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A classification of small homotopy functors
from spectra to spectra

by

Boris Chorny (Haifa)

Abstract. We show that every small homotopy functor from spectra to spectra is
weakly equivalent to a filtered colimit of representable functors represented in cofibrant
spectra. Moreover, we present this classification as a Quillen equivalence of the category
of small functors from spectra to spectra equipped with the homotopy model structure
and the opposite of the pro-category of spectra with the strict model structure.

1. Introduction. Let Sp denote the closed symmetric monoidal model
category of spectra, which is also combinatorial. Either symmetric spectra
[17] or Lydakis’ linear functors from finite pointed simplicial sets to simpli-
cial sets [21] may serve as a model.

In this work, we suggest a classification of small homotopy functors from
spectra to spectra. Namely, we show that, up to a weak equivalence, ev-
ery small homotopy functor is a filtered colimit of representable functors
represented in cofibrant spectra.

Our interest in this question stems from classification problems related
to Goodwillie’s calculus of homotopy functors. Finitary linear (more gen-
erally, homogeneous) functors from spaces to spaces or spectra were classi-
fied by T. Goodwillie [15]. Finitary polynomial functors were classified by
W. G. Dwyer and C. Rezk (unpublished) and, independently, by G. Arone
and M. Ching [1]. Small functors are rather like finitary functors, except
that they commute with filtered colimits starting from a certain non-fixed
cardinality instead of commuting with all filtered colimits as finitary func-
tors do. It is a natural question whether these classifications extend to more
general small functors.
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In this work, we present a classification of small linear functors from
spectra to spectra. Since homotopy pushouts are also homotopy pullbacks
in Sp, every representable functor is linear (if it is represented by a cofibrant
spectrum, and we look at its values only in fibrant spectra), and so are
filtered colimits of representable functors. The purpose of this work is to
show that these are all small linear functors.

It turns out that a small homotopy functor is linear, since small func-
tors are continuous with respect to the spectral enrichment. This fact is a
topological counterpart of a well-known algebraic phenomenon: any addi-
tive functor preserving quasi-isomorphisms of chain complexes gives rise to
a triangulated functor of derived categories, the total derived functor. Even
though its proof seems to be missing from the literature, it is well-known to
the experts. We are grateful to Michael Ching who brought this fact to our
attention.

Our result may be viewed as a higher version of a well-known statement
about homology functors defined on the homotopy category of spectra: every
homology functor is a filtered colimit of representables [18, 4.19]. From this
point of view, the current work continues to transfer the representability
theorems into the enriched realm, which was initiated in [2], [11], [20].

Of course, the most convenient way to formulate our classification result
is to exhibit it as a Quillen equivalence of certain model categories. Indeed,
we define a new model structure on the category of small functors from
spectra to spectra, localizing the fibrant-projective model structure [2]. In
the new model structure the fibrant objects are the homotopy functors,
therefore we call it the homotopy model structure. Next, we construct a
Quillen pair

O : SpSp
//
(pro-Sp)op : P,mm

where the right adjoint P is the restriction of Yoneda embedding, sending
every pro-space into a filtered colimit of representable functors. The classi-
fication of homotopy functors may be performed without using much of the
model categories technique, and therefore we postpone the proof that this
Quillen adjunction is a Quillen equivalence to the end of the paper.

It is interesting to compare our classification with Goodwillie’s classi-
fication of finitary linear functors, according to which every finitary lin-
ear functor is equivalent to − ∧ E for some spectrum E, so that the ho-
motopy category of finitary linear functors is equivalent to the homotopy
category of spectra. See [3] for the model-categorical formulation of this
classification. However, every spectrum is a filtered colimit of compact spec-
tra, say E = colimiEi. Hence, − ∧ E = colim(− ∧ Ei) with Ei compact
for every i. A version of Spanier–Whitehead duality [2, 7.1] ensures that
−∧Ei = RDEi(−), and hence −∧E = colimiR

DEi , which fits our descrip-
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tion. The embedding of finitary functors into all small functors corresponds
to the embedding of spectra into the opposite category of pro-spectra as
filtered colimits of compact spectra, whose category is self-dual.

However, not every linear functor is small. For example, consider the
functor F (−) = hom(hom(−, A), B) for two fibrant spectra A and B. It is
not equivalent to a filtered colimit of representable functors, since it is not
small (does not commute with filtered colimits of any size).

Another example, suggested by the anonymous referee, of a non-small
functor is the following: F (Y ) = Ỹ ∧ Ỹ . The reason in this case is different:
this functor is not continuous with respect to the spectral enrichment, i.e.
not a spectral functor. Suppose for contradiction that F is a small spectral
functor. Since F is a homotopy functor, it may be approximated by a C-
cellular functor F̃

∼→ F in the fibrant-projective model structure [2, 5.8]
where

C =

{
RX ∧K ↪→ RX ∧ L

∣∣∣∣∣ X fibrant and cofibrant spectrum;

K ↪→ L generating cofibration in Sp

}
.

Enriched version of the Spanier–Whitehead duality [2, Lemma 7.2] im-
plies, by induction on the skeleton of F̃ , that for any compact cofibrant
spectrum A, F (A ∧ Y ) ' A ∧ F (Y ). On the other hand, F (A ∧ Y ) =
(A ∧ Y )cof ∧ (A ∧ Y )cof ' (Ã ∧ Ã) ∧ (Ỹ ∧ Ỹ ), leading to a contradiction.

This example demonstrates a failed attempt to define a quadratic func-
tor, which is not linear. Indeed, as we mentioned before, we will show in
Proposition 4.1 that all small homotopy functors are linear, so there is no
calculus of functors for the spectral functors, just linear algebra.

The situation is entirely different for simplicial functors from spectra to
spectra [6]. The classification of simplicial linear functors demands the devel-
opment of additional technical tools and will appear in a separate paper [7].

The paper is organized as follows. Section 2 is devoted to the construc-
tion of a left adjoint to P , which embeds the opposite of the category of
pro-spectra as a full subcategory of pro-representable functors in SpSp. Be-
ginning with the fibrant-projective model structure [2] on the category of
small functors, we show that this adjunction is a Quillen pair if pro-spectra
are equipped with the strict model structure [19].

In Section 3, we localize the fibrant-projective model structure on the
category of small functors with respect to a proper class of maps, ensuring
that the local objects are precisely the fibrant homotopy functors. Therefore,
we name it the homotopy model structure.

Sections 4 and 5 are the technical heart of the paper, where the clas-
sification of small homotopy and linear functors is performed, except for
the model-categorical reformulation. Section 4 contains the proof that ev-
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ery homotopy functor is linear, filling the gap in the literature. Section 5
is devoted to the proof that every linear functor is weakly equivalent to a
filtered colimit of representables in the fibrant-projective model structure.
These sections rely on a minimal model-categorical technique, and hopefully
may be read by people not interested in model categories.

It is not immediate to show that the constructed Quillen pair is a Quillen
equivalence again. In order to do so, we give an alternative localization
construction in Section 6, which is expressed in terms of the adjoint functors
with which we are working, and which may be described as a derived unit
of this adjunction. Using our classification, we show that this adjunction
coincides, up to homotopy, with the adjunction constructed in Section 3.

Finally, in Section 7, we prove our main result, that our homotopy model
structure on the category of small functors is Quillen equivalent to the op-
posite of the category of pro-spectra. It is formulated as Theorem 5.4.

We would like to conclude this introduction with the notice that, unlike
in [8, 9], the localization with respect to a proper class of maps appearing
in this paper is not functorial. We do not know whether it is possible to
find a localization functor inverting the same class of maps, but we have de-
veloped, with Georg Biedermann, an extension to the Bousfield–Friedlander
localization machinery which is suitable for work with some non-functorial
localization constructions [2, Appendix]. We apply this machinery to the
localization construction from Section 3, whereas we were not able to apply
it to the localization construction from Section 6.

2. Preliminaries on pro-spectra. The goal of this preliminary section
is to show that the opposite of the category of pro-spectra is equivalent to a
reflective subcategory of small functors from spectra to spectra. If we choose
to work with the fibrant-projective model structure on the category of small
functors, this adjunction carries over to the level of homotopy categories.

The objects of the category of pro-spectra are cofiltered diagrams of
spectra, i.e., for every filtering I, any functorX : Iop → Sp is a pro-spectrum.
We denote this pro-object as X• = {Xi}i∈I .

The morphisms between two pro-objects {Xi}i∈I and {Yj}j∈J are ladders
that commute after a composition with the bonding maps. Formally,

hompro-Sp({Xi}, {Yj}) = lim
j∈J

colim
i∈I

homSp(Xi, Yj).

The category of pro-spectra is enriched over the category of spectra with
the internal hompro-Sp(−,−) calculated by the above rule, while taking
homSp(−,−) to be the internal hom-functor in the closed symmetric mono-
idal category of spectra.
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The category SpSp of small functors from spectra to spectra consists of
small functors as objects and natural transformations as morphisms. We
remind the reader that a functor F : Sp → Sp is small if it is a left Kan
extension of its restriction to some small subcategory; equivalently, small
functors are small weighted colimits of representable functors.

The restriction of the Yoneda embedding on the category of spectra
is a functor P : (pro-Sp)op → SpSp that sends every pro-spectrum X• to
the pro-representable functor hompro-Sp(X•,−) : Sp→ Sp. By the definition
of morphisms in the category of pro-spectra, the pro-representable functor
hompro-Sp({Xi},−) = colimi∈I homSp(Xi,−) is a filtered colimit of repre-
sentable functors RXi over I. In particular, every pro-representable functor
is small.

Now, we show that the functor Y has a left adjoint. The argument we
give below works for every locally presentable, closed symmetric monoidal
category and not just spectra.

Proposition 2.1. The functor P : (pro-Sp)op → SpSp has a left adjoint
O : SpSp → (pro-Sp)op.

Proof. We shall use the adjunction constructed in [2]:

Y : Spop --
SpSp : Z,mm

and the fact that the category of small functors from spectra to spectra is
class-finitely presentable [12].

Every small functor is a filtered colimit of finite weighted colimits of
representable functors. Let SpSp 3 F = colimi∈I Ci, where Ci = Ak?k∈KR

Bk

with all Ak finite spectra. Then

homSpSp(F,PX•) = homSpSp

(
colim
i∈I

Ci, colim
j∈J

RXj

)
= lim

i∈I
homSpSp

(
Ci, colim

j∈J
RXj

)
= lim

i∈I
colim
j∈J

homSpSp(Ci, R
Xj )

= lim
i∈I

colim
j∈J

homSpop(ZCi, Xj)

= lim
i∈I

colim
j∈J

homSp(Xj , ZCi)

= hompro-Sp({Xj},{ZCi}) = hom(pro-Sp)op({ZCi},{Xj}).
Of course, the representation of F as a filtered colimit of compact ob-

jects is not unique, but if we can take any representation of the kind F =
colimi∈I Ci, then the map f : F → colimi∈I R

ZCi = P{ZCi} serves as a so-
lution set, since, according to the computation above, every map F → PX•
factors through f . Freyd’s adjoint functor theorem implies the existence of
the left adjoint for P , and we can compute its value, up to an isomorphism,
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by choosing a representation for F as a filtered colimit of compact objects
and declaring OF = {ZCi}i∈I .

The category of small functors from spectra to spectra carries the fibrant-
projective model structure constructed in [2]. Fibrant-projective weak equiv-
alences and fibrations are the natural transformations of functors inducing
levelwise weak equivalences or fibrations between their values in fibrant ob-
jects. We conclude the categorical preliminaries by the following proposi-
tion that states, essentially, that the opposite of the homotopy category of
pro-spectra is a coreflective subcategory of the homotopy category of small
functors.

Proposition 2.2. The pair of adjoint functors

P : (pro-Sp)op
--
SpSp : Onn

constructed in Proposition 2.1 is a Quillen pair if we equip the category of
small functors with the fibrant-projective model structure, and the category
of pro-spectra with the strict model structure.

Proof. It suffices to show that the right adjoint P preserves fibrations
and trivial fibrations of pro-spectra.

Consider a trivial fibration or a fibration fop : Y• → X• in the oppo-
site category of pro-spectra, i.e., f : X• → Y• is a trivial cofibration or a
cofibration in the strict model structure, which means f is an essentially
levelwise trivial cofibration or an essentially levelwise cofibration, where the
word ‘essentially’ means ‘up to reindexing’.

Let fi : Xi → Yi, i ∈ I, be a levelwise trivial cofibration or a level-
wise cofibration representing f . Recall that PX• = colimi∈I R

Xi and PY•
= colimi∈I R

Yi . Then Pf : colimi∈I R
Xi → colimi∈I R

Yi is a trivial fibra-
tion or a fibration, respectively, in the fibrant-projective model structure,
since each fi induces a trivial fibration or a fibration of representable func-
tors in the fibrant-projective model structure, and filtered colimits preserve
levelwise trivial fibrations and fibrations.

3. Homotopy model structure. The main objective of our work is
to classify homotopy functors from spectra to spectra, up to homotopy. The
most convenient way to provide such a classification is to define a model
category structure on small functors with fibrant objects being exactly the
fibrant homotopy functors, and to find a more familiar Quillen equivalent
model.

In this section, we define the homotopy model structure using the exten-
sion of the Bousfield–Friedlander localization technique [4, Appendix A] to
non-functorial localization constructions [2, Appendix].
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We start from the fibrant-projective model structure on the category
of small functors (i.e., weak equivalences are levelwise in fibrant objects).
Homotopy functors are small functors that preserve weak equivalences of
fibrant objects. If we precompose a homotopy functor with a fibrant replace-
ment in Sp, we obtain a homotopy functor in the classical sense (preserving
all weak equivalences), which is fibrant-projective equivalent to the original
functor.

Fibrant homotopy functors are the local objects with respect to the fol-
lowing class of maps:

H = {RB → RA | A ∼→ B weak equivalence of fibrant objects in Sp}.

Recall that the class of generating trivial cofibrations for the fibrant-
projective model structure is

J = {RA ⊗K ↪→ RA ⊗ L | A ∈ Sp fibrant,

K
∼
↪→ L generating trivial cofibration in Sp}.

3.1. Construction of homotopy localization. We formulate our
construction and argumentation in such a way that it will be evident that
the category of spectra may be replaced by any closed symmetric monoidal
combinatorial model category.

If we were able to localize with respect to the proper class of maps H, we
would be done, since H-local functors are exactly the homotopy functors.
Instead, for each particular functor F ∈ SpSp we choose a cardinal λF which
is the maximum between the accessibility rank of the small (i.e., accessible)
functor F and the degree of accessibility of the subcategory of weak equiv-
alences in spectra. Then, we localize this particular functor F with respect
to a set of maps HλF ⊂ H, and argue that, for this specific functor F , it
is enough to invert the set HλF . Of course, we do not obtain a functorial
localization construction in this way. However, the (non-functorial) localiza-
tion we do obtain has enough good properties to ensure the existence of the
localized model structure. The detailed construction follows.

Definition 3.1. Let F ∈ SpSp be a small functor of accessibility rank µ
and let Sp be a κ-combinatorial closed symmetric monoidal model for spec-
tra. In particular, the domains and the codomains of the generating (triv-
ial) cofibrations are κ-presentable, and the class of weak equivalences is
a κ-accessible subcategory of the category of maps of spectra. Let λF =
max{κ, µ}+ � max{κ, µ} (the + is essential to ensure that the subcategory
of weak equivalences in Sp is still λF -accessible), and SpλF ⊂ Sp be the
subcategory of λF -presentable objects. Then we define

HλF = {RB → RA | A ∼→ B weak equivalence of fibrant objects in SpλF }



108 B. Chorny

and

JλF = {RA ⊗K ↪→ RA ⊗ L | A ∈ SpλF fibrant,

K
∼
↪→ L generating trivial cofibration in Sp}.

As usual, we say that a map f : F → G is an HλF -equivalence if for every

cofibrant replacement f̃ → f and every HλF -local functor W the induced

map hom(f̃ ,W ) is a weak equivalence of simplicial sets.

Remark 3.2. (1) HλF and JλF are sets of maps rather than proper
classes, and hence it is possible to apply the small object argument.

(2) Every H-local functor is also HλF -local, and hence every HλF -equiva-
lence is also an H-equivalence.

(3) Every λF -accessible functor taking fibrant values in λF -presentable
fibrant objects (i.e., satisfying the right lifting property with respect to JλF )
is fibrant-projectively fibrant.

(4) Every HλF -local functor that is also λF -accessible is H-local.
(5) Every Hλ-equivalence of λ-accessible functors is an H-equivalence.

We form the set of horns on HλF by first replacing every map in HλF
with a cofibration, obtaining the set H̃λF , and then forming a box product
with every generating cofibration in Sp:

Hor(HλF ) =
{
A⊗ L

∐
A⊗K

B ⊗K → B ⊗ L
∣∣∣ (A ↪→ B) ∈ H̃λF and

K ↪→ L a generating cofibration in Sp
}
.

It is well-known (see, e.g., [16]) that if a fibration X → ∗ has the right lift-
ing property with respect to Hor(HλF ) then X is HλF -local, and therefore,
in order to construct a localization of an F ∈ SpSp with respect to HλF , it
suffices to apply the small object argument for the map F → ∗ with respect
to the set L = Hor(HλF ) ∪ JλF . We obtain a factorization F ↪→ Q(F ) � ∗,
where the cofibration is an L-cellular map and the fibration has the right
lifting property with respect to K.

We omit the standard verification, based on the left properness of SpSp

(see [2, Section 4]), that the cofibration F ↪→ QF is an HλF -equivalence,
and conclude that QF is a homotopy localization of F with respect to HλF .

Notice that QF is obtained as a colimit of λF -accessible functors, and
therefore QF is itself a λF -accessible functor. However, the class of weak
equivalences in spectra is λF -accessible, and hence every weak equivalence
is a λF -filtered colimit of weak equivalences between λF -presentable ob-
jects. Fibrant objects in spectra are closed under λF -filtered colimits, and
every spectrum is a λF -filtered colimit of λF -presentable spectra. Combining
these facts with the λF -accessibility of QF , we conclude that QF is a fibrant
homotopy functor in the fibrant-projective model structure. Moreover, the
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cofibration ηF : F ↪→ QF is an H-equivalence, since any HλF -equivalence is
an H-equivalence. In other words, we have constructed a homotopy local-
ization of F with respect to the class H of maps. The only disadvantage of
our construction is the lack of functoriality, since it depends on the choice
of the cardinal λF specific for each F .

Since Q is not a functor, we have to define separately its action on maps.
Given a natural transformation of functors f : F → G, we define Qf as a
lifting in the diagram

F� _
ηF
��

f // G
ηG // QG

����
QF //

Qf

66

∗

The lift exists since the left vertical map is L-cellular and the right vertical
map is L-injective by construction.

Of course, we will have to choose Qf out of many maps that are ho-
motopic to each other, but the important property satisfied by any of these
choices is the commutativity of the square

(1)

F� _
ηF
��

f // G� _
ηG
��

QF
Qf // QG

Proposition 3.3. Let f : F → G be a map of two functors. Then Qf
is a weak equivalence iff f is an H-equivalence.

Proof. The ‘if’ direction follows by the ‘2-out-of-3’ property for H-equiv-
alences applied to a commutative square (1) and the H-local Whitehead
theorem (cf. [16, 3.2.13]): an H-local equivalence of H-local functors is a
weak equivalence.

The ‘only if’ direction follows since, if Qf is a weak equivalence, f is
an Hmax{λF ,λG}-equivalence by the ‘2-out-of-3’ property for Hmax{λF ,λG}-
equivalences; but an Hmax{λF ,λG}-equivalence of max{λF , λG}-accessible
functors is an H-equivalence.

3.2. Localization of the model structure. The lack of functoriality
of the homotopy localization Q does not allow us to apply Bousfield and
Friedlander’s localization machinery [4, Appendix A]. Instead, we will use
the generalization of their localization theorem developed in [2, Appendix].

In order to apply this generalization of the Bousfield–Friedlander ma-
chinery, we need to verify a number of properties of the localization con-
struction Q.
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The property [2, A.2] requires precisely the commutativity of the dia-
gram (1), which we obtained by construction.

The properties [2, A.3, A.4] are satisfied because the class of weak equiv-
alences is defined as a map that, after a cofibrant replacement, induces a
weak equivalence on the mapping spaces into every H-local object W , since
mapping out of a retract diagram produces a retract diagram, and also any
commutative triangular diagram gives rise to a commutative triangular di-
agram, which allows us to verify the ‘2-out-of-3’ property.

In order to verify [2, A.5], for every commutative square

(2)

F1
//

��

F2

��
F3

// F4

let λ = max{λFi}
+
1≤i≤4 � max{λFi}1≤i≤4 be a cardinal, and construct Q′Fi

exactly as QFi using the cardinal λ instead of λFi for each 1 ≤ i ≤ 4. Then,
for all 1 ≤ i ≤ 4, there exists a factorization of the coaugmentation map
η′Fi

: Fi → Q′Fi as follows:

Fi
� �
ηFi //
� p

η′Fi

<<QFi
∼ // Q′Fi

Moreover, since the only obstruction to naturality of the construction
Q is the choice of a different cardinal λF for each functor F , here this
obstruction is removed, and we obtain a natural map of the diagram (2) to
the commutative square

QF1
//

��

QF2

��
QF3

// QF4

giving rise to a commutative cube.

An additional verification is required in order for [2, A.5] to be satisfied:
Q′f must be a weak equivalence iff Qf is. By Proposition 3.3, it suffices to
show that Q′f is a weak equivalence iff f is an H-equivalence. Similar to
the commutative square (1), we have a commutative square

F� _

η′F
��

f // G� _

η′G
��

Q′F
Q′f // Q′G
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The vertical arrows are H-equivalences by construction, and hence the
‘2-out-of-3’ property for H-equivalences implies that f is an H-equivalence
if and only if Q′f is.

The last property of the homotopical localization Q that requires verifi-
cation in order to conclude that there exists a Q-localized model structure
on SpSp is [2, A.6]: for all pullback squares

(3)

W

g

��

// X

f
��

Y
h // // Z

where h is an H-fibration (i.e., it has the right lifting property with respect
to all H-equivalences which are also cofibrations) and f is an H-equivalence;
also, g is an H-equivalence.

Unfortunately, we do not have a simple description of H-equivalences
(apart from the fact that they coincide with the Q-equivalences, i.e., with
the maps converted to weak equivalences by Q-construction), and therefore
we will use the properties of the stable model category satisfied by SpSp.
Namely, we will use the fact that every homotopy pullback is a homotopy
pushout in the fibrant-projective model structure.

We start by replacing the commutative square (3) with a weakly equiv-

alent commutative square of cofibrant functors. If we start from W̃
∼
� W

and continue to factor maps W̃
∼
� W → Z and W̃

∼
� W → X to obtain

Z̃ and X̃, respectively, there are two possible ways to replace Y by factor-

ing Z̃
∼
� Z � Y or X̃

∼
� X → Y to obtain two different approximations

ỸZ
∼
� Y and ỸX

∼
� Y , respectively. Since the original square (3) is a lev-

elwise homotopy pullback square for values of the functor in each fibrant
spectrum, the outer square

W̃� _

��

� � // X̃� _

��~~
Ỹ

 `

  

ỸX

�O

����
Z̃ �
� //

>>

ỸZ
/o // // Y

is a fibrant-levelwise homotopy pullback and homotopy pushout square. Set
Ỹ = X̃

∐
W̃ Z̃

∼→ Y to obtain a cofibrant approximation of the original
commutative square.

In order to verify whether g is an H-equivalence for each H-local (i.e.,
fibrant homotopy) functor H, we form a commutative square of mapping
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spectra

H Ỹ

o
����

// // H Z̃

����

HX̃ // // HW̃

which is a homotopy pullback of spectra, and therefore also a homotopy
pushout of spectra. Hence, the left properness of the category of spectra
implies that the right-hand vertical map is a weak equivalence of spectra.
Therefore, the original map g : W → Z is an H-equivalence.

We conclude that by [2, Theorem A.8] there exists a Q-localization of
the model structure, i.e., this is a localization with respect to H.

We finish this section with an extension of Proposition 2.2 to the localized
model structure.

Proposition 3.4. The adjunction constructed in Proposition 2.1 is still
a Quillen pair after the localization, i.e., if we consider the Q-local model
structure on SpSp and the strict model structure on pro-Sp then the adjunc-
tion (O,P ) is a Quillen adjunction.

Proof. By Dugger’s lemma [16, 8.5.4], it suffices to check that the right
adjoint P preserves fibrations between fibrant objects and all trivial fibra-
tions.

Trivial fibrations did not change after the localization, and therefore it
suffices to show that P preserves fibrations of fibrant objects. Let fop :
X• → Y• be a fibration of fibrant objects in (pro-Sp)op. Then f : Y• → X• is
an essentially levelwise cofibration of essentially levelwise cofibrant objects
(i.e., up to reindexing). Choose a representative for f , which is a commu-
tative diagram of cofibrations between cofibrant spectra, and apply P . For
such a representative, Pf is a filtered colimit of fibrations of functors rep-
resented in cofibrant spectra, i.e., a filtered colimit of projectively fibrant
functors preserving weak equivalences of fibrant objects. In other words, Pf
is a fibration of homotopy functors. Homotopy functors are precisely the
Q-local functors, i.e., Pf is a Q-fibration by [2, Lemma A.10].

The rest of the paper is devoted to the proof that this Quillen map is
indeed a Quillen equivalence. In other words, we will show that for every
cofibrant functor F ∈ SpSp, every fibrant X• ∈ (pro-Sp)op, and every map
f : F → PX• in SpSp, the map f is a Q-equivalence if and only if the
corresponding map f ] : OF → X• is a weak equivalence in (pro-Sp)op.

4. All homotopy functors are linear. The first reduction in our
classification problem is to show that every small homotopy functor is linear,
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i.e., that they take homotopy pushouts to homotopy pullbacks. We shall
classify the linear functors in the next section.

Proposition 4.1. Every small functor F ∈ SpSp taking weak equiva-
lences to weak equivalences also takes homotopy pushouts to homotopy pull-
backs.

Remark 4.2. This phenomenon appears only for functors enriched over
spectra, such as the small functors, which are colimits of representables.
There is a fully featured calculus theory for simplicial functors from spectra
to spectra developed by Michael Ching [6] where the n-excisive functors
appear for every n.

Proof of Proposition 4.1. Given a small homotopy functor F , consider
its cofibrant replacement F̃ , which is a cellular functor and has the filtration

0 = F0 ↪→ · · · ↪→ Fn ↪→ Fn+1 ↪→ · · · ↪→ Fλ = F̃

with Fn+1 obtained from Fn by attaching a cell:

(4)

RA ∧K //
� _

��

Fn� _

��
RA ∧ L // Fn+1

where A may be chosen to be a cofibrant and fibrant spectrum [2, Prop. 5.3],
and K ↪→ L a generating cofibration in spectra.

Our first goal is to show that if Fn in the diagram (4) preserves homotopy
pullbacks (which coincide with homotopy pushouts) of fibrant spectra then
Fn+1 also preserves homotopy pullbacks of fibrant spectra. This will give
the inductive step.

Notice that all three functors in the commutative square (4) preserve ho-
motopy pullbacks of fibrant spectra. We will show that Fn+1 preserves homo-
topy pushouts, too. Since homotopy pullbacks are also homotopy pushouts,
this is a rather intuitive statement of the kind ‘a homotopy pushout of ho-
motopy pushouts is a homotopy pushout again’. The formal argument will
say that homotopy colimits commute with homotopy colimits, and hence if
we apply the functors in (4) to a homotopy pushout square, we obtain a
diagram over the category K×K, where K is the category

• //

��

•

��
• // •

and conclude that the application of Fn+1 on any homotopy pullback of
fibrant spectra is a homotopy pullback again.
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Furthermore, F̃ is a sequential homotopy colimit of functors preserv-
ing homotopy pullbacks of fibrant objects, and therefore F̃ also preserves
homotopy pullbacks of fibrant objects. However, in addition, F̃ is a homo-
topy functor, and hence it is a linear functor, which is fibrant-projective
equivalent to the original small homotopy functor F .

5. Classification of small linear functors. In this section, we present
a classification of small linear functors. These are the small functors taking
homotopy pushouts (= homotopy pullbacks) to homotopy pullbacks. Note
that, since every small functor F ∈ SpSp is a weighted colimit of repre-
sentable functors, it preserves the zero spectrum up to homotopy. Note also
that every linear functor is a homotopy functor.

Let F be the class of maps ensuring that F-local objects are precisely
the fibrant linear functors. Namely,

F =

hocolim

 RD //

��
RB

RC

→ RA

∣∣∣∣∣∣
A //

��
B
��

C // D
homotopy pullback in Sp

.
Our goal is to show that every linear functor is (fibrant-projectively) weakly
equivalent to a filtered colimit of functors represented in cofibrant objects,
i.e., to an image of a cofibrant pro-spectrum under the restricted Yoneda
embedding P constructed in Section 2. We begin with the lemma stating
that these functors are closed under filtered colimits. In other words, fil-
tered colimits of filtered colimits of representable functors are again filtered
colimits.

Lemma 5.1. The full subcategory generated by the filtered colimits of
representable functors is closed under filtered colimits. Moreover, the sub-
category of filtered colimits of functors represented in cofibrant objects is
also closed under filtered colimits.

Proof. Let I and Ji, i ∈ I, be filtered categories. Suppose that

Fi = colim
j∈Ji

RXi,j for some Xi,j ∈ Sp, F = colim
i∈I

Fi.

We need to show that F may be represented as a filtered colimit of repre-
sentable functors.

Applying the left adjoint O to the functor F , we obtain a pro-object
{Xj}j∈J for some filtered category J . Consequently,

{X•} = O(F ) = O
(

colim
i∈I

Fi

)
= colim

i∈I
(pro-Sp)opO(Fi) = lim

i∈I
pro-Sp{Xi,•}.
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However, if we apply P on {X•}, we recover F again:

P ({X•})(−) = hompro-Sp({X•},−)

= hompro-Sp

(
lim
i∈I

pro-Sp{Xi,•},−
)

(constant pro-spaces are cosmall)

= colim
i∈I

(
colim
j∈Ji

RXi,j

)
= colim

i∈I
Fi = F.

Therefore, F = P ({X•}) = colimj∈J R
Xj is a filtered colimit of repre-

sentable functors.
Suppose now that all Xi,j ∈ Sp, i ∈ I, j ∈ Ji, are cofibrant spectra.

Then O(F ) = {X•} is a cofibrant pro-spectrum as a cofiltered inverse limit
of cofibrant pro-spectra {Xi,•} in the class-fibrantly generated strict model
structure on pro-spectra [10]. In other words, {X•} is an essentially levelwise
cofibrant pro-spectrum, and hence P ({X•}) is a filtered colimit of functors
represented in cofibrant spectra.

Proposition 5.2. Let F ∈ SpSp be a linear functor. Then there exists
a filtered diagram J and a functor G = colimj∈J R

Xj with cofibrant Xj ∈
Sp for all j ∈ J , and a weak equivalence f : F̃ → G for some cellular
approximation F̃

∼→ F in the fibrant-projective model structure.

Proof. Since F is a linear functor, it is also a homotopy functor, and
hence there exists a cellular approximation F̃

∼→ F such that for some car-
dinal λ there is a transfinite sequence of functors F̃ = colimi≤λ Fi, and
Fi is obtained from Fi−1 by attaching a generating cofibration of the form

A∧RX̂ ↪→ B ∧RX̂ for every successor cardinal i ≤ λ, and Fi = colima<i Fa
for every limit ordinal i ≤ λ. The cofibration A ↪→ B is a generating cofi-
bration in Sp, and therefore A and B are compact spectra. Moreover, the
representing object X̂ may be chosen to be cofibrant, since F̃ is a homotopy
functor by [2, Prop. 5.3].

By [11, Lemma 3.3], there exists a countable sequence {F ′k}k<ω such that
F ′0 = 0, F = colimk<ω F

′
k, and for each k > 0 there is a pushout square∐
s∈Sk−1

As ∧RX̂s //
� _

��

F ′k−1

��∐
s∈Sk−1

Bs ∧RX̂s // F ′k

where the coproduct is indexed by the subset Sk−1 ⊂ λ corresponding to the
cells coming from various stages of the original sequence {Fi}i≤λ, such that
their attachment maps factor through the (k − 1)st stage of the previously
constructed sequence.

The coproduct of maps in the commutative square above is a filtered col-
imit of finite coproducts over the filtering Jk−1 of the finite subsets of Sk−1.
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Let us think of the constant object F ′k−1 as a filtered colimit of the constant
diagrams over the same filtering Jk−1. However, colimits over Jk−1 commute
with pushouts, and hence we obtain the representation of F ′k as a filtered
colimit of pushouts of the following form:

(5)

∐
s∈Sk−1,j

As ∧RX̂s
ϕk−1,j //

� _

��

F ′k−1

��∐
s∈Sk−1,j

Bs ∧RX̂s // Fk,j

where Sk−1,j ⊂ Sk−1 is a finite subset corresponding to j ∈ Jk−1.
Now, by [2, Lemma 7.1], there are weak equivalences in the fibrant-

projective model category: As ∧RX̂s ' RX̂s∧DAs and Bs ∧RX̂s ' RX̂s∧DBs .
Moreover, any finite coproduct of representable functors is F-equivalent to a
representable functor by an inductive argument on the number of terms that

begins with the observation that a coproduct RÛ tRV̂ of two representables

is F-equivalent to RÛ×V̂, since the map RÛtRV̂ ' hocolim(RÛ ←R0→ RV̂ )

→ RÛ×V̂ is an element in F corresponding to the homotopy pullback square

Û × V̂ //

��

Û

��
V̂ // 0

In other words, the entries on the left-hand side of the pushout square
(5) are F-equivalent to representable functors with fibrant and cofibrant
spectra as representing objects.

Suppose for the induction that there is an F-equivalence F ′k−1 →
coliml∈Lk−1

RYl , where Lk−1 is a filtered category and the representable
functors have fibrant and cofibrant spectra as representing objects. Then we
obtain a morphism of the pushout diagram (5) into a commutative square
(which is also a homotopy pushout) composed of filtered colimits of repre-
sentable functors constructed as follows:

(6)

R
(
∏

s∈Sk−1,j
hom(As,X̂s))cof ϕk−1,j //

��

coliml∈L′k−1
RYl

��

∐
s∈Sk−1,j

As ∧RX̂s

� _

��

//

jj

F ′k−1

��

88

∐
s∈Sk−1,j

Bs ∧RX̂s //

tt

Fk,j

%%
R

(
∏

s∈Sk−1,j
hom(Bs,X̂s))cof // colim

l∈L′k−1

RY
′
l
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The diagonal maps on the left are obtained as compositions of the unit of
the adjunction (see Proposition 2.1) with a map induced by the cofibrant
approximations in pro-Sp:( ∏

s∈Sk−1,j

hom(As, X̂s)
)
cof

∼
�

∏
s∈Sk−1,j

hom(As, X̂s),( ∏
s∈Sk−1,j

hom(Bs, X̂s)
)
cof

∼
�

∏
s∈Sk−1,j

hom(Bs, X̂s).

The universal property of the unit of adjunction guarantees the existence
of a natural map

R
∏

s∈Sk−1,j
hom(As,X̂s) → colim

l∈Lk−1

RYl .

The corresponding map in the pro-category has a lift to the cofibrant re-
placement of the constant pro-spectrum, since the pro-spectrum {Yl}l∈Lk−1

is (levelwise) cofibrant: (∏
s∈Sk−1,j

hom(As, X̂s)
)
cof

�O

����
{Yl}l∈Lk−1

//

55

∏
s∈Sk−1,j

hom(As, X̂s)

The source of the dashed map in the diagram above may be replaced by an
isomorphic pro-object {Yl}l∈L′k−1

with a final indexing subcategory L′k−1 ⊂
Lk−1, so that the resulting map is reindexed into a natural transformation
of contravariant L′k−1-diagrams with a constant diagram in the target. The
induced map in the category of functors is denoted by ϕk−1,j , and it factors
through every stage of the colimit. Thus, the outer pushout diagram in (6)
may be viewed as a filtered colimit of pushout diagrams indexed by L′k−1.

Let

Y ′l = Yl ×(
∏

s∈Sk−1,j
hom(As,X̂s))cof

( ∏
s∈Sk−1,j

hom(Bs, X̂s)
)
cof
.

This is a homotopy pullback of spectra, and hence RY
′
l is F-equivalent to

the homotopy pushout of the corresponding representable functors in the
fibrant-projective model structure on the category of small functors from
spectra to spectra.

Taking the filtered colimit of these commutative squares indexed by
L′k−1, we obtain the outer square of (6), and since filtered colimits pre-
serve both F-equivalences by [5, Lemma 1.2] and homotopy pushouts, we
conclude that coliml∈L′k−1

RY
′
l is F to the homotopy pushout of the outer

square of (6). Consequently, the dashed arrow in (6) is an F-equivalence.
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In other words, Fk,j is F-equivalent to a filtered colimit of representable
functors.

Therefore, F ′k = colimj∈Jk−1
Fk,j is a filtered colimit of functors F-equi-

valent to filtered colimits of representable functors, which, in turn, are
F-equivalent to filtered colimits of representable functors by Lemma 5.1.

Finally, F = colimk<ω F
′
k is a countable sequential colimit of filtered

colimits of functors F-equivalent to representable functors, which may be
reindexed into a single filtered colimit of functors F-equivalent to repre-
sentable functors by Lemma 5.1.

Corollary 5.3. Every small homotopy functor from spectra to spectra
is fibrant-projective equivalent to a filtered colimit of representable functors
represented in cofibrant objects.

Proof. Every small homotopy functor F ∈ SpSp is linear by Proposi-
tion 4.1. Therefore, F is F-local and, by Proposition 5.2, is F-equivalent
to a filtered colimit of representable functors represented in cofibrant ob-
jects. However, F-equivalence of F-local functors is fibrant-projective equiv-
alence.

So far, we have shown that the fibrant objects in the homotopy model
structure constructed in Section 3 are fibrant-projective equivalent to fil-
tered colimits of representable functors represented in cofibrant objects, i.e.,
they correspond to cofibrant pro-objects. Of course, a more elegant way
to state this classification result is to show that the Quillen adjunction of
Proposition 2.2 is actually a Quillen equivalence.

Theorem 5.4. The Quillen adjunction O : SpSp
00 pro-Sp : P

qq
is a

Quillen equivalence if SpSp is equipped with the homotopy model structure
and pro-Sp is equipped with the strict model structure.

The rest of the paper is devoted to the proof of this theorem.

6. Alternative localization construction. In this section, we give an
alternative localization of the fibrant-projective model structure on SpSp,
which produces homotopy approximations of small functors. It is better
suited for establishing that the Quillen map constructed in Proposition 2.1
is a Quillen equivalence.

6.1. The localization construction. Given an arbitrary small func-
tor F ∈ SpSp, consider its (non-functorial) cofibrant replacement in the

fibrant-projective model structure F̃
∼
� F . Then the derived unit of the

adjunction constructed in Proposition 2.1 has the right homotopy type of

the localization we are constructing: u : F̃ → P (Ô(F̃ )). However, the lo-
calization construction involves a coaugmentation map for every functor
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η : F → LF . Now, we factor u into a cofibration followed by a trivial fibra-

tion F̃ ↪→ F1
∼
� PÔF̃ , and declare LF = F ×F̃ F1.

We summarize our localization construction in the following diagram:

(7)

F̃

�O

����

uF //
� o

��

PÔF̃

F1

=}

== ==

��
F �
� // LF

The construction of LF depends on the choice of a cofibrant replacement
for F and a factorization for uF . We fix these choices once and for all. Since
the procedure described above is homotopy meaningful, the homotopy type
of LF does not depend on the choices we make.

The localization construction L is defined also on morphisms. Given a
natural transformation g : F → G of small functors from spectra to spectra,
we proceed through the stages of the definition of L, constructing at each
stage a map corresponding to g, making a choice in the non-functorial parts
of the definition of L. Namely, to obtain a map of cofibrant replacements and
the factorizations, we use the lifting axiom. Such a choice is not functorial,
and it is unique only up to homotopy. Nevertheless, we have the following
commutative diagram:

PÔF̃
PQ̂g̃ // PÔG̃

F1

b"

bbbb

h //

��

G1

<|

<< <<

��

F̃

�O

����

u

OO

g̃ //
- 


<<

G̃

�O

����

v

OO

1 Q

bb

LF
Lg // LG

F
g //

- 


ηF
;;

G
1 Q

ηG
cc

This diagram defines a map Lg for every natural transformation g and a
morphism of maps ηg : g 7→ Lg.

We summarize this discussion in the following proposition.
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Proposition 6.1. For every natural transformation g : F → G of small
functors, the map Lg : LF → LG is defined and depends on the choices
required at various stages of its construction. Moreover, there exist maps
ηF : F → LF and ηG : G → LG depending on the same choices and no
others, such that the square

F
ηF //

g

��

LF

Lg
��

G
ηG // LG

is commutative.

Our goal is to compare the localization construction L with the non-
functorial localization Q previously constructed in Section 3. However, first
we need to prove that L is a homotopy localization construction in ac-
cordance with [2, Definition A.1], and to verify the conditions [2, Defini-
tions A.2–A.6]. Proposition 6.1 above satisfies [2, Definition A.2].

6.2. Verification of homotopy idempotency

Proposition 6.2. For all F ∈ SpSp, the maps ηLF , LηF : LF → LLF
are weak equivalences.

We begin with a technical lemma about class-combinatorial model cate-
gories generalizing similar results for combinatorial model categories: weak
equivalences are closed under λ-filtered colimits [14, 7.3].

Lemma 6.3. Let M be a class-cofibrantly generated model category with
λ-presentable domains and codomains of generating (trivial) cofibrations.
Then λ-filtered colimits of objects in M are homotopy colimits. In other
words, every levelwise weak equivalence of λ-filtered diagrams in M induces
a weak equivalence between their colimits.

Proof. Let A be a λ-filtered category, let X˜ , Y˜ : A→M be two diagrams,
and let f : X˜ → Y˜ be a levelwise weak equivalence. Consider the projective
model structure on the category MA. It may be constructed by a straight-
forward generalization of [16, 11.6]. Now, we apply a cofibrant replacement
in the projective model structure to the map f :

X̃

�O

����

f̃ // Ỹ

�O

����
X

f // Y

The functor colim: MA →M is a left Quillen functor if the domain cate-
gory is equipped with the projective model structure, and hence it preserves
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weak equivalences of cofibrant objects. Moreover, this functor preserves triv-
ial fibrations, since the category M is class-cofibrantly generated. Therefore,
applying a colimit to the commutative square above, we conclude, by the
‘2-out-of-3’ property for weak equivalences, that colim f is a weak equiva-
lence.

Lemma 6.4. Let X• ∈ pro-Sp be a cofibrant pro-spectrum. Then PX• ∈
SpSp is a filtered colimit of representable functors and not necessarily cofi-

brant. Consider a cofibrant replacement p : P̃X•
∼
� PX•. Then the left ad-

joint O preserves this weak equivalence: Op : OP̃X•
∼→ OPX•.

Proof. As the left Quillen functor O preserves weak equivalences between
cofibrant objects, it suffices to prove that O takes to a weak equivalence some
cofibrant approximation of P{Xi} = colimiR

Xi . Consider the cofibrant ap-

proximation q : hocolimiR
X̂i = PX• → PX•, where q is induced by the

fibrant-projective cofibrant approximations RX̂i
∼→ RXi , while the maps

Xi
∼
↪→ X̂i are the functorial fibrant approximations in Sp. Then PX• is cofi-

brant as a homotopy colimit of a diagram with cofibrant entries (we assume
here that a homotopy colimit is defined as a coend with a projectively cofi-
brant, contractible diagram of spaces, i.e., a left Quillen functor preserving
cofibrant objects). By Lemma 6.3, the map q is a weak equivalence, since
filtered colimits in the class-cofibrantly generated fibrant-projective model
structure on SpSp are homotopy colimits.

The functor O preserves colimits and homotopy colimits as a left Quillen
functor, and hence the map Oq : OPX• → OPX• is essentially the map

Oq : hocolimORX̂i → colimORXi , or just Oq : hocolim X̂i → colimXi in
the opposite of the strict model structure on (pro-Sp)op. However, the strict
model structure on pro-Sp is class-fibrantly generated [10], and therefore
the dual model structure is class-cofibrantly generated and the map Oq is a
weak equivalence by Lemma 6.3. Therefore, Op is also a weak equivalence.

Lemma 6.5. The map Oη̃F : OF̃
∼→ OL̃F is a weak equivalence for all

F ∈ SpSp.

Proof. In the commutative diagram (7), the object F1 may serve as a

cofibrant replacement for both LF and PÔF̃ . Therefore, applying the func-
tor O to (7), we conclude that Oη̃F : OF̃

∼→ OL̃F is a weak equivalence: the

trivial fibration F1
∼
� PÔF̃ remains a weak equivalence after application

of O by Lemma 6.4, and the derived unit of the (O,P )-adjunction uF is

also turned by O into a weak equivalence OF̃ → OPÔF̃ ∼= ÔF̃ , and hence
F̃ ↪→ F1 is turned by an application of O into a weak equivalence; the map
Oη̃F is then a weak equivalence by the ‘2-out-of-3’ property.
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Proof of Proposition 6.2. Consider the construction of ηLF first. In the
commutative diagram

F̃

�O

����

� n

a

��

uF // PÔ(F̃ )
/o

m
// PÔ(

˜
PÔF̃ )

/o

g
// P

̂
OPÔF̃

F1

=}

== ==

�O

��

/o

k
//

 `

b
  

PÔF1

�O

��

O�

OO

P
̂̂
OF̃

F
ηF // LF � p

ηLF

!a

!!

L̃F
o/oooo /o

uLF

//
� r

%e

l
%%

PÔL̃F

LLF F2

O�

OOOO

o/oo

g is a weak equivalence by Lemma 6.4, and therefore m is also a weak
equivalence. Applying the ‘2-out-of-3’ property, we find that k, uLF , and l
are weak equivalences. Therefore, ηLF is a weak equivalence by the ‘2-out-
of-3’ property again.

Now, consider the construction of LηF :

PÔF̃
PÔη̃F // PÔL̃F

F1

b"

bbbb

h //

��

F2

;{

;; ;;

��

F̃

�O

����

uF

OO

η̃F //
- 


<<

L̃F

�O

����

uLF

OO

2 R

dd

LF
LηF // LLF

F
ηF //

- 


ηF
;;

LF
2 R

ηLF

ee

The map PÔη̃F is a weak equivalence as an application of the right Quillen
functor P on the weak equivalence, by Lemma 6.5, between fibrant objects

Ôη̃F .

The ‘2-out-of-3’ property then implies that h and LηF are weak equiva-
lences as well.
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In addition, we notice that every stage in the construction of L preserves
weak equivalences, and therefore we readily obtain the following

Proposition 6.6. The localization construction L preserves weak equiv-
alences.

We are now ready to compare the two non-functorial localization con-
structions, and prove that QF is weakly equivalent to LF for all F ∈ SpSp.
We already know that the classes of Q-local objects and L-local objects
coincide: these are fibrant functors weakly equivalent to filtered colimits
of representable functors with cofibrant representing objects. Ideologically,
this should imply the equivalence of localization constructions immediately.
However, the proof of a general statement of this kind is involved and re-
quires plenty of additional structure on the localization constructions, which
does not exist in our case (cf. [5], [13]). Therefore, we shall carry out the
proof in this particular situation.

Lemma 6.7. The derived unit map uF : F̃ → PÔF̃ is a Q-equivalence
for all F ∈ SpSp.

Proof. By Proposition 3.3, it suffices to check whether uF is anH-equiva-
lence, i.e., it suffices to verify that hom(ũF ,W ) for any Q-local functor W .
By Corollary 5.3, W is weakly equivalent to a filtered colimit of representable
functors represented in cofibrant spectra, and hence W ' PX• for some
cofibrant pro-spectrum X•.

By adjunction, the map hom(ũF , PX•) is naturally isomorphic to the
map

hom(O
˜
PÔF̃ ,X•)→ hom(OF̃ ,X•).

By Lemma 6.4, O
˜
PÔF̃ ' OPÔF̃ = ÔF̃ , showing that the last map is a

weak equivalence.

Proposition 6.8. For all F ∈SpSp there is a weak equivalence QF 'LF.

Proof. First, we notice that the coaugmentation map ηF : F → LF is a
Q-equivalence.

Given F , similarly to the verification of [2, A.5] in 3.2, we choose a
cardinal λ big enough that all entries of the commutative diagram (7) are
λ-accessible. Next, we apply a modification of Q which is functorial and on
this particular diagram provides results weakly equivalent to the application
of Q, and conclude that ηF : F ↪→ LF is a Q-equivalence if and only if the

derived unit map uF : F̃ → PÔF̃ is a Q-equivalence. Hence, by Lemma 6.7,
ηF : F → LF is a Q-equivalence.
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Consider now the following commutative diagram obtained by applica-
tion of the construction Q to the coaugmentation:

F
ηF //

� _

��

LF �
� /o //
� _

�O

��

L̂F

����
QF

/o // QLF //

::

∗

Since ηF is a Q-equivalence, QηF is a weak equivalence in the fibrant-
projective model structure, and hence we obtain a zig-zag weak equivalence
QF ' LF for all F ∈ SpSp.

7. Proof of Theorem 5.4. In Proposition 2.2, we have shown that

the adjunction O : SpSp
00 (pro-Sp)op : P

qq
is a Quillen pair. We need to

prove that for every cofibrant F ∈ SpSp and every fibrant X• ∈ (pro-Sp)op

the map f : O(F )→ X• is a (strict) weak equivalence of pro-spectra if and
only if the map g : F → PX• is a weak equivalence in the homotopy model
structure on SpSp, i.e., it is a Q-equivalence of small functors.

Suppose that f : O(F ) → X• is a weak equivalence. Applying a fibrant

replacement to O(F ), we obtain a trivial cofibration j : OF
∼
↪→ ÔF and a

factorization of f as f = f̂ j, where the lifting f̂ exists since X• is fibrant
(in pro-Spop). Moreover, f̂ is a weak equivalence of fibrant objects by the
‘2-out-of-3’ property. The adjoint map g factors as a unit of the adjunction
u : F → POF composed with Pf : g = P (f)u, but Pf = P (f̂ j) = P (f̂)Pj,

and hence g = P (f̂)(P (j)u). Now, P (f̂) is a weak equivalence, since P is
a right Quillen functor and preserves weak equivalences of fibrant objects.
The composed map P (j)u is an L-equivalence by Proposition 6.2 and it is
a Q-equivalence by Lemma 6.7, which applies since F is cofibrant.

Conversely, suppose that g : F → PX• is a weak equivalence. Consider a

cofibrant replacement p : P̃X•
∼
� PX•. Then there exists a lift g̃ : F → P̃X•

in the homotopy model structure. Note that g̃ is a weak equivalence of
cofibrant objects by the ‘2-out-of-3’ property, since g = pg̃. The adjoint
map f : OF → X• factors as Og followed by the counit c : OPX• → X•,
which is a natural isomorphism for all X•. However, Og = OpOg̃, where Op
is a weak equivalence by Lemma 6.4 and Og̃ is a weak equivalence, since O
is a left Quillen functor. Hence, f is a weak equivalence.

Acknowledgments. The author thanks Michael Ching and Bill Dwyer
for helpful discussions.
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