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A regularity criterion for 3D micropolar fluid flows
in terms of one partial derivative of the velocity

SADEK GALA (Mostaganem and Catania) and
MARIA ALESSANDRA RAGUSA (Catania)

Abstract. We prove a regularity criterion for micropolar fluid flows in terms of one
partial derivative of the velocity in a Morrey—Campanato space.

1. Introduction and the main result. In this paper, we consider the
following Cauchy problem for the incompressible micropolar fluid equations
in R? [9]:

Ou+ (u-Viu—Au+Vr -V xw=0,

Ow — Aw —Vdivw +2w+u-Vw—V xu=0,
V.-u=0,

u(z,0) = up(z), w(z,0)=uwo(z),

(1.1)

where u, w and 7w denote the unknown velocity vector field, the micro-
rotational velocity and the unknown scalar pressure of the fluid at the point
(x,t) € R3 x (0,7T), respectively, while ug,wp are given initial data with
V - ug = 0 in the sense of distributions.

When the micro-rotation effects are neglected or w = 0, the micropolar
fluid flows reduce to the incompressible Navier—-Stokes flows (see, for
example, [25] 39]). Much effort has been devoted to establish the global
existence and uniqueness of smooth solutions to the Navier—Stokes equations.
Different criteria for regularity of weak solutions have been proposed. The
Prodi-Serrin condition (see [16] [34) [38]) shows that any solution w for the
3D Navier—Stokes equations satisfying

2
(1.2) u € LP(0,T; LY(R?)) with 7+§§1mﬁ3§q§m,
P q
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is regular. Notice that the limiting case u € L>(0,T; L3(R3)) was covered
by Escauriaza et al. [I0] in 2003. Later on, Beirao da Veiga [2] established
another regularity criterion by replacing ([1.2)) with the following condition:

3 2 3
(1.3) Vu e LP(0,T; L*(R?)) with =+ 3 <2and 5 <a <o

o
In 2004, Penel and Pokorny [33] obtained a different type regularity criterion,
which says that if

(1.4) dzu € LP(0,T; L*(R?)) with % + ; <land?2<a< oo,
then the solution u to the Navier—Stokes equations is regular. The same
result can be found in [4I]. Penel and Pokorny’s work has been improved
by some other authors (see, e.g., [5 8 24] and the references cited therein).
It was already known that if one component of the velocity is bounded in a
suitable space, then the solution is smooth (see Penel and Pokorny [33] and
Zhou [40, [41), [43],44] ). Some of these regularity criteria can be extended to the
3D MHD equations by making assumptions on both u and b [4]. Moreover,
He and Xin [I7] derived some regularity criteria for the 3D MHD equations
only in terms of the velocity field u, and they proved that if u satisfies either
or , then the solution is regular. Recently, Cao and Wu [7] proved
that the condition

. 3 2 3
(1.5) dsu € LP(0,T; L*(R?)) with at3 < anda>3
also implies regularity of the solution (u, b) to the 3D MHD equations. Later,
Jia and Zhou [19, 20, 22] showed that if

(1.6) dzu € LP(0,T; L*(R?)) with g + ; = Z + é and a > 2,
then the solution is regular. For more interesting component reduction results
for the regularity criterion, we refer to e.g. [21], 40} (411, 143, [44].

Inspired by the above-mentioned works on regularity criteria of Navier—
Stokes and MHD equations, particularly those of Penel and Pokorny [33],
Cao and Wu [7] and Jia and Zhou [19] 20, 21} 22], we want to investigate a
similar problem for the micropolar fluid flows . Very recently, Jia et al.
[18] (see also [8]) proved the following regularity criterion:

2
dzu € LP(0,T; L¥°(R?)) with 3 + 5= 1 and 3 < a < oo.
«

Here L®*° is the Lorentz space.

The purpose of this work is to improve the result in [I§], and to prove
that if the derivative of the velocity in one direction belongs to L2/(1=7) (0,T;
M273/T(R3)) with 0 < r < 1, then the weak solution is actually regular
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and unique. This work is motivated by the recent results [19]-[44] on the
Navier—Stokes equations and MHD equations.

2. Preliminaries and main result. Now, we recall the definition and
some properties of the space that we will use. These spaces play an important
role in studying the regularity of solutions to partial differential equations;
see e.g. [13] 29] and the references therein.

DEFINITION 2.1. For 0 < r < 3/2, the space X, is defined as the space
of f € L% (R3) such that

Ifllx, = sup [lfgllz2 < oo,
llgll grr <1

where we denote by H” (R?) the completion of the space C§°(R?) with respect
to the norm |[ul ;7. = [|(—A)"/2ul| 2.

We have the following homogeneity properties: for all zo € R3,

17C+aollly, =1l 1FOx, = 5elfllg,,  A>0.
The following imbedding holds:
L c X, 0<r<3/2
Now we recall the definition of Morrey—Campanato spaces (see e.g. [23]):

~ DEFINITION 2.2. For 1 < p < ¢ < oo, the Morrey-Campanato space
My, 4 is defined by
(2.1)
Myq={f € L. (B®): |1fll s, = sup sup R4/ £l o e my < o0
’ z€R3 R>0

It is easy to check that

1
Hf()")HMp’q = WHfHMp,q’ A> 0.

We have the following comparison between Lorentz spaces and Morrey—
Campanato spaces: for p > 2,

L¥m(R3) € L™ (R?) € M3/, (R).
Other useful comparisons are contained in [36], [35] and [37]. The relation
L3P (B%) € My g0 (RY)
is shown as follows. Let f € L3/™°(R3). Then
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1
. r/3—1/2( P )
171, < sup B (§
pr/3—1 P 1/p
= (sup B [ I £ ()P dy)
E E

1/
= (sup Rl{w € R®: |f(y)” > RYP"?)
R>0

= sup Ri{z € R” : | f(y)| > RY"* = || f pasr.co-
R>0

For 0 < r < 1, we use the fact that
L*NnH'C By, CH"
Thus we can replace the space X, by the pointwise multipliers from the
Besov space Bj ; to L?. Then we have the following lemma given in [28].

LEMMA 2.3. For 0 <r < 3/2, define Z, to be the space of f € L2 _(R3)
such that

Ifllz, = sup [fgllrz <oc.

o <1
“9”372“’1_

Then f € M2,3/r if and only if f € Z,., with equivalence of norms.

To prove our main result, we need the following lemma due to [32] (see
also [42]).

LEMMA 2.4. For 0 <r <1, we have
1—
1£115;, < CIAIETIV 1

Additionally, for 2 < p < 3/r and 0 < r < 3/2, we have the following
inclusion relations [27], [28§]:

Mp,B/T(R3) C XT(R3) C M2,3/T(R3) = ZT(RS)
The relation X, (R%) C M273/T(R3) is shown as follows. Let f € X,.(R?),
0<R<1,z9€Rand ¢ € C(R3), ¢ =1 on B(zo/R,1). We have

e (O T T R (R VUL

|x—x0|<R ly—zo/R|<1
/
<r( | 1(Ryow)Pdy) "
y€R3
< RYf(R)x, 6l < 1 fllx, Nl
<C|flx,-

Before stating our result, let us recall the definition of Leray—Hopf weak
solution.
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DEFINITION 2.5 ([31]). Let (ug,wo) € L*(R3) and V -up = 0. A measur-
able function (u(z,t),w(z,t)) is called a weak solution to the 3D micropolar
flow equations (1.1]) on (0,7) if (u,w) has the following properties:

(1) u,w € L>=(0,T; L*(R3)) N L?(0,T; H'(R3)) for all T > 0;
(2) (u(z,t),w(z,t)) satisfies (1.1]) in the sense of distributions;
(3) the following energy inequality holds:

t t
lulZe + l[wliZ2 + 2§ (IVulZe + [VwlZ2) ds + 2§ |V - w]|Z2 ds
0 0

t
2| [lw|f2ds < JuollFz + [wollZ.  for 0 <t <T.
0

By a strong solution we mean a weak solution (u,w) such that
u,w € L0, T; HY(R3)) N L?(0, T; H*(R?)).

It is well known that strong solutions are regular (say, classical) and unique
in the class of weak solutions.
More precisely, we will prove

THEOREM 2.6. Suppose that (ug,wo) € H*(R3) with V-ug = 0 in R3. If
the velocity u satisfies
(2.2) dsu € L¥U77(0,T; My 3/, (R%)  with 0 <7 < 1,
then the solution remains smooth on (0,T]. Therefore,
(u,w) € L>=(0,T; H'(R*)) N L*(0, T; H*(R?)).
The following two lemmas will be used in the proofs of our main results
(see, e.g., [1L 15l 26]):
LEMMA 2.7. Let u, A and v satisfy
1 2 1 2
1<a,\,y<oo, —+—>1 and 1+§:—+—.
A« YA«
Then there ezists a constant C = C(a, \) such that for all f € H'(R3) with
of,oaf € LQ(RS) and Osf € L/\(R3)
1/3 1/3 1/3
(2:3) 1£llz2 < Clon I 10217 10515
LEMMA 2.8. Let 2 < 8 < 6. Then there exists a constant C = C(f3) such
that for all f € Hl(Rg)
3(8=2)

[flls < CIIfIILB Hé‘lfllff ||32fHL22ﬁ ||3sf||LQf < CIIfIILz(Rs 11l gt sy

Proof of Theorem[2.6. We differentiate the first and the second equation
in (1.1) with respect to x3, we take the scalar product with ds3u and Osw,
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respectively, and integrate over R3, to get

1d
(24) 3 Slosuls + Vsl
=— S (Osu - V)u - Ozudx + S 03(V x w) - Ogudz
R3 R3
and
1d 2 2 2
(25) 5 05wz + [VIswlza + IV - (Osw)ll7
< — S (O3u - V)w - 3w dx — 2||03w]|22 + S 33(V X u) - Osw dx.

R3 R3
Now, combining (2.4) and (2.5, after suitable integration by parts (recall
that V- = 0) one has

1d
(2:6) 5 < [10sullLz + 10swl72] + [ VOsul7: + [ VOsw]L2
< | 05(V xw) - dguda + | 05(V x u) - 93w da — 2||O5w||7»
R3 R3
— S (Osu - V)u - Ozudx — S (O3u - V)w - O3w dx
R3 R3
:A1+A2+A3—|—A4+A5.

Integrating by parts and using Holder’s inequality and Young’s inequality
(as in [14]), we derive an estimate of the first three terms on the right-hand
side:

Ay + Ay + Az = S @g(V X w) - Ozudr + S 83(V X U) - Ozw dx — 2”83&)”%2
R3 R3
< 2[|0sw 72 + 51 VOsullFe — 2[05wll72 = 51|V sull7-.

For A4, using Lemma 2.3 together with the Holder inequality and the Young
inequality, we find that

(2.7) |A4| = ‘ S (Osu - V)u - Ozudzx| < ||03u - Ozu|| 2| Vu| 12
R3

< 19sull i, 1950l g V]2
< N10sull v, , V05l 72 1 dsull 2"V 2
by using the bilinear estimate (see [111, [12), 28§])
Falle < Cllfll . Mol
and the interpolation inequality [32]

el g, < Cllwl5 IVl
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Similarly, we can bound

5] = | § (Osu- V)w - dwde| < [105ul g, 1105] 5y 1Vl 12
R3

< sl g, 1051557190 52 | Ve 2
From the above inequalities and (2.6)), we obtain
1d 1
S ol + o) + SIVOsuls + VO,
< 10sull sy, , , IV Osull 2|1 Osull 2" [ Vull 2
+ 1105l yy, , , [105wll 2" [V O3]l [ Vel 2
By Young’s inequality (a®b'~® < aa + (1 — a)b < a + b with a,b > 0 and
0 <a<1), we find that
1 d[
dt
2

1
5 H83u||%2+||63w||%2]+§||V83u|!%2+||V83w||%2
< (105ul% 105ul” ) (V|| 7
< (Il Il s |Vl 2

271

) (IVasul2)
2 22 Ot 2 .

3(10sul 37 0l IVl BT) 7 (1V o) 72

o) o o
3/TH83W||L2 HVWHL2

Lo 2D o =
< Cllosul %, ol Va7 + Cllosul

+ 351 VOswl[Z + 51| VOsul|Z:

2(3=1) & = L
= 311Vl 3+ 311Vl e Closul 1 (I0wul 3 )7 (19ulf) ™)

1—r

2(3=) =\ -
+Closwl 2 ((M9sull ) > (IVwlz2) =)

IN

2=
31903+ §IVOsulEe + Cllosul s (105l +[Vals)

1

2(5=)
+C|0sw|l > (1|9sul]

2
- 2
i, FIVelE),

which implies that

1d
5 (L [9aull3a + 19wl32) + 9 0sulEa + Vo2

_2
< C(L+ sl (losul .+ IVulle)

2

+ C(L+ [[05wl[72) (I0sull

Hwl)

2

< C(L+ [105ullZ + [19swlZ2) (l0sull

T
2,3/

+ IVl + Vwa),

T
2,3/
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since 2— < 1. It follows from Gronwall’s inequality together with the energy
inequality . ) that

(1 + |19su(t, )72 + 195w (t, )IIZ2)

< (1+ [|185uol|72 + [[95wol72)
t 2
xexp(CJ (I9su(s, V57 + [Vuls, )3 + [ Veo(s, )[2) ds)
0
< (1+ [[D3uoll72 + H53wo\|L2)
t 2
< exp(C losu(s, )| ds+CluollEz + Jwollf2)
) ,

t 2
U 2 W r
= (14 1 9su0]22 + eoll32)e” Moz 10lie) excp ([ 1agus, I . ds)
0
and
t

(2.8) V(IV0su(s, )lI72 + [ VOsw(s, ) [|72) ds < C.
0
Here C' denotes a constant depending on the initial data and on

[0zu(s, ')||L2/(1—T)(OyT;M273/T(R3))'
Now we establish
(u,w) € L®(0,T; H) N L*(0,T; H?).
Taking the inner product of the equation (l.1) with —Au and —Aw in
L?(R?3), respectively, after suitable integration by parts, by the same calcu-
lation as in [3], [11], [I8] we obtain, for ¢t € (0,7),
1d

5 gVt Wi + 1Au@)f7 = | (u- V)u- Audz — | (V x w) - Auda

R3 R3

3
:—Z S Okt - (Opu - Vu) de — S(qu)-Awd:U
k=1R3 R3
and

Vw7 + [Aw® T2 + IV divw @)z + 2] Ve t)lIZ:

N
&‘g‘

= S(U-V)w'Awdac— S(qu)-Awdx
R3 R3
3
:_Z S Okw - (Ogu - Vw) dx — S(qu)-Awdx,

k=1R3 R3
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where we have used
S(wa)-Audac: S(qu)~Awdm.
R3 R3

We sum the above equations to obtain

(Va2 + [Ve@ll72) + | Au)]72 + | Aw @)l
+ |1V divew(t)]|2 + 2/ Ve (t)[32
< CO||Vul2s + | Vull s ]| Vw2 + 2|Vl 12| Aw]| 2
< OVul2s + (IVul2) 2 (I Vwll2:)%? + Ol Vull2: + £ Aw]2
< CO|IVullis + ClIVw|l3s + L Aw|s + C[Vul3
< O||Vul[ Y1V oyull 5 |V oul )2 |V Osull 5
+ C|Vw|35 Vo1 | 2 V0wl 57V Bswl| 15 + L Awl22 + C || Vull2,

< OVl 321V 2ull 21V Bsull 5 + ClVw][35 V2wl 2|V Osw | 5

+ L Aw|2s + O Vul 2
= (IV2u]22)/2(C )| Vul| 3| Vsl 12) /2
+ (IV%]122) Y2 (ClI Vw132 V5wl 12) % + L Aw]32 + C | Vu 22
L) A2z + ClIVul32 | VOsul 12 + 1| Awl|2: + C||Vw |32 | V3wl 12
+ L Aw|3s + O Vul2
= L(Aull?2 + | Awl|22) + CIVull 22 (| Vull 12| V5ul| 12)
+ C| Vo2 (IV0ll 21 VBs0 2) + (I VwlZa + | Vul|22)
L(1Aul2s + | Aw|Z2) + ClIVul2o (| Vull22 + [[VOsul2,)
+ C|| V|22 (Vw22 + [ VOsw]22),

N |
Q“Q‘

IA

IN

and by using Hoélder’s inequality and (2.3) with & = A = 2 and v = 6, we
get

1£llzs < ClonfI 02 F 115501185 £1135

Hence

d

(Va2 + [Vw®)Z2) + [ Au@)lIZz + | Aw(®)lIZ2

< C+||VullFz + [VOsull 72 + IVwll72 + [|[VOswl|72) (| Vull72 + [ Vw]|72).

Using Gronwall’s inequality, the energy inequality (1.6) and the estimate

(2.8), we conclude that
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t

IValt, )7z + [1Ve(t, ) 7e + [ (1 Auls, )1z + | Aw(s, ))172) ds

0
t
< (IVuol32 + [ Vwoll32) exp (C Y IVuts, I3 + [ V0su(s, |12 ds)
0
t
x exp(C ] [Ves, )32 + VAo, ) |32 ds)

0
<C

for all 0 <t < T. Hence

(u,w) € L>=(0,T; H'(R?)) N L*(0, T; H*(R?)),

which shows that u and w are smooth, completing the proof of Theorem[2.6] =

REMARK 2.1. Theorem is still true for the Navier—Stokes equation

with w = 0, so we give an extension of Serrin’s regularity criterion for the
Navier—Stokes equations [30].

Acknowledgements. The authors thank the referees for their invalu-

able comments and suggestions which helped improve the paper greatly. This
work was done while the first author was visiting Catania University in Italy.
He thanks the Department of Mathematics and Computer Science of Catania
University for their hospitality.

(1]
2]

3l

4]

5]
[6]

7]

18]

9

References

R. A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

H. Beirao da Veiga, A new regularity class for the Navier—Stokes equations in R",
Chinese Ann. Math. Ser. B 16 (1995), 407-412.

S. Benbernou, M. A. Ragusa, M. Terbeche and Z. Zhang, A note on the reqularity
criterion for the 8D MHD equations in Boo oo space, Appl. Math. Comput. 238
(2014), 245-249.

R. E. Caflisch, I. Klapper and G. Steele, Remarks on sigularities, dimension, and en-
ergy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys. 184 (1997),
443-455.

C. Cao, Sufficient conditions for the regularity to the 8D Navier—Stokes equations,
Discrete. Contin. Dynam. Systems 26 (2010), 1141-1151.

C. Cao and E. Titi, Global regularity criterion for the 3D Navier—Stokes equations
involving one entry of the velocity gradient tensor, Arch. Ration. Mech. Anal. 202
(2011), 919-932.

C. Cao and J. Wu, Two regularity criteria for the 3D MHD equations, J. Differential
Equations 248 (2010), 2263-2274.

B.-Q. Dong and W. Zhang, On the regularity criterion for three-dimensional mi-
cropolar fluid flows in Besov spaces, Nonlinear Anal. 73 (2010), 2334-2341.

A. C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966), 1-18.


http://dx.doi.org/10.1007/s002200050067
http://dx.doi.org/10.1007/s00205-011-0439-6
http://dx.doi.org/10.1016/j.jde.2009.09.020
http://dx.doi.org/10.1016/j.na.2010.06.029

[10]

[11]

[12]

[13]

|14]

[15]

[16]

[17]

[18]

[19]

20]

21]
22]
23]
[24]
[25]
[26]
[27]
[28]
29]

130]

3D micropolar fluid flows 227

L. Escauriaza, G. A. Serégin and V. Sverdk, L>*-solutions of Navier—Stokes equa-
tions and backward uniqueness, Russian Math. Surveys 58 (2003), 211-250.

S. Gala, Regularity criteria for the 8D magneto-microploar fluid equations in the
Morrey—Campanato space, Nonlinear Differential Equations Appl. 17 (2010), 181—
194.

S. Gala, On the reqularity criteria for the three-dimensional micropolar fluid equa-
tions in the critical Morrey—Campanato space, Nonlinear Anal. Real World Appl.
12 (2011), 2142-2150.

S. Gala, A remark on the logarithmically improved regularity criterion for the mi-
cropolar fluid equations in terms of pressure, Math. Methods Appl. Sci. 34 (2011),
1945-1953.

S. Gala, Z. Guo and M. A. Ragusa, A regularity criterion for the three-dimensional
MHD equations in terms of one directional derivative of the pressure, Computers
Math. Appl. 70 (2015), 3057-3061.

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier—Stokes Equa-
tions, Vols. I & II, Springer, 1994.

Y. Giga, Solutions for semilinear parabolic equations in LP and regularity of weak
solutions of the Navier—Stokes equations, J. Differential Equations 62 (1986), 186—
212.

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic
equations, J. Differential Equations 213 (2005), 235-254.

Y. Jia, X. Zhang, W. Zhang and B. Dong, Remarks on the regularity criteria of
weak solutions to the three-dimensional micropolar fluid equations, Acta Math. Appl.
Sinica 29 (2013), 869-880.

X. Jiaand Y. Zhou, Regularity criteria for the 3D MHD equations via partial deriva-
tives, Kinetic Related Models 5 (2012), 505-516.

X. Jia and Y. Zhou, A new regularity criterion for the 3D incompressible MHD
equations in terms of one component of the gradient of pressure, J. Math. Anal.
Appl. 396 (2012), 345-350.

X. Jia and Y. Zhou, Remarks on regularity criteria for the Navier—Stokes equations
via one velocity component, Nonlinear Anal. Real World Appl. 15 (2014), 239-245.
X. Jiaand Y. Zhou, Regularity criteria for the 3D MHD equations via partial deriva-
tives, Kinetic Related Models 7 (2014), 291-304.

T. Kato, Strong L? solutions of the Navier—Stokes equations in Morrey spaces, Bol.
Soc. Brasil. Mat. (N.S.) 22 (1992), 127-155.

I. Kukavica and M. Ziane, Navier—Stokes equations with reqularity in one direction,
J. Math. Phys. 48 (2007), 065203, 10 pp.

O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids, Gor-
don and Breach, New York, 1969.

O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics,
Springer, 1985.

P. G. Lemarié-Rieusset, Recent Developments in the Navier—Stokes Problem, Res.
Notes Math. 431, Chapman & Hall/CRC, 2002.

P. G. Lemarié-Rieusset, The Navier—Stokes equations in the critical Morrey—Campa-
nato space, Rev. Mat. Iberoamer. 23 (2007), no. 3, 897-930.

P. G. Lemarié-Rieusset and S. Gala, Multipliers between Sobolev spaces and frac-
tional differentiation, J. Math. Anal. Appl. 322 (2006), 1030-1054.

Q. Liu, A regularity criterion for the Navier—Stokes equations in terms of one di-
rectional derivative of the velocity, Acta Appl. Math. 140 (2015), 1-9.


http://dx.doi.org/10.1070/RM2003v058n02ABEH000609
http://dx.doi.org/10.1007/s00030-009-0047-4
http://dx.doi.org/10.1016/j.nonrwa.2010.12.028
http://dx.doi.org/10.1002/mma.1488
http://dx.doi.org/10.1016/j.camwa.2015.10.014
http://dx.doi.org/10.1016/0022-0396(86)90096-3
http://dx.doi.org/10.1016/j.jde.2004.07.002
http://dx.doi.org/10.1007/s10255-013-0264-9
http://dx.doi.org/10.3934/krm.2012.5.505
http://dx.doi.org/10.1016/j.jmaa.2012.06.016
http://dx.doi.org/10.1016/j.nonrwa.2013.08.002
http://dx.doi.org/10.3934/krm.2014.7.291
http://dx.doi.org/10.1007/BF01232939
http://dx.doi.org/10.1016/j.jmaa.2005.07.043
http://dx.doi.org/10.1007/s10440-014-9975-z

228 S. Gala and M. A. Ragusa

[31] G. Lukaszewicz, Micropolar Fluids. Theory and Applications, Mod. Simul. Sci. En-
grg. Technol., Birkh&user, Boston, 1999.

[32] S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer.
Math. Soc. 131 (2003), 1553-1556.

[33] P. Penel and M. Pokorny, Some new regularity criteria for the Navier—Stokes equa-
tions containing gradient of the velocity, Appl. Math. 49 (2004), 483-493.

[34]  G. Prodi, Un teorema di unicita per le equazioni di Navier—Stokes, Ann. Mat. Pura
Appl. 48 (1959), 173-182.

[35] M. A. Ragusa, Homogeneous Herz spaces and regularity results, Nonlinear Anal. 71
(2009), E1909-E1914.

[36] M. A. Ragusa, Embeddings in Morrey—Lorentz spaces, J. Optim. Theory Appl. 154
(2012), 491-499.

[37] M. A. Ragusa, Necessary and sufficient condition for a VMO function, Appl. Math.
Comput. 218 (2012), 11952-11958.

[38] J. Serrin, On the interior regularity of weak solutions of the Navier—Stokes equations,
Arch. Ration. Mech. Anal. 9 (1962), 187-195.

[39] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Hol-
land, Amsterdam, 1977.

[40] Y. Zhou, A new regularity criterion for the Navier-Stokes equations in terms of the
gradient of one velocity component, Methods Appl. Anal. 9 (2002), 563-578.

[41]] Y. Zhou, A new regularity criterion for weak solutions to the Navier—Stokes equa-
tions, J. Math. Pures Appl. 84 (2005), 1496-1514.

[42] Y. Zhou and S. Gala, Regularity criteria in terms of the pressure for the Navier—
Stokes equations in the critical Morrey—Campanato space, Z. Anal. Anwend. 30
(2011), 83-93.

[43] Y. Zhou and M. Pokorny, On a regularity criterion for the Navier—Stokes equations
tnvolving gradient of one velocity component, J. Math. Phys. 50 (2009), 123514,
11 pp.

[44] Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier—Stokes
equations via one velocity component, Nonlinearity 23 (2010), 1097-1107.

Sadek Gala Maria Alessandra Ragusa

Department of Mathematics Dipartimento di Matematica e Informatica

University of Mostaganem Universita di Catania

Box 227 Viale Andrea Doria, 6

Mostaganem, Algeria 95125 Catania, Italy

and E-mail: maragusa@dmi.unict.it

Dipartimento di Matematica e Informatica
Universita di Catania

Viale Andrea Doria, 6

95125 Catania, Italy

E-mail: sadek.gala@gmail.com


http://dx.doi.org/10.1090/S0002-9939-02-06715-1
http://dx.doi.org/10.1023/B:APOM.0000048124.64244.7e
http://dx.doi.org/10.1007/BF02410664
http://dx.doi.org/10.1007/s10957-012-0012-y
http://dx.doi.org/10.1016/j.matpur.2005.07.003
http://dx.doi.org/10.1088/0951-7715/23/5/004

	1 Introduction and the main result
	2 Preliminaries and main result
	References

