω, <∗). In fact, it is an open
problem whether the corresponding weak diamonds are equivalent.

(5) More precisely, for every α < ω1 there is a Borel function Pα : [ω]ω×([ω]ω)α → [ω]ω

such that if A is an infinite subset of ω and ~X is a ⊆∗-decreasing sequence of subsets of
ω such that X0 ⊆∗ A of length α, then Pα(A, ~X) = P (A, ~X) ⊆ A is a pseudo-intersection
of ~X.
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for n > 0. Let Hn : ω → P (An, ~Xeα(n)) be the increasing enumeration of

P (An, ~Xeα(n)). Then let ~Z = 〈Zn : n ∈ ω〉, where

Zn = H−1n [P (An, ~Xeα(n)) ∩ Y ].

Now, define a function ϕ~Z : [ω]ω → ωω as follows:

(a) If A ∈ [ω]ω does not σ-reap ~Z, then define ϕ~Z(A) = Id.

(b) If A ∈ [ω]ω σ-reaps ~Z, then define ϕ~Z by

ϕ~Z(A)(n) = min{k ∈ ω : A \ Zn ⊆ k or Zn ∩A ⊆ k}.

Finally, define F (〈 ~Xβ : β < α〉, Y ) = (~Z, ϕ~Z).

Let g : ω1 → [ω]ω × ωω be a guessing sequence for the function F . Let
Dα ∈ [ω]ω and hα ∈ ωω be such that g(α) = (Dα, hα). We shall define

〈Xα,γ : α, γ ∈ ω1〉 recursively so that ~Xα = 〈Xα,γ : γ ∈ ω1〉 is a ⊆∗-
decreasing sequence of infinite subsets of ω and such that {Xα,0 : α ∈ ω1}
is an AD family. The construction is as follows:

(1) Start with a family 〈Xn,m : n,m ∈ ω〉 such that ~Xn = 〈Xn,m : m ∈ ω〉
is a ⊆-decreasing sequence, and {Xn,0 : n ∈ ω} is a partition of ω into infinite
sets.

(2) Suppose ~Xβ = 〈Xβ,γ : γ < α〉 has been constructed for all β < α,
where α is an even ordinal. Define Aα0 = Xeα(0),0, and for n > 0,
Aαn = Xeα(n),0 \

⋃
i<nXeα(i),0. Let Hα

n be the increasing enumeration of

P (Aαn, ~Xeα(n)). Then define Xeα(n),α = Xeα(n),α+1 = Hα
n [Dα]. Now, for

n ∈ ω, let a0n, a
1
n ∈ Hα

n [Dα \hα(n)] be distinct natural numbers, and define

Xα,0 = {a0n : n ∈ ω} and Xα+1,0 = {a1n : n ∈ ω}. Finally, let ~Xα and ~Xα+1

be ⊆∗-decreasing sequences of length α+ 2 whose first elements are Xα,0

and Xα+1,0, respectively.

This concludes the recursive construction.
To define the tree, for every infinite even α ∈ ω1, define two sets Bα, Bα+1

as follows:

Bα = Xα,0∪
⋃
n∈ω

Aαn \Hα
n [Dα \hα(n)] = Xα,0∪

(
ω\
⋃
n∈ω

Hα
n [Dα \hα(n)]

)
,

Bα+1 = Xα+1,0∪
⋃
n∈ω

Aαn \Hα
n [Dα \hα(n)]

= Xα+1,0∪
(
ω\
⋃
n∈ω

Hα
n [Dα \hα(n)]

)
.

The tree T is then defined by

T = {Xα,β : α, β ∈ ω1}∪{Bα : α ∈ [ω, ω1)}.
Claim 1. T is a tree.
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First we show that {Bα : α ∈ [ω, ω1)} is an incomparable family. For a
fixed α it is clear that Bα and Bα+1 are incomparable for every even α. For
even β < α, note that Xβ,0 ⊆∗ Bβ and Xβ+1,0 ⊆∗ Bβ+1, while Xβ,0 *∗ Bα
and Xβ,0 *∗ Bα+1. On the other hand, note that Xα,0 *∗ Bβ, Xα,0 *∗ Bβ+1,
Xα+1,0 *∗ Bβ, and Xα+1,0 *∗ Bβ+1. The same argument shows that T is,
in fact, a tree.

Claim 2. T is a maximal tree.

Let Y ∈ [ω]ω be an arbitrary set, and let α ∈ ω1 be an even ordinal

such that g guesses the branch (〈 ~Xα : α ∈ ω1〉, Y ) at α. Then F (〈 ~Xβ :

β < α〉, Y ) = (~Z, ϕ~Z) is dominated by g(α) = (Dα, hα), which means that

for all n ∈ ω, Dα σ-reaps ~Z, and ϕ~Z(Dα) ≤ hα. There are two cases:

Case 1: There is n ∈ ω such that Dα ⊆∗ Zn. Then

Xeα(n),α = Hα
n [Dα] ⊆∗ Hα

n [Zn] = Y ∩ P (Aαn,
~Xeα(n)) ⊆ Y.

Case 2: For all n ∈ ω, Dα ∩ Zn is finite. In this case, for all n ∈ ω,

Zn ∩Dα \ hα(n) = ∅.
Hence, for all n ∈ ω,

Hα
n [Dα \ hα(n)] ∩ Y ∩Aαn = ∅,

which yields Y ⊆
⋃
n∈ω A

α
n \Hα

n [Dα \ hα(n)]. Thus, Y ⊆ Bα ∩Bα+1.

Corollary 3.3. It is consistent with ¬CH that there is a maximal tree
of size ω1.

Proof. It is well known that in the Sacks model, both rσ = ω1 and
d = ω1. Hence, in this model we also have rσ; d = ω1. It follows [15, 7] that
♦(rσ; d) holds in the Sacks model, and so we may deduce the result.

We denote (6)

tr = min{|T | : T ⊆ [ω]ω is a maximal tree}.
It is easy to see that all maximal trees have size at least r (the subalgebra
of P(ω) generated by a maximal tree T is a reaping family), i.e. r ≤ tr.
Theorem 3.2 seems to suggest that perhaps also d ≤ tr. For this we have
only partial evidence. Before presenting it, let us call a tree T ⊆ [ω]ω an
ideal-tree if for any A ∈ T , the family {A ∩B : B ∈ T ∧A *∗ B} generates
a proper ideal IA on A. This notation will also be used in the next section.

Proposition 3.4.

(1) If T ⊆ [ω]ω is a maximal tree with a terminal node, i.e. a branch
whose length is a succesor ordinal, then |T | = c.

(6) In the language of Monk [14], tr = Inctree
mm (P(ω)/fin).
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(2) If T ⊆ [ω]ω is a maximal tree with a branch whose length is a limit
ordinal of countable cofinality, then |T | ≥ d.

(3) If T ⊆ [ω]ω is a maximal tree containing an infinite AD family, then
|T | ≥ d.

(4) If T ⊆ [ω]ω is a maximal ideal-tree, then |T | ≥ d.

Proof. For (1), let b ⊆ T be such a branch and let X ∈ b be its last
element. Then for any Y ⊆ X, there are t, s ∈ T such that X \ Y ⊆ t ∩ s,
so X \ t ∩ s ⊆ Y . This means that {X \ t ∩ s : t, s ∈ T } is a dense subset in
P(X)/fin, which implies that T has cardinality c.

For (2), let T be a tree of size less than d having a branch of countable
cofinality. Let 〈An : n ∈ ω〉 be a cofinal sequence in such branch. Define
Bn =

⋂
m≤nAm \ An+1. For every pair X,Y ∈ T of incomparable nodes,

define the following function:

ϕX,Y (n) = min{k ∈ ω : (∃l ≥ n)(k ∩Bl \ (X ∩ Y ) 6= ∅)}.
Since T is a tree, and X and Y are incomparable in T , this function is well-
defined. Also, since |T | < d, there is an increasing function h not dominated
by any function in the family {ϕX,Y : X,Y ∈ T incomparable}. Let

Z =
⋃
n∈ω

Bn ∩ h(n).

Note that there is no set X ∈ T almost contained in Z, since such a set
would be a pseudo-intersection of {An : n ∈ ω}, and would contradict the
fact that {An : n ∈ ω} is a cofinal sequence in the branch in question. Also,
there is no pair of incomparable elements X,Y such that Z ⊆∗ X ∩ Y ; for
given n ∈ ω with ϕX,Y (n) ≤ h(n), there is l ≥ n such that

h(n) ∩Bl \ (X ∩ Y ) 6= ∅,
and this happens infinitely many times, hence, since the sets Bn are disjoint,
we conclude that Z \ (X ∩ Y ) is infinite.

For (3), let T be a tree of cardinality less than the dominating number,
and let {An : n ∈ ω} be an almost disjoint family contained in T .

Let B0 = A0 and Bn = An \
⋃
i<nAi for n > 0. For X ∈ T such that

there are infinitely many n ∈ ω with X ∩ Bn 6= ∅, define the following
function:

ϕX(n) = min{k ∈ ω : (∃l ≥ n)(k ∩Bl ∩X 6= ∅)}.
Let h0 ∈ ωω be an increasing function which is not dominated by any
function in the family {ϕX : X in T such that ∃∞n ∈ ω X ∩Bn 6= ∅}. Now,
for incomparable X,Y ∈ T , note that for all n ∈ ω, Bn \X ∩ Y is infinite
(otherwise, An would be almost contained in X ∩ Y ). Define the following
function:

φX,Y (n) = min{k ∈ ω : Bn+1 ∩ [h0(n+ 1), k) \ (X ∩ Y ) 6= ∅}.
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Let h1 > h0 be an increasing function not dominated by any element of the
family {φX,Y : X,Y ∈ T , X, Y incomparable}. Let

Z =
⋃
n∈ω

Bn ∩ [h0(n), h1(n)).

Claim. T ∪ {Z} is a tree.

(i) For all X ∈ T , X *∗ Z. If X intersects only finitely many Bn’s,
then X ∩Z is finite, hence, X *∗ Z. If there are infinitely many n ∈ ω with
X ∩ Bn 6= ∅, then X \ Z is infinite, since h0 is not dominated by ϕX . To
see this, let n be such that ϕX(n) < h0(n). By the definition of ϕX , this
means that there is k ≥ n such that X ∩Bk∩ϕX(n) 6= ∅, which implies that
X∩Bk∩h0(k) 6= ∅. Since this happens infinitely often and Bk∩h0(k)∩Z = ∅
for all k, X \ Z is infinite.

(ii) For all incomparable X,Y ∈ T , Z *∗ X∩Y . Let n ∈ ω be such that
φX,Y (n) < h1(n). By the definition of φX,Y , this implies that [h0(n + 1),
h1(n+ 1)) ∩ Bn+1 \ (X ∩ Y ) 6= ∅. Since this happens for infinitely many n,
Z \ (X ∩ Y ) is infinite.

To see (4), it suffices to prove that every maximal ideal-tree T contains
an infinite almost disjoint family. We construct such a family {An : n ∈ ω}
recursively. Let T ∈ T be an arbitrary non-terminal node. Let A0 ∈ T be
such that A0 (∗ T . Having defined {Am : m < n}, consider

Y = T \
⋃
m<n

Am.

As T is an ideal-tree, Y /∈ T . That is: either there is B ∈ T such that
B ⊆∗ Y , in which case we define An to be such B, or Y ⊆∗ T0 ∩ T1 for
two incomparable elements T0 and T1 of T . To finish the proof we shall see
that the second case leads to a contradiction. Suppose there are T0 and T1
incomparable elements of T such that Y ⊆∗ T0∩T1. Now, there is i ∈ {0, 1}
with Ti 6⊇∗ T , and by the definition of an ideal-tree,

⋃
m<nAm ∪ Ti 6⊇∗ T ,

which leads to a contradiction. Hence, the family {An : n ∈ ω} is an infinite
almost disjoint family we need.

The argument given above allows stating the following consistency result.

Theorem 3.5. It is consistent with ZFC that tr < non(M). In particular,
it is consistent with ZFC that tr < i.

Proof. The proof is as in Corollary 3.3, only with the Sacks forcing re-
placed by any encarnation of the fat tree forcing (see [20, 12, 10]). The
forcing is ωω-bounding and preserves selective ultrafilters, hence the model
obtained by a countable support iteration of the forcing of length ω2 pro-
duces a model of rσ = ω1 and d = ω1. Therefore, in this model, we also get
rσ; d = ω1. Again, it follows [15, 7] that ♦(rσ; d) holds here.
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On the other hand, the forcing naturally adds an eventually different
real, hence non(M) = c in the resulting model. The fact that non(M) ≤ i
was proved in [1].

Question 3.6.

(1) Is tr ≥ d?
(2) Is tr > max{r, d} consistent with ZFC?

The tree constructed in Theorem 3.2, assuming♦L(R)(rσ; d), is of heightω1.
In the next section we show that, under the same assumption, there is also
a maximal tree of size ω1 and height ω.

4. Maximal trees in P(κ). Monk [14, Proposition 17.9] notes that
for each infinite cardinal κ there are maximal trees in the Boolean algebra
P(κ) of size κ and of size 2κ, and asks if these are the only values. Here
we shall show that it is consistent that there are also other values. The
construction also provides the example promised at the end of the previous
section.

Theorem 4.1. ♦L(R)(rσ; d) implies that there is a tree T ⊆ [ω]ω of
height ω and of size ω1, which is maximal both as a subtree of P(ω) and as
a subtree of ([ω]ω,⊆∗).

Proof. Recall that a tree T ⊆ [ω]ω is an ideal-tree if for any A ∈ T , the
family {A ∩ B : B ∈ T ∧ A *∗ B} generates a proper ideal IA on A. We
shall, in fact, construct an ideal-tree.

Given f ∈ 2<ω1 , let us say that f codes a family of sets F if for all X ∈ F
there is a limit ordinal α ∈ dom(f) such that for n ∈ ω, n ∈ X if and only if
f(α+n) = 1. For each limit α ∈ ω1, α > ω2, fix a bijection eα : ω → lim(α).
If α is a limit ordinal, and f ∈ 2α codes an ideal-tree T , let {An : n ∈ ω}
be the enumeration of T given by

An = {m : f(eα(n) +m) = 1}.

Also, in this proof, for a given set X ∈ [ω]ω, the symbol X plays two roles
according to the context: it denotes the set X, and also the increasing enu-
meration of X, that is, for n ∈ ω, X(n) is the nth element of X.

Now, it is easy, yet tedious, to show that there is a Borel function H :
2α → ([ω]ω)ω such that if f codes an ideal-tree, then H(f) = 〈Zn : n ∈ ω〉,
where

• {Zn : n ∈ ω} is pairwise disjoint,
• for every n ∈ ω, Zn ⊆ An, and
• for every n ∈ ω, Zn ∩ I is finite whenever I ∈ IAn .
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Having fixed all this, define a function F : [ω]ω × 2<ω1 → ([ω]ω)ω × (ωω)[ω]
ω

as follows (7):

(1) If f ∈ 2α does not code an ideal-tree, or if α is not a limit ordinal,
let F (X, f) = (ω̄, Id). Here, as in the proof of Theorem 3.2, ω̄ denotes the
sequence which takes constant value ω, and Id the function from [ω]ω to ωω

which takes every set to the identity function.
(2) If α is a limit ordinal, and f ∈ 2α codes an ideal-tree T , let {An :

n ∈ ω} be the enumeration of T given above, and let {Zn : n ∈ ω} be the
pairwise disjoint refinement of {An : n ∈ ω} given by H(f). Furthermore, let
Yn = Z−1n [Zn∩X], and define a function ϕ(X,f) : [ω]ω → ωω in the following
way:

(a) if W ∈ [ω]ω does not σ-reap 〈Yn : n ∈ ω〉, let ϕ(X,f)(W ) = Id;
(b) if W ∈ [ω]ω does σ-reap 〈Yn : n ∈ ω〉, let

ϕ(X,f)(W )(n) = min{k ∈ ω : W \ Yn ⊆ k or W ∩ Yn ⊆ k}.
Then define F (X, f) = (〈Yn : n ∈ ω〉, ϕ(X,f)).

Let g : ω1 → [ω]ω × ωω be a guessing function for F . For α ∈ ω1, let
Xα ∈ [ω]ω and hα be such that g(α) = (Xα, hα). For every α ∈ ω1, let
Dα ⊆ Xα be an infinite co-infinite subset in Xα. Recursively construct three
sequences 〈Tβ : β ∈ ω1〉, 〈fβ : β ∈ ω1〉 and 〈αβ : β ∈ ω1〉 such that:

• 〈Tβ : β ∈ ω1〉 is a sequence of countable ideal-trees.
• For all β, fβ ∈ 2αβ and codes the tree Tβ.
• 〈αβ : β ∈ ω1〉 is an increasing continuous sequence of countable ordi-

nals.
• For all β ∈ ω1 we have fβ ⊆ fβ+1.

The construction is as follows:

Base step: Start with a countable ideal-tree T0 of height ω with ω ∈ T0
and with the following property: the successors of every A ∈ T0 form an
almost disjoint family of infinite subsets of A such that for any finite F ⊆ ω,
there are incomparable t0, t1 ∈ T0 with F ⊆ t0 ∩ t1. Let f0 ∈ 2α0 code T0.

Successor step: Suppose that the ideal-tree Tβ has been defined, enu-
merated as above by {An : n ∈ ω}, and coded by an fβ ∈ 2αβ . Let

Bβ = ω \
⋃
n∈ω

Zn[Xαβ \ hαβ (n)].

Let m ∈ ω be such that Am = ω (in the fixed enumeration of Tβ). Let
C0, C1 ⊆ Zm\Zm[Dαβ ] be disjoint sets such that ω\(C0∪C1∪Bβ∪Zm[Dαβ ])

(7) A very simple coding turns such a function into a function with domain 2<ω1 ; use
the first ω bits to code the first coordinate of F , and then attach the second coordinate.
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is infinite. Then define

Tβ+1 = Tβ ∪ {Zn[Dαβ \ hαβ (n)] : n ∈ ω} ∪ {Bβ ∪ C0, Bβ ∪ C1},
and let fβ+1 ∈ 2αβ+1 be an extension of fβ that codes Tβ+1.

Limit step: If β is a limit ordinal and the trees Tγ have been defined for
all γ < β, let Tβ =

⋃
γ<β Tγ , fβ =

⋃
γ<β fγ and αβ = sup{αγ : γ < β}. Note

that, in this way, fβ codes Tβ.

Above, the sets Dα are used to prove that in every step of the recursion
the trees Tα+1 are ideal-trees.

Finally, let T =
⋃
α<ω1

Tα, and let f =
⋃
α∈ω1

fα ∈ 2ω1 be the branch
that codes all of T .

Obviously, T is a tree, being an increasing union of trees. Also, no finite
set can be added to T due to the way we constructed T0.

Claim. T is a maximal tree in P(ω).

Let X ∈ [ω]ω be arbitrary. Since g guesses every branch stationar-
ily often, there is β such that g guesses (X, f) in αβ. Then Tβ is coded
by f�αβ = fβ. Consequently, Dβ σ-reaps 〈Z−1n [Zn ∩ X] : n ∈ ω〉, and
ϕ(X,f�αβ)(Xαβ )(n) ≤ hαβ (n) for every n ∈ ω.

If there is n ∈ ω such that Xαβ ⊆∗ Z−1n [Zn ∩X], then

Zn[Dαβ \ hαβ (n)] ⊆ Zn ∩X
(recall that Zn[Dαβ \ hαβ (n)] ∈ T ).

If for all n ∈ ω, Xαβ ∩ Z−1n [Zn ∩X] is finite, then for all n ∈ ω,

Dαβ ∩ Z
−1
n [Zn ∩X] ⊆ hαβ (n).

This implies that for all n ∈ ω,

Zn[Dαβ \ hαβ (n)] ∩X = ∅,
which in turn yields

X ⊆ ω \
⋃
n∈ω

Zn[Dβ \ hαβ (n)] = Bβ.

By the construction of 〈Tβ : β ∈ ω1〉, we have X ⊆ (Bβ ∪ C0) ∩ (Bβ ∪ C1),
both of which are elements of T . Therefore, T is maximal.

To finish the proof note that, by the construction, T has height ω.

This theorem has the following two immediate corollaries.

Corollary 4.2. It is consistent with ¬CH that there is a maximal tree
of size ω1 and height ω.

Corollary 4.3. It is consistent with ¬CH that there is a maximal tree
in P(ω) of size ω1.
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Next we will show that an analogous result is also true for uncountable
cardinals. First, recall that ♣ denotes the following principle introduced by
Ostaszewski [16]:

There is a sequence {Cα : α ∈ lim(ω1)} such that the order type of
each Cα is ω, supCα = α, and for every uncountable X ⊆ ω1 there is an
α ∈ lim(ω1) such that Cα ⊆ X.

Theorem 4.4. If V |= GCH and ω1 < κ < λ are regular cardinals, then
there is a forcing notion P ∈ V which does not collapse cardinals such that
if G is P-generic over V , then V [G] |= 2ω = κ, 2ω1 = λ, and there are
maximal trees in P(ω1) of size ω1, κ and λ.

Proof. Let V be a model of GCH and let P = Fnω1(λ, 2) × Sκ, where
Fnω1(λ, 2) denotes the forcing for adding λ-many subsets of ω1 with count-
able conditions, and Sκ is the countable support product of κ-many copies
of the Sacks forcing. Standard arguments show that P is proper and has
the ω2-c.c., hence does not collapse cardinals. Equally standard arguments
involving counting of names show that V [G] |= 2ω = κ, 2ω1 = λ. In fact,
the product can be seen as an iteration, first forcing with Fnω1(λ, 2), and
then with Sκ, where the intermediate model is a model of ♦. It follows by
an unpublished result of Baumgartner (written up in [11]) that V [G] |= ♣.

By Monk’s results there are, in V [G], maximal trees in P(ω1) of size ω1

and λ = 2ω1 , so it suffices to show that there is also a maximal tree of size κ.
This, however, is easy now. Let C = {Cα : α ∈ lim(ω1)} be a ♣-sequence.
In particular, C is an incomparable family in P(ω1). Let T0 be a tree of
size 2ω extending C, which is easy to find: for instance, add to C an AD
family of size 2ω inside one of the Cα’s. Note that every tree extending C in
P(ω1) consists only of countable sets as every uncountable set contains one
of the Cα’s. Hence, such a tree has size at most |[ω1]

ω| = 2ω = κ. Therefore,
any maximal tree extending T0 has size 2ω = κ.

Corollary 4.5. It is consistent with ZFC that there are maximal trees
in P(ω1) of size ω1, ω17 and ω1789.

5. Final remarks. Our interest in this subject stems from a question
of S. Geschke and N. Bowler [5], who, assuming r = c, have constructed
a self-dual uniform matroid on ω and asked whether such an object exists
in ZFC. It is their result that the existence of a self-dual uniform matroid
(see [5] for the actual definition) is equivalent to the existence of a maximal
incomparable family A such that

(1) if A ∈ A, then ω \A ∈ A, and
(2) given two disjoint infinite sets I, J ⊆ ω, there is an A ∈ A such that

either A ⊆∗ I, A ⊆∗ J , or I ⊆∗ A ⊆∗ ω \ J .
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It seems that knowing that every maximal incomparable family has size c
should help in constructing such a family; however, their question remains
open.

Question 5.1 (Geschke–Bowler [5]). Is there a maximal incomparable
family satisfying (1) and (2)?

We have seen that maximal trees can have quite different shapes (height 2,
height ω, height ω1).

Question 5.2. Can there be a maximal tree of countable width, i.e.
a tree having each level countable? If so, is the existence of such a tree
consistent with ¬CH?

Question 5.3. Is it consistent that ω1 < tr < c?

Monk [14] defines the tree spectrum of a Boolean algebra B as the set of
all possible cardinalities of maximal subtrees of B.

Question 5.4. What are the posible sizes of the tree spectrum of P(ω)/fin?

Question 5.5. Is the only difference between the tree spectrum of P(ω)/fin
and that of P(ω) the fact that ω belongs to the tree spectrum of P(ω)? In other
words, is it consistent for some uncountable cardinal κ to belong to one but
not the other?

Question 5.6. Does every uncountable maximal incomparable family in
P(ω) have size c?
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Universidad Nacional Autónoma

de México
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