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1. Introduction. For integers a, q ≥ 1, the Euler–Briggs constant γ(a, q)
(see [3], [10]) is defined as follows:

γ(a, q) := lim
x→∞

( ∑
n≤x

n≡a mod q

1

n
− log x

q

)
.

When q = 1, one has γ(1, 1) = γ, the Euler constant. In 1975, Lehmer [10]
proved the identity

(1) qγ(a, q)− γ = −
∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζq),

where a, q > 1 and µq is the group of qth roots of unity in Q. In this paper,
we generalise Lehmer’s identity. In order to state our result, we need to
introduce a few definitions and notations. Throughout the paper, we will
denote the set of all prime numbers by P, and an arbitrary prime number
by p. For any finite subset Ω of primes, we define

PΩ :=

{∏
p∈Ω p if Ω 6= ∅,

1 otherwise,
δΩ :=

{∏
p∈Ω(1− 1/p) if Ω 6= ∅,

1 otherwise.

Also throughout the paper, empty sums are assumed to be zero.

For natural numbers a, q ≥ 1 and for a finite set Ω of primes not contain-
ing any prime factors of q, the generalised Euler–Briggs constant γ(Ω, a, q)
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is defined as

γ(Ω, a, q) := lim
x→∞

( ∑
n≤x

(n,PΩ)=1
n≡a mod q

1

n
− δΩ log x

q

)
.

When q = 1, one recovers the generalised Euler constant

γ(Ω) := lim
x→∞

( ∑
n≤x, (n,PΩ)=1

1

n
− δΩ log x

)
,

introduced by Diamond and Ford [4] in 2008. Note that γ(∅, 1, 1) = γ(∅) =
γ(1, 1) = γ. In this context, we have the following theorem.

Theorem 1. For any finite set Ω of primes and a natural number q ≥ 1
with (q,PΩ) = 1, one has

γ(Ω, a, q)− δΩ
γ

q
=
δΩ
q

∑
p∈Ω

log p

p− 1
(2)

−
∑
Ω′⊆Ω

(−1)Card(Ω′)

qPΩ′

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζPΩ′
q ),

where Card(Ω′) denotes the cardinality of Ω′.

Note that when we setΩ = ∅ in (2), we recover the identity of Lehmer (1).
The techniques involved in our proof are different from that of Lehmer and
hence give another proof of Lehmer’s original identity.

The above identity together with the celebrated theorem of Baker on
linear forms in logarithms (see Preliminaries for the exact statement) allows
us to prove the following corollaries.

Corollary 1. For any natural numbers a, q > 1 with (a, q) = 1 and
for any finite set Ω of primes, the number

γ(Ω, a, q)− δΩ
γ

q

is transcendental.

Further we have the following corollary.

Corollary 2. Let U := {Ωi}i∈N be a sequence of finite subsets of
primes and S := {qj > 1}j∈N be a sequence of mutually co-prime natu-
ral numbers. Also suppose the Ωi’s do not contain any prime divisors of qj’s
for all i, j, and let a be a natural number with (a, qj) = 1 for all j. Then the
set

T := {γ(Ωi, a, qj) | Ωi ∈ U, qj ∈ S}
has at most one algebraic element.
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The earlier results established in [6, 13, 14] follow from Corollary 2; see
also [7, 8, 11, 15] for results related to transcendence of Euler’s constant γ.

In the article [5], the first and the second author along with Kumar
Murty give a non-trivial lower bound for the Q-space generated by suitable
generalised Euler–Briggs constants.

2. Preliminaries. With the notation of Section 1, one can easily deduce
that

(3)

δΩ =
∑
d|PΩ

µ(d)

d
=
∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′
,

−
∑
d|PΩ

µ(d) log d

d
= δΩ

∑
p∈Ω

log p

p− 1
.

For natural numbers q, r ≥ 1, we have

(4)
∏
ζq∈µq
ζq 6=1

(1− ζq) = q and
∏
ζq∈µq

(1− ζqζr) = 1− ζqr ,

where ζr is any fixed rth root of unity. The above identities follow by sub-
stituting X = 1 in

Xq−1 +Xq−2 + · · ·+ 1 =
∏
ζq∈µq
ζq 6=1

(X − ζq)

and X = 1/ζr in

Xq − 1 =
∏
ζq∈µq

(X − ζq).

We note the following results which are relevant for proving our corollaries.

Lemma 1. Let ζq (6= 1) be a qth root of unity, where q = pn, n ≥ 1.
Then the norm of 1− ζq is p.

For a proof of Lemma 1, see Lang [9, p. 83].

Lemma 2. Let ζq be a primitive qth root of unity, where q ≥ 1 has at
least two prime factors. Then 1− ζq is a unit.

See Washington [16, p. 12] for a proof of Lemma 2. We end this section
by stating the following theorem of Baker [1].

Theorem 2 (Baker). If α1, . . . , αn are non-zero algebraic numbers such
that logα1, . . . , logαn are linearly independent over Q, then 1, logα1, . . . ,
logαn are linearly independent over Q.

In particular, one has the following theorem.
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Theorem 3. If α1, . . . , αn and β1, . . . , βn are algebraic numbers with
αi’s non-zero, then β1 logα1+· · ·+βn logαn is either zero or transcendental.

The proofs of the above theorems can be found in [2] (see also [12,
p. 101]). Finally, we shall need the following corollary of Baker’s theorem.

Corollary 3. For n ≥ 2, let α1, . . . , αn be non-zero algebraic numbers
such that logα1 belongs to the Q-vector space Q〈logα2, . . . , logαn〉 generated
by logα2, . . . , logαn. Then logα1 ∈ Q〈logα2, . . . , logαn〉.

Proof. Let I be a maximal Q-linearly independent subset of {logα2, . . . ,
logαn}. By hypothesis, logα1 ∈ Q(I). Hence by Baker’s theorem, {logα1}∪I
is Q-linearly dependent. Since I is linearly independent over Q, it follows that

logα1 ∈ Q(I) ⊆ Q〈logα2, . . . , logαn〉.

3. Proof of the main theorem. In order to prove our main theorem,
we need the following lemmas.

Lemma 3. For natural numbers a, r > 1, q ≥ 1 with (q, r) = 1, we have

lim
x→∞

( ∑
n≤x

n≡a mod q
n≡0 mod r

1

n
− 1

qr

∑
n≤x

1

n

)
=
−1

qr

∑
ζq∈µq

∑
ζr∈µr
ζqζr 6=1

ζ−aq log(1− ζqζr).

Proof. Since (q, r) = 1, we have ζqζr = 1 if and only if ζq = ζr = 1.
Hence
−1

qr

∑
ζq∈µq

∑
ζr∈µr
ζqζr 6=1

ζ−aq log(1− ζqζr)

=
−1

qr

∑
ζr∈µr
ζr 6=1

log(1− ζr)−
1

qr

∑
ζq∈µq
ζq 6=1

∑
ζr∈µr

ζ−aq log(1− ζqζr)

=
1

qr

∑
ζr∈µr
ζr 6=1

∞∑
n=1

ζnr
n

+
1

qr

∑
ζq∈µq
ζq 6=1

∑
ζr∈µr

∞∑
n=1

ζn−aq ζnr
n

=
1

qr
lim
x→∞

(∑
n≤x

1

n

∑
ζr∈µr
ζr 6=1

ζnr +
∑
n≤x

1

n

∑
ζr∈µr

ζnr
∑
ζq∈µq
ζq 6=1

ζn−aq

)

=
1

qr
lim
x→∞

(∑
n≤x

1

n

∑
ζr∈µr

ζnr
∑
ζq∈µq

ζn−aq −
∑
n≤x

1

n

)
= lim

x→∞

( ∑
n≤x

n≡a mod q
n≡0 mod r

1

n
− 1

qr

∑
n≤x

1

n

)
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since ∑
ζq∈µq

ζnq =

{
q if n ≡ 0 mod q,

0 otherwise.

Lemma 4. For natural numbers a, q and a finite set Ω of primes, we
have ∑

n≤x
n≡a mod q
(n,PΩ)=1

1

n
=
∑
Ω′⊆Ω

(−1)Card(Ω′)
∑
n≤x

n≡a mod q
n≡0 mod PΩ′

1

n
.

Proof. We have∑
n≤x

n≡a mod q
(n,PΩ)=1

1

n
=

∑
n≤x

n≡a mod q

1

n

∑
d|(n,PΩ)

µ(d) =
∑
d|PΩ

µ(d)
∑
n≤x

n≡a mod q
d|n

1

n

=
∑
d|PΩ

(−1)Card(Ωd)
∑
n≤x

n≡a mod q
d|n

1

n
,

where Ωd is the set of prime divisors of d. Hence∑
n≤x

n≡a mod q
(n,PΩ)=1

1

n
=
∑
Ω′⊆Ω

(−1)Card(Ω′)
∑
n≤x

n≡a mod q
n≡0 mod PΩ′

1

n
.

We now prove our main theorem, which generalises the identity (1) of
Lehmer.

Proof of Theorem 1. Using Lemma 4 and equation (3), we can write

γ(Ω, a, q)− δΩ
γ

q
= lim

x→∞

( ∑
n≤x

n≡a mod q
(n,PΩ)=1

1

n
− δΩ

q

∑
n≤x

1

n

)

= lim
x→∞

( ∑
Ω′⊆Ω

(−1)Card(Ω′)
∑
n≤x

n≡a mod q
n≡0 mod PΩ′

1

n
− 1

q

∑
Ω′⊆Ω

(−1)Card(Ω′)

PΩ′

∑
n≤x

1

n

)
.

Thus

γ(Ω, a, q)− δΩ
γ

q

= lim
x→∞

( ∑
Ω′⊆Ω

(−1)Card(Ω′)

( ∑
n≤x

n≡a mod q
n≡0 mod PΩ′

1

n
− 1

qPΩ′

∑
n≤x

1

n

))
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=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

∑
ζq∈µq

∑
ζPΩ′∈µPΩ′
ζqζPΩ′ 6=1

ζ−aq log(1− ζqζPΩ′ ) (by Lemma 3)

=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

×
( ∑
ζPΩ′∈µPΩ′
ζPΩ′ 6=1

log(1− ζPΩ′ ) +
∑
ζq∈µq
ζq 6=1

∑
ζPΩ′∈µPΩ′

ζ−aq log(1− ζqζPΩ′ )

)

=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

×
(

log
∏

ζPΩ′∈µPΩ′
ζPΩ′ 6=1

(1− ζPΩ′ )−
∑
ζq∈µq
ζq 6=1

ζ−aq
∑

ζPΩ′∈µPΩ′

∑
m≥1

ζmq ζ
m
PΩ′

m

)

=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

(
log PΩ′ −

∑
ζq∈µq
ζq 6=1

ζ−aq
∑
m≥1

m≡0 mod PΩ′

ζmq PΩ′

m

)

=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

(
log PΩ′ −

∑
ζq∈µq
ζq 6=1

ζ−aq

∞∑
k=1

ζ
kPΩ′
q

k

)

=
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

(
log PΩ′ +

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζPΩ′
q )

)
(by (4))

=
∑
d|P

−µ(d) log d

qd
+
∑
Ω′⊆Ω

(−1)Card(Ω′)+1

qPΩ′

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζPΩ′
q )

=
δΩ
q

∑
p∈Ω

log p

p− 1
−
∑
Ω′⊆Ω

(−1)Card(Ω′)

qPΩ′

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζPΩ′
q ) (by (3)).

This completes the proof of the theorem.

4. Proofs of the corollaries

Proof of Corollary 1. We know from Theorem 1 that

γ(Ω, a, q)− δΩ
γ

q
=
δΩ
q

∑
p∈Ω

log p

p− 1
−
∑
Ω′⊆Ω

(−1)Card(Ω′)

qPΩ′

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζPΩ′
q ).
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Now by Theorem 3, γ(Ω, a, q)−δΩγ/q is either 0 or transcendental. Assume
that it is equal to zero.

Case I. Suppose that Ω is non-empty and p0 ∈ Ω. Consider the set

I := {log p : p ∈ Ω, p 6= p0} ∪ {log(1− ζq) : ζq ∈ µq, ζq 6= 1}.

Since δΩ 6= 0, we get log p0 ∈ Q(I). Then by Corollary 3, there are integers
a0 (6= 0), ap, aζq such that

a0 log p0 =
∑
p∈Ω
p 6=p0

ap log p+
∑
ζq∈µq
ζq 6=1

aζq log(1− ζq),

which implies that

pa00 =
∏
p∈Ω
p 6=p0

pap
∏
ζq∈µq
ζq 6=1

(1− ζq)aζq .

Since (q, p0) = 1, by taking the norm on both sides and applying Lemmas 1
and 2, we get a contradiction.

Case II. Suppose that Ω = ∅. Then by Theorem 1,

(5) γ(a, q)− γ

q
=
−1

q

∑
ζq∈µq
ζq 6=1

ζ−aq log(1− ζq) =
−1

q

q−1∑
b=1

η−abq log(1− ηbq),

where ηq is a primitive qth root of unity. Let I := {logα1, . . . , logαt} be a
maximal Q-linearly independent subset of {log(1 − ηbq) | 1 ≤ b ≤ q − 1}.
Write

log(1− ηbq) =
t∑

c=1

ub,c logαc

for some ub,c ∈ Q. Set γa := γ(a, q)− γ/q. Then by (5), we have

γa =
−1

q

q−1∑
b=1

η−abq

t∑
c=1

ub,c logαc =
−1

q

t∑
c=1

uc logαc,

where

uc =

q−1∑
b=1

η−abq ub,c ∈ Q(ηq).

Without loss of generality we assume that γa = 0, since by Theorem 3 the
above quantity is either zero or transcendental. Then by our assumption,
uc = 0 for all c. Let σ` be an element of the Galois group of Q(ηq) over Q
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which sends ηq to η`q. Then

γa` =
−1

q

q−1∑
b=1

η−ab`q

t∑
c=1

ub,c logαc

=
−1

q

q−1∑
b=1

σ`(η
−ab
q )

t∑
c=1

ub,c logαc

=
−1

q

t∑
c=1

σ`(uc) logαc.

Hence γa` = 0 for all ` with (`, q) = 1. Then

0 =
∑

1≤r<q
(r,q)=1

γr = lim
x→∞

∑
1≤r<q
(r,q)=1

( ∑
n≤x

n≡r mod q

1

n
− 1

q

∑
n≤x

1

n

)

= lim
x→∞

( ∑
n≤x

(n,q)=1

1

n
− ϕ(q)

q

∑
n≤x

1

n

)

= γ(Ωq)− δΩqγ,

where Ωq is the set of all prime divisors of q. Substituting Ωq in place of Ω
and 1 in place of q in Theorem 1, we get

γ(Ωq)− δΩqγ = δΩq
∑
p∈Ωq

log p

p− 1
,

a contradiction since the set {log p : p ∈ Ωq} is linearly independent over Q.
This completes the proof of Corollary 1.

Proof of Corollary 2. Suppose that γ(Ω1, a, q1), γ(Ω2, a, q2) ∈ Q. Then

(6)
δΩ2

q2
γ(Ω1, a, q1)−

δΩ1

q1
γ(Ω2, a, q2)

=
δΩ1δΩ2

q1q2

(∑
p∈Ω1

log p

p− 1
−
∑
p∈Ω2

log p

p− 1

)

− δΩ2

∑
Ω′

1⊆Ω1

(−1)Card(Ω′
1)

q1q2PΩ′
1

q1−1∑
b=1

η−abq1 log(1− ηbP ′
q1 )

+ δΩ1

∑
Ω′

2⊆Ω2

(−1)Card(Ω′
2)

q1q2PΩ′
2

q2−1∑
c=1

η−acq2 log(1− ηcP ′
q2 ) ∈ Q,

where ηq1 and ηq2 are primitive q1th and q2th roots of unity respectively.
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Hence by Theorem 3, we know that

δΩ2

q2
γ(Ω1, a, q1)−

δΩ1

q1
γ(Ω2, a, q2) = 0.

Case I. Suppose that Ω1 6= Ω2. Choose p0 either from Ω1 \Ω2 or from
Ω2 \Ω1. Then arguing as in Case I of Corollary 1, and using Lemma 3, we
get the assertion.

Case II. Suppose that Ω1 = Ω2 = Ω, say. Set

γa :=
1

q1
γ(Ω, a, q2)−

1

q2
γ(Ω, a, q1).

Then from Theorem 1, we see that

γa =
∑
Ω′⊆Ω

(−1)Card(Ω′)

q1q2PΩ′

( q1−1∑
b=1

η−abq1 log(1− ηbP ′
q1 )−

q2−1∑
c=1

η−acq2 log(1− ηcP ′
q2 )

)
,

where ηq1 and ηq2 are primitive q1th and q2th roots of unity respectively.
Let {logα1, . . . , logαt} be a maximal Q-linearly independent subset of

{log(1− ηbq1), log(1− ηcq2) | 1 ≤ b ≤ q1 − 1, 1 ≤ c ≤ q2 − 1}.

If we write log(1−ηbq1) =
∑t

r=1 db,r logαr and log(1−ηcq2) =
∑t

r=1 ec,r logαr
where db,r, ec,r are in Q, then we get γa =

∑t
r=1 βr logαr, where

βr :=
∑
Ω′⊆Ω

(−1)Card(Ω′)

q1q2PΩ′

(q1−1∑
b=1

db,rη
−ab
q1 −

q2−1∑
c=1

ec,rη
−ac
q2

)
.

Hence by Theorem 3, βr = 0 for all r since by assumption γa = 0. Arguing as
in Case II, Corollary 1 and by applying Galois elements of Q(ηq1q2) over Q,
we find that γa = 0 for all (a, q1q2) = 1. Hence∑

1≤a<q1q2
(a,q1q2)=1

γa = 0.

Note that by orthogonality of characters, we have

1

q1

∑
1≤a<q1q2
(a,q1q2)=1

∑
k≤x

(k,PΩ)=1
k≡a mod q2

1

k
=

1

q1φ(q2)

∑
1≤a<q1q2
(a,q1q2)=1

∑
k≤x

(k,PΩ)=1

1

k

∑
χ mod q2

χ(k)χ̄(a)(7)

=
φ(q1)

q1

∑
k≤x

(k,q2PΩ)=1

1

k
= δΩq1

∑
k≤x

(k,PΩ∪Ωq2
)=1

1

k
,
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where Ωq1 is the set of all prime divisors of q1. Thus using (7), we get∑
1≤a<q1q2
(a,q1q2)=1

γa = lim
x→∞

∑
1≤a<q1q2
(a,q1q2)=1

(
1

q1

∑
k≤x

(k,PΩ)=1
k≡a mod q2

1

k
− 1

q2

∑
k≤x

(k,PΩ)=1
k≡a mod q1

1

k

)

= lim
x→∞

(
δΩq1

∑
k≤x

(k,PΩ∪Ωq2
)=1

1

k
− δΩq2

∑
k≤x

(k,PΩ∪Ωq1
)=1

1

k

)

= δΩq1γ(Ω ∪Ωq2)− δΩq2γ(Ω ∪Ωq1).

Here Ωq1 , Ωq2 denote the set of all prime divisors of q1 and q2 respectively.
Now using Theorem 1, we know that

δΩq1γ(Ω∪Ωq2)−δΩq2γ(Ω∪Ωq1) = δΩ∪Ωq1∪Ωq2

( ∑
p∈Ωq2

log p

p− 1
−
∑
p∈Ωq1

log p

p− 1

)
.

Since (q1, q2) = 1, by Theorem 3 the above expression is transcendental.
This completes the proof of Corollary 2.
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