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Discrepancy estimates for
some linear generalized monomials
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Roswitha Hofer (Linz) and Olivier Ramaré (Lille)

1. Introduction. A natural way to extend the family of real-valued
polynomials is to add the integer part operation, denoted by [·], to the
arithmetical operations of addition and multiplication. Then functions like
p1(x) = [[b1x] + b2x

2]x + b3 and p2(x) = [[b1x][b2[x]b3x
2]] can be obtained.

We call such functions generalized polynomials. The question whether a se-
quence (p(n))n≥0, where p is a generalized polynomial, is uniformly dis-
tributed modulo one was for instance studied by H̊aland [9, 10], Bergelson
and Leibman [4], and Leibman [13], using either the Weyl criterion or dy-
namical properties.

A sequence (xn)n≥0 of real numbers is said to be uniformly distributed
modulo one (u.d. mod 1) if

lim
N→∞

#{n : 0 ≤ n < N, a ≤ {xn} < b}
N

= b− a

for all real numbers a, b satisfying 0 ≤ a < b ≤ 1. Here and in what follows,
{x} denotes the fractional part of x.

For example the sequence ([nα]β)n≥0 is known to be u.d. mod 1 when α
is a nonzero rational real if and only if β is irrational. If α is zero then the
sequence is u.d. mod 1 for no real number β. And when α is irrational, the
uniform distribution modulo one of ([nα]β)n≥0 is equivalent to the condition,
1, α, αβ being linearly independent over the rationals. (For a proof see [12,
Chapter 5, Theorem 1.8].)

We define (and use) the notion of the discrepancy of a sequence in
the multi-dimensional setting. The discrepancy of the first N terms of the
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s-dimensional sequence (x
(1)
n , . . . , x

(s)
n )n≥0 of real numbers is given by

sup
0≤ai<bi≤1
i=1,...,s

∣∣∣∣#{n : 0 ≤ n < N, ai ≤ {x(i)n } < bi, i = 1, . . . , s}
N

−
s∏
i=1

(bi − ai)
∣∣∣∣,

denoted by DN ((x
(1)
n , . . . , x

(s)
n )) and most often abbreviated to DN when the

relevant sequence is clear from the context.

So far the discrepancy of sequences of the form (p(n))n≥0, where p is
a generalized polynomial, has only been studied when the polynomial p
is nongeneralized, i.e., no brackets [·] occur. The most basic example is
of course given by (nα)n≥0. It has been amply studied, and the Diophan-
tine properties of α play an important role (we refer to [7] for an excellent
overview).

We turn our attention to the first nontrivial generalized example, namely
the sequence ([nα]β)n≥0. This sequence is also of interest because it is a
subsequence of (nβ)n≥0. Such subsequences are actively studied (see for
instance the recent work [1]). When α equals p/q with nonzero integers
p, q and q > 0, one can easily fragment the sequence ([nα]β)n≥0 into q
sequences of the form (mpβ + [rp/q]β)m≥0 with r = 0, 1, . . . , q − 1. These
sequences coincide with the most basic case (nα)n≥0, which—as already
mentioned—is well studied. We thus focus on the case when 1, α, αβ are
linearly independent over the rationals. To state our main result we follow
the terminology of Niederreiter (cf. for example [14]).

Definition 1. Let t be a real number greater than or equal to 1. We
say the pair of real numbers (γ, δ) is of finite type t if for any ε > 0 there
exists a positive constant c such that for any pair (m,n) of rational integers,
not both zero, we have(

max(1, |m|)
)t+ε(

max(1, |n|)
)t+ε‖mγ + nδ‖ ≥ c.

The constant c may depend on ε, γ, and δ but not on m or n. (Here and
below, ‖x‖ stands for the-distance-to-the-nearest-integer function.)

Example 1. (1) Let γ and δ be real algebraic numbers such that 1, γ, δ
are linearly independent over the rationals. Then by [18, Theorem 2] we
know that the pair (γ, δ) is of finite type 1.

(2) Let q1 and q2 be different nonzero rational numbers. Then the pair
(eq1 , eq2) is of finite type 1 (see [2] and [15]).

(3) By, e.g., [3, equation (2.9)] almost all pairs (γ, δ) ∈ R2 in the sense of
Lebesgue measure are of finite type 1. In this case an even stronger estimate
holds: for every ε > 0 there exists a positive constant c such that

(LogmLog n)1+ε max(1, |m|) max(1, |n|)‖mγ + nδ‖ ≥ c
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for any pair of rational integers (m,n) not both zero. The constant may de-
pend on γ, δ, and ε. (Throughout this paper, we use Log(x) for max(1, log(|x|))
if x 6= 0, and we set Log(0) = 1).

In the following definition we introduce a linear independence mea-
sure, related to the notion of finite type, and studied for instance in [11]
or [20].

Definition 2. Let t′, γ, and δ be real numbers and let t′ be greater than
or equal to 1. We say that 1, γ, and δ have linear independence measure t′ if
for any ε > 0 there exists a positive constant c such that for any pair (m,n)
of rational integers, not both zero, we have

max(|m|, |n|)t′+ε‖mγ + nδ‖ ≥ c.

The constant c may depend on ε, γ, and δ but not on m or n.

Note that max(|m|, |n|) ≤ max(1, |m|) max(1, |n|). Hence, a pair that
together with 1 has linear independence measure t′ admits also t′ as a finite
type.

The corresponding notion for a single real number γ is the one of irra-
tionality measure. We say that t + 1 is an irrationality measure of γ when
for any nonzero integer m and any ε > 0, one has

|m|t+ε‖mγ‖ �ε,γ 1.

It is well known that if γ has irrationality measure t+ 1, then DN (nγ)�γ,ε

N−1/t+ε (see, e.g., [12, Theorem 3.2]). This bound is, up to the ε, best
possible in N (note the lower bound Ω(N−1/t−ε) for infinitely many N in
[15, Theorem 2]). In two dimensions, it is known that the discrepancy of the
sequence (nβ1, nβ2)n≥0, where (β1, β2) is of finite type t, satisfies for every
ε > 0,

(1) Ω(N−1/t−ε) = DN (nβ1, nβ2) = Oβ1,β2,ε(N−1/(2t−1)+ε).

(See [15, Theorem 2] for the lower bound, which holds for infinitely many N ,
and [14, Lemma 6] for the upper bound.)

Theorem 1.1. Let t ≥ 1 and α, β be real numbers such that 1, α, αβ
are linearly independent over the rationals. Assume that both pairs (α, αβ)
and (β, 1/α) are of finite type t. Then, for every ε > 0,

DN ([nα]β)�α,β,ε N
−1/(3t−2)+ε.

Corollary 1.2. Let α and β be algebraic real numbers such that 1, α,
and αβ are linearly independent over the rationals. Then for every ε > 0,

DN ([nα]β)�α,β,ε N
−1+ε.
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Corollary 1.3. Let q1 and q2 be nonzero rational numbers satisfying
q1 + q2 6= 0. Then for every ε > 0,

DN ([neq1 ]eq2)�q1,q2,ε N
−1+ε.

Corollary 1.4. For almost all pairs of real numbers (α, β) in the sense
of Lebesgue measure, for every ε > 0, we have DN ([nα]β)�α,β,ε N

−1+ε.

Corollary 1.5. Let t ≥ 1 and α, β be real numbers such that 1, α, αβ
have linear independence measure t. Then for every ε > 0,

DN ([nα]β)�α,β,ε N
−1/(3t−2)+ε.

Example 2. Let us note that [11, Theorem 2.1] proves the following:

max(|m|, |n|)7.0161‖mπ + n log 2‖ � 1

for all m,n ∈ Z not both zero. Or, on employing our Definition 2, the
triple (1, π, log 2) admits 7.0161 as a linear independence measure. By using
Corollary 1.5 together with Lemma 2.5, we derive that the discrepancy of
both sequences ([n/π] log 2)n≥0 and ([n/log 2]π)n≥0 is O(N−0.052498).

The remaining part of the paper is organized as follows. In Section 2 we
collect several auxiliary results that will be used to prove our main Theo-
rem 1.1 and its corollaries. Section 3 elaborates the main tool to handle the
specific exponential sums occurring when using the Erdős–Turán inequality
for the discrepancy of the sequence ([nα]β)n≥0. Theorem 1.1 and its corol-
laries are proved in Section 4. Finally, Section 5 collects some interesting
unresolved problems and future research tasks.

2. Auxiliary results. To estimate the discrepancy of our sequence we
use the celebrated Erdős–Turán inequality (see for example [7, 12, 16]).

Lemma 2.1. For the discrepancy DN of N points x0, x1, . . . , xN−1 we
have

DN ≤
2

H + 1
+ 2

H∑
h=1

1

h

∣∣∣∣ 1

N

N−1∑
k=0

e2πihxk
∣∣∣∣,

where H is an arbitrary positive integer usually chosen smaller than N .

Lemma 2.2 (The Gap Lemma). Let I ∈ N, let x1, . . . , xI be real num-
bers, and let f be a nonnegative nonincreasing function over [0, 1]. Further-
more, let δ ∈ (0, 1/2] be such that for all distinct i, j ∈ {1, . . . , I} we have

‖xi‖ ≥ δ and ‖xi − xj‖ ≥ δ.
Then for every i ∈ {1, . . . , I} there are at most two values j ∈ {1, . . . , I}
such that

∣∣‖xi‖ − ‖xj‖∣∣ < δ and∑
1≤i≤I

f(‖xi‖) ≤ 2
∑

1≤j≤(2δ)−1

f(jδ).
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Proof. The statement on
∣∣‖xi‖ − ‖xj‖∣∣ follows by the special proper-

ties of the function x 7→ ‖x‖ and the fact that different indices i, j yield
‖xi − xj‖ ≥ δ. This implies that each of the intervals

[0, δ), [δ, 2δ), . . . , [kδ, (k + 1)δ)

with 1/2−δ < kδ ≤ 1/2 contains at most two points ‖xi‖, and since ‖xi‖ ≥ δ
the first interval is empty. Note that k = [1/(2δ)]. Finally, the fact that f is
nonincreasing yields the desired inequality.

Lemma 2.3. Let D ≥ 1. Assume (β, 1/α) is of finite type t. If |mβ−n|
≤ D for some integers m and n not both zero, then

‖(mβ − n)α‖ �α,β,ε max(1, |m|)−t−εD−t−ε.
Proof. Let m,n not both zero be such that |mβ − n| ≤ D. Note that

the assumption that (β, 1/α) is of finite type t guarantees that 1, α, αβ are
linearly independent over the rationals. Hence, there is a unique integer `
such that

0 < ‖(mβ − n)α‖ = |mβα− nα− `| < 1/2.

Obviously, |`| ≤ |α|D + 1/2. We derive

1

|α|
‖(mβ − n)α‖ =

1

|α|
|mβα− nα− `| = |mβ − l/α− n|

≥ ‖mβ − `/α‖ �α,β,ε max(1, |m|)−t−ε max(1, |`|)−t−ε.
Finally, max(1, |`|)−t−ε �α,ε D

−t−ε.

Lemma 2.4. When α is an algebraic real number of degree greater than 1,
we have DN (nα)�α,ε N

−1+ε.

Proof. Note that by the famous Thue–Siegel–Roth theorem an algebraic
real number of degree greater than 1 has irrationality measure 2 (cf., e.g.,
[5, p. 248]).

Lemma 2.5. Let α and β be nonzero real numbers. Then the triple
(1, α, αβ) has linear independence measure t′ if and only if (1, β, 1/α) has
linear independence measure t′.

Proof. Let ε > 0. By definition, we have

min
m,n∈Z

not both zero

min
`∈Z

max(|m|, |n|)t′+ε|mα+ nαβ + `| �α,β,ε 1,

which is equivalent to

min
m,n,`∈Z

not all zero

max(1, |m|, |n|)t′+ε|mα+ nαβ + `| �α,β,ε 1.

This inequality immediately yields

(2) min
m,n,`∈Z

not all zero

max(|m|, |n|, |`|)t′+ε|mα+ nαβ + `| �α,β,ε 1.
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The latter inequality also implies the former one: either |mα+nαβ+ `| ≤ 1,
and therefore |`| �α,β max(1, |m|, |n|), or |mα + nαβ + `| ≥ 1 and the
inequality is obvious. Now that we have a definition that is symmetrical
in m, n, and `, we simply divide by α in (2) to show that any linear
independence measure for (1, α, αβ) is also valid for (1, β, 1/α), and con-
versely.

Lemma 2.6. Let λ2 be the Lebesgue measure on R2. Set X = (R\{0})2.
Let f : X → X be a continuously differentiable bijection. Suppose the
Jacobian matrix Df of f satisfies |detDf | > 0 everywhere in X. Fur-
thermore, let g : X → {0, 1} be a Lebesgue measurable function satisfying
λ2(g

−1({1})) = 0. Then

λ2
(
(g ◦ f)−1({1})

)
= 0.

Proof. By the change-of-variable theorem (see for example [17, Theo-
rem 7.26]) we obtain

�

X

g dλ2 =
�

X

(g ◦ f)|detDf | dλ2.

From this equality together with the fact that λ2(g
−1({1})) = 0 we find that

both integrals above are 0. We observe that (g ◦ f)|detDf | ≥ 0 everywhere
in X. Using |detDf | > 0 we conclude λ2((g ◦ f)−1({1})) = 0.

3. An approximation and its Fourier transform. In the following
we abbreviate e2πiy to e(y). We consider the 1-periodic function

fτ (x) = e({x}τ)

where τ is some nonzero real number (in our application, τ will be −hβ
for some possibly large integer h and an irrational β). We need to expand
fτ in a Fourier series. This is not a priori possible since this function is not
regular enough for the expansion to converge pointwise. We have to recourse
to a smooth approximation. We select a positive real parameter δ, a positive
integer r, and look at

gτ (x; δ) =

δ�

−δ
· · ·

δ�

−δ
e({x+ u1 + · · ·+ ur}τ)

du1 · · · dur
(2δ)r

.

This is an approximation of fτ in the following sense.

Lemma 3.1. For any real number α,∑
0≤n<N

∣∣fτ (nα)− gτ (nα; δ)
∣∣� r2δ(1 + |τ |)N +NDN (nα).
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Proof. We first check that if rδ < {x} < 1− rδ, then

gτ (x; δ)− fτ (x) =

δ�

−δ
· · ·

δ�

−δ

(
e({x+ u1 + · · ·+ ur}τ)− e({x}τ)

) du1 · · · dur
(2δ)r

�
rδ�

−rδ
|{x+ u} − {x}| |τ | du

δ
� r2δ|τ |.

Thus ∑
0≤n<N,
‖αn‖>rδ

∣∣fτ (nα)− gτ (nα; δ)
∣∣� r2Nδ|τ |.

The contribution of the remaining terms is easily bounded above by crδN +
cNDN (nα) with an absolute positive constant c. Note that∑
0≤n<N,
‖αn‖≤rδ

∣∣fτ (nα)− gτ (nα; δ)
∣∣� ∑

0≤n<N,
‖αn‖≤rδ

2

� #{0 ≤ n < N : {αn} ∈ [0, rδ]}+ #{0 ≤ n < N : {αn} ∈ [1− rδ, 1]}
� rδN +NDN (nα).

The Fourier coefficients of gτ are easy to obtain by replacing x + u1 +
· · ·+ ur by y and invoking the periodicity of y 7→ {y}:

1�

0

gτ (x; δ)e(kx) dx

=

1�

0

δ�

−δ
· · ·

δ�

−δ
e({x+ u1 + · · ·+ ur}τ + kx)

du1 · · · dur
(2δ)r

dx

=

δ�

−δ
· · ·

δ�

−δ
e(−ku1 − · · · − kur)

1�

0

e({y}τ + ky) dy
du1 · · · dur

(2δ)r

=

(
sin 2πkδ

2πkδ

)r e(τ + k)− 1

2πi(k + τ)
= ĝτ (k; δ).

For r ≥ 2, the function gτ is at least C1 and we have

gτ (x; δ) =
∑
k∈Z

ĝτ (k; δ)e(−kx)

(pointwise, for every x).
In the following we always assume that r ≥ 2t+ 1.

4. Proof of Theorem 1.1 and its corollaries. Using Lemma 2.1, for
the discrepancy DN of the first N terms of the sequence ({[nα]β})n≥1 we
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obtain the bound

(3) DN ≤
2

H + 1
+ 2

H∑
h=1

1

h

∣∣∣∣ 1

N

N−1∑
n=0

e(h[nα]β)

∣∣∣∣.
We notice that h[nα]β = hnαβ − h{nα}β, approximate e(−h{nα}β) =
f−hβ(nα) by g−hβ(nα; δ), and rely on Lemma 3.1 to bound the inner sum:∣∣∣ ∑

0≤n<N
e(h[nα]β)

∣∣∣ =
∣∣∣ ∑
0≤n<N

e(−h{nα}β)e(hnαβ)
∣∣∣

≤
∣∣∣∑
k∈Z

ĝ−hβ(k; δ)
∑

0≤n<N
e(hnαβ − knα)

∣∣∣
+Or(δ(1 + |hβ|)N) +O(NDN (nα)).

We concentrate on the sum of the right hand side and make use of the special
form of ĝ−hβ(k; δ). The trivial fact that |sin(2πx)/x|r �r min(1, 1/|x|r)
yields∣∣∣∑

k∈Z
ĝ−hβ(k; δ)

∑
0≤n<N

e(hnαβ − knα)
∣∣∣

�r

∑
k∈Z

‖hβ − k‖
|hβ − k|

min(1, 1/(|k|δ)r) 1

‖(hβ − k)α‖

where we have also employed, for any irrational κ, the elementary estimates∣∣∣N−1∑
n=0

e(κn)
∣∣∣ ≤ 2

|e(κ)− 1|

and

0 < ‖κ‖ � |e(κ)− 1| = 2|sin(πκ)| � ‖κ‖.

We select δ−1 = hN θ for some θ ∈ (0, 1/t], which we will choose later.
With this choice of δ, the terms Or(δ(1 + |hβ|)N) + O(NDN (nα))) in the
inequality above, when summed over h, give a contribution to (3) that is

Or,β
(

1

N θ
Log(H) + Log(H)DN (nα)

)
= Or,α,β,ε1(N−θ+ε1)

for every ε1 > 0. Note that the assumptions on α and β ensure that α has
irrationality measure t+ 1, and therefore DN (nα)�α,ε N

−1/t+ε ≤ N−θ+ε.

Restricting the range in k. We first consider the case when |k| ≥
|h|ρ−1δ−1 = hρN θ for some ρ ∈ [1, 2] that we will choose later (very close
to 1). For N larger than (2|β|)1/θ, we have k ≥ 2|hβ| and thus |hβ − k|
≥ |k|/2, while, of course, ‖hβ − k‖ ≤ 1. We set K := Kh = |h|ρN θ and
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apply dyadic subdivision to get

∑
|k|≥K

‖hβ − k‖
|hβ − k|

min(1, 1/(|k|δ)r) 1

‖(hβ − k)α‖
�

∑
|k|≥K

hrN rθ

|k|r+1

1

‖(hβ − k)α‖

� hrN rθ
∞∑
µ=0

(2µK)−r−1
∑

2µK≤|k|<2µ+1K

1

‖(hβ − k)α‖
.

Using the assumption that (α, αβ) is of finite type t we obtain, for any
real ε2 > 0 and any integer µ ≥ 0, a constant γ = γα,β,ε2(µ,K, h) of the

form cα,β,ε22µ(−t−ε2)(hK)−t−ε2 for some constant cα,β,ε2 > 0, independent
of µ, K, and h, such that for any |k|, |k1|, |k2| < 2µ+1K we have both

‖hαβ − kα‖ ≥ γ and ‖hαβ − k1α− (hαβ − k2α)‖ ≥ γ

whenever k1 6= k2. Therefore the Gap Lemma applies. Hence,

∑
2µK≤|k|<2µ+1K

1

‖(hβ − k)α‖
≤ 2

[(2γ)−1]∑
j=1

1

jγ
≤ 2

γ
(1 + log(1/(2γ)))

�α,β,ε2 2µ(t+ε2)ht+ε2Kt+ε2 Log(2µhK)

� 2µ(t+ε2)ht+ε2Kt+ε2(µ+ Log(hK)).

The summation over µ can be bounded by an absolute constant when r >
t+ ε2. When summed over h, this gives a contribution to (3) that is

Or
(
N rθ−1

H∑
h=1

hr+t+ε2−1K−r−1+t+ε2 Log(hK)
)

�α,β,r,ρ,θ,ε2 (LogN)N (t−1)θ−1+ε2θ
H∑
h=1

hr+t−(r+1−t)ρ+(1+ρ)ε2−1

�α,β,r,ρ,θ,ε2 (LogN)N (t−1)θ−1+ε2θ

provided that

(4) r + t− (r + 1− t)ρ+ (1 + ρ)ε2 ≤ −1.

Treating the remaining terms: Summing over h in a dyadic box
and localizing hβ−k. Now that k is bounded above in absolute value, we
majorize min(1, (hN θ/|k|)r) by 1. It remains to bound

Σ =
1

N

H∑
h=1

1

h

∑
|k|<|h|ρNθ

‖hβ − k‖
|hβ − k|

1

‖(hβ − k)α‖
.
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We use a dyadic decomposition for h = 1, . . . ,H and obtain

(5) Σ � 1

N

[log2H]∑
ν=0

1

2ν

min(2ν+1−1,H)∑
h=2ν

∑
|k|<|h|ρNθ

‖hβ − k‖
|hβ − k|

1

‖(hβ − k)α‖
.

The next step is to localize hβ − k. Note that

|hβ − k| ≤ 2 min(2ν+1 − 1, H)ρN θ

when N is large enough with respect to β, and for given h and D there are
at most two values for k such that D ≤ |hβ − k| < D + 1. We thus write

min(2ν+1−1,H)∑
h=2ν

∑
|k|<|h|ρNθ

‖hβ − k‖
|hβ − k|

1

‖(hβ − k)α‖

≤ ΣB +

θ log2N+ρmin(ν+1,log2H)+1∑
µ=0

(
1

2µ
Σµ

)
where

ΣB :=

min(2ν+1−1,H)∑
h=2ν

∑
k∈Z

|hβ−k|≤1

1

‖(hβ − k)α‖
,

Σµ :=

min(2ν+1−1,H)∑
h=2ν

∑
k∈Z

2µ≤|hβ−k|<2µ+1

1

‖(hβ − k)α‖
.

Since (β, 1/α) is of finite type t, we can apply Lemma 2.3. For every
ε3 > 0 we have a ξ := ξα,β,ε3(ν, µ) in the style of cα,β,ε32ν(−t−ε3)2µ(−t−ε3)

that satisfies the following: for any h, h′ in [2ν , 2ν+1) and any k, k′ such that
|hβ − k| and |h′β − k′| in [2µ, 2µ+1) we have both

‖(hβ − k)α‖ ≥ ξ and ‖(hβ − k)α− (h′β − k′)α‖ ≥ ξ.
The Gap Lemma applies, and we obtain

Σµ �α,β,ρ,θ,ε3 (logN)2ν(t+ε3)2µ(t+ε3).

We also derive, quite analogously,

ΣB �α,β,ε3 (logN)2ν(t+ε3).

Inserting these results into (5), we get

Σ �α,β,ρ,θ,ε3

logN

N

[log2H]∑
ν=0

2ν(t−1+ε3)
θ log2N+ρmin(ν+1,log2H)+1∑

µ=0

2µ(t−1+ε3)

�α,β,ρ,θ,ε3 (logN)H(ρ+1)(t−1+ε3)N θ(t−1+ε3)−1
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with an additional dependence of the constant on r in the Erdős–Turán
inequality.

Balancing all terms occurring in the discrepancy bound. We
summarize all terms, which we obtained for the upper bound of the discrep-
ancy D∗N for the first N terms of the sequence ([nα]β)n≥1,

D∗N = O(1/H) +Or,α,β,ε1(N−θ+ε1) +Oα,β,r,ρ,θ,ε2((logN)N (t−1)θ−1+ε2θ)

+Oα,β,r,ρ,θ,ε3
(
(logN)H(ρ+1)(t−1+ε3)N θ(t−1+ε3)−1]

)
.

We take H = [N θ] to balance the first two terms. Let ε4, ε5 > 0. We choose
r = r(t, ε2, ε4) as the minimal value such that ρ = 1 + ε4 is an admissible
choice for (4), we use logN �ε5 N

ε5 , and arrive at

D∗N = Oα,β,ε1,ε2,ε4(N−θ+ε1) +Oα,β,θ,ε2,ε4,ε5(N (t−1)θ−1+ε2θ+ε5)

+Oα,β,θ,ε2,ε4,ε3,ε5(N (2+ε4)θ(t−1+ε3)+θ(t−1+ε3)−1+ε5).

The latter exponent can be rewritten as

3θ(t− 1)− 1 + 3θε3 + ε4θ(t− 1 + ε3) + ε5.

We equate the first and the third exponent, ignore the epsilons, and obtain

3θ(t− 1)− 1 = −θ.
By setting θ = 1/(3t− 2) we arrive at

D∗N = Oα,β,ε1,ε2,ε4(N−1/(3t−2)+ε1) +Oα,β,ε2,ε4,ε5(N−1/(3t−2)+ε2/(3t−1)+ε5)

+Oα,β,ε2,ε4,ε3,ε5(N−1/(3t−2)+3ε3/(3t−2)+ε4(t−1+ε3)/(3t−2)+ε5).

Obviously, we can now choose for any ε > 0 a set of ε1, ε2, ε3, ε4, ε5 depending
on ε such that the right hand side of the equation above is

Oα,β,ε(N−1/(3t−2)+ε),
and the proof of Theorem 1.1 is complete.

Proof of the corollaries. Corollary 1.2 easily follows from Theorem 1.1
and Example 1(1). The fact that 1, α, αβ are linearly independent over Q
immediately implies the linear independence of 1, 1/α, β. By Example 1(1)
both pairs (α, αβ) and (1/α, β) are of finite type 1. The result follows from
Theorem 1.1.

For Corollary 1.3, note that for nonzero rationals q1 and q2 satisfying
q1+q2 6= 0, Example 1(2) ensures that both pairs (eq1 , eq1+q2) and (e−q1 , eq2)
are of finite type 1. By Theorem 1.1 the desired discrepancy bound is valid.

Corollary 1.5 is an immediate consequence of Theorem 1.1, Lemma 2.5,
and the trivial fact that the pair (γ, δ) of real numbers is of finite type t if
the triple (1, γ, δ) has linear independence measure t.
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In order to prove Corollary 1.4 we define a function g : R \ {0}×R \ {0}
→ {0, 1} by setting g(τ, σ) = 1 when (τ, σ) is not of finite type 1 and
g(τ, σ) = 0 otherwise. From Example 1(2) we know that g is a Lebesgue
measurable function and that λ2(g

−1({1})) = 0. We define two more func-
tions from X to X with X = R \ {0}×R \ {0} by setting f1(α, β) = (α, αβ)
and f2(α, β) = (1/α, β). It is easily verified that both f1 and f2 satisfy all
conditions required in Lemma 2.6, which then yields

λ2
(
(g ◦ f1)−1({1})

)
= λ2

(
(g ◦ f2)−1({1})

)
= 0.

These equalities imply that for almost all (α, β) ∈ X in the sense of Lebesgue
measure both (α, αβ) and (1/α, β) are of finite type 1. Such α and αβ to-
gether with 1 are also linearly independent over the rationals. An application
of Theorem 1.1 concludes the proof of Corollary 1.4.

5. Future research and unresolved questions. This section collects
several unsolved problems which emerged during the investigation of the
sequence ([nα]β)n≥0.

Problem 1. Improve (1) and find sharp estimates for the discrepancy
of the sequence (nβ1, nβ2)n≥0, where (β1, β2) is of finite type t.

Problem 2. Improve Corollary 1.4 and find for almost all (α, β) (in the
sense of Lebesgue measure) a discrepancy bound for the sequence ([nα]β)n≥0
for all ε > 0 of the form

DN �α,β,ε
Logd+εN

N

where d is a positive number.

Problem 3. Investigate the discrepancy of further examples of general-
ized polynomials.

Investigations concerning other arithmetical aspects, besides distribution
modulo one, of the sequence ([nα]β)n≥0 can be found in [8], where in partic-
ular it is shown that such a sequence is orthogonal to the Möbius function.
This can be seen as the sequel of [6] where, following the breakthrough result
of Vinogradov on primes [19], Davenport showed that∑

n≤N
µ(n)e(nα) = o(N)

and, by some further analysis, inferred that the series
∑

n≥1 µ(n){nα}/n
converges. Correspondingly, we may investigate the convergence of the series∑

n≥1 µ(n){[nα]β}/n but we keep such an investigation for a later paper.
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