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Almost maximal topologies on groups
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Yevhen Zelenyuk (Johannesburg)

Abstract. Let G be a countably infinite group. We show that for every finite absolute
coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is
isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in
βG\G which is not strongly right maximal, and (2) for each combination of the properties
of being extremally disconnected, irresolvable, and nodec, except for the combination
(−,−,+), there is a corresponding regular almost maximal left invariant topology on G.

1. Introduction. A topological space is called maximal if its topology
is maximal among all dense in itself topologies. A dense in itself Hausdorff
space X is maximal if and only if for every x ∈ X there is only one non-
principal ultrafilter on X converging to x. We say that a space X is almost
maximal if it is dense in itself and for every x ∈ X there are only finitely
many ultrafilters on X converging to x. In [8], assuming Martin’s Axiom
(MA), an exhaustive construction of countable almost maximal topological
groups and countable regular almost maximal left topological groups was
given. Recall that a group endowed with a topology is called left topological
and the topology itself left invariant if left translations are continuous. All
topologies in the present paper are assumed to satisfy the T1 separation
axiom. The existence of a countable almost maximal topological group can-
not be established in ZFC, the system of usual axioms of set theory [6]. In
this paper we give an exhaustive construction in ZFC of countable regular
almost maximal left topological groups.

Throughout the paper, G will be an arbitrary countably infinite discrete
group.
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The operation of G extends to the Stone–Čech compactification βG of G
so that, for each a ∈ G, the left translation βG 3 x 7→ ax ∈ βG is continuous,
and for each q ∈ βG, the right translation βG 3 x 7→ xq ∈ βG is continuous.

We take the points of βG to be the ultrafilters on G, the principal ultra-
filters being identified with the points of G, and G∗ = βG\G. The topology
of βG is generated by taking as a base the subsets A = {p ∈ βG : A ∈ p},
where A ⊆ G. For p, q ∈ βG, the ultrafilter pq has a base consisting of
subsets

⋃
x∈A xBx, where A ∈ p and Bx ∈ q. See [1] for more information

about βG.

For every left invariant topology T on G,

Ult(T ) = {p ∈ G∗ : p converges to 1 in T }
is a closed subsemigroup of G∗ called the ultrafilter semigroup of T [2, 3].
Not each closed subsemigroup of G∗ is the ultrafilter semigroup of a left
invariant topology. However, every finite subsemigroup is [8, Proposition
2.4]. Notice that a left invariant topology is maximal [almost maximal ] if
and only if its ultrafilter semigroup is a singleton [finite].

Of special interest are regular almost maximal left invariant topologies.
If T is a finite subsemigroup of G∗ and T is the left invariant topology on
G with Ult(T ) = T , then T is regular if and only if

(i) for every p ∈ G∗ \ T , (pT ) ∩ T = ∅, and
(ii) for every a ∈ G \ {1}, (aT ) ∩ T = ∅ (= T is Hausdorff)

[8, Proposition 2.12]. A subsemigroup T of G∗ satisfying conditions (i) and
(ii) is called left saturated. Notice that (ii) is always satisfied if T is a singleton
[1, Theorem 3.34] or T is a finite band (= semigroup of idempotents) and G
can be embedded algebraically in a compact group [9, Lemma 7.10]. Recall
that an element p of a semigroup is an idempotent if pp = p.

The simplest examples of bands are left zero semigroups (xy = x), right
zero semigroups (xy = y), chains of idempotents (x ≤ y if and only if
xy = yx = x), and rectangular bands (= direct products of a left zero
semigroup and a right zero semigroup). Each band is a disjoint union of
its maximal rectangular subsemigroups and these are partially ordered by
X ≤ Y if and only if XY ⊆ X, equivalently Y X ⊆ X.

An object P in some category is a projective if for every morphism
f : P → Q and for every surjective morphism g : R → Q, there exists
a morphism h : P → R such that g ◦ h = f . We say that an object P is an
absolute coretract if for every surjective morphism g : R → P there exists
a morphism h : P → R such that g ◦ h = idP . Obviously, each projective
is an absolute coretract. In many categories these notions coincide but not
in all. Let F and C denote the categories of finite semigroups and compact
Hausdorff right topological semigroups, respectively. Then the finite abso-
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lute coretracts and the finite projectives in C and in F are the same objects,
and these are certain chains of rectangular bands; in particular, the finite
left (right) zero semigroups and chains of idempotents are such [7].

For every regular almost maximal left invariant topology T on G, T =
Ult(T ) is a projective in F [8, Theorem 4.1]. Assuming MA, for every finite
absolute coretract S in C, there is a regular left invariant topology T on G
with Ult(T ) isomorphic to S, and in the case G =

⊕
ω Z2, T can be chosen

to be a group topology [8, Theorem 5.2 and Lemma 6.10]. Every countable
almost maximal topological group contains an open Boolean subgroup, and
its existence cannot be established in ZFC [6] (see also [9, Theorem 10.15 and
Corollary 10.17]). However, there is in ZFC a regular maximal left invariant
topology on G [4]. More generally, for every n ∈ N, there is in ZFC a regular
left invariant topology T on G with Ult(T ) being a chain of n idempotents
[8, Theorem 6.1].

In this paper we prove (in ZFC) the following result.

Theorem 1.1. For every finite absolute coretract S in C, there is a
regular left invariant topology T on G with Ult(T ) isomorphic to S.

Theorem 1.1 can be rephrased as follows:

For every finite absolute coretract S in C, there is a left saturated sub-
semigroup T of G∗ isomorphic to S.

Theorem 1.1 is the complete solution to [8, Question 6] (see also [9,
Problem 17]). In fact, this question goes back to the late 1990’s, when most
of the relevant results had already been proved [5, 6, 4].

From Theorem 1.1 two corollaries follow. To state these, we present some
terminology. An idempotent p ∈ G∗ is called

• right maximal if for every idempotent q ∈ G∗, qp = p implies pq = q,
• strongly right maximal if the equation xp = p has the unique solution
x = p in G∗.

Taking the 2-element right zero semigroup as S, from Theorem 1.1 we
deduce

Corollary 1.2. There is a right maximal idempotent in G∗ which is
not strongly right maximal.

Corollary 1.2 is the answer to a question in [1, p. 192].
A space is called

• extremally disconnected if the closure of an open set is open,
• irresolvable if it cannot be partitioned into two disjoint dense subsets,
• nodec if every nowhere dense subset is closed.

An almost maximal left invariant topology T on G is
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• extremally disconnected if and only if T = Ult(T ) has only one mini-
mal right ideal,
• irresolvable if and only if the smallest ideal K(T ) of T is a left zero

semigroup,
• nodec if and only if K(T ) = T

(see [9, Proposition 7.7]).

Corollary 1.3. For each combination of the properties of being ex-
tremally disconnected, irresolvable, and nodec, except for the combination
(−,−,+), there is a corresponding regular almost maximal left invariant
topology on G. There is no countable regular almost maximal left topological
group corresponding to the combination (−,−,+).

Corollary 1.3 is a ZFC version of [9, Corollary 10.39]. The proof is the
same. In particular, for the combination (−,+,+), apply Theorem 1.1 to
the 2-element left zero semigroup.

In fact, we prove a theorem which is a little bit stronger than Theorem
1.1.

Theorem 1.4. Let S be a finite absolute coretract in C and let X be
a Gδ subset of G∗ containing an idempotent. Then there is a regular left
invariant topology T on G such that T = Ult(T ) is isomorphic to S and
T ⊆ X.

The proof of Theorem 1.4 is based on a special construction of regular
left invariant topologies and on deep subsets of ω∗.

For every closed subset Y ⊆ ω∗, the character of Y in ω∗, denoted
χ(Y ), is the minimum cardinality of a family F of subsets of ω such that⋂
A∈F A = Y . A nonempty closed subset Z ⊆ ω∗ is deep if for every closed

subset Y ⊆ ω∗ with χ(Y ) < c, Y ∩ Z is either empty or infinite.

Theorem 1.5 ([11, Theorem 3.1]). There is a deep subset Z ⊆ ω∗.
As in [11], we use Theorem 1.5 as a replacement of MA.
In Section 2 we discuss first countable regular left invariant topologies.

In Section 3 we give that special construction; and in Section 4 we prove
Theorem 1.4 itself.

2. First countable regular left invariant topologies

Lemma 2.1. Let T0 be a Hausdorff [regular ] left invariant topology on G
and let (Un)n<ω be any sequence of neighborhoods of 1 in T . Then T0 can
be weakened to a first countable Hausdorff [regular ] left invariant topology
T on G in which each Un remains a neighborhood of 1.

Proof. We consider the Hausdorff case; the regular one is [9, Lemma
9.28].
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Without loss of generality one may suppose that U0 = G. Enumerate
G \ {1} as {xn : 1 ≤ n < ω}. Construct inductively a sequence (Vn)n<ω of
open neighborhoods of 1 in T0 with V0 = G such that for every n ≥ 1:

(i) Vn ⊆ Vn−1,
(ii) xnVn ⊆ Vk, where k = max{i ≤ n− 1 : xn ∈ Vi},

(iii) (xnVn) ∩ Vn = ∅, and
(iv) Vn ⊆ Un.

It then follows from (i)–(iii) that there is a Hausdorff left invariant topology
T on G in which {Vn : n < ω} is a neighborhood base at 1 (see [9, Corollary
4.4]), and by (iv), each Un remains a neighborhood of 1 in T .

For every filter F on G with
⋂
F = ∅, there is a largest left invariant

topology T [F ] on G in which F converges to 1. The topology T [F ] has a
neighborhood base at 1 consisting of subsets

[M ] = {x0x1 · · ·xn : n < ω, x0 = 1 and

xi+1 ∈M(x0 · · ·xi) for each i < n},
where M : G→ F [9, Theorem 4.8].

A filter F on G is strongly discrete if
⋂
F = ∅ and there is M : G→ F

such that the subsets xM(x) ⊆ G, x ∈ G, are pairwise disjoint.

Theorem 2.2 ([9, Theorem 4.18]). For every strongly discrete filter F
on G, the topology T [F ] is regular.

Lemma 2.3. Let X be a Gδ subset of G∗ containing an idempotent.
Then there is a nondiscrete first countable regular left invariant topology T
on G with Ult(T ) ⊆ X.

Proof. Let e ∈ X be an idempotent. There is a left invariant topology
T0 on G with Ult(T0) = {e}. By Lemma 2.1, T0 can be weakened to a first
countable Hausdorff left invariant topology T1 on G with Ult(T1) ⊆ X. Let
{Un : n < ω} be a decreasing neighborhood base at 1 in T1 and enumerate
G without repetitions as {xn : n < ω}. Construct inductively a sequence
(an)n<ω in G such that

(i) an ∈ Un \ ({aj : j < n} ∪ {1}), and
(ii) the subsets xi{aj : i ≤ j ≤ n}, i ≤ n, are pairwise disjoint.

Then (an)n<ω is a one-to-one sequence in G \ {1} converging to 1 in T1 and
the subsets xnAn, n < ω, are pairwise disjoint, where An = {aj : n ≤ j < ω}.
Consequently, the filter F on G with a base of subsets An, n < ω, is strongly
discrete and converges to 1 in T1. Let T2 = T [F ]. By Theorem 2.2, T2 is
regular, and by Lemma 2.1, T2 can be weakened to a first countable regular
left invariant topology T on G finer than T1.
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Given a left topological group L and a semigroup S, a mapping h : L→ S
is a local homomorphism if for every x ∈ L, there is a neighborhood U of 1
such that h(xy) = h(x)h(y) for all y ∈ U \ {1}. If h : L → S is a local
homomorphism, S is finite, and h : βLd → S is the continuous extension
of h, then h|Ult(L) : Ult(L) → S is a homomorphism [9, Lemma 8.6]. Given
left topological groups L and H, a mapping h : L→ H is a local isomorphism
if h is a homeomorphism with h(1) = 1 and a local homomorphism. If
h : L → H is a local isomorphism and h : βLd → βHd is the continuous
extension of h, then h|Ult(L) : Ult(L)→ Ult(H) is an isomorphism [9, Lemma
8.4]. Homomorphisms and isomorphisms of ultrafilter semigroups induced
by local homomorphisms and local isomorphisms are called proper. Endow
the countably infinite Boolean group

⊕
ω Z2 with the topology induced by

the product topology on
∏
ω Z2 and let H denote its ultrafilter semigroup.

For every countable nondiscrete regular left topological group L, there is
a local isomorphism of L onto

⊕
ω Z2, and consequently there is a proper

isomorphism of Ult(L) onto H [9, Corollary 8.11].

Lemma 2.4. Let T be a nondiscrete first countable regular left invariant
topology on G and let T = Ult(T ). Then T admits a proper homomorphism
onto any finite semigroup.

Proof. Let S be a finite semigroup. Pick a local isomorphism h : (G, T )→⊕
ω Z2. It is easy to construct a local homomorphism g :

⊕
ω Z2 → S such

that for every neighborhood U of 0, g(U \ {0}) = S (see the proof of [9,
Theorem 7.24]). Then g ◦ h : (G, T )→ S is a local homomorphism with the
same property, and so g ◦ h|T is a proper homomorphism of T onto S.

Remark 2.5. Lemma 2.4 remains true with “any finite semigroup” re-
placed by “any compact Hausdorff right topological semigroup R whose
topological center contains a countable dense subset of R” (see the proof of
[9, Theorem 7.24]).

Remark 2.6. The existence of a nondiscrete first countable regular left
invariant topology T on G such that Ult(T ) ⊆ X and (G, T ) is locally
isomorphic to

⊕
ω Z2 can be established directly (similarly to the proof

of [9, Theorem 7.26]), not involving strongly discrete filters and the local
isomorphism theorem, but this direct proof is a little bit longer.

3. Strongly discrete filters. By [10, Lemma 6], there is a surjective
finite-to-one function f : G→ ω such that

(1) f(1) = 0,
(2) for every x ∈ G, f(x) = f(x−1), and
(3) for all x, y ∈ G, f(xy) ≤ max{f(x), f(y)}+1, and if |f(x)−f(y)| ≥ 2,

then f(xy) ≥ max{f(x), f(y)} − 1.
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The function f : G→ ω extends continuously to βG→ βω. We use the same
letter f to denote this extension. Notice that for any p ∈ βG and q ∈ G∗,
f(pq) = f(q) + i for some i ∈ {−1, 0, 1}.

Theorem 3.1. Let T be a Hausdorff left invariant topology on G and
let (Fn)n<ω be a sequence of filters on G converging to 1 in T . Suppose that

(i) there is a neighborhood U of 1 in T such that the subsets f(U\{1})+i
⊆ ω, i ∈ {−1, 0, 1}, are pairwise disjoint,

(ii) for every n < ω, there is An ∈ Fn such that the subsets f(An) ⊆ ω,
n < ω, are pairwise disjoint.

Let F be the filter on G with a base of subsets
⋃
n≤i<ω Bi, where n < ω and

Bi ∈ Fi. Then F is strongly discrete.

Proof. For every n < ω, choose a neighborhood Un of 1 in T such that

(a) the subsets xUn, where x ∈ G with f(x) ≤ n, are pairwise disjoint,

and choose Cn ∈ Fn such that

(b) Cn ⊆ Un,
(c) for every x ∈ Cn, f(x) ≥ n+ 2, and
(d) Cn ⊆ U ∩An.

We claim that the subsets
x
⋃

n≥f(x)

Cn,

where x ∈ G, are pairwise disjoint.
Let x, y ∈ G, x 6= y. Since

x
⋃

n≥f(x)

Cn =
⋃

n≥f(x)

xCn, y
⋃

m≥f(y)

Cm =
⋃

m≥f(y)

yCm,

it suffices to check that the subsets xCn and yCm are disjoint for any n ≥
f(x), m ≥ f(y). If n = m, they are disjoint by (a) and (b). Now let n 6= m.
Then by (c),

f(xCn) ⊆
1⋃

i=−1
(f(Cn) + i), f(yCm) ⊆

1⋃
j=−1

(f(Cm) + j),

so by (d),

f(xCn) ⊆
1⋃

i=−1
(f(U ∩An) + i), f(yCm) ⊆

1⋃
j=−1

(f(U ∩Am) + j).

But by (i) and (ii),

1⋃
i=−1

(f(U ∩An) + i) and
1⋃

j=−1
(f(U ∩Am) + j)



98 Y. Zelenyuk

are disjoint. Consequently, f(xCn) and f(yCm) are disjoint, and so are xCn
and yCm.

4. Proof of Theorem 1.4. Let e ∈ X be an idempotent. Pick A ∈ e
such that the subsets f(A) + i ⊆ ω, i ∈ {−1, 0, 1}, are pairwise disjoint.
By Lemma 2.3, there is a nondiscrete first countable regular left invariant
topology T0 on G such that

T0 = Ult(T0) ⊆ X ∩A.
Since T0 ⊆ A, we see that for any p, q ∈ T0, f(pq) = f(q). By Lemma 2.4,
there is a surjective proper homomorphism π : T0 → S. For each s ∈ S, let
Xs = π−1(s). Notice that Xs is a Gδ subset of G∗. Pick an infinite Ds ⊆ ω
with D∗s ⊆ f(Xs). By Theorem 1.5, there is a deep subset Zs ⊆ D∗s . Let

J = f−1
(⋃
s∈S

Zs

)
∩ T0.

Then

(i) J is a closed left ideal of T0,
(ii) for each s ∈ S, J ∩Xs 6= ∅,

(iii) f(J) ⊆ ω∗ is deep, and
(iv) J = f−1(f(J)) ∩ T0.

Next, enumerate the subsets of G as {Cα : α < c} with C0 = G, and
inductively, for every α > 0, construct a first countable regular left invariant
topology Tα on G such that

(1) for each s ∈ S, either Tα ∩ Xs ⊆ Cα or Tα ∩ Xs ⊆ G \ Cα, where
Tα = Ult(Tα), and

(2) for each s ∈ S,
⋂
γ≤α Tγ ∩Xs ∩ J 6= ∅.

Fix α > 0 and suppose that we have already constructed Tγ for all γ < α
as required. Let

Pα =
⋂
γ<α

Tγ ∩ J.

By (i), Pα is a closed subsemigroup of T0, and by (ii) and (2), π(Pα) = S.
Since S is an absolute coretract, there is a homomorphism εα : S → Pα
such that π ◦ εα = idS . Let T ′α be the left invariant topology on G with
Ult(T ′α) = εα(S). For each s ∈ S, pick Dα,s ∈ εα(s) such that either
Dα,s ⊆ Cα or Dα,s ⊆ G \ Cα, and let Dα =

⋃
s∈S Dα,s. By Lemma 2.1,

T ′α can be weakened to a first countable Hausdorff left invariant topology
T ′′α such that T ′′α = Ult(T ′′α ) ⊆ Dα. Let

Qα =
⋂
γ<α

Tγ ∩ T ′′α .
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For each s ∈ S, εα(s) ∈ Qα ∩ Xs ∩ J and χ(Qα ∩ Xs) ≤ |α| + ω < c, so
by (iii), f(Qα ∩Xs) ∩ f(J) is infinite. For every n < ω and s ∈ S, choose

unα,s ∈ f(Qα ∩Xs) ∩ f(J)

and Enα,s ∈ unα,s such that the subsets Enα,s ⊆ ω, n < ω and s ∈ S, are
pairwise disjoint.

This can be done by induction on n as follows. For each s ∈ S, pick unα,s ∈
(f(Qα∩Xs)∩f(J))\Fn−1α and Enα,s ∈ unα,s, where Fn−1α =

⋃
j≤n−1, s∈S E

j
α,s,

such that (a) the subsets Enα,s, s ∈ S, are pairwise disjoint and disjoint from

Fn−1α , and (b) (f(Qα ∩Xs) ∩ f(J)) \ Fnα 6= ∅ for each s ∈ S.
For every n < ω and s ∈ S, pick qnα,s ∈ Qα∩Xs such that f(qnα,s) = unα,s.

By (iv), qnα,s ∈ J , so
qnα,s ∈ Qα ∩Xs ∩ J.

For every n < ω, let Fnα =
⋂
s∈S q

n
α,s and Anα =

⋃
s∈S f

−1(Enα,s). Then
Anα ∈ Fnα and the subsets f(Anα) ⊆ ω, n < ω, are pairwise disjoint. Let Fα
be the filter on G with a base consisting of subsets

⋃
n≤i<ω B

i
α, where n < ω

and Bi
α ∈ F iα, and let T ′′′α = T [Fα]. By Theorem 3.1, Fα is strongly discrete,

so T ′′′α is regular. By Lemma 2.1, T ′′′α can be weakened to a first countable
regular left invariant topology Tα finer than T ′′α . Clearly, condition (1) is
satisfied. To see (2), let q be any limit point of {qnα,s : n < ω}. Then Fα ⊆ q
and q ∈

⋂
γ<α Tγ ∩Xs ∩ J , so q ∈

⋂
γ≤α Tγ ∩Xs ∩ J .

Finally, let T be the least upper bound of topologies Tα, α < c. That
is, T is the left invariant topology on G with a neighborhood base at 1
consisting of subsets

⋂
i≤n Uαi , where n < ω, α0 < · · · < αn < c, and Uαi is

a neighborhood of 1 in Tαi for each i ≤ n. Then T = Ult(T ) =
⋂
α<c Tα. If

each Uαi is closed in Tαi , then
⋂
i≤n Uαi is closed in T . Consequently, T is

regular. Since T0 ⊆ X, one has T ⊆ X. By (1) and (2), T ∩Xs is a singleton
for each s ∈ S. Hence, T 3 p 7→ π(p) ∈ S is an isomorphism.
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