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Fragmentable mappings and CHART groups

by

Warren B. Moors (Auckland)

Abstract. The purpose of this note is two-fold: firstly, to give a new and interesting
result concerning separate and joint continuity, and secondly, to give a stream-lined (and
self-contained) proof of the fact that “tame” CHART groups are topological groups.

1. Introduction. We shall call a triple (G, ·, τ) a right topological group
(left topological group) if (G, ·) is a group, (G, τ) is a topological space and,
for each g ∈ G, the mapping x 7→ x · g (x 7→ g · x) is τ -continuous on G.
If (G, ·, τ) is both a right topological group and a left topological group
then we call it a semitopological group. Let (G, ·, τ) be a right topological
group and let Λ(G, τ) be the set of all x ∈ G such that the map y 7→ x · y is
τ -continuous. If Λ(G, τ) is τ -dense in G then (G, ·, τ) is said to be admissible.
A compact Hausdorff admissible right topological group (G, ·, τ) is called a
CHART group.

The study of CHART groups has come from the study of topological
dynamics; see [16–19]. Recently, it has been shown [6–10] that if the topol-
ogy on a CHART group is sufficiently “nice” then this CHART group is
actually a topological group. The proofs of these results have come as a
by-product of the investigation of the representation theory of “tame” dy-
namical systems [9, 10]. The purpose of this note is two-fold: firstly, to give
a new and interesting result concerning separate and joint continuity, and
secondly, to give a stream-lined (and self-contained) proof of the fact that
“tame” CHART groups are topological groups.

2. Fragmentable maps. Let (X, τ) be a topological space and (Y, µ)
be a uniform space. Following [11,15] we shall say that a mapping f : X → Y
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is (τ, µ)-fragmented if for every nonempty subset A of X and every ε ∈ µ
there exists a τ -open subset U of X such that U ∩ A 6= ∅ and f(U ∩ A)
is ε-small in Y . When the topology τ and the uniformity µ are understood
(from the context), then we simply say that the function f is fragmented.
In the special case when the range space Y is a metric space, this definition
simplifies to the following: a mapping f : X → Y is fragmented if for every
nonempty subset A of X and every ε > 0 there exists a τ -open subset U of
X such that U ∩A 6= ∅ and diam[f(U ∩A)] < ε.

We shall write F(X) := {f ∈ RX : f is fragmented}. If C(X) denotes the
set of all real-valued continuous functions defined on (X, τ) then obviously
C(X) ⊆ F(X). We shall denote by Cp(X) and Fp(X) the sets C(X) and
F(X), respectively, equipped with the topology of pointwise convergence
on X.

Prior to the study of fragmentability of functions, fragmentability was
considered in regard to sets. In this setting the notion of fragmentability can
be traced back to the early 1970’s. See [14] for a brief review of the notion
of fragmentability.

Our considerations will require the following well-known result that says
that fragmentability is preserved by perfect mappings. Recall that a function
T : (X, τ) → (Y, τ ′) between topological spaces is said to be perfect if it is:
(i) surjective; (ii) continuous; (iii) maps closed sets to closed sets; and (iv)
T−1(y) is a compact subset of X for each y ∈ Y .

Lemma 2.1. Let T : X → Y be a perfect surjection acting between
topological spaces (X, τ) and (Y, τ ′). Suppose that f ∈ RX , g ∈ RY and
f = g ◦ T . Then f ∈ F(X) if, and only if, g ∈ F(Y ).

Proof. Suppose that g ∈ F(Y ). Let A be a nonempty subset of X and
ε > 0. Since g ∈ F(Y ), there exists a τ ′-open subset U ′ of Y such that
U ′ ∩ T (A) 6= ∅ and diam[g(U ′ ∩ T (A))] < ε. Let U := T−1(U ′) ∈ τ . Then
U ∩A 6= ∅ and

f(U ∩A) = (g ◦ T )(U ∩A) ⊆ g(T (U) ∩ T (A)) = g(U ′ ∩ T (A)).

Therefore, diam[f(U ∩A)] < ε. This shows that f = g ◦T ∈ F(X). Suppose
that f = g ◦ T ∈ F(X). Let A be a nonempty subset of Y and ε > 0. Since
T is a perfect mapping there exists a minimal (with respect to set-inclusion)
closed subset A′ of X such that A ⊆ T (A′). Since f ∈ F(X), there exists
a τ -open subset U ′ of X with U ′ ∩ A′ 6= ∅ and diam[f(U ′ ∩ A′)] < ε. Now,
A 6⊆ T (A′ \U ′) by the minimality of A′. Let U := Y \ T (A′ \U ′) ∈ τ ′. Then
∅ 6= U ∩A = A \ T (A′ \ U ′) ⊆ T (A′ ∩ U ′) and so

g(U ∩A) ⊆ g(T (A′ ∩ U ′)) = (g ◦ T )(A′ ∩ U ′) = f(A′ ∩ U ′).

Therefore, diam[g(U ∩A)] < ε. This shows that g ∈ F(Y ).
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The following proposition, due to Jean Bourgain, lies at the very heart
of our main result, Corollary 2.6.

Proposition 2.2 ([2]). Let (X, τ) be a second countable topological space
and K ⊆ Fp(X) be compact. Then every nonempty Gδ-subset of K contains
a Gδ-point.

Proof. Let (X, τ) be a second countable topological space, K ⊆ Fp(X)
be a compact subspace and G be a nonempty Gδ-subset of K. In order
to show that G contains a Gδ-point it is sufficient to prove that for every
nonempty closed Gδ-subset G′ of G and every ε > 0 there exists a nonempty
closed Gδ-subset G′′ of G′ such that ‖ · ‖∞-diam(G′′) ≤ ε.

To this end, let ε > 0 and G′ be a nonempty closed Gδ-subset of G. Let
X denote the set of all pairs (G∗, U∗) ∈ 2G × τ such that G∗ is a nonempty
closed Gδ-subset of G′ and

sup {|f(t)− g(t)| : f, g ∈ G∗ and t ∈ U∗} < ε.

We can define a partial ordering on X as follows. Suppose that (G1, U1) ∈ X
and (G2, U2) ∈ X . Then we write (G1, U1) ≤ (G2, U2) if either (G1, U1) =
(G2, U2), or G2 ( G1 and U1 ( U2. We will also write (G1, U1) < (G2, U2)
if (G1, U1) ≤ (G2, U2) and (G1, U1) 6= (G2, U2). It is not hard to show
that (X ,≤) is a nonempty partially ordered set. We claim that (X ,≤) has
a maximal element (Gmax, Umax). To see this, let {(Gα, Uα) : α ∈ A} be a
totally ordered subset of X . Let U∞ :=

⋃
α∈A Uα. Since (X, τ) is hereditarily

Lindelöf there exists a countable subset C of A such that U∞ =
⋃
α∈C Uα.

Let G∞ :=
⋂
α∈C Gα. Then (G∞, U∞) ∈ X . Note that if Uα∗ = U∞ for some

α∗ ∈ A, then (Gα∗ , Uα∗) is an upper bound for {(Gα, Uα) : α ∈ A}. On the
other hand, if Uα is a proper subset of U∞ for each α ∈ A then (G∞, U∞)
is an upper bound for {(Gα, Uα) : α ∈ A}. So in either case we have an
upper bound for {(Gα, Uα) : α ∈ A}. Thus, by Zorn’s lemma, (X ,≤) has a
maximal element (Gmax, Umax).

If Gmax is a singleton then we are done. So suppose that Gmax is not a
singleton. In this case we claim that Umax = X. Suppose not; thenX \Umax is
a nonempty subset of X. Let {Un : n ∈ N} be a countable base (of nonempty
subsets) for the relative topology on X \ Umax. For each n ∈ N, let

Gnmax := {f ∈ Gmax : sup{|f(t)− f(t′)| : t, t′ ∈ Un} ≤ ε/3}.
Then each Gnmax is closed, and since Gmax ⊆ F(X), Gmax =

⋃
n∈NG

n
max.

By the Baire category theorem there exists an l ∈ N, an f ∈ Glmax and a
neighbourhood W of f in Fp(X) that is both closed and a Gδ-set such that

f ∈W ∩Gmax ⊆ Glmax and W ∩Gmax is a proper subset of Gmax.

Let t ∈ Ul, and set U∗ := Umax ∪ Ul and

G∗ := {g ∈ Gmax : g(t) = f(t)} ∩W ∩Gmax.
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Then (G∗, U∗) ∈ X but (Gmax, Umax) < (G∗, U∗), which contradicts the
maximality of (Gmax, Umax). Hence, Umax = X.

For our purposes the following reformulation of Proposition 2.2 is useful.

Corollary 2.3. Let (X, τ) be a second countable topological space and
K ⊆ Fp(X) be compact. If f ∈ K and C is a countable subset of X then
there exists an element g ∈ K such that:

(i) g|C = f |C ;
(ii) g is a Gδ-point of K.

To simplify the statement of the subsequent lemma we shall recall the
following definition. If f : (X, τ)→ (Y, τ ′) is a function between topological
spaces, and x ∈ X, then we say that f is quasi-continuous at x if for each
neighbourhood W of f(x) and each neighbourhood U of x there exists a
nonempty open subset V ⊆ U such that f(V ) ⊆ W [13]. If f is quasi-
continuous at each point of X then we simply say that f is quasi-continuous
on X.

Lemma 2.4. Let (X, τ) be a second countable Baire space and L be a
subset of C(X) such that K := L

τp ⊆ F(X) is compact. Then the evaluation
function e : K ×X → R, defined by e(f, t) := f(t), is quasi-continuous on
K ×X.

Proof. Let (f, t) ∈ K×X. Let U1 be a τp-open neighbourhood of f in K,
U2 be a τ -open neighbourhood of t in X, and W be an open neighbourhood
of f(t) in R. Since e : K×X → R is continuous in the first variable (i.e., for
every x ∈ X, the mapping g 7→ e(g, x) = g(x) is continuous) we may assume,
without loss of generality, that f ∈ L. Furthermore, since R is regular, to
prove that e is quasi-continuous at (f, t) it is sufficient to show that there
exists a nonempty τp-open subset V1 of U1 and a nonempty τ -open subset
V2 of U2 such that e(V1 × V2) ⊆W . Now, since f is continuous there exists
an open neighbourhood N of t, contained in U2, and an ε > 0 such that

f(N) + [−ε, ε] ⊆W.

Let D be a countable dense subset of X that includes the point t. By
Corollary 2.3 there exists a Gδ-point g ∈ U1 such that f |D = g|D. In par-
ticular, g(N ∩D) + [−ε, ε] ⊆ W . Since g ∈ F(X) there exists a nonempty
open subset O of N such that diam[g(O)] = diam[g(O∩N)] < ε. Therefore,
g(O) ⊆ W . Let {Gn : n ∈ N} be a local base for the topology on K at g.
Next, for each n ∈ N, let On := {u ∈ O : h(u) ∈ W for all h ∈ Gn}. Then
O =

⋃
n∈NOn, and so by the Baire category theorem there exists an l ∈ N

such that int(Ol) 6= ∅. In fact int(Ol)∩O 6= ∅. Finally, one can check that if
V2 := int(Ol) ∩O and V1 := Gl ∩ U1 then e(V1 × V2) ⊆W .
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If f : (X, τ) → (Y, τ ′) is a function between topological spaces then we
say that f is feebly continuous on X if for each open subset W of Y such
that f(X) ∩W 6= ∅, int[f−1(W )] 6= ∅ (see [3, 5]).

Theorem 2.5. Let (X, τ) be a compact Hausdorff space and L be a
subset of C(X) such that K := L

τp ⊆ F(X) is compact. Then the evaluation
function e : K ×X → R, defined by e(f, t) := f(t), is feebly continuous on
K ×X.

Proof. The proof, which is indirect, comprises two parts. In Part (I) we
reduce the problem to the case when L is countable. Then, in Part (II),
we apply Lemma 2.4, via a factorisation argument, to obtain the desired
contradiction.

Part (I). Suppose, in order to obtain a contradiction, that the evaluation
mapping e is not feebly continuous on K ×X. Then, due to the regularity
of R, there exists an open subset W of R and (f, t) ∈ K ×X, with e(f, t) =
f(t) ∈ W , such that for each nonempty open subset U ′′ of K and each
nonempty open subset V ′′ of X there exists a g ∈ U ′′ ∩ L such that g(V ′′)
6⊆W . For each set F ⊆ C(X) we shall denote by τ(F ) the weak topology on
X generated by F . It is not hard to see that if F is (at most) countable then
τ(F ) is second countable. Since Cp(X) has countable tightness (see [1,20]) it
follows that for each countable subset C ⊆ L there exists a countable subset
C∗ ⊆ L, containing C, such that for each g ∈ C, each neighbourhood U ′′

of g and each nonempty τ(C)-open subset V ′′ of X there exists an element
g∗ ∈ C∗ such that g∗(V ′′) 6⊆W .

Let L1 := {f} and, for each n ∈ N, let Ln+1 := (Ln)∗. Furthermore, let
L∞ :=

⋃
n∈N Ln ⊆ L and K∞ := L∞

τp ⊆ K. Note: (i) f ∈ L∞, (ii) L∞ is
countable, (iii)

⋃
n∈N τ(Ln) is a topological base for τ(L∞), and (iv) for each

nonempty open subset U ′′ of K∞ and each nonempty τ(L∞)-open subset
V ′′ of X there exists a g ∈ U ′′ ∩ L∞ such that g(V ′′) 6⊆W .

Part (II). Let L∞ = {fn : n ∈ N} and define T : X → RN by T (x)(n) :=
fn(x) for all x ∈ X and n ∈ N. We shall consider RN endowed with the
topology of pointwise convergence on N. With this topology T is continuous
and so T (X) is compact. Since the topology on RN is metrisable we see that
X ′ := T (X) is second countable (and Baire). Let T ∗ : RX′ → RX be defined
by T ∗(h) := h ◦ T for all h ∈ RX′ . We shall consider RX′ endowed with
the topology of pointwise convergence on X ′. With this topology, T ∗ is a
homeomorphic embedding of RX′ onto a closed subspace RX . It is easy to
see that L∞ ⊆ T ∗(C(X ′)) since fn = T ∗(πn) = πn ◦T for each n ∈ N, where
πn : X ′ → R is defined by πn(x′) := x′(n) for all x′ ∈ X ′ ⊆ RN. Thus,

K∞ = L∞
τp ⊆ T ∗(RX′).
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Let K ′∞ := (T ∗)−1(K∞) and L′∞ := (T ∗)−1(L∞). Then L′∞ ⊆ C(X ′)
and K ′∞ = L′∞

τp
. Furthermore, by Lemma 2.1, K ′∞ ⊆ F(X ′). Let f ′ ∈

L′∞ ⊆ C(X ′) be chosen so that T ∗(f ′) = f (i.e., f ′ ◦ T = f). Then

f ′(t′) = f ′(T (t)) = (f ′ ◦ T )(t) = f(t) ∈W, where t′ = T (t).

By Lemma 2.4 there exists a nonempty open subset U ′ of K ′∞ and a nonemp-
ty open subset V ′ of X ′ such that g′(x′) ∈ W for all (g′, x′) ∈ U ′ × V ′.
Let U := T ∗(U ′) and V := T−1(V ′). Then U is open on K∞ and V is
τ(L∞)-open in X.

Now, if g ∈ U and x ∈ V then g = T ∗(g′) for some g′ ∈ U ′. Therefore,

g(x) = T ∗(g′)(x) = g′(T (x)) ⊆ g′(V ′) ⊆W.

However, this contradicts (iv) above [at the end of Part (I)].

Suppose that X, Y and Z are sets and f : X × Y → Z is a function.
Then for each x ∈ X we define f[x] : Y → Z by f[x](y) := f(x, y), and for
each y ∈ Y we define f[y] : X → Z by f[y](x) := f(x, y).

Corollary 2.6. Let (X, τ) and (Y, τ ′) be compact Hausdorff spaces and
(Z, τ ′′) be a completely regular topological space. Suppose that f : X×Y → Z
is a function such that:

(i) for each y ∈ Y , f[y] is continuous;
(ii) there exists a dense subset D of X such that f[x] is continuous for

each x ∈ D;
(iii) for every g ∈ C(Z) and every x ∈ X, (g ◦ f)[x] ∈ F(Y ).

Then f is quasi-continuous on X × Y .

Proof. Suppose that (x, y) ∈ X × Y and W is an open neighbourhood
of f(x, y). Suppose also that U × V is an open neighbourhood of (x, y). We
will show that there exist nonempty open subsets U ′′ of U and V ′′ of V
such that f(U ′′ × V ′′) ⊆W . Choose g ∈ C(Z) such that g(f(x, y)) = 1 and

g(Z \ W ) = {0}. Define ϕ : (U
τ
, τ) → Fp(V

τ ′
) by ϕ(u)(v) := g(f(u, v))

for all v ∈ V
τ ′

. By the hypotheses ϕ is well-defined and continuous and

L := ϕ(D ∩ U) ⊆ C(V
τ ′

). Let

K := L
τp

= ϕ(D ∩ U)
τp

= ϕ(D ∩ U τ ) = ϕ(U
τ
) ⊆ F(V

τ ′
)

and note that ϕ(x)(y) = 1. Let W ′ := (1/2,∞). Then by Theorem 2.5 there
exists a nonempty τp-open subset U ′ of K and a nonempty open subset V ′

of V
τ ′

such that g(v) ∈W ′ for all (g, v) ∈ U ′×V ′. Let U ′′ := ϕ−1(U ′)∩U and
V ′′ := V ′∩V . Then U ′′ and V ′′ are nonempty open subsets and g(f(u, v)) =
(g ◦ f)(u, v) ∈ (1/2,∞) for all (u, v) ∈ U ′′ × V ′′. Thus, f(U ′′ × V ′′) ⊆W .
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Corollary 2.7. Let (X, τ) and (Y, τ ′) be compact Hausdorff spaces and
(Z, τ ′′) be a completely regular topological space. Suppose that f : X×Y → Z
is a function such that:

(i) for each y ∈ Y , f[y] is continuous;
(ii) there exists a dense subset D of X such that f[x] is continuous for

each x ∈ D;
(iii) for every x ∈ X, there exists a sequence (dn : n ∈ N) in D such that

x = limn→∞ dn.

Then f is quasi-continuous on X × Y .

Proof. To prove this result it is sufficient to show that condition (iii)
from Corollary 2.6 is satisfied. To this end, let g ∈ C(Y ), x ∈ X, ε > 0
and let A be a nonempty subset of Y . From the hypotheses there exists a
sequence (dn : n ∈ N) in D such that x = limn→∞ dn.

We claim that (g ◦f)[x] is the pointwise limit of the continuous functions
((g ◦ f)[dn] : n ∈ N). To see this, let y ∈ Y . Then

(g ◦ f)[x](y) = (g ◦ f)(x, y) = g(f(x, y)) = g(f[y](x))

= g
(

lim
n→∞

f[y](dn)
)

since f[y] ∈ C(Y ) and x = lim
n→∞

dn

= lim
n→∞

g(f[y](dn)) since g ∈ C(Z)

= lim
n→∞

g(f(dn, y)) = lim
n→∞

(g ◦ f)(dn, y) = lim
n→∞

(g ◦ f)[dn](y).

By Osgood’s theorem [12, p. 86], (g ◦ f)[x]|A has a point of continuity at

some point y0 ∈ A. Therefore, there exists an open neighbourhood U of y0
such that diam[(g ◦ f)[x](U ∩ A)] < ε. Note also that U ∩ A 6= ∅. Hence
(g ◦ f)[x] ∈ F(Y ).

We end this section with the following question.

Question 2.8. Note that the conclusions of Corollaries 2.6 and 2.7 re-
main valid if one weakens the hypotheses on both spaces (X, τ) and (Y, τ ′)
from being compact Hausdorff to being locally compact Hausdorff. Does the
conclusion of Corollary 2.6 still hold if we further weaken the hypothesis on
(X, τ) to being a completely regular Čech-complete space?

One possible approach to this is to use topological games [4].

3. CHART groups. In this section we apply Corollary 2.6 to CHART
groups.

Lemma 3.1. If (G, ·, τ) is a CHART group and N is an open neighbour-
hood of e then for any g ∈ G,

g ·N−1 ·N = [g ·N−1 ∩ Λ(G)] ·N ∈ τ.



198 W. B. Moors

Proof. We will first show that for any dense subset D of G and any
nonempty open subsets A and B of (G, τ), A−1 · B = (A ∩ D)−1 · B. Let
x ∈ A−1·B. Then for some a ∈ A, a·x ∈ B. SinceB is open and A∩D is dense
in A there is a c ∈ A∩D such that c·x ∈ B. Hence x ∈ c−1 ·B ⊆ (A∩D)−1 ·B.
Thus, A−1 · B ⊆ (A ∩ D)−1 · B. The reverse inclusion is obvious. We now
prove the statement given in the lemma. Let N be an open neighbourhood
of e and let g ∈ G. Let D := Λ(G) ·g, which is dense in (G, τ) since x 7→ x ·g
is a homeomorphism on G. Note also that [Λ(G)]−1 = Λ(G). Therefore,

g ·N−1 ·N = g · [N ∩ Λ(G) · g]−1 ·N by the above

= g · [N−1 ∩ g−1 · Λ(G)] ·N = [g ·N−1 ∩ Λ(G)] ·N.

Proposition 3.2. If (G, ·, τ) is a CHART group and multiplication is
feebly continuous then (G, ·, τ) is a topological group.

Proof. Let π : G ×G → G be defined by π(g, h) := g · h for all (g, h) ∈
G×G. We will first show that π is continuous at (e, e). To this end, let W
be an open neighbourhood of e and let

W ∗ := {g ∈ G : (g, e) ∈ int(π−1(W ))}.

We claim that e ∈W ∗. To justify this claim let us consider an arbitrary open
neighbourhood N of e. Since multiplication is feebly continuous there exist
nonempty open subsets U and V of G such that π(U×V ) = U ·V ⊆ N ∩W .
Let λ ∈ V ∩ Λ(G). Then

(U · λ) · (λ−1 · V ) = U · V ⊆W ∩N ⊆W.

Now, e ∈ λ−1 · V and so U · λ ⊆W ∗. On there other hand,

U · λ = (U · λ) · e ⊆ (U · λ) · (λ−1 · V ) ⊆W ∩N ⊆ N.

Therefore ∅ 6= U · λ ⊆W ∗ ∩N . This completes the proof of the claim.

Note also that since W ∗ is an open set, e ∈ W ∗ ∩ Λ(G). Since (G, τ) is
compact and Hausdorff, to show that π is continuous at (e, e) ∈ G × G it
is sufficient to prove that

⋂
N∈N (e) π(N ×N) ⊆ {e}, where N (e) denotes

the set of all open neighbourhoods of e in G. So let z ∈
⋂
N∈N (e) π(N ×N).

Since (G, τ) is regular and Hausdorff, to show that z = e it will be sufficient
to prove that z ∈ V for each V ∈ N (e). Let V ∈ N (e) and λ ∈ V ∗ ∩ Λ(G).
Then there exists anN ∈ N (e) such that (λ·N)·N = λ·π(N×N) ⊆ V and so

λ·z ∈ λ·π(N ×N) ⊆ V . Now, as e ∈ V ∗ ∩ Λ(G), we have z = e·z ∈ V . Thus,
π is continuous at (e, e). In fact, it is not hard to see that π is continuous
at each point of Λ(G)×G.

Next, we shall show that inversion is continuous at e. As with multiplica-
tion, it is sufficient to show that

⋂
N∈N (e)N

−1 ⊆ {e}. Let y ∈
⋂
N∈N (e)N

−1.

Since (G, τ) is T1, to prove that y = e it will be sufficient to show that e ∈ V
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for every open neighbourhood V of y. Thus, let V be an open neighbour-
hood of y = e · y. By the continuity of π at (e, y) ∈ Λ(G)×G there exists a
neighbourhood N of e and a neighbourhood U of y such that π(N×U) ⊆ V .

Since y ∈ N−1, we have N−1∩U 6= ∅. Thus, e ∈ N ·U ⊆ V . This shows that
inversion is continuous at e. Furthermore, since N−1 ·N = (N ∩Λ(G))−1 ·N
for each N ∈ N (e) (see Lemma 3.1), {N−1 ·N : N ∈ N (e)} is a local base
for τ , at e, consisting of τ -open sets.

To prove that inversion is continuous on G we simply need to note that
for each g ∈ G:

(i) {N−1 ·N · g : N ∈ N (e)} is a local base for τ at g;
(ii) (N−1 ·N · g)−1 = g−1 ·N−1 ·N = (g−1 ·N−1 ∩ Λ(G)) ·N ∈ τ (see

Lemma 3.1).

From this and the fact that (G, ·, τ) is a right topological group it follows
that (G, ·, τ) is also a left topological group, i.e. (G, ·, τ) is a semitopological
group. However, since π is continuous at (e, e) it now follows that π is
continuous on G×G. Therefore, (G, ·, τ) is a topological group.

Following [6, 7] we shall say that a CHART group (G, ·, τ) is tame if for
every g ∈ G the mapping Lg : (G, τ)→ (G,µ), defined by Lg(x) := g · x, is
(τ, µ)-fragmented, where µ is the unique uniformity on G that is compatible
with the topology τ onG. It is shown in [7, Lemma 2.3(3)] that this definition
is equivalent to the following. A CHART group (G, ·, τ) is tame if for every
f ∈ C(G) and g ∈ G, the mapping x 7→ f(g · x) is fragmented.

Theorem 3.3 ([9,10]). If (G, ·, τ) is a tame CHART group then (G, ·, τ)
is a topological group.

Proof. By Proposition 3.2 it is sufficient to show that the multiplication
operation on (G, ·, τ) is feebly continuous. Let X := Y := Z := G and let
f : X × Y → Z be defined by f(x, y) := x · y. Since (G, ·, τ) is a tame
CHART group it follows that f satisfies the hypotheses of Corollary 2.6.
Therefore, f is quasi-continuous (and hence feebly continuous) on G×G.
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